
REPORT DOCUMENTATION PAGE OwAw'

AD -A 241 772 , ~ Vtnt & W125* bw t ma &V A~.V

~ii ii~ I ~~I Ii~ I REPORT DATE 3 EOTTP N AE OEE

Ada Qualit and Stvle: uidelines for Professional 5 UDN UBR

Pr orammers

G.AUTHORS)

Software Productivity Consortium

7. PERFORMING ORGANIZATION NAMwE(S) AND ADDRESS(ES) 8. PERFORMING ORGANIAxTmO
REPORT NUMBER

Software Productivity Consortium
SPC BuildingSP-101N
2214. Rock 11111 RoadSP-16N
Herndon, VA 22070-4005

9. SPONSR*JGatOrORING AGENCY NAMwE(S) AND ADDRESS(ES) 10. SPONSORIP4GIMONrTORHG AGENCY
REPORT NUMBER

Ada Joint Program Office
Rm. 3E114, The Pentagon
Washington, D.C. 20301-3081 ~'

11. SUPPLEMENTARY NOTES ~~.~

12&. DISTRIBUTIOWAVALABR.TY STATEMENT S2b. DITRIBUTON COD

Unclassified -Unlimited Distribution

13. ABSTRACTfnunm20wods)

Presents a set of specific guidelines for using the powerful features of Ada in a .s

ciplined manner. Each guideline consists of a concise statement of the principles
that should be followed, and a rationale explaining why following the guideline is
important. The use of the language must conform to good programming practices based
on well established software engineering principles. This book is intended to help
bridge thie gap between these principles and the actual practice of programming in Ada.

14. SUBJECT TERMS 15. NUMBER OF PAGES
215

I?.. l guRITYLASeCTO 16. rCURrly CLASSIFICATION 19 SE20CLS1Z~1W . LIMITATION OF ABSRCT

W &PORTgrIniOF THIS PAGE OF ABSTRACTj

NSN 7540-01-2W0-S0 stand ffForm 298. (Rev 289

P,-*~~.byANS9W.2W1

GENERAL INSTRUCTIONS FOR COMPLETING SF 298
The Report Documentation Page (RDP) Is used In announcing and cataloging reports. It is Important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form fol' w. It is important to stay within the lines to meet
optical scanning requirements.

Block 1. Agency Use Only (Leave blank). Block 12a. Distrihution/Avyailability Statement-
Denotes public availability or limitations. Cite

Blck 2. Bep . Full publication date any availability to the public. Enter additional
including day, month, and year, if available (e.g. limitations or special markings in all capitals
1 Jan 88). Must cite at least the year. (e.g. NOFORN, REL, ITAR).

Block 3. Type of Report and Dates Covered
State whether report is interim, final, etc. If DOD - See DoDD 5230.24, Distribution
applicable, enter inclusive report dates (e.g. 10 Statements on Technical
Jun 87 -30 Jun 88). Documents.o

Block 4. Title and Subtitle. A title is taken from DOE - See authorities.
the part of the report that provide.q the most NASA - Spe Handhook NHB -00 2.
meann aid complete information. When a NTIS - Leave blank.
report is prepared in more than one volume,
repeat the primary title, add volume number,
and include subtitle for the specific volume. On Block 12b. Distribution Code
classified documents enter the title
classification in parentheses. DOD - DOD - Leave blank.

Block 5. Fundina Numbers. To include contract DOE - DOE - Enter DOE distribution categories
and grant numbers; may include program from the Standard Distribution for
element number(s), project number(s), task Unclassified Scientific and Technical
number(s), and work unit number(s). Use the NASA - Reports.
following labels: NASA NASA - Leave blank.

ng es TIS - N T 1S - La ave b Iank.
C - Contract PR - Project
G - Grant TA - Task Block 13.Abstract. Include a brief (Maximum
PE - Program WU- Work Unit 200 words) factual summary of the most

Element Accession No. significant information contained in the report.

Block 6. Auttr(s .Name(s) of person(s)
responsible for writing the report, performing Block 14. Subect..Termis Keywords or phrases
the research, or credited with the content of the identifying major subjects in the report.
report. If editor or compiler, this should follow
the name(s). Block 15. Number of Paes. Enter the total

Block 7. Performing Organization Name(s) and number of pages.
AccLpr., A). Self-explanatory. Block 16. Price.o de Enter appropriate price

Block 8. Performing Organization Report code (NTIS only).
NumbeL Enter the unique alphanumeric report
number(s) assigned by the organization Blocks 17. - 19. Security Classifications-
performing the report. Self-explanatory. Enter U.S. Security

Block 9. Sponsoring/Monitoring Agency Classification in accordance with U.S. Security
Name(s) and Address(es) Self-explanatory. Regulations (i.e., UNCLASSIFIED). If form

contains classified information, stamp
Block 10. Sponsoring/Monitoring Agency classification on the top and bottom of the page.
Report Number. (If known)

Block 11. Supplementary Notes Enter Block 20. Limitation of Abstract, This block
information not included elsewhere eii.h P must be completd to assion a limitation. f1
Prejafed in cooperation with...; Trans. of...; To abstract. -nter either UL (unlimited) or SAR
be published in.... When a report is revised, (same as report). An entry in this block is
Include a statement whether the new report necessary if the abstract is to be limited. If
supersedes or supplements the older report. blank, the abstract is assumed to L Bc unlimited.

Standard Form 298 Back (Rev. 2-89)

4~~~SOFWARE
.PRODUCTIVITY

.. CONSORTIUM

Ada Quality and Style:
Guidelines for Professional Programmers

SPC-91061-N

VERSION 01.00.01

91-13315 1989

Software Productivity Consortium
SPC Building

2214 Rock Hill Road
Herndon, Virginia 22070-4005

Copyright © 1989, 1991 Software Productivity Consortium, Inc., Herndon, Virginia.
Permission to use, copy, modify and distribute this documentation for any purpose and
without fee is hereby granted, provided that the above copyright notice appears in all
copies and that both this copyright notice and this permission notice appear in supporting
documentation, and that the name Software Productivity Consortium, Inc. not be used in
advertising or publicity pertaining to distribution of the guidelines without specific,
written nrior rermissinn. Software Productivity Consortium, Inc. makes no
iepre.;enLations about the suitability of the guidelines described herein for any purpose. It
is provided "as is" without express or implied warranty.

Unlimited Distribution

ii Ada QUALITY AND STYLE

PREFACE

We invite comments on this guidebook to continue enhancing its quality and usefulness. We

will consider suggestions for current guidelines as well as areas for future expansion.

Examples that highlight particular points are most helpful.

Please direct comments to:

Technology Transfer Division - AQS
Software Productivity Consortium

SPC Building

2214 Rock Hill Road

Herndon, Virginia 22070-4005

(703) 742-7211

iii

AUTHORS AND ACKNOWLEDGEMENTS

Production of this book has been very much a team effort. Samuel Gregory, Margaret Skalko, Lyn Uzzle
and Richard Drake wrote most of the original material. They are Software Productivity Consortium
Members of Technical Staff with over 20 years of Ada programming experience between them. Paul
Cohen, as leader of the Software Productivity Consortium Ada Project, initiated the work, and guided it
through its early stages. Robert Mathis (consultant) contributed material on Ada numerics and provided
substantial support and criticism.

Henry Ledgard led an intensive review of the first draft, providing invaluable advice on the book's structure
and content. The final editing process was mainly conducted by Samuel Gregory. It was coordinated by
John Knight, who with Mark Dowson, wrote the introductory sections.

Special thanks are due to Debra Morgan, whose efficiency and patience while retyping innumerable drafts
made production of the book possible.

Numerous other staff of the Software Productivity Consortium, and several outside consultants, contributed
review, comment and support. They include:

Bruce Barnes Allan Jaworski
Alex Blakemore Edward Jones
Terry Bollinger John A.N. Lee
Charles Brown (Virginia Tech)

Neil Burkhard Eric Marshall

William Carlson Charles Mooney

Susan Carroll John Moore

John Chludzinski Karl Nyberg (consultant)

Vicki Clatterbuck Arthur Pyster

Robert Cohen Samuel Redwine, Jr.

Elizabeth Comer William Riddle

Daniel Cooper Lisa Smith

Jorge Diaz-Herrera Frederick Stluka
(George Mason University) Kathy Velick

Timothy Harrison David Weiss
Robert Hofkin Howard Yudkin

VAX- is a trademark of Digital Equipment Corp.

5- A

K4,j'."

iv Ada QUALITY AND STYLE

CONTENTS

CHAPTER 1 Introduction I

1.1 HOW TO USE THIS BOOK 3

1.2 TO THE NEW Ada PROGRAMMER 4

1.3 TO THE EXPERIENCED Ada PROGRAMMER 4

1.4 TO THE SOFTWARE PROJECT MANAGER 5

CHAPTER 2 Source Code Presentation 7

2.1 CODE FORM ATTING ... 7

2.2 SU M M A RY ... 17

CHAPTER 3 Readability 19

3.1 SPE L LIN G ... 19

3.2 COM M ENTARY ... 22

3.3 NAMING CONVENTIONS 28

3.4 U SING TYPIN G ... 34

3.5 SU M M A RY ... 37

CHAPTER 4 Program Structure 41

4.1 HIGH-LEVEL STRUCTURE 41
4.2 V ISIBILIT Y ... 48

4.3 EX CEPTIO N S ... 54

4.4 SU M M A RY 57

V

vi Ada QUALITY AND STYLE

CHAPTER 5 Programming Practices 61

5.1 OPTIONAL PARTS OF THE SYNTAX 62
5.2 PARAMETER LISTS .. 65

5.3 T Y PE S ... 69

5.4 DATA STRUCTURES .. 74

5.5 EX PRESSION S .. 78
5.6 STATEM hNTS .. 82
5.7 V ISIB ILIT Y ... 91

5.8 USING EXCEPTIONS .. 94

5.9 ERRONEOUS EXECUTION 99

5.10 SU M M A RY .. 103

CHAPTER 6 Concurrency 109

6.1 T A SK IN G ... 109

6.2 COMMUNICATION .. 114
4.3 TERMINATION ... 120

6.4 SUMMARY ... 123

CHAPTER 7 Portability 127

7.1 FUNDAM ENTALS .. 128

7.2 NUMERIC TYPES AND EXPRESSIONS 134

7.3 STORAGE CONTROL ... 139

7.4 T A SK IN G ... 140

7.5 EX CEPTIO N S 143

7.6 REPRESENTATION CLAUSES AND IMPLEMENTATION-
DEPENDENT FEATURES 144

7.7 INPUT/OUTPUT ... 149

7.8 SUMMARY 152

CHAPTER 8 Reusability 157

8.1 GENERAL CONSIDERATIONS 158

8.2 UNDERSTANDING AND CLARITY 161

CONTENTS vii

8.3 ADAPTA BILITY ... 165

8.4 SUMMARY ... 174

CHAPTER 9 Instantiation 1,7

9.1 HORIZONTAL SPACING 177

9.2 INDENTATION .. 178

9.3 MORE ON ALIGNMENT 181

9.4 PA G IN A TIO N 182

9.5 SOURCE CODE LINE LENGTH 182

9.6 N U M BER S .. 182

9.7 CAPITALIZATION ... 183

9.8 FILE H EA D ERS .. 183

9.9 NAM ED-, ASSOCIATION 184

9.10 ORDER OF PARAMETER DECLARATIONS 184

9 .11 N E ST IN G ... 185

9.12 GLOBAL ASSUMPTIONS 185

CHAPTER 10 Complete Example 187

APPENDIX A - Map from Ada Language Reference
Manual to Guidelines 199

R EFER EN CE S ... 207

BIBLIO G R APH Y .. 211

INDEX 215

viii Ada QUALITY AND STYLE

CHAPTER 1
Introduction

This book is intended to help the computer professional produce better Ada programs.
It presents a set of specific guidelines for using the powerful features of Ada in a
disciplined manner. Each guideline consists of a concise statement of the principles 'hat
should be followed, and - rationale explaining why following the guideline is important.
In most cases, an example of the use of the guideline is provided, and in some cases a
further example is included showing the consequences of violating the guideline.
Possible exceptions to the application of the guideline are explicitly noted, and further
explanatory notes included where appropriate. Many of the guidelines ar? specific
enough to be adopted as corporate or project pogramming standards. Others require a
managerial decision on a particular instantiation before they can be used as standards.
These issues are discussed in Section 1.4 of this introduction. Other sections of the
introduction discuss how this book should be used by various categories of software
development personnel.

