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OBJECTIVE

Investigate automated decision-making techniques for use in situations where
incoming tactical reports are frequently inaccurate or incorrect and where information
about probability models is limited.

RESULTS

Of the four algorithms compared, none was satisfactory for all decision problems.
Several statistical techniques were investigated for measuring the relevance of evidence
to a decision problem and for identifying suspicious or conflicting evidence. An
approach was describud for two representative problems. A simple version was imple-
mented in CLIPS to uncover unforeseen difficulties that could occur. The approach
seems feasible, although it depends on having current probability assignments or other
numerical judgments from experts. While maintaining current probability distributions
agreed upon by experts may be the most difficult part of the problem, it should be
feasible with the help of a user-friendly, interactive program.
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1.0 BACKGROUND

Basing a decision on data from unreliable sources is a common experience.
Bayesian arguments (Pearl, 1988; Ng & Abramson, 1990) can provide an optimum
soljtion but require prior and conditional probabilities that are often unknown. We are
investigating automated decision-making techniques suitable for situations where
incoming reports are frequently inaccurate or incorrect and where information about
probability models is limited.

1.1 THE DECISION PROBLEM

The basic problem is to decide among an exhaustive set {Hi} of mutually exclusive
hypotheses, given a set of evidence {Ej}. The evidence consists of reported facts or
measurements and, for each, we have a measure Wj of its accuracy or confidence in
its source, as discussed in the next section. Numerical judgments of {Hi} can have any
of four forms. For hypothesis Hi and evidence Ej, we may have P(HiIEj), P(EjlHi), a
fuzzy measure of how consistent evidence Ej is with Hi, or a Dempster-Shafer
probability assignment mj(Hi) (Dempster, 1967; Shafer, 1976). We generally will not
have estimates of other probabilities needed to perform Bayesian analysis, e.g., the
probability of Hi conditional on Ej not occurring, P(HiI-i EJ).

Thc candidate decision methods compared here are the linear opinion pool, the
logarithmic opinion pool, Dempster's rule (Dempster, 1967), and a fuzzy-logic algo-
rithm. Of these, only Dempster's rule requires independent evidence. Comparisons
include the MYCIN (Shortliffe, 1976) certainty-factor calculus for the two-hypothesis
examples, where H2 is ---,HI and the numerical judgments are measures of belief and
disbelief in HI.

1.2 DATA-QUALITY MEASURES

The kinds of data pertinent to tactical decision problems include parameter meas-
urements and statements of fact. Some of the facts are derived from raw parameter
measurements, such as facts concerning emitter classifications. Reasons for bad tactical
data include human error, faulty equipment, sensor resolution, navigation error, contact
ambiguity, and midlevel data-fusion errors.

The definition of a measure of data quality will depend on data type and on how
that measure is to be used. The study described in Section 2 is to determine
appropriate ways of using the measures. Separate studies are directed toward defining
and measuring tactical data quality. The comparison of decision methods is valid for
the values of Wj arbitrarily specified, and calibrating the measure to the decision
problem can be treated as a separate issue. However, we need to at least consider here
the nature of a data-quality measure.



The simplest definition of a data-quality measure for factual data is the probability
that the fact is true, i.e., Wj = P(Ej true). However, unless the measure is well over
0.5, we also would need to know P(Hil--iEj). In practice, a small measure often will
imply uncertainty, ignorance, or ambiguity more than incorrectness. For example, an
observer may be uncertain about the class of a ship seen in the dark or in a heavy
fog, or about the classification of a signal embedded in noise. Also, an intercepted
signal may be used to classify a contact, but the signal may actually have been emitted
by another vessel in the same general direction. This is especially likely to occur when
navigation errors are large or when atmospheric ducting conditions exist and the emit-
ting vessel is well beyond the horizon. A knowledge-based system could estimate the
data quality based on the spatial density of other contacts and on atmospheric condi-
tions in addition to sensor performance. The definition of data quality also depends on
use. For example, gross inaccuracies in position may be fully acceptable for determin-
ing that a contact is located in a commercial lane, a common path of transit, or in an
unusual area, because the position error is usually small compared to lane width or
area size.

1.3 NUMERICAL PR(,BABILITY JUDGMENTS

The user of a decision algorithm must supply numerical judgments of the hypothe-
ses. Some of the exidence contributes more naturally to probability distributions of the
form {P(HiEJ))} or {mj(Hi)}, discussed later in this section, and other evidence to
{P(EjIHi)} or to fuzzy measures of expectation of Ej for each hypothesis Hi. To com-
pare a fuzzy method with the others, we have interpreted the conditional probabilities
{P(EjIHi)} to be a fuzzy subset of the set {Hi}, where P(EjJHi) indicates to what degree
evidence Ej is consistent with Hi. This is similar to the way these conditional probabili-
ties would be given values by a domain expert.

Conversion of the distribution {P(EjIHi)} to {P(hiIEj)} for evidence Ej is straightfor-
ward, provided that care is given to the interpretation of the resulting probabilities and
to the possible interplay of prior or base-rate probabilities. The relationship is found by
using Bayes' rule:

P(HiIEi) = P(EiIHi) P(Hi)
PP I P(EjIHk)P(Hk)
k

When we can treat the prior probabilities {P(Hi)) as equal, we have

P( EiI Hi)
P(HiIE) = (2)

Z P(EjIHk)
k

Note that in Equation 2, the probabilities {P(HiIEJ)} cannot be converted to {P(EjIHi)
without knowledge of P(EjiHi) for at least one Hi.
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There are constraints on the collective probability distributions and data-quality
measures. Assume that the measures {Wj are on a scale of 0 to 1, where Wj = 1
means that the information from the jth source is absolutely correct. (We do not allow

= 0.) Recall that the hypotheses are exhaustive and mutually exclusive, giving

P(HilEJ) = 1. We disallow the following combination, because one piece of evidence
Ej rules out the hypothesis Hi and the other, El, rules out all other hypotheses:

[Wj = 1; P(HiIEj) = 01 and [W = 1, 1 # j; P(HijEI) = 11.

Another combination we disallow, because it implies the above, is

[Wj = 1; P(HkjEj) = 11 and [WI = 1, 1 ) j; P(HiIEl) = 1, k : i].

In all of our applications, what could be considered a prior distribution is treated as
a base-rate frequency (Tverksy & Kahneman, 1974), which is a probability distribution
contributed by only one piece of evidence. A base rate for a radar or sonar contact
typically results from its location in a particular area or commercial lane. For example,
suppose that the hypotheses correspond to the ship type of a radar contact and that
evidence El puts the contact in a particular merchant lane. If H15 corresponds to
Merchant, then P(HI5JE1) is the ratio of the long-term count of merchants in that lane
to the long-term count of all platforms in the lane, and similarly for other ship types.
The conditional probabilities contributed by all other evidence should not be affected
by this base rate, so we can use Equation 2 to convert P(EjIHi) to P(HiJEJ).

Many of the conditional distributions contributed by evidence will be derived subjec-
tively or will be based on recollection of the frequency of outcomes in similar cases.
Some can be derived empirically by using probability distributions of sensory measure-
ments (Garvey et al., 1981). In a later example, representative curves are derived
empirically from sensor measurements of initial detection range and speed for each
ship type.

To compare Dempster's rule with the other methods, we allow probability to be
assigned only to the singleton hypotheses and to the disjunction U of all hypotheses,
i.e., to HI OR H2 OR H3 .... (In the general application of Dempster's rule, probabil-
ity can be assigned to any disjunction of hypotheses.) The probability mass assignment
(that we call it to distinguish it from the other distributions) based on evidence Ej then
consists of {mj(Hi)} and mj(U). We can simply let mj(Hi) = 1 - Wj, where the Wj's are
on a scale of 0 to 1, and let mj(Hi)} = Wj - P(HiJEj); however, we would overlook a
primary reason for using Dempster's method. The probability mj(U) can represent
uncertainty concerning both the evidence and the interpretation of it, and representing
the latter kind of uncertainty is also important. In most of the examples of applications
that we give later, the original probability distributions consist of {mj(Hi)} and mj(U),
where mj(U) represents both kinds of uncertainty. We later address the problem of
converting these to conditional probabilities for use in the other algorithms.
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1.4 ISSUES

Section 2 addresses the need for a decision algorithm that uses numerical
probability judgments and data-quality measures. We could find no decision algorithm
intended for this purpose, but several appear to be applicable, with some reinterpreta-
tion. A question is if an existing algorithm will perform adequately or must one be
designed for this purpose?

Another question is how to determine which data to use in a decision problem or,
equivalently, which decision problems need each datum. Section 3 discusses ways of
measuring the relevance of evidence to a set of hypotheses, and also ways of measur-
ing conflict among the pieces of evidence with respect to a set of hypotheses. Data-
quality measures simply indicate the average quality of the source, after adjustments
for propagation and other factors. The actual quality may fluctuate widely for some
kinds of data. Statistical techniques can be used to identify conflicting or suspicious
data needing verification.

