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Preface

This study of safe payload and orbiter separation for a reel-in tether is an

extension of work performed in 1987 by Dr William E. Wiesel. The techniques

used parallel those of Dr Wiesel, and the dynamics model development, integral

evaluation, optimization, and numerical techniques are presented in detail.

This document was prepared with WordPerfect software, while Harvard

Graphics and MATLAB were used for the figures. A modified version of Dr

Wiesel's FORTRAN algorithm was used for numerical analysis. In addition to

saving countless hours at the computer, the code served as an optimization text

and saved many hours of advising time. Above all, the numerical techniques

within the code provided a more concise optimization method than I would have

mechanized on my own. I applaud Dr Wiesel for his recommendation to use

his code and thank him wholeheartedly for providing it.

In addition to the code, Dr Wiesel's advice, instruction, and support are

greatly appreciated. His expert presentations were inspiring throughout the

course of study and the completion of this document. I also thank Captains

Tim Middendorf and Ralph Fero for their WordPerfect and MATLAB advice.

Jay H. Rothhaupt
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Abstract

This study investigates the use of a massless reel-in tether for propulsion of

a payload following deployment from an orbiter. The distance between the

payload and orbiter at closest passage is addressed. A literature review

revealed several tether concepts, extensive tether research, and numerous

mathematical models. However, previous work in the area of reel-in tethers is

limited to propulsion feasibility. The reel-in tether is operated following optimum

ejection of the payload from the orbiter using a free arc and subsequent full arc.

The free arc of zero tether tension provides initial separation. Switching to a

full arc of continuously-maximum tension at the optimum time accelerates and

propels the payload until the mission is complete. Tether and winch capabilities

are assumed to be satisfactory during the arcs. Families of trajectories are

examined for a range of mission times and minimum final payload energy.

Families for two ejection speeds provide comparison of propulsion capability,

tether length, and minimum separation radius. Safe separation is achievable

through variation of the mission duration and/or the ejection speed.
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PROPULSIVE CAPABILITY OF A REEL-IN TETHER WITH SAFE

SEPARATION BETWEEN PAYLOAD AND ORBITER

I Introduction

Chemical rockets are the primary method for effecting payload transfers

between various earth orbits. However, the mass of the propellant for these

rockets contributes to high launch costs and complexity. The space program

needs alternative payload transfer options to reduce mass and launch costs.

Tethers provide a conceptually lightweight alternative to chemical rockets for

payload transfer. Normally, a tether is a device connecting a payload to an

orbiting platform and transferring orbital energy to the payload. Optimally, a

tether would be reusable, durable, and less massive than a chemical rocket.

1 Background

There are various ways of transferring orbital energy using a tether. One

unique concept involves use of electrical current through the tether to interact

with the earth's magnetic field and generate propulsive force (3:34). Most

concepts, however, involve controlling the swinging motion of a payload at the

end of a tether (4:41). Payload release from the tether completes the energy

transfer.
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Payload swinging motion induces tension within the tether. Mathematical

models predict this varying, controllable, and generally desirable tension. Since

the tether must be originally constructed to withstand a maximum tension, the

maximum tension capability can be used to enhance the transfer.

Reel-in of the tether with an electric motor enhances the transfer since

greater payload orbital energy changes are obtainable relative to a swing

release. Reel-in at the maximum tension capability of the tether optimizes the

obtainable energy change. However, the reel-in accelerates the payload to

higher speed, which subsequently causes greater payload travel for a specific

time period. Large time periods can require the tether to be lengthy and

massive, which reduce the tether's mass advantage over a chemical rocket

(14).

2 Problem Statement

Although use of a short tether reduces mass, it brings the payload within close

proximity of the orbiter during reel-in. This increases the undesirable Wikelihood

of payload and/or tether impact with the orbiter.

3 Research Objective and Questions

In order for the reel-in tether to be useful, the impact possibility must be

eliminated while retaining sufficient payload energy transfer. Answers to the

following questions must be determined:
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1) What is the energy transfer capability of a reel-in tether when a specified

separation distance and zero tether reel-in speed exist at release?

2) Is the resultant energy transfer capability sufficient for propulsion?

4 Assumptions

The following assumptions will be employed:

1) The tether is a massless, inextensible device that provides only tension.

This assumption eliminates the complexity of tether dynamics. Although

extensively reducing the complete tether model, this assumption satisfactorily

allows dynamics modelling.

2) The system is orbiting the earth in a circular orbit. This is operationally

typical for the transfer of energy to a payload and simplifies the dynamics.

3) The payload and orbiter motions are limited to the plane of the original

orbit.

4) The tension motor is capable of maintaining full tension at all tether

speeds and provides no load during periods requiring zero tension.

5) The resultant payload orbit shape is of minimal concern.

Solution of the reel-in tether dynamics begins with the development of

equations of motion for the system. However, several other tether concepts

pre-date the reel-in method.
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II Literature Review

1 Dynamic Tether Applications

In 1895, Tsiolkovsky suggested using a tether-like device to connect two

orbiting masses and subsequently use the gravity-gradient forces for

stabilization. Through 1972, however, tether study was minimal and the only

use of tethers was during the Gemini program for limited experiments. The

Space Shuttle program provided the advent of modern tether study (3:33).

Grossi, in describing the historical background of the Tethered Satellite

System (TSS), states that a Space Shuttle-borne tether was first proposed in

October 1972. Originally it was considered a novelty, primarily for use as a

space-borne radar at an ultra-luw frequency (ULF), that would detect

submerged submarines. Increased interest paved the way to an organized

project called SKYHOOK at the Smithsonian Astrophysical Observatory (SAO)

in Cambridge, MA. SKYHOOK was the predecessor to numerous

electrodynamic studies that evolved into the TSS project. The TSS operation

was originally planned as a local vertical deployment of a metal, 20 km device

(10:2).

As the TSS evolved, it was applied to an atmospheric probe mission. The

TSS would lower a satellite from the Space Shuttle to an altitude of 115 km for

atmospheric measurement. Overall, this is called the TSS/Wing System or the

Tethered Satellite/Wing System (TS/WS) since the satellite contains an
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aerodynamic surface for control (13:1). This laurich was scheduled for 1991

(4:41) and subsequently delayed to 1992 (11:27).

R. L. Forward describes the planetary use of tethers. One concept uses a

long, tether-like device called a catapult. The catapult would extend from a

planet surface into space, allowing a payload to be accelerated along the

catapult length to achieve the desired velocity. Limitations are primarily based

on the cable material, which restricts length and acceleration capability.

Forward also describes a rotovator, consisting of a tether with an adjustable

rotation and extending from a planet or moon surface. A planet rotovator could

be used "to lift paylo3ds from a planet or to deposit payloads onto a planet".

Sometimes referred to as a skyhook, the rotovator would allow smooth

touchdowns and take-offs of the payload from it's tip. This is accomplished with

!rie acust_.3 r..tio', vi(h apparently is the bending of the rotovator tip to or

from the planet surface (8:1).

Bekey describes use of an electrodynamic tether for propulsion. High

orbital speeds woild allow a vertical tether to generate electrical current as it

moves through a planet's magnetic field. However, it would be an open-loop

generator, collecting free electrons (trapped within the magnetic field) and

ejecting them at th, other end with an electron gun. Of course, the current

would power devices within the platform deploying the tether. However, the

disadvantage of the current generation is the resultant force that lowers the
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system orbit. Alternately, available electrical power (solar generated, for

example) could be used to induce an orbit-raising force (3:34).

2 Dynamic Tether Description

Bekey provides a basis for developing a description of the fundamental

dynamics of a fixed-length massless tether (3:35). The simplest description

begins with a vertical tether and extends to a tether with an angular offset from

vertical.

The system center of mass (CM), between two tether-connected masses,

behaves as an orbiting body. However, the end masses are forced by any

tether tension that exists. This is easily understood based on the fact that the

two masses and the CM all orbit with the same period oue to the tether

connection.

For a vertical tether, the mass at the higher altitude is being forced to move

at a higher speed than the speed of a free orbit for that altitude. Likewise, the

mass at the lower altitude is being forced to move at a lower speed than that of

a free orbit. Essentially, the vertical tension respectively aids or opposes

gravity in the two cases. Thus, the "above" mass "feels" more gravity and acts

as if it were closer to the earth, while the "below" mass acts as if it were farther

from the earth. In fact, each mass orbits as if it is positioned at the CM, i.e.,

with the same period as the CM. This means that the system t',dergoes one

rotation about the CM during each orbit. Thus, the tether force provides
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artificial gravity to each mass, approximately 4 x 10 g per km of tether length

in low orbit (3:36).