Ada was designed to support the development of high quality, reliable, reusable,
portable software. For a number of reasons, no programming language can ensure the
achievement of these desirable objectives on its own. For example, prograi.,ming must
be embedded in a disciplined development process that addresses requirements
analysis, design, implementation, verification, validation and maintenance in an
organized and well managed way. The use of the language must conform to good
pro2ra --ming practices based on well established software engineering principles. This
book is iniended to help bridge the gap between these p. inciples and the actual practice
of programming in Ada.

Clear, readable, understandable source text eases program evolution, adaptation, and
maintenance. First, such source text is more likely to be correct and reliable. Second,
effective code adaptation is a prerequisite to code reuse, a technique that has the

I

2 Ada QUALITY AND STYLE

potentia; for drastic reductions in system development cost. Easy adaptation require, a
thorough understanding of the software, and that is facilitated considerably by clarity.
Finally, ir-e maintenance (really evoluton) is a costly prozess that continues
throughuu, "-F life of a system, clarity plays a major role in keeping maintenance costs
down. Over the entire life cycle, code has to be read and underr" Jod far more often
than it is written; the investment of effort in writing readable, understandable code is
thLs well worthwhile. Many of the guidelines in tis book are designed to promote
clarity of the source text.

There are two main aspects of code clarity. Careful and consistent layout of the source
text on the page or the screen can enhance readability dramatically. Similarly, careful
attention to the structure of code can make it easier to understand. This is true both on
the small scale, for example by judicious choice of identifier names or by disciplined use
of loops, and on the large scale, for example by proper use of packages. Both layout -nd
structure are treaLed by these guidelines.

Commentary in source text is a contentious issue. There are arguments both for and
against the view that comments enhance readability The biggest problem with
comments in practice is that people often fail to update them when the associated source
text is changed, thereby making the commentary mi-leading. We take the position that
commentary should be minimized, and largely, reserved for highlighting cp:es where
there are overriding reasons to violate one of the guidelines. As far as possible, source
text should use self-explanatory names for objects and program units, and use simple,
understandable, program structures so that little if any ad"'ional commentary is
needed. 7he extra effort in selecting (and entering) apl-)priate names, and the extra
thought needed to design clean and understandable program structures are fully
justified.

Programming texts often fail to discuss overall program structure; we include a chapter
aidressing it. The majority of the guidelines in that chapter are concerned with the
application of sound software engineering principles suzh as information hiding and
separation of r ncerns. The chapter is neither a textbook on nor an introduction to
these principles; rather it indicates how they can be realized using the features of Ada.

A number of other guidelines are particularly concerned with reliability and portability
issues. They counsel avoidance of language features and programming practices that
either depend on properties not defined in Ada or on properties that may vary from
implementation to implementation. Some of these guidelines, such as the one
forbidding oependence on expression evaluation order, should never be violated.
Others may have to be viola,,d in special situations such as .nterfaclng to other systems.
This should only be done after careful deliberation, and such violations should be
prominently indicated. Performance constraints are often offered as an excuse for
unsafe programming practices; this is very rarely a sufficient justification.

Software tools could be used to enforce, encourage, or check conformance to many of
the guidelines. At present, few such tools are available for Ada beyond code formatters

INTRODUCTION 3

or syntax directed editors. Existing code formatters are often parameterizable, and can
be instantiated to lay out code in a way consistent with the guidelines in this book.

This book is intended for those involved in the development of real software systems
written in Ada. Belcv, we discus5 how they can make the most effective use of the
material presented. Readers wih different levels of Ada experience and different roles
in a software project will need to exploit the book in different ways; we address specific
comments to three broad categories of software development personnel: those new to
Ada, experienced Ada programmers, and software development managers.

1.1 HOW TO USE THIS BOOK
There are a number of ways in which this book can be used: as a reference on good Ada
style; as a comprehensive list of guidelines which, if followed, will result in better Ada
programs; or as a reference work to consult about the use of specific features of the
language. The book contains many guidelines, some of which are quite complex.
Learning them all at the same time should not be necessary; it is unlikely that you will be
using all the features of the language at once, so you will not need to keep all the
guidelines in mind at one time. However, we recommend that all programmers (and,
where possible, other Ada project staff) make an effort to read and understand
Chapters 2, 3, 4 and Chapter 5 up to Section 5.7. Some of the material is quite difficult
(for example, Section 4.2 which discusses visibility) but it covers issues which are
fundamental to the effective use of Ada, and is important for any software professional
involved in building Ada systems.

The remainder of the book covers relatively specific issues: Exceptions and Erroneous
Execution at the end of Chapter 5, and Tasking, Portability and Reuse in Chapters 6, 7
and 8 respectively. You should be aware of the content of this part of the book, and may
be required to follow the guidelines presented in it, but you could defer more detailed
study until the need arises. Meanwhile, it can serve as useful reference material about
specific Ada features, for example the discussion of floating point numbers in the
chapter on portability.

Chapter 9 is directed at software project managers. It lists those guidelines that need to
be instantiated to be used as standards, and indicates the instantiation that has been
adopted in the guidelines' examples. Chapter 10 consists of an extended example of an
Ada program that conforms to the guidelines presented.

This book is not intended as an introductory text on Ada or as a complete manual of the
Ada language. If you are learning Ada y6 u should equip yourself with a good
introduction to the language such as Barnes [4) or Cohen [8]. The Ada Language
Reference Manual [281 (Ada LRM) should be regarded as a crucial companion volume
to this book. The majority of guidelines reference the sections of the Ada LRM that
define the language features being discussed. Appendix A cross references sections of
the Ada LRM to the gyidelines.

4 Ada QUALITY AND STYLE

Throughout the book, references are given to other sources of information about Ada
style and other Ada issues. The works referenced are listed at the end of the book,
followed by a bibliography which includes them and other relevant sources consulted
during the book's preparation.

1.2 TO THE NEW Ada PROGRAMMER
At first sight, Ada offers a bewildering variety of features; Ada is a powerful tool
intended to solve difficult problems and almost every feature has a legitimate application
in some context. This makes it especially important to use Ada's features in a
disciplined and organized way. The guidelines in this book forbid the use of few Ada
features. Rather, they show how the features can be systematically deployed to write
clear, high quality programs. Following the guidelines will make learning Ada easier and
help you to master its apparent complexity. From the very beginning, you will be writing
programs that exploit the best features of the language in the way that the designers
intended.
Programmers experienced in using another programming language are often tempted to
use Ada as if it were their familiar language, but with irritating syntactic differences.
This pitfall should be avoided at all costs; it can lead to convoluted code that subverts
exactly those aspects of Ada that make it so suitable for building high quality systems.
You must learn to "think Ada"; following the guidelines in this book and reading the
examples of their use will help you to do this as quickly and painlessly as possible.
To some degree, novice programmers learning Ada have an advantage. Following the
guidelines from the very beginning will help in developing a clear programming style that
effectively exploits the language. If you are in this category, we recommend that you
adopt the guidelines even for those exercises you perform as part of learning Ada.
Initially, developing sound programming habits by concentrating on the guidelines
themselves, and their supporting examples, is more important than understanding the
rationale for each guideline. Note that each chapter ends with a summary of the
guidelines it contains.

1.3 TO THE EXPERIENCED Ada PROGRAMMER
As an experienced programmer you will already be writing code that conforms to many
of the guidelines in this book. In some areas, however, you may have adopted a
personal programming style that differs from that presented here, and you might be
reluctant to change. We strongly recommend that you carefully review those guidelines
that are inconsistent with your current style, make sure that you understand their
rationale, and consider adopting them. The overall set of guidelines in this book
embod s a consistent and proven approach to producing high quality programs which
would be weakened by too many exceptions.

INTRODUCTION 5

Another important reason for general adoption of common guidelines is consistency. If
all the staff of a project write source text in the same style, many critical project activities
will be easier. Consistent code simplifies formal and informal code reviews, system
integration, within-project code reuse and the provision and application of supporting
tools. In practice, corporate or project standards mny require any deviations from the
guideliaes to be explicitly commented, so adopting a non-standard approach may
involve you in extra work.

1.4 TO THE SOFTWARE PROJECT MANAGER
Technical management has a key role to play in ensuring that the software produced in
the course of a project is correct, reliable, maintainable, and portable. Management
must create a project-wide commitment to the production of high-quality code; define
project-specific coding standards and guidelines; foster an understanding of why
uniform adherence to the chosen coding standards is critical to product quality; and
establish policies and procedures to check and enforce that adherence. The guidelines
contained in this book can aid such an effort.

An important activity for managers is the definition of coding standards for a project or
organization. These guidelines do not, in themselves, constitute a complete set of
standards, but can serve as a basis for them. A number of guidelines advise that
consistent decisions be taken about some aspect of source text, indicate a reasonable
range of decisions, but do not prescribe a particular decision. For example, the second
guideline in the book (Guideline 2.1.2) advocates using a consistent number of spaces
for indentation, and indicates in the rationale that 2 - 4 spaces would be reasonable.
With your senior technical staff, you should review each such guideline and arrive at a
decision about its instantiation (in the example above, perhaps 3 spaces) that will
constitute your project or organizational standard. To support this process, Chapter 9 of
the book lists all guidelines that need instantiation to be used as standards. It also gives a
possible instantiation for each guideline that corresponds to the decision adopted by the
au udij of this book, and used in the extended example of Chapter 10. In addition, the
guidelines requiring instantiation are marked in the earlier chapters with a double dagger
(t).
Two other areas require managerial decisions about standardization. Guideline 3.1.4
advises avoidance of arbitrary abbreviations as or as part of object or unit names. You
should prepare a glossary of acceptable abbreviations for a project that allows the use of
shorter versions of application specific terms (e.g. FFT for Fast Fourier Transform or
SPN for Stochastic Petri Net). You should try:to keep this glossary short, and restrict it
to terms which will need to be frequently used as part of names; having to continually
refer to an extensive glossary to understand source text makes it hard to read.

The portability guidelines given in Chapter 7 need careful attention. We strongly advise
that you insist on adherence to them even if the need to port the resulting software is not
currently foreseen. Following the guidelines will improve the potential reusability of the
resulting code in projects which use different Ada implementations. At the very least,

6 Ada QUALITY AND STYLE

you should insist that where particular project exigencies force the relaxation of some of
the portability guidelines, non-portable features of the source text are prominently
indicated. Observing the Chapter 7 guidelines will require definition and
standardization of project or organization specific numeric types to use in place of the
(potentially non-portable) predefined numeric type.

Your decisions on the above standardization issues should be incorporated in a project
or organization coding standards document. If you do not deviate too far from the
guidelines in this book, that document will be quite short (two or three pages), which
improves its chance of being read and followed by project staff, Of course, you will have
to provide sufficient copies of the book, particularly for new or junior project staff, to
ensure their ready access to the guidelines.

With coding standards in place, you need to ensure adherence to them. Probably the
most important aspect of this is gaining the wholehearted commitment of your senior
programming staff to their use. Given this commitment, and the example of high quality
Ada being produced by your best programmers, it will be far easier to conduct effective
formal code reviews that check compliance to project standards.

Consistent coding standards also simplify the cost-effective provision of automated tools
to support your programmers and to check the quality of their product. If you have a
tools group in your project or organization, they can be tasked to acquire or develop
tools to support your standards. If not, you at least have a systematic basis for evaluating
programming tools for acquisition or development.

Some general issues concerning the management of Ada projects are discussed by
Foreman and Goodenough ,11].

CHAPTER 2
Source Code Presentation

The physical layout of source text on the page or screen has a strong influence on its
readability. This chapter includes simple guidelines that, if followed, will ease the task of
the reader.

