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FOREWORD

The effort described in this report is one part of the theoretical development
necessary to mzke the last version of the Naval Surface Warfare Center (NAVSWC(C)
aeroprediction code, published in 1281, more applicable to present and future weapon
concepts. The particular theoretical development included in this report addresses
the changes in skin temperatures and aerodynamics associated with real gas effects
that occur at high Mach number flight.

Appreciation is given to Francis Priole, who ran the ZEUS code to provide the
exact computations with which to compare the present new engineering methods.
Appreciation is also expressed to Dr. Roy McInville for consultation on heat transfer
requirements and techniques.

The work described in this report was supported through the Dffice of Naval
Research (Dzve Siegel} and, more specifically, the Surface-launched Weapons
Technology Bleck Program munared at NAVSWC by Robin Staton. ..ppreciation is
expressed to these individuals for their support in this work.

Approved by:

RICHARD W. DORSEY, Deputy Head
Weapons Systems Department
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ABSTRACT

New methods have been developed to compute inviscid surface pressures and
temperatures for both perfect and equilibrium chemically reacting flews on both
pointed and blunt bodies of revolution. These new methods include an improved
Shock-expansion Theory, an improved Modified Newtonian Theory (MNT), and an
improved method for angle-of-attack effects. Comparison cf these approximate
engineering techniques to exact inviscid computations using a full Euler code showed
that these new methods gave very good agreement of surface temperature and
pressures as well as forces and moments. Incorporation of this new technology into
the NAVSWC aeroprediction code will allow the code to be used for engineering
estiraates of inviscid surface temperature at high Mach numbers. These approximate
temperatures can then be used as inputs to perform heat transfer analysis.
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1. INTRODUCTION

For the past 20 years, the Naval Surface Warfare Center NAVSWC) has been
involved in developing codes to calculate aerodynamics on tactical weapons. These
codes have attempted to meet the changing needs of the Tacticai Weapons
Community and keep pace with aerodynamic requirements. A recent effortl was
undertaken to look at where we have been, where we are, and where we need togo in
the future with respect to aerodynamic codes. This effort identified three needs: (1)
an improved aerodynamic prediction code that allows Mach numbers to 20, has
improved low aspect ratio wing lifting capabilities, and allows improved base drag
prediction; (2) an improved full Euler code that has real gas effects included,
improved low supersonic Mach number ability, and an integral boundary layer code
to compute viscous effects; (3) a Navier Stokes code to provide aeroheating and high-
angle-of-attack aerodynamics on a limited number of high-value projects. This report
is concerned with partially meeting the number 1 need above; that is, including real
gas effects into the computations so that higher Mach numbers can be considered.

The latest version of the aeroprediction code2-4 calculates aerodynamics up to
Mach 8. The main reason for limiting the code to this Mach number is that real gas
effects start becoming important around Mach 6, and at Mach 8 can still be neglected
for most applications. However, as Mach number increases substantially above Mach
6, the requirement to have reai gas effects included in the aeroprediction code
increases. Over the past 5 years, tactical weapon concepts have been investigated
that fly at Mach numbers up to 20. For this reason, it is believed that real gas effects
need to be included in the aeroprediction code.

The theoretical methodology used to predict aerodynamics above about Mach 3
is Second-order Shock-expansion Theory (SOSET) combined with Modified
Newtonian Theory (MNT). A brief search of the literature revealed no pre<ent
second-order accurate theoretical techniques for including real gas effects ::iw0
aerodynamic computations. The only approaches available were either incorporation
of real gas effects into the full inviscid Euler equations of motion or first-order local
slope techniques. The first approach is beyond the computational complexity desired
for an approximate engineering code, whereas the latter approach does not yield
accurate axial force calculations. Hence, extending SOSET to include real gas effects
will meet an immediate need for the aeroprediction code and will also fill a gap in the
external literature.
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2. ANALYSIS

This section is written at a level that covers the nish-speed fluid flow
phenomena discussed in the Introduction from a first principles viewpoint. The
inwent is te acquaint the reader who has no prior background in Real Gas effects with
the importance and the physics ard chemistry of these effects as well as how one
mathematically goes about so.ving for the flow field.

2.1 PERFECT AND REAL GAS BACKGROUND

2.1.1 Definition

Usually when one thinks of a aefinition, one thinks in terms of a clear and
concise answer. Such is not necessarily the case with real and perfect or ideal gases.
This is because there are several definitions of perfect gases and real gases
depending on which reference one uses3-19 and whether one uses the chemist’s or
aerodynamicist’s deflinition. To define a real gas, we must first define a perfect gas.
Ounce we have defined a perfect gas, a real gas wiil be defined to cover all other cases.

Some references define a perfect gas as one that Hllews the equation of state
identically

p=pRT {1)

and has constant specific heais

c C = consi (2)
b SR

{NOTZ: Here a bar is placed cver the C, C, to distinguish the specific

heats from pressure voefficient Cy,, used throughout the report.)

Others break down the definition of perfect gas into a calorically-perfect gas, which is
defined by Equatiens (1} and {2), and a thermally perfect gas where Equation (1) is
still satisfied but the specific heats are functions of temperature. That is

C =0T
P

(3)

= {iT

v

o]

Finally, one authord alijowed a perfect gas to include cases where the specific heats
were functions of pressure and temperature, i.e.

En =T, p)
) (4)

C‘_ =T, p:
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and Eguation (1) was not required io be satisiied. The only requirement for a perfect
gas was that the intermoleculer attractive or repulsive forces beiween atoms or
molecules be neglected (this is the original definiticn by the chemist).

For purnuses of this report, the most sirict definition for a perfect gas is taken
{which is sometimes referred to as a calerically-perfect gas). That is, Equations (1)
and {2) must be satisfied. A real gas is, therefore, one where either inter-
molecuiar forces cannot be neglected {low temperature and high pressure) or
one where the temperatare is high enough to excite the intcenai energy modes
of vibration, electronic excitation, or cause chemical reaciions and
dissociation of molecules or iornizations of atoms. In some cases, Equation {3) is
valid {computation of additionz: internal energy from vibration} whereas, in gther
cases, chemical reactions are occuiting or the intermolecular forces are not small and
Equation {4) applies and Equation (i) is no longer- valid.

r summary, a perfect gas is defined here as one that cbevs Equations (1) and (2)
exactiy, and a real gas is defined as one that violates either Equation {1} or {2; or
botn. This definition is consistent with most of the aercdynamics literature.

2.1.2 Importance of Real Gas £ffects

One may ask: Why be concerned abcut rea! gas affects for tactical weapons
(since they have been neglecied up to this point in time, tc the auther’s knowledge, for
aercdynamic computations)? A good iilustration for the importance is given by
Anderson.8 He showed the resuits of static temperature behind a normai shock
where the nerfect gas assumption was made and then these resuits were compared to
areal gas. For a pertect gas, the static ieinperature ratio across a normal sheck is

2iy-1: 'Y}‘fiT b
=1+

vy l ]
[

OF - 1 (5)

s 142 ~g2
ty + 1} MT

%

where T» is temperature behind the shock and subscript « represents conditions in
the freestream 2head of the shock. Figure 1 plots these results as a functicn of Mach
number for an zltitude of 170,000 fi. At this altitude, the speed of sound is approx-
1mately 1100 fi‘sec and the freestream air temperature is appreximately 283°K. The
normal shock would occur in the vicinity immediately ahead of the blunied pertien of
a seeker or the missile nose. Note that the temperatures of interest to tactical
weapons aerodynamicists can be very high for high Mach number conditions
as ;uming a perfect gas. Also shcwn on the figure are the real gas results taken from
Ry Torence 8. Note, in particular, the plot of Tr/Tp, the ratio of the real gas to perfec:
gas temperaiure. For Mach numbers of 6 or iess, this ratio is unity or near unity.
This is the reascn that aerodynamic computations below M_ = 6 could neglect real
gas eifects with little error. However, as one goes above M, = 6, the error in
temperature using the real gas assumption can be quite large. This is of particular
importarnce 1o materials and structures engineers who must design the system to
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withstaad these temperatures. Also shown in Figure 1 is the melting point of typical
structural materiais used in present-day missile design. The actual-use temperature
is less than the melting-point temperature. For missiles that fly at any appreciable
tiine abeve the maximum-use temperature of a given material, some form of active
cooling or insulation would be required. This means additional dead weight and,
hence, less performance for the missile. It is therefore obvious that a reasonably
accurate ectimate of temperature is essential for the design of the seeker and the
structure of the weapon. The reasons for this drastic effect on the temperature will be
discussed in the next section on fundamental phenomena.

. /l
oF--=- gy - -t~ / e
/ N Tp = PERFECTGAS  /
Ta/T» ~
N
~N
gl ~ \ -0.8
o y
STATIC ~.
TEMPERATURE N4 X
BEHIND 6F /\(\ 08
NORMAL y o
OKT RI1?
o105 MELT TEMPERATURES yd
! sl  OFMETALS ) 0.4
) TanTALUM ’ \
T T T GAS
I} sTamiess Tr = REAL
5l | |7 sTERL 0.2
| ALUMINUM \
0 _/ _ , . , : 0.0
0 2 4 s 8 10 12 14
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FIGURE 1. TEMPERATURE BEHIND A NORMAL SHOCK AS A FUNCTION OF
FREESTREAM MACH NUMBERH = 170kt

Before we finish the discussien on the importance of real gases, it should be noted
that pressure is also affected but to a much less exteat than temperature. This leads
one {o tne conclusion that if temperature is not of concern and aerodynamic forces and
moments are the major interest, the assumption of a perfect gas can be made with
reasonable validity for Mach numbers much higher than 6. The reason for this is
that pressure is mainly governed by the kinetic energy of the flow and not the
potential energy. On the other hand, the temperature is a function of both and,
therefore, varies considerably due to the real gas effects. In fact, many of the
hypersonic flow assumptions are based on the assumption of a thin shock laver and
M_ >> 1, and reasonable results for aerodynamic forces can be obtained.
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2.1.3 Physical I henomena That Cause Real Gas Effects

A ges. like any other substance, is composed of atomic structures either in
singular form {monsatomic) or joired togetner {diatomic or polyatomic). Air at room
temperature is comyposed primarily of nitrugen (Ny) and oxygen {O3) with minute
traces of caibon dioxide (CUs9), argon (Ar), and nitrogen oxide {NO). Tre total
amount of these trace eiements is less than 2 percent of the mass of a given volume of
air, wheieas the Ny is about 78 percent and O about 20 percent. Hence, for
engineering purposes, air at low to moderate iemperatures (T < 2500°K) can be
assumed to be composed of N3 and Os.

These diatomic molecules are in continuous motion and can translate in three
directions (x, y, z) and can rotate in two directions about axes A and B as shown in
Figure 2. (Note that rotational energy about an axis going through both N atoms can
be neglected in comparison to that sboui the transverse axis.)

B A

ul :
TERY TRANSLATION VELOCITY = VV 2 + V.2 + V2
k./r A z

ROTATION VELOCITY = wa, w3

FIGURE 2. Na MOLECULE UNDERGOING TRANSLATION AND ROTATION

So as air stays below about 600°K, the only energy it contains is the rotaiion
and translation of the diatomic N2 and C». This is what allows us ic make the
assumptions of a perfect gas that must foliow Equations {1} and {2). However, as the
air is heated further, an additional energ. mode enters into the physical model of the
Ng, Oz molecuies. This mode is vibrailon. That is, referring to Figure 2, one could
imagine a spring-mass system with a spring that allows additional internal energy to
be generated between the nitrogen or oxygen atoms. At temperatures above 2500°K,
the molecuie has acquired about 98 percent cf the internal energy possible from
vibration oI the molecules.

As the air is heated above 2000°K, the diatomic molecules of Ny, 02 begin io
dissociate and chemically react. Air then begins to contain significant amcunts of O,
0O, N9. N, and NO as the temperature is increased. Finally, as the air is heaied above
8000°K, significant innization occurs (an electron leaving one atom and being pick
up by another atom), which gives rise to an additional mode of internal energy ithe
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gain or loss of electrons) as well as additional chemical reacticns. An example of the
species composition oi air as a fi nition of temperature is shown in Figure 3, which is
taken from Reference 11 Figure 3 shows how the O2, Nogoto N, O, NO, N+, O+,
and e (free 2lectrons) as temperature is increased.

109 . .
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. ) g — i =
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o /I' ?\ANO* ‘i B
X%\ i \ i
: i A i
i : i
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0 2 3 '3 g 10 15

T, 1099 degk

FIGURE 3. EQUILIBRIUM COMPOSITION OF AIR AT DENSITY OF 102 atm
i{FROM REFERENCE 11;

The fundamental physical phenomenon that occurs as air is heated {or as Mach
number of a vehicle is increased) is that the additional energy modes of vibration and
ionization are added and the 2ir molecules break down and chemically react to form
other species. It is this transfer of energy to vibration and the dissociation process
that accounts for the fact that the temperature is much lower for a real gas than fora
perfect gas at high Mach numbers. That is, the translational and rotationai energy
that accounts for the high temperatures in a perfect gas is shared by other forms of
energy and the chemical reactions in a real gas. It is this sharing of energy across
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energy modes and the conservation of energy that require the temperature for a real
gas to be lower than that for a perfect gas. How one treats the computation of real gas
effects from a computational standpoint is discussed later in the Real Gas
Computational Process section.

2.2 PERFECT GAS COMPUTATIONAL PROCEDURE

Before getting into the mathematics of real gas computations, it is instructive to
briefly discuss perfect gas computations on a missile-like bedy using a combiration of
Newtonian Theory and SOSET. Here it is assumed that the missile has 2 blurt nose
where Modified Newtonian Theory {MNT} wculd be used for fiow computations and
SOSET would be used past some match point (between the pressures predicted by the
two thesries). If the nose is sharp or pointed, SOSET can be used directly.

2.2.1 Modified Newtonian Theory

Newtcnian Impact Theory assumes that, in the limit of high Mach number, the
shock lies on the body. This means that ihe disturbed fiow field lies in an infinitely-
thin layer between the shock and body. Applying the laws of conservation of mass
and momentum across the shock vields the resuit that density bzhind the shock
approaches infinite vaiues and the ratio of specific heais approaches unity. The
pressure coefficient on ihe surface becomesi2

C =2 gn%& (6}

where 84 is the angle between the velocity vector and a tangent te the body at the
point in guestion {see Appendix A).

Leesi2 noted that a much more accurate prediciion of pressure on the blunt-
nosed body could be obtained by replacing the constani “27 in Equation (6) with the
stagnation pressure coefficient Cp, . Cp, can be found from

e )

—_= = ‘ 1+ )_—_1 Mf))’“l (9

-3
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w-DME+2
M ————— (10)
2¥yM, ~ - 1)

so that Equation (9) can be related to M_ and y only by substitution of Equation (10)
into (9) to obtain

P 2 _ — 1) armi
i = A2 b (11)
P, &+ 10

Equations (8) and (10) hold oxly for a perfect gas. They are the relationships taken
from Reference 13 for flow across a nermal shock wave. Combining Equations (11)
and (8) into Equation (6), we obtain

Y
9 I y+ I)Mi y-1

c =X — il by (12)
Po YM;l 2 i 2)'M:—(}'—l}i

and
Cp=C, sin’t_ a3
0
Equation (13) allows the calculatior of the pressure coefficient all along the blunt
surface of a missile nose or wing leading edge for a perfect gas where Cp,, is given by
Equation (12) and sin b.q from Appendix A.