For a tether with an angular offset from vertical, the tether connection must

still maintain the two masses orbiting with the same period as the CM. Thus,

the same vertical forces must exist (provided the two masses are at the same

altitudes as before). However, since the tether is at an angle from vertical, a

greater tension must exist to provide the vertical force. Additionally, the angle

from vertical induces a horizontal force for both masses which causes the

system to rotate toward and oscillate about the vertical. The oscillation, as in a

pendulum, is dependant on tether length. Bekey also describes the varying of

this oscillatory motion by adjusting the tether length, either for stability damping

or for inducing high speeds (3:35).

Although the overall system momentum and energy is constant during fixed

length oscillation, each mass's momentum and energy vary. Obviously, the

relative momentum and change of momentum for each mass is equal and

opposite that of the other mass. Introduction of work to the system by varying

the length during tension can increase oscillations. This provides the basis for

a swing release or bolo method of propelling a payload from an orbiter.

Whether released from above on a vertical tether (no swing), from directly

aft to directly forward (1800 swing), or from a complete 3600 swing; a payload

will gain orbital energy. If the initial orbit is circular, the resultant elliptical orbit

will have an apoapsis to periapsis difference of 7, 14, or greater than 25 times
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the length of the tether, for the respective swings (3:38). If reel-in of the tether

is performed rather than use of a fixed tether length, greater apoapsis increases

are possible (14:355)

Colombo's extensive tether works indicate methods of implementing the

swing release. These range from ideas of storing the tether in the Space

Shuttle or in space to large scale tethers (430-5900 km) for LEO-GEO orbit.

Included are mass estimates for a Space Shuttle palette to house a tether

(6000 Kg) and cost savings estimates (over a propellant-driven device).

Additionally, a mechanism for ferrying (moving) a payload from the Space

Shuttle to a tethered platform is described (6:1-47).

In 1986, Bekey and Penzo reported that a tether deployment was being

studied for the 20,000 lb Advance X-Ray Astrophysics Facility satellite. The

satellite's 320 n. mi. orbit would require a 32 n. mi. tether and sustain 500 lb

tension while saving 5,000 lb of propellant. Furthermore, a Getaway Special

container with a tether was planned after resumption of Space Shuttle flights.

The container was to test the operation of a tension device, a tether length

meter, and the line cutter that severs the tether. The container design was

based on a 10 km tether for a 350 lb payload. Finally, Bekey and Penzo also

describe a combination skyhook/catapult function for the Martian moons Phobos

and Deimos. In this approach, the tether is anchored to the surface of a moon

and the payload crawls to the tether tip. The payload and moon are then the
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two masses for the system and a release similar to a vertical release

accomplishes the energy transfer (4).

3 Modeling Background

Kopke and Wiesel present equations of motion (EOM) derivations for general

tether mechanics in Newtonian (12:879) and Lagrangian forms, respectively. In

addition to the EOM presentation, Wiesel analyzes the EOMs for optimum

control based on the tether tension. Wiesel identifies three tether operations as

optimum. The first case, a coasting trajectory or free arc, occurs when the

tension is zero. The full, or maximum tension arc occurs when the tension is

constant and at the safe operating tension limit of the tether. Finally, a singular

arc occurs during a period of time when the tension is maintained such that the

Switching Function for the Control Hamiltonian is zero. To maintain this

condition, the tension is required to vary in a prescribed manner for any set of

initial payload conditions (14:352).

Typically, the EOMs are solved assuming a circular orbit of the system

(elliptical orbit dynamics are presented by De Matteis (7)). The solution is

normally performed computationally, since a closed form solution is excluded by

the tension. For the optimum cases of constant tension, the solution reduces to

elliptic integrals that can be determined numerically. This approach is applied

to determine whether safe separation between payload and orbiter can feasibly

be accomplished.
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Ill Methodology

Deployment of a payload from an orbiter begins with the payload and orbiter

located at the same point, the system center of mass (CM). A spring or other

mechanism then applies a deployment force to eject the payload from the

orbiter, causing both to drift from the CM, which remains in the original orbit. A

free arc of zero tension allows the payload to drift away from the orbiter with

the tether trailing behind. This allows a subsequent full arc witn a high constant

tension to accelerate and propel the payload.

Although a local level coordinate system with horizontal and vertical axes at

the CM can be used to identify the positions of the payload and orbiter, both

positions need not be specified since they are coupled (dependent). The

coupling is due to the deployment force, which acts equally and oppositely on

each mass. This is also the case with a tethering force. Either force causes

the lower mass item (the payload in most cases) to undergo more extensive

motion than the higher mass item. Since the motion of interest is that of the

payload relative to the orbiter, a coordinate frame at the orbiter is used.

Examination of the payload's separation from the orbiter requires the

development of the equations of motion (EOMs) in terms of the orbiter frame,

solution of the EOMs, and determination of the payload trajectory relative to the

orbiter. The trajectories of interest are those with optimum (maximum or
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minimum) payload orbital energy, although payload and orbiter separation can

be investigated for any resultant payload orbital energy.

1 Coordinate Systems

The position vector of the CM, in any coordinate system, is defined by the

mass-weighted average position of the masses as shown in Eq (1).

If the coordinate origin is located at the CM (a coordinate system called the

CM or "c" frame), then by definition the vector is zero. Thus, for a payload and

orbiter system (masses m, and m 2, respectively), the relationship between their

position vectors is given by Eq (2) when coordinatized in the CM frame.

Crml(m +m2) -Crm21(m, +m2)

Cx1 m - x2M 2 (2
CyM1 _Cy2M
Crlm Cr2m 2

Eq (2), also provides scalar relationships between payload and orbiter

quantities. Since the position of the payload relative to the orbiter is desired,

a coordinate system with origin at the orbiter (the "o" frame) is chosen. The

relationship between the "c" and "o" frame is provided in Eq (3).
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o cr _ _ cr (3)

The orbiter position in vector Eq (3) can be eliminated using Eq (2). Eq (4)

provides the resultant scalar equations. Eq (5) is the version with the payload

position eliminated.

OX, CXM 1 + m 2  m 1 + M 2  m 1 C + M 2 (4)
1x = Cx, ° y, CAy °,=Cr 4

m2  m2  m2

m1 + M2  m + m 2  m1 + m 2

As described before, the rectangular coordinate axes for the "c" and "o"

frames are respectively parallel to each other, but have not been specifically

oriented. Since both frames are in orbit about a planet, a planet coordinate

system (the "p" frame) can be defined with the one axis aligned to the origin of

the "c" frame. For simplicity, this vertical axis direction up (6p) and the

horizontal axis direction forward in the direction of the orbit (6,) provide the

orientation of all three frames. This orientation is shown in Figure 3. 1.

The position and velocity vectors oi either mass are shown in Eqs (6) and

(7). The angular rotation of the "p", "c", and "o" frames with respect to an

inertial (non-rotating) coordinate system (the "i" frame) is also shown in Eq (8).
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m, Payload
Center of Mass

Cr1Cr - V0r

r2 V 0

Orbiter m, 0

Ro  Circular
Orbit

P

Local Level Axes
& Coordinates

P Planet

Figure 3.1 - Coordinate Frames

-Pr + R.6, = (R. - cp,)§, + , (6)

PVn = -P . (Con6, + + - 2(R . + pn)6, - Qcil,,6s (7)

(co , - K ,) L5 + (C) , + +(R o . cp ))b,

P6  × =oiJ = Q (8)

2 Kinetic and Potential Energy

Substitution of Eqs (4) and (5) into Eq (7), with the local horizontal and vertical

coordinates (i and p) used instead of the general rectangular coordinates (x

and y, respectively), provides the velocity vector for each mass in Eqs (9) and
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(10). Eq (11) shows the system kinetic energy. As desired, the equations are

functions of the payload position with respect to the orbiter.

PV, = m, [(01 - Q )+ (0% - QOp,) + RoO , (9)
+ 2

2,= i + M 2 [(_O1 + Q't1Or, + ( - QOP)6] + R 0 6, (10)

1 mm 2 .r152 +  2 + 2Q(°p ' 1 - 0P 01)
2 m1 + M2  (11)

+ Q2(o P2 + r12)] + 1(m, + m 2)R22

Prior to substituting Eqs (4) and (5) in Eq (6) to obtain the desired potential

energy expression, it's useful to expand the potential energy to third order as

shown in Eq (12).

