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Preface

The purpose of this research was to examine the use of

function point analysis in estimating software development

effort. More broadly, the information in this study can be

an introduction to a new software estimation tool for

members of the Air Force and DOD community.

Three personal computer based estimating models were

used to predict effort for a set of 36 completed

business/database software projects. The results

demonstrated that each model is a reliable predictor of

development effort. However, each model showed a bias

toward high estimates. Further study is needed to determine

if the bias is due to differences in productivity levels

between private industry and the military environment.

I would like to extend deep appreciation to Mr. Dan

Ferens, my thesis advisor, for his guidance and patience.

Additional thanks are extended to Dr. Richard Werling, of

the Software Productivity Consortium, and Capt Maurice

Griffin, of the Standard System Center, Gunter AFB, who

provided substance and a focus to my research. Also, I wish

to thank the faculty and students associated with Cost

Analysis program for being a good sounding board. Finally,

a special thanks to my wife and friends for just nodding

their heads and understanding when I rattled on and on.

Robert B. Gurner
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Abstract

The Air Force of the 1990's is steadily growing more

reliant on software systems. However, the struggle to

develop reliable cost and effort estimation tools continues.

The Standard Systems Center (SSC), Gunter AFB AL, has

adopted the use of Function Point Analysis to improve

estimation of data processing, management and communication

systems. Function point analysis was introduced by IBM's

Alan Albrecht in 1979 as an alternative to source line of

code (SLOC) as a size and productivity measure.

In 1991, Tecelote Research, Inc., under contract to the

SSC, delivered the Software Program Acquisition Network

Simulation (SPANS) model incorporating the capability to

perform estimates using function point measures. This

research examines the ability of SPANS to reliably and

accurately estimate software project effort with function

points. A further investigation compares the predictions

derived by SPANS with two other software estimation tools,

Checkpoint and Costar.
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A COMPARATIVE STUDY OF THE RELIABILITY

OF FUNCTION POINT ANALYSIS IN

SOFTWARE DEVELOPMENT EFFORT ESTIMATION MODELS

I. Introduction

This chapter provides an overview of the research.

First, the general issue of increasing software costs and

the inability to accurately measure those costs is

addressed. Second, the important terms are defined. Next,

the specific problem of software cost estimation is

examined. Finally, the specific research questions are

enumerated along with some general assumptions.

General Issue

The impact of software costs on the Air Force budget is

steadily growing (5:14). Some calculations estimate

software costs in this country at 13% of gross national

product (9:52). Considering the Air Force's relative

advanced technology, its share is probably much higher.

Unfortunately, the ability to estimate these costs has not

kept pace, and has even been likened to witchcraft (17:1).

Many authorities and organizations in the field have

expressed deep concern over this lack of accuracy in

software estimation (19:64, 18:416, 24:1). In response, the

Standard Systems Center (SSC), Air Force Communications

Agency, Gunter AFB, contracted Tecelote Research, Inc., to

I



develop a computer-based model that will better quantify

software development effort and schedule estimates (10:2).

In fulfillment of this contract, Tecelote developed the

Software Program Acquisition Network Simulation (SPANS)

model.

Many computer-based models for software cost estimation

are in existence (24:1). Most models use SLOC as the basis

for predicting costs; examples are the COnstructive COst

MOdel (COCOMO), PRICE-S, System Evaluation and Estimation of

Resources (SEER), Software Life Cycle Management (SLIM),

Softcost-R. A few models attempt to use methods other than

SLOC. SPANS, Checkpoint and Costar use derivatives of

Albrecht's function points for sizing in addition to SLOC.

Other techniques for software estimation include expert

analysis, bottom-up or 'grass roots' engineering estimates

and analogy (9:24).

The focus of this research is on the effectiveness of

the SPANS model's use of function points for estimation of

development effort (measured in man-months). Since

development costs are a direct derivative of effort,

references to cost or effort in this document can be

considered synonymous. SPANS employs two function point

algorithms, Albrecht's and one calibrated to a set of

projects developed at the SSC (12:2-19,2-23). Tecelote

incorporated the most recent function point data available

from the SSC in developing the second algorithm. This

leaves insufficient independent data for validating this
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unique formulation at this time. Therefore, only SPANS'

general function point sizing capability will be tested.

Specific information about SPANS' estimating capability is

provided in a later chapter.

Definitions

The following terms are important to this research:

SLOC: "An instruction written in assembler or higher order

language is often referred to as a source line of code

(SLOC) to differentiate it from a machine instruction"

(8:3).

Software Sizing: An attempt to quantify the size of

software projects in a form that decision makers can

use. Considered a prime driver in the cost of software

(13:92, 16:2-3).

Function Points: Determined through a formula that sums the

"weighted number and complexity of the various inputs,

outputs, calculations and databases required" in a

software package as described by Albrecht (13:91).

SPANS: Software Program Acquisition Network Simulation.

Software development effort and schedule estimation

tool developed by Tecelote, Inc. The SPANS model for

software estimation with function points is the subject

of this research (12:2-4).

Multiple Regression: "A statistical tool that utilizes the

relation between two or more quantitative variables so

that one variable can be predicted from the others"
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(21:23). Also referred to as least-squares best-fit

(LSBF) statistics.

Non-Parametric Statistics: Statistical test procedures used

to base sample inferences on populations when the

assumption of a normal distribution is not practical

(22:392).

Specific Problem

SPANS calculates development effort using COCOMO,

Albrecht's function point algorithm or a function point

algorithm tailored for data collected on management

information systems projects at the Standard Systems Center.

(Note that only the Albrecht function point module is used

in this research.) SPANS additionally adjusts all estimates

r-: 71ar aet rs 'aEed on user input. These inputs include

productivity level. 6ta ffng level and CPM analysis of the

development process. Tecelote's testing procedures reveal

the ability of all algorithms to accurately and reliably

estimate effort costs and schedules for these systems.

While this testing demonstrates the statistical prowess

of the algorithms, it does not address an important element

of validity: Whether this model provides a needed or

improved capability of software estimation. Do the benefits

of the model outweigh the costs of development, training and

maintenance of SPANS, in lieu of currently available models?

This question is important not only to the SSC, but to other

organizations considering development of models calibrated

4



for their specific circumstances. The main purpose for the

development of SPANS is to provide a comprehensive

scheduling and management tool; so this must be taken in

consideration in any evaluation of the package's

effectiveness. However, no software estimating or

scheduling tool can be judged effective if its software size

prediction capabilities are inaccurate.

Research Question

Two research questions are addressed in this thesis:

1. How well does SPANS' function point module predict

software development effort?

2. How well does SPANS estimate software development

effort as compared to other models using function points?

Assumptions

A vital assumption of this research is the ability of

Albrecht's function point methods to provide an accurate

statistical software measure. Several studies address this

topic positively (3:639-647, 4:648-652, 15:1); however, some

point out that Albrecht's formulation is valid only when

used within the management information (MIS) or business

systems realm (11:4, 8:3). This should not hamper this

research since the data collected will be from MIS or

comparable systems.

Another assumption is that the function point counts in

the data sets are valid for this research. The Methodology
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chapter will address the sources of the data and uescribe

the general characteristics of the set.

Finally, each model is set up to estimate effort, for

the projects in this research, as a military project.

SPANS, an Air Force product, always assumes it is estimating

in a military environment (AFR-700, AFR-800 or DOD-STD-2167A

(12:2-6). Checkpoint and Costar allow the user to select

the proper environmental factors.
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I. Background

Overview

This chapter presents a review of the literature

important to this research. The general discussion centers

around the techniques of various software metrics. The

conclusion is a relatively detailed explanation of the role

of function point analysis in software estimation.

Software Metrics

Nearly every study of software cost estimation, or

software project management for that matter, names size as

the major cost driver. It follows that size is the key

input to most software cost models (8:1). That is where

widespread agreement ends. "The biggest difficulty in using

today's algorithmic software cost models is the problem of

providing sound size estimates," states Dr. Barry Boehm,

developer of the Constructive Cost Model (COCOMO) and

prominent author in the field of software estimation

(5:148).

The most widely recognized measure of software size is

SLOC. However, there are many different ways to define a

line of code. Capers Jones lists six variations of SLOC at

the program level and five variations at the project level

(19:64). "SLOC was selected early as a metric by

researchers, no doubt due to its quantifiability and seeming

objectivity," according to Chris Kemmerer of the Sloan
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School (18:417). SLOC is easily quantifiable, but does not

relate functionality. If used as a singular measure, it can

lead to a "mindless maximization" of inefficient code

(13:309).

Function point analysis, while sometimes used to

calculate SLOC, was developed to measure the productivity in

the development process and functionality of the software

(2:34-36). Albrecht described three advantages of using

function points rather than SLOC:

First, it is possible to estimate them early in
the life cycle, about the time of the requirements
definition document. Second, they can be
estimated by a relatively nontechnical project
member. Finally, they avoid the effects of
language and other implementation differences.
(18:418)

There is some variation in the application of function

points as a size measure. The initial research was

correlated to MIS and data processing (8:3). Recent

research shows that the function point algorithms must be

adjusted before they can be used on "real-time or embedded"

systems, such as weapon systems (24:2-5). Capers Jones

calls this real-time metric feature points. This method,

found in the Checkpoint model, adds a category for system

algorithms and reduces the weighting of data files (16:83).

Reese and Tamulevicz relate four techniques of software

sizing: 1. PERT Sizing, 2. Parametric Sizing Tools, 3. Data

Base Analogy, and 4. Albrecht's Function Points (23:38)

The following is a brief description of the four techniques.
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PERT Sizing. The Program Evaluation and Review

Technique (PERT) is the most common technique of expert

judgement (1:17). It is based on the assumption that expert

can provide accurate opinions on software size through past

experience. Each expert generates a most likely estimate

(m), usually in KSLOC, and a lower (a) and upper (b) bound

of the estimate. The average estimated size (E) is

determined as follows (8:2):

E= a+4m+b
6

Reese and Tamulevicz note that there is bias in this

technique, ". ..the m.'s cluster toward the lower limit

resulting in an underestimation" (23:29).

Parametric Sizing. This is the sizing technique used

in many of the software cost models on the market (COCOMO,

SLIM, and PRICE-S, for example).

These models use input parameters consisting of
numerical or descriptive values of selected
program attributes.. .Parametric models have the
advantage of considering many different program
facets and calibration capability, when present,
allows the user to fine tune a parametric model to
specific applications. (8:3-4)

While parametric models are efficient and objective, they

also can be inflexible (23:47). Data needs to be in a very

specific format. Again, KSLOC is the usual input variable.

Additionally, "since these models must be calibrated from

historical data, their applicability to new, unique programs

may be uncertain" (8:4).
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Data Base Analogy. This approach attempts to estimate

size by comparing the development effort to existing

software. A simple equation for estimation is:

S=F(SizeofSimilarProducts) (2)

'S' is the estimated size and 'F' is an adjusting factor

"usually determined by experience or politics" (8:1).