The issue of formatting Ada source code has been treated in many existing style guides
and programming standards documents. The rationale for such treatment is the
readability requirement, in Section 1.3 of the Ada LRM [28]. It is important for the
code to be well structured in terms of indentation and naming standards; however, the
definition of Pood structure is often subjective.

A number of the guidelines define general principles of good layout, but do not prescribe
a particular layout style. The decisions on exactly how to instantiate these principles are
bezzcr. left to the responsible party in a project or organization.

Entirely consistent layout is hard to achieve or check manually, and, if possible should
be automated with a tool for parameterized code formatting or the guidelines
incorporated into an automatic coding template. The resulting presentation of the code
will then be consistent to the human reader, and conform to the documentation
conventions determined by program management.

2.1 CODE FORMA1TrING

The "code formatting" of Ada source code affects how the code looks, not what the
code does.' Topics included here are horizontal spacing, indentation, alignment,
pagination, and line length. The most important guideline is to be consistent throughout
the compilation unit as well as the project. To enhance reusability, do not make a style
choice that precludes reformatting.

7

8 Ada QUALITY AND STYLE

2.1.1 Horizontal Spacing $
guideline

0 Employ a consistent spacing strategy around delimiters.

example

The following is the sample instantiation of this guideline given in Chapter 10. It is
used throughout the examples.
- Employ at least one blank before and after the following delimiters: & * + /

: = > >., := /= > <= << >> <> and - used asabinary
operator.

- Precede the minus sign used as a unary operator by at least one blank.

- Do not leave spaces before or after - . ** unless involved in a line break.

- Except when in conflict with other parts of this instantiation, leave at least one
blank on the non-literal side of " and - when they delimit a character and a
string literal, respectively.

- Do not leave spaces before or after parentheses which delimit argument lists or
array indices.

- Where parentheses delimit an expression, leave at least one blank before the
left parenthesis and after the right parenthesis, but not between multiple left or
multiple right parentheses.

- Leave one blank before and after a short (1 character) identifier or literal within
parentheses.

- Leave at least one blank after but no space before ; and . even if they follow
a right parenthesis.

These spacing standards produce the following code fragments:

REGISTER(PC) := REGISTER(A);

OPERATOR PRECEDENCEMNEMONICS : STRING := "My Dog Ain't Smart,"
& but he obeys"
& " My Dear Aunt Sallie.";

ARRAYNAME(INDEX) :- MEMORY(ARRAYBASEADDRESS + (INDEX * ELEMENTLENGTH));

GETNEXTVALUE (SENSOR);

type SIGNED WHOLE-16 is range -(2*,15) .. (2*015) - 1;

rationale

Spacing enhances readability since the white space emphasizes delimiters on a
source statement line. Consistent spacing aids visual recognition of constructs
irrespective of where they occur in program text.

SOURCE CODE PRESENTATION 9

The use of the ampersand and layout of the partial strings in the example above is as
ir.ended by the language designers. It clarifies what is going on and allows
construction of string literals longer than the line length. In natural language usage,
the colon is flush with what precedes it. In Ada, it is a tabulator, or a column
separator (see Guideline 2.1.4).

note
The example instantiation of the guidelines specifies minimum spacings around
delimiters in various circumstances. Subject to these restrictions, the actual spacings
will be determined by the need for vertical alignment (See Guidelines 2.1.3, 2.1.4,
2.1.5).

A code formatter can enforce these spacing standards or change code to meet them
as needed. Your organization's standards or personal preferences may be different
from the conventions stated above. If you are charged with setting the standards,
recognize that others' satisfaction and sense of aesthetics may ultimately be more
important to a successful project than your own.

2.1.2 Indentation

guideline

" Indent and align nested control structures, continuation lines, and embedded
units consistently.

" Distinguish between indentation for statement-list structure and for
continuation lines.

" Use a series of spaces for indentation, not the tab character (18] §2.2).

10 Ada QUALITY AND STYLE

example
begin -- EXAMPLE

loop

TIO.DISPLiY MENV'"Example Menu", EXAMPLE MENU. USER CHOICE);

case USERCHOICE is
when 'A' =>

ITEM := TIO.GET("Item to add");
when D " =>

ITEM := TIO.GET("Item to delete");
when 'M' =>

ITEM := TIO.GET("Item to modify");
when Q " =>

exit;
when others ->

null; -- already caught by TIO.DISPLAYMENU
end case;

end loop;

end EXAMPLE;

rationale

Indentation improves the readability of the code because it allows a reader to "see"
the structure of a program. The levels of modularity are clearly identified by
indentation and the first and last keywords in a construct can be matched visually.

While there is much discussion on the number of spaces to indent, the reason for
indentation is code clarity. According to Schneiderman ([23] page 7), "A modest
level of indentation (2-4 spaces) has been shown to be beneficial." The fact that the
code is indented consistently is more important than the number of spaces used for
indentation. If a configurable editor is not available, and a change is desired, a code
formatter can be obtained to do the job.

Additionally, the Ada LRM ([281 §1.5) contains recommended paragraphing.
"Different lines are used for parts of a syntax rule if the corresponding parts of the
construct described by the rule are intended to be on different lines." It also states
that "... all indentation be multiples of a basic step of indentation (the number of
spaces for the basic step is not defined)."

Use of spaces rather than the tab character for indentation enhances portability
because the treatment of tab characters is a function of a terminal or printer
parameter setting.

Some systems permit the use of the tab key but physically insert the appropriatt
number of spaces. In such cases the use of the tab key does not imply the use of
tabs. In any other circumstance, it is very difficult to get tabs right.

SOURCE CODE PRESENTATION 11

note

According to Ada LRM ([281 §1.5) , '... On the other hand, if a complete
construct can fit on one line, this is allowed in the recommended paragraphing." If
the code is getting close to the right hand margin', it would be prudent to modify this
guideline on a local basis as long as such modifications are consistent, well marked,
and the guideline practice is restored immediately afterward. See Guideline 2.1.8.

2.1.3 Alignment of Operators

guideline

Align operators vertically to emphasize local program structure.

example
if SLOT A >= SLOT B then

TEMPORARY SLOT A;
SLOT A := SLOTB;
SLOT B := TE4PORARY;

end if;

N11EUAOR := (B**2) - (4 * A * C);
DENOMINATOR :- 2 * A;
SOLUTION I -B + SQUAREROOT(NUMERATOR / DENOMINATOR);
SOLUTION_2 :, B + SQUAREROOT(NUMERATOR / DENOMINATOR);

X:= A* B
+C* D
+ E F;

Y := (A • B) + C -- basic equation

- 3.5 -- error factor
+ (2 * D) - E -- account for ...

rationale

Alignment makes it easier to see the position of the operators and, therefore, puts
visual emphasis on what the code is doing.

The use of lines and spacing on long expressions can emphasize terms, precedence
of operators, and other semantics. It can also leave room for highlighting comments
within an expression.

exceptions

If vertical alignment of operators forces a statement to be broken over two lines, and
especially if the break is at an inappropriate spot, it may be preferable to relax the
alignment guideline.

12 Ada QUALITY AND STYLE

2.1.4 Alignment of Declarations
guideline

" Organize declarations as a table.

" Provide at most one declaration per line (see also Guideline 2.1.8).

example

Declarations of enumeration literals can be tabularized:

type OP CODES is (
PUSH, POP,
ADD, SUBTRACT.
MULTIPLY, DIVIDE,

SUBROUTINECALL, SUBROUTINE-RETURN
BRANCH. BRANCHONZERO,
BRANCH_ON_NEGATIVE, BLOCKMOVE

Variable and constant declarations can be in columns separated by the symbols : =
and --

PROMPT COLUMN constant 40;
QUESTION_MARK constant STRING ?"; - prompt on error input
PROMPTSTRING constant STRING := =>

or with each part on a separate line with its unique indentation level.
INPUT LINE BUFFER

USER RESPONSETEXT FRAME
:u (others => - -7;

-- If the declaration needed a comment, it would fi: here.

rationale

Many programming standards documents require tabular repetition of names,
types, initial values, and meaning in unit header comments. These comments are
redundant and can become inconsistent with the code. Aligning the declarations
themselves in tabular fashion (see the examples) provides identical information to
both compiler and reader, enforces at most one declaration per line, and eases
maintenance by providing space for initializations and necessary comments. A
tabular layout enhances readability, preventing names from "hiding" in a mass of
declarations. In addition, the all-on-one-line style encourages the use of short full
names. This applies to type declarations as well as object declarations.

2.1.5 More on Alignment 1
guideline

• Align parameter modes and grouping symbols vertically.

• Use four trailing blanks for mode in and three leading blanks for mode out.

SOURCE CODE PRESENTATION 13

example
procedure DISPLAY-MENU (TITLE : in STRING;

OPTIONS in MENUS;
CHOICE : out ALPHA NUMERICS);

or

procedure DISPLAYMENU ONPRIMARYWINDOW
(TITLE in STRING;
OPTIONS in MENUS;
CHOICE out ALPHANUMERICS);

Or

procedure DISPLAYMENU
TITLE in STRING;
OPTIONS in MENUS;
CHOICE out ALPHA-NUMERICS

Grouping symbol alignment makes complicated relational expressions more clear:

if (FIRST_CHARACTER not in ALPHANUMERICS) or else
(not VALIDOPTION (FIRST_CHARACTER)) then

rationale

This facilitates readability and understandability. Aligning parameter modes
provides the effect of a table wkith columns for parameter name, mode, type, and if
necessary, parameter-specific comments. Vertical alignment of parameters across
subprograms within a compilation unit increases the readability even more.

note

Various options are available for subprogram layout. The second example aligns the
start of all subprogram names and all parameter names in a program, but has the
disadvantage of occupying an unnecessary line where subprogram names are short,
and looking awkward if there is only one parameter.

The third example has the advantage that one can add, delete, or reorder the
parameter lines with little worry about the parentheses.

The last example shows alignment of a multiple condition if statement. The
alignment emphasizes the variables that are tested and their relationships. The "or
else" is by itself so the major connective operator is not lost in the expression. This
helps the reader to parse it.

exceptions

If there is only one parameter, or if the same mode is used throughout the
compilation unit, the extra blanks around modes may be omitted.

14 Ada QUALITY AND STYLE

2.1.6 Blank Lines

guideline

0 Use blank lines to group logically related lines of text [17].

example

if ... then

for ... loop

end loop;

end if;

This example separates different kinds of declarations with blank lines:

type EMPLOYEE_RECORD is
record

NAME : NAME_STRING;
DATEOFBIRTH : DATE;
DATEOFHIRE : DATE;
SALARY MONEY;

end record;

type DAY is (
MONDAY, TUESDAY,
WEDNESDAY, THURSDAY,
FRIDAY. SATURDAY,
SUNDAY

subtype WEEKDAY is DAY range MONDAY . FRIDAY;
subtype WEEKEND is DAY range SATURDAY .. SUNDAY;

rationale

\When blank lines are used in a thoughtful and consistent manner, sections of
related code are more visible to readers. Blank lines can be used to show modular
organization, which has itself been shown to be useful ([23] page 7).

2.1.7 Pagination $

guideline

* Mark the top of the body of each program unit and the beginning and end of its
frame.

* Mark the top and bottom of a package specification.

SOURCE CODE PRESENTATION 15

example

package body SPCNUMERICTYPES is

function MIN (LEFT in TINY-INTEGER;
RIGHT in TINY-INTEGER)

return TINYINTEGER is

begin
if (LEFT > RIGHT) then

return LEFT;
else

return RIGHT,
end if;

end MIN;

end SPCNUMERIC TYPES;

rationale

It is easy to overlook parts of program units that are not visible on the current page
or screen. The page lengths of presentation hardware and software vary widely. By
clearly marking the program's logical page boundaries, for example with a "dotted
line," you enable a reader to check quickly whether all of a program unit is visible.

note

This guidehne does not address code layout on the physical "page" because the
d:mensions of s,;ch pages va-y widely and no single guideline is appropriate.