Finally, is it realistic to expect that these statistical techniques and other needed
inferencing can be implemented in a knowledge-based system? Section 4 investigates
possible system architectures and discusses how to obtain the needed numerical
judgments.
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2.0 USING DATA-QUALITY MEASURES IN
DECISION-MAKING ALGORITHMS

In this section, we will investigate the performance ol several algorithms in which
we can use data-quality measures. While none of these methods was intended for quite
this purpose, all are applicable with certain limitations.

2.1 DECISION METHODS

For each of the decision methods below, select hypothesis Hi such that the decision
statistic di is greatest (or rank the hypotheses in the order of the values of di). In the
first three methods, normalize the weights Wj to obtain weights wj such that 1w = 1.
The two opinion-pool methods a 2 described in Genest and Zidek (1986) and in Zidek
(1986). The weighted Min-Max is a fuzzy logic method that Yager (1977) introduced
for another kind of application, where Wj represented criterion importance. Dempster's
rule (Dempster, 1967; Shafer, 1976) requires independent evidence.

2.1.1 Linear Opinion Pool

di = i j P(HiIEj) (3)

2.1.2 Logarithmic Opinion Pool

[I P(HiIEj)vvj
di = (4)S[-i P(HiIEj)i j

i j

A small value of wj results in a factor close to I for all Hi, which reducec the
effect of that evidence on the decision statistic di. Figure 1 gives exponentially
weighted probabilities for a variety of values of exponent w. The veights are tradition-
ally normalized to sum to 1, but normalization does not affect the ordering of the
values of di. For normalized weights, note that if all the evidence gives the same

conditional distribution {P(HiJE)}, then di = P(HiIE). This is also true for the linear
opinion pool, and is a desirable property when pooling opinions that might be based
on the same evidence.

5
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Figure 1. Effect of exponential weighting.

2.1.3 Weighted MVin-Max

di = rain ci j
(5

The fuzzy measure cji is the degree to which evidence Ej is consistent with hypothe-
sis Hi. (Q = {cji( is a fuzzy subset of H = {Hi}.) For comparisons with other methods,
let cjF ) P(EjpHi). If we assume equal prior probabilities, the decision ordering is the
same whether we use P(EjlHi) or P(HiEJ). Figure 1 applies also to this method. Note
that a very small value of wj is unlikely to produce a minimum value of cjiwi.

2.1.4 Dempster's Rule

As stated earlier, the probability mass assignment based on evi6d-nce Ej consists of
{mi(Hi)} and mj(U) where U is the disjunction of all hypotheses. The lower bound to
the probability P(Hi[{EJJ}) that Hi is true ba,,od on all evidence is (Dillard, 1982)

re(Hi) = ][mj(Hi) + mj(o)] - -]mj(U)}IC = F(Hi)IC (6)

I Iwhere F(Hi) represents the expression in braces and

C H [-mj(U) + Y F(Hi) .(7
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The resulting uncertainty is

m(U) = -Imj(U)/C (8)

The resulting upper bound to P(HiI{Ej}), which is known as the plausibility of Hi, is

p(Hi) = m(Hi) + m(U) . (9)

Let the decision statistic be

di = m(Hi) + m(U)/n (10)

where n is the number of hypotheses. The values of di then sum to 1. (This statistic
does not apply to the general case where probability mass is assigned to disjunctions in
addition to U.)

Conversion from mass assignment to conditional probabilities. The probability
assigned to uncertainty U represents uncertainty concerning both the evidence and the
expert's interpretation of it. The other decision methods do not allow the expert to
express uncertainty about the conditional probabilities. We could change this by
redefining the weight Wj to include both kinds of uncertainty, in which case the
conversion formulas for comparison purposes are Wj = 1 - mj(U) and P(HiIEj) =
mj(Hi)/Wj, where the {Wj are specified on a scale of 0 to 1. A serious problem with
these formulas can occur, though, when mj(Hi) = 0, as discussed in Section 2.1.5. To
avoid this problem and to maintain our concept of Wj as a data-quality weight, we give
here a conversion method that creates Wj from only that component of m(U) that
represents data quality.

Separate mj(U) into two components, mj(U) = mjE (U) + mjH(U), where mJE (U) rep-
resents uncertainty about the truth or accuracy of the evidence and mjH(U) represents
uncertainty about how to interpret the evidence, assuming it is accurate or true. Let the
data-quality measure for evidence Ej be

Wj = 1 -mjE(U) (11)

and the probability of Hi conditional on Ej be

P(HiIF, = mj(Hi) + mjH(L)/n (12)
1 - mjE(U)

where n is the number of hypotheses.

7



Conversion to mass assignment from conditional probabilities. Let mjE(U) = 1 - Wj,
where the data quality weights Wj are specified on a scale of 0 to 1. Optionally, assign
a value to mjH(U) to represent uncertainty about the interpretation of evidence Ej, i.e.,
uncertainty about the probability assignment {P(HiIEJ)}. The default value is 0. Let

mj(U) = mjE(U) + mjH(U) (13)

and

mj(Hi) = Wj • P(HiIE) - mjH(U)/n . (14)

2.1.5 Desired Properties

Assume that the {Wjf are scaled from 0 to 1 and that Wj = 1 implies that Ej is

absolutely true. We desire the following properties in a decision algorithm.

Property 1. Wj = 1; P(HiIE) = 0 = > Hi rejected.
Property 2. Wj = 1; P(HiIEJ) = 1 = > Hi selected (because P(HkIEj) = 0 for all k = i).

Property 3. Wj < 1; P(HiEJ) = 0 = > Hi not automatically rejected.
Property 4. P(HiJEJ) > P(HkIEJ) for all k 0 i and all j = > Hi selected.

Table 1 shows which properties are satisfied by the four decision methods.
Properties 1 and 2 are desirable only if we assume that the domain expert will not give
P(HiIEJ) a value of 0 or 1 in error. The expert may be uncertain of intermediate values
but knows when the evidence, if correct, rules out a hypothesis or can occur only with
one hypothesis. The results for Dempster's rule assume that the conversion is made by
letting m(U) = 1 - Wj and mj(Hi) = Wj - P(HiIEJ); that is, the component mjH(U) is
zero.

Table 1. Properties satisfied or not satisfied by decision algorithms.

Desired Linear Log Dempster's Weighted
Property Opinion Opinion Rule Min-Max Pool

1 No Yes Yes Yes
2 No No Yes Yes
3 Yes No Yes No
4 Yes Yes Yes Yes

By not satisfying Property 3, the logarithmic opinion pool and the fuzzy logic
method give veto power to an individual piece of evidence. Note that if all of the
hypotheses are vetoed, di is not defined in the logarithmic pool and is zero for all i in
the fuzzy method. Very small values of P(HiIEj) or P(EjIHi) have an effect close to
vetoing. Because it is based on a product, the logarithmic pool is particularly sensitive
to errors in estimating small conditional probabilities, e.g., estimating 0.005 when 0.01

8



is appropriate. The logarithmic pool fails Property 2 only because some other evidence

Ek with Wk < I can contribute P(HilEk) = 0 and veto Hi.

With Dempster-Shafer mass assignments, it is common that mj(Hi) is nonzero when

evidence Ej increases belief in Hi and is zero when Ej does not. Because letting
E(HiIEj) be mj(Hi)/Wj yields vetoes for all Hi such that mj(Hi) = 0 for some j, that con-

version is impractical for use with the logarithmic pool and the fuzzy method. In fact,

in the two-hypothesis examples given later, every hypothesis would be vetoed. For this
reason, we use Equation 14 in those examples.

A desirable property when the evidence is mutually independent is that of reinforce-

ment. With Dempster's rule, for example, if all evidence contributes the same prob-
ability assignment, say with the greatest probability assigned to H1 and the least to H2,
then dl will be significantly greater than mj(HI) + mj(U)In and d2 will be significantly
less than mj(H2) + mj(U)/n. Recall that the opinion pools would give dl = P(H1IEJ) and

d2 = P(H2IEJ).