"Three attributes influence the 'F' factor: complexity,

application environment, and the extensiveness of the

project requirements" (1:20).

This technique is widely used even though many project

analysts and engineers in. industry have confidence in it

(24:1). Another problem with this approach is a heavy

reliance on historical data. The availability and

conformance of historical data greatly influences the

reliability of the estimates (23:42).

Albrecht's Function Points. Albrecht developed the

function point methodology while associated with IBM and

published his findings in 1979 (2:33). As defined earlier:

Determined through a formula that sums the
"weighted number and complexity of the various
inputs, outputs, calculations and databases
required" in a software package. (13:91)

His goal is to establish a measure of work-effort and

productivity. Three major reasons cited for the utility of

function points are 1) determination of customers

10



functional requirements at an early stage; 2) availability

of information about basic system requirements (e.g.,

inputs and outputs); and 3) translation to productivity

measures like "function points per man-month (FP/MM)"

(3:639).

Function points are at a less technical level when

compared to SLOC. This view, coupled with the availability

of basic requirements information, allows estimates to be

performed and understood by nontechnical project members

(18:418). Additionally, the reliability of function points

is limited to business-based or MIS systems (24:2, 16:83).

Reifer Consultants, Inc., and Software Productivity

Research, Inc. (SPR), have both introduced real-time system

estimation models that are extensions or derivatives of

Albrecht's research. Each recognizes the impact of

extensive use of operators and algorithms in lieu of logical

files in real-time systems. Reifer's real-time and

scientific function point estimators are included in the

company's ASSET-R model (24:7). SPR's feature points are

included in the Checkpoint model being investigated in this

paper.

Function points are evaluated in two parts. The first

is a count of "pure" or unadjusted function points, or the

function count. Second is a complexity rating of fourteen

measures of general system characteristics of functionality

for the application (14:4). The 14 characteristics are used

11



to derive a Value Adjustment Factor (VAF). Total function

points are found by weighting the function count by the VAF.

The following is a description of unadjusted function

points and the general system characteristics. While the

guidelines will follow the format found in IFPUG counting

manuals, they conform to commonly accepted conventions of

function point counting methods (2,4,13,18,24).

There are five categories of functionality used in

determining the function count. The International Function

Point User's Group (IFPUG) Counting Practices Manual defines

them as:

Data Types represent the functionality provided to

the user to meet internal and external data requirements.

Internal Logical Files (ILF) reside internal to an
application's boundary and reflect data storage
functionality provided to the user. ILFs must be
maintained and utilized by the application.

External Logical Files (EIF) reside external to an
application's boundary and reflect the functionality
provided by the application through the use of data
maintained by other applications.

Transactional Types represent the functionality

provided the user for the processing of data.

External Inputs (EI) reflect the functionality provided
the user for the receipt and maintenance (add, change,
and delete) of data on ILFs.

External Outputs (EO) reflect the functionality
provided the user for output generated by the
application from ILFs or EIFs.

External Inquiries (EO) reflect the functionality
provided the user for queries of ILFs or EIFs. (14:9-
10)

12



As each function is counted, it is assigned a complexity

factor of low, average or high. This rating determines the

weight given that function. The weights vary by function

type. An example of a count sheet is found in Appendix A.

The basic function count equation that IFPUG espouses is the

same as the original Albrecht equation:

FunctionCount=(1O*ILF)+(7 EIF)+(4 EI)+(5*EO)+(4SEQ) 
(3)

This equation is weighted for average function inputs,

outputs and files. Weights for low and average types can be

seen in Appendix A.

The second part of the function point evaluation is an

analysis of the 14 General System Characteristics (GSC).

Each GSC is given a score of zero to five Degrees of

Influence (DI). The GSCs can be seen on the count sheet in

Appendix A. The following is a list of the DIs:

TABLE 2.

Degrees of Influence for General System Characteristics

0 Not Present, or no influence
6 Incidental influence
2 Moderate influence
3 Average influence
4 Significant influence
5 Strong influence throughout

Once each GSC is rated the DIs are summed to form a total DI

(TDI). The TDI is entered into an equation to determine the

Value Adjustment Factor (VAF):

13



VA'(TDIxO.0!)+0.65 (4)

The product of Eq (4) (VAF) and Eq (3) (function count)

yields the total function points.

FunctionPoints=(FtnctionCount) xVAF (5)

While there is a concerted effort on the part of

several organizations and researchers, led by the IFPUG, to

standardize counting practices, definitions and terminology,

differences do exist. This paper does not attempt a

comprehensive explanation of function point definitions,

calculations and variations. A more thorough treatment can

be found in the documents listed as references for this

section.

14



I1. Methodology

Overview

This chapter contains a description of the elements of

the research analysis. The first section introduces the

data set and discusses its characteristics and limitations.

Next is an outline of the different statistical techniques

used in analyzing the data. The final section is a brief

description of the estimation models compared in this study.

Data Description and Availability

The acquisition of data, in the format needed for SPANS

and other models, is the most crucial part of the research

process. The area of software measurement dealing with

function points, while over a decade old, is growing slowly.

There are relatively few software projects in which function

points have been counted. The Standard Systems Center, a

sponsor of this research, the Logistics Management Systems

Center, the Software Productivity Consortium, and the

Software Engineering Institute at Carnegie Mellon

University, were enlisted in the search for acceptable data.

The requirement for this research is a set of data

points containing function point counts and actual effort

expended in project development. More specifically, the

data should be based on MIS or comparabie projects.

Richard Werling, of the Software Productivity Consortium,

15



provided two data sets. The first set is from Albrecht's

1983 article in the IEEE Transactions on Software

Engineering (3:639-648). This article, published jointly

with John Gaffney, is a follow-up to Albrecht's 1979 paper

introducing function points as a software metric (2:33-34).

The Albrecht data set contains 24 projects (Table 2).

Eighteen of the projects use COBOL programming language,

four use PL/I and the remaining two are IBM/DMS

(International Business Machines/Database Management

System). These languages are common for MIS programming and

meet the criteria for this research.

TABLE 2.

The Albrecht Research Data Set

FUNCTION FUNCTION ACTUAL
PROJECT LANGUAGE KSLOC COUNT POINTS COMPLEXITY EFFORT

1 COBOL 130 1750 1750 1.00 673.7
2 COBOL 318 1902 1902 1.00 692.1
3 COBOL 20 522 428 0.82 73.0
4 PL/1 54 660 759 1.15 138.8
5 COBOL 62 479 431 0 .90 '189.5
6 COBOL 28 377 283 0.75 65.8
7 COBOL 35 256 205 0.80 52.6
3 COBOL 30 263 239 1.10 32.2
9 COBOL 48 716 680 0.95 84.9

10 COBOL 93 690 794 1.15 125.0
ii COBOL 57 465 512 1.1I0 71.1
12 COBOL 22 299 224 0.75 19.1
i3 COBOL 24 491 417 0.85 49.3
14 PL/1 42 802 682 0.85 78.9
15 COBOL 40 220 209 0.95 27.0
16 COBOL 96 488 512 1.05 103.9
17 PL/1 40 551 606 1.10 120.4
18 COBOL 52 364 400 1.10 58.6
19 COBOL 94 1074 1235 1 15 250.7
20 PL/. 10 1310 1572 1.20 402.6
21 COBOL 15 476 500 1.05 23.6
22 DMS 24 694 694 1.00 77.6
23 DMS 3 166 199 1.20 3.3
24 COBOL 29 263 260 0.99 40.1

Mean 647.6 1.00 143.9
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The projects in this data set range from small (3 KSLOC) to

large (318 KSLOC), with a mean of approximately 66 KSLOC.

The data set, as provided, did not contain function counts

for external interfaces (EIF). As explained in the Albrecht

and Gaffney paper, interfaces are included in the count of

internal logical files (ILF) (3:641).

The second set of data is from Kemmerer's ±187 paper on

software cost estimation model validation (18:416-429). 13

of the 15 projects included in this set are all programmed

in COBOL. Projects seven and fifteen are written in BLISS

and Natural, respectively. The data is shown in Table 3.

TABLE 3.

Kemmerer Research Data Set

FUNCTION FUNCTION ACTUAL
PROJECT LANGUAGE KSLOC COUNT POINTS COMPLEXITY EFFORT

1 COBOL 254 1010 1217 1.20 287.0
2 COBOL 214 881 788 0 .39 86.9
3 COBOL 254 1603 1611 1.00 258.7
4 COBOL 41 457 507 1.17 95.5
5 COBOL 450 2284 2307 1.01 1107.3
6 COBOL 450 1583 1338 0.85 336.3
7 BLISS 50 411 421 1.02 84.0
8 COBOL 43 97 100 1.03 23.2
9 COBOL 200 998 993 0.99 130.3

10 COBOL 39 250 240 0.96 72.0
17 COBOL 129 724 789 1.00 230.7
12 COBOL 289 1554 1593 1.09 116.0
13 COBOL 161 705 691 0.98 157.0
-4 COBOL 165 1375 1348 0.98 246.9
15 NATURAL 60 976 1044 1.07 69.9

Mean 1000.3 1.01 228.8

These projects are medium to large in size. They range

4n size from 39 KSLOC to 450 KSLOC, with a mean of just

under 187 KSLOC (18:419). Although the range is similar to

17



the Albrecht data set, the average size of the projects is

nearly three times larger. Statistical tests performed to

determine the compatibility of the two sets will be

discussed in the analysis portion of this document.

Statistical Analysis

Different statistical methods are employed to analyze

the models' estimating reliability. Linear regression, the

Wilcoxin 'T' and Percentage Error each test a different

aspect of reliability.

Linear Regression. The fir-t statistical too. used to

test the two data sets is least-squares best fit (LSBF)

linear regression. This i, a Laramrtric technique (assumes

a normal distribution for the population). Normal

distribution is assumed in this study by invoking the

Central Limit Theorem:

Whatever the distribution of X; (population or
sample), as the number of terms of n in the set
becomes large (n z 30), the distribution tends to
the standard normal. (22:214)

Combining the Albrecht and Kemmerer data sets creates a

sample data set of 39 observations and can be considered

large.

Besides the basic linear equation, transformations can

be performed on the dependent and independent variables to

better explain their statistical relationship. The

18



following are the basic and transformed variants of the LSBF

equation:

TABLE 4.

LSBF Linear Eqiation and Transformations

Linear Equation Y-b0+b(X) (6)

Exponential (7)

Logarithmic y=bO +b- *in (X )  (8)

Power Curve (9)y=b 0 *X

Where: Y = the set of actual effort

b^= the intercept term

X = the set of estimated effort

b, the coefficient/exponent
of the estimate

The model estimates (X) are the independent variable. The

reported actuals from the data sets aie the dependent

variable (Y). Analysis of the statistics and visual

inspections of the graphs are used to determine the proper

equation for each data set.