The framL of a program unit is delineated by the begin and end of its body. (Ada
LRM [2S] §11.2).

exception

If the visual distance betwee" t ,e beginning of a program unit and the beginning of
its frame is small, the beeinnin2-of-framz marker may be omitted.

2.1.8 Number of Statements per Line

guideline

" Start each statement on a new line.

" W-ite no more zhan one simple statement per line.

* Break compound statements over multiple lines.

16 Ada QUALITY AND STYLE

example

-- Use

if END OF TILE then
CLOSE_TILE;

else
GETNEXT RECORD:

end if;

-- rather than
if ENDOFFILE then CLOSE FILE; else GETNEXTRECORD; end if;

-- exceptional case
PUT("A="); PUT(A); NEWLINE:
PUT("B=") PUT(B); NEWLINE;
PUT("C="); PUT(C); NEWLINE:

rationale

A single statement on each line enhances the reader's ability to find statements and
helps prevent statements being missed. Similarly, the structure of a compound
statement is clearer when its parts are on separate lines.

note

A source statement is any Ada language statement that is terminated with a
semicolon. If the statement is longer than the remaining space on the line, continue
it on the next line. This guideline includes declarations, context clauses, and
subprogram parameters.

Accordi, , to the Ada LRM, "The preferred places for other line breaks are after
semicolons" ([28] §1.5).

exceptions

The example of PUT and NEWLINE statements shows a legitimate exception. This
grouping of closely related statements on the same line makes the structural
relationship butween the groups clear.

2.1.9 Source Code Line Length $

guideline

a Adhere to a maximum line length limit for source code (18] §2.3).

rationale

When Ada code is ported from one system to anothe-, there may be restrictions on
the record size of source line statements, possibly for one of the follow'ing reasons:
Some operating systems may not support variable length records for tape i/o; some
, arating systems reserve columns 73 and beyond for internal processing; some
terminals support an 80-character line width with no line-wrap.

SOURCE CODE PRESENTATION 17

Source code must sometimes be published for various reasons, and letter-size paper
is not as forgiving as a computer listing in terms of the number of usable columns.

There are also human limitations in the width of the field of view for understanding
at the level required for reading source code. These limitations correspond roughly
to the 70 to 80 column range.

2.2 SUMMARY
" Employ a consistent spacing strategy around delimiters.

• Indent and align nested control structures, continuation lines, and embedded
units consistently.

• Distinguish between indentation for statement-list structure and for
continuation lines.

" Use a series of spaces for indentation, not the tab character.

* Align operators vertically to emphasize local program structure.

" Organize declarations as a table.

* Provide at most one declaration per line.

" Align parameter modes and grouping symbols vertically.

* Use four trailing blanks for mode in and three leading blanks for mode out.

* Use blank lines to group logically related lines of text.

• Mark the top of the body of each program unit and the beginning and end of its
frame.

* Mark the top and bottom of a package specification.

• Start each statement on a new line.

* Write no more than one simple statement per line.

* Break compound statements over multiple lines.

* Adhere to a maximum line length limit for source code.

18 Ada QUALITY AND STYLE

CHAPTER 3
Readability

This chapter recommends ways of using Ada features in a manner that will enhance the
ability to read and understand code. There are many myths about comments and
readability. The responsibility for true readability rests more with naming and with code
structure than with comments. Having as many comment lines as code lines does not
imply readability; it more likely indicates the writer does not understand the code or the
problem it is intended to solve.

3.1 SPELLING
Spelling conventions in source code include rules for capitalization, use of underscores,
and use of abbreviations. If these conventions are followed consistently, the resulting
code will be clearer and more readable.

3.1.1 Use of Underscores

guideline

* Use underscores to separate words in a compound name.

example
MILESPERHOUR
ENTRY-VALUE

rationale

When an identifier consists of more than one word, it is much easier to read if the
words are separated by underscores. Indeed, there is precedent Ln English in which
words within a compound word are separated by a hyphen. In addition to
promoting readability of the code, if underscores are used in names a code

19

20 Ada QUALITY AND STYLE

formatter can transform the code into another format if required. See also
Guideline 3.1.3.

3.1.2 Numbers 1
guideline

• Represent numbers in a consistent fashion.

* Represent literals in a radix appropriate to the problem.

• Use underscores to separate digits the same way commas would be used in
handwritten text.

" When using -"z' ntific notation, make the "e" consistently either upper or lower
case.

" In an alternate base, represent the alphabetic characters in either all upper case,
or all lower case.

" Use underscores in alternate base numbers in the same way blanks or commas
would be used in handwritten text.

example
type MAXIMUMSAMPLES is range 1 .1. _000 000;
type LEGALHEXADDRESS is range 16#0000# .. 6#FFFF#;
type LEGALOCTAL_ADDRESS is range 8#000_000# 8#777_777#;

AVOGADRO NUMBER : constant :- 6.022169E+23;

To represent the number 1/3 as a constant,

-- use

ONE THIRD constant := 3#0.1#; -- yes, it really works!
-- or

ONETHIRD constant := 2.0/3.0;

-- Avoid this use.
ONETHIRD : constant 0.33333333333333;

rationale

Each of these guidelines aids recognition. Consistent use of case aids scanning for
numbers. Underscores serve to group portions of numbers into familiar patterns.
Consistency with common usage in everyday contexts is a large part of readability.

note

If a rational fraction is represented in a base that is a terminating rather than a
repeating decimal representation, then it may contain increased accuracy upon
conversion to the machine base.

READABILITY 21

3.1.3 Capitalization 1
guideline

• M - reserved vword. and other elements of the program distinct f-c"T each
othe:.

example

Reserved words are lower case, identifier names are capitalized:

case TIMEOFDAY is
when BEFORE NOON -> GET READY FOR LUNCH;
when HIGH NOON > EATLUNCH;
when others => GETTOWORK;

end case; -- TIMEOFDAY

rationale

Visually distinguishing reserved words allows the reader to focus on program
structure alone if desired and also aids scanning for particular identifiers.

note

Nissen and Wallis ([18] page 2. 1) state that "The choice of case is highly debatable,
and that chosen for the Ada LRM is not necessarily the best. The use of lower case
for reserved words is often preferred, so that they do not stand out too much.
However, lower case is generally easier to read than is upper case; words can be
distinguished by their overall shape, and can be found more quickly when scanning
the text."

Ada names are not case sensitive. Therefore the names max limit, MAXLIMIT, and
MaxLimit denote the same object or entity. A good code formatter should be able
to automatically convert from one style to another.

Write source code so that it can be reformatted by a code formatter for the desired
style if required. Pick any capitalization style as long as you stick to it and can
convert to the style preferred by management. For ease of entry and editing, it may
be better to use all lower case and have a formatter automatically convert to the
presentation (readable) form for review listings.

3.1.4 Abbreviations
guideline

* Spell out identifiers completely.

* Do not use an abbreviation where a shorter full name is available for a long
identifier.

• Use a consistent abbreviation strategy.

* Do not use uncommon or ambiguous abbreviations.

22 Ada QUALITY AND STYLE

" An abbreviation must save many characters over the full word to be justified.

" If a project has accepted abbreviations, maintain a list and use only
abbreviations on that list.

example

Use TIME_OFRECEIPT rather than RECDTIME or RTIME

rationale

Abbreviations only serve to aid the developer when entering the code. Many
abbreviations are ambiguous or unintelligible unless taken in context. As a simple
example, TEMP could indicate either temporary or temperature.

note

Moderation is in order. Very long variable names can obscure the structure of the
program. This is particularly so in deeply nested (indented) control structures.

ior naming conventions that help avoid abbreviations, see Guideline 3.3. 1. An
abbreviated format for a fully qualified name can be established via the renames
clause. This capability is useful when a very long fully qualified name would
otherwise occur many times in a localized section of code (see Guideline 5.7.2).

A list of accepted abbreviations for a project provides a standard context for the use
of each abbreviation.

3.2 COMMENTARY
Commentary includes all entities within a software component that are in the Ada
syntactic form called comments. Commentary can be either beneficiz! or harmful to
software maintainers. We take the position that commentary should be minimized;
restricted to comments that emphasize the structure of code and comments that draw
attention to delibei ate and necessary violations of the guidelines. It is 'mportant to note
that many of the examples in this book include more commentary than we would
generally consider necessary or advisable. It is present either to draw attention to the
real issue that is being exemplified, or to compensate for elision or incompleteness in the
example program.

Maintenance programmers need to know the causal interaction of non-contiguous
pieces of code to get a global, more or less complete sense of the program. They
typically garner this kind of information from mental simulation of parts of the code.
Commentary should be just sufficient to supp6rt this process or render it unnecessary
[24].

READABILITY 23

3.2.1 General Commentary
guideline

" Make comments unnecessary by trying to make the code say everything.

* When in doubt, leave out the comment.

" Do not use commentary to replace or replicate information that should be
provided in separate documentation such as design documents.

" Where a comment is required, make it succinct, concise, and grammatically
correct.

example

case ...

ENDOF_ FILETOKEN =>
raise UNEXPECTED ENDOFFILE;

-- Abandon input scan and code generation.
-- Skip to error message and listing processing.

rationale

The structure and function of well written code should be clear without
commentary. Obscure or badly structured code is hard to understand, maintain or
reuse irrespective of the amount of commentary; bad code should be improved, not
explained. In addition, during maintenance, commentary must be updated along
with the code it explains, which is a potential source of inconsistency and error.

The commentary should reveal to a reader only information which is difficult to
extract from the program text. Regardless of the particular format or style
mandated by a standard or an organization, it will be possible to include too much
information in commentary. This is a difficult situation to recognize when you are
creating it. Too much information is subject to sudden and frequent change which
may go unnoticed by the programmer responsible for the documentation. This is
one cause of cascading errors. It also violates the general design principle that
information not needed should be hidden.

Information that is extraneous to commentary but necessary for readers or
modifiers of the code, (e.g., the calling units for a subprogram) can be generated
using tools. As in the case of cross referencing, some information is better
generated through tools than programme. generated comments. This applies, for
example, to design documentation and revision histories.

The purpose of commentary is to help readers understand the code. Misspelled,
ambiguous, misleading, incomplete, scattered, or grammatically incorrect
commentary defeats this purpose. Also, a reader will tend to skip over long
passages. Review commentary with at least as much care as the code.

24 Ada QUALITY AND STYLE

3.2.2 File Headers

guideline
* Place in the header of Ada source code only information that will identify

important characteristics of the code.
• Include in header comments only what a reader will trust.

" Include copyright notices.

" Include author name(s), dates and place.

" Indicate where to look for implementation and machine dependencies.

example

-- Author:
-- Date:
-- Department:
-- Phone:
-- copyright:
-- Dependencies:

rationale

Readers of source code, particularly maintainers, only trust limited parts of typical
header comment blocks. Including other, de facto extraneous or superfluous
information is a waste of time. Most of the information typically included in header
comment blocks is not for readers of the code, but for tools whose purpose is to
build design documents after the fact. When present, a copyright notice often
subsumes place of origin.

The header information gives reae rs of the code a history and an introduction to
the code if they must maintain it at a later date. The code may be stored in a
reusable library. In that case, the revision history, description of the source code,
external information (units accessed, etc.) as well as the device input/output,
machine and compiler dependencies become very important.

3.2.3 Unit Function Description

guideline
• When describing the functionality of a software component, avoid a restatement

of the code itself [26].

* If they are needed at all, the comments in the specification should provide
information concerning the interface the unit presents to other parts of the
program.

READABILITY 25

* If they are needed at all, the comments in the body should contain information
on how the operations and their formal parameters are used within the unit.

example

package HANDLEROBOTDEVICE is

function DEVICE NOT READY return BOOLEAN;
-- Used to avoid raising the MOVE -WHENNOTREADY exception.

MOVE- WHEN NOTREADY : exception;
-- Raised when event sequence is incorrect.

EXCESS MOTOR CURENT : exception;
-- Raised when arm motion too fast.