_,_m n = _jm [(R o + Cp )2  + c12 -,1

__ n 2 Cp n + 
n

RO1 + R (12)
-m,(1 + E)-1 2

Ro
-1.1mn 1 3 3 2 _15 : 3 ]4= l~( - _ + - _ +O()

Eq (12) can be algebraically re-written in successive powers of the position

variables as Eq (13).

However, for a circular orbit, g can be eliminated based on Q in Eq (14).

The resultant potential energy for either mass is shown in Eq (15).
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_lL ncp, 2 2 _t 9C3 -6 c n52

n -im 1  + 2cp,,-r 9 3p-cp,, (13)
IT_ 2RO 4R,

= = Q2 3 2Ro 0(14)

S_ 2 3 cP cl 2
Q~f'2RC-2cp2,,- + 9Cp3.-6Cplfl (15)

Vn = K2m n -R 2 + Romp, - 2 + 4nCNo6 n(5
0jo~ 2 4 R.

With the potential energy expanded to third order, the "o" frame payload

coordinates of Eqs (4) and (5) can be substituted. Also, since position

variables for each mass have opposite sign, odd powers of each mass's

potential energy negate when summed. Eq (16) is the total potential energy.

V = 1 mi 2  12( _2Op)(m +m2)R 2o2 (16)

2m m+m 2

Both the kinetic and potential energy have constant terms due to the

circular orbit of the CM. These constant terms need not be included in the

Lagrangian shown in Eq (17) since their derivatives in Lagrange's equation will

be zero. Eq (17) also introduces the reduced mass, M=mlm1/(m 1+m2), which

represents the mass ratio coefficient common to the kinetic and potential

energies. Since the Lagrangian is a function of the desired payload coordinates

in the "o" (orbiter) frame, the orbiter pre-superscript and the payload subscript

are omitted in subsequent equations.
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1)1 2 202) (17)
= - P+2Q( I Id f1]1

3 Equations of Motion

Eq (18), Lagrange's equation, can be used to obtain the equations of motion

(EOMs). In this case, the general Lagrange equation coordinate q represents

either the horizontal or vertical coordinate (11 or p).

dFL]_ aL .r (18)
-itFaq q a3q

For simplicity, the Lagrangian of Eq (17) can be changed to the perfect

square form. This Lagrangian is shown in Eq (19).

L = 1M [(5 -fj)2 +(i + gp)2 - 2 (T2 -2p 2)] (19)2

Also, the tether tension, T, acts on the payload along the radial direction

between the orbiter and payload, as shown in Eq (20).

-- r=r6,= v/p+iq 2 ~ (20)

For q=p, Lagrange's equation becomes the first EOM, Eq (21), while for q=l,

Lagrange's equation becomes the second EOM, Eq (22). The tether

acceleration, t, is defined based on the constant tether tension and the
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reduced mass. Constant tension is an optimum condition for a tether and

would be the maximum safe tension for the tether (14:352).

1 -2Qj -3Q' 2p = -(p/r)(TIM)- -(p/r)tr* (21)

i +2M1 = -(rl/r)(TIM) = -(7/r)T* (22)

4 Free Arc Solution

When the tension is zero, the EOMs of Eqs (21) and (22) form a second-order,

constant-coefficient, homogeneous system. The simple closed solution is

known as the Chlohessy-Wiltshire equations (16:78). With no tension, the

masses are essentially independently orbiting bodies (gravity between the

masses is not modelled). The zero tension, or free arc solution shown in Eq

(23) describes the relative motion of the two masses. If the motion of each

mass relative to the CM is desired, conversion to the "c" frame is accomplished

with Eqs (4) and (5). The angular location of the system in its orbit is defined

as V=Q(t-t0).

4-3cosf 0 1 siny (- 0l-cosIV) plt]p(t)

T(t) = 6(sin.-) 1 2 (cosy ,) 4sin - TI(to) (23)

O Ty d(t) )
. t 3 sinx 0 cosy 2sinV (to)

L60(cos -1) 0 -2sinxV 4cosy -3
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5 Full Arc Solution

To remove the tension acceleration, r+, from one of the EOMs, Eqs (21) and

(22) are converted from rectangular to polar coordinates using Eqs (24) and

(25). The angular coordinate, 0, is measured from the horizontal axis aft of the

orbit direction with positive rotation downward (14:354).

p =- -rsinO q -rcosO (24)

= -fsinO-rOcosO = -fcosO+rOsine (25)

Direct substitution of the polar coordinates into the rectangular EOMs can

be performed, or a new Lagrangian can be obtained as in Eq (26) and

subsequently used in Lagrange's equation.

L = M([ 2 r 262 r2O +3 Q2r2sin20) (26)2

The polar EOMs are given in Eqs (27) and (28).

F-r 62 -22r0 -3 Q2 rsin 20 = -(TIM) (27)

r6 +2t(K20) -3Q 2rsin0cosO = 0 (28)

5.1 Inertial Frame EOM Reduction. To simplify the EOMs of Eqs (27) and

(28), a non-rotating frame, the "n" frame, with no potential energy variation

throughout the frame is used. The kinetic energy and EOMs in polar
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coordinates of a single origin-tethered mass, M, within the frame are given in

Eq (29).

T= MI.f2 +(nrn6)2
2
- nr n6 2 T+ _1:(29)

nr O+2t n6 = 0

If the "n" frame were rotated with an additional angular rate Q, the kinetic

energy and EOMs would be as shown in Eq (30). This rotational sense is the

case with the tether model due to the angular reference axis and the orbital

angular motion. The sense is clear ;f -- payload located at the angular

reference axis is considered. The payload can move from the reference axis

because of the payload's inertial angular motion. Conversely, the reference

axis can move from the payload because of the rotational angular motion of the

frame. Both motions induce positive changes in 0. Figure 3.2 diagrams the

relationship between the frames.

T=1Mt2[,(O+K24f]
(rQ)2 2 g + (30)
y-(Q+£)2 = i'-r -2r6Q2-r 2

r6+2(6+Q) = 0

Comparison of Eqs (27) and (28) with Eqs (29) and (30) shows that the Q2

terms in Eqs (27) and (28) include centripetal (rotating frame) acceleration

terms, as well as the gravity gradient (truncated potential energy) term(s) from
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m, Payload
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Orbiter

0 Center of Mass

o Non-rotating
Frame

Orbiter
Frame

Figure 3.2 - Orbiter and Non-rotating Frame Relationship

Eq (16). These are considered negligible compared to the other terms due to

the relatively low angular rate and high tether acceleration for a typical

deployment (14:353). This is the case if the tether acceleration is significantly

greater than the centripetal and gravity gradient affects. However, to eliminate

the Q terms, a non-rotating frame, the "n" frame is used. The initial "n" frame

orientation is the same as the "o" frame orientation at the beginning of the full

arc. With the "n" frame fixed at this orientation during the full arc, Eq (29)

allows determination of the motion, provided the "n" frame coordinates are

returned to "o" frame coordinates at the end of the full arc. The angle between

the "n" frame and the desired "o" frame is simply Q(t - ti). Since this is the only
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difference between the two frames, the "n" pre-superscript is not retained in the

following equations.

The usual angular momentum of the payload (relative to the orbiter) is given

by Eq (31) and is clearly an integral of the second EOM of Eq (29) and

therefore constant.

h -h-= Ir6, x r6e = Ir2 e1 = r26 (31)

The usual kinetic energy of a system (as shown in Eq (29)) is not a

constant of the first EOM of Eq (29) because of the tension acceleration.

However, since the acceleration is only an additional term, the EOM's integral

requires only an additional term to the specific kinetic energy, as shown in Eq

(32). If Eq (32) is differentiated to check the integral, the second EOM of Eq

(29) must be substituted to obtain the first EOM of Eq (29).

1
- 2(2 +r2) +trr (32)

5.2 Radial Solution. The angular momentum constant in Eq (31) can be

used in place of the angular speed in Eq (32) to provide a separabie, first order

EOM for the payload as shown in Eq (33).
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dt = r(-2c*r3 +2Er2 -h : )-11 dr

_ / r dr (33)

2 V-- V/(ox-r)(r-P)(8-r)

The three roots of the cubic have been defined in Eq (33) and can be

evaluated as shown in Eq (34) (5:9).

0 = y 3 +py2 +qy+r
0 = x 3 +ax+b (y = x-p/3)
a = (3q-p 2)/3 b = (2p 3 -9pq+27r)/27 (34)

A a (-b/2 +(b2/4 +a3/27)1 2)1 /
3  B =-(b/2 +(b2/4 +a3 /27)1 2 )1 /

3

x = A+B, -[(A +B) +(A -B)§--],12, -[(A +B) -(A -B)JF-3]/2

One of these roots, 5, is negative while the other two, a and P, are positive

(all are real). The two positive roots correspond to the apo-orbiter and peri-

orbiter (maximum and minimum) radii of the payload, respectively (14:353).