2.1.6 Certainty Factors

The certainty-factors calculus used in the MYCIN (Shortliffe, 1976) system is

applicable to our two-hypothesis decision problems, where H2 is --1Hi1 (because the
hypotheses are exhaustive and mutually exclusive). A certainty factor is a number
between 1 and -1, where 1 means H1 is absolutely true and -1 means HI is absolutely
false, i.e., that H2 is true. The certainty factor for evidence Ej is defined by CF[HI,Ej]
= MB[Hl,Ejl - MD[H1,Ej], where MB[HI,Ej] is the measure of increased belief in H1

based on the evidence Ej and MD[Hl,Ej] is the measure of increased disbelief in H1

based on Ej. The combined certainty factor is CF = dl - d2, where dl and d2 are the
resulting measures of belief in H1 and H2, respectively, and are computed as shown
below. Let m be the number of pieces of evidence, and assume that no measure of
belief or disbelief is give a value of 1.

d1 , 1  = MB[H1,E1]
dlk = di,k- 1 + MB[H1,Ek](1 - dlk_- 1)
dl = di, m

d2,1 = MD[H1,E1]
d2, k = d2, k - I + MD[H1,Ek] (1 -d 2, k - 1)
d2 = d2,m

Rather than attempt to define a relationship between certainty factor assignments

and Dempster-Shafer probability mass assignments for the purpose of comparisons, we

simply let MB[Hl,Ej] = mj(HI) and MD[HI,Ej] = mj(H2). In every assignment in the
two-hypothesis examples, one of these measures is zero, which is a requirement in the
certainty factor method. Uncertainty about the evidence and its interpretation is
assumed embodied in the belief measures.

9



2.2 DECISION PROBLEM EXAMPLES

2.2.1 Iranian Airbus Incident

The first example is based on the Iranian Airbus incident as reported in Friedman
(1989), Carlson (1989), and Crowe (1989). A commercial aircraft, departing the Ban-
dar Abbas airfield on the morning of 3 July 1988, was identified by USS Vincennes per-
sonnel as a hostile F-14 and was destroyed by a missile. Data contributing to the
identification decision were (1) the aircraft originated from an airfield used both by
commercial and military aircraft but was off the center line of the commercial air cor-
ridor by 3 or 4 miles, (2) the aircraft's altitude was reported to be declining as it
approached the Vincennes, and (3) a Mode II IFF squawk (associated with an Iranian
F-14) was detected and attributed to the aircraft.

Table 2 gives arbitrary values of data-quality weights Wj and conditional probabili-
ties P(EjlHi) for four hypotheses. The report that the aircraft was descending was in
error so is given a low weight (probably much lower than its credibility at the time).
Values of W2 and P(E21Hi) are also given for a what-if case, where altitude is correctly
reported. We treat as separate evidence two aspects of the IFF squawk. First, only
certain aircraft have the capability of emitting Mode II. Some Iranian commercial
aircraft were believed to have that capability because they were also used militarily.
Secondly, is there a good reason why, under each hypothesis, the contact would have
its IFF energized? (The IFF squawk was not from the airbus, and the fact that P(E41Hi)
is small for all Hi could be used as an indicator of bad data.)

Facts not taken into account here include earlier military incidents. These incidents
significantly increased the expectation of a hostile event, which probably was normally
quite low. Another fact not specifically taken into account was that the airbus takeoff
was 27 minutes behind any scheduled commercial departure. While this apparently
contributed to the decision to react, such a delay seems normal in our experience.
However, we could consider this fact to be included in evidence El.

10



Table 2. Probabilities (fictitious) for the Irania i airbus incident.

Wj and P(EjIHi)

Evidence Ej: El: Origin and E2: De- [Not De- E3: Mode II IFF E4: Mode 11 IFF
location (off ,cending scending] (capability of) (reason for emitting)
center) in corridor

Quality Wj: 0.9 0.2 [0.8] 0.3 0.3

Hypothesis

HI: Military-
Hostile intent 0.8 0.7 [0.31 0.7 0.1

H2: Military-
Innocent passage 0.4 0.2 [0.81 0.9 0.4

H3: Commercial
carrier 0.7 0.05 [0.95] 0.1 0.05

H4: Private or other
commercial 0.6 0.2 [0.8] 0.7 0.05

Conversion of P(EjIHi) into P(HiIE) for the opinion pools used Equation 2. Further
conversion into probability mass assignments for Dempster's rule used mj(U) = 1 - Wj
and mj(Hi) = Wj • P(HijEJ).

Table 3 gives results for the case where evidence E2 is the false report that the air-
craft was descending. The decision order for Dempster's rule and the linear pool is the
same: HI, H2, H3, H4. The logarithmic pool has a reverse order for H3 and H4, while
the fuzzy method has a tie between H3 and H4. The values of di for the two opinion
pools fall within Dempster's lower and upper bounds (an uncertainty range of 0.072)
only for the first choice, HI. For the other hypotheses, some fall above and some
below.

Table 3. Comparison of decisions for Iranian airbus incident.

di and Decision order
Hypothesis Dempster's rule Linear Log Fuzzy

[with prob. bounds] pool pool

H1 Military - 0.359 [0.341-0.4131 0.351 0.386 0.666
Hostile intent 1 1 1 1

H2 Military - 0.228 [0.210-0.282] 0.303 0.295 0.616
Innocent passage 2 2 2 2

H3 Commercial 0.217 [0.199-0.271] 0.177 0.158 0.589
carrier 3 3 4 3/4

H4 Private or 0.196 [0.178-0.250] 0.168 0.161 0.589
Other commercial 4 4 3 3/4
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Table 4 gives the results for the modified version of the incident, where the altitude
was not mistakenly reported as decreasing. The ordering of the decisions for the two

opinion pools is the same, and the fuzzy method shares H2 as the first choice. The
ordering is different for Dempster's rule, but note that the values of di vary little
among the hypotheses for all methods. In fact, the difference is less than 0.001 in two
instances. Again, the values of di for the opinion pools fall within Dempster's bounds
(an uncertainty range of 0.36) only for Hi.

Table 4. Comparison of decisions for Iranian airbus incident, except altitude
correctly reported.

di and Decision order
Hypothesis Dempster's rule Linear Log Fuzzy

[with prob. bounds] pool pool

H1 Military - 0.2274 [0.218-0.2541 0.2432 0.245 0.658
Hostile intent 3 2 2 4

H2 Military - 0.260 [0.251-0.287] 0.307 0.315 0.699
Innocent passage 2 1 1 1

H3 Commercial 0.286 [0.277-0.313] 0.2430 0.238 0.677
carrier 1 3 3 2/3

H4 Private or Other 0.2270 [0.218-0.254] 0.207 0.202 0.677
commercial 4 4 4 2/3

2.2.2 Ship Type

The hypotheses in this example correspond to platform type, with types of lesser
importance combined to keep the number of hypotheses manageably small. The
hypotheses are as follows (Dillard, 1982).

Hl: carrier
H2: cruiser
H3: destroyer
H4: frigate
H5: amphibious
H6: submarine (surfaced or periscope/snorkel/antenna)
H7: small fighting ship
H8: fast attack/patrol craft
H9: patrol craft (not fast)
H10: intelligence collector
HI 1: survey/research (navy operated)
H12: fleet auxiliary - medium & large
H1I3: fleet auxiliary - small
H14: small boats (navy and commercial)
H15: merchant
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H16: fishing
H1 7: other commercial and private
H18: debris

We assume that there is one and only one platform under consideration; e.g., the
radar blip is not just radar noise or clutter and is not the return from two platforms
close together. We disregard the possibility that a contact that appears to be a surface
platform might be an aircraft.

Table 5 gives probability mass assignments taken from Dillard (1982). Evidence El
is the location of the radar contact. Base-rate frequencies are found from the long-term
average numbers of each type of platform at that general location, assuming that no
current military or weather event causes a change. The mass assignment for location
evidence in table 5 represents these base-rate frequencies and an uncertainty mass
ml()= 0.35.

Table 5. Probability mass assignments for ship type.

Hyp. Ship type Location Range Speed
m1(hyp) m2(hyp) m3(hyp)

H1 carrier 0.003 0 0.103
H2 cruiser 0.013 0 0.103
H3 destroyer 0.040 0 0.103
H4 frigate 0.030 0 0.029
H5 amphibious 0.040 0 0.008
H6 submarine 0.020 0.037 0.009
H7 small fighting 0.040 0.045 0.029
H8 fast a/p craft 0.060 0.136 0.074
H9 patrol craft 0.020 0.136 0.009
HIO intel. collector 0.015 0.027 0.008
H1I survey/research 0.012 0 0.008
H12 auxiliary-med/lrg 0.090 0 0.008
H13 auxiliary-sml 0.030 0.045 0.008
H14 small boats 0.010 0.055 0.011
H15 merchant 0.130 0.023 0.034
H16 fishing 0.070 0.077 0.011
H17 other com/private 0.020 0.064 0.045
H18 debris 0.007 0.055 0
U uncertainty 0.350 0.300 0.400

The initial detection range of the radar contact is 11 nautical miles, and the
measurement of its speed is 31 knots. Probability mass assignments are found for
these measurements by using a method similar to that used with emitter parameter dis-
tributions by Garvey, et al. (1981). Figure 2 illustrates the method with distribution
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curves for range at initial detection. (Such curves are valid for only one antenna
height, frequency, and environment state, and assume a low signal strength.) For each
measurement and each ship type, a strip corresponding to the measurement ± the
average measurement error is overlaid on the appropriate distribution curve and the
overlapped area is computed. These areas are normalized to sum to the complement of
the probability mass of the uncertainty, mj(U), concerning the measurement and its
interpretation. Letting m2(U) be 0.3 for the range measurement and m3(U) be 0.4 for
the speed measurement gives the values in the m2 and m3 columns of table 5.