LIMITSWITCH CLOSURE : exception;
-- Raised when arm position not safe.

procedure MAKE-READY (...);
procedure MOVXROBOTDEVICE (...);

end HANDLE.ROBOT DEVI CE;

rationale

If the routine and parameters are named well, there is no need for comments
describing their purpose(s). Restating the code is redundant and provides no
information that cannot be obtained more reliably by reading the code itself.
Further, when the commentary is too similar to the implementation, it can be put
out-of-date too easily by minor changes to the code. Often both authors and
maintainers overlook these problems.

When a unit does need comments in its specification, these should describe the
unit's purpose on its own. Information on its role in the program, such as which
other units use it, is superfluous and can become misleading during maintenance.

exceptions

If the code uses a complex algorithm, it could be beneficial to readers to have the
algorithm in a pseudo-code version or a reference to a text describing the algorithm
included in the comments of the body.

Comments in the specification may be useful in describing the behavior of the
subprogram or package to a programmer interested in reusing it, e.g., O(n log n)
time, recursive, may block due to entry, calls, accesses global variables. See
Guideline 8.2. 1.

26 Ada QUALITY AND STYLE

3.2.4 Marker Comments
guideline

" Make judicious use of marker comments.

" Use pagination markers (Guideline 2.1.7).
" Repeat the unit simple name at the begin of a package body, subprogram body,

task body, and a block if it is preceded by declarations.
" Mark the end of an if or a case statement and the reserved words else and elsif

with a short form of the conditional expression or other indicator of the purpose
accomplished by that point.

example

The if, else, and end if of an if statement are usually separated by long sequences
of statements, often involving other if statements. Marker comments emphasize the
association of the keywords of the same statement over a great visual distance.
if BFOUND then

-- large statement sequence
else -- B not found

-- large statement sequence
end if; -- BJOUND

The sequence of statements of a package body is usually very far from the first line
of the package. If a package body does have a sequence of statements, it is usually
long. The marker comment emphasizes the association of the begin with the
package.

package body ABSTRACTSTRINGS is
... -- many declarations

procedure CATENATE(...) is

end CATENATE;

... -- many more subprograms, etc.

begin -- ABSTRACTSTRINGS

end ABSTRACT-STRINGS; .

rationale

Marker comments are used to emphasize the structure of code and to make it easier
to read. They help the reader in resolving questions about his current position in the
code. This is more so for large units than small. A short marker comment will fit on

READABILITY 27

the same line as the reserved word with which it is associated. Thus it will inform
without clutter.

Repeating names and noting conditional expressions will clutter the code if
overdone. As in the examples, it is visual distance that makes marker comments
beneficial.

3.2.5 Highlighting
guideline

* Use commentary to highlight and explain violations of programming guidelines
or standards.

* Use commentary to highlight and explain unusual or special code features.

example

Suppose a ponion of code uses the assembly language level test and set instruction
versus the Ada rendezvous model to perform some sort of synchronization. Make
your documentation call attention to the fact. In addition to providing information
about the assembly code, give a rationale for not using a higher-level Ada construct.
Explain why other methods did not work, eg. timing requirements were not met.

-- Ada does not allow...

-- This block exploits...

rationale

Highlighting violations of guidelines or standards, or other unusual or special code
features, indicates that they are intentional and intended to achieve some purpose.
This assists maintainers by focusing their attention on code sections that are likely to
cause problems during maintenance or when porting the program to another
implementation.

If you restrict highlighting comments to these situations, the comments you do
include will let the reader know you are emphasizing something unusual and that
those comments are to be taken seriously.

note

Highlighting or meta comments should be used to document code that is
non-portable, implementation-dependent, environment-dependent or tricky in any
way. They notify the reader that something unusual was put there for a reason. A
beneficial comment would be one explaining a workaround for a compiler bug. If
you use a lower level (not "ideal" in the software engineering sense) solution,
comment it. Information included in the comments should state why you used that
particular construct. Also include documentation of the failed attempts, e.g. using a
higher level structure. This type of commentary is useful to maintainers for

28 Ada QUALITY AND STYLE

historical purposes, and helps them avoid "false starts." Show the reader that a
significant amount of thought went into the choice of a construct.

3.3 NAMING CONVENTIONS

Choose names which make clear the object's or entity's intended use. Ada allows
identifiers to be of any length as long as the identifier fits on a line, vith all characters
being significant. Identifiers are the names used for variables, constants, program units,
and other entities within a program.

3.3.1 Names
guideline

* Choose names that are as nearly self-documenting as possibie.

Choose names that have a unique pronunciation i26].

* Use a short full name instead of an abbreviation (See Guideline 3.1.4).

* Use the context to shorten names.

* Reserve the best name for the variable, and the next best for the type.

* Use names given by the application, but not obscure jargon.

example

TIMEOFDA' instead of TOD

In a tree-walker, using the name LEFT instead of LEFT_BRANCH is sufficient to convey
the full meaning given the context.

rationale

"Self-documenting" names require fewer explanatory comments. Unique
pronunciation for names facilitates human communicatior ?nd avoids confusion.
These attributes can be helpful in comprehending programs. You can further
improve comprehension if your variable names are not excessively lo,,g ([23] page
7). The context and the application can help greatly. The unit of measure for
numeric entities can be a source of names.

note

The acronyms ED' for Eastern Daylight '.me, GMT for Greenwich Mean Time,
and FFT for Fast Fourier Transform are good names rather than abbreviations.
They are commonly accepted and widely used and generally are given by the
application. (but see Guideline 8.2.3) Mathematical formulae are often given using
single-letter names for v' iables. Continue this convention for mathematical
equations where it would e;call the formula e.g.:

A * (X**2. + B * X + C.

READABILITY 29

3.3.2 Type Identification
guideline

" Choose a name indicative of a category.

" Consider using a plural form as a type name.

• Use specific suffixes
• If you use suffixes, reserve them only for types.

example
-TYPE -- too generic

NAME -- specific for an enumeration
INFO -- specific for a record

OPENMODE: OPEN-MODES; -- type name as plural of variable name.

rationale

Careful choice of type names clarifies type definitions by conveying meaning about
the objects to be declared, and clarifies declarations by indicating the purpose of the
declared objects. Using categorical or plural nouns or noun phrases as type names
helps to emphasize their generic nature. Suffixes, if used, shoDuld be sufficierntly
specific to convey useful information. Reserving suffixes for type names avoids
confusing the reader with object names which are generic in form.

note

Keep in mind the proper level of abstraction so that the information contained in the
name will be useful to a reader ui an object declaration where only the typemark
occurs wihhout the structuring information included in the type definition. The
name should n=t indicate anything about the structure implementing the type.

Occasionally. it is very difficult to come up with an appropriate categorical name to
encompass all the objects of a given type. In such cases, it is better to employ a
suffix indicating that a category is intended rather than sc;ae word which by itself
does not readily sug. est a category. If this is the case, use descriptive suffixes such
as CLASS, _KIND, etc. [17] [261. Be aware that appending the suffix can make
declarations awkward and will always make them longer. Mixing uses for suffixes
only obscures the intent for the reader.

3.3.3 Object Identification
guideline

" Form object names from words or phrases suggesting objects in natural
language.

" Use common nouns for non-boolean objects.

* Use predicate clauses or adjectives for boolean objects.

30 Ada QUALITY AND STYLE

a If you choose plural forms for type names, use singular forms for objects.

example

Non-boolean objects:
CURRENT USER : USER NAMES; -- noun
CLASS-SCHEDULE : SCHEDULE TABLES; -- noun

Boolean objects:
USERISAVAILABLE : BOOLEAN; -- predicate clause
LISTIS EMPTY : BOOLEAN; -- predicate clause
EMPTY : BOOLEAN; -- adjective

BRIGHT : BOOLEAN; -- adjective

rationale

By adhering to conventions relating object types and parts of speech, code
readability is improved. The use of natural language enables construction of nearly
self-documenting code and encourages writing programs which read as much as
possible like text.

note

If the program is modeling some action in a domain with previously established
naming conventions, use the conventions for the domain since they will be more
familiar to readers of the code.

3.3.4 Program Unit Identification

guideline
" Choose names for program units that reflect their level of organization and

functionality[17].

• Give procedures and entries identifiers that contain a transitive, imperative verb
phrase describing the action.

* Give boolean valued functions predicate-clause names.

" Give non-boolean valued functions noun names.

• Give packages names that imply higher levels of organization than subprograms.
Generally, these will be noun phrases that describe the abstraction provided.

• Give tasks names that imply an active entity.

• Name generic subprograms as if they were non-generic subprograms.

• Name generic packages as if they were non-generic packages.

• Make the generic names more general than the instantiated names.

READABILITY 31

example

1) Sample names for elements that comprise an Ada program.

Sample procedure names:

OBTAINNEXT TOKEN -- obtain is a transitive verb
CREATENEW_GROUP -- create is a transitive verb

Sample function names:
for boolean-valued functions:

STACK.IS EMPTY -- predicate clause
IS LAST ITEM -- predicate clause
DEVICEIS_READY -- predicate clause

for non-boolean-valued functions:

STACK.TOP -- common noun with prepositional phraae
-- used as adjective

SUCCESSOR -- common noun
SENSOR.READING -- common noun participle with adjective

Sample package names:

TERMINAL OPERATIONS -- common noun
TEXT UTILITIES -- common noun

Sample task names:

TERMINALRESOURCEMANAGER -- common noun that shows action

2) This example shows code using the parts-of-speech naming conventions.
The example takes the guidelines one step further and shows the reader
what the program is doing.

OBTAIN NEXT TOKEN (...);
case CURRENT TOKEN is

when IDENTIFIER => PROCESS IDENTIFIER;
when NUMERIC => PROCESSNUMERIC;

end case; -- CURRENTTOKEN

rationale

Use of these naming conventions creates understandable code that reads much like
natural language. When verbs are used for actions, such as subprograms, and nouns
are used for objects, such as the data that the subprogram manipulates, code is
easier to read and understand. This models a medium of communication already
familiar to a reader. Where the pieces of a program model a real-life situation, use
of these conventions reduces the number of translation steps involved in reading
and understanding the program. In a sense, your choice of names reflects the level
of abstraction from computer hardware toward application requirements.

3:, Ada QUALITY AND STYLE

note

There are some conflicting conventions in current use for task entr Some
programmers and designers advocate naming task entries with the same conventions
used for subprograms to blur the fact that a task is involved. Their reasoning is that
if the task is re-implemented as a package, the names need not change. This
approach has a similar benefit where a package is re-implemented as a task. Others
prefer to make the fact of a task entry as explicit as possible to ensure that the
existence of a task with its presumed overhead is recognizable. Program- or
project-specific priorities may be useful in choosing between these conventions.

3.3.5 Constants and Named Numbers

guideline
" Use symbolic values wherever possible.

• Use constants and named numbers to identify constant-valued entities.

" Use named numbers in preference to constants when possible.

* Use named numbers to replace numeric literals whose type or context is truly
universal.

* Use constants for objects whose values cannot change after elaboration [16]
[26].

* Show relationships between symbolic values by defining them with static
expressions.

• Use linearly independent sets of literals.

• Use the attributes succ and 'PRED wherever possible.

example
3.141 592_653_589_793 -- literal
PI : constant FLOAT := 3.141592_653_589_793; -- constant
PI constant 3.141 592_653_589_793; -- named number
PI / 2 -- static expression
PI-- symbolic value

Declaring Pi as a named number allows it to be referenced symbolically in the
assignment statement below:
AREA :- PI 0 RADIUS•*2; -- if radius is known.
-- instead of
AREA :- 3.14159 * RADIUS**2; -- Needs explanatory comment.

Also, ASCII.BEL is more expressive than CHARACTER'VAL(8#007#).

READABILITY 33

Clarity of constant declarations can be improved by using other constants. For
example:
BYTES PEh PAGE constant := 512;
PAGES PER BUFFER constant :- 10;
BUFFER_SIZE constant :-PAGES.PERUFFER * BYTES PERPAGE;

-- is more self-explanatory and safer than

BUFFERSIZE : constant := 5120; -- ten pages

The following literals should be constants

if NEW CHARACTER = -- magic constant that may change
if CURRENTCOLUMN = 7 -- magic constant that may change

rationale

Using identifiers instead of numeric literals or "magic constants" makes the purpose
of expressions clear. This lessens the necessity of accompanying expressions with
commentary. Constant declarations consisting of expressions of numeric literals are
safer since they need not be computed by hand. They are also more enlightening
than a single numeric literal since there is more opportunity for embedding
explanatory names. Clarity of constant declarations can be improved further by
using other related constants in static expressions defining new constants. Static
expressions of named numbers are computed with infinite precision at compile time.