We also must derive an expression for static temperature along the sur.ace. To
do this recall that, for an adiabatic flow, total iemperature is constant. This means
that

- y-1 o

Ty, = To = Tg(l + I »2) (14)
Also recall thati the total pressure and density relationships are constant only for
isentropic flow. This means that these relationships do not apply 2cross a shock but
they are constant along a streamline for a perfect gas, frozen flow, or egquilibrium
flow. Since the stagnation streamline wets the body, we can app.y these reiation-
ships along the body tr compute local Mach number angd then apply Equation {14} to
compute local temperature. The total pressure is given by Equation (9; and the tetal
density is
1

r — 1 « —-__ -
i+ = Mj)’ ! {15}
o, 2 =/

g
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Now from Equation (13)
P, —P_
Cp=—
i v?
2 pm &0
or
i 2
pL = E pc\lc) CP + p‘== (16)
Also
Po TP,

2

at the stagnation point. Thus

1 2 .
Po,= 3 Pc‘cho +p, amn
Equation (17) gives p., as a functicn of freestream conditions only so it is a known
number. Since Equation (16) is also kncwn all along the surface, ther from Equation
(9) iocal Mach number can be computed by

1
p, -1 2
=) -]
M = —}¥ -1 (18)
1' {(y—i (PL
Then from Equation (14)
- el DY
I'LzTol !x + ‘2_ .\{‘2-! (19)

Also from the equation of state for a perfect gas

by

_ B (20)
. RTL

2

Other properties such as internal energy, enthalpy, and entropy could also be
computed, if desired, at each point. Thatis

- R
e, =CT.= (.——)TL @y
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— YR
hl,:CPTL=(Y_1>TL (22)

_z _( YR
H= CPTO1 = — )TO:{ (25)

The change in entropy across the shock is

=—(y—1nn(p—03) (24)

P
ol

'.OI“-‘;;

Since the flow is isentropic along a streamline (which can include the body surface),
AS aiong the body is zers.

2.2.2 First-order Shock-expansion Theory

First-order Expansion Theory was first proposed by Eggers et al.14-17 for bodies
of revolution flying at high supersonic speeds. Basically, the Shock-expansion
Theory computes the flow parameters at the leading edge of a two-dimensional (2-D)
surface with the oblique shock wave relations and with the solution for a cone at the
tip of a three-dimensional {3-D) body. Standard Prandtl-Meyer Expansion (PME) is
then applied aiong the surface behind the leading edge or tip solution to get the
complete pressure distribution over the body surface. Referring to Figure 4, this
theory inherently assumes that the expansion waves created by the change ir
curvature around the body are entirely absorbed by the shock and do not reflect back
to the bedy surface. Since the theory assumes constant pressure along one of the
conical tangent elements of the surface, fairly slender surfaces must be assumed or
many points zlong the surface assumed te obtain a fairly accurate pressure
distributior. Ancther way of stating this is to minimize the strength of the
disturbance created by Mach waves emanating from the expansion cormer and
intersecting the shock, the degree of turn should be small.

For the 2-D starting solution, the equations for a perfect gas across an oblique
shock arel3

2 .2
2vMi@n“e —ty—-1)

o
)

o = o (25)
P, -+ 13.\fisin20

2. . (26)
P. - DMisn’c +2

10
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T, [2yMisn’e -y - DJity - DM sin’0 + 2]

2 , @7
T, iy + 12 M2 sino

, @+ 1M sin®0 - 4 (M sin®o — Dy M sin®o + 1)
3{"= 2 2 2 29 (28)
= (2YM_sin"c ~{y - L1y~ DM_sin"o + 2!

o in Equations (25) through (28) is the shock angle for a 2-D body with initial angle 6.
This angle may be determined by the numerical solutien of Equation (29)

s'nsg + bsin®e - esino + d=290 (29)
M+ 2 i
b=- - ysin~ 8
M
2 p
2..\i=+1 {}.+1'|2 Y-ll 2
c= Z -+ Tan 8
ar i 4 N
s 0
d= - -
M;

LEADING EDGE SHOCKANGLE[O) oo wave
-1/
PAACH WAVES

>
\
\

TANGENT BODY
COMPOSED OF
CON:CAL
SEGMENTS

FIGURE 4. APPROXIMATION OF TRUE BODY BY ONE COMPOSED OF
STRAIGHT LINE SEGMENTS TANGENT TO SURFACE

i1
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Here the weak shock solution is taken as physically more correct (intermediate value
of 35in2 g). For a wedge flow, conditions behind the shock are constant so Equations
(25) through (28) determine the conditions at the surf-ce as well. Total conditions
can be determined by Equations (9), (14), and (15) and energy, enthalpy, and entropy
change by Equations (21) through /24). The 2-D starting solution would be used for
the leading edge portion of the lifting surface on missile configurations.

For the 3-D starting solution, the tip is approximated by a cone where the initial
cone angle is defined by a tangent to the surface at the tip as shown in Figure 4.
Properties immediately behind the shock are also caiculated by the oblique shock
relations given by Equations (25) through (28). However, the flow between the shock
and body is not constant throughout the flow field, as in the case with the wedge
solution, but is constant along rays emanating from the cone tip. This requires
solution of 2 differential equation to define the shock wave angle and properties at
the body surface. This was done by Taylor and McCaii.1# Without going through the
derivation of the differential equation, it is repeated here for reference.

av_ 3 dv 4V
-1 > 3 2]
;~{\— -viof ’H[z\'*———’a,:eo 4
2 ] max Ydo /| r a9
dY_ ¢ dV_ av ,d’v
RS e S “i=o (30)
49 1 fdo 40 \ 49 /i
where
\im=lH=Cons".

Refer to Figure 5 for the nomenclature.

LY Vg
TSHOCK,VgAND V,
SHOCK DEFINED BY OBLIQUE Vi

SHOCK RELATIONS  ~

Vg = 0 AT SURFACE

FIGURE 5. NOMENCLATURE FOR CONICALSOLLUTION
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To solve this equation, we assume a shock angle 0. With this, the conditions behind
the shock can be computed for a given freestream Mach number by Equations (25)
through {28), and the initial velocity components V, and Vg behind the shock can be
computed. Equation (30) is integrated until V3 = 0. If the angle 0, is not correct, a
new value of shock angle is guessed and an iteration occurs until the correct value of
8. is found for Vg = 0.

The Mach number at the surface is then related to the total enthalpy as follows:

v =afiy-1n+v2
max

or
2
Voax 1
—2 =1+ -———2 (31)
v y-1M

Solving for M2, there is obtained

7, 2
(‘ K Vwi ] 1

M2 = i (32

2

-(V/V ~ -1

1-(VIV_ ) r—-1
The temperature at the surface can then be datermined frem Equation (14) since To
is constant throughout the flow. Knowing the total pressure and density behind the
sheck {(where the flow field is isentropic) also allows ciie to then compute the locai p

and p throughout the flow and, in particular, at the surface from Equations (11) and
{15).

Cnce the starting solution and the various flow properties are known at the
surface ¢f a 2-I* or 3-D body, the PME Theory is applied for points downstream.

For a perfect gas, one can write?

/ v+1 1 r—1 -
vidDh = "t V oo ot VoMo (38)
y+1

y—1

if A8 is the change in the loca: surface slope in going from one tengent segment of the
body or airfoil to another tangent surface (see Figure 4), then

vzifs!z) =A8 + vzz’.\il) (24)

13
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This means that one calculates the Prandt-Meyer angle for the first surface with
Equation (33), using M, from Equation (32), then must solve Equation (33)
numerically for M, based on seme value of v, from Equation (34). Knowing M,, we
can compute T,, p,, p, from Equations (11), (14), and (15). Thus for = = 0, sharp-
nosed bodies, or airfoils in a perfect gas, we now have expressions for pressure and
temperature all along the surface of the body or airfoil.

2.2.3 Second-order Shock-expansion Theorv (SOSET)

Syvertson (et al.) extended the generalized Shock-expansion Theory on pointed
bodies and sharp airfoils to what he called a second-order theory.19 He defined the
pressure along a conical frustum by

P=p,~(p;—ple " (35)

instead of a constant on each segment as was the case in the generalized theory. Here
D is the pressure on a cone with the given cone half angle equal to the slope of the
conical segm >nt with respect to the axis of symmetry. p, is the pressure just aft of a
conical segment (see Figure 6), which is calculated from the PME, Equations (33) and
(34).

————— Mo

S DIRECTION

> X

FIGURE 6. FLOW ABOUT A FRUSTUM ELEMENT

Also

ap\
(a_s }2(5 - 82)

n= ———— (36)
P~ Py

Thus examining p from the equation, it can be seen, for example, on the frustrum
element 2-3 that the pressure varies from the pressure of the generalized theory at

14
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point 2 to that of a cone of angle 6, and Mach number M, as s gets large. Reference 19
approximated the pressure gradient as

op B, 19 . . B, 9, ap
. — ] =—|—sin6 -sirf, |+ — —{ — 37
oc/, r 92 2 2 B1 Q2 as /,
where
prz,)
B _= 12
12 2
2(.»\{12-1)
— — =1
Y~ 2y~-1

Finally, for negative angles such as would occur on a boattailed configuration, p. was
replaced by p_. No discussion was given for blunt bodies. It should be noted that ifn
of Equation (36) becomes negative, the SOSET reverts to the generalized or First-
order Shock-expansion Theory of section 2.2.2. This is because (35) will not give the
correct asymptotic cone solution for negative values of 1.

Jackson et al.20 combined SOSET with MNT to treat blunt-nosed configurations
with or without flares. They, like the authors of Reference 18, assumed that the
lifting properties could be predicted by assuming that the original body is made up of
several equivalent bodies of revolution represented by the various meridiars (see
Figure 7). They assumed the match point between the MNT and second-order shock
pressure prediction to be the angle that corresponds to shock detachment on a wedge
with the given freestream Mach number.

DeJarnette et al.21-23 made significant improvements to the work of Jackson et
al.20 and Syvertson.19 These new improvements included the following:

1. A new empirical equation for caiculating pressures on blunt noses.

2. A new matching point to match the blunt-nose pressures with those of
SOSET.

2. An exact {as opposed to an approximate) expression for the pressure
gradient downstream of a corner.

4. A new expression for poinied-cone pressures at angle of attack which
improves the initial pressure prediction over that of tangent cone theory.

5. A new technique for calculating pressures on bodies at incidence.
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= 135°

EQUIVALENT BODIES

FIGURE 7. TYPICAL EQUIVALENT BODY SHAPES USED FOR COMPUTING
LIFTING PROPERTIES WITH S2COND-ORDER SHOCK EXPANSION
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The pressure gradient after a corner was calculated exactly through a numer-
ical integration of the equation

(gt O 4o f(Ea (). = e

3s 2 (M2-1) 40 ds r |

Integration of this equation gives 3G/ds, and dpids is then computed from

2. (2,2, "
3s as as / )
where
2
A= Yp
gin 2p

and 90/ds is the curvature of the body at a given point.

The exact pressure prediction gives much more accurate results than does the
approximate method given by Equation (37), particularly for large jumps 0. As
noted by DeJarnette, it is important to get an accurate initial pressure to accurately
predict the pressures over the rest of the body profile. Similar expressions were
derived for

ap
— whena >0
as

but are not repeated here.

Finally, the expression for the pointed-core pressure at a > Q0 was estimated by
combining Slender Body Theory, Newtonian Theory, and an approximate expression
for Cp,, _ ,togive

C, @846 M=C, + AC {40)
a=0

where

9 9 i 2 2
ACP = —sin2asin20 cos$ + sin"acos” O |(2 - %)(l - tan~0) - (2 + B)sin‘d)] (40a)

(y+1;K2+2 y+1 1
P + = in - =
c=0 N ty- DK +2 2 K

)l (40b)

C =sin®0_|1

17
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K= (M2 - l)sinzec (400)

Note that $=90 is the leeward plane in this report versus the windward plane in
Reference 23.

As shown in Reference 23, the addition of these improvements gave a
significant improvement in pressure and force and moment prediction over a limited
range of cenfigurations for which computations were performed. Reference 2, which
used the techniques of Reference 23 tc conduct more extensive comparisons with
experiment, found that improvements in MNT were minimal and, therefore, the
standard MNT was used with a match point occurring where the local Mach number
was 1.1. Hence, the latest version of the NAVSWC Aeroprediction Code (References
3 and 4) contains the last three improvements by DedJarnette et al. but does not
contain the first two.

In more recent, unpublished research, DedJarnette was able to derive
expressions for improving the Modified Newtonian Theory on blunt-nosed bodies
compared to present usage. The derivation of this new methodology is given in
Appendix B. This new methodology is given by

cC =C —kcos™8 {cos8 —cos{S ) (41)
P pMN eq eq e m

where m = 2.78, (8eg)_, = 25.95°,and

(SR

dC dC
P

2
() 1| le )5
. eq “MN YMZ eq | 1 MN
sin§ ) cos™ (6 )
eq m eq m
Here

(de
_— = in (2

Thus, the theory that will be extended to M> = 20 and to calculate the effects of

equilibrium chemically reacting flow behind the shock is given by Equations (38)
through (42).

18
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Note that making the above extensions and modifications will require several
changes to the existing Shock-expansicn Theorv combined with MNT for blunt
bodies. These include the following:

1.
2.

o

® N oo o

Calculation of real gas effects behind a normal shock.

Calculation of real gas effects across an oblique shock attached to a cone
and wedge.

Calculation of PME for chemical equilibrium flows.

Extension of the exact pressure gradient formula fora = 0and a = 0 to
include frozen and chemical equilibrium flows.

Modified Newtonian Theory extended to real gases.
Definition of match point up to M_ = 20.
Computation of temperature along body surface (in addition to pressure).

Modification of any empirical formulas as necessary for frozen and equi-
librium flows.

These changes will be discussed Iater in this report. It should be noted that, while the
first three changes are state of the art,24-27 the last five have never been presented
before to the author’s knowledge.

2.3 REAL GAS COMPUTATIONAL PROCESS

2.3.1 Summary of Procedure for General Chemical Species Composition

To put real gas computations in proper perspective, consider the mathematical
model of an inviscid flow field. These equations are standard in the literature5-10 and
are sometimes referred to as Euler’s equations. They will be stated here ip vector
form without derivation.

Continuity Equation
F)
4V =0 (43)

(one equation, four unknowns)

Momentum Equation

D =
— V =

—v
Dt p P (44)

(three equations, one additional unkaown)

19
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Energy Equaticn

Dh+V¥2) ap > o
———— = = +pg+p(f-V) (45)
Y ot TRA* R

(one equation, three additional unknowns)

Equation of State
k= hip,p) (46)

(one equation, zero additional unknowns)

These equations have few assumptions. They assume inviscid flow with no
sources or sinks present and the potential energy of the air mass due to gravity is
negligible. There is a total of six equations and eight unknowns. If we make the
assumption of no body forces (i.e., f = 0) and no heat added to the system from the
outside (radiation, etc. so that q = 0), then the system reduces to six equations and
six unknowns. For a perfect gas, Equation (46} is

h= Cp'l‘ (47)

and from the equation of state for a perfect gas:

p
T= oR {48)

Here C; is a constant. Equation (48) alcng with Equations (43} through (47) form a
deterministic mathematical model for general 3-D computation of inviscid flows over
configurations in a Mach number range where these equations are valid. They are
solved in finite difference form such as References 28 and 29 or in various approx-
imate forms such as References 3, 4, or 30-32 (among others). If viscous fiows are of
interest, the viscous stress terms can be added to Equation (44), and the set of
equations then becomes the Navier Siokes equations. Also, they can be solved
numerically or by appreximations of a thin layer near the body (boundary layer).