H14, H18 (Small I
boats, debris) -

Hi1-H5, Hill, H1 2 -- ---

(Medium & large)

H10 (AGI)II I

H-7, H13 (Small II II
Navy ships)

H8, H9 (Attack/
patrol craft)

H6 (Submarines)

H15 (Merchant) I

H16 (Fishing)

H17 (Other comm.
& private)-] -- - - - -j

0 10 20 30 40
INITIAL DETECTION RANGE (nautical miles)

Figure 2. Distribution functions for initial detection range (Dillard, 1982).
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To compare the other decision methods with Dempster's rule, we convert the three

probability mass assignments of the form mj(Hi) in table 5 to the conditional probabili-
ties P(HijEJ) by using Wj = 1 - mj(U) and P(HiIEJ) = mj(Hi)/Wj. That is, we let mjH(U)
be 0 in equations 11 and 12. We cannot obtain P(EjlHi) for use in the fuzzy method,
but substituting P(HiIEj) gives the same decision order. The values of di for the four
decision methods are given in table 6. Note that all methods result in the same pre-
ferred decision, H8: fast attack/patrol craft. However, the values of d8 for Dempster's
rule and the opinion pools are so small that making a decision is inadvisable, so the
useful result is an ordered list of most likely types. H15 is the second choice for all
but the fuzzy method, where it is fourth. In general, the results for all methods are
fairly similar. It is interesting to note that the nonzero values of di for the opinion
pools are within Dempster's bounds (an uncertainty range of 0.138) for all except H8,
where the linear pool's d8 is lower. Note also that the last-place decision for all is
H1l, although it is a tie at zero with other hypotheses for the logarithmic pool and the
fuzzy method.

As discussed earlier, a property of the logarithmic pool and the fuzzy method that
is undesirable (unless evidence Ej is absolutely correct) is that di will be zero if the
conditional probability of Hi is zero for a single piece of evidence. In this example,
howcver, values of zero for di are not unreasonable. Debris and large ships can be
ruled out even if the measurement errors are large, because debris travels much slower
than 31 knots and a large ship can be detected by radar at a range much greater than
11 nautical miles under the assumed conditions.

Comparisons (not shown) were also made for the case where some of the uncer-
tainty mass is attributed to uncertainty about the interpretation of the evidence.
Equations 11 and 12 were used with mlH() = 0.25, m2 H(U) = 0.15, and m311 (U) =

0.2. With this conversion, no conditional probability was zero and therefore no value of
di was zero. Compared to the results in table 6, the ordering of the decisions for
Dempster's rule and the opinion pools was unchanged for the four highest, respec-
tively. The decisions for the fuzzy method differed starting with the third. Overall, the
results were nearly the same as in table 6.
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Table 6. Values of di for decision on ship type.

Hi Ship type Dempster's rule Linear Log Fuzzy
[with prob. bounds] pool pool

HI carrier 0.045 [0.037-0.175] 0.054 0 0
H2 cruiser 0.050 [0.042-0.180] 0.059 0 0
H3 destroyer 0.063[6] [0.055-0.1931 0.073[51 0 0
H4 frigate 0.030 [0.023-0.1601 0.030 0 0
H5 amphibious 0.026 10.019-0.157] 0.025 0 0
H6 submarine 0.037 [0.030-0.167] 0.034 0.055 0.275*
H7 small fighting 0.059 [0.052-0.189] 0.058 0.10615] 0.373[2]
H8 fast a/p craft 0.14811] [0.140-0.278] 0.138[1] 0.24011] 0.45211]
H9 patrol craft 0.086[3] [0.079-0.216] 0.08513] 0.087[6] 0.275*
H10 intel. collector 0.030 [0.022-0.160] 0.026 0.043 0.265
H11 survey/research 0.0151L] [0.008-0.145] 0.010[L] 0 0
H12 auxiliary 0.047 [0.039-0.177] 0.050 0 0
H13 auxiliary-sml 0.045 [0.038-0.1751 0.043 0.065 0.265
H14 small boats 0.042 [0.035-0.172] 0.039 0.053 0.249
H15 merchant 0.091[2] [0.083-0.221] 0.096[2] 0.12912] 0.293[4]
ff16 fishing 0.083[4] [0.076-0.213] 0.08114] 0.115131 0.292[5]
H17 other corn/private 0.066[51 [0.059-0.197] 0.066[61 0.109[41 0.313[31
H18 debris 0.036 10.029-0.166] 0.032 0 0

[L] - Last *tied - 6&7

2.2.3 Merchant Ships

Merchant ships have certain behavior characteristics. They travel in merchant lanes,
rarely speeding or changing speed and rarely changing course except to avoid a storm.
By contrast, military ships frequently maneuver and, during hostilities, are more likely
to be within weapons range of a high-value target. Characteristics such as these are
useful in deciding whether or not a radar contact is a merchant, although, of course, a
military ship may purposely try to appear like one. Table 7 summarizes four situations,
each with six pieces of evidence and under the assumption of open sea and clear
weather. The contact is a merchant in Cases 1 and 2 and is a cruiser in Cases 3 and
4. The probabilities in table 7 are given as Dempster-Shafer mass assignments. Each
assigns probability mass only to one of the two hypotheses, so this mass can also be
used as a measure of increased belief or disbelief in H1 to compute MYCIN certainty
factors (Shortliffe, 1976). (Empirically derived assignments would generally give non-
zero probability mass to both hypotheses.) To convert the assignments to Wj and
{P(HiIEj)}, values of both components of mj(U) are specified.
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Table 7. Evidence and probability masses for decision between Hi: Merchant
and H2: Not merchant.

Evidence Ej El: Merchant E2: Detec- E3: Speed E4: Course E5: Speed E6: Within
Lane tion Range Change Change Reach

Case 1 (Typical Inside 21 NM 22 knots No No No
merchant)

mj(H1) .3 .15 .2 .15 .1 .3
mj(H2) 0 0 0 0 0 0
mj(U)=mjE(U) .7=.1+.6 .85=.3+.55 .8=.4+.4 .85=.3+.55 .9=.3+.6 .7=.5+.2
+mJH(U)

Case 2 (Large Inside 28 NM 28 knots No No No
fast merchant)

mj(H1) .3 0 0 .15 .1 .3
mj(H2) 0 .15 .1 0 0 0
mj(U)=mjE(U) .7=. 1+.6 .85=.3+.55 .9=.4+.5 .85=.3+.55 .9=.3+.6 .7=,5+.2
+mjH(U)

Case 3 (Cruiser) Inside 30 NM 30 knots No No No

mj(H1) .3 0 0 .15 .1 0
mj(H2) 0 .4 .25 0 0 .2
mj(U)=mjE(U) .7=.1+.6 .6=.3+.3 .75=.4+.35 .85=.3+.55 .9=.3+.6 .8=.1+.7
+mjH(U)

Case 4 (Cruiser) Outside 30 NM 30 knots Yes (60) No Yes

mj(H1) 0 0 0 0 .1 0
mj(H2) .6 .4 .25 .5 0 .2
mj(U)=mjE(U) .4=.1+.3 .6=.3+.3 .75=.4+.35 .5=.3+.2 .9=.3+.6 .8=.1+.7
+mjH(U)

Table 8 gives the results for the four candidate methods and for the certainty factor
method. The value of di for the preferred hypothesis in each case is underlined in
table 8. Note that all methods decide alike in all four cases. In Case 1, Dempster's
rule and the MYCIN method show reinforcement, a desirable property if the evidence
is independent. The opinion pool values are outside of Dempster's bounds even though
the uncertainty range is 0.255, which is fairly large. (The resulting uncertainty mass is
the product of the individual masses when each distribution assigns mass to uncertainty
and only one of the two hypotheses.) In Case 2, the opinion pool and MYCIN values
are within Dempster's bounds, with an uncertainty range of 0.336. In Case 3, the
opinion pool and MYCIN values are within Dempster's bounds, with an uncertainty of
0.274. In Case 4, Dempster's rule and the MYCIN method show some reinforcement,
although the belief measure dl is a little over the upper bound. The opinion pool
values are well outside of Dempster's bounds, with a small uncertainty range of 0.071.
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Table 8. Values of dl and d2 for decision between HI:merchant
and H2:not merchant.