A constant has a type; a named number can only be of a universal type: universal
integer or universal real. Strong typing is enforced for identifiers but not literals.
Named numbers allow compilers to generate more efficient code than for constants
and to perform more complete error checking at compile time. If the literal
contains a large number of digits (as Pi in the example above), the use of an
identifier reduces keystroke errors. If keystroke errors occur, they are easier to
locate either by inspection or at compile time.

Linear independence of literals means that the few literals that are used do not
depend on one another and that any relationship between constant or named values
is shown in the static expressions. Linear independence of literal values gives the
property that if one literal value changes, all of the named numbers of values
dependent on that literal are automatically changed.

The literal I often occurs in situations where it could be replaced by the -succ and
'PRED attributes. Where these attributes are used instead of the literal 1, the
underlying type can be switched easily during maintenance between numeric and
enumeration types. Another benefit of using these attributes is that the operations
are more explicit, self-documenting, and instructive than having the maintainer
answer such questions as: "If something somewhere else changes, does the I change
to, say, 5?"

34 Ada QUALITY AND STYLE

note

There are some gray areas where the literal is actually more self-documenting than a
name. These are application-specific and generally occur with universally familiar,
unchangeable values such as the following relationship:

FAHRENHEIT :a 32.0 + (9.0 / 5.0) * CELSIUS;

3.4 USING TYPING
Strong typing promotes reliability in software. The type definition of an object defines
all legal values and operations and allows the compiler to check for and identify
potential errors during compilation. In addition, the rules of type allow the compiler to
generate code to check for violations of type constraints at execution time. Use of these
features of Ada compilers facilitates earlier and more complete error detection than the
methods available to users of less strongly typed languages.

3.4.1 Declaring Types

guideline

* Limit the range of scalar types as much.as possible.

" Seek information about possible values from the application.
• Limit the use of predefined numeric types from package STANDARD.

" Do not overload any of the type names in package STANDARD.

• Use subtype declarations to improve program readability 161.
" Use derived types and subtypes in concert (see Guideline 5.3.1).

example
subtype CARD_IMAGE is STRING (I .. 80);
INPUT-LINE : CARDIMAGE := (others a> "

-- restricted integer type:
type DAY OFLEAPYEAR is range 1 .. 366;
subtype DAYOFNON LEAPYEAR is DAYOF LEAP YEAR range I .. 365;

By the following declaration, the programmer means, "I haven't the foggiest idea
how many," but the actual range will show up buried in the code or as a system
parameter:

EMPLOYEE-COUNT : INTEGER;

READABILITY 35

rationale
Eliminating meaningless values from the legal range improves the compiler's ability
to detect errors when an object is set to an invalid value. This also improves
program readability. In addition, it forces you to think carefully about each use of
objects declared to be of the subtype.

Different implementations provide different sets of values for most of the
predefined types. A reader cannot determine the intended range from the
predefined names. This situation is aggravated when the predefined names are
overloaded.

The names of an object and its subtype can make clear their intended use and
document low-level design decisions. The example above documents a design
decision to restrict the software to devices whose physical parameters are derived
from the characteristics of Hollerith cards. This information is easy to find for any
later changes, enhancing program maintainability.

Declaration of a subtype without a constraint is the method for renaming a type
([281 §8.5).
Types can have highly constrained sets of values without eliminating useful values.
Usage as described in Guideline 5.3.1 eliminates many flag variables and type
conversions within executable statements. This renders the program more readable
while allowing the compiler to enforce strong typing constraints.

note

Subtype declarations do not define new types, only constraints for existing types.

Recognize that any deviation from this guideline will detract from advantages to be
had from the strong typing facilities of the Ada language.

3.4.2 Enumeration Types
guideline

" Use enumeration types instead of numeric encodings.

" Use representation clauses to match requirements of external devices.

36 Ada QUALITY AND STYLE

example
-- Use
type COLORS is

BLUE, RED,
GREEN. YELLOW

-- rather than

BLUE constant := 1;
RED constant : 2;

rationale

Enumerations are more robust than encodings; they leave less potential for errors
resulting from incorrect interpretation, and from additions to and deletions from the
set of values during maintenance. Encodings are holdovers from languages that
have no user-defined types.

In addition, Ada provides a number of attributes ('Pos, 'VAL, "SUCC, 'FRED, -IMAGE,
and 'VALUE) for enumeration types which, when used, are more reliable than
user-written operations on encodings.

An encoding might at first seem appropriate to be certain that specific values match
requirements for signals on control lines or expected inputs from sensors. These
situations instead call for a representation clause on the enumeration type
(examples can be found in § 13.3 of the Ada LRM [28]). The representation clause
documents the "encoding" and, if the program is properly structured to isolate and
encapsulate hardware dependencies (see Guideline 7.1.6) will end up in its proper
place. That proper place is an interface package where the "encoding" values can
be found and replaced easily should the requirements change.

3.4.3 Overloaded Enumeration Literals

guideline

* Do not overload enumeration literals.

" If you must overload them, qualify all references.

READABILITY 37

example
type TRAFFICSIGNAL is

RED. AMBER,
GREEN

type COLOR SPECTRUM is

RED, ORANGE,
YELLOW. GREEN,
BLUE, INDIGO.
VIOLET

CURRENTSIGNAL COLOR : TRAFFICSIGNAL;
CURRENT LIGHTCOLOR COLORSPECTRUM;

-- qualify references to the overloaded literals as follows:
VALUE :s TRAFFICSIGNAL' (RED)
VALUE := COLORSPECTRUM' (RED)

rationale

In most cases, your compiler will be able to resolve the overloading correctly. This
will not be so easy for you or for readers of the code. Specific compilers may not be
able to resolve some cases. Such ambiguity can lead to incorrect assumptions which
can lead to incorrect actions on your part as author of a program under construction
or on the part of maintainers modifying the program. Wherever it is not
immediately obvious to which type a literal belongs, you can be making a mistake. If
the same literal never appears in more than one enumeration, these problems
cannot occur.

exception

If you cannot avoid overloading enumeration types, make sure that all references to
the overloaded literals are fully qualified, as illustrated above.

3.5 SUMMA4RY
spelling

" Use underscores to separate words in a compound name.

" Represent numbers in a consistent fashion.

* Represent literals in a radix appropriate to the problem.
" Use underscores to separate digits the same way commas would be used in

handwriten text.

38 Ada QUALITY AND STYLE

* When using scientific notation, make the "e" consistently either upper or lower
case.

" In an alternate base, represent the alphabetic characters in either all upper case,
or all lower case.

" Use underscores in alternate base numbers in the same way blanks or commas
would be used in handwritten text.

" Make reserved words and other elements of the program distinct from each
other.

* Spell out identifiers completely.

" Do not use an abbreviation where a shorter full name is available for a long
identifier.

* Use a consistent abbreviation strategy.

* Do not use uncommon or ambiguous abbreviations.

" An abbreviation must save many characters over the full word to be justified.

* If a project has accepted abbreviations, maintain a list and use only
abbreviations on that list.

commentary

" Make comments unnecessary by trying to make the code say everything.

* When in doubt, leave out the comment.

* Do not use commentary to replace or replicate information that should be
provided in separate documentation such as design documents.

* Where a comment is required, make it succinct, concise, and grammatically
correct.

" Place in the header of Ada source code only information that will identify
important characteristics of the code.

" Include in header comments only what a reader will trust.

* Include copyright notices.

" Include author name(s), dates and place.

• Indicate where to look for implementation and machine dependencies.

* When describing the functionality of a software component, avoid a restatement
of the code itself.

* If they are needed at all, the comments in the specification should provide
information concerning the interface the unit presents to other parts of the
program.

READABILITY 39

" If they are needed at all, the comments in the body should contain information
on how the operations and their formal parameters are used within the unit.

• Make judicious use of marker comments.

* Use pagination markers.

* Repeat the unit simple name at the begin of a package body, subprogram body,
task body, and a block if it is preceded by declarations.

• Mark the end of an if or a case statement and the reserved words else and elsif
with a short form of the conditional expression or other indicator of the purpose
accomplished by that point.

" Use commentary to highlight and explain violations of programming guidelines
or standards.

* Use commentary to highlight and explain unusual or special code features.

naming conventions
• Choose names that are as nearly self-documenting as possible.

* Choose names that have a unique pronunciation.

" Use a short full name instead of an abbreviation.

• Use the context to shorten names.

• Reserve the best name for the variable, and the next best for the type.

" Use names given by the application, but not obscure jargon.

" Choose a name indicative of a category.

" Consider using a plural form as a type name.

" Use specific suffixes.

* If you use suffixes, reserve them only for types.

• Form object names from words or phrases suggesting objects in natural
language.

" Use common nouns for non-boolean objects.

* Use predicate clauses or adjectives for boolean objects.

• If you choose plural forms for type flames, use singular forms for objects.

" Choose names for program units that reflect their level of organization and
functionality.

* Give procedures and entries identifiers that contain a transitive, imperative verb
phrase describing the action.

• Give boolean valued functions predicate-clause names.

40 Ada QUALITY AND STYLE

" Give non-boolean valued functions noun names.

• Give packages names that imply higher levels of organization than subprograms.
Generally, these will be noun phrases that describe the abstraction provided.

• Give tasks names that imply an active entity.

" Name generic subprograms as if they were non-generic subprograms.

" Name generic packages as if they were non-generic packages.

• Make the generic names more general than the instantiated names.

• Use symbolic values wherever possible.

• Use constants and named numbers to identify constant-valued entities.

• Use named numbers in preference to constants when possible.

• Use named numbers to replace numeric literals whose type or context is truly
universal.

• Use constants for objects whose values cannot change after elaboration.

• Show relationships between symbolic values by defining them with static
expressions.

• Use linearly independent sets of literals.

• Use the attributes succ and "PRED wherever possible.

using typing
* Limit the range of scalar types as much as possible.

" Seek information about possible values from the application.

• Limit the use of predefined numeric types from package STANDARD.

* Do not overload any of the type names in package STANDARD.

* Use subtype declarations to improve program readability.

* Use derived types and subtypes in concert.

0 Use enumeration types instead of numeric encodings.

0 Use representation clauses to match requirements of external devices.

• Do not overload enumeration literals.

* If you must overload them, qualify ll 'references.

148 Ada QUALITY AND STYLE

rationale

The unchecked type conversion mechanism is, in effect, a means of by-passing the
strong typing facilities in Ada. An implementation is free to limit the types that may
be matched and the results that occur when object sizes differ.

exceptions

Unchecked type conversion is useful in implementation dependent parts of Ada
programs (where lack of portability is isolated) where low-level programming and
foreign language interfacing is the objective.

7.6.9 Runtime Dependencies
guideline

Avoid the direct invocation of or implicit dependence upon an underlying host
operating system or Ada run-time support system.

rationale

Features of an implementation not specified in the Ada LRM 1281 will usually differ
between implementations. Specific implementation-dependent features are not
likely to be provided in other implementations. Even if a majority of vendors
eventually provide similar features, they are unlikely to have identical formulations.
Indeed, different vendors may use the same formulation for (semantically) entirely
different features.

It is a good habit to avoid these in all coding. Consider the consequences of
including system calls in a program on a host development system. If these calls are
not flagged for removal and replacement, the program could go through
development and testing only to be unusable when moved to a target environment
which lacks the facilities provided by those system calls on the host.

exceptions

In real-time embedded systems, you will often not be able to avoid making calls to
low-level support system facilities. Isolate the uses of these facilities. Document
them as you would machine code inserts (see Guideline 7.6.4); they are in a sense
instructions for the virtual machine provided by the support system. When isolating
the uses of these features, provide an interface for the rest of your program to use
which can be ported through replacement of the interface's implementation.