The question we must answer is how we calculate the enthalpy (or internal
energy since h = e + p/p) when the gas is at a temperature such that the perfect gas
law is no longer valid. Numerous efforts are reported in the literature going back to
the 1940s and 1950s when high-speed flight was really becoming a practical problem.
Again, a rederivation of results will not be repeated here—only a summary com-
putation process. The process draws heavily on the kinetic theory of gases and
Quantum Mechanics.

20
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The internal energy of an 2tom {C, N, O+, N +) or molecule (NG, 09, N9) is
comprised of

= <+ -~
e=e te te te te, (49)

where subscripts t, r, v, e, 4 stand for translation, rotation, vibration, electronic
excitation, and dissociation. For a single atom, only e; and e, are important since the
rotationa! energy is small compared to translational energy. From the kinetic theory
of gasesd

el—

RT 50)

VARV

for both atoms and molecules. Also

e = 0 foratoms

e = RT for molecules (1)

The vibration energy is somewhat more difficult to compute. The vibration energy is

e = 0 foratoms

RO_
ez — v (52)

) exp(%)—l

[+

where 6, is 2270°K for O3, 3390°K for N>, or approximately 3160°K for air up to the
point of dissociation. Also, exp has been used to denote exponential to distinguish the
normal terminology of e for exp from the total internal energy e.

Combining Equations (49) through (52), for air up to approximately 2000°K
e=e + e + €

RB‘_
e=-RT +
(¢]

(63)

| W

cxp( )—l

1.

Equation (53) is for molecules only as we assume air is about 80 percent N3 and 20
percent O2 and, therefore, no atomic species are present. Note that Equation (53)isa
function of several fixed constants and temperature only. Hence, Equation (1) or (46)
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holds identically, and one can replace Equation {48) with Equation (53) for
temperatures in the range of 600°K to 2000°K. Figure 8 is a plot of the specific heats
and the ratio of specific heats where only the rotation, translation, and vibration
modes of energy are accounted for (see References 6 and 8).

5 ‘—-PERFECI'GAS
E—» REAL GAS E,, R
:
1
S
: -
> C, R
o
34 :
:
SPEGFIC ;
HEAT '
2- :
1
1
S Yy = GJC,
1 :
:
1
:
!
001 6 1 2 3 4 5 6 7 8
LOCAL TEMPERATURE X 10-3 (°K)

FIGURE 8. SPECIFIC HEATS FOR AIR (NO DISSOCIATION OR IONIZATION)

As air is heated above 2000°K, it begins to dissociate into N, O, and NO atoms
and molecules in addition to the N3, O2 already prevalent. Iuitially, the O) begins to
dissociate, but at temperatures of about 4000°K, the Ny dissociation also becomes
appreciable. Finally, above temperatures of 9000°K, the oxygen and nitrogen atsms
and molecules begin to give up electrons (ionize). This dissociation and ionizaticn of
the air molecules creates additional internal energy that must be accounted for to
accurately predict the thermodynamic and transport properties in the flow. To
compute these thermodynamic properties, we first must determine the species
concentrations at the given T and p of the mixture. Then enthalpy, internal energy,
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and values of specific heats, ratio of specific heats, and gas constant can be computed.
Some typical chemical reactions for air are

02<:.20 {b4)
N, 2N (55)
N+OsNO (56}
N+OsSNOT +e” 6Y))

Reference 11 shows there is a total of 22 chemical reactions that occur for temper-
atures up to 15000°K, resuiting in a set of 28 nonlinear equations. Each of these
reactions will have an equilibrium constant. These equilibrium constants are known
functions of temperature from either measurements or statistical mechanics
computations. These equilibrium constants are related to the partial pressures of the
individual constituents by the Law of Mass Action.5 Here the partial pressures can
be thought of (for example, p;) as the pressure that would result if a container of
given veiume were filled with only ocxygen atoms. As an example, for Equations (54)
through (57), the equilibrium constants are related to the partial pressures of
individual constituents as follows:

(po)2 .
— =K, , M {58)
Po, Y2
(pN)2
—;—— = KRN (1} (59)
N, 2
?No
= ¢y) (60)
pN PO KP NO
pNO pe
=K T
PyPg  PNOT (61)

There, of course, would be a single equation corresponding io each significant
chemical reaction. For temperatures below about 9000°K, Equations (58) through
(61) are the most important reactions. In addition to Equations (58) through (61), we
have Dalton’s Law of Partial Pressures, which states that the total pressure of the
mixture is the sum of the partial pressures. Mathematically, for the constituents of
Equations (58) through (61), this can be written as follows:

SRS (62)

P=p, TP, TPy TP, tPtP
0, "0 FN, TN TFNOF . .
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Of course, if the temperature is higher than 9000°K and other chemical reactions
occur, the other species must be added to Equation (62), just as the chemical reaction
equations are included in the set (58) through (61). Note that there are seven
unknowns in Equation (62) and five equations so far. The remaining two equations
come from a chemical balance of the number of O and N atoms and the fact that
eiectric charge must be conserved. These facts, in equation form, may be written as

NO
TS =0%= . . {63)
N 0.8 2pN2 + Py ¥ Pno t Pro A

<
(32

2po T Po ¥ Pno ¥ Pro
2

P _=p {64)

Again, if more reaction equations are included, then Equations (63) and (64) will
change to include other species. The fundamental principle of correct balance of Og,
Ny and electric charge will not change, however. For a given {emperature and
pressure, Equations (58) through (64) give a2 unique set of seven partial pressures for
the seven species (Reference 5, of course, has 22 species). This is a nonlinear set of
algebraic equations that must be solved for each given T, p to determine the species
content once temperatures are high enough for dissociation to occur. Knowing the
partial pressures of the species present aliows one to uniquely determine the other
nroperties of the system. The details will not be repeated here but can be found in
References 5, 9, or 33. Figure 3 is an example of an equilibrium composition of air as
a function of temperature at a given density.

2.3.2 Simplified Procedures for Air

This discussion, thus far, has focused on how to compute the thermodynamic
and flow fleld preperties of a chemically reaciing gas. For general chemical
reactions, this is the process that must be used. However, for air other alternatives
are available. For example, Reference 11 has produced tables of the properties of air
as a function of p and p. These could be used in a table lcok-up mode in the
computation process. A more simplified approach was produced by Tannehill and
Mugge34 and later extended to other thermodynamic variables by Srinivasan et al.35
They produced curve fits from algebraic equations for p = pfe, p), a = a(e, p), T = T{e,
p), h = h(p, p), and T = T(p, p). These fits are valid up to temperatures of 25000°K.
Since this is by far the most computationally efficient method and since we will only
be dealing with air, this is the technique used in this report. Since it is the technique
used, a brief discussion of the equations relevant to the work herein will be given.

Appendix B shows the iteration process to determine properties behind a

normal or oblique shock wave, which involves assuming a value of py/p2 behind the
shock, computing p; and hy from this assumed value, and then recomputing a new
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value of p2 based on these values of p2 and hy from the thermodynamic properties of
equilibrium air. An example of the algebraic equation contained in Reference 34 is
shown here. From Reference 34, an effective y as a function of p and p is defined by

C.+C Y+C Z+C YZ
3 6 7 -1

y=C,+C Y+CZ+C,YZ+ (©9)
Y : A 3 N + 1+expiiC9(X+C10Y+CH”
where
. {2
Y=1 Tooa
%10\ 1292/
p
X =log ( )
04, 013x10°
Z=X-Y

The coefficients C;. Cg, C3, Cy4, Cs, Cg, C7, Cg, Cg, C19, C1] are tabulated in Table 1 of
Reference 34. This allows one to compute enthalpy from the relation

h=2[=l_] (66)
ply -1
and energy from

p
e=h—; 67)

Also, from values of p and p, the temperature can be determined from
log,(TT)=d, +d,Y +d,Z+d,YZ +dZ°

2
ds+d7Y + dSZ +d9YZ + de
1 +exp[du(Z+dn)]

(68)

Here
P
g )
%F10\ 1225

. )
X =]°g10(_—5)
Y1.0134x10
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2=X-Y

and dj, do, d3, d4, ds, de, d7, dg, dg, d10, d11, d12 are given in Table 2 of Reference 34.
Knowing p, p, T, h, ¥, e, the only quantities remaining are velocity and
compressibility factor. These can be determined from the constantcy of total
enthalpy relation and the equation of state

H=Const=h1+?1=h2+—23 ' (69)
s p
Z= oRT (70)

Knowing H from freestream conditions and a new hg allows one to compute the local
Us. 1t should be noted here that the relationship

~ |

p

® |

does not yieid the true speed of sound as in the case of a perfect gas. This is because y
is h/e as defined by Reference 34 and y = y only if no dissociation of air molecules
occurs. Tannehill34 gave an expression for the approximate speed of sound if e and p
were known. That is

- _ o
a:o;e)P] * k3(a:o;p>e} lz (1)

This is also provided in curve fit form by Tannehill

a=

e{k1+(§ —1)[} +k2(

a=afe,p)
The correct local Mach number is then

A"
M=- (72)
a
Srinivasan35 produced additional curve fits of various thermodynamic
variables. These included

p=ph,p )
p=p(pT
S =Ste, p) (73) -
p=pp,S >
a=af(p,S
e=elp,S)
J
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Having curve fits available for thermodynamic variables means thai the
computational time for real gas flow fields has been reduced considerably over what
it would be if the chemistry of the gas F=2 to be computed at each point in the flow
field.

Some results of the Reference 34 curve fit procedure are given in Figures 9
through 12 in terms of varicus thermodynamic properties. In each of the figures, the
thermodynamic properties are referenced to scme set of standard conditions that
could be the sea level standard atmosphere for example.

p/po= 1E-7 1E-6 1E-5 1E4 001 01 1 1 10 100 1000

/ S ’ / /
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; , . /

102 }' [I : / / ! ‘l/’ i ; i

103

H : 1{' I/ / / // /
i ; 7 7 7 /
:/ / -’/ 1/ / ! ./ 4 !" s ! ‘
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101 ,i i § ‘,’ b ;f / / /
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/’ ! I/ ! / / / // 7 I/
/’ ; . / ’ J / /
II ,! ? / 7 /
’ / / // / / i
. / , ! / !
’ ; ) / / y / / 7 . . ;
100 - s .:/ /’ /,’ z /'I 3 ’.,-’l 7
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1 0 1 ] - ~ -
158 107 106 105 10~ 103 102 101 100 107 102 103 104 105 108
PRESSURE RATIO, pip,
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plpo= 1E-7 1E-6 1E-5 1E-4 001 .01 .1 1 10 100 1000
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FIGURE 10. CURVE FIT EQUATIONS (SPEED OF SOUND RATIO)
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FIGURE 11. CURVE FIT EQUATIONS(TEMPERATURE RATIO}

28




NAVSWC TR 90-683
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FIGURE 12. CURVE FIT EQUATIONS (ENTHALPY RAT.O)

2.3.3 Chemical Reaciion Rates

In the preceding discussion, it was assumed that the reaction rates of the
chemical processes were infinitely fast so that the flow zould be assumed to be in
chemical equilibrium at all points in the flow field. If one defines the characteristic
length of the flow field to be the body length, then the time it takes for a fluid element
to traverse the shock wave and full body length is

=1/V (74)

!

Defining the time it takes for a chemical reaction to come into equilibrium as t3, then
if

L, >>t, (75)

the flow is trulv in chemical equilibrium for all practical purposes. On the other
hand, if

t,>>1t, {76)
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we may assume that the flow is “frozen” at the chemistry that exists just behind tno
shock. That is, we can computle the flow as if it were a perfect gas except we have a
different value of y = y,behind the sheck. Finally, if

t, =t ) (77

we have nonequilibrium flow,. which means that the chemical processes are occurring
and changing significanily along the body. This results in an order of magnituade
more difficulty in making real gas computations. What can be dore, however, from a
more practical standpoint is to compute the lccal conditions assuming “frozen™ and
“equilibrium” flows and assume that the nonequilibrium case falls in beiween these
two. That is, generally the equilibrium and frozen flow cases present boundaries for
flow properties and the nonequilibrium case falls in between.

Since the focus of the present work is to incorporate real gas effects into SOSET,
only equiiibrium and frozen flows will be considered. The computations involved
v:ith a nonequilibrium flow are inconsistent with an appruximate mathematical
model of ine flow field and are more consistent with solution of the full Euler or
Navier Stokes equations.

2.3.4 Modified Newtonian Theory

Recall from Section Z.2.1, that the MNT pressure coefficient is given by

€ =C_ sin’ (18
» Trg eq

where 8eq Is evaiuated according to Appendix A. (Not= that even though Equations
{41) and (42) are the relations used to calculate pressures around the blunt portion,
they are beth functions of modified Newtonian pressures.) For the perfect gas
computations, Cp; was evaluated according to Equation (121. However, Equation
{12) no longer hc'ds for real gas computations across normal or oblique shack waves
(see Appendix C). The concitions behind the shock wave can no longer be solved for
in clesed form. as in Section 2.2.1, because the specific heats and compressibility
factor 2re no longer constant. This means that an iteration takes place to determine
the properties immediately behind the shock. Appendix C thus is the process for
defining conditicns behind the shock, ie.

Yy Do £y Dy 5, Vz_ M,T,Z 52

ar Hor

- -

The question that must be addressed is twofold:

1. How do these parameters vary along the stagnation streamline between
the body and shuck?

2. How do these propertiiec vary from the stagnation poir.© arc.ind the body to
the peint where shoch expansion theary is applied?
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This section of the report will address these questions for both frozen flow and
equilibrium chemically reacting flows where MNT is used on the blunt portion of a
configuration for pressure, temperature, force, and moment computations.

2341 Frozen Flow. For frozen flow, it is assumed that the r and
compressSibilisy factor are fixed at the values they have just behind the shock (i.e., y
=y, Z = Zp. It 1s also known that, along the stagnation streamline, tke flow is
isentropic ‘cr equilibrium flow conditions. Furthermore, it is known from many
previous works (ser, for example, References 10, 13, and 24) that the Mach number
bzhif a2 rormal shock is much less than 1 for high freestream Mach numbers. Also,
this Mach number must go to 0 at the stagnation point which is only a slight distance
away from the shock. This has led to approximate theories in the stagnation region
based on constant density, temperature, and pressure which, in effect, is the
Newtcnian assumption in the shock layer. That is, the shock is assumed to lie on the
body and the conditions behind the shock are the same as those on the body surface.
The physics of the flow between the shock and body is what allows one to assume y,
and Zr are in fact approximately constant for both equilibrium and frozen flow
between the shock and body and along the stagnation streamline. Reference 24
indicates a maximum Z.3 percent error in making this ascumption, and in most cases
the error was much less.