Statistical analysis is performed on the StatPak, a

commercial statistics package for desktop computers and the

Statistical Analysis System (SAS) available at AFIT. The

resulting statistics used for analysis are the F-Ratio,
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coefficient of determination (R2) and values found in the

analysis of variance (ANOVA) table. The F statistic is an

indication of the level of significance in the relationship

between the actuals and the estimates. R2 measures the

amount of variation in the actuals explained by the

estimates, or the reliability of the estimates. An R2 of

.80 or better is considered reliable for this research. The

ANOVA table is "a breakdown of the total sums of squares and

associated degrees of freedom" (21:92). In the appendices

the ANOVA table also contains the F and R2 statistics.

Once regression equations are selected for each data

set, additional analysis is performed to determine the

statistical compatibility of the two data sets. Two

variations of the F-Ratio test are used in this analysis,

one for variance in the data and one for the error terms of

the regression equations. The F statistic for the first

test is obtained by Eq (10).

MSEK

The MSE, or standard error, is obtained from the SAS output.

The F.3 : is compared to the respective F.. in tables found

in various texts (21:629-639). The hypothesis being tested

in this case is that the variances in each data set are

equal. The hypothesis is accepted if F- is less than F.,
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for a given level of confidence. For this research, a 99%

confidence level, or a = .01, is required.

The F-Ratio test for comparing the equation error terms

is determined through the use of the Full-Reduced technique.

For this research the full model is the data set containing

all data points from both sets. The reduced models are the

Albrecht and Kemmerer data. F~ai is derived by Eq (11):

SSE,-SSE SSE, (11)
c Df,-Df. Df,

Where: SSE Sum of squares error for the
respective data sets,

Df = Degrees of freedom for the
respective data set (21:98-100).

The hypothesis for this test is that the full mcdel does not

explain significantly more of the variability in the error

terms than reduced models (21:99). This comparison is made

for both data sets. The hypothesis is supported if FaIs

less than F.,;,

A final LSBF treatment compares the model predictions

to the project actuais. As before, the four LSBF

transformations are run with the predictions and actuals for

each model. Examination of the graphic plots and the ANOVA

table are employed to determine the reliability of the

predictions.
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Wilcoxin T. The Wilcoxin T is a non-parametric test

that "provides a method of incorporating information about

the relative sizes of differences" (22:398). In this

research the estimates from each model are compared to the

actuals to determine the magnitude of the ranked

differences. The ranks are grouped as positive or negative

and summed. The lowest sum is called the T score (22:399).

The generated T score tests the hypothesis that the

differences are equally distributed around zero. The

Wilcoxin T table provides cutoff points for the hypothesis

test for varying sample sizes (n) and confidence levels (a).

For small samples the T score is compared to a value found

4n the table. Large samples (non-zero differences a 20) use

the T-statistic that is compared to the student t value.

TaJ= Tcare-0
1 T (12)

a T

The purpose of running this test is to determine if

their is a bias in the estimates. For example, a very low

or high T3,at, indicates a bias toward a center other

than zero. The bias is negative or positive depending on

which group provided the T.

Percent Error. Percent methods are simple and easy

techniques to understand and evaluate the accuracy of man-

month estimates (18:420). Three different aspects of
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percent error will be considered. The first two methods are

used by Kemmerer in his research.

The first is a percentage error test recommended by

Boehm which normalizes the error for size (6:49):

Percent AMOC-aeMace (13)

The mean of this test will indicate the estimates' bias

toward high or low estimating. The standard deviation shows

how widely the estimates are dispersed around the mean. In

populations that are normally distributed, 65% of the

estimates would be expected to fall within one standard

deviation of the mean and 95% within two standard deviations

(22:20).

The second percentage method is the magnitude of

relative error (MRE). This method uses the absolute value

of the formula found in Eq (11). This test does not allow

the negative and positive errors to "cancel each other out"

(18:420).

The final percentage method is to evaluate the number

of estimates that fall within a predescribed range of error.

Ranges of 20 and 30 percent around the actual will be used.

"This is a method used by many model developers to tout

their products" and is easy to understand (6:50).

Drawing Conclusions. The statistical analysis of the

test results is not limited to the internal significance and
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reliability of the model with the test data set. The true

effectiveness of the model will be its ability to estimate

software cost better than models presently available, and

its consistent utility to organizations employing the model.

Software Cost Estimation Methods

Three automated software estimation products are used

in the analysis of the data. They are Costar, Checkpoint,

and SPANS. As mentioned earlier, the SPANS model is the

catalyst for this research. Costar and Checkpoint are used

for comparison. These two models have the capability of

providing estimates for the full life cycle of software

projects, as opposed to SPANS which only addressed the

development phase. For the purposes of this research,

estimates for Costar and Checkpoint reflect only those

development cycles SPANS encompasses.

Each model is discussed in this section. The

description is very general. Detail is provided only when

it pertains directly to the features of the packages

incidental to this study.

1. Costar . " Costar is a software cost estimation

tool based on the COnstructive COst MOdel (COCOMO)" (25:3).

COCOMO, developed by Barry Beohm, is a widely used

estimation tool based upon deliverable source instructions

(DSI). DS' are source lines that are delivered to the

customer excluding test drivers, automatically generated

code and comments (26:2). Additional information about
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COCOMO can be found in Dr. Beohm's book Software Engineering

Economics (5).

While Costar calculates effort in man-months for DSI,

it does not do this directly for function points. (Total

function points can be entered directly or derived from a

worksheet provided by Costar.) To estimate effort, function

points are converted into DSI by a linear multiplier for a

given language (25:45). For example, each function point

translates into 91 DSI for COBOL. Costar provides

conversion factors for some of the most popular software

languages, or the factor and language can be entered and

saved into a Costar worksheet.
2. Checkpoint2 . This product is a software

scheduling and estimating tool developed by Software

Productivity Research, inc. (SPR) and incorporates many of

the features found in SPR's SPQR-20. Checkpoint uses

proprietary SLOC algorithms and variations of Albrecht's

function points to calculate effort. Feature point sizing

is also available in this program. Calculations of effort

using function points rely heavily on pro 4uctivity factors

developed by Capers Jones, the founder and chairman of SPR

(16:494). An extensive study of software management and

productivity is available in Jones's book, Applied Software

Measurement (16).

SLOC conversion factors for Costar and productivity

factors for SPANS that required user input are taken from

the tables found in Appendix A of the Checkpoint manual
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(27:A,15-24). This provides a consistent basis of model

inputs, and thus, a more reliable comparison of the outputs.

3. SPANS. This model is the focus of the research and

was briefly described earlier in this paper. It is a

scheduling and estimating tool for the development phases of

software projects. Its uniqueness is a function point

estimating module calibrated by Tecelote to past projects

from the Air Force Standard Systems Center (9:2, 12:2-23).

While this research examines the general use of function

points as a software estimator, it does not address the more

specific question of the effectiveness of SPANS for Air

Force use.

The SPANS model derives estimates for military projects

only. The two other models in this research are run in a

military mode (e.g. DOD-STD-2167A) for consistency in

comparisons. Capers Jones shows that military projects

historically have lower productivity, and thus higher costs,

due to the many constraints found in military regulations

(16:19-20). Since the data used in this study are based on

private sector firms, this could lead to an assumption that

the estimates may tend to be biased high when compared to

the actual effort reported. The results of the analysis

will tell whether or not this assumption can be supported.

Conclusions

The use of software size is obviously important in the

estimation of software costs. What are less obvious are the
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specific techniques, methods, or models best applied to

derive accurate and reliable size estimates. SLOC is the

most studied and utilized method; however, SLOC ignores the

measure of functionality needed to improve software

development productivity. Function points have been shown

to capture that functionality measure and allow for accurate

cost estimates, given that function point counts can be

expected to provide reliable and accurate predictions in the

early stages of software development. The next step has

been to develop estimating tools or models utilizing

function points that can help the analyst derive an accurate

estimate. This research will attempt to discover whether

these models are fulfilling that need.

The models in this research apply additional

mathematical treatments to the function counts based on

complexity factors and parameters beyond the basic Albrecht

formula. Since these additional features are not consistent

across the models, care is taken to enter the data and set

up parameters in as congruous a fashion as possible. Also,

the data sets do not always contain all of the detail

required for input in particular model. When this occurs,

the author will choose nominal values and indicate the fact

in the documentation. Additionally, (as noted in the

assumptions), each model is run a mode presuming the

military environment. This is done since SPANS runs only in

a military acquisition mode.
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IV. Analysis and Findings

This chapter presents the analysis of the data and the

accompanying results. The first section examines the two

data sets to determine their compatibility to each other.

The purpose is to show, statistically and qualitatively,

that the two data sets may be combined to form a larger

statistical sample. The next sections introduce and present

the analysis of the model estimates.

Data Analysis

Compatihility. The purpose of proving compatibility is

to combine the two data sets into one, or show that both

sample sets are members of the same population. "The

eventual aim is to make statements that have some validity

for the population at large" (22:231). Two reasons for this

combination are 1) To create a larger sample for

statistical purposes and 2) To simplify the presentation of

the results by making inferences from the sample data to a

single population. Compatibility is addressed in two ways;

subjectively and statistically.

Subjective factors are general characteristics of the

data. In the case of this research, both data sets include

projects from the MIS arena (3:640-641, 18:419). The

majority of the projects are written in COBOL, "the most

widely used business data-processing language" (18:419). A

third consideration is the size of the projects. As

28



mentioned earlier, the average SLOC size of the Kemmerer

data is much larger, but the average function point and

effort size are closer. In both sets, the majority of the

projects are medium-sized (20 - 250 KSLOC). Statistical

analysis will test the hypothesis that the project sizes are

compatible.

LSBF regression analysis is used to test the hypothesis

of size compatibility. The ANOVA tables for the equations

in this section are found in Appendix B. The power curve,

or log(Y)-log(X) transformation, is chosen as the best

equation by inspection of the test statistics and the

residual plots results. All LSBF tests in the balance of

this research will use this formulation.

The first test is for the equality of the variances of

the data sets. The hypothesis being tested is that the

variances are equal. Using the F determined by Eq (10)

and the F.... from the tables:

Fcaij MSEA .3778.2399

MSEr .3047

F( 22 , 13 ,. 0.) '3.52

Since Fa:S F~rit, the hypothesis of equal variances is

accepted.
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The second compatibility test is the Full-reduced

technique. The F~aic for this test is calculated using Eq

(11). The calculation is run for each data set.

SSEA-SSE?, SSE._ (8.3116-14.0421) (14.0421)=1

FO"- DfA-DfF SSE7  (22-37) 37 "

(3, 37,.03.) =2.66

Fealcr_ (3.9608.3116-14.0421) +14.0421=1.1066(13-37) 37

F(24,37,.03)'2.42

F F:,..,. in both cases, so the hypothesis, that the slopes

of the full and reduced equations are equal, is accepted.