Conceptually, a payload reeled from a specific radial distance will accelerate

under tension toward the orbiter to the peri-orbiter radius, then decelerate under

the tension until it reaches the apo-orbiter radius. This cyclic motion about the

orbiter under continuous tension is an open trajectory, since a specific radius

won't occur after a full revolution.

Eq (33) is an elliptic integral and can generally be expressed in terms of

the incomplete elliptic integrals of the first, second, and/or third kind. The

integral transformation is performed with the radius-to-amplitude (r-4)

substitutions given in Eq (35) (14:353).
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r- I-nsin2¢ dr = m(P-8) sin20 d¢

1 - msin 201 A(0)4 (35)

where m = (a - )/(o -6) A(O) - V1 -msin 20

Wiesel presents the transformed integral based on the incomplete elliptic

integrals of the first and second kind. The initial and resultant integrals are

shown in Eqs (36) through (38) (14:353). Eqs (39) and (40) are the incomplete

elliptic integrals of the first and second kind, respectively (1:589). Both the

Jacobi form (with x) and the Legendre form (with p) in terms of the parameter,

m, are presented. The "elliptic" terminology for the integrals refers to their use

to calculate arc length of an ellipse (2:73). Since Eq (37) is a transcendental

equation for amplitude (and radial position) as a function of time, it is typically

solved with an itorative technique. The amplitude/radial position rates are

related as shown for the differentials in Eq (36), and can be used during a

Newton-Rhapson iteration. This method of solution is faster relative to direct

integration of the EOMs of Eqs (27) and (28) (15).

f' t= fr , F  r dr [ccr>P3>0>8] (36)

t-to = c,(E()m)+c2 Aie) + c. F(O I m) (37)

F2 (P -8) m F2 = J2_5 (38), '(a -3) (1 -in) 2 -i C3(38)
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__ __ __ I )='f ~ dx (x =-singp) (39)
/ 1 -msin 2g 0 (1 -x 2)(1 -mx 2)

E(pIm) I 'Jo 1 - msin2g p d= f 1--Pm x2  (x - sin9g) (40)

5.3 Angular Solution. As with the radial solution, a separable differential

equation for 0 can be obtained by substituting Eq (31) for r in Eq (32). After

separation, the differential equation can be transformed using the parameters in

Eq (35) to obtain Eq (41). In this equation the reference angle corresponds to

the peri-orbiter angle in the same manner as the reference time in Eq (36).

The incomplete elliptic integral of the third kind is shown in Eq (42) (1:590) with

the characteristic, n, which is not applicable to the incomplete elliptic integrals of

the first and second kind.

e-00 = [3F(4lm) +(6-P) -l(6m/1;41m)] (41)

VP6

H(n;9gIm)
o (1 -nsin 2 g)/1 -msin2p) (42)

dx (x - sin)f' (1 Vn2 i -x _)(I -mx 2)

5.4 Full Arc Computation. With the full tension orbit modelled, computation

of a portion of the orbit, or full arc is possible. However, an actual full arc never

begins at the peri-orbiter radius as was assumed for the lower integration
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terminal in Eqs (33) and (41). For the operational case of a free arc

deployment from an orbiter followed by a full arc, the initial radius for the full arc

is the radius at the time of the switch to tension. Thus, the switching time does

not correspond to the reference (apo-orbiter) time of Eqs (33) and (41). The

actual peri-orbiter time can be obtained by substituting the switching time and

switching radius/amplitude in Eq (37). Likewise, the peri-orbiter angular position

in Eq (41) can be obtained.

5.5 Elliptic Integral Evaluation. To compute the desired time or angular

position from Eqs (33) and (41), the values of the incomplete elliptic integrals

for the specific conditions are required. Essentially, these integrals are

complications of the basic trigonometric functions. Eq (43) shows that Eqs (39),

(40), and (42) reduce to trigonometric functions when the amplitude is the only

non-unity argument.

F( p1) = __ = tanq

E(9pl) = fcos(p dcp = sinp (43)
F1(1(pj1 == ~ sec 3 (

0Cos 3 P

Unlike basic trigonometric functions, the general values of the incomplete

elliptic integrals are usually available only in tables and not as calculator or

computer functions. However, Gauss's method of the arithmetic-geometric

mean can be used to evaluate the integrals (2:72). The computation is based

on Landen's transformation which is performed recursively via an arithmetic
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mean, a,; a geometric mean, b,; and a difference mean, cn; using specific initial

values for each. However, the routine provides the complete elliptic integral

values of the first and second kinds (K(m) and E(m), respectively), which are

the corresponding incomplete elliptic integrals evaluated when the amplitude is

7r/2. The arithmetic-geometric mean process is shown in Eq (44) (1:598).

_ 1 - 12 1(a _-bo)
a1 (ao-bo) b, = (aobo)"2 c, = 2 (a o

1 1

a2 = (a, b,) b2 = (alb,)'2 C2 = (a-4b4) (44)

1 121bN )
aN -(aN_1 +bN_) bN = (aNlbNl)lr CN = -F(aN_1 -bNl

This process continues until the arithmetic mean equals the geometric mean to

the desired accuracy.

The complete elliptic integrals of the first and second kind are computed as

shown in Eq (45) (1:598,599). The modular angle, a, defined in this equation

represents a different quantity than the apo-orbiter radius defined earlier.

K(a,,bo,co) = 1 = K(aN)
2aN

K(m) = K (1,v/-m ,m-) - K(1,cosox,sinox) = K(oa) (45)

E(m) = K(m) - 2c = E(a)
n-1

To obtain the value of an incomplete elliptic integral, an additional iteration

(the descending Landen transformation) is required using the amplitude. The
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iteration and Jacobi's zeta function are shown in Eq (46), while the incomplete

elliptic integral values (first and second kind) are shown in Eq (47) (1:699). Eq

(47) demonstrates the use of two delimiters, I and \, which are used with the

parameter and modular angle, respectively. Occasionally, notation with a

comma as the delimiter and the modulus, k=m 2, in place of the parameter is

used (2:69).

tan((Pn.1 -(Pn) = (b/an)tanpn, (po = (P

pn= tan-'[(b-,1/an.-)tan(p,] +(Pn-, (46)

N

Z((P m) E qsin(pn
n= 1

F(q, m) = (p/( 2 NaN) = F((p\(x) (47)

E((p Im) = Z((pIm)+[E(m)IF(m)]F((pIm) = E((pka)

Computation of the incomplete elliptic integral of the third kind is similar, but

has exclusive cases for varying ranges of the characteristic, n=6m/3. The

characteristic is always negative for the tether since it's based on the negative

root, 8; the positive parameter, m; and the positive peri-orbiter radius, P5. A

negative characteristic is Abramowitz and Stegun case four (iv) for the integral,

which is evaluated as shown in Eq (48) (1:590,591,599,600). The case four

incomplete elliptic integral of the third kind is a function of the case three

integral, which is evaluated as shown in Eq (49).
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N = (sin2(t-n)(1-n)-1

p2 = [-n(1 -n)-'(sin 2a-n)]A
1

r(n;9\c) = {[(1 -I)(1 -N-1 sin2 )]1'2 rH,,(N;9p ) (48)
+p2-1sin 2aF(,\c)
+tan-'(11/2)psin2p/A(p)1}/

[(1 -n)(1 -n-'sin 2oX) ] 2

= sin-'[(1 -N)/cos 2(]'] 2  0<_<(it/2)
P= (1/2 )nF(c/2 -a./K(a)

q = exp _-K(l -m) (Nome)
K(m) J

v = (1/2)nF((p\oc)/K(ca)
82 = [N(1 -N-' (N-sin2X)-']l 2

X = tan-'(tanhp3tanv)

+2F, (-1 )-s slq 2
s(1 -q= 2 -'sin2svsinh2sP3

s.l

= sqs'sinh2sp][1 +2E- qsacosh2s3]

F[ijN; (p\) = 5 2(X -4l.v)

In Eqs (48) and (49), N is an additional functional parameter unrelated to

the final iteration index of Eqs (44), (45), and (46); while F, 3, and la in Eq (49)

are also unrelated to the previous physical parameters.