A second assumption will aiso be made. This assumption will aliow the use of
Equations (9), (14), and (15) in a local sense along the body wherey = y, and M is the
local value. Strictly speaking, these equations relating total to static conditions are
derived based on perfect gas assumptions 2ad with constant y = 1.4. The accuracy cf
this assumption (combined with othersj can be assessed in comparison with exact
calculations over a blunt-nosed bedy by sclution of the full Euler equationc. This will
be done in the Results section gt this renort.

Returning now tc Eguation (78} and recognizing the fact that all the properties
behind the shock are known from the real gas compuiations of the flew across a
normal shock (Appendix C), one can write

902 i o ¢ 902 \
C, = - =—{=-1)=Con= (79)
0 = 1 2 Y}! ° pz
e Ve =
2
where
b
”f - 1 2 }'! -3
b, =p |1+ Mg) = Const (80)

-

along the stagnation sireamline. Here py, p2. ha, Vg, 22, My, y,, 27 etc. are the values
calcuiated intmediately behind the shock from Appendix B. Also
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(81)
nl mﬁ) @2)
2 2
1
{ Y — 1 y.—1
902=92(1 * fz Mﬁ)f 83)

Now, since at the stagnation point local velocity and Mach number are zero, the static
pressure, temperature, density, and enthaloy at the stagnation point are simply the
total values behind the shock given by Equations (80) through (83). Thus, at the
stagnation point, for frozen flow

Pg= ?02 \

T =
Ts T02
=t
P P

S 02

(84}

-
]
<
o
]
=)
V"

Zs = Z‘ = Const
S= S, = Const aleng body

To continuz the computations 2round the blunt surface, an isentropic expansion is
assumed and Equation (78) is applied at each point on the surface where 8 is given by
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Appendix A and Cy,, is constant at the value given by Equation (79). Knowing 8eq,
Cpo, and Cp allows one to calculate the local pressure at a given point. That is

2
YG: ME

P, =P, [1 + CP] (85)
Since the flow is frozen, we can treat it just like a perfect gas except that the values of
y = yrand Rf = RZ; Hence, knowing local pressure from Equation (85), total
pressure, temperature, density, and other flow properties behind the normal shock
[Equations (80) - (84)], the fact that total conditions are constant along a streamline,
the local conditions at any point on the blunt body can be calculated by

ye-1 1 (86)
w27 - ()]
Y, —1 9
r,=1, /(1+ 2 ) (87)
i
Yr_l yo—1 (88)
2 Vi
l‘—p‘) /\ 1+ —— M )
) =(ﬂ)§ (89)
L pL
VL= MLOL (90)
v2

- L = (91)
hL—-H—- 2 and eL—hL—lepL

2.3.4.2 Equilibrium Flow. Equilibrium chemically reacting flow properties at
the stagnation point are computed just like the frozen flcw case. This is based on the
rationale discussed previously of only slight changes in the specific heats and
compressibility factor between the body and shock. However, for the isentropic
expansion around the body, y and Z are allowed to vary from the values at the
stagnation point in contrast to the frozen flow case where these parameters are frozen
at values behind the shock. Hence, for equilibrium chemically reacting flows,
Equation (84) defines the stagnation point conditions. Also, Equation (85) defines
the pressure at the next point around the body. To get the remaining properties,
recourse is once again made to the real gas curve fits of Section 2.3.2. To obtain p, we
know local pressure and entropy so that
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g, =2(p,S (92)
Then, knowing pressure ang density
b, =h(p, o) T, =Tlp,p)a;, =alp,p) (93)

The remaining quantities can be computed from thermodynamic relations as fellows:

Vv, = V2@, - b (94)
M =V /a (95)
9
e =h, —-p /o 97
Z =p /(o RT) (98)

This process is continued around the body surface to the point where shock expansion
begins. Again, Equaticns (85), (86), and (92) through (98) provide mitial conditions
for the shock expansion process.

2.3.5 Second-order Shock-expansion Theory (SOSET)

2.3.5.1 Zero Angle-of-Attack Solution

Recall that SOSET was giver by Equations (35) and (36), repeated here for
convenience.

P=p.— (. —pre " (35)
ap
(;—S- )q(s - sz)
= —————— (36)
B. " P,

We desire to develop the theory to allow computations to proceed around the body
using modified versions of Equations (35) and (36) for real gas effects. To do this
requires pressures on wedges ang cones calculated based on real gases (see Appendix
C) and pressures behind an expansion corner computed by the PME for real gases (see
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Appendix D). Note some of the results of wedge, cone, and expansion flows of real
versus perfect gases shown in Appendixes C and D. The pressures in compression
processes are almost identical for perfect and real gases, whereas the temperatures
show significant differences as the Mach number and compression angle increase. On
the other hand, expansion processes show differences for both pressure and temp-
erature of real versus perfect gas computations.

If one were only interested in applying generalized Shock-expansion Theory for
equilibrium or frozen flows over wing body configurations in a local sense at near-
zero angle of attack, one would stop at this point. Apperdixes C and D give the
results for pressures and temperatures that are used for points around the 2-D or
axisymmetric body. One would simply compute the pressure and temperature on the
blunt portion of the body using section 2.3.4, determine a match point, use the PME of
Appendix D to march around the surface where the pressure and other properties are
constant on each straight-line segment of Figure 6. For a sharp conical tip or wedge,
results of Appendix C could be used for the initial solution, and the solution couid
proceed along the body or wing surface again using the PME results of Appendix D.
However, experience has shown that a first-order solution is unacceptable for pres-
sure on most bodies of revolution at lower supersonic Mach numbers, so a second-
order accurate pressure scheme is necessary for good force and moment predictions.
Since this is the case, a comparable second-order technique for real gas pressures and
temperatures at the surface to be available for inputs to heat transfer and force and
moment computations is also desirable.

The crux of the problem in addressing second-order solutions for inclusion of
real gas effects is to successfully address the pressure gradient of Equation 36

{/ap
Lor),

behind the corner and to find simple but accurate ways of addressing angle-of-attack
computations for values of p. in Equation (35) and temperature along the surface.
The pressure gradient change behind a corner will be investigated first. To do this
will require several steps:

1. Conversion of the equations of motion [Equations (43 and (44)] from
rectangular to streamline coordinates and derivation of the characteristic
equations.

o

Dzrivi uon of the pressure change along a left running characteristic (or
Mach line) since this is the mechanism for differential pressure change
along the surface.

3. For angiz-of-attack computations, a method for accurately computing Ap
and AT dueioa.

35




NAVSWC TR 20-683

4. An algebraic approximation as a solution to an ordinary differential
equation (ODE).

While the labor and math are fairly involved to get to step 4, the solution of the
equation in step 4 is the only thing the computer sees and it is very fast. Most of the
details of the derivation of steps 1-2 will be indicated in the following discussion and
will be included either in the text or an appendix. Angle-of-attack effects are
discussed in section 2.3.6. The theoretical methodology follows the approach of
Reference 23 for perfect gases and modifies the mathematiczal model as necessary or
states assumptions made to allow real gas computations.

Appendix E converts the continuity and momentum equations from rectangular
to streamline coordinates and then derives the characteristic compatibility relations.
These equations for axisymmetric bodies at zero angle of attack , repeated here, are

d de —sinfs
b 4 80 _ —snbsinp (99)
pv2 dC,  dC, r

d de — sin0si
_{3_ dp 46 _ sanBsinp (106)
sz dC2 dC2 r

Since we are looking for dp/ds downstream of an isentropic turn, information away
from the body surface must be obtained. To do this, we must relate the change in fiow
variables along the left running characteristic to the change of these variables along
a streamline. In general, one can write

s= s(Cl, Cz)

where s, C}, and Co are all curvilinear coordinates. By the chain rule

a ¢ 4 3G

23

3s 3s aC, as aC, {101)

Also, the differential ds is

8s 9s
ds = — dC1 -

ac,
3¢, (102)

And, sinceds = dC; cos n + dC; cos p and along a streamlinedC; = dC», then
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Thus Equation (101) becomes

o __t |2, L]

s 2cosp aC1 802 (103)
or

d 2 a

— =2c08p— — —

aCl das 6C2 (1‘};)

Now adding Equations (99) and (100), using the relation (104), there is obtained
(where A = pV2/B)

ﬂ _ —snpsin® _ Cosp [EB_AE
aCl r A as ds (105)
Likewise, subtracting Equation (99) from (100), the relationship for pressure along
the left running characteristic is obtained as

) i ' (106

Equations (105) and (106) are the two relations we will use to provide
information to allow computation of

{92)

Las

To do this, consider a streamlire very near the body surface that will form a
streamtube between the body and the streamline {see Figure 13). Referring to Figure
13, the distance along a Mach line to the streamline is b, which again is assumed tc
be very small compared to the body radius. The thickness of the streamtube is
b, sin p, ahead of the turn and bg sin p after the turn.

MACH LINES
Cyq Ci2
STREAMLINE /
@ 6]

\

N

FIGURE 13. STREAMTUBE GECMETRY
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Applying Equation (106) along the streamline near the body between points ®
and ®, which correspond to the beginning and end of the expansion turn, there is
obtained

Ps dp 5 1 ap 5 36
= ——ds + — ds
P 4 Acosp 3C 4 8s (107

The left side of Equation (107) may be expanded as

P5 d 11 s 2 53
Is—‘i=J -——p—dC1+[ d—"+[ —“’—"dc1 (108)
pi‘\ 4A3C1 1 A 2A3C1

The first and third integrals on the right side of Equation (108) can be approximated

by

Here 14 and 5-2 refer to the average values of these parameters between these
points. The differential dC; between 1-4 and 5-2 is simply the distance along the left
running characteristics, which we defined as b; and bs. Note that since the first
integral goes from 4 to 1, the integral of dC; is negative so it integrates to -b;.

The second integral on the right side can be integrated directly using the
Prandtl-Meyer Expansion. Referring to Appendix C, whkere

d v
bt PR =+
d9 AMZ—1
then
2 2
d
J Loy J 40 =8,-8, (110)
1 A 1

Substituting Equations (109) and (110) into (108) there is obtained for the left side of
Equation (107)

P5 dp 1 3p . 1 3p
J Ny =—b1(I E:_), TRt (X oC. Js
/1= 5-2 (111)
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Assuming that the streamline is close to the body surface so that the Mach lines p,
and p, are basically straight and the pressure varies linearly along the left running
characteristic, then the second integral of Equation (107) may be approximated by
use of the trapezoidal rule as

r‘ 1 op [ 1 (Bp) L L (ap) ] (s5—s)
9P 4s= °r
4 Aoosp 3C, A cosp \aC Acosp,\ 3C /o 2 (112)

The last integral, of course, integrates directly to

3
Ld6=95—64

Again expanding in a Taylor series expansion yields

_ 20
65—92 + b2 E X +---

1

_ ‘b(ae
84—811— \3c 1«l--

1

20
6 -8 =6, —.6 +b (aC )2-—b1(561-)1

or

(113)
Substituting (111), (112), and (113) into (107) one obtains
(L) e - s ()
1\ 8\, —’; -3 2iA N3 l —2 \cosp1 \aclll
1 ap y 1 5578 /36 30 (114)
() ) i)
Azcos ®, \BC1 2 2 \ 3 172 aCl 1

Note that 83 - 8; cancels on each side of Equation (114). Now divide through by b;
and take the limit asb; — 0 to obtain

s (2] E(i?_) - (22) (115)
.‘.2®S B, \BCI,;; 2b1 bx \aCI 2 aCl 3

Note that ba / b and (s5- s4) / b: are not infinite but in fact are finite as will be shown
shortly. Now Equations (105) and {106) can be used to evaluate
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(38) = (35)

Substituting for these relations and carrying out the algebra, Equation (115) becomes

2cos B,

ap Y sin (pl) sin (6,)

Al as ds iy r

: -

+ = - A= + ——=
b 2 8s 3s lg r

{ [ (ap ae)l
= cos{p){ — — A —
l)alco‘:(pl 1 '\ as as /y ¢
5.—8
+——[w<p>a—"-hi‘3)]}5 4 (116)
Acos(p) as és /ol 2b1

Now except for the matchpoint between a blunt nese and a conicai frustrum

(2),+(2), - o
ds }1 as /g - (117

since O is consiant along conical segments. At the matchpoint

where Ry is the radius of the spherical nose tip. Using the relation (117) and solving
for

ap\

( dés ) 2

one ootains for Equation (116)

1 apy {575 ! 1[. _ 5\ '
, (2\ as) l b + 4 cosfn !} !-}-: lsm(pl)sm(f)l)-—(b—}s:.n(pz)gn(e?\
{22\ i

(2 : (118)
o872 ( b,y 2eesly) IR
b— 1
A

A, 2.\2i)i
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From geometry, referring to Figure 13 and the sketch below, one can write
approximately for small anglese

c=p1+91—p2 -9,

2 _ 0 2., 2;2
(ss—s4) —(bz bl) i-tb2

This can be written as
S. — § b 2 b 9 i
5~ S 2 2 \* .
() e
b b, %,

From conservation of mass, one can write

7 3 - 7 3
pl\ 1b1 sin (pl) = pz\ 2b251n (pz.’

or
;o s
b, _ pl\lsm {n,)
= ——
b, pz\rzsm {n,) (120)

Using (120) in {119) there is obtained
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s_— 3 { (91V15in ) \ 2
p,V,sin (1)

NN

2 (p,V,sn () \2
+(p +0 —p —8 > (1—.‘——--\! ] 12y
1 1 2 2 p2\’28m(}12) ,

Note that with Equations (120) and (121), Equation (118) can be calculated
independent of the distances by and bg. The only distance that enters the equation is
r, which is the local body radius at a point in question. Defining

1
F, = - lsin(pl)sin(el) - Fzsin(p.gsin(egl
2cos (
P, = Byt |
A2

allows Equation (118) to be written in an abbreviated form as

(f”_P\ __FatF 122)
3s /2 FS—F1/2A2

This is our final expression we desired to relate the pressure gradient behind an
expansion peint for use inn the SOSET.
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Note that Equation (122) gives a first-order estimate for

(),

based on all known quantities once the Prandti-Meyver integration of Appendix D has
taken place through each turn. This equation is valid for real gases since no periect
gas assumption has been made.

Returning now to Equations (35) and (36), use of Equatior (122) in conjunction
with the Prandtl-Meyer solution of Appendix D now allows one to estimate the
pressure all along the body surface to second-order accuracy for real gases. With
entropy constant along the body surface, other thermodynamic and flow field
quantities can be calculated from Equations (D-27) and (D-28) along with

T = Tp,S)
M= Vi
{123)
azp
Y= —
p
7= £
eRT

Previous applications of SOSET have applied the pressure computed from Equation
(35) at the midpoint of all body sections (see Figure 6) for force and moment
computations. While this is the correct location for 2-D surfaces and cylindrical
portions of the body, it is not the most appropriate location for conical frustums. For
conical frustums, both on the nose andt  ttail, the centroid of the surface areais

3 3
—_ ) -
g x ymx_—r)

3 —r32 124
fr o mr) it (124)

X

Here x;4 1, T;+1 are the x and r coordinates of the aft portion of the frustum and x;, r,
the x and r coordinates of the forward portion. Hence, for cylindrical segments and
two-dimensional sections (such as wings), the pressure computed from the Shock
Expansion is applied at the midpoint, whereas for conical frustums, it is applied at
the point given by Equation (324).
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2.3.5.2 Maiching Point Between MNT and SOSET

Several alternatives have been used in past literature to match the MNT to
SOSET on the blunt nose part of the body. The first alternative was that of Jackson,
et al.20 where the body slope was assumed to be that for the maximum wedge angle
allowed for an attached shock wave. Their results showed good agreement with
experimental data for 2.3 < Mo but only fsir agreement for lower supersonic Mach
numbers. DeJarnette, et al.35 devetoped an empirica! equation for the Mach number
to match MNT to SOSET. This approach gave improved results over Reference 20,
particularly at low supersenic Mach numbers. Reference 2 found that using a
constant value of M,, = 1.1 was about as goed as the results of Reference 20.