The acceptance of the hypotheses of equal variance and slope

confirms the subjective analysis results the two data sets

are from the same population and may be combined for further

study.

Outliers. This section of the research determines the

status of any outliers in the full data set. The

combination of the two sets results in a large sample, large

enough so that the possible removal of outlying data points

may not adversely affect the regression equation. The full

set of data in this study is examined graphically and

statistically. However, data points cannot be rejected

simply on visual or statistical evidence unless there is
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proof of circumstances that make the point an exceptional

case (21:406). Thus, any point that looks to be an outlier

must also show properties that separate it from the other

data.

The first step is to look at the data in a graphical

format. The following graph shows the data plotted in

logarithmic values to correspond with the log-log

transformation chosen as the best equation:

FUNCTION POINTS/EFFORT
(Log-Log Power Curve)

AM I ' 3

6+i i I !

7415 
I 

XA151h X"

-I I

5- 6.5 7.5

5.5I t 5. 6-!.5 .

log FP

Figure 1. LOG-LOG PLOT OF FUNCTION POINTS AND EFFORT

A5, A21, A23, KS, K12 and K15 ( in circles) appear to be

candidates for further inspection. This is accomplished by

examining the statistics listed in Appendix C. These
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include the studentized deleted residuals (ei, normalized

prediction error obtained by removing each data point in

turn) and the Cook's distance measure. The Cook's distance

measure (di) indicates the influence the deletion of the

observation has on the regression equation (21:396-406).

The values found in the ei residual column follow the

Student-t distribution. Values that fall in the extreme .05

area of the distribution tail are candidates for removal.

The cut-off value is t(..p_,.05), or t(36,.05) or 1.691. The

points that exceed this value are the same as the visual

inspection except for K8.

The final statistical treatment for outliers is the

Cook's d1 influence test. The cut-off value is from the F

distribution for F , or .707. This value exceeds all

values in the set. The largest d:, A23, is still

significantly less than the cut-off. This shows that no

single observation has a large influence on the regression

equation.

Five observations are identified as candidates for

deletion as outliers: AS, A21, A23, K12 and K15. Before

any of these points can be deleted, however, further non-

empirical reasons are needed to confirm that these points

are outliers. Project A21 and A23 are small, less than 20

KSLOC, compared to the other projects. Additionally, A23 is

written in language (IBM/DMS) other than COBOL which

differentiates it from over three-fourths of the data. K15

is also written in a language other than COBOL and is the
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only project using that language (NATURAL). These

circumstances, in conjunction with the graphical and

statistical evidence, lead to a conclusion that these

observations may be deleted. There is no other evidence

supporting the deletion of A5 and K12, so these observations

remain in the data set.

Prediction Analysis

The following three sections explain the relationships

between the predicted values derived from the estimation

models (X) and the actuals for each project (Y). (Note that

the data set contains only thirty-six projects after three

projects were identified as outliers.) Each section details

the respective results of three statistical techniques; LSBF

regression, the Wilcoxin T and percent error.

LSBF Regression. This technique is used to test the

hypothesis that there is a linear relationship between X and

Y (21:146). If a significant relationship does exist, F.a:.

will be greater than F... The confidence level for this

test is a=.01. Once again, the log-log, or power curve,

transformation of the LSBF equation is utilized:

Y=A*X

or

log (Y) -log (A) +b. *log(X)
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To derive the correct results (Y) using the log-log equation

(21), all calculations should be made in logarithmic form

The transformation to Cartesian space is performed only on

the log(Y) term. ANOVA tables containging the equation

coefficients and other statistics used in this section are

found in Appendix D.

The Fcrit for each model is F(134,.01), or 7.48. The

predictions of the R2 and Fcaic for each model are as follows:

TABLE 5.

Statistical Summary of Model Prediction Reliability

R2 Faic

SPANS .81 145.26

Checkpoint .79 129.19

Costar .80 138.93

Only Checkpoint does not exceed the cut-off value of .80

(the level set for acceptable reliability for this research)

for the R2, but Checkpoint's R2 is very close to the

criteria and not significantly different than those for

SPANS and Costar. Each Fcaic overwhelmingly exceeds the

critical value with no significant difference between the

models.

The LSBF tests on the prediction results show each

model just meeting the reliability criteria set forth for

this research. No models' reliability is demonstrably

better for this data. Also, each model equation showed very

34



strong relationship (F test) between predictions and actuals

for this data set, but again, no significant difference was

found among the three models' statistics.

Wilcoxin T. The tables containing the details of the

Wilcoxin test for each model are in Appendix E. The

hypothesis for this test is that the ranked differences

between predictions and actuals are evenly distributed

around zero. Since the number of observations in the data

set can be considered large, the test statistic is derived

using Eq. (12) from the methodology.

The cutoff value from the student t table for t(36,.01) is

2.41. The Tstat for each model:

TABLE 6.

Wilcoxin T Statistics for Bias Analysis

Tstat

SPANS -2.4352

Checkpoint -1.7753

Costar -4.5247

All models have a negative statistic which indicates a bias

toward high predictions for this data set. Checkpoint is

the only model to reject the hypothesis of no bias in the

direction of prediction error at the .99 level of

confidence. However, the Checkpoint statistic is still

relatively large and accepts bias at the .95 confidence

level, t,36 .5  1.689. This is evidence that significant
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bias does exist in the Checkpoint predictions. Costar

demonstates a very significant bias at all levels of

confidence. SPANS's t statistic displays bias at both

confidence levels, but just so at the .99 level.

Percent Error. The tests in this section employ the

mean percent error and magnitude of relative error (MRE) for

each of the models' prediction. Eq (13) is used to derive

the percent error, or raw error, for each prediction as

related to the actuals. The MRE is the absolute value of

the percent error. The data for this section is found in

Appendix F.

The prediction means and standard deviations for each

measure of error are compared first. The mean results are

listed in Table 7:

TABLE 7.

Mean and Standard Deviation From Percent Error Test

Raw Error MRE
Mean Std Dev Mean Std Dev

SPANS .51 .63 .62 .53

Checkpoint .27 .65 .46 .53

Costar 1.02 .87 1.05 .84

In both methods, Checkpoint has the smallest mean error;

however, its advantage is less in for the mean MRE. This is

due to the loss of offsetting negative errors present in raw

error. Costar's and, to a lesser extent, SPANS's
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predictions are biased so high that the negative error has

little effect on the mean raw error; thus, there is little

difference between the mean raw error and the mean MRE for

these two models.

The standard deviation of the raw error can be used to

test the normality of the distribution. Sixty-eight percent

of the errors are expected to fall within one standard

deviation and ninety-five percent within two standard

deviations in a normally distributed sample. Checkpoint has

29 of 36 (81%) predictions within one, and 35 of 36 (97%)

within two standard deviations. SPANS and Costar fall short

of expected, with 61% and 53% respectively within one

standard deviation, or 86% and 81% respectively within two.

While none of these distributions is right on the mark, they

are not so far off that the assumption of a normal

distribution can be rejected.

The final percent error treatment on the data set is to

ascertain how many predictions fall within a set range.

This is a common and simple way of comparing results that

can be easily understood by decision makers. This is also a

technique used by model builders to tout their products

abilities. Two ranges are used for this research, twenty

and thirty percent. For this data set, no model predicted

even half of the projects within either range (see Table 8

on next page):
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TABLE 8.

Model Predictions Within A Predescribed Range

±30% ±20%

SPANS 14(.39) 9(.25)

Checkpoint 17(.47) 13(.36)

Costar 7(.19) 5(.14)

These poor results are not unexpected since the mean

raw errors are all close to or greater than thirty percent.

Further, since most of the predictions err on the high side,

and are not centered around zero, even fewer predictions

could be expected to be within the range criteria. The

pred.ctions are also shown to have a high bias by the

Wilcoxin T test. To examine whether the bias affects the

reliability of the predictions, a further test is

administered for percent error with an adjusted data set.

This additional percent error test demonstrates the

models' reliability once an attempt is made to remove the

bias in prediction accuracy. An adjustment is made on the

predictions by decrementing each models' predictions. The

adjustments are made by dividing each prediction by the mean

raw error for the respective model. Table 10, found on the

following page contains the summary data for raw error and

MRE for the adjusted data:

38



TABLE 9.

Summary of Adjusted Data Percent Error Test Results

Mean Prediction

Raw Error MRE ±30% ±20%

SPANS .00 .34 18(.50) 12(.33)

Checkpoint .09 .32 20(.56) 14(.39)

Costar .00 .34 18(.50) 11(.31)

As expected, the mean raw error is reduced and, in fact, is

zero in two cases. The magnitude of relative error (MRE)

and the number of predictions meeting the test criteria also

tend to equalize.

These results are supported by preceding tests. The

LSBF regression analysis results showed the reliability of

the models to be nearly equal. The Wilcoxin test then

demonstrated varied levels of bias among the models. The

presence of bias was confirmed by divergent percentage

errors. Once bias was removed (by adjusting the data in

the final percent error test) the results became more

uniform.

The success rate for predicting within the two ranges

is still mediocre. However, these results can be compared

to Kemmierer's study that used uncalibrated models to predict

effort. Using Albrecht's function point equation, Kemmerer

obtained predictions with an MRE of 102% (18:424). The

initial results in this research yielded average MRE's
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ranging from 46% to 105%. Once the data was adjusted for

known bias, the mean MRE's are 32% to 34%. This decrease

shows an improvement in prediction ability and supports

Kemmerer's conclusion that calibration of general models can

lead to better estimation.
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V. Conclusions and Recommendations

Conclusions

This research is driven by two onerous realities of

software development in today's Air Force: 1. The steadily

growing reliance on software systems, and 2. The continuing

struggle to reliably estimate the costs of developing these

systems. in 1979, IBM's Alan Albrecht introduced a new

methodology for estimating software development effort for

business-based systems. His function point analysis was an

evolutionary step in software metrics. Over the next decade

private industry and some foreign governments have embraced

function points as a key estimation and productivity tool.

Agencies of the U.S. government, including the

Department of Defense, have been slow to incorporate

Albrecht's methodology. The Standard Systems Center (SSC),

Gunter AFB, has turned to function points as a productivity

improvement tool. This is a logical step due to SSC's

emphasis on business-type, data processing systems and

communication systems. The SSC commissioned Tecelote

Research to develop an estimation and scheduling tool

incorporating function points, SPANS.

The focus of this thesis was to test the reliability of

SPANS's estimating capabilities and to compare the results

to other function point analysis tools available to the Air

Force. In addition to SPANS, Checkpoint (SPR, Inc.) and
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Costar (Softstar Systems) were chosen for this study. The

models estimated man-month effort for 36 software

development projects from a database of combined projects

from the research of Albrecht and Chris Kemmerer of the

Sloan School, Massachusetts Institute of Technology.