6 Optimization

Propulsion of a payload from an initial orbit to a final orbit can be optimized for

maximum or minimum specific energy of the final orbit. This type of

optimization results in a corresponding orbit size (semi-major axis) with a

unique, but unspecified shape (eccentricity) during the optimization. Regardless

of whether maximum or minimum specific energy is desired, the optimum
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condition is maximum change in the payload's specific energy from the initial

value.

6.1 Parameter Considerations. The free arc and full arc solutions are

functions of the initial orbit, the mission, and the physical variables as shown in

Table 3.1. The initial orbit variables are essentially the CM position and velocity

relative to the earth, while the mission variables are the initial state vector

(payload position and velocity relative to the orbiter) and the sequence and

duration of thp free and full -ajs used. The physical variables are the payload,

orbiter, and planet mast, 3 and the tether tension limit.

Table 3.1 - Tether Variables

Orbit Mission Physical

F O Io, ,P 0o vo ttf 9.,m 1Im 2,'T*

The impact of a particular variable depends on the relative size of the force

that varies relative to the variable. Clearly, greater tether accelerations allow

greater payload speeds and energy changes. Additionally, the planet mass and

initial orbit are indicators of the gravity forces, with more massive planets and

lower orbits having higher gravity and rotational effects when other parameters

(like tether tension) are considered the same. Since these initial orbit and

physical variables provide continually increasing or decreasing payload energy

(depending on their variation), they are not used for optimization.
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Most of the mission parameters have non-continual variations for payload

orbital energy. First, the initial conditions can be reduced to an initial ejection

angle and speed since the payload location is known (usually the same as the

orbiter). In this case, the ejection speed is another continual variable, not

viable for optimization, and therefore considered constant. However, the

deployment or ejection angle will have a periodic affect on payload orbital

energy. For example, a specific angle may increase payload energy, and

variation from the specific angle will increase or decrease the final orbital

energy. If it is an optimum deployment angle, variation will decrease the

energy regardless of the direction of the variation. Likewise, an angle in the

opposite direction will essentially decrease orbital energy and variations from it

(if it's optimum) will increase energy. Thus, for the full range of ejection angles

(360 degrees), at least two optimum angles exist.

The sequence and duration of the free and full arcs also affect the final

payload energy. Clearly, the full arc's acceleration changes the energy during

reel-in. However, following ejection from the orbiter, a free arc is used to

provide separation. Thus, greater free arc durations allow greater full arc

acceleration periods. A fixed mission duration is useful for considering this

relationship. For a single cycle of a free arc followed by a full arc, the mission

duration is from deployment on a free arc until the full arc is completed.

!ncreasing free arc durations reduce the full arc period for a given mission

duration. Thus, an optimum free arc duration exists for the single cycle case.
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This duration describes an optimum switching time to activate tether tension

and switch from the free arc to a full arc. Although mission duration can be

varied, as well, it provides continually increasing energy changes (in most

cases). Thus, mission duration isn't useful as an optimization parameter unless

special conditions are applied.

Alternately, multiple cycles of free and full arcs can be used, providing

additional switching times. For a double cycle (free arc, full arc, free arc, full

arc) of a specific mission duration, the individual arc durations will be smaller

than those of the single cycle case and the payload will remain in closer

proximity to the orbiter. This allows shorter tether lengths for a specific mission

duration. Although additional cycles introduce more switching times and

increase the dimensionality, they can be used to examine lower payload

separations. Additionally, a similar energy change should be obtainable since

the duration of the payload acceleration by the tether is comparable to the

single cycle case (although separated across two full arcs).

Regardless of the number of cycles, the optimum switching time will result

in a case where a full arc terminates about a point with no reel-in capability

remaining. This point occurs when the tether speed is zero and the payload is

moving only tangentially relative to the orbiter. For optimization of energy

(minimum or maximum) and for a specific conceptual trajectory, the affect of

tether acceleration with respect to the CM velocity and the potential energy is

complex. For example, the velocity (relative to the orbiter) of a payload moving
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conceptually toward a planet under tension is essentially perpendicular to the

CM velocity and the potential energy is decreasing. At some point prior to the

tangent condition, the kinetic energy, which is increasing due to the tether

tension, will be increasing at the same rate as the potential energy is

decreasing, resulting in maximum energy. On the other hand, trajectories with

different directions and/or a mission times may optimize with the full arc ending

after the tangent condition. Although this decreases payload speed relative to

the orbiter, the post-tangent condition tension could change the velocity to a

favorable direction along or opposite the CM orbital velocity (15).

6.2 Payload Energy Change Function. To achieve maximum propulsive

capability, the specific energy function must be optimized. The function, Eq

(50), can be obtained from Eqs (9) and (12). In Eq (50), the payload mass is

generally negligible relative to the orbiter mass, allowing the mass ratio

coefficients to be dropped. Also, expansion of the potential energy to second

order eliminates negligible position terms.

Energy is optimized when the change in payload energy from ejection to

mission completion is maximum or minimum (increased or decreased as much

as possible). For deployment from the orbiter, the initial coordinates are zero.

In most cases, the deployment speed is low relative to the final speed, and can

be considered negligible. This results in a change in orbital energy as shown in

Eq (51). If the deployment speed isn't negligible relative to the final speed,

()) may be used for As.
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E T, + V, _ m2 t(( _Q) 2 +(Vo+ + p'2,

m- mi 2 m1 +m2

+p m2 m 2  
(50)

mi 'M2 m +M2

1 ((O _Q ) +(v o f+r ) 2)_ _.. _ . _g p _ pp2= _ -_) _) _ _

2 Ro 2 R

= I (i5Qf)
2+V (Tp +fp) +l +Qp)2 + 113-IJ

2 2 R R51)

6.3 Safe Separation Conditions. Regardless of the numLer of cycles of

free and full arcs, shorter durations keep the payload in closer orbiter proximity

and increase the likelihood of undesirable consequences. To maintain safe

separation, optimization of energy must be performed while continually

maintaining the payload position greater than a safety radius. However, this

condition doesn't apply to the first free arc since the payload is considered safe

during ejection from the orbiter and throJghout the first free arc (no subsequent

close passage). The radius and radial rate (tangent) conditions for safe

separation are shown in Eq (52). Safe separation (radius) is rWte, while

minimum separation (radius) is rtan.

Eq (52) provides two constraints for optimization. In general, constraints

can be expressed as a series of the optimization parameters. A first order

model is shown in Eq (53).
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Ar- r. - r, = 0 f,,O= 0 (52)

0 (n.1)d [aiTC"L~ ,, ai C_" (53)

6.4 Pertinent Optimization Cases. Various optimizations of free and full

arcs can be used, some of which are shown in Table 3.2. In this table, the

cycles term refers to the number of free arcs and full arcs. For example, 1.5

cycles represent the conceptual operation of a free arc followed by a full arc

and a subsequent free arc. The operation is conceptual since the payload may

be released from the tether following the full arc. The free arc is computed for

safe separation, only. The switching times, ti, represent the chronological

delimiting points between arcs. However, the duration of an arc is variable, and

may optimize to zero. This is occasionally the case with the second free arc.

Table 3.3 depicts the chronological sequence of full and free arcs for the cases

shown in Table 3.2. except for case E which is double cycle of case A. The

negative and positive superscripts in Table 3.3 indicate whether the end of the

full arc conceptually occurs before or after the tangent condition.

Case A optimizes energy change for a specific mission/final time, t. The

final state vector provides an indicator of whether the payload has passed the

tangent condition. The radial rate is negative betore the tangent condition and

positive after the tangent condition.
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Table 3.2 - Conceptual Optimization Cases

CASE & OPERATION CONSTRAINT PARAMETER COMMENT
CYCLES VECTOR -C VECTOR -

A Optimizes. "(AP)/age (14:354)
1.0 1 5)(5

LD(A )/oatl ti

B Optimizes. Invalid, since tf
1.0 0(A )/D00  0 variations will

3(A4)/at, (56) ti (57) continue to
change 4f if 0o

J(A )/atf tj and ti are
variable.

C Optimizes. Same as case B
1.5 a(A4)/0, 00 since second

a(A')/at, (58) tj (59) free arc has no

-a(A )/at2 .t2

D Optimizes F Same as case A
1.5 and a(A4)/a00  00 if safe

determines !a(A )/at, (60) ti (61) separation radii
mission time , are mapped.

for the L rtan-rse Ltd_
separation

margin.

E Optimizes. Similar to case
2.0 a(A )/D0o 00 A; closer

(A4)/atl (62) t, (63) separations.