Appendix B, which contains 2 derivation ¢ ‘he new methodology by DeJarnette
for vressures on spheres in hypersoric flows found & constant value of a match point
of 8., = 25.95°. The pressure at this poirt is defined by

y M2

- =x

Pl!pz =1+ 2 Cp, (125}

S

where Cp, is given by Equation (41). Differentiating Equation (125) there is obtained

d p, v, iip= d Cp1 d Bec
ds 2 d&_ ds (126)
eg
Buti, for a sphere
d?.;«:1
4. - TRy (127)
Also, from Appendix B
¢ CP, 2 d CF ] -'-:
- =15{{C + =) "
dS‘-q 1 |5 Y ;\f; ’ dﬁq i NN (128)
C;: = qu) s beq (129)

Using the relations {126) through (129} and recognizing that 8,q = 5 95° at the
match point, Equation (116) justi past the match point becomes




NAVSWC TR 96¢-683

1
=N ! = . A: 1 p \[2 ‘ 1.
(E) = : —p) + = — —_— - 1.053{2;) (0_1676(:2 +1.951C )2 | (130)
s /3 Vas /y N By ‘/M‘lz 1 =Pz 2 o, ) |

p1, Vi, My, and C; , of Equation (130) are computed from Equation (79) and the MNT
of section 2.3.4.2.

Thus, in summary. at the match point the pressure is computed from Equation
(41). Dewnstream of this point, the solution is continued by use of Equations {35),
(36), (122), ana {130) where p,, is the value of pressure computzd by a tangent cone
approach (given freestream Mach number and iocal slope, given entropy aicng the
surface, compute the value of p. by the approach of Appendix C). The value of P,
comes from tke Prandtl-Mayer integration in Appendix .

2.3.6 Angle-of-attack Soiution for Budy Alone

The anyie-of-attack solution will follow the general approach of References 2
and 23 for including angle-of-attack effects in the pressure distribution. However,
those references were not concerned with real gas efferts or with estimating
temperatures for aeroheating and thermostructural analyses. Hence, while the
general approach-« of References 2 and 23 will be used, modifications and additions
willbeadded ~  ixethe approach more reievant to the provlems at hand.

2.3.6.1 Fuinted-cone Pressure Distributionata > 0

To start SOSET cn a pointed body or to compute the lecal properties on 2 conical
frustum, a pointed-core solution for @ > 0 1s needed. One werld desire an
approximate solution, if good accuracy can be obtained. as cpposed to a numerical
solution of partial differential equaticns38 modified o include real gas effects. The
approach of Reference 23 for perfect gases is given by Equation {40). Equation (40a)
is independent of the tvpe uf gas and iz therefore appropriate ir its present form for
comiputing the AC { q, 8, &, M) for a real gas as well. However, the approximate
relation (40b), for the pressure coefficient. un cones at zerc angle of attack, is replaced
by the pressure compuied ir Appencix C for cones in real gas fiow. Hudgins3?
presents an approximatie formula for the cone surface pressure for real gas
computations based on a fairly broad range of parameters including freestream
velocity, altitude, and cune half-angles. The pressure formula is

= 1.4932(M_sn61*®% 5 13017 for M_sin8_>13 (131)

TJIT)
&

<

or since

e
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2
c = [51 - 1]
Pe=0  y M. P,
then
2 16552
Cloco = — !1.4932 (stint)c e gmT |
¥ AL {132}

Reference 37 indicates accuracies oi better thar. 1.5 percent for Equation (131). It
should be pcinted ovt that for values of Mo sin 9¢ = 1.5, real gas effects on pressure
are negligible anc Equation (29b) can '.e used instesd of Lquation (132). For -alues
of M sin ¢ >> 1.5, Equation {132) replaces Equation (40b}.

Reference 23 us2C Equations {40) and {40a) w estimate angle-oi-attack effects
on the cone. A slightly more accurate method will ke used here. The method uses the
Equations {40) and (40a) but combines these reiations in a Taylor series expansion in
angle of attack.

Assume small angles of attack so ihat the pressare ccefficient can be written in a
Tayler Series Expansion about a = @ as fsliovss:

; {3C a°cC 2
C le®ix o] = iC(G)i - + pl =
pi T R T (MW ere T [T feso ag2 9=% 2
a°C 3
sl L,
acg 1.;:9 33 (133)

Now, if we use the methodology for the cone at angie of attack io evaluate the
derivatives of Equation (133), then referring to Equations {40) and (402)

Cing: = !C ©)i _, — sinZasin20 cosd

\'.{1 2\) (94.
]\\ —-tan()c.—....

’

9
-~

) s ¢i (134)

|-

T
+ sir:‘c:x:s’i)‘ : !‘9 -

| n

Differentiazing Equation {134} and evaluating at a=0, or:e obtains

16

. = — 2sni20) 0¥ (135)

ot ot
1Y
V]
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Here, the value of 0 is taken to be that that exists on the conical segment in question.
In essence, use of Equations (132) and (134) allows an analogous but more accurate
technique than a tangent cone aporoach to solve for the pressure coefficient on a body
at angle of attack without recomputing locai cone solutions for each point around and
along the body. Differentiating Equation (134) a second and third time, and
evaluating at a = 0, one obtains

ach )
2 Joso = 2F 70 (136)
where
(.1 2N [ 2y,
F —(2— E)(l — tan 9)—k2+ E)sn .3
and
l a3cp
= +Bsin(26)cosd \
30® Ja=o 137;
Substituting (155), (136), (147) into (133), one obtains
Cp(u,@(x,ri,tb) = !Cp(ﬂ) 0=0 ~ 2a sin (26)cosd
+ (Fows8) a® + (%sin 290054;) a® (138)

Equation {138) indicstes that the local angle-of-attack effects of pressure can be
estimated with the zero angle-of-attack sclution already computed, the 1ocal value of
body slopz and roll position, and the freestreain Mach number and angle of attack.

The other question is now dces one compute other flow properties at the core
surface? Consider tv.o cases. First is the case where the cone solution is being used as
the starting soluticn for the pointed body. For that case, since entropy behind the
shock is not known, the flow field for the cone ar ¢ = 0 must be computed as in
Appendix B. Sipce the flow properties are cci- puted numerically to the accuracy of
the thermodynainic curve fits of Reference 25, the pressure op the cone surface is also
given by this solution rather than Equatios (132) or (40b). Now, since Equation (138)
gives the Cp due to a for various values of ¢, @, M, then a new C,, for = 180°
{windward plane) is computed with this equation. A new value of an effective cone
angle corresponding to the windward plane is then given by solving Equation (132}
for sin 9 with C,, repla-ed by the value of p corresponding to Cp, _ o~ Then the cone
soluticn of Appeadix B is repeated with a new cone angle. This gives the value of
entropy, temperature, aud other properties as well. Since the flow between the body
and shock is isentropic, this value of entropy is held constant for the rest of the
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computations downstream. Once the value of entropy is known and Cp at other
positions around the body is computed from Equation (138), then

i
T@00)=T ! pi{9,9,0i,S (139)

can be determined from the thermofit equations.

Other flow properties can be computed from the thermofit equations or energy
equations as fcllows:

\
p B,0,0) =» l pi0,9,a} ,S!
cif,d,0} = ai p{8,6,2) ,Sl > {140}
e©0,%,0) = e] 24,30} ,Sg
! J

h =e+plp \

1
V= ‘2(}1— h)!z
1

M =Va > {141)

azp
Y=

Z = pi(pRT) J

The seccnd case .f interest is when we desire to compute the flow properties for
a cone at angle of attack for use in a tangent cone approach where entropy has been
defined by the properties across either a peinied bedy or blunt body. In both of these
cases, the entropy is fixed at either the value in the windward plane of the starting
cone solution or that on the stagnation streamline behind a normal shock. For this
case, since entropy is known, the local value of p can be determined directly from
Kquations (138}, {40), (40a), and (40b) if Me sin 8c < 1.5. Then, the values of
temperature, density, speed of sound, and internal energy can be computed via
Equations (139) and {140) as previously discussed.
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2.3.6.2 Body Angle-of-attack Effects

References 2 and 23 used so-called loading functions 1o include argle-of-attack
effects at a given peint along the body The essence ¢f this approach was Fquations
(48} and (40a). A similar approach will be used here except the slightly improved
pressure prediction method given by Equation (138; will be used. In essence,
Equation {138} car be used in a i2ngent cone approach io compute pressure at any
point cn the body surface given an accurate value of pressure ¢n the given body at
zero angle of attack. That is, at a given angle of attack, iocal body slepe, pesition
around the body, and freestream Mach number, pressures aii around the body can be
computed from Equation (138;. Knowing pressure and the correct value of entropy,
Equations (139) through (141) can be used to determine other fiow properties at the
body surface.

In using Equation (138), it was 1ound that for blunt bodies at moderate angies of
attack, results in the leeward plaae were not as good as desired. To illustrate this
point, consider Figure 14, which shows the perfect gas pressure computations on a 20-
percent blunt Vor Karman cgive at Mo = 15 and ¢ = 19°. Figure i4(a) shows the
pressure coefficients predicied by Equation (138) in several planes around the bedy,
and Figures 14{b) through {(d) ccmpare the results in the = 180°, 90°, and 0° planes
to the exact Euler code. ZEUS.41,47 In examining Figures 14(a) through (d), two
points are worth noting: {1} the present method agrees reasonably well with ZEUS
computations in the ¢ = 180° and 90° planes. ané (2) while Equation (138) works
well in the windward piane area for cones, it exhibits unacceptable behavior in the
ieeward plane for blunted ogives.

The unacceptabie behavior exhibited by Equatisn (138) in the leeward plane of
configurations other thar cones comes from two phenomena: (1) for a biunt body, the
angle 8 is fairly large in the nose tip region causing the second term of Equation (138)
to be larger than desired in this region, and (2) on ogives as 8 goes to zero near the
shoulder, the second and fourth terms of Equation (138) go to zero whereas the third
term reaches its maximum positive value. This causes the increase in pressure past x
= 1 seen in Figures 14(a} and 14{d). It was found that a way to remedy both of these
problems in the & =< 30° planes was to modify Equation (138) as follows:

Ciabds = IC 0 _ Zasn20icosd
Lia . —l 2 jazo — _3 — (142)

Equation (142) is used for configurations sther than sharp cones in the leeward plane
area. The results of this modification are shown in Figure 15(a) for pressure and
Figure 15(b) for temperature. Note that significant improvement in pressure
coefficient compared to the ZEUS code is obtained. The ZEUS code data in the
various pianes are not shown on Figure 15 for clarification purposes. To show the
improved comparison, one can simply use the leeward plane curve ($ = 0°) of Figure
15 and compare this to Figure 14(d). Since Equation (138) is still used in the ¢ =
180° and $ = 90° planes, Figures 14(b) and (c) remain the same. Also, use of
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Equation {142) versus {138) in the leeward plane area presents little change to the
axial force but improves the normal force and center-of-pressure predictions by about
5 and 6 percent, respectively. Compared to ZEUS computations, the errors in the
aerodynamic coefficients for wave drag, normal force, and center of pressure using
the present approack of Equations {138) and (142) is 5, 11, and 4 percent,
respectively. This is considered to be quite acceptable for an engineering type
aeroprediction code.

Past the nose portion of the body, standard Modified Newtenian Theory is used
tc predict the pressures with the pressure coefficient assumed to be zero in the
shadowed region. That iz

C =C sin®i8 } for5 =0
? Po &g g

C
P

n
=

for § <9 (143}
°q

Since entropy is constant on the body surface, values of temperature and other local
properties are computed with Equations (139) through (141) as before.

2.3.7 Wing and Interference Aerodynamics

For high Mach numbers (M typically greater than 6), the method of References
2 and 21 will be used for real gas computations except that the pressures and otner
properties will be computed using real gas as opposed to perfect gas computations.
References 2 and 21 used local slope techniques for the wing aersdynamic
computaticns. That is, MNT on the leading edge of the wing, tangent wedge from the
match point rearward on a compressicn surface, and PME or expansien surfaces. The
methods of section 2.3.4, Appendix C, and Appendix D, respectively, are used to
compute the local pressure coefficient and temperature at the cuter edge of ine
boundary layer. The match point between MNT and the tangent wedge is taken to be
Ox1 = 25.95°. Since this is a first-order as opposed to 2 second-order approach, there
could be a slight discontinuity it the pressure coefficient. This is due i5 the fact that
there is no pressure derivative io blend the pressure coefficients together as with
SOSET.

Use of a first-order as opposed to a second-order solution for the wings and other
lifting surfaces can be justified by the fact that these surfaces generally contribute
less than 25 percent of the axial force. Experience3d has shewn that the axial force is
where second-order accuracy is required for pressure coefficients. On the other hand,
lift can be reasonably well estimated by a first-order theory. Since the wings
contribute significactly to the lift force, a first-order theory is acceptable.

It was found in References 2 and 21 that when local slope techniques were used
in a 2-D “strip theory” approach {wing is considered to be made up of several
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streamwise 2-D surfaces and total forces and moments summed from these surfacesj,
no interference aerodynamics were needed. This was due to the fortuitcus
cancellation of errors and the fact that 2-D pressures were higher than 3-D pressures
on most wings. At the wing root, the pressure was underpredicted due to use of
freesiream versus iocal conditicns, and at the wing tip the pressure was
overpredicted dus to the same reason. The two effects canceled each sther in an
approximate sense. A summary of the approaches for computing real gas properties -
on bodies and wing bedies using SUSET is given in Figure 16.

i. BODYATa=28

1. For pointed body, use cone solution for reai gases of Appendix C to start solution. For
biunt bodies, use MNT of section 2.3.4 to start solution.

2. Use Equations (35), (36}, and (122} to caiculate pressure on conical segments along body
downstream of tip.

3. Use Equations (133}, {140), (141) to calculate other flow properties on each cenic!
segment given the entropy from step 1 and pressure from step 2.

ii. POINTEDBCDYATa >0

1. Computa(Cy), from Equation (138) and (Cply = ¢ from Equation (132) (or Equation {40b)
if M. sin 8, = 1.5). Thisgives C;onconeata > 0.

2. Compute effective 8, from Equation {131) where p. of Equation {131} is replaced by
thatford = 180° of step 1.

3. Use this value of 6 to obtain the cone solution for real gases and obtain the value of
entropy between the shock and body.

4. ComputeT, 2, e bV, M, vy, Z from Equations (133), {(134), and (135) around conicai tip.
P Y.

5. Use Equations (138), {142}, {143), and Appendix D to compute pressures downstream
onbodyata > 0.

6. Using G (a,8,$) from step 5, the vaiue of entropy from step 3, compute other flow
properties from Equations {138), {140}, and (141) at desired points along and around
body.