Three statistical treatments were used to test the

model estimates: LSBF regression analysis, Wilcoxin T and

percentage error. The first tested the reliability of the

models' prediction abilities. This test showed a strongly

significant relationship between the estimates and actuals

for each model. The reliability, or R for the three

models centered tightly around .80 with no significant

distinction between the three.

The second treatment was the use of the Wilcoxin T to

test for bias in model predictions for the data set. Al

models showed a significant, although varied, bias for high

estimates. Checkpoint had the lowest Wilcoxin score, but

still showed bias at the .95 confidence level. Costar had a

very high Wilcoxin score, and SPANS scored between the two.

It is probable that the bias was introduced by estimating

sample projects gathered from private sector industry with

tools configured for the military procurement environment.

This research did not explore that probability, the

hypothesis is good candidate for further study.

The high bias found in the Wilcoxin test was verified

by the poor results of the models in the percent error

tests. Checkpoint had the lowest mean raw percent error and
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absolute error at 21% and 46% respectively. SPANS was close

behind with mean errors of 51% and 62%. Both means for

Costar exceeded 100%. The performance of the models in

predicting effort within preset percentage ranges was also

poor. The most proficient, Checkpoint, missed the mark in

just over half of its estimates in the ±30% range, and

missed almost two-thirds in the ±20% range. Costir w~s the

lowest with less than 20% success in both ranges. Again,

SPANS performed between the two, but closer to the

Checkpoint results. These result was not so surprising

after the extreme bias scores encountered with the Wilcoxin

test.

A final percent error test was run with adjusted

prediction values to attempt to counteract the bias. Each

set of model estimates were divided by their mean raw errors

and compared to the actuals, again. The results showed

predictable improvement in the mean error. The mean error

for SPANS and Costar with the adjusted value went to zero,

and Checkpoint's mean error was 10%. The ability to predict

within the preset ranges followed the trend of the mean

error. The Checkpoint results changed little and the other

two models improved to the point th?.t no significant

difference was found among the three.

The first research question posed at the beginning of

the thesis dealt with the reliability of SPANS to accurately

predict software development effort. The conclusion is

strongly, but not overwhelmingly, positive. SPANS showed
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the capability to reliably estimate over the range of data

in this study. A caveat is the bias toward high estimates

shown in the Wilcoxin and percentage tests. However, if the

bias is a known quantity, the analysts can adjust for it as

long the variance in the predictions remains consistent.

The second research question proposed a comparison of

the estimating abilities of SPANS to other models. For the

most part, the comparisons, when controlled for bias, showed

little difference among between the three models.

Checkpoint and SPANS performed only slightly better,

although more consistently, than Costar. Costar also

demonstrated a much higher sensitivity to bias.

Recommendations

A recommendation from this study for model selection is

difficult for two reasons: First, the differences in the

results between the three model, while quantifiable, were

not significant. Second, each model has peculiar scheduling

and management analysis tools, not examined here, that might

be useful to project members for different circumstances.

Several recommendations can be made for further

research, however. A direct follow-on to this study is to

obtain a data set of function point counts for software

development projects managed by and for the Air Force.

ideally, a data set with a priori estimates and a posteori

actuals is best. This would test not only the models'
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capabilities, but also the ability of analysts t' est ;L.e

requirements and efforts ac the start of a program.

A related issue is the measure of productivit- ;inth

function points. This was the original intended use of the

methodology when introduced by Albrecht. Tracking a

project's progress through the completion of function points

could be more desirable and informative than amassing source

code counts. However, there is little research supporting

this hypothesis.

Finaly.y function point analysis does not appear tc be

useful for a large segment of Air Force software

development, real-time or weapon systems. Variants of

function points, called feature points or real-time function

points, are considered by some experts to be an effective

estimating method for these systems, but have received

.ittle or no treatment in DOD studies. Studying these could

conceivably be very beneficial for analysts in the weapon

systems arena.
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Appendix A: Function Point Count Sheet

Function Point Calculation

Summary

Appeiasion Momanwase by MUM

Proec 0 Proped Namo Relmud by MwoYY

Notes:

UNADJUSTED FUNCTION POINTS

Type Component Lovl of informaton processing fuction Toted
0 LOW Average High

El External Input .. ".x3 j.".I x 4 = - 9x 6 = 1,6 )7Z.'

EQ ExternalInquiry /'Z x3= 3 ' 0( .O-.4= /(, c ,./x 6= 101 7

EO ExternalCutout 2 x4= ?,2. ,4'x 5 5z, ,.Sx 7= )of5 /697

ILF InternalLogicalFije _./x7 1 7 xlO= /0 - x15= q7

ElF Ext interface Fiie ,x5=. j x 7= - xlo= . I

Total Unadjusted Function Points L/ 4/A

GENERAL SYSTEM CHARACTERISTICS

Generl System Gonurn System
10 Characteristic ,atnq 10 Ch a'actenso Raidn

C1 Cata Ccmmunicadons C On-Une update 7

C2 0istributed Functions C9 Complex Processing 2-

C3 Performance C 010 Reusability

C4 Heaviiy Used Conliguration I C1 Instaliation Ease

C5 Transaction Rate 3 C12 Operational Ease

CS On-line Data Entry *" C13 Multiple Sites

C7 End User Erficienc C14 Facilitate Change

Total Rating

Value Adjustment Factor- Total Rating x .01 + .65

Total Function Points Unadjusted Function Points x Value Adjustment Factor
= =/-3 d _ ______

001.03 12/89
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Appendix B: LSBF Analysis for Data Compatibility Tests

Albrecht Input Data

ACTUAL LOG LOG
PROJECT KSLOC FP EFFORT FP EFFORT

Al 130 1750 673.7 7.46737 6.51278
A2 318 1902 692.1 7.55066 6.53973
A3 20 428 73.0 6.05912 4.29046
A4 54 759 138.8 6.63200 4.93303
A5 62 431 189.5 6.06611 5.24439
A6 28 283 65.8 5.64545 4.18662
A7 35 205 52.6 5.32301 3.96272
A8 30 289 32.2 5.66643 3.47197
A9 48 680 84.9 6.52209 4.44147
A10 93 794 125.0 6.67708 4.82831
All 57 512 71.1 6.23832 4.26409
A12 22 224 19.1 5.41165 2.94969
A13 24 417 49.3 6.03309 3.89792
A14 42 682 78.9 6.52503 4.36818
AIS 40 209 27.0 5.34233 3.29584
A16 96 512 103.9 6.23832 4.64343
A17 40 606 120.4 6.40638 4.79082
A18 52 400 58.6 5.99146 4.07073
A19 94 1235 250.7 7.11883 5.52426
A20 :10 1572 402.6 7.36010 5.99794
A21 15 500 23.6 6.21461 3.16125
A22 24 694 77.6 6.54247 4.35157
A23 3 199 3.3 5.29330 1.19392
A24 29 260 40.1 5.56068 3.69138

Albrecht Linear Equation
Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 1 702863.51624 702863.51624 152.924 0.0001
Error 22 101115.84210 4596.1-7464
C Total 23 303979.35833

Root MSE 67.79509 R-square 0.8742
Dep Mean 143.90833 Ad3 R-sq 0.8685
-.V. 47.10991

?arameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > T

INI'-C CT 1 -88.087178 23.31223476 -3.779 0.0010
7? i 0.358225 0.02896802 12.366 0.0001
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Albrecht Exponential Equation
Analysis of Variance

Sun of Mean
Source DF Squares Square F Value Prob>F
Model 1 21.60027 21.60027 48.771 0.0001
Error 22 9.74356 0.44289
C Total 23 31.34383

Root MSE 0.66550 R-square 0.6891
Dep Mean 4.35885 Adj R-sq 0.6750
C.V. 15.26776

Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > ,T'

INTERCE F 1 3.072757 0.22884067 13.427 0.0001
FP 1 0.001986 0.00028436 6.984 0.0001

Albrecht Logarithnic(X) Equation
Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prcb>F
Model . 324786.28281 524786.28281 41.352 0.000i
Error 22 279193.07552 12690.59434
C Total 23 803979.35833

Root MSE 112.65254 R-square 0.6527
Dep Mean 143.90833 Adi R-sq 0.6370
C.V. 78.28076

Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 rob > '"

INTCEPT 1 -1257.365903 219.19511675 -5.739 0.0001
LOGFP 1 224.453846 34.90412826 6.431 0.0001

Albrecht Log(X)-log(Y) Equation
Analysis of Variance

Sun of Mean
Source DF Squares Square F Value Prob>F
Model 1 23.03220 23.03220 60.964 0.0001
Error 22 8.31163 0.37780
C Total 23 31.34383

Root MSE 0.61466 R-square 0.7348
Dep Mean 4.35885 Adj R-sq 0.7228
C.V. 14.10131

Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > T'