D(A )/t 2  t2

ag(A )/t3 6t3
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Table 3.3 - Chronological Sequence of Conceptual Cases

MISSION SEGMENTS (arcs)

free full free

CASE (o)
A to tt
A+ to t 1 - tan- ti

B to ti t1

C t, t t2  t,

D tol ti It2 I t,
D+ tol t, I ttan

Eq (54) calculates the radial rate from the state vector. If the mission ends

after the tangent condition has been passed (as indicated by a positive

superscript in Table 3.3), the peri-orbiter radius of the full arc is the separation

distance. However, if the mission ends before the tangent condition (as

indicated by a negative superscript), a subsequent free arc must be used to

calculate the time of the tangent condition and the separation. Also, case A is

optimized for a family of trajectories using varying values of the final time.

Thus, the final time can be considered a mapping parameter and separation for

each final time can be determined.
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= r V -v =_ {r T  jt} ={[p f1] [P ]} (64)

Both case B and case C are conceptually invalid since a greater final time

(or end-of-full-arc time) allows greater energy changes. On the other hand, an

optimum energy does exist at an optimum final time for a specific deployment

angle or switching time. This would be a revision of case A with the final time

substituted for the specific deployment angle or switching time. This could be

useful for specifying an orbit shape with a specified deployment angle since the

final position and velocity would be specific for the optimized switching and final

times. However, since cases B and C allow deployment angle and switching

time to optimally vary along with the final time, no zero can be expected for the

energy change function. This renders cases B and C undesirable for

optimization.

Case D optimizes in the same manner as case A, but implicitly determines

the mission, or final time, t,, for a desired separation margin, Ar=ran-rSe. In this

case, the results are the same as case A with the final time and separation

margins being interchanged as independent and dependant optimization

parameters.

Case E is for a double cycle and is similar to case A. It allows

determination of optimum deployment angle and switching times for a given

final time, as well. Separation distance can be calculated for the two tangent

conditions and examined. For any final time, the separation distance is lower
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than that of case A. However, this disadvantage is offset by the shorter tether

length required.

6.5 Iterations. Iteration during the optimization is required at varying points,

or levels. First, a final time iteration is essential in all valid cases of Table 3.2,

except case D. At the lowest level, the arithmetic-geometric mean is required

to determine the complete elliptic integral of the first kind. Table 3.4

summarizes the various iterations required for determining a family of

trajectories.

Table 3.4 - Required Optimization Iterations.

DESCRIPTION PARAMETER(S) EQUATION

Mapping tf n/a

Optimization 00,ti (53)

Derivative Calculation ~c/as, (69)

Nome series H-[(n;(p Im) (49)

Descending Landen Transformation F(p I m),E(p I m) (46)

Arithmetic-Geometric Mean anbnCnP(Pn (44)
K(m),E(m)

The primary iteration of the mission time as a mapping parameter covers a

finite time segment. A segment near the CM orbital period is appropriate.

Since small mission times are operationally unworthy because their minimum

separation can be unsafe, a useful lower limit follows as the mission time that

gives a trajectory with the lowest acceptable minimum separation distance. In

the same fashion, large mission times may have corresponding always-safe
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tangent conditions, which would allow a segment upper limit to be defined. In

the absence of such a condition, the CM orbital period can be used as an

upper limit.

For any mission time, a seed value for each switching time is required.

Switching times can be estimated using a rectilinear acceleration model as

shown in Eq (65). This model assumes no gravity or rotational terms, only

tether acceleration; and is especially applicable for short mission durations.

The models for single cycle and double cycles are shown in Eqs (66) and (67),

respectively. For both cases, this occurs when the payload is accelerated back

to the ro point. Both cases require a t2 value, while the double cycle case

requires a t4 value, as well. Also, a desirable seed for the deployment angle is

not modelled and must be assessed for use in the optimization.

r,, = ri. vi(ti.1 -t) +a,(t,1  t) 2/2
r, = r. +Vo(t 1 -to) (free arcs: a, 0) (65)

2 = r, +v(t 2-t1) -t(t 2 -t,) 2 /2 (full arcs: a = -- )

r, = Vo(t , -to) = -Vo(t 2 -t,)+,( 2 -t,) 2/2 (ro = 0 = r2)

t, = t2 -V2vo(t 2 -to)1 (any single cycle) (66)

and v2 = Dr2/t 2 = vo-tr-(t2-t1 )= v.- 2 vor (t2-to)

t3 = t4 -V2(-v 2)(t -t2)/t* (for the second cycle) (67)

While mapping the trajectories for numerous mission times, a function

estimator can be used to estimate the best seed values for the next mission
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time in the mapping iteration when several previous trajectories are known.

Aitken's Iteration Method provides this capability (1:879). However, care must

be used while mapping the desired mission time segment. Since more than

one optimum deployment angle exists for a desired mission time; the initial, or

seed, deployment angle in the optimization determines which optimum

deployment angle is obtained. This lock-on feature of the optimization iteration

requires that different seed deployment angle segments be mapped to the

desired degree.

During the optimization iteration, various derivatives are required. As a

complete example, those required for case D are shown in Eq (68). Derivatives

for the other cases are nearly identical.

a[_ Dt1~a _~aD
2(A ) a2(Al)a 2(a ) (68)

a(Ar) a2 r) a(Ar)

a0 0 Tt1 - atf

Both the first and second order derivative values are computed numerically.

The first order derivatives can be based on four equally spaced values of the

desired constraint for each optimization parameter. For example, the first order

partial derivative in row three, column one of Eq (68) would use rtan values at

the desired o, two slightly higher 0. values, and a slightly lower 0, (all

separated by equal amounts, 60,. Essentially, these four points allow the
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derivative to be calculated like an average speed using four points rather than

the usual two points. Any first order derivative can be calculated from the

appropriate four points using Eq (69), where f is the desired constraint (range

rate in the example) (1:883). Second order derivatives can be calculated using

a three or seven point scheme over two optimization parameters as shown in

Eqs (70) and (71) (1:884). In Eqs (70) and (71), f,.j represents the function

evaluated as f(x+i~x,y+j~y).

(f/ax) 00  
=  (-2f 1 . -3fo. 6 f.o- f2.0)/(66x) (69)

(a 2f /D x 2) o'o = ( f -,.o -2 fo.o +  f ,)/5 x 2 (7 0 )

._ f -(f,.o f-o fo, fo._-2fo1.0-fl -f, 1,)/(28x~y) (71)

7 Summary

With the closed solution to the free arc and equations for the full arc available,

the nested iterations can be used to optimize the families of trajectories for

various seed values. The free arc is simply the relative motion of two orbiting

bodies, while the full arc propels the payload toward the orbiter and is modelled

with elliptical integrals. Of interest for a particular mission time are the

deployment angles, the switching times, the trajectories, the resultant payload

orbit, tether length, and separation.
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IV Results

To investigate safe separation, tethered payload trajectories are determined

using the computation method described in Chapter III. Trajectories for a

nominal earth orbit are preferred, and require specification of numerous

parameter values. These values are shown in Table 4.1.

Table 4.1 - Computational Parameter Values

[PARAMETER [VALUE

ejection speed from orbiter, v. 10 m/s

orbital linear speed, Vo  7740.604 m/s

orbital distance, Ro  6652550 m

earth's gravitational 3.986012xl 014 m3/s2

parameter, i

orbital angular speed, Q 0.0011635 rad/s

tether acceleration, ' 2 m/s 2

Since the orbit is circular; Vo, Ro, and Q are determined from the desired

orbital period (90 min). This period, and the values for vo and r', are selected

to coincide with the previous reel-in tether study (14:355). Additionally, the

numerical derivatives are calculated using various 5x and 5y values. A small

variation is chosen, e=0.001, and determines 80=p and 8t,=Et, for the single

cycle mission (free arc deployment followed by a full arc). Finally, the
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optimization is performed until the ratios (d0 0 o)(n+l) and (dt1/t)(nl.) of Eq (53)

are below a tolerance value for acceptable accuracy, 0.000001.

1 Multiple Optimum Trajectories

For a mission time of 90 min (the orbital period), multiple optimum trajectories

(A =E- ) for case A are determined by varying the seed angle from 0 to

approximately 2rt radians in 0.05 radian increments. For the seed t,, the

rectilinear model value was repeatedly used (86 min). The resultant optimum

trajectory parameters are shown in Table 4.2.

Not all seed 00 values converged on an optimum trajectory. For cases

where the seed 00 and t, values were distant from an optimum trajectory, an

optimization iteration would increment the t, value to an illogicai value below

zero or above t,. In these cases the iteration was halted and the next seed 00

was used. This extreme behavior can be seen for several iterations that

converged on optimum 00 values distant of the seed 00 value. Also, several

different seed values converged on the same optimum trajectory. Finally, the

16 trajectories can be considered only a sample of all optimum trajectories for a

90 min mission, since additional seed t, values give additional optimum

trajectories.