FIGURE 16. SUMMARY OF SOSET FOR REAL GASES ON BODIES
ANDWING RODY COMBINATIONS -
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iil. BLUNTBODYATa >0

1. Compute conditions across nosmal shock and at stagnation point from Appendix C and
section23.4.

2. Compute conditions up to match point from section2.3.4.

3. Compute body solutior at x = 9 as desaibed above

4. Compute C, (a.0,¢) from Equations (138), {142),and (143).

5. Using the value of entropy from step 1, pressure from step 4, compute other properties
from Equations (139), {140), and (141).

iV. WING

1. Forblunt leading edge, compute flow properties at each point based on section 2.3.4.
For sharp leading edges, use wedge solution for real gases of Appendix C. Angles used
are local angles that indude angle of attack, loca! slope, and sweepbadk.

2. Use PME and tangent wedge aft of the leading edge usiny vl slopes and freestream

conditions. This gives all flow properties directly based on the entropy of step 1 and the
pressure of PME and tangent wedge.

FIGURE 16. SUMMARY OF SOSET FOR REAL GASES ON BODIES
AND WING BODY COMBINATONS (CONTINUED)

If one is most interested in correct values of wing lift and axial force and not as
concerned with high temperature effects, the 3-D thin wing theory of Reference 31
combined with interference factors is more accurate. This approach is stili allowed as
1n option to the user in the aeroprediction code.2-4

2.3.8 Viscous Consideraticns

The main intent of this report was to extend SOSET to inciude real gas effects
and hence allow computation of forces, moments, and surface temperatures at Mach
numbers above about 6. With the exception of surface temperature, these objectives
have now been accomplished. However, some additional comments are in order as to
how to include the viscous effects that occur on the wing and body. Ultimately, the
current technique will be transitioned into the latest version of the NAVSWC
aeroprediction code2-4 and an updated versior will be generated.

ot
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The skin friction and body base pressure drag can be estimated by the same
techniques of Reference 30, Van Driest 11,39 and empirical methods, respectively.
The 2-D base pressure drag on the rear of wing surfaces is again empirical and the
same approach as that of Reference 31 can be used. The nonlinear effects of lift and
drag that occur due to higher angles of attack can be accounted for by the Allen-
Perkins Viscous Crossflow Theory.40

The other viscous consideration is that of temperature. Recall that one of the
main objectives of the present work was to calculate real gas temperatures at the wall
for use in heat transfer analysis. The temperatures calculated by the present
analysis are those that exist at the outer edge of the boundary layer and thus must be
carried to the wall and heat transfer analysis performed to get the true wall
temperature. This can be done with one of several state-of-the-art44 engineering
techniques. However, without the more accurate real gas versus perfect gas
temperatures computed at the outer edge of the boundary layer, these estimates of
wall temperature will be considerably in error at higher Mach numbers. This in turn
could cause costly and possibly unnecessary design decisions. Hence, while the
present report is primarily focused on providing improved estimates of temperatures
at the outer edge of the boundary layer, those temperatures will make local wall
temperature and heat transfer computations (which are dependent on material
properties, insulation assumptions, etc.) much more accurate.

The present inviscid analysis gives values of all the properties at the outer edge
of the boundary layer. They could thus be input to a boundary layer code and surface
properties calculated for heat transfer analysis. To aid in heat transfer analysis, an
approximate technique will be given for estimating two of the parameters needed as
inputs; the adiabatic wall temperature or enthalpy and heat transfer coefficients.
While the technique is not as elaborate as a numerical solution of the axisymmetric
or three-dimensional boundary layer equations, it does give an engineering
approximation. The results can then be compared to more accurate computations.

The aerodynamic heating to the wall isdefined by

qw = pLVLCh(haw - h*a.) (144)

Here the subscript [, refers to inviscid computations at the outer edge of the boundary
layer so these quantities are known. Thus, by computing the heat transfer coefficient
Ch and adiabatic wall enthalpy, the heat transfer to the wall for a given wall
enthalpy can be computed.

The adiabatic wall enthalpy means the change in enthalpy normal to the wall is zero.
That is

( )‘, =9 (145)
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wherc y is normal to the wail. Solution of the boundary layer equations with this
boundary cond'tion will give the true adiabatic wall enthalpy. Hcwever, most

engineering computations are performed with hy , related to the recovery factor r.
as#4

h o =h +r — (146)

For a real gas, Prandtl number is a function of other thermodynamic preperties and
must be found from the thermodynamic fit equations of References 34 and 35. That is

P = pr(pL’TL) (147)

Thus, since p,, T, h;, V, are all known from the inviscid computations, ha, can be
computed from Equation (146). The adiabatic wall temperature is also defined in
many references by

T = RN 121*}' (148)
a, - 1+rc 9 LjL

v

The perfect gas assumption can be somewhat compensated for in Equation {152) by
using the local value of y, as opposed to 1.4.

To compute the hzat transfer coefficient, resort will be made to the reference

temperature method45,46 and Reynoclds aralogy.33 The reference temperature, T¥, is
given byl113

. T
— =1+0032M2 + 3.58( = _ 1)
T, L - T, (149)

Then the local skin friction coefficient is33

_ 0.0592 -
Cf i - - 02 (100)

Here
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N p; (151)

o* and u,* are evaluated at the Jocal pressure and reference temperature defined by
Equation (149) from the real ges thermofit equations.34.35 Thatis

p =0 (T ,pL) {152}
?1 = §31 {T » 9 i (153)
Reynolds analogy then gives
Cfﬁ’ - - 'i’
Cn_ T 3 ) {154)
Pr is alsc evaluated from the thermofit squations where
p, =p (T ,0) 155)

Finally, if one desires eathalpy as cpposed to, or in addition to, temperature, then

h=hip,,T } {1503}
B =0 T} {156b)

can be computed once again from the ther:mofit equations since pressure is assumed
censiapt acrass the boundary layer. That is

! ¢
_rz=0)
dy

Equations (150) and {154) are valid fer flat plates in a turbulent compressible
boundary layer. Thev are thus the appropriate equations fr the wings and other
lifting surfaces on the configuration of interest. For ihe body, Reference 33 indicates
that Equations (150) and (154) should be mult:phed by the Mangler fraction, V 3.
Hence

C, = (157)
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Agaip it should be emphasized that the rcference enthalpy or temperature and
Reynolds analogy are approximate engineering techniques. They have been used
exiensively and Lave a theoretical foundation. The more rigorous aiternative of
using the inviscid properties as inpuis to a chemically reacting tarbulent boundary
layer cemputation is considered beyoud the scone of the present worx.

3. RESULTS AND DISCUSSION

3.2 STARTING SOLUTIONS

1t is of interest firs: in check the validity and accuracy of the starting solutions
for both thz pointed and olunted body cases. Figures 17 and 18 compare the perfect
gas pressure and temperature predicted by the present methcd to the exact cone
solut:on ¢f Joness3 fo- several cond:tions. The first of these conditions, M. = 16.6, 6,
= 15° a = 10° is the only ore of inierest as far as real gas effects are concerned.
However, the other lower Mach number and higher angle-of-attack cases are shown
to indicate the robustness of the present method for computing pressure and
temperature. Note that for ali four conditione of Figures 17 and 18, geod agree—ent
un pressure and temperature is oblained comparsd ic the exact soiution. In most
eases, accuraci=3 of 3 pareent oo better are found for the conditicns investigated to
date. An excentiol is the pressure prediciion at the bottom of Figure 18 where errors
in pressure of up to 15 percent are encouatered. Comparing Figures 17 and 18 shows
that the method gives slightly iniproved accrracy at the higher Machk numbers.

Figure 1& comperes the p: esent conical starting solution with the exact results
from the ZEUS woded? for Mo = 315, a = 10° 6. = 15°. Beth resl and perfect gas
results are shown. Note that the zpproximate and ZEUS, reai ard perfect gas
prassures are nearly identical {Figure 19(a)). This is as anticipated frora knowledge
of compression processes with respect to real gas effects. On the other aand, Figure
19{b} shows the lar ;e differences in temperature that can occur due to real gas effects.
Io ccmparing aparoximate and exact temperature calculations in Figure 19(b;, it is
seen that the perfect gas results are within a coupie «f percent wh_reas the real gas
deviates by up to 10 percent. The ZEUS re2! gos iemperutures are actuaily higher

han the perfect gas results in the leeward plane, which is not correct. The reason for
this is that the ZEUS onde uses the real gas thermsfit equations te obtain entropy
directty. On il2 other hand, referring to Figure C-15 and (he discussicn that goes
witl the figure, it is seen that obtaining entropy in this manner gives temperatures
about 256° too high for cone angies of 15° and 25°. Referring io Figure 1%b), thisis
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the appruximate value of the difference betvre-n the ZEUS code and the present
compu‘ations. This 250° reduction wouid applv all around the body since this
incorrect value of entropy is held constant. This explains why there is a crossover of

tlie real and perfect ges temperatures with the ZEUS computations in Figure 19(b).

——~—— EXACT - ONE SO!H {REF 38)
~— ~— — APPRONIMATE MriH0OD

gl

g 38 60 30 120 150 180
¢
120~ . EXACT CONE SOLN ®EF 38) 13
e =~ — APPRIGIMATE MFTKOD
T e — ’
P T
P T
af- M= -
i o = 18 deg
g { i 1 i 1 g
g 35 60 3p 120 150 150

¢

FIGURE 17. PERFECT GAS COMPARISON OF EXACT AND PRESENT
APPROXIMATE CONESOLUTIONS




NAVSWC TR 90-683

————— EXACT CONE SOLN (REF 38)
——— APPROXIMATE METHOD

8 i | ] | 1 i}
g 30 50 ag 120 150 120
¢
2~ ———— EXACT CONE SOLN (REF 38} -3

— — — APPROXIMATE METHOD ——

gl— — | i ] 1 3
§ 33 60 80 129 159 180
1

FIGURE 18. PERFECT GAS COMPARISON OF EXACT AND PRESENT
APPROXIMATE CONE SCLUTIONS
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FIGURE 18(a}. APPROXIMATE AND EXACT PRESSURE PREDICTION ON A
CONE IN PERFECT AND EQUILIBRIUM CHEMICALLY REACTING FLOWS
(M. = 15,0 = 10°, h = 100k ft,0, = 15°)
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FIGURE 18(). APPROXIMATE AND EXACT TEMPERATURE PREDICTION ON A
CONE IN PERFECT AND EQUILIBRIUM CHEMICALLY REACTING FLOWS
(M= = 15,0 = 10°, h = 100k ft, 6, = 15%
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Figures 20(a) through (d) illustrate the accuracy of the Improved Modified
Newtonian Theory (IMNT) over MNT. The figures show the IMNT, MNT, and the
exact results from Reference 48. Note that the IMNT gives virtually identical results
to the exact computations. Although not shown, this excellent agreement in pressure
prediction holds true all the way to Mo = 30. In the present method, the match point
between SOSET and IMNT is at 8eq = 25.95° so that IMNT is used for 8eq = 25.95°
and SOSET for values of 8.y < 25.95°. Knowing accurate values of pressure and a

good estimate of entropy should allow good estimates of other properties at the body
surface.

35
, —— IMNT
Perfect
30 X +— MNT
\"x\ Perfect
25 i NSWC/WOL TR 7545

\ AN

P/Pe
//

15 5!

. N
5

0

90 80 70 60 50 40 30 20 10 0
Beq(”)

FIGURE 20i2>. SURFACE PRESSURE DISTRIBUTION OVER
A HEMISPHERICAL FOREBODY ATM. =5
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S0 80 70 34 50 40 30 20 18 0
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TIGURE 20(b). SURFACE PRESSURE DISTRIBUTION OVER
A HEMISPHERICAL FOREBODY AT M. = 10
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FIGURE 20(c). SURFACE PRESSURE DiSTRIBUTION OVER
A HEMISPHERICAL FOREBODY AT M. = 15
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FIGURE 20(d). SURFACE PRESSURE DISTRIBUTION OVER
A HEMISPHERICAL FOREBODY AT M.. = 20
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3.2 PRESSURE GRADIENT USED IN SOSET

Before computing pressures and temperatures on general body shapes using the
section 3.1 starting solutions combined with SOSET, it is of interest to examine
Equation (36), which defines . Recall that 5 is the exponent contairing

(%),

which is used in Equation (35) in the SOSET to determine the blend of Tangent Cone
Theory (TCT) and Generalized Shock Expansion Theory (GSET). To do this, a simple
biconic nose shape was considered as indicated in Figure 21. This allowed a simple
starting solution and then a computation of the properties around a turn of a given
AO = 07 - 8; as shown in Figure 1. Results were obtained for the parameter

(= 3%)
p_ 9s/2

under various conditions using the approximate methed of Syvertson and Dennis,19
the exact prediction by Dedarnette,23 and the approximate present technique given
by Equation (122). Since the Reference 19 and 23 results were for perfect gas only,
the cases considered for comparison were for perfect gas. The results of this study are
presented in Table 1, which shows Mo varying from 3 to 15, core half angle from 5 to
20, and A0 2°and 5°. Note first of all that the present approximation for

(r 3p>
\p_ ds/2

agrees very closely with the exact integration of Reference 23. The only difference
between the two techniques is the fact that the present method approximates the
integral of Equation (112) using the Trapezoidal Rule whereas Reference 22
integrates the entirc equation numerically. On the other hand, the Reference 19
results neglect the integral of Equation (112) altogether. As seen in Table 1,
neglecting the integral gives reasonable results (within 10 percent) in most cases
shown where A8 is small.

The most important aspect of the Table 1 results is the fact that n becomes
negative quite often for Mach numbers of 5 and greater. This means that n must be
defined and SCSET of Equation (35} reverts back to GSET or TCT; that is,p = p2 or
p = pe. Asa result of this dilemma, we investigated a different approach that would
allow us to take advantage of both p. and p2. This approach deficed p in the SOSET
as

(
p=p_—{p_—p,) 0, {159)
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Mo
8, = CONE HALF ANGLE P, PRESSURE BEHIND AN EXPANSION
8, = SHOCK ANGLE P, = PRESSURE FAR DOWNSTREAM ON A FRUSTRUM
A8=0,-8,
FIGURE 21. BICONIC CONFIGURATION GEOMETRY FORINVESTIGATING
PRESSURE GRADIENT AROUND A CORNER (see Table 1)
TABLE 1. ESTIMATES OF (r2/p=) (dp/3s) 2z FOR VARIOUS CONDITIONS
6, 2 Syv& (ro/p=) {8p/as)a!
M. (deg) A0 Exact Dennis 19 Present (Pe-p2) P2 Pe
3 15 2 0.0216 0.0209 0.02i6 0.657 186 | 1.89
5 0.0478 0.0441 0.0478 0.622 1.50 § 158
5 20 2 -0.0148 -0.0142 -0.0147 -0.143 468 § 4.78
5 -0.0123 -0.9109 -0.0120 -0.977 3.56 } 3.73
5 10 2 0.0153 0.0147 0.0154 0.389 188 § 1.92
5 90341 0.0306 0.0341 0.359 1.34 § 143
10 15 3 -0.0879 -0.0822 -0.0872 -0.209 8.29 | 38.71
3 -0.0952 -0.0785 -0.0896 -0.188 5.20 § 3.71
il 10 2 00144 -0.0131 -0.0141 -8.697 396 | 411
S 0.0014 0.0032 0.0034 0.010 2.20 § 235
i3 i3 2 -0.2602 -0.2415 -0.2580 -0.206 16.73§ 17.99
5 -0.2840 -0.2310 -0.2672 -0.193 9.77 1 11.24
15 10 2 -0.0718 -0.0649 -0.0706 -0.141 717 § 7.
5 -0.0420 -0.0284 -0.0351 0122 343} 3.97
15 3 2 0 0661 0.0056 0.0063 0.068 Z.04 | 213
5 0.0165 0.0135 0.01587 0.051 0.72 10
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wheren, = Ogivesp = pcandn;, = 1 givesp = p2and 0 < n, < 1 givesa blend of the
two. This approach would allow a direct input of n, as opposed to a computation as
done in the past.