CF* Dempster's rule Linear Log Fuzzy
measures [with prob. bonus] pool pool

Case 1
H1 0.745 0.873 [0.745-1.0] 0.646 0.650 0.909
H2 0 0.127 [0-0.255] 0.354 0.350 0.786

Case 2
H1 0.625 0.729 [0.561-0.897] 0.573 0.580 0.853
H2 0.235 0.271 [0.103-0.4391 0.427 0.420 0.786

Case 3
H1 0.465 0.375 [0.238-0.512] 0.467 0.460 0.787
112 0.640 0.625 [0.488-0.7621 0.533 0.540 0.803

Case 4
H1 0.100 0.044 [0.008-0.079] 0.294 0.276 0.699
H2 0.928 0.956 [0.921-0.992] 0.706 0.724 0.877
*Certainty Factor CF = dl - d2

2.2.4 Submarine Innocent Passage

A submarine that is proceeding at normal speed in its usual area of operations or
transit is probably in "innocent passage," particularly if it is surfaced. One that is in
torpedo range of a high-value target or appears to be hiding by being quiet is of more
concern. Table 9 gives probability masses for two submarine cases, each having four
pieces of evidence concerning area and behavior. As in the previous example, two
components of uncertainty are used in the conversion to P(HiEJ). Table 10 gives the
results for the four candidate decision methods and for the MYCIN certainty factor
method. In Case 1, all favor H2 except the fuzzy method, which is close to a tie. The
opinion pool and MYCIN values are within Dempster's bounds, with an uncertainty
range of 0.290. In Case 2, all methods favor H1. The opinion pool and MYCIN values
are within Dempster's bounds, with an uncertainty range of 0.24.
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Table 9. Evidence and probability mases for decision between HI: innocent
passage and H2: hostile intent, for two ubmarine cases.

Evidence Ej El E2 E3 E4

Case 1 Usual area Submerged Quiet Torpedo range
mj(H1) 0.4 0 0 0

mj(H2) 0 0.2 0.25 0.4

mj(U)=mjE(U)+mJH(U) 0.6=0.2+0.4 0.8=0. 1+0.7 0.75=0.3+().45 0.6=0.3+0.3

Case 2 Unusual area Surfaced Normal speed Course change
mj(H1) 0 0.6 0.2 0
mj(H2) 0.3 0 0 0.3

mj(U)=mjE(U)+mj H (U) 0.7=0.2+0.5 0.4=0.05+0.35 0.8=0.3+0.5 0.7=0.3+0.4

Table 10. Values of dl and d2 for decision between HI: innocent passage

and H2: hostile intent, for two submarine cases.

CF* Dempster's rule Linear Log Fuzzy
measures [with prob. bounds] pool pool

Cast 1
H1 0.400 0.339 10.194-0.484] 0.427 0.423 0.706
H2 0.640 0.661 10.516-0.8061 0.573 0.577 0.699

Case 2
Hi 0.680 0.630 [0.510-0.750] 0.532 0.544 0.744
1-12 0.510 0.370 [0.250-0.490] 0.468 0.456 0.600
*Certainty Factor CF = dl - d2

2.3 OBSERVATIONS ON DECISION-MAKING PERFORMANCE

The work described in Section 2 is the first step in finding a satisfactory decision
algorithm that uses data-quality measures in situations where numerical probability
judgments are limited. Four candidate algorithms were compared in sample problems
to see if they give reasonable results. No ground truth is available, so the suitbility of
an algorithm is in large part determined by how well it agrees with the other methods.
Suitability is also determined by the extent to which it satisfies the four desired proper-
ties that were specified.

The four candidate algorithms gave surprisingly similar results in these nine exam-
ples and in other comparisons not shown. The MYCIN certainty-factor method agreed
closely with the four candidates in the six examples where it applies. The first-choice
decisions for the two opinion pools were always the same, and usually their ranking
throughout was the same or similar. In seven of the nine examples, all methods gave
the same first choice. In the other two examples, Dempster's rule gave a different first
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choice in one and the fuzzy logic method in the other. In both cases, the first and
second choices were close. Several of the examples called for clear-cut decisions,
however, and the methods would agree significantly less if all of the examples involved
highly conflicting evidence.

The vlues of the decision statistic di for Dempster's rule and the opinion pools
sum to 1 and can be treated as estimates of probability. Interestingly, the nonzero
values of di for the opinion pools were inside Dempster's probability bounds for all 18
hypotheses except the first choice (where the linear pool's d8 was low) in table 6 and
were outside the bounds for all except the fir.t choice in table 3.

Dempster's rule and the certainty factor method have the reinforcement property,
and should not be used on dependent evidence. For example, when all of the evidence
favors one hypothesis moderately, the results strongly favor that hypothesis. The
opinion-pool values of the statistic di tend to fall outside of Dempster's bounds when
strong reinforcement occurs, as illustrated in Cases 1 and 4 in table 8.

Conversion between Dempster-Shafer probaoility assignments and sets of condi-
tional probabilities with weight Wj (the measure of evidence quality) was ad hoc. The
only purpose of the conversions was to compare the algorithms. In practice, the
probability judgments should be elicited in the form required for the method chosen.

Care needs to be taken with prior probabilities, the probabilities of Hi given no
evidence. Examples here used the base rate (usually having to do with location in a
lane or corridor) as one piece of evidence. In many applications, a mechanism for
calibrating and using human expectations based on preceding events would also be
desirable. Section 4.3 will discuss the problem of eliciting and using probabilities.

The lo .arithmic opinion pool and the fuzzy method eliminate consideration of a
valid hypothesis Hi when bad evidence yields P(HijEj) = 0 or P(EjjHi) = 0; i.e., they

fail Property 3. Table 11 gives a simple example where their use is not advised. The
evidence consists of three intercepted radar signals. (In practice, a base-rate distribu-
tion is also needed, to indicate the number of ships of each class normally in that
area.) The probabilities P(HiIEj) are 1/10, 1/7, and 1/2, respectively, for hypotheses
havirg radars x, y, and z. The hypotheses correspond to ship classes, only one of
which carries all three radars. (This example is discussed further in Section 4.1.2.)
Note that if Wj = 1 for one of the intercepted radar signals, the linear pool does not
necessarily reject the hypotheses for classes not carrying that radar, thereby it fails
Property 1.
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None of the four decision algorithms is fully satisfactory. Dempster's rule operates

only on independent evidence. Also, the domain expert may find it difficult to properly

represent uncertainty and subjective beliefs as probability mass assignments. The linear

opinion pool does not satisfy Property 1; that is, it does not necessarily reject hypothe-

sis Hi when P(Hi(Ej) = 0 and the evidence Ej is absolutely correct. Neither opinion pool

satisfies Property 2; i.e., Hi is not always selected when P(HiJEJ) = 1 and the evidence

is absolutely correct. As discussed just above, the logarithmic opinion pool and the

fuzzy method fail Property 3. An algorithm is needed that has the desired properties

and employs measures of correlation or dependence among the evidence.

Table 11. Comparison of decisions for three-emitter example.

Evidence: El: radar x W1 = 0.8

E2: radar y W2 = 0.8

E3: radar z W3 = 0.4

Hypothesis Radars Dempster's Linear Log pool

(Ship class) possessed rule pool and Fuzzy

HI x 0.042 [0.038-0.1311 0.040 0

H2 x 0.042 [0.038-0.1311 0.040 0

H3 x 0.042 [0.038-0.1311 0.040 0

H4 x 0.042 [0.038-0.1311 0.040 0

H5 x 0.042 [0.038-0.1311 0.040 0

H6 x 0.042 [0.038-0.1311 0.040 0

H7 x 0.042 10.038-0.1311 0.040 0

H8 x z 0.086 [0.081-0.1751 0.140 0

H9 x y z 0.186 10.181-0.2751 0.197 1

HIO x y 0.117 [0.113-0.206] 0.097 0

H11 y 0.058 10.054-0.1471 0.057 0

H12 y 0.058 [0.054-0.1471 0.057 0

H13 y 0.058 10.054-0.1471 0.057 0

H14 y 0.058 [0.054-0.1471 0.057 0

H15 y 0.058 [0.054-0.1471 0.057 0

H16 0.0047 [0-0.0941 0 0

H17 0.0047 [0-0.094] 0 0

HI8 0.0047 10-0.0941 0 0

H19 0.0047 [0-0.0941 0 0

H20 0.0047 10-0.0941 0 0
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3.0 MEASURES OF INFORMATION VALUE AND CONFLICT

If the decision algorithm is used in a knowledge-based system, statistical techniques
can be combined with reasoning techniques to select relevant data and to identify bad
or conflicting data. First, we consider ways of measuring the relevance of data.