However, deployment angles of 0 and nt radians provide the trajectories with

the overall minimum and maximum energy, as expected for a mission duration

that corresponds to the orbital period. A rearward (0 radian) deployment results
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Table 4.2 - Multiple Optimum Trajectory Parameters for a 90 min Mission

SEED 0, OPTIMUM 00,  OPTIMUM t1, RESULTANT
radians radians s PAYLOAD ORBIT

SEMI-MAJOR AXIS, m

0.60 -5.07 272.644 6647022

0.70 -4.01 2623.570 6574237

0.75 -2.57 2443.369 6948796

0.90 -4.90 2777.363 6844445

1.25,1.35 0.00 4954.944 5616627

1.55 1.58 4668.038 6672039

1.85,1.90, 3.14 4958.679 8333062
4.40,4.45

2.10 0.58 2467.216 6381570

4.05 -4.02 1209.393 6673693

4.10 -0.62 560.166 6640568

4.15 -0.57 2440.299 6521849

4.25 -2.68 3422.825 7318718

5.05 6.28 4954.944 5616627

5.20 2.87 4125.832 5848244

5.50 4.20 2725.959 6921121

_5.55 3.68 2182.964 6408833

in a smaller payload orbit (minimum energy); while the opposite deployment

results in a larger payload orbit. The optimum switching time, t1, is significantly

different from the rectilinear seed because of the high mission duration.

For comparison with the 90 min mission, Table 4.3 shows the multiple

optimum trajectories for a 9 min mission. In this case, the rectilinear seed for
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Table 4.3 - Multiple Optimum Trajectory Parameters for a 9 min Mission

SEED 0o; radians OPTIMUM o, OPTIMUM SEMI-MAJOR
radians t1 , s AXIS, m

0.05 -2.25 145.328 6649700

0.15,2.00 4.01 311.805 6658176

0.20 0.86 311.811 6646888

1.70,2.85 4.01 188.154 6656036

1.75,2.20,5.15,6.00 0.86 311.811 6646888

1.80,1.85,1.90,1.95 4.03 400.367 6644999

2.05 4.02 235.669 6648129

2.10 4.07 34.016 6651764

2.25,2.30 2.55 468.034 6430793

2.75 4.02 235.669 6648129

2.80 4.03 145.328 6649700

3.00,4.85,5.20,5.95 0.88 235.683 6656934

3.20 0.87 188.154 6649027

3.35 4.03 400.367 6644999

3.70 -5.37 30.477 6651852

3.90 0.88 539.998 6641645

4.90,5.35 4.01 311.805 6658176

4.95,5.00,5.05,5.10 0.88 400.387 6660067

5.25,5.90 0.90 79.756 6650929

5.30,5.40 5.69 468.028 6894448

t, is 467 s, which is nearer the optimum t1 (8 min) since the rotational and

gravity-gradient terms have less impact for the shorter mission. This is also the
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likely cause for the increase in the number of optimum trajectories detected for

the 0.05 radian search.

2 Single Cycle Trajectory Family

For the 9 min mission, the optimum deployment angle for minimum energy is

2.55 radians, which is nearly opposite that of the 90 min mission (0.00 radians).

Using the 90 min mission as a baseline, optimum minimum energy trajectories

were mapped from 90 min to 7.5 min mission times at 1.5 min intervals. The 9

min mission at the end of the mapping converged to the same trajectory

determined during the angular search, as expected. This agreement provides

additional confirmation that the minimum energy trajectories were determined.

These trajectories are of interest since they provide the maximum energy to the

orbiter. When considering the orbiter as the desirable recipient of energy, the

payload can be considered a sub-payload while the orbiter is the true payload.

Stationkeeping with expendable masses (discardable parts or contained trash)

is the operational scenario for this case. Maximum trajectories for the orbiter

depend on the ratio of the payload and orbiter masses, and can be assessed

from the minimum energy payload trajectory, as mapped.

Of interest during the mapping was the final radial rate, which indicates if

the tether is being reeled-in or payed-out at the end of the mission. Figure 4.1

diagrams the radial rate and numerous other parameters. Each parameter is

normalized to its maximum value (shown in parenthesis) during the mapping.
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Figure 4.1 - Resultant Payload Parameters

During the mapping, approximately 5 optimization iterations were required.

However, at the end of the mapping (22-7.5 min), up to approximately 25

iterations were required. The varied behavior of this portion of the radial rate

function is the likely cause.

For two missions, 62 min and 13 min, the final radial rate is zero. This

indicates that the final position is the location of minimum payload separation

from the orbiter. The trajectories for these two missions are shown with the 90

min trajectory in Figure 4.2.

Since the final radial rate is negative during a portion of the mapping, these

missions end prior to reaching the point of minimum separation. For these
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Figure 4.2 - Minimum Energy Trajectories

trajectories, the peri-orbiter radius fails to describe the minimum separation as it

does for the missions with positive final radial rates. An additional free arc is

conditionally calculated to determine the point of minimum separation (zero

radial rate). In all cases, the minimum separation value is greater than the peri-

orbiter radius for the full arc. However, the difference is small compared to the

overall value for each mission. The extra separation above the peri-orbiter

radius is shown in Figure 4.1, along with the peri-orbiter radius. The extra

separation value is greatest for a 43.5 min mission, at 35.55 m above the peri-

orbiter radius of 8134.83 m (0.44%).
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As an estimate of propulsive capability, an impulsive velocity change value

can be determined from the resultant payload orbit. Although the payload is

released into its new orbit at a position away from the system CM, the new orbit

is considered elliptically tangent to the initial circular orbit to obtain the estimate.

Eq (72) is the model for the impulsive velocity change estimate, which uses the

energy, or vis-viva, integral to determine the orbital velocity (2:116).

Av = I = V mo-vode (1)

- t(2/r,-1/a) - V) = V1(2/Ro-1/a) - V

Figure 4.3 shows the velocity change capability of the tether for the various

pen-orbiter values from Figure 4.1. Additionally, Figure 4.3 provides a tether

length estimate and ratio of velocity change to tether length for the peri-orbiter

values. The tether length estimate is based on the end of the free arc.

Although the payload radius continues increasing after tension is initially

applied, it quickly slows to zero and begins decreasing. The tether length

serves as an indicator of overall tether mass, which is preferred to be as low as

possible. Thus, the ratio of velocity change to length is an indicator of

propulsive efficiency.

Figure 4.3 indicates that minimum separation (plotted as peri-orbiter radius)

increases with higher velocity changes. Since higher velocity changes are

typically desired, any choice above the a safe separation value is acceptable.

Additionally, propulsive efficiency is nearly of direct proportion to the desired
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Figure 4.3 - Velocity Change and Tether Length

velocity change. The best efficiency occurs for 10 m of separation with -124

m/s velocity change for 4 km of tether length over a mission of 7.5 min.

Unfortunately, t, became invalid during the mapping below a mission duration of

7.5 min, where better efficiencies probably exist. Although undesirable, this

limitation doesn't impact the assessment of separation.

Since case A encompasses the range of minimum separation values for the

family of trajectories, case D only serves as a means to determine a trajectory

for a specific separation. For example, the 90 min mission has a large, 42 km

minimum separation. Using the optimum trajectory for a 90 min mission as a

seed, a minimum separation between 42 km and 30 km can be specified, and
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case D determioes the trajectory for the specified separation. However, the

function has a limited reach, and must have a suitable seed. The 90 min seed

trajectory can reach a 30 km separation trajectory (68 min mission).

Unfortunately, the reach decreases with mission time and prevents any feasible

use of case D below approximately mission durations of 45 min. Thus, case A

is preferred for determining separation.

3 Double Cycle Trajectory Family

Expansion to the double cycle case E followed the determination of case A

trajectories. This case is of interest because of the shorter tether lengths and

closer separations for a specific mission duration. Unfortunately, acceptable

algorithmic behavior could not be accomplished for case E.

Initially, time estimates from the case A trajectory were concatenated for the

90 min mission. When the algorithm failed to lock-on or even track toward an

optimum energy, the rectilinear seeds were used. However, small variations in

seed values of o, t2, and t4 consistently caused the payload energy change to

switch polarity or in many cases, iterate to negative or out-of-sequence times.

Tuning of E for the derivative calculation was performed over a reasonable

range (0.1 to 0.000001), followed by individual tuning for each parameter.