To investigate the Equation {(159) approach, two cases were considered. The
first of these is a 20-percent blunt Von Karman ogive at M, = 15. Results of the
pressure computation are shown in Figure 22. In Figure 22, IMNT + pg is when n,
=1,IMNT + p.is where 5, = 0, old AP is the current aeroprediction code, and ZEUS
is the exact computation. In the current aeroprediction code, SOSET is implemented
with Equation (35) and when nj becomes negative, p is set to p.. As a result, note in
Figure 20 that the present results for n, = 1 are slightly better than the old AP
compared to the ZEUS computations. This is due solely to the IMNT. However, ifone
were to use nj, = 1, significantly worse results would be obtained.

2000
—r Mach = 15 ——
1800 Alt = 100 kit IMNT + P2
1600 - ~ —k
! IMNT + PC
1400 -
_ OLD AP
E T x /-
; ZEUS
a
9 05 1.0 15 2.0 2.5 3.0

L/RN

FIGURE 22. COMPARISON OF VARIOUS PRESSURE PREDICTION TECHNIQUES
ON A 20-PERCENT BLUNT VON KARMAN OGIVE (M. = 15,0 = 0°,h = 100k ft;
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The second case investigated to examine the Equation (159) approach is a
simple hemisphere forebody. These results are shown in Figure 23. Note here that
the IMNT + p.and old AP results are inferior to the IMNT + p2 results compared to
ZEUS. This is even more reason for allowing n, to be input as opposed to computed.

To summarize the pressure prediction using SOSET, it was found that for Mach
numbers greater than 5, n becomes negative quite often requiring one to revert back
to either TCT or GSET. Since this is the case, it is believed that the Equation (159)
approach is a better way to implement SOSET. A valueofn, = 0 isrecommended for
hemispheres or near hemispheres. For other configurations, a value of n, = 1.0 is
recommended. This is the approach that is being implemented in the aeroprediction
code for Mach numbers greater than about 6. For Mach numbers between about 2.5
and 6, conventional SOSET is used, and for Mach numbers 1.2 to about 2.5, second-
order Van Dyke Theory30 is used.

3.3 CONFIGURATION RESULTS

To thoroughly investigate the current new methods for calculating real gas
effects, several configuraticns were selected that covered the typical range of missile-
type configurations. These include a 20-percent blunt Von Karman ogive, a 20-
percent blunt Von Karman ogive-cylinder, a blunt cone nose shape, and a sharp cone-
cylinder-flare configuration (see Figure 24). Exzact solutions were also generated asa
basis for comparison of the present approximate engineering methods.

Figure 15 showed the results of using the IMNT + SOSET for the zero angle-of-
attack sclution, applying Equations (138) and (142) to get angle-of-attack pressure
effects, and knowing entropy, applving Equation (139) to get temperature. Figure 16
was for perfect gas. Figure 25 further illustrates the present methodology for the Von
Karman ogive by comparing the pressure and temperature in the windward plane
(perfect gas) to conventional TCT and ZEUS results. Conventional TCT is where one
computes pressure at a given point on a bedy surface with the freestream Mach
number and the local slope with respect to the freestream velocity vector. The
standard Taylor McCalll8 cone sciution can be solved for perfect gases, Hudgins37
solution for real gases or approximations to these solutions such as Equations (40b) or
{132). The IMNT was used on the blunt nose porticn. Note that in ccmparing the
three theoretical approaches for both pressure and temperature, the present method
agrees closer with the exact solution than does the TCT.

Figure 26 presents the results for the same case as Figure 25 except here the gas
is equilibrium chemically reacting. Note that in comparing Figure 26(a) to 25(a),
little difference in pressure is noted {and indeed in the aerodvnamic coefficients);
however, comparing Figure 26(b) to Figure 25(b)}, real gas temperatures are lower by
as much as a factor of 2. I'igure 26(c) compares the present predictions to those of the
ZEUS code in three planes. Agreement on temperature in the critical windward
plane is within 4 percent.
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Mach = 15
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FIGURE 23. COMPARISON OF VARIOUS PRESSURE PREDICTION TECHNIQUES
ON A HEMISPHERE FOREBODY (M. = 15,0 = 0°, h = 100% ft)
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r, = 108 r= 350

H 283 »

L, = 3.00 —>

TEST CASE 1: 20-PERCENT BLUNT VON KARMAN OGIVE

r, = 50
9, = 15 deg
g 158 —>
7 = u
Lt 1.8% >

TEST CASE 2: 20-PERCENT BLUNT CONE

7 deg FLARE
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\ —r}’] i, = 50

TEST CASE 3: CONE-CYLINDER-FLARE

o Spiven

FI:URE 24. CONFIGURATIONS USED ASTEST CASES FORNEW THEGRY
(DIMENSIONS IN CALIBERS:
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SIGLRFE 252). CONPARISON OF APPROXIMATE AND EX5CT PRESSURE PREDICTION
FOR A 26.PERCENT BLUNT VON KARMAN OGIVE M, = 15.¢ = 10°, @ = 1807, perfect zas}
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FIGURE 25th. COMPARISON OF APPROXIMATE AND EXACT TEMPERATURE PREDICTION
FOR A 20.PERCENT BLUNT VON KARMAN OGIVE (iAL: = 15,a = 10°, @ = 180°, periect gas!
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AXIAL LOCATION, X {CAL)

FIGURE 26(a). APPROXIMATE PRESSURE PREDICTION ON
} SAMMATE CTION ON A 20-PERCENT BLUNT VON
KARMAN OGIVEFOR A REAL GAS iM. = 15,a = 10°, h = 100k fu) e
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TEMPERATURE (R)
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FIGURE 26:b). APPRCXIMATE TEMPERATURE PREDICTION ON A 20-PERCENT BLUNT
VON KARMAN OGIVEFOR A REAL GAS M. = i5,a0 = 10°, h = 100k f1)
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FIGURE 26ic:. COMPARISON OF APPROXIMATE ANGEXACT TEMPERATURE PREDICTIOGN
ON A 20-PERCENT BLUNT VON KARMAN OGIVE FORAREALGA

iMz = 15,0 =10 h = 100k {0}

P
S




NAVSWC TR 90-683

The second test case considered is the blunt cone shown in F igure 24. While the
bluntness is the same as the Von Karman ogive, the aft part of the nose has a
constant angle so it is of interest to see how the resuits of the approximate method
compare with ZEUS computations. These comparisons are presented in Figure 27.
Figures 27(a) end 27(b} present the windward plane pressure coefficient and
temperature corparisons between the ZEUS and approximate computations. In
examining Figure 27(a), ZEUS computations do show some slight differences in
pressure coefficient between real and perfect gas on the overexpansion region of the
blunt nose whereas the approximate results give basically identical pressures. Also
note that geod agreement between the exact and approximate technique is evident
except in the overexpansion region. In examining Figure 27(b), good agreement in
temperature predictions between the two theoretical methods is noted. Even in the
overexpansion regicn where the disagreement is largest, the maximum deviation
frcm the exact resuits is only about 8 percent. On the maximum temperature
portions of the nose, the deviation is less than 2 percent. Also worthy of note is the
almost 5000° R lower temperature of real versus perfect gas computations.

08 T - ' ——
H ; : ! PH = 180 -
0.7 - 3 o ——— 1 | AP - Perfect
. : : —_—
0.6 - : _ S : ZEUS - Perfect
N - - ° % ! o
£ 954t ﬁ : i AP - Real
S 04— - - 5 | ZEUS - Peal
o : . e -aﬁi‘m*—-—*—c—_—z*aﬁl :
3 xS
5 0-3*;-**-._%‘{5/" S -
S 024 e e
014 ——- e — e e e
0 :

- 0 02 04 06 08 1 12 14 16
AXIAL LOCATION, X {CAL)

FIGURE 27.a) COMPARISCN OF APPRONIMATE AND EXACT PRESSURE COEFFICIENTS
INTHE WINDWARD PLANE OF A 20-PERCENT BLUNTCONE 1M, = 15,0 = 109
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FIGURE 27(b). COMPARISON OF APPROXIMATE AND EXACT TEMPERATURE IN
THE WINDWARD PLANE OF A 20-PERCENTBLUNT CONE (M. = 15,a = 109
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FIGURE 27ict. COMPARISON CF APPROXIMATE AND EXACT PRESSURE CCEFFICIENTS
ON A 20-PERCENT BLUNTCONE (M. = 15,a = 10°, REAL GAS;
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FIGURE 27{d). COMPARISON OF APPROXIMATE AND EXACT TEMPERATURES
ON A 20-PERCENTBLUNT CONE (M. = 15,a = 10°, REAL GAS)
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Figures 27(c) and 27(d) present the real gas pressure coefficient and
temperature comparisons in the ¢ = 180° 90°, and 0° planes. The worst case
comparisons on temperature are in the leeward plane where the deviation is as high
as 10 perceprt. However, as already noted, the windward plane maximum
temperature deviation is only 2 percent or less. Figures 28(a} and 28(b) present the
blunt cone real and perfect gas pressures and temperatures, respectively, as a
function of Mach number for a = 0 and 15° using the approximate method. The
results presented are those near the base of the cone, x = 1.5, and in the windward
plane. Several points are worthy of note. First of all, Figure 28(a) reiterates the
negligible effect of real gas conditions on pressure at all Mach numbers. It also
illustrates the strong pressure increase as a function of angle of attack and Mach
number. Figure 28(b) illustrates how the real gas affects temperature as Mach
number increases. It is also interesting to note that while temperature differs by up
to several thousands of degrees due to angle-of-attack effects for a perfect gas, the
real gas difference is a maximum of 1500° at M = 20 and @ = 15° and a = 0°.
Finally, as already discussed, the present approximate code gives very good
agreement for inviscid surface properties with the exact Euler solver, ZEUS.

3500

Phi -wc ,i ——
3000 Alp = 0, Perfect
X = 1.5045 ’/
2500 ./ Alp = 0, Real
p ¢ ol
Alp = 15, Perfect
2000 — - -
H e 3ee
X Alp = 15, Real
1500 ; _z
: : . *
ZEUS
1000
500
4 6 8 10 12 14 16 18 20

MACH NUMBER

FIGURE 28:a). PRESSURES PREDICTED BY APPROXIMATE METHOD ON A 20-PERCENT
BLUNTCONE ASAFUNCTION OF MACHNUMBER @ = 180°,x = 1.5, h = 100k fi:
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FIGURE 28(h). TEMPERATURES PREDICTED BY APPROXIMATE METHOD
ON A 20-PERCENT BLUNT CONE AS A FUNCTION OF MACH NUMBER
(P = 180°x = 1.5, h = 100k f1)
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The third case considered is a cone-cylinder-flare (see Figure 24). Results of the
pressures and temperatures on this configuration are shown in Figures 29. Figures
29(a) and 29(b) present the pressure and temperature in the windward plane
respectively as a function of distance along the body surface. Note the present theory
shows no overexpansion behind the shoulder due to the fact that MNT is used to
estimate pressures around the surface. Also note in Figure 29(t) that for the conical
surfaces, real gas ter-peratures are lower by only about 10 to 15 percent, whereas on
blunt nose configurations at the same Mach number, temperatures can be as much as
a factor of 2 lower for real ccmpared to perfect gases. Figure 29(c) presents the
pressures around the cone-cylinder-fiare configuration at three x stations
corresponding to a point on the cone, cylinder, and flare. Figures 29(d), (e), and (f)
present the temperature comparisons for the same x stations of Figure 29(c). Note
that in Figures 29(e) and 29(f), values of temperature are constant in the leeward
plane area due to the Newtonian assumption that cp = 0 in shadowed regions.

1000

--
900 e m AP - Perfect

800 —h—
AP - Equilibrium

700

600

500

PRESSURE (1.B/FT2)

300 S S
. : H H
200

100

0 .
6 1 2 3 4 5 6 7 8 9 10

AXIAL LOCATION (in.)

-d
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The final case considered is the 20-percent blunt Von Karman ogive-cylinder-
fin configuration shown in Figure 24. The angle-of-attack 0° pressure coefficient and
temperature for real and perfect gases are shown in Figure 30 for M = 15. Note
again the excellent agreement up to the location of the tail fins. This figure was
primarily shown to indicate that while the present approximate engineering code is
quite applicable for preliminary design, it does not have the physics included for
detailed interaction effects. These effects could include bow shock waves intersecting
fins, or fin shock waves intersecting ithe body. Thesz interaction effects can cause
local “hot” spots and more detailed analysis codes such as ZEUS or Navier Stokes
solvers are required. The fin interaction effects are shown by the ZEUS resulis at
x = 9calibersto the end of the body.
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FIGURE 30:a:. COMPARISOX OF PRESSURE COEFFICIENTS O A 20-PERCENT BLUNT
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The emphasis to this point has been on accurate values of inviscid surface
temperature to aliow accurate heat transfer analysis. In getting accurate values cf
heat transfer, accurate values of pressure prediction were 1equired. These accurate
values of pressure prediction also give good force and moment predictions. The final
Figure 31 illustrates force and moment predictions as a function of Mach number and
angle of attack compared to the ZEUS code. Note that the axial force only includes
wave drag since ZEUS at present is an inviscid code. Accuracies on wave drag and
rorma! force are within 10 percent, and center of pressure near angle of attack zero
within 8 percent of the body length compared to the full Euler code. About haif of the
error in wave drag is due to the high fin alone predictions using the preseat strip
theory approach, Figure 31{a). Note that the theory does predict some siight changes
in forces and moments due to real gas effects. However, except for very speciaiized
problems, it is believed that these effecis can be neglected, particularly in an
engineering coede such as the aeroprediction. However, as aiready noted many iimes,
heat transfer analysis definitely needs to consider the real gas effects when flying at
any appreciable time above M. = 610 8.
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4. SUMMARY

New methods have been developed to compute inviscid surface pressures and
temperatures for both perfect and equilibrium chemically reacting flows on both
pointed and blunt bodies of revolution. These new methods include an improved
Shock-expansion Theory, an improved MNT, and an improved method for argle-of-
attack effects. Comparison of these approximate engineering techniques to exact
inviscid computations using a full Euler code showed the following:

i. Agreement on the critical windward plane inviscid temperatures generally
of 4 percant or better.

2. Agreement of inviscid surface temperatures of 10 percent or better.

3. Agreement of axial wave drag and normal force of 1J percent, and center of
pressure 8 percent of body length. For the body alone, wave drag estimates
are generally within 5 percent of exact Euler computations.