7.6.10 System Partitioning
guideline

Minimize anificial partitioning of an Ada program to exploit specific
architectures.

CHAPTER 4
Program Structure

Proper structure improves program clarity. This is akin to readability on 1 -wer levels and
facilitates the use of the readability guidelines (Chapter 3). The various program
structuring facilities provided by Ada were designed to enhance overall cl irity of design.
These guidelines show how to use these facilities for their intended purposes.

Abstraction and encapsulation are supported by the package conc'pt. Related
subprograms can be grouped together and seen by a higher level as a single entity.
Information hiding is enforced via strong typing and by the stparation of package and
subprogram specifications from their respective bodies. Additional langi age elements
that form the unique combination of features within Ada include excep ion handling
and tasking.

4.1 HIGH-LEVEL STRUCTURE*

Program structure can have a significant effect on mair-ainability. Well-structured
programs are easily understood, enhanced, and maintained. Poorly structured
programs are frequently restructured during maintenance just to make the maintenance
job easier. Many of the guidelines listed below are often given as general program design
guidelines.

41

42 Ada QUALITY AND STYLE

4.1.1 Separate Compilation Capabilities
guideline

• Place a package specification and its body in different ues.

" Put as much as is practicable of the subunit structure within the same file as the
parent's body.

" Consider placing large subunits or task bodies in separate files.

* Consider providing a specification in a separate file for subprogram library units.

• Use a consistent file naming convention.

example

The file names below illustrate one possible file organization and associated
consistent naming convention. The library unit name is used for the body. A
trailing underscore indicates the specification, and any files containing subunits use
names constructed by separating the body name from the subunit name with two
underscores.
TEXT 10 .ADA -- the specification
TEXT IO.ADA -- the body
TEXT 10 INTEGER IO.ADA -- a subunit
TEXT 10 FIXED_IO.ADA -- a subunit
TEXT 10 FLOAT IOADA -- a subunit
TEXT_10_ENUMERATIONIO.ADA -- a subunit

rationale

Separate compilation capabilities reduce .omplexity for the human reader, but they
can be abused. Physical separation of specification and body enhances the sense of
their logical separation. Separation can also help prevent internal objects from
making their way into the specification by accident. Using separate files for
specific-:ion and body prov: ies for different bodies with differing size vs. speed
tradeoffs or for diffeent bodies specific to different machines.

Separating subunits out from a body is similarly desirable. This can be done within
the same file. Using multiple files for ali subunits is excessive. Maintainers and
others who read code can focus more easily on smaller pieces, yet they are also
better able to grasp a package as a whole if it is entirely located together.

In large programs, using the same file for all parts of a body can waste development
time since a change in a single subunit then requires recompilation of the parent and
all its children. This calls for tradeoffs in following this guideline.

Large subunits should generally be in separate files. The physical separation then
emphasizes the conceptual complexity and importance of the subunit relative to its
parent. Task bodies are also candidates for separate files, given the conceptual
model of a separate program with its own virtual processor (see Guideline 6.1.1).

PROGRAM STRUCTURE 43

During development, some subunits may be transiently in a less complete state than
other subunits or their parent. In such cases it is often convenient to start with them
in different files, irrespective of size, deferring the decision as to their eventual
location. If they are still small when complete, they can be put back into the same
file as the parent, but remain subunits. If they are large, they can be left in separate
files. The overall objective should be to achieve an appropriate balance of the
opposing goals of minimizing the number of files and improving clarity by physical
separation.

Providing an (optional) subprogram specification for a subprogram library unit
allows the body to be recompiled without invalidating its callers.

Where there are many files associated with a program unit, a consistent file naming
convention can reduce apparent file system clutter. Still, this cannot help with a
superfluity of files. Library units so large that no satisfactory balance between the
number of files and their size is achievable may reflect poor design.

4.1.2 Subprograms

guideline

* Use subprograms to enhance abstraction.

* Use the pragma INLINE where call overhead is of paramount concern.

• Restrict each subprogram to the performance of a single action [17].

example

Your program is required to output text to many types of devices. Since the devices
would accept a variety of character sets, the proper way to do this is to write a
subprogram to convert to the required character set within the subprogram that
writes out the data. This way, the output subprogram has one purpose and the
conversions are done elsewhere.

44 Ada QUALITY AND STYLE

procedure OUTPUTTODEVICE (OUTPUT-DATA in TEXTDATA;
DEVICE in DEVICE TYPE;
STATUS out ERROR._CODES) is

-- local declarations
begin -- OUTPUTTODEVICE

case DEVICE.CHARACTERSET is

when LIMITED ASCII =>
CONVERTTO_UPPERCASE (ORIGINAL-DATA -> OUTPUT DATA,

UPPER- CASE DATA w> UPPER OUTPUTDATA);

when EXTENDED-ASCII =>

when EBCDIC .>

end case; -- DEVICE TYPE.CHARACTERSET

end OUTPUTTODEVICE;

rationale

Subprograms are an extremely effective and well-understood abstraction
technique. Subprograms increase program readability by hiding the details of a
particular activity. It is not necessary that a subprogram be called more than once to
justify its existence.

The case statement in the example is more readable and understandable with the
bodies of the conversion routines elsewhere, and the judicious choice of subprogram
names has enhanced the understanding of the purpose of the case statement (see
Guideline 3.3.4).

note

In special cases there can be a combination of factors that render a subprogram
solution inefficient (e.g., stringent timing constraints and a small subprogram such
that the calling overhead takes more time than execution of the subprogram itself).
When this happens, maintain the scope, visibility, and information hiding that a
subprogram provides by using the pragma INLINE.

4.1.3 Functions

guideline

" When writing a function, make sure'it has no side effects.

" If a subprogram involves a conceptually large computation, make it a
procedure.

PROGRAM STRUCTURE 45

rationale

A side effect is a change to any variable that is not local to the subprogram. This
includes changes to variables by other subprograms and entries during calls from the
function if the changes will persist after the function returns. Although the Ada
language permits functions to have side effects, they can sometimes lead to
problems with incorrect orde- dependencies. Discourage using side effects
anywhere.

Although functions can be called from within expressions allowing freedom of
expression and supporting readable code, using a procedure rather than a function
can call attention to the use of a large computation located elsewhere. This
enhances readability since the call is not buried within an expression.

exceptions

There are a very few cases in which functions having side effects is accepted
practice. One such case is a random number generator. Others, such as recording
performance analysis data or information for recovery, have little to do with the
application.

4.1.4 Packages

guideline
• Use packages for information hiding and abstract data types.

" Use packages to model abstract entities appropriate to the problem domain.

• Use packages to group together related type and object declarations (e.g.,
common declarations for two or more library units).

" Use packages to group together related program units for configuration control
or visibility reasons [17].

• Use packages to group together related declarations and components for later
reuse.

* Encapsulate machine dependencies in packages. Place a software interface to a
particular device in a package to facilitate a change to a different device.

* Place low-level implementation decisions or interfaces in subprograms within
packages. The pragma INLINE can be used to remove subprogram calling
overhead.

" Use packages and subprograms to encapsulate and hide program details that
may change [18].

example

A package called BACKIlNGSTORAGE INTERFACE could contain type and subprogram
declarations to support a generalized view of an external memory system (such as a

46 Ada QUALITY AND STYLE

disk or a drum). Its internals may, in turn, be dependent on other more hardware-
or operating-system-specific packages.

rationale

Packages are the principal structuring facility in Ada. They are intended to be used
as direct support for abstraction, information hiding, and modularization. For
example, they are useful for encapsulating machine dependencies as an aid to
portability. A single specification can have multiple bodies isolating
implementation-specific information so other parts of the code need not change.

Encapsulating areas of potential change helps to minimize the effort required to
implement that change by preventing unnecessary dependencies among unrelated
parts of the system.

4.1.5 Functional Cohesion
guideline

" Make each package serve a single purpose.
" Use packages to group functionally related data, types, and subprograms.
* Avoid collections of unrelated objects and subprograms [17) [18].

example

The following package is obviously a "catch all" for a particular project and is likely
to be a jumbled mess. It probably has this form to permit project members to
incorporate a single with clause into their software.
package PROJECT-DEFINITIONS is

The following package contains all the types and constants needed by some specific
display associa'ed with some specific device. This is a good example of collecting
related information.
package DISPLAYFORMATDEFINITIONS is

Packages can, and should, be used to collect types, data, and subprograms. The
following package provides all the functionality needed to deal with a special
purpose device.
package CARTRIDGETAPEMANDLER is

rationale

See also Guideline 5.4.1 on Heterogeneous Data.
The degree to which the entities in a package are related has a direct impact on the
ease of understanding packages and programs made up of packages. There are
different criteria for grouping, and some criteria are less effective than others.
Grouping the class of data or activity (e.g., initialization modules), and grouping

PROGRAM STRUCTURE 47

data or activities based on their temporal proximity, are less effective than grouping
based on function or need to communicate through data. ([7] paraphrased).

note

Traditional subroutine libraries often group functionally unrelated subroutines.
Even such libraries should be broken into a collection of packages each containing a
logically cohesive set of subprograms.

4.1.6 Data Coupling
guideline

0 Do not share data between packages.

example

This is part of a compiler. Both the package handling error messages and the
package containing the code generator need to know the current line number.
Rather than storing this in a shared variable of type NATURAL, the information is
stored in a package that hides the details of how such information is represented,
and makes it available with access functions.

package COMPILATION-STATUS is
function SOURCELINENUMBER return LINERANGE;

end COMPILATION-STATUS;

with COMPILATION STATUS;
package ERROR MESSAGE PROCESSING is

-- Handle compile-time diagnostic.
end ERRORMESSAGEPROCESSING;

with LIMPILATIONSTATUS;
package CODEGENERATION is

-- Operations for code generation.
end CODE-GENERATION;

rationale

Strongly coupled program units can be difficult to debug and very difficult to
maintain. If relationships exist that are either not intentional or not documented
properly, the maintainability of the code suffers.

4.1.7 Tasks

guideline

* Use tasks to mode] abstract, asynchronous entities within the problem domain.

48 Ada QUALITY AND STYLE

* Use tasks to control or synchronize access to tasks or other asynchronous
entities (e.g., asynchronous I/O, peripheral devices, interrupts).

• Use tasks to define concurrent algorithms for multiprocessor architectures.

* Use tasks to perform cyclic or prioritized activities [17].

rationale

The rationale for this guideline is given under Guideline 6. 1.1. Chapter 6 deals with
tasking in more detail.

4.2 VISIBILITY
Ada's ability to enforce information hiding and separation of concerns through its
visibility controlling features is one of the most important advantages of the language,
particularly when "programming-in-the-large" where a team of programmers are
producing a large system. Subverting these features, for example by excessive reliance
on the use clause, is wasteful and dangerous. See also Section 5.7.

4.2.1 Minimization of Interfaces

guideline
* Put only what is needed for the use of a package into its specification.

" Minimize the declaration of objects in package specifications [18].

" Do not include extra operations simply because they are easy to build.

* Minimize the context (with) clauses in a package specification.

* Minimize the number of parameters to subprograms.

* Do not manipulate global data within a subprogram or package merely to limit
the number of parameters.

" Avoid unnecessary visibility; hide the implementation details of a program unit
from its users.

PROGRAM STRUCTURE 49

example

package TELEPHONEBOOK is

type NAMEDATA is private;
-- Operators for the NAME DATA type follow. This type is made available
-- because it is used in other contexts. Note that it is a private type
-- to limit operations on such objects.
procedure SET NAME(...);

-- Operators for the telephone database itself. Details of the record
-- format are totally hidden because the type is defined in the
-- package body. This record type is not needed elsewhere.
procedure INSERT-ENTRY;
procedure DELETEENTRY;

private
type NAME-DATA is record

-- field information;
end record;

end TELEPHONE-BOOK:

package body TELEPHONE-BOOK is

ENTRYDATA -- full details of phone record;

procedure INSERT-ENTRY is

begin

end INSERT-ENTRY;

procedure DELETE-ENTRY is
begin

end DELETE-ENTRY;

end TELEPHONE-BOOK;

rationale

Extra information in a package specification wastes maintenance effort. If too
much information is given, a user of the package can easily "break" it by changing
some of the data so that the group of values is inconsistent. A maintainer must find
every use of any part of this package to. be sure that it is not being abused.