Although algorithmic tracking began to occur in some cases, optimum values

were consistently by-passed unless the accuracy tolerance was set to a high

value (0.1). The coarseness of this setting (1/10 radian or 1/10 of any of the
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times) provided lock-on, but for essentially any trajectory. This prevented

automated location of the extreme optimum.

However, manual iterations and automated angular iterations for various

seeds provided a sample of insightful trajectories. The parameters for these

trajectories are shown in Table 4.4. The algorithm tracked to the first two

trajectories of Table 4.4, but by-passed the optimum value. Occasionally this

occurred with subsequent iterations that slowly moved from the optimum.

However, just as often, the algorithm jumped to a distant trajectory. The

momentary trajectory was one of a few to which the algorithm would

infrequently jump. The positive (hyperbolic) energy is too extreme for realistic

consideration, and is of little concern for separation. Finally, the 9 min

trajectory parameters shown are one of the cases that optimized on one

iteration because of a high tolerance setting.

4 Low Ejection Speed Family

As an alternative to a double cycle, a single cycle with a reduced ejection

speed causes low separations. For a comparable tension acceleration, a low

ejection speed decreases the amount of travel for a given free arc duration and

reduces the subsequent distance for full arc acceleration. Thus, lower velocity

change capability is expected in conjunction with the closer separation.

For a reduced ejection speed, the same tether acceleration is used to

ensure similar dynamics during the full arc. A lower tether acceleration in

4.11



Table 4.4 - Case E Trajectory Parameters

Mission 6., radians t,, t2, t3, 12, Comment
Duration, min min min m_/s_( x10)
mrai (,=-3xm m07)

90 5.45 3.47 7.77 34.66 -5.6535 By-passed

90 4.12 2.05 6.00 34.69 -0.0661 By-passed
(after =700
previous
iterations)

90 5.76 2.42 6.07 33.15 +3.3606 I Momentary

9 2.40 0.15 0.42 5.00 -3.089 High c

conjunction with the reduced ejection speed would tend toward higher minimum

separations and limit the investigation.

The family of trajectories was mapped for v0=1 m/s and ir*=2 m/s 2 (the same

as before). Table 4.5, Figure 4.4, and Figure 4.5 are the analogous data. With

the lower ejection speed, the algorithm was able to continue longer, and map

an additional trajectory (6 min). However, this was at the expense of increased

optimization iterations during the loaded portion of the mapping, as before. Up

to 93 iterations were required during mission durations of 31.5-15 min.

Figure 4.4 shows this is the portion of the mapping where the final radial rate

was increasing, as was the case for the higher ejection velocity. Also, the final

radial rate begins decreasing with mission duration below 10.5 min.

Although the peri-orbiter radius trend is the same for this case, the value of

the peri-orbiter radius is approximately 1/34 that for the higher ejection velocity
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Table 4.5 - Optimum Trajectory Parameters for Low Speed Ejection

Mission OPTIMUM 90, OPTIMUM t1, RESULTANT
Duration, radians s PAYLOAD ORBIT
min SEMI-MAJOR AXIS, m

90 0.00 5270.999 6258677

90 3.16 5271.015 7114676I 2.48 517.092 6577434

9 5.62 517.090 6729822

E
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E
0
C

*~-0.5-

3

o ejection velocity = 1 r/s solid - pe.-orbiter adius (1239 m)
a.. tether acceleration = 2 rn/s/s dashed - extra separation .45 m)

Idotted - final radial rate (-68 rn/s)
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Mission Duration, mi

Figure 4.4 - Low Ejection Speed Parameters

situation. Additionally, the extra separation is smaller and more negligible. At

its maximum value of 0.45 m for a mission duration of 43.5 mn (again), it adds

little to the pen-orbiter radius of 328.91 m (0.14%/).
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Figure 4.5 - Low Ejection Speed Velocity Change and Tether Length

5 Tether Length Comparison

As expected, the tether length is shorter for the lower ejection speed and

the same mission duration. However, in addition to having the same trend, an

unexpected correlation between tether length and velocity change is evident.

For the maximum length with low ejection speed (16.6 km at a 79.5 min

mission), the velocity change is -250 m/s. This is about the same (a bit more)

than the velocity change for the same length tether withthe high ejection

velocity. Interpolating from the tabulated data for Figure 4.3, the corresponding

high ejection velocity at 16.6 km is -238 m/s at a mission duration of 23.3 mi.

In addition to occurring at different mission durations, these two related
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trajectories have different separations. The high ejection speed peri-orbiter

radius is 746 m, which differs from the low ejection speed peri-orbiter radius of

1197.87 m.

However, this is only an isolated case where the two velocity changes are

equal. For a tether length of 4 km, the high ejection speed mission of 7.5 min

had a -123 m/s change and a separation of 10.24 m, while the comparable low

ejection speed mission of 31.5 min had a -65.60 m/s change and a separation

of 103.09 m. Hence, a trade-off exists between velocity change and separation

where the ejection velocity selects the desired trade-off. Figure 4.6 allows

graphic comparison of the low speed trajectory with the small number of high

speed trajectories that have the same tether lengths.

6 Summary

For stationkeeping, with an orbiter energy increase desired, the payload is

propelled to a minimum energy orbit. The single cycle reel-in tether case

indicates higher tether lengths allow greater energy and velocity changes for

both the orbiter and payload, while increasing the minimum separation. Shorter

tether lengths occur for the double cycle case, but optimization over the

additional mission parameters failed to provide automated results. Alternately,

a lower ejection speed causes closer separations; but at the expense of

propulsion capability.
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V Conclusions and Recommendations

Various parameters affect the minimum payload separation during reel-in

tethering. The mission duration, number of free and full arc cycles, and ejection

velocity were varied to determine their affect on minimum separation. All

assessments were performed for optimum trajectories, which are generally

preferred.

1 Conclusions

Increasing mission duration causes increased minimum separation while

increasing tether length. Additionally, increased propulsion capability is attained

with increased mission durations. Thus, if a safe separation is desired, any

optimum trajectory with an equal or greater minimum separation is satisfactory.

Trajectories that optimally terminate with a negative radial rate (prior to

reaching the minimum separation point) have increased minimum separation

over the peri-orbiter radius. However, since the difference is small, the peri-

orbiter radius is an effective model for minimum separation.

A decrease in ejection speed decreases propulsion capability. However,

although it decreases separation for a specific mission duration, it increases

separation for a specific tether length. Thus, a specific tether length has a

range of minimum separations for varied ejection speeds.

Overall, essentially any minimum separation for an optimum trajectory can
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be achieved byyarying tether length or ejection speed. Variation of both may

or may not provide sufficient optimum propulsive capability depending on

additional factors such as the tether acceleration, the initial orbit, and the mass

of the payload and orbiter.

2 Project Recommendations

Numerous conceptual operational problems exist with the reel-in tether, some of

which are unique. In addition to nominal concerns about torque on the orbiter

and tether tension capability, the reel-in tether requires a substantial winch

capability and satisfactory tether management. During the mission, the tether

length that is retrieved must be managed; while after payload release, the

deployed tether length must be managed. However, although only separation

has been addressed in this study, these problems may conceivably be solved in

the next century. Continued study of the reel-in tether is recommended to

determine complete propulsive capability and prompt the investigation, and

hopefully the solution, of the operational problems.

3 Recommendations for Further Study

Since the double cycle is highly desirable for decreasing tether lengths for

specific mission durations, a revised or new optimization method should be

applied to determine the optimum trajectories for multiple cycles. However, the

single cycle case still requires continual variation of the ejection speed.

Additionally, tether acceleration variations are important for determining the
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impact of a tether structural limit. While considerations of tether mass

dynamics may be complex, simple models would allow more complete

determination of minimum separation and propulsive capability.

An important area for separation is non-optimum trajectories. Variation from

the optimum trajectory would clearly change the minimum separation, but would

extensively increase the scope of study, as well. Of lesser concern is the

resultant orbit shapes. Nonetheless, examination of the final orbits of the

payload and orbiter may warrant investigation.

4 Summary

The reel-in tether provides a unique method of propelling a payload and orbiter.

The major dynamic disadvantage, low minimum separation, can clearly be

investigated for a range of pertinent operations. Overall, safe separation is not

an obstacle for the feasibility of a reel-in tether.
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complete. Tether and winch capabilities are assumed to be satisfactory during the arcs. Families
of trajectories are examined for a range of mission times and minimum final payload energy.
Families for two ejection speeds provide comparison of propulsion capability, tether length, and
minimum separation radius. Safe separation is achievable through variation of the mission duration
and/or the ejection speed.
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