3.1 MEASURES OF RELEVANCE

Evidence that is likely to occur only with one hypothesis is highly relevant. Figure 3
gives an example for four hypotheses. (Equation 2 gives the relationship between
P(Ejlti) and P(HiIEJ).) Evidence that rules out an important hypothesis is also of
value. A piece of evidence is irrelevant to the decision problem if it is likely to occur
for all hypotheses, that is, if P(EjIHi) is large for all Hi. Figure 4 illustrates such a
case. Note that when represented in the form P(HiIEj), we lose the information about
Ej being highly likely. However, evidence is not useful if it is nearly equally likely for
all hypotheses, which includes the latter case.

One function we can use to measure irrelevance in the above sense is the entropy
function

Irrelevance = - >P(HiIEj) log P(HiIEj), (15)

which is maximized (with value log n) when P(HiEJ) = 1/n for all i, i.e., when the
hypotheses are equally likely. A slightly simpler measure is the function

Relevance = - > log P(HiIEj), (16)
i

which is minimized (with value n log n) in the equal likelihood case. Neither of these
functions is defined if P(HiEJ) = 0 for some i. A simple function that will work in all
cases is

Relevance = maxi P(HiJEJ) - mini P(HiJEJ). (17)

Computations for many probability distributions showed all three functions to give the
same ordering, although some ties occurred with the third.

One approach to measuring how well a parameter measurement contributes toward
discriminating between two hypotheses is to use distance measures. Figures 5 and 6
give examples of applications. While a middle value of the parameter is much less

useful than an extreme value, the distance measure gives a measure of the overall
benefit of a parameter to that particular decision problem. Whether the measurement
is actually used for that problem would depend on its value.
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Figure 3. Evidence highly unique to a hypothesis.
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Figure 4. Evidence likely for any hypothesis.
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Figure 6. Distance measure application-information value
of single-speed measurement for deciding submarine intent.
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The following are measures of the distance between the conditional densities, pl(x)

and p2(x), of two hypotheses (Lainiotis & Park, 1972). As we will see in another appli-

cation in the next section, they give similar results.

Kullback Divergence:

J = f [pi(x) - p2(x)] log[pl(x)/p 2(x)]dx (18)

Bhattacharyya Distance:

B = -log p (19)

where p is the Bhattacharyya coefficient

p =f pIWp2(x) dx (20)

Kolmogorov Variational Distance:

K = f 1pi(x) - p 2(x)ldx (21)

Matusita Distance:

M ={ [/ p(x) - p2(X)
2 dx}1 /2  (22)

Lainiotis and Park (1972) point out that the Bhattacharyya coefficient, p, is related to
the Matusita distance, M, by

M = /2(1- P) (23)

and to the Kullback divergence, J, by the inequality

p -  exp(-J/4}. (24)

3.2 MEASURES OF CONFLICT

Questionable data should be called to the attention of the operator or commander,
who can have it verified or downgrade its credibility. Evidence Ej is suspicious if the
probability P(EjlHi) is low for all Hi (as it was for E4 in the Iranian airbus example in
Section 2.2.1). Figure 7 illustrates such a case. Note that this information is not avail-
able if the distribution is in the form P(HiEJ). Also, evidence is sometimes question-
able if it gives a probability distribution very different from those for other evidence. A
rule-based system could determine if the disagreement is normal for that type of
problem and kind of evidence. For example, the distributions for the three-emitter case
in Section 2.3 would show a large measure of disagreement. Next, we investigate
methods of determining when the distribution contributed by one piece of evidence
differs significantly from the others.
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Figure 7. Evidence unlikely for any hypothesis.

3.2.1 Dempster Assignments

The measure of conflict between two assignments mj and mk is

conflict(Ej,Ek) = I mj(Hi) * mk(H1). (25)

Hi&H1 = o

This quantity is 1 - C, where C is the normalizing constant given by Equation 7.
Figure 8 illustrates this area of conflict for two very different distributions. Note that in
figure 9, however, two identical distributions also show a considerable amount of con-
flict. Figure 10 illustrates a case where no conflict occurs. (Equation 25 does not apply
to assignments giving probability to disjunctions of hypotheses other than U.) We can
also compute the conflict among all distributions, but here we wish to determine if one
distribution conflicts with the others significantly more. We use Equation 25 for k < j
and let the conflict for an individual Ej be

conflict(Ej) = I conflict(Ej,Ek) + I conflict(Ek,Ej). (26)
k k

When computing conflict for the purpose of determining if one distribution is very
different from the others, we should not include the uncertainty about the data in the
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uncertainty measures. For comparisons with the distance measures below, we let mj(U)
be 0 for all j; i.e., we let mj(Hi) = P(HiiEj). For this case, Equation 25 becomes

conflict(Ej,Ek) = 1- P(HiE) - P(HilEk) (27)

When the distributions are identical, we have

conflict(Ej,Ek) = 1 - > [P(HiIEJ)12  (28)
i

which is maximized with value 1 - 1/n when P(HiEJ) = 1/n for all i, i.e., when the
hypotheses are equally likely. We further note from Equation 27 that when Ej gives an
equally likely distribution and Ek gives a different distribution, we also have conflict
(Ej,Ek) = 1 - 1/n. (While the conflict between the two distributions is greater, the
internal conflict of the distribution from Ek is less.) We then see that this measure of

conflict is unsuitable for our purpose, but it is of interest to compare it with other
measures.

m2(U) H1 H2 H3 U

m2(H3) . _ 2 H3

z CONFLICT
_ U

m2(H2) H H2

m2(H1) HI HI

ml(Hl) mllH2) ml(H3) ml(U)

EVIDENCE El

Figure 8. Combination of conflicting evidence by Dempster's rule.
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m2(H3) H3 H3

~-CONFLICT

z m2(H2) H

ml(H1) mi(H2) ml(H3) ml(U)

EVIDENCE El

Figure 9. Combination of consistent evidence by Dempster's rule.

m2(0) "h2 U

w
z CONFLICT

m2(,H1) -(Hi or h2) -'Hi

M1 (,H2) ml (tJ
EVIDENCE El

Figure 10. Combination of nonconflicting evidence
by Dempster's rule (number of hypotheses >2).
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3.2.2 Probability Distance Measures

For distributions of the form P(HiIEj), we can use the following discrete versions of
the pairwise distance measures given in the last section.

>~ [(HiEf)- PHiIk)]logP(HiIEJ)
Kullback: distance(Ej,Ek) [P(HilEJ) - P(HiIEk) (29)

i

Bhattacharyya: distance(Ej,Ek) = log [1 !P(HiEJ) o P(HiIEk)J (30)

Kolmogorov: distance(Ej,Ek) = IP(HiIEJ) - p(HiEk)l (31)

Matusita: distance(Ej,Ek) =t [ /P(HilEj) -P(Hi[Ek)2} 2  (32)

The distances are computed for k < j and are combined by using the formula

distance(Ej) = Z distance(Ej,Ek)) + I distance(Ek,Ej)) (33)
k k

3.2.3 Comparisons

Here we compare the measure (Equation 26) based on Dempster's measure of
conflict (Equation 26 or 27) and the measure (Equation 33) based on the four distance
measures (Equations 29 through 32) in four examples.

Data Set 1 is shown in figure 11 and listed in table 12. The results are given in
table 13, where the ordering is "1" for the greatest conflict and "4" for the least. The

four distance measures give very similar results. The Dempster method agrees with the
other methods that E2 has the greatest conflict, but its second choice, E3, has the least
conflict according to the other methods.

Data Set 2 is shown in figure 12 and listed in table 14. The results in table 15
show all methods to give essentially the same results.
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Figure 12. Data Set 2.
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Table 12. Data Set 1.

P(HiIEj)

El E2 E3 E4

HI 0.2 0.3 0.2 0.4

H2 0.4 0.3 0.3 0.2

H3 0.2 0.1 0.2 0.3

H4 0.2 0.3 0.3 0.1

Table 13. Measures of distance for Data Set 1.

El E2 E3 E4

Kullback 0.636 0.798 0.619 1.335
3 2 4 1

Bhattacharyya 0.803 0.100 0.078 0.169
3 2 4 1

Kolmogorov 1.200 1.200 1.000 1.800
2/3 2/3 4 1

Matusita 0.652 0.729 0.625 0.991
3 2 4 1

Dempster 2.240 2.240 2.250 2.290
3/4 3/4 2 1

Table 14. Data Set 2.

P(HiIEj)

E1 E2 E3 E4

H1 0.3 0.2 0.3 0.2

H2 0.3 0.2 0.1 0.4

H3 0.2 0.2 0.4 0.1

H4 0.2 0.4 0.2 0.3
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Table 15. Measures of distance for Data Set 2.