I1nTWICpr 1 -4.927700 1.19597356 -4.120 0.0004
LOGFP 1 1.486975 0.19044409 7.808 0.0001
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Residual Plot for Albrecht Data
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Residual Plot for Albrecht Data
'zponentjal Z.-aton

~~~~----- ----------------

e

0. e

2C 400 -100 3C0 C O 1oc 2C0 140C 1500 :3cIc 20CC

F?

so



Residual Plot for Albrecht Data
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Residual Plot f or Albrecht Data

L~og(X)-log(Y) Equation
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Kemmerer Input Data

ACTUAL LOG LOG
PROJECT KSLOC FP EFFORT FP EFRT

KI 254 1217 287.0 7.10414 5.65948
K2 214 788 86.9 6.66950 4.46476
K3 254 1611 258.7 7.38461 5.55567
K4 41 507 82.5 6.22851 4.41280
K5 450 2307 1107.3 7.74370 7.00968
K6 450 1338 336.3 7.19893 5.81800
K7 50 421 84.0 6.04263 4.43082
K8 43 100 23.2 4.60517 3.14415
K9 200 993 130.3 6.90073 4.86984
K10 39 240 72.0 5.48064 4.27667
K11 129 789 258.7 6.67077 5.55567
K12 289 1593 116.0 7.37337 4.75359
K13 161 691 157.0 6.53814 5.05625
K14 165 1348 246.9 7.20638 5.50898
KI5 60 1044 69.9 6.95081 4.24707

Kemmerer Linear Equation
Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 1 562314.67747 562314.67747 17.925 0.0010
Error 13 407814.89987 31370.37691
C Total 14 970129.57733

Root MSE 177.11685 R-square 0.5796
Dep Mean 221.11333 Adi R-sq 0.5473
C.V. 80.10229

Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > ,T:

INTERCEPT 1 -118.447116 92.32432111 -1.283 0.2219

FP 1 0.339855 0.08027195 4.234 0.0010
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Kemmerer Exponential Equation
Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 1 7.90139 7.90139 27.877 0.0001
Error 13 3.68471 0.28344
C Total 14 11.58610

Root MSE 0.53239 R-square 0.6820
Dep Mean 4.98423 Adj R-sq 0.6575
C.V. 10.68150

Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > ,T'

IN'rCEPT 1 3.711372 0.27751495 13.374 0.0001
FP 1 0.001274 0.00024129 5.280 0.0001

Kemrerer Logarithnic(X) Equation
Analysis of Variance

Sun of Mean
Source DF Squares Square F Value Prob>F
Model 1 304721.48573 304721.48573 5.953 0.0298
Error 13 665408.09160 51185.23782
C Total 14 970129.57733

Root MSE 226.24155 R-square 0.3141
Dep Mean 221.11333 Adi R-sq 0.2613
C.V. 102.31927

Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > T:

INTERCEPT 1 -984.872387 497.70851167 -1.979 0.0694
LOGFP 1 180.720674 74.06766630 2.440 0.0298

Kemnerer Log(X)-log(Y) Equation
Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 1 7.62533 7.62533 25.028 0.0002
Error 13 3.96077 0.30467
C Total 14 11.58610

Root MSE 0.55197 R-square 0.6581
Dep Mean 4.98423 Adi R-sq 0.6318
C.V. 11.07440

Farameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > :T!

INTERCEPT 1 -1.048587 1.21428593 -0.864 0.4035
LOGFP 1 0.904036 0.18070682 5.003 0.0002
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Residual Plot for Kemmerer Data
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Residual Plot for Kemnerer Data

Exponential Equation
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Residual Plot f or Kemnerer Data

Logar.06hmic(X Equation
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Residual Plot for Kemrerer Data
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Cumbined Input Data

ACTUAL LOG LOG
PROJECT KSLOC FP EFFORT FP EFFORT

K2. 254 1217 287.0 7.10414 5.65948
K2 214 788 86.9 6.66950 4.46476
K3 254 1611 258.7 7.38461 5.55567
K4 41 507 82.5 6.22851 4.41280
K5 450 2307 1107.3 7.74370 7.00968
K6 450 1338 336.3 7.19893 5.81800
K7 50 421 84.0 6.04263 4.43082
K8 43 100 23.2 4.60517 3.14415
K9 200 993 130.3 6.90073 4.86984
K10 39 240 72.0 5.48064 4.27667
KII 129 789 258.7 6.67077 5.55567
K12 289 1593 116.0 7.37337 4.75359
K13 161 691 157.0 6.53814 5.05625
K14 165 1348 246.9 7.20638 5.50898
K15 60 1044 69.9 6.95081 4.24707
Al 130 1750 673.7 7.46737 6.51278
A2 318 1902 692.1 7.55066 6.53973
A3 20 428 73.0 6.05912 4.29046
A4 54 759 138.8 6.63200 4.93303
A5 62 431 189.5 6.06611 5.24439
A6 28 283 65.8 5.64545 4.18662
A7 35 205 52.6 5.32301 3.96272
A8 30 289 32.2 5.66643 3.47197
A9 48 680 84.9 6.52209 4.44147
A10 93 794 125.0 6.67708 4.82831
All 57 512 71.1 6.23832 4.26409
A12 22 224 19.1 5.41165 2.94969
A13 24 417 49.3 6.03309 3.89792
Al4 42 682 78.9 6.52503 4.36818
AI5 40 209 27.0 5.34233 3.29584
Al6 96 512 103.9 6.23832 4.64343
Al7 40 606 120.4 6.40688 4.79082
Al8 52 400 58.6 5.99146 4.07073
Al9 94 1235 250.7 7.11883 5.52426
A20 110 1572 402.6 7.36010 5.99794
A21 15 500 23.6 6.21461 3.16125
A22 24 694 77.6 6.54247 4.35157
A23 3 199 3.3 5.29330 1.19392
A24 29 260 40.1 5.56068 3.69138
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Combined Linear Equation
Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 1 1301983.986 1301983.986 91.385 0.0001
Error 37 527145.98370 14247.18875
C Tot 1 38 1829129.9697

Root MSE 119.36159 R-square 0.7118
Dep Mean 173.60256 Adj R-sq 0.7040
C.V. 68.75566

Parameter Standard T for HO:
Variable DF Estimate Error Parmeter=0 Prob > ,T'

INTERCEPT 1 -89.955728 33.54732979 -2.681 0.0109
FP 1 0.336678 0.03521894 9.560 0.0001

Combined Exponential Equation
Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 1 31.78856 31.78856 79.733 0.0001
Error 37 14.75146 0.39869
C Total 38 46.54002

Root MSE 0.63142 R-square 0.6830
Dep Mean 4.59938 Adi R-sq 0.6745
C.V. 13.72831

Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > ;T:

INTERCr 1 3.297088 0.17746390 18.579 0.0001
FP 1 0.001664 0.00018631 8.929 0.0001

Combined Logarithriic(X) Equation
Analysis of Variance

Sun of Mean
Source DF Squares Square F Value Prob>F
Model 1 874264.50942 874264.50942 33.877 0.0001
Error 37 954865.46032 25807.17460
C Total 38 1829129.9697

Root MSE 160.64612 R-square 0.4780
Dep Mean 173.60256 Ad) R-sq 0.4639
C.V. 92.53672

Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > :T:

INTER EPT 1 -1120.848893 223.88263647 -5.006 0.0001
LOGFP 1 201.)46984 34.69654076 5.820 0.0001
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Combined Log(X)-log(Y) Equation
Analysis of Variance

Sun of Mean
Source DF Squares Square F Value Prob>F
Model 1 32.49793 32.49793 85.630 0.0001
Error 37 14.04208 0.37952
C Total 38 46.54002

Root MSE 0.61605 R-square 0.6983
Dep Mean 4.59938 Adj R-sq 0.6901
C.V. 13.39416

Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > ',T,

INTERCEPT 1 -3.292711 0.85854904 -3.35 0.0005
LfGFP 1 1.231243 0.13305490 9.254 0.0001
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Residual Plot for Combined Data

Linear Equation
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Residual Plot for Combined Data

Exponential Equation
-------.. -- ---- ---------- - --- - - - --- --------
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Residual Plot for Ccarbined Data

Logarithmic(X) Equation
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Residual Plot for Combined Data

Log(X)-iog(Y) Equation
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Appendix C: Outlier Analysis

Residual Values

Log Standard Standard
Actual Predict Error Error Student

Obs Effort Value Predict Residual Residual Residual

1 5.6595 5.4542 0.135 0.2053 0.601 0.342
2 4.4648 4.9191 0.105 -0.4543 0.607 -0.748
3 5.5557 5.7995 0.163 -0.2439 0.594 -0.410
4 4.4128 4.3761 0.102 0.0367 0.608 0.060
5 7.0097 6.2417 0.203 0.7680 0.582 1.320
6 5.8180 5.5709 0.144 0.2471 0.599 0.413
7 4.4308 4.1472 0.110 0.2836 0.606 0.468
a 3.1442 2.3774 0.260 0.7668 0.559 1.372
9 4.8698 5.2038 0.118 -0.3339 0.605 -0.552

13 4.2767 3.4553 0.158 0.8214 0.595 1.380
11 5.5557 4.9206 0.105 0.6350 0.607 1.046
12 4.7536 5.7857 0.162 -1.0321 0.594 -1.736
13 5.0562 4.7573 0.100 0.2989 0.608 0.492
14 5.5090 5.5801 0.145 -0.0711 0.599 -0.119
15 4.2471 5.2654 0.122 -1.0184 0.604 -1.687