A new real gas formulation for pressure gradient behind a corner was derived.
However, in implementing this into the SOSET it was found to be of little value. This
is because at high Mach numbers the exponential decay term used in the SOSET
becomes positive requiring SOSET to revert back to either GSET or TCT. It was
shown that neither of these theories was best for ail cases and, as a result, a user
input to allow a choice of which method tc¢ use was considered the best alternative for
use of the traditional SOSET.

With the new technology developed, the NAVSWC aeroprediction code can now
be used to give engineering estimates of inviscid surface temperature for any Mach
number of interest. These approximate temperatures can then be used as inputs for
mcre detailed heat transfer analysis.
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6. SYMBOLS AND DEFINITIONS

speed of sound (ft/sec)

distance between body surface and streamline
left and right ranning characteristic cecrdinates
iocal skin friction coefficient

heat transfer coefficient

pressure coefficient

specific heats st constant pressure and volume
internal energy (ft2/sec2)

totai enthaipy {ft?/sec2

specific enthalpy (ft2/secZ) and altitude (&)
adiabatic wall enthalpy

Kelvin temperature (deg)

Mach number

pressure (1b/fit2)

Prandt! number

heat flux

heat flux at wail

gas constant {for air R = 1716 (f-ib) /{slvg-"R}}
Revnolds number

recovery facior

entropy (ft-1b) / (slug -°R}

streamline coordinate system
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temperature {degrees Kelvin or Rankine)
temperature of a perfect gas
temperature of a real gas
time
velocity (ft/sec)
total velocity
velocity along and normal to a conical ray
maximum velocity
cylindrical coordinate system with $ = 6 = leeward plane
rectangular coordinate system
compressibility factor (= 1 for a perfect gas)
angle of attack (deg)

M2-1
ratio of specific heats {Cp / Cy)

angle used in Newtonian Theory (= angle between velocity vector
and local body slope)

local body slope

cone half-angle and shock angle, respectively
pV2/8

Mach angle, p = sin-1(1/M)

coefficient of viscosity

Prandtl-Meyer angle (deg)

density (slugs/ft3)
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shock wave angle (deg)

exponent used in Second-order Shock-expansion Theory

Subscripts
adiabatic wall
cone
dissociation energy

electronic excitation energy
frozen flow

local conditions

match point

total and reference
rotational energy
stagnation conditions
translation energy
vibration energy

freestream coaditions

Superscripts

reference conditions
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APPENDIX A

DETERMINATION CF ANGLE s GSED IN NEWTONIAN THEORY
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DETERMINATION OF ANGLE § USED IN NEWTONIAN THEORY

Refer to the nomenclature of Figure A-1.

9 = dridx WHERE:r2 = y2 4 22

FIGURE A-i. NGMENCLATURE USED FOR DETERMINATION OF ANGLE 5

Note that from the definition of the dot product of two vecisrs, one can write

V-8 =Vii8js®0+ 5 3= ~WV ;& jsin, ) (A-1)
Also

?e = ﬂ’cmsa)?+ (V_sin u)ﬁ {A-2)
and

2 = —s87+ (sinpoosBi + ns b 0B A-3)

A3
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A A e acna™ o 2

e, = cosBi + sinGsing j + sinBoosdk (A-4)

A - we dnod '
e, = cs¢j — sin@ (A-5)

Substituting Eguations (A-2) and {A-3) into Equation (A-1) =nd performing the
indicated operations, one obtairs:

sizz&eq=sin6msu—sinocos¢co59 (A-6)

This is the angle that is used for a general three-dimeasional (2-D) poin® nn 2 blunt
surface at angle of attack in the Newtonian Theory. Here $ = 0 is the leeward plane
and ¢ = 180 is the windward plane. U the revers: is truc {as many refe: 2nces use),
the negative sign of Equation {A-6) becomes positive.
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APPENDIX B

PRESSURE DISTRIBUTION ON A SPHERE
IN HYPERSONIC FLOW
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PRESSURE DISTRIBUTION ON A SPHERE IN HYPERSONIC FLOW

The Modified Newtonian pressure distribution has been used by numerous
investigators to predict pressure distributions on blunt-nosed bodies in hypersonic
flow. A close examination of this method for a sphere showed that for Mo > 3.5 it
overpredicts pressures for x/Ry; < 0.5625 and underpredicts pressures for most of the
region beyond x/R,, = 0.5625. Here, x is the axial coordinate with x=0 at the
stagnation poirt, and R, is the radius of the sphere. However, the Modified
Newtonian method predicts the correct pressure at x/R; = 0.5625 forali 3.5 < Mo =
30. Figure B-1 shows these features for Mo = 3.5 and 5, but they hold alsc for the
higher Mach numbers.

A second feature of the Modified Newtonian (MN) method is that at xR, =
0.5625 the ratio

dp i dp
ds P s
eq

eq

1
2
MN

varies very little with M. The vaiue of

dp

dd
eq

was obtained numerically frem CFD data in Reference B-1. The angle of 8¢q is the
inciination of the surface with respect to the axis of the sphere, where §.q = n/2 at the
stagnation point. Table B-1 shows the numerical values.

TABLE B-1. VALUES OF PRESSURE GRADIENT PARAMETER
AS FUNCTION OF MACH NUMBER

b1

1

Mo ddcp / [ P fsl 2 atxiRy =0.5625

% oq (MN

o5 1.469

50 1519

10.0 1516

200 1523

300 1524

B1 Mersison, A. M., Solomon, J. M., Ciment, M., and Ferzuson, R. E., Handbook of Inviscid Sphere
Cone Flowfields and Pressure Distridutions: Vol I, NSWC/WOL TR 75-45, December 1975.




T eI R ST i S OSSR Ty R T e e ST T ey s 2
L TSy TR e N L

NAVSWC TR 90-683

O MODIFED NEWTONIAN, Mo =35
351 0 MODIAED NEWTONIAN, Mx=5.0
CFD, REFERENCE B-1
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SR -

FIGURE B-1. PRESSURE ON A SPHERE
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Thus, the position x/R,; = 0.5625 will be called the match point since the pressure is
Modified Newtonian pressure and the pressure gradient can be calculated from the
ratio

1
dp !9 dp §E
dsq i d5eq Tun

It has been determined that using a numerical value of 1.5 for this ratio for all Mo >
3.5 gives accurate resulis.

For the region 0 < x R, < 0.5625, a more accurate prediction of the pressure
can be caiculated from the equation

— me _
ACP =koos Geq(cosﬁe‘i oos(seq)u)

(B-1)
where

ACP = {Cp den — Cp

and (Beq Jyy = 25.95, which is the value of 8o at x/R,; = 0.5625. Both k and m are
constants to be determined. Note that Equation (B-1) gives AC, = 0atboth ¥R, = 0
and YR, = 0.5625. in additicn, it gives d(ACy) /@ 8eq = 0 at x/R, = 0. It now
remains to determine expressions for k ard m.

The derivative of Equation (B-1) is

diAC)
ad
=)

=ksin§ cas® 15 f{m-&-l}d‘.sﬁ_-mws{b 3 ! (BR-2)
) CH (3 o ¥ |

Apply Equaticr (B-2) at the maich point, WRy, = 0.5625

diAC) , dC. ac
2 —{ 2 N VT {8-3)
35 /un 43 ' M ¥
eq

Now at the match point, the derivative

aC
2

a6
G

can ke calculated &rom the ratio given earlier;i.e.,

-
B-3
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which can also be written as
ac, ( 2 \4C, 1
—& —15 {{c+-2 ) -_]
where
€ lyun = c—pm‘sin"zsaq ®S)

Equation (B-4) can be used in Equation (B-3) but that only gives one equation for the
two unknowns, k and m. Thus. an additional equaticn is needed.

A third feature of Modified Newtonian pressures is obtained by observing that
the data in Reference B-1 show that AC;, is a maximum at x/R,; = 0.25 for all M» >
3.5. Thus, Equation (B-2) can be uced to get

d (ACP)
a8
]

=0 = k. m-1 - (B-6)
_O—ksnﬁqeos Sﬂl(m-i-l)eosseq mm(ﬁq)‘}

3

Apply this equation at x/R,; = 0.25 to obtain

s
m = ( S = 278 B-7)
ms{ﬁq)u - osﬁeq I,,:gu=az

Finally, substitute Equation (B-4) into (B-3) and apply at the match point (xR, =
0.5625, (Beg)y, = 25°. 5" Y to get

dC 2 14C, 13
B P2
—(dﬁ )!EN M ISl\C * Mz) 68 lun
Y = i Y (B-8) .
- m [y
snz(&q)ums (Gq;u

Ail terms on the right side can be calculated for a given M. Substituting for the
parameiers of Equation (B-8) at the match point where (8¢q),, = 25.95°, one obtains
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{B-9)

With m and k determined, an accurate C;, cen be czicuiated from Equation {B-1; for
x/R,, < 0.5625.

This method has been applied to a sphere for 3.5 < M» < 30. The resulis are
compared to CFD results from Reference B-1 for x/R,, < 0.5625. At Mw = 3.5 the
maximum error in pressure is 3 perceat 5t /R, = 0.25. For Mo > 3.5, the maximum
error is less than 1 percent and in most cases less than 0.5 percent. In contrast, the
Modified Newtonian pressures had maximum errors from 7 to 1@ percent. Equation
{B-1} can be used for x/R,, up to about 0.7 with errors less than 3 perceni. A better
prediction for x/R, > 0.5625 can be obtained by using the second-order shock-
expansion method.

The new method gives 3 much mere accurate prediction of surface pressures on
a spbere In hypersonic flow than Modified Newtonian Theory. The additional
compuiational effort is negligible for even the smallest PCs. Results of this new
technique are shoswn in the Results and Discussicn section of this report.

B-7/B-8
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APPENDIXC

COMPUTATION OF PROPERTIES ACROSS SHOCK WAVES
IN ¥FROZEN AND EQUILIBRIUM CHEMICALLY
REACTING FLOWS

C-1/C-2
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COMPUTATION OF PROPERTIES ACROSS SHOCK WAVES
IN FROZEN AND EQUILIBRIUM CHEMICALLY
REACTING FLOWS

To compute the flow over 2-D or 3-D configurations using the Shock-Expansion
Theory requires an initial starting solutien. This soluiion is provided by computing
the flow field variables across a normal {in the case of a bluni-nose body or blunt-
leading-eage wing) or obligue shock for sharp-nosed bodies or wing leading edges. If
the flow is low enough in Mach number so that real gas effects are negligible or if one
is only interested in approximate prediction of forces and moments, a perfect gas can
be assumed and the shock wave relations of Reference C-1 can be used directly. This
last situation results from the fact that real gas effects have a fairly small effect on
pressure (usually less than 10 percent) but can have a large effect on denuity and
temperature. Since we are interested in temperature profiles alorg the sody as
inputs for structural analysis, we must consider both normal and oblique shock wave
computations in real gases.

NORMALSHOCK WAVES

The conservation of mass, momentum, and energy -- Eguations (43}, (44}, and
(45) of the main text of this report—for steady {3/3t = @), adiabatic {q = 0} fiow with
no body forces (f = 0), reduce to the following for flow acress a normal shock wave (see
Figure C-1):

o WP=p +p U2 {(£.9)

Py7 oY TP TP Y s
v X

—_ —_— s a

h}+?—h2+ > {C-3)

Solving Equations (C-2) and (C-3) for p2 and hg, while using Equation {C-1), there is
obtained

p,=p, +p, U3l = p,/p) (C4)

_ -2 _ 2 .
h,=h +Uj/2[1~(p,/p)"] C-5)

C-3
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FIGURE C-1. NORMAL SHOCK WAVE FLOW

Note that all terms on the right-hand side of Equations {C-4) and {C-5} are known
except for p,. To solve Equations {C-4) and (C-5), cpe guesses a value of p, / p,. A
value of 0 or 0.1 is adequate. Equations (C-4) and (C-5) are then solved for p, and b,
Knowing p, and i h), 3 new value of p, is computed from the equilibrium chemistry
model discussed ir the Simplified Procedures for Air section {(section 2.3.2). New
values of p, and h, are then computed and, once again, new values of p, computed
from the equilibrium chemistry model. This process is repeated until the change in P2
is smali and within the desired accuracy for convergence. This then defines the
correct values of p,, h,, and g,, behind the shock. T,, a, can be computed from section
2.3.2 onice e9 is computed from Equation {€7). The compressibility factor Z is defined
as:

z=—3 (C-6)

For a perfect or thermally perfect gas, Z is one but for a real gas that undergoes
chemical reactions, Z represents the level of dissociation that takes place. Since R is
the universal gas constant and p, p, and T are computed by Equations (C-4) and (C-5)
and Section 2.3.2, Zis known. Also

U,=,/p)U, (C-7)

v, = a’plp (C-8)

M2 = Uzla2 (C-9)
c4




NAVSWC TR 90-683

The Normal Shock Solution for Equilibrium Air is given in References C-2 and C-3.
Figure C-2 gives T,/ T, as 2 function of freestream pressure and velocity. Note the
large difference between the perfect and real gas temperatures as iemperaiure
increases and as atmospheric pressures decrease (higher aititudes).

109.04 R R : B - - ﬁi
I ; - CALORICALLY PERFECT GAS - '}_’ TATM
: : ; : : / .
] : : . : : : . i
60.0 i
Ty : ‘
40.0
30.0
20.0
10.0'_
) 0.0 — . . ' : - i
0.0 20 40 6.0 80 100 120 140 169
. uy (KM/S)

FIGURE C-2. INFLUENCE OF FREESTREAM PRESSURE AND VELOCITY ON
NORMAL SHOCK TEMPERATURE FOR EQUILIBRIUM AIR (T, = 225°K)

C-5
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For the flow field over a blunt body, the properties vary between the shock and
bedy. Hence, frozen flow would consist of computing real gas properties immediately
behind the shock and then treating the flow field as a perfect gas thereafter, with
corstant values of y = y, and compressibility factor Z = Zs. Equilibrium chemically
reacting flow would allow different values of these parameters as a function of
distance between the body and shock. However, if cne is only interested in properties
along the body surface from a method such as Modified Newtonian combined with
SCSET, only the stagnation streamline that wets the body surface needs to be
examined. Reference C-2 showed that, along the stagnatior streamline, y and Z
change very little. Hence, effectively the flow is frozen at values that exist behind the
shock (within 1 or 2 percent) beiween the shock and body stagnation point. This
azsumption will be made in the present work.

OBLIQUE SHOCK WAVES: 2-D OR WEDGE FLOWS

Examining Figure C-3, it soon becomes clear that one can use the previous
rormal shock relations (C-1) through (C-5j to solve for flow parameters behind an
sblique shock if the U, and U, components of flow velocity normal to the shock wave
are replaced with their equivalent components normai to the oblique shock wave.
That is

U, =U,sino (C-10)

3

U”z =U,sin(c — & (C-11)

Here, 8 is the flow direction which, for attached flow on a wedge, is constant and
equal to the wedge angle. Equations {C-1), (C-4), and (C-5) now become, with these
substitutiors

) U1 sing = sz,,sin {o — 6) (C-12)

p.=p;, o, Ufsinzo(l -9,/ py (C-13)
U sin®o \

h,=h + [1-tp ip)] (C-14)

Alsg, since Uy, = Uy, from the conservation of momentum, then
Ulcoso = Uzcos(o -0

or
Y
U

_ Coslo — & (C-15)

cos{o}

N

o

]

C-6
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Combining Equation (C-15) with Equation {C-12), there is obtained

g’f: _ tan{o — 