El E2 E3 E4

Kullback 0.757 0.844 1.658 1.329
4 3 1 2

Bhattacharyya 0.095 0.106 0.211 0.169
4 3 1 2

Kolmogorov 1.200 1.400 1.800 1.600
4 3 1 2

Matusita 0.741 0.785 1.075 0.922
4 3 1 2

Dempster 2.260 2.260 2.320 2.280
3/4 3/4 1 2

Data Set 3 is shown in figure 13 and listed in table 16. Note in table 17 that the

distribution contributed by El is much more extreme than the others. El is given the
greatest conflict by the four distance measures but the least by the Dempster approach.
This is because the internal conflict of {P(HiIE1)} is much smaller than for the others
(see Section 3.2.1).

Table 16. Data Set 3.

P(HiIEj)

El E2 E3 E4

H1 0.01 0.1 0.05 0.2

H2 0.01 0.2 0.25 0.05

H3 0.01 0.3 0.4 0.35

H4 0.97 0.4 0.3 0.4

Data Set 4, shown in figure 14 and given in table 18, contains zeroes, so Kullback's
distance measure cannot be used. In table 19, the other three distance measures give
the same ordering and the Dempster method gives somewhat similar results.

As pointed out in Section 3.2.1, the Dempster measure of conflict is unsuitabk, for
this purpose, although it gives results somewhat similar to the distance measures in
these examples. The distance measures all give very similar results. We conclude that
the best approach is to use the Kolmogorov distance, because it is the simplest to
cor pute.
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Figure 14. Data Set 4.

33



Table 17. Measures of distance for Data Set 3.

El E2 E3 E4

Kullback 7.677 2.656 3.705 3.198
1 4 2 3

Bhattacharyya 0.964 0.330 0.476 0.394
1 4 2 3

Kolmogorov 3.620 1.740 2.140 1.940
1 4 2 3

Matusita 2.216 1.125 1.334 1.339
1 4 3 2

Dempster 1.914 2.016 2.125 2.028
4 3 1 2

Table 18. Data Set 4.

P(HiIEJ)

El E2 E3 E4

H1 0 0 0.1 0.2

H2 0 0.5 0.2 0.2

H3 0.5 0 0.3 0.2

H4 0.5 0.5 0.4 0.4

Table 19. Measures of distance for Data Set 4.

El E2 E3 E4

Kullback Not defined for probabilities that are zero

Bhattacharyya 1.144 1.233 0.465 0.554
2 1 4

Kolmogorov 2.400 2.600 1.600 1.800
2 1 4 3

Matusita 2.263 2.376 1.428 1.541
2 1 4 3

Dempster 2.100 2.150 2.070 2.120
3 1 4 2
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4.0 KNOWLEDGE-BASED IMPLEMENTATION

An approach to implementing the decision process in an operational system is out-
lined here. The decision algorithms and a simple version of a rule-based approach
were programmed in C-Language Integrated Production System (CLIPS), a widely used
system developed at the NASA/Johnson Space Center. The problem of obtaining the
necessary numerical probability judgments is also addressed.

4.1 DECISION PROBLEM ORGANIZATION

4.1.1 Unknown Air Contact Example

Figure 15 illustrates a way of organizing evidence when an unidentified aircraft has
originated from a nearby airfield in a country not considered a friend The output of
each box is a numerical probability assignment and is shown in the form of CLIPS
facts. The assignment is either in the form (p evidence hypothesis number time), which
represents P(HiEj), or in the form (pe evidence hypothesis number time), which repre-
sents P(EjIHi). The latter assignments will often be derived as fuzzy measures of the
consistency of the evidence with the hypothesis.

For many kinds of evidence, we can choose either to use rules to create the
numerical assignments as needed or to store and maintain assignments in a system
database for all possible values of the evidence. The choice will depend on the
efficiency of each method in the knowledge-based shell used. For experimental
purposes, the assignments can be read from files.

The first box in figure 15 generates probabilities very much like priors, using the
base rate (for the three aircraft uses, based on origin) and a measure of the expecta-
tion of hostilities. (We avoided the issue of priors in Section 2.2.1, and implicitly
assumed that all hypotheses were equally likely.) The rate for military aircraft can be
divided between HI and H2 based on this expectation, which is an estimate of the con-
ditional probability P(hostileImilitary). Ideally, this estimate is predetermined. However,
except in a steady-state political environment, a commander's interpretation of very
recent events will be needed to continually update its value. (The subject of using
human expectations is discussed in more detail in Section 4.3.2.) In some situations,
every military aircraft from an unfriendly air field will be considered hostile. Distin-
guishing between the uncertainty concerning evidence and uncertainty in the interpreta-
tion of the evidence is difficult when dealing with HI and H2. Uncertainty about the
estimated probability of hostilities usually would be larger than the uncertainty about
base rate, and the quality measure W1 should reflect both uncertainties.

The latitude and longitude information may indicate a classic commercial aircraft
takeoff or may be consistent with the common behavior of other users of the airfield.
Computations would also measure adherence to the centerline of the commercial
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RADAR TRACK DATABASE, WITH
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(LAT-LONGS) LAT-LONG TRACK TEMPLATES
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Figure 15. Generation of conditional probabilities for unknown air contact, airfield
takeoff case. (HI:military-hostile intent, H2:military-innocent transit, H3:commercial
carrier, H4:private or other commercial).
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corridor after takeoff. H3 will receive a large probability if the track is typical of com-

mercial takeoffs and H1 will receive a large probability if the aircraft is off-center and

flying directly tuward high-value target. Decreasing altitude indicates hostility if the

latter is true. Altitude information is treated separately from other position information

partly because the accuracy measures will usually be different. If a sophisticated tem-

plate is designed to compare three-dimensional tracks with historical tracks, the

accuracies could be combined and a single box would replace the lat-long box and

altitude box.

In our simple rule-based experimental version, the probability assignment for

adherence to a corridor is a function of the contact's distance from the center-line and

its angle divergence from the centerline. Information about earlier behavior is used

when this assignment is updated. A threat value based on distance and direction is

computed for each high-value target, and the assignment is based only on the target

with the greatest threat. A default assignment occurs if there is no threat. The altitude

is considered separately. H1 receives the larger probability if the altitude is not high

and is decreasing.

The time of departure (TOD) template will most affect the estimate of P(TODIH3),

since only commercial carriers have schedules. Night takeoffs may be unlikely for H4.

The bottom box in figure 15 typically would correspond to IFF mode or to non-

response to a radio warning. Other evidence not shown could include specific reactions

or nonreaction to a fire-control radar.

Although not shown, the CLIPS facts also need an element giving the track number

or other identification code. Simultaneous processing of all current contacts on a

parallel computer would avoid having to include that element and would be much
faster.

Special rules are needed to note when the probability of certain evidence occurring

is small for all hypotheses, which indicates the evidence may be in error. Other rules

could determine when the different pieces of evidence give very different probabilities.

4.1.2 Ship-Type Example

In addition to the prestored distributions of the kind used in the example in Section

2.2.2, templates can be used for interpreting changes in course and speed, etc., as in

figure 15. Another kind of evidence is the contact's position and course relative to an

earlier sighted ship whose type was known. That evidence is easy to use with

Dempster's rule, but awkward with the other methods.

Emissions from the contact can be used in a separate decision process, described in

Section 2.3 and shown in table 11. To combine emission results with the other
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evidence on ship type, the base rate must be combined with the emission distributions
at this class level and not at the type level. For efficiency, match class hypotheses to
those classes having at least one of the emitters and to super classes that cover all
other classes. e.g., H16 may be the super class of all other classes or types not having
x, y, or z, of the nationality corresponding to the emitters, and H17 may be all U. S.
military ships, and so forth. The base rate is then used as another piece of evidence,
and the rate for the super classes will generally far exceed those for specific classes.
The resulting values of di for individual types in H16, etc., can then be found by divid-
ing up di in proportion to their base rate. The resulting class values of di are then
summed over each hypothesized type, and that distribution is used with the others in
the contact-type decision process. Rather than throw away valuable information, the
types containing classes having radars x, y, or z should be divided into two sub-
hypotheses, one for that nationality and one for all others. Implementation of this
scheme would be complex, but would certainly be feasible in a rule-based system.

4.2 ASSIGNMENT TO DISJUNCTIONS FOR DEMPSTER'S RULE

There are often advantages to using the general form of Dempster's rule. In a deci-
sion about ship type, behavior unlike a merchant would assign probability to --I H15,
i.e., to Not Merchant. If the contact's position is within reach of an earlier sighted plat-
form whose type was known, probability need only be assigned to that ship type and to
U (the disjunction of all hypotheses). In the unknown-air case, origin would assign
probabilities to H3 and H4 and to the disjunction of HI and H2 (HlvH2) rather H1
and H2 individually. Capability of IFF would also assign probability to the dr,,junction
of H1 and H2. Then, the a priori probability of hostile action (conditional on the con-
tact being military) is not needed to divide the probability between H1 and H2.
Evidence suggesting innocent transit would assign mass to --i HI, the disjunction of H2,
H3, and H4. A departure when none had been scheduled for a while would give prob-
ability to --113. The distributions in all these cases are of the form (p Ej B number
time), where B may be Hi, --i Hi, U, or a disjunction such as H2vH6vH12.