:6 6.5128 5.9014 0.172 0.6113 0.592 1.033
-.7 6.5397 6.0040 0.181 0.5357 0.589 0.910
ia 4.2905 4.1675 0.109 0.1229 0.606 0.203
19 4.9330 4.8729 0.103 0.0601 0.607 0.099
10 5.2444 4.1761 0.109 1.0682 0.606 1.762
21 4.1866 3.6582 0.142 0.5284 0.600 0.881
22 3.9627 3.2612 0.175 0.7015 0.591 1.188
23 3.4720 3.6840 0.140 -0.2121 0.600 -0.353
24 4.4415 4.7376 0.100 -0.2961 0.608 -0.487
25 4.8283 4.9284 0.105 -0.1001 0.607 -0.165
26 4.2641 4.3882 0.101 -0.1241 0.608 -0.204
27 2.9497 3.3703 0.165 -0.4207 0.593 -0.709
28 3.8979 4.1355 0.111 -0.2376 0.606 -0.392
29 4.3682 4.7412 0.100 -0.3730 0.608 -0.614
30 3.2958 3.2850 0.173 0.0108 0.591 0.018
31 4.6434 4.3882 0.101 0.2552 0.608 0.420
32 4.7908 4.5957 0.099 0.1951 0.608 0.321
33 4.0707 4.08A2 0.113 -0.0135 0.606 -0.022
34 5.5243 5.4723 0.136 0.0520 0.601 0.086
35 5.9979 5.7694 0.160 0.2286 0.595 0.384
36 3.1612 4.3590 0.102 -1.1977 0.608 -1.971
37 4.3516 4.7627 0.100 -0.4111 0.608 -0.676
38 1.1939 3.2246 0.178 -2.0307 0.590 -3.444
39 3.6914 3.5538 0.150 0.1375 0.598 0.230
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Cook's dj Measure of Influence

Cook's

Obs -2-1-0 1 2

1 '0.003
2 0.0083 0.006
4 '0.000

5 * 0.106
6 0.0057 0.004
8 * 0.2039 *0.006

10 ** 0.067
ii **0.016
12 *** 0.112
13 0.003
14 0.000
15 *0.058
16 0** 0.045
17 * 0.039
18 0.001
19 0.000
20 0.050
21 :* 0.022
22 0.** 0.062
23 0.003
24 0.003
25 0.000
26 0.001
27 0.020
28 0.003
29 0.005
30 0.000
31 0.002
32 0.001
33 0.000
34 0.000
35 0.005
36 0.055
37 * 0.006
38 0****** : 0.542
39 ' 0.002

Sun of Residuals 0
Sun of Squared Residuals 14.0421
Predicted Resid SS (Press) 16.1704
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Appendix D: LSBF Analysis for Model Camarisn

Model Comparison Input Data

L L
L L 0 0

P 0 0 G G
R E C G G C E
O K F S C 0 S C 0 F
J S F P H S P H S F
E L 0 A E T A E T 0
C O F R N C A N C A R
T C P T S K R S K R T

K1 254 1217 287.0 338.7 351.7 450.2 5.82511 5.86278 6.10969 5.65948
K2 214 788 86.9 219.1 182.9 283.6 5.38953 5.20894 5.64756 4.46476
K3 254 1611 258.7 448.7 481.9 602.1 6.10635 6.17774 6.40142 5.55567
K4 41 507 82.5 141.2 95.5 178.9 4.95018 4.55913 5.18683 4.41280
K5 450 2307 1107.3 642.5 739.1 877.6 6.46537 6.60543 6.77719 7.00968
K6 450 1338 336.3 372.4 388.8 495.3 5.91997 5.96307 6.20516 5.81800
K7 50 421 84.0 117.3 75.9 147.6 4.76473 4.32942 4.99451 4.43082
K8 43 100 23.2 27.8 11.9 32.5 3.32504 2.47654 3.48124 3.14415
K9 200 993 130.3 276.3 239.8 361.8 5.62149 5.47981 5.89109 4.86984
K10 39 240 72.0 66.8 36.9 81.9 4.20170 3.60821 4.40550 4.27667
KlI 129 789 258.7 219.8 183.1 285.0 5.39272 5.21003 5.65249 5.55567
K12 289 1593 116.0 267.2 475.9 521.3 5.58800 6.16521 6.25633 4.75359
K13 161 691 157.0 192.5 158.1 247.5 5.26010 5.06323 5.51141 5.05625
K14 165 1348 246.9 375.3 391.5 518.9 5.92773 5.96999 6.25171 5.50898
Al 130 1750 673.7 486.5 513.1 656.6 6.18724 6.24047 6.48708 6.51278
A2 318 1902 692.1 528.7 568.1 716.7 6.27042 6.34230 6.57466 6.53973
A3 20 428 73.0 118.9 77.2 149.7 4.77828 4.34640 5.00863 4.29046
A4 54 759 138.8 135.3 156.4 241.7 4.90749 5.05242 5.48770 4.93303
A5 62 431 189.5 119.8 77.8 150.8 4.78582 4.35414 5.01595 5.24439
A6 28 283 65.8 78.6 49.2 98.2 4.36437 3.89589 4.58701 4.18662
A7 35 205 52.6 57.0 30.7 69.0 4.04305 3.42426 4.23411 3.96272
A8 30 289 32.2 80.4 50.3 99.2 4.38701 3.91801 4.59714 3.47197
A9 48 680 84.9 189.0 155.3 243.5 5.24175 5.04536 5.49512 4.44147
Al0 93 794 125.0 220.7 184.3 286.2 5.39680 5.21656 5.65669 4.82831
All 57 512 71.1 142.3 111.4 180.5 4.95794 4.71313 5.19573 4.26409
A12 22 224 19.1 62.3 33.5 75.9 4.13196 3.51155 4.32942 2.94969
Al3 24 417 49.3 115.9 74.1 145.8 4.75273 4.30542 4.98224 3.89792
Al4 42 682 78.9 121.5 137.5 215.9 4.79991 4.92362 5.37482 4.36818
Al5 40 209 27.0 57.8 31.2 70.5 4.05699 3.44042 4.25561 3.29584
Al6 96 512 103.9 142.3 111.4 180.8 4.95794 4.71313 5.19739 4.64343
Al7 40 606 120.4 108.1 120.3 190.9 4.68306 4.78999 5.25175 4.79082
Al8 52 400 58.6 111.2 68.1 139.6 4.71133 4.22098 4.93878 4.07073
Al9 94 1235 250.7 343.3 358.0 455.4 5.83860 5.88053 6.12118 5.52426
A20 110 1572 402.6 280.2 419.7 519.2 5.63550 6.03954 6.25229 5.99794
A22 24 694 77.6 98.9 108.0 104.9 4.59411 4.68213 4.65301 4.35157
A24 29 260 40.1 72.2 45.2 88.5 4.27944 3.81110 4.48300 3.69138
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L. Analysis of Model Conparison Data

SPANS Log(X)-log(Y) Equation
Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 1 25.93248 25.93248 145.302 0.0001
Error 34 6.06809 0.17847
C Total 35 32.00057

Root MSE 0.42246 R-square 0.8104
Dep Mean 4.74371 Adi R-sq 0.8048
C.V. 8.90570

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > T

INTRCEPT 1 -1.186182 0.49695272 -2.387 0.0227
LOGSPANS 1 1.169734 0.09704023 12.054 0.0001

Checkpoint Log(X)-log(Y) Equation
Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 1 25.33381 25.33381 129.201 0.0001
Error 34 6.66676 0.19608
C Total 35 32.00057

Root MSE 0.44281 R-square 0.7917
Dep Mean 4.74371 Adi R-sq 0.7855
C.V. 9.33468

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Paraneter=0 Prob > ,T!

IN'TRCE" 1 0.600180 0.37193001 1.614 0.1158
LO=GCCK 1 0.849729 0.07475631 11.367 0.0001
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Costar Log(X)-log(Y) Equation
Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 1 25.71016 25.71016 138.965 0.0001
Error 34 6.29041 0.18501
C Total 35 32.00057

Root MSE 0.43013 R-square 0.8034
Dep Mean 4.74371 Adj R-sq 0.7976
C.V. 9.06737

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter:O Prob > :T:

INTRC 1 -1.061685 0.49766021 -2.133 0.0402
LOGCOSTAR 1 1.083145 0.09188277 11.788 0.0001
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Appe dix E: Wilcoxin T Data

SPANS Wilcoxin Data

Rank
Diff - +

1 287.0 338.7 51.7 19
2 86.9 219.1 132.2 30
3 258.7 448.7 190.0 35
4 82.5 141.2 58.7 21
5 1107.3 642.5 -464.8 36
6 336.3 372.4 36.1 12
7 84.0 117.3 33.3 10
8 23.2 27.8 4.6 3
9 130.3 276.3 146.0 31

10 72.0 66.8 -5.2 4
11 258.7 219.8 -38.9 14
12 116.0 267.2 151.2 32
13 157.0 192.5 35.5 11
14 246.9 375.3 128.4 29
15 673.7 486.5 -187.2 34
16 692.1 528.7 -163.4 33
17 73.0 118.9 45.9 17
18 138.8 135.3 -3.5 1
19 189.5 119.8 -69.7 23
20 65.8 78.6 12.8 6
21 52.6 57.0 4.4 2
22 32.2 80.4 48.2 18
23 84.9 189.0 104.1 27
24 125.0 220.7 95.7 26
25 71.1 142.3 71.2 24
26 19.1 62.3 43.2 16
27 49.3 115.9 66.6 22
28 78.9 121.5 42.6 15
29 27.0 57.8 30.8 8
30 103.9 142.3 38.4 13
31 120.4 108.1 -12.3 5
32 58.6 111.2 52.6 20
33 250.7 343.3 92.6 25
34 402.6 280.2 -122.4 28
35 77.6 98.9 21.3 7
36 40.1 72.2 32.1 9

T Score 178 488
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Checkpoint Wilcoxin Data

Rank
Diff - +

1 287.0 351.7 64.7 24
2 86.9 182.9 96.0 27
3 258.7 481.9 223.2 34
4 82.5 95.5 13.0 10
5 1107.3 739.1 -368.2 36
6 336.3 388.8 52.5 21
7 84.0 75.9 -8.1 7
8 23.2 11.9 -11.3 9
9 130.3 239.8 109.5 29

10 72.0 36.9 -35.1 19
11 258.7 183.1 -75.6 26
12 116.0 475.9 359.9 35
13 157.0 158.1 1.1 2
14 246.9 391.5 144.6 32
15 673.7 513.1 -160.6 33
16 692.1 568.1 -124.0 31
17 73.0 77.2 4.2 3.5
18 138.8 156.4 17.6 14
19 189.5 77.8 -111.7 30
20 65.8 49.2 -16.6 12
21 52.6 30.7 -21.9 16
22 32.2 50.3 18.1 15
23 84.9 155.3 70.4 25
24 125.0 184.3 59.3 23
25 71.1 111.4 40.3 20
26 19.1 33.5 14.4 11
27 49.3 74.1 24.8 17
28 78.9 137.5 58.6 22
29 27.0 31.2 4.2 3.5
30 103.9 111.4 7.5 6
31 120.4 120.3 -0.1 1
32 58.6 68.1 9.5 8
33 250.7 358.0 107.3 28
34 402.6 419.7 17.1 13
35 77.6 108.0 30.4 18
36 40.1 45.2 5.1 5

T Score 220 446
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Costar Wilcoxin Data

Rank
Diff - +

1 287.0 450.2 163.2 29
2 86.9 283.6 196.7 30
3 258.7 602.7 344.0 35
4 82.5 178.9 96.4 20
5 1107.3 877.6 -229.7 32
6 336.3 495.3 159.0 27
7 84.0 147.6 63.6 13
8 23.2 32.5 9.3 1
9 130.3 361.8 231.5 33

10 72.0 81.9 9.9 2
11 258.7 285.0 26.3 6