The combination of assignments for this general case is much more computationally
intensive than the method in Section 2.1.4, and the decision statistic di would have to
be defined such that the values sum to 1. Equation 9 applies, except that the uncer-
tainty term m(U) is also a function of i.

The greatest difficulty in eliciting assignments occurs when subjective judgments are
made on a large number of hypotheses. For example, the expert might say, "I'm 60%
sure it's not A3 and 70% sure it's not A17." These are "support" values, where the
support for a general proposition B is (Shafer, 1976)

S(B) = E" m(B')
B'&B = B'
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The mass assignment for this example is m(-' (A3vA17)) = 0.6, m(-iA17) = 0.1, and
m(U) = 0.3. With some training, a user can quickly convert his specified support values
into probability mass values. In general, a specialized intelligent interface would be
needed for eliciting assignments from multiple domain experts.

4.3 ELICITING AND USING EXPERTS' JUDGMENTS

Some of the distributions {P(HiEJ)} or other numerical probability judgments will
come from empirical data and some from subjective judgments by experts. We dis-
cussed empirical methods in Section 2.2; here we consider how to elicit and aggregate
probabilities from experts. Much of the discussion on expert estimates and aggregation
in Section 4.3.1 applies also to eliciting expectations of hostilities, discussed in Section
4.3.2.

4.3.1 Eliciting Probabilities

Experts often disagree on their estimates of a probability, sometimes because they
make much different assumptions. They can either be asked to agree among them-
selves on a single probability or probability distribution or they can give different
answers that need to be mathematically aggregated. If the problem does not involve
deep problem solving, a combination of their estimates is generally better than the
estimate from best expert (Meyer & Booker, 1991). The median of the expert's
estimates is a commonly used aggregation estimator. (This is satisfactory for estimates
of P(EjIHi) or of the probability of hostilities, but estimates of P(HiJEJ) would have to
be normalized to sum to one.) Other popular estimates are the mean and the
geometric mean. Using the mean has the advantage of an easily calculated variance.
The three estimates (median, mean, and geometric mean) can give very different
results when the probabilities are for a very unlikely event. A median or geometric
mean estimate works better for this case (Meyer & Booker, 1991).

Many experts prefer to give a range of possible values of a probability instead of a
single point estimate. (Ranges would be appropriate for P(EjIHt).) Their range of
uncertainty could be, for example, the 40th or 60th percentile values, fractions of
sigmas, or multiples of sigmas. However, Meyer and Booker (1991) point out that
experts underestimate uncertainty. The percentiles given really represent a fraction of
the true uncertainty: People estimate the 60 to 70th percentile values when asked for
the 95th, and the 30 to 40th percentile values when asked for the 5th. If the experts
provide ranges and these ranges do not overlap, the possibility that their interpretation
of the question or their assumptions differ should be explored. When they do overlap,
the aggregation method should select a point within the overlapped area.

If the individual or group uncertainty is significant, a decision method (such as
Dempster's rule) that uses a measure of the uncertainty would be preferred over the
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other methods. If ranges are given, an estimate of the uncertainty m(U) can be derived
from the range among experts or from individual expert's ranges. The uncertainty
measure would need to be across all hypotheses. When point estimates are given, the
variances can be used to estimate the uncertainty. Another possibility is to use distance
measures. Distance measures can be used to compare distributions among experts for
one kind of evidence in exacidy the same way distributions among evidence were
compared in Section 3.2.

An alternative to asking the expert for the numerical values of a probability distri-

bution is to provide a graphical interface. The user could increase and decrease
elements of histograms such as those in figure 4. (If a probability is close to 0 or 1,
the number itself would need to be typed in.) When estimating {P(HiIEJ)}, the program
would maintain a unity sum over i.

To the extent possible, online documentation of the method or reasoning used to
create a probability distribution should be easily accessible to the user. Some of the
distributions may be created from numerical evidence by using formulas agreed on by
the experts. Some of the look-up distributions may have to be frequently updated. The
knowledge-based system should send time-to-update alerts and provide tools for
reviewing the situation and making changes.

4.3.2 Expectations of Hostile Action

In the upper box of figure 15, the "expectation of a hostile event" is used to divide
the base-rate probability for military aircraft into two probabilities, one for the
hypothesis of hostile military and one for the hypothesis of military in innocent transit.
The first of these probabilities is given by

P(hostile military) = P(hostilelmilitary) P(military)

and the other is the difference between this and the probability that the contact is
military. The conditional probability used in this equation must be carefully explained
when elicited: If the aircraft departing that particular airfield (or in that particular

corridor) is military, what is the probability the intent is hostile, independent of any
other observations of the aircraft. If a hostile action is subsequently taken, there
generally will be a state change, and this probability will become large. The initial
probability will be based largely on recent political or military activities. The expert's
estimate or the experts' aggregated estimate of this conditional probability is the best
knowledge available. However, we should note that humans tend to overestimate the
likelihood of rare events (Meyer & Booker, 1991). Also, experts directly threatened can
be expected to give higher probabilities.

Unless a good estimate of this conditional probability is available, it is better to
avoid using it. One way is to assign P(military) to the disjunction of the two
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hypotheses, and use the general case of Dempster's rule. Often, such as in the sub-
marine example in Section 2.2.4, there is no base rate to divide, and one has the
option of using an a priori probability of hostile intent. In that example, there are only
two hypotheses, so the a priori distribution consists of that probability and its
complement. In some cases, the hypotheses will correspond to various kinds of hostile
actions that could be taken.

The main product of the knowledge-based system would be a numerical or graphi-
cal presentation based on the results of the decision algorithm. If an a priori probabil-
ity of hostile action is used, it should be made clear to the operator or commander
receiving the decision results. When one of the available inputs is that probability (or
set of probabilities), the three alternatives are to (1) present the integrated results,
(2) present two sets of results, the integrated one and one without (i.e., based only on
direct observations of the contact), and (3) present the latter. In all three cases, the a
priori probability or distribution can be presented simultaneously. (Some experts may
prefer to choose among judgments ranging from Highly Possible to Can Never Happen,
in which case option 3 is the obvious choice.) An interesting study would be to find
the sensitivity of the decision results to a priori probabilities.
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5.0 CONCLUSIONS

The first problem addressed was to find a decision method for deciding among a
set of hypotheses {Hi} based on a set of evidence {Ej}, given data-quality factors {WI
and numerical-probability judgments. The latter are typically of the form P(EjIHi) or
P(HiIEJ). Of the four algorithms compared in Section 2, none was satisfactory for all
decision problems. Dempster's rule operates only on independent evidence. The linear
opinion pool does not necessarily reject hypothesis Hi when P(HiEj) = 0 and the
evidence Ej is absolutely correct. For both the linear and logarithmic opinion pools, Hi
is not always selected when P(HiJEj) = 1 and the evidence is absolutely correct. The
logarithmic opinion pool and the fuzzy method eliminate consideration of a valid
hypothesis Hi when bad evidence yields P(HiIEj) = 0 or P(HilEj) = 0. For most of the
examples considered, the four methods gave similar results. If selected carefully on the
basis of the decision problem, at least one of these methods should perform
adequately. As pointed out in Section 2.3, however, a method is needed that has the
desired properties and employs measures of correlation or dependence among the
evidence.

Several statistical techniques were investigated for measuring the relevance of
evidence to a decision problem and for identifying suspicious or conflicting evidence.
Relevance measures were described in Section 3.1 and conflict measures in Section
3.2. The measures of distance between two distributions were shown to be applicable
to both problems. The measures are also applicable when aggregating probability
distributions from a group of experts, as pointed out in Section 4.3.

Is it reasonable to expect that we can successfully implement these statistical tech-
niques? Section 4.1 describes an approach for two representative problems. A simple
version of one was implemented in CUPS to uncover unforeseen difficulties that could
occur. (An operational system should employ specialized event templates to best
exploit all information about the contact's behavior in the context of the larger
picture.) The approach seems feasible, although it depends on having current
prrbability assignments or other numerical judgments from experts. Sometimes an
estimate of the a priori probability of an event is needed,.e.g., P(hostilelmilitary).
Section 4.2 suggests ways to avoid having to use this probability by assigning
probabiliry to disjunctions of hypotheses and using the general form of Dempster's
rule; however, the computations become much more difficult. Obtaining probability
distributions and estimates of probabilities of hostile action from experts is discussed
in Section 4.3. While maintaining current probability distributions agreed upon by
experts may be the most difficult part of the problem, it should be feasible with the
help of a user-friendly, interactive program.
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