12 116.0 521.3 405.3 36
13 157.0 247.5 90.5 19
14 246.9 518.9 272.0 34
15 673.7 656.6 -17.1 4
16 692.1 716.7 24.6 5
17 73.0 149.7 76.7 16
18 138.8 241.7 102.9 22
19 189.5 150.8 -38.7 9
20 65.8 98.2 32.4 8
21 52.6 69.0 16.4 3
22 32.2 99.2 67.0 14
23 84.9 243.5 158.6 26
24 125.0 286.2 161.2 28
25 71.1 180.5 109.4 23
26 19.1 75.9 56.8 12
27 49.3 145.8 96.5 21
28 78.9 215.9 137.0 25
29 27.0 70.5 43.5 10
30 103.9 180.8 76.9 17
31 120.4 190.9 70.5 15
32 58.6 139.6 81.0 18
33 250.7 455.4 204.7 31
34 402.6 519.2 116.6 24
35 77.6 104.9 27.3 7
36 40.1 88.5 48.4 11

T Score 45 621
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Appendix F: Percent Error Data

SPANS Percent Error Data

ACTUAL PERCENT WITHIN
EFORT SPANS ERROR MRE t30% ±20%

1 287.0 338.7 0.18 0.18 X X
2 86.9 219.1 1.52 1.52
3 258.7 448.7 0.73 0.73
4 82.5 141.2 0.71 0.71
5 1107.3 642.5 -0.42 0.42
6 336.3 372.4 0.11 0.11 X X
7 84.0 117.3 0.40 0.40
8 23.2 27.8 0.20 0.20 X X
9 130.3 276.3 1.12 1.12

10 72.0 66.8 -0.07 0.07 X X
11 258.7 219.8 -0.15 0.15 X X
12 116.0 267.2 1.30 1.30
13 157.0 192.5 0.23 0.23 X
14 246.9 375.3 0.52 0.52
15 673.7 486.5 -0.28 0.28 X
16 692.1 528.7 -0.24 0.24 X
17 73.0 118.9 0.63 0.63
13 138.8 135.3 -0.03 0.03 X X
i9 189.5 119.8 -0.37 0.37
20 65.8 78.6 0.19 0.19 X X
21 52.6 57.0 0.08 0.08 X X
22 32.2 80.4 1.49 1.49
23 84.9 189.0 1.23 1.23
24 125.0 220.7 0.77 0.77
25 71.1 142.3 1.00 1.00
26 19.1 62.3 2.27 2.27
27 49.3 115.9 1.35 1.35
28 78.9 121.5 0.54 0.54
29 27.0 57.8 1.14 1.14
30 103.9 142.3 0.37 0.37
31 120.4 108.1 -0.10 0.10 X X
32 58.6 111.2 0.90 0.90
33 250.7 343.3 0.37 0.37
34 402.6 280.2 -0.30 0.30 X
35 77.6 98.9 0.27 0.27 X
36 40.1 72.2 0.80 0.80

Mean 0.51 0.62
Standard Deviation 0.63 0.53

Within t30% 14 of 36 (.39)
Within ±20% 9 of 36 (.25)
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Checkpoint Percent Error Data

ACTUAL PERCENT WITHIN
EFFORT CHECKPOINT ERROR MRE ±30% ±20%

1 287.0 351.7 0.23 0.23 X
2 86.9 182.9 1.10 1.10
3 258.7 481.9 0.86 0.86
4 82.5 95.5 0.16 0.16 X X
5 1107.3 739.1 -0.33 0.33
6 336.3 388.8 0.16 0.16 X X
7 84.0 75.9 -0.10 0.10 X X
8 23.2 11.9 -0.49 0.49
9 130.3 239.8 0.84 0.84

10 72.0 36.9 -0.49 0.49
11 258.7 183.1 -0.29 0.29 X
12 116.0 475.9 3.10 3.10
13 157.0 158.1 0.01 0.01 X X
14 246.9 391.5 0.59 0.59
15 673.7 513.1 -0.24 0.24 X
16 692.1 568.1 -0.18 0.18 X X
17 73.0 77.2 0.06 0.06 X X
18 138.8 156.4 0.13 0.13 X X
19 189.5 77.8 -0.59 0.59
20 65.8 49.2 -0.25 0.25 X
21 52.6 30.7 -0.42 0.42
22 32.2 50.3 0.56 0.56
23 84.9 155.3 0.83 0.83
24 125.0 184.3 0.47 0.47
25 71.1 111.4 0.57 0.57
26 19.1 33.5 0.76 0.76
27 49.3 74.1 0.50 0.50
28 78.9 137.5 0.74 0.74
29 27.0 31.2 0.16 0.16 X X
30 103.9 111.4 0.07 0.07 X X
31 120.4 120.3 -0.00 0.00 X X
32 58.6 68.1 0.16 0.16 X X
33 250.7 358.0 0.43 0.43
3.1 402.6 419.7 0.04 0.04 X X
35 77.6 108.0 0.39 0.39
36 40.1 45.2 0.13 0.13 X X

Mean 0.27 0.46
Standard Deviation 0.65 0.53

Within ±30% 17 of 36 (.47)
Within ±20% 13 of 36 (.36)
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Costar Percent Error Data

ACTUAL PERCENT WITHIN
EFFORT COSTAR ERROR MRE ±30% ±20%

1 287.0 450.2 0.57 0.57
2 86.9 283.6 2.26 2.26
3 258.7 602.7 1.33 1.33
4 82.5 178.9 1.17 1.17
5 1107.3 877.6 -0.21 0.21 X
6 336.3 495.3 0.47 0.47
7 84.0 147.6 0.76 0.76
8 23.2 32.5 0.40 0.40
9 130.3 361.8 1.78 1.78

10 72.0 81.9 0.14 0.14 X X
11 258.7 285.0 0.10 0.10 X X
12 116.0 521.3 3.49 3.49
13 157.0 247.5 0.58 0.58
14 246.9 518.9 1.10 1.10
15 673.7 656.6 -0.03 0.03 X X
16 692.1 716.7 0.04 0.04 X X
17 73.0 149.7 1.05 1.05
18 138.8 241.7 0.74 0.74
19 189.5 150.8 -0.20 0.20 X X
20 65.8 98.2 0.49 0.49
21 52.6 69.0 0.31 0.31
22 32.2 99.2 2.08 2.08
23 84.9 243.5 1.87 1.87
24 125.0 286.2 1.29 1.29
25 ° 1i.1 180.5 1.54 1.54
26 19.1 75.9 2.98 2.98
27 49.3 145.8 1.95 1.95
28 78.9 215.9 1.73 1.73
29 27.0 70.5 1.61 1.61
30 103.9 180.8 0.74 0.74
31 120.4 190.9 0.59 0.59
32 58.6 139.6 1.38 1.38
33 250.7 455.4 0.82 0.82
34 402.6 519.2 0.29 0.29 X
35 77.6 104.9 0.35 0.35
36 40.1 88.5 1.21 1.21

Mean 1.02 1.05
Standard Deviation 0.87 0.84

Within ±30% 7 of 36 (.19)
Within ±20% 5 of 36 (.14)
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Adjusted SPANS Percent Error Data
(Prediction/l.51)

ACTUAL ADJUSTED PERCET WITHIN
EFFRTr SPANS ERROR MRE ±30% ±20%

1 287.0 224.3 -0.22 0.22 X
2 86.9 145.1 0.67 0.67
3 258.7 297.2 0.15 0.15 X X
4 82.5 93.5 0.13 0.13 X X
5 1107.3 425.5 -0.62 0.62
6 336.3 246.6 -0.27 0.27 X
7 84.0 77.7 -0.08 0.08 X X
8 23.2 18.4 -0.21 0.21 X
9 130.3 183.0 0.40 0.40

10 72.0 44.2 -0.39 0.39
1.1 258.7 145.6 -0.44 0.44
12 116.0 177.0 0.53 0.53
13 157.0 127.5 -0.19 0.19 X X
14 246.9 248.5 0.01 0.01 X X
15 673.7 322.2 -0.52 0.52
16 692.1 350.1 -0.49 0.49
17 73.0 78.7 0.08 0.08 X X
18 138.8 89.6 -0.35 0.35
19 189.5 79.3 -0.58 0.58
20 65.8 52.1 -0.21 0.21 X
21 52.6 37.7 -0.28 0.28 X
22 32.2 53.2 0.65 0.65
23 84.9 125.2 0.47 0.47
24 125.0 146.2 0.17 0.17 X X
25 71.1 94.2 0.33 0.33
26 19.1 41.3 1.16 1.16
27 49.3 76.8 0.56 0.56
28 78.9 80.5 0.02 0.02 X X
29 27.0 38.3 0.42 0.42
30 103.9 94.2 -0.09 0.09 X X
31 120.4 71.6 -0.41 0.41
32 58.6 73.6 0.26 0.26 X
33 250.7 227.4 -0.09 0.09 X X
34 402.6 185.6 -0.54 0.54
35 77.6 65.5 -0.16 0.16 X X
36 40.1 47.8 0.19 0.19 X X

Mean 0.00 0.34
Standard Deviation 0.42 0.24

Within ±30% 18 of 36 (.50)
Within ±20% 12 of 36 (.33)
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Adjusted Checkpoint Percent Error Data
(Prediction/1.27)

ACTUAL ADJUSTED PERCET WITHIN
ElMrT SPANS ERROR MRE ±30% t20%

1 287.0 276.9 -0.04 0.04 X X
2 86.9 144.0 0.66 0.66
3 258.7 379.4 0.47 0.47
4 82.5 75.2 -0.09 0.09 X X
5 1107.3 582.0 -0.47 0.47
6 336.3 306.1 -0.09 0.09 X X
7 84.0 59.8 -0.29 0.29 X
8 23.2 9.4 -0.60 0.60
9 130.3 188.8 0.45 0.45

10 72.0 29.1 -0.60 0.60
11 258.7 144.2 -0.44 0.44
12 116.0 210.4 -0.81 0.81
13 157.0 124.5 -0.21 0.21 X
14 246.9 308.3 0.25 0.25 X
15 673.7 404.0 -0.40 0.40
16 692.1 447.3 -0.35 0.35
17 73.0 60.8 -0.17 0.17 X X
18 138.8 123.1 -0.11 0.11 X X
19 189.5 61.3 -0.68 0.68
20 65.8 38.7 -0.41 0.41
21 52.6 24.2 -0.54 0.54
22 32.2 39.6 0.23 0.23 X
23 84.9 122.3 0.44 0.44
24 125.0 145.1 0.16 0.16 X X
25 71.1 87.7 0.23 0.23 X
26 19.1 26.4 0.38 0.38
27 49.3 58.3 0.18 0.18 X X
28 78.9 108.3 0.37 0.37
29 27.0 24.6 -0.09 0.09 X X
30 103.9 87.7 -0.16 0.16 X X
31 120.4 94.7 -0.21 0.21 X
32 58.6 53.6 -0.08 0.08 X X
33 250.7 281.9 0.12 0.12 X X
34 402.6 330.5 -0.18 0.18 X X
35 77.6 85.0 0.10 0.10 X X
36 40.1 35.6 -0.11 0.11 X X

Mean -0.09 0.32
Standard Deviation 0.38 0.22

Within ±30% 20 of 36 (.56)
Within ±20% 14 of 36 (.39)
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Adjusted Costar Percent Error Data
(Prediction/2.02)

ACTUAL ADJUSTED ERCENT WITHIN
EFORT SPANS ERROR MRE ±30% ±20%

1 287.0 222.9 -0.22 0.22 X
2 86.9 140.4 0.62 0.62
3 258.7 298.4 0.15 0.15 X X
4 82.5 88.6 0.07 0.07 X X
5 1107.3 434.5 -0.61 0.61
6 336.3 245.2 -0.27 0.27 X
7 84.0 73.1 -0.13 0.13 X X
8 23.2 16.1 -0.31 0.31
9 130.3 179.1 0.37 0.37

10 72.0 40.5 -0.44 0.44
11 258.7 141.1 -0.45 0.45
12 116.0 258.1 1.22 1.22
13 157.0 122.5 -0.22 0.22 X
14 246.9 256.9 0.04 0.04 X X
15 673.7 325.0 -0.52 0.52
16 692.1 354.8 -0.49 0.49
17 73.0 74.1 0.01 0.01 X X
18 138.8 119.7 -0.14 0.14 X X
19 189.5 74.7 -0.61 0.61
20 65.8 48.6 -0.26 0.26 X
21 52.6 34.2 -0.35 0.35
22 32.2 49.1 0.52 0.52
23 84.9 120.5 0.42 0.42
24 125.0 141.7 0.13 0.13 X X
25 71.1 89.4 0.26 0.26 X
26 19.1 37.6 0.97 0.97
27 49.3 72.2 0.46 0.46
28 78.9 106.9 0.35 0.35
29 27.0 34.9 0.29 0.29 X
30 103.9 89.5 -0.14 0.14 X X
31 120.4 94.5 -0.22 0.22 X
32 58.6 69.1 0.18 0.18 X X
33 250.7 225.4 -0.10 0.10 X X
34 402.6 257.0 -0.36 0.36
35 77.6 51.9 -0.33 0.33
36 40.1 43.8 0.09 0.09 X. X

Mean 0.00 0.34
Standard Deviation 0.43 0.25

Within ±30% 18 of 36 (.50)
Within ±20% 11 of 36 (.31)
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