The fewer the extraneous details, the more understandable the program, package,
or subprogram. It is important to ma ntainers to know exactly what a package
interface is so that they can understand the effects of chanocs. Interfaces to a
subprogram extend beyond the parameters; any modification of global data from
within a package or subprogram is an undocumented interface to the "outside" as
well.

50 Ada QUALITY AND STYLE

Pushing as many as possible of the context dependencies into the body makes the
reader's job easier, localizes the recompilation required when library units change,
and helps prevent a ripple effect during modifications. See also Guideline 4.2.3.

Subprograms with large numbers of parameters often indicate poor design decisions
(e.g., that the functional boundaries of the subprogram are inappropriate, or that
parameters are structured poorly).

Objects visible within package specifications can be modified by any unit that has
visibility to them. The object cannot be protected or represented abstractly by its
enclosing package. Objects which must persist should be declared in package
bodies. Objects whose value depends on program units external to their enclosing
package are probably either in the wrong package or are better accessed by a
subprogram specified in the package specification.

note

The guideline does not say "eliminate the declaration of objects ... " Some package
specifications will be composed entirely of object (and constant) declarations. The
goals are to keep as much as possible hidden within the package body or the private
part of the package specification and to export only what is necessary for another
unit to use the package properly. Visibility of objects such as DEFAULT.3IDT.t in
package TEXTo. INTEGER_1o is useful.
The specifications of some packages, such as in subroutine libraries, cannot be
significantly reduced in size. A heuristic is to break these up into smaller packages,
grouping according to category, e.g., Trigonometric functions.

4.2.2 Nested Packages

guideline

" Avoid nesting package specifications within package specifications.

* Nest package specifications only for grouping operations, hiding common
implementation details, or presenting different views of the same abstraction.

example

The Ada LRM [28] gives an example of desirable package specification nesting.
The specifications of generic packages IxTEGER , 10. FLOAT_10. FIXED o, and
ENUMERATION iO are nested within the specification of package TEXT_ o. Each of
them is a generic, grouping closely relateo operations and needing to use hidden
details of the implementation of TEXT 1O

rationale

Packages can be nested to reflect levels of abstraction. "When a package provides a
good abstraction, it hides the details of its implementation." ([17] page 7-3). When
you embed one package specification inside another, it is likely that you are

PROGRAM STRUCTURE 51

exposing too much information or that the enclosing package is not a good
abstraction. Generally, subpackages should be hidden in package bodies rather
than exposed in the specifications.

There ate valid program structures requiring nesting of package specifications.
These are relatively rare.

Where a set of facilities is used by more than one package, but must itself be
guaranteed invisible elsewhere, the set of facilities and its users have to be
encapsulated in an outer, containing package. In this case, the specifications of the
using packages must be nested in the specification of the containing package to
make them externally visible (This was the case with TEXT_10). If the set of facilities
supports the implementation of closely related packages, the grouping then also
emphasizes the closeness of the original packages' relationship.

note

The nesting of specifications, as in TEXT_IO, provides the needed access and
restrictions. Other organizations, such as exporting the common set of facilities
from a separate package to be used as context ("with'ed") by the original packages
(e.g., FLOATIo), are unenforceable.

An abstraction occasionally needs to present different views to different classes of
users. Building one view upon another as an additional abstraction does not always
suffice, because the functionality of the operations presented by the views may be
only partially disjoint. Nesting specifications groups the facilities of the various
views, yet associates them with the abstraction they present. Abusive mixing of the
views by another unit would be easy to detect due to the multiple use clauses or an
incongruous mix of qualified names.

This book cannot provide a complete treatise on program design. The first bullet of
this guideline addresses the majority of situations.

4.2.3 Restricting Visibility
guideline

& Restrict the visibility of program units as much as possible 118].
* Minimize the scope within which with clauses apply.

* Compile in the context of (with) only those units directly needed.

example
This program is a compiler. Access to the printing facilities of TEXT-1O is restricted to
the software involved in producing the source code listing.

52 Ada QUALITY AND STYLE

procedure COMPILER is

package LISTING-FACILITIES is

procedure NEW PAGEOF LISTING;
procedure NEWLINEOF_PRINT;
-- etc.

end LISTINGFACILITIES;

package body LISTING FACILITIES is separate;

begin -- COMPILER

end COMPILER;

with TEXT_I ;
separate (COMPILER)

package body LISTING FACILITIES is

procedure NEW_PAGEOFLISTING is

begin

end NEW PAGE OF LISTING;

procedure NEWLINE OF PRINT is
begin

end NEWLINEOF PRINT;
.............................-- - --....................................

-- etc

end LISTING FACILITIES;

rationale

Restricting visibility to a library unit tells maintainers that they need only beware of
its use in a localized section. This clarifies exactly what is required for visibility.
Code structured in this way is also easier to upgrade.

note

One way to minimize the coverage of a with clause is to use it only with subunits that
really need it. When the need for visibility to a library unit is restricted to a
subprogram or two, consider making themnsubunits.

PROGRAM STRUCTURE 53

4.2.4 Hiding Tasks
guideline

" Do not include task specifications in package specifications.

* Hide (mask) the fact of a tasking implementation by exporting subprograms that
call entries [17] 118].

example

package DISK HEADSCHEDULER is
type TRACKNUMBER is ...
type WORDS is ...

procedure TRANSMIT(TRACK TRACK NUMBER;
DATA WORDS);

end DISK HEADSCHEDULER;

package body DISKHEADSCHEDULER is

task CONTROL is
entry SIGN IN(TRACK : TRACK-NUMBER);

end CONTROL;

task TRACKMANAGER is
entry TRANSFER(TRACK NUMBER) (DATA : WORDS);

end TRACK MANAGER;

procedure TRANSMIT(TRACK TRACK NUMBER;
DATA WORDST is

begin
CONTROL.SIGNIN(TRACK);
TRACKMANAGER.TRANSFER (TRACK) (DATA);

end TRANSMIT;

end DISKHEADSCHEDULER;

rationale

A change to or from a tasking implementation, or a reorganization of services
among tasks need not concern users of the package. This guideline supports
information hiding and strengthens the abstraction of the enclosing package. Where
performance is an issue, the pragma INLINE can be used with the interface
subprograms, or the entries can be renamed as subprograms if there are no ordering
rules to enforce (see below).

54 Ada QUALITY AND STYLE

Leaving a task specification in a package body and exporting, via subprograms, only
those entries required reduces the amount of extraneous information in the package
specification. It allows your subprograms to enforce any order of entry calls
necessary to the proper operation of the tasks. This also allows you to impose, on
those subprograms, defensive task communication practices (See Guideline 6.2.1)
and proper use of conditional and timed entry calls.

Hiding tasks and exporting subprograms calling their entries allows the concealment
of entries that should not be made public (e.g., initialization, completion, signals),
or the grouping of sets of entries for export to different classes of users (e.g.,
producers versus consumers). See also Guideline 4.2.2.

note

This guideline provides for hiding the fact of a tasking implementation of a package,
grouping some entries and hiding others, package-implementor enforcement of call
orders, package-implementor imposition of defensive task commupication
practices, and package-implementor imposition of proper use of timed and
conditional entry calls. With these tools at hand, it is the package implementor's
responsibility to ensure that users of the package will not have to concern themselves
with behaviors such as deadlock, starvation, and race conditions with respect to the
package. If the package user must still know about the tasking implementation to
reason about global tasking behavior, comments may be placed in the package
specification stating that there is a tasking implementation, describing when a call
may block, etc.

This guideline refers only to export of tasks from packages. Do not interpret this
guideline as proscribing tasks within subprograms, within other tasks, or wholly
contained within package bodies.

4.3 EXCEPTIONS

This section addresses the issue of exceptions in the context of program structures.
More material on the ute of exceptions is to be found in Section 5.8.

4.3.1 Exported Exceptions

guideline

* Use an exception to indicate an exp!icit misuse.

* Do not borrow an exception name from another context.

PROGRAM STRUCTURE 55

example

package STACK is

function STACK EMPTY return BOOLEAN;
-- Used to avoid raising the NODAT._ON_STACK exception.

NO_DATA ONSTACK : exception;
-- 4.ised when POP used on empty stack. This exception should only be
-- raised from within this package. The name is exported to allow
-- handlers to be written by users of this package.

procedure POP (...);
procedure PUSH (...);

end STACK;

rationale

There are two reasons a package may export exceptions. The first reason is to make
visible to a user a specific indicator of how its facilities have been misused. The
exception is to be raised only within the body of the declaring package and to be
handled by units that make use of that package. The second reason is to make
available to users of proffered types and objects an associated vocabulary for
communicating about anomalous situations concerning those types and objects. If
the latter form is used, the package might not be providing the best abstraction. Be
careful in distinguishing between the two. A rule of thumb is to look at the context
of the package specification. A package providing operations is more likely to
export an exception for the first reason than for the second. In the first case, be
prepared to handle the exception rather than raise it. If the name is not declared in
the package's visible part, the exception can only be handled as others if
propagated outside.

4.3.2 Abstractions and Exceptions

guideline
* Provide a way to avoid raising an exception.

" Provide a different exception name for each way a package's abstraction can be
misused. Raise only that exception for that misuse. Do not raise that exception
elsewhere.

" If use of a subprogram can raise an exception, export the name of that
exception, i.e., make it visible to any caller.

" Export exceptions at the right level of abstraction. Use them to enhance
abstraction.

56 Ada QUALITY AND STYLE

" Never let an exception escape the boundaries of its abstraction.

" Exceptions are side effects of Ada units and shouiu be documented as such.

example

package HANDLEROBOTDEVICE is

function DEVICE NOT READY return boolean;
-- Used to avoid raising the MOVEWHENNOTREADY exception.

-- The following exception raised when abstraction misused.
MOVE WHENNOTREADY : exception;

-- Raised when event sequence is incorrect.

-- The following exceptions are part of the abstraction.
EXCESS MOTOR CURRENT : exception;

-- Raised-when arm motion too fast.
LIMITSWITCH CLOSURE : exception;

-- Raised when arm position not safe.

procedure MAKEREADY (...);

procedure MOVE ROBOTDEVICE (...);

-- Other necessary facilit.es.

end HANDLEROBOTDEVICE;

rat onale

If there are any kind of boundary conditions for an abstract data type, a user may
brush up against them from time to time. Exceptions should be reserved for
disastrous occurrences, not as a way of informing the user of the abstraction that a
boundary condition has been reached. Providing an interrogative operation, such
as the ENDOF FILE function in package TEXT_IO, allows the user to ask whether
proceeding will overstep the boun !a,' o.-litions and raise an exception.

Using specific exception names fcr 'he v *us potential misuses of the abstraction
enables the user of the abstraction to rmi.ie what was done wrong and to effect
appropriate recovery.

Once an exception is propagated outside the scope of the declaration of its name,
only a handler for others can catch it. As discussed under Guideline 5.8.3, a
handler for others cannot be written to deal with the specific error effectively

A reader and user of an abstraction needs help establishing conceptual associations
between a given operation and the possible exception(s) resulting from its use.
Naming the exceptions exported by the abstraction so that they seem naturally
associated with the facilities the abstraction provides enhances the abstraction. If an
exception is exported that does not have such an association, it probably should

PROGRAM STRUCTURE 57

have been handled or converted within the implementation of the abstraction rather
than being exported.

If you are writing an abstraction, remember that your user will not know about the
units you are using in your implementation. Thatis an effect of information hiding.
If any exception is raised within your abstraction, you must catch and handle it.
Your user will not be able to provide a reasonable handler if the original exception 6
allowed to propagate out. You can still convert the exception (see Guideline 5.8.2)
into a form intelligible to your user if your abstraction cannot effect recovery on its
own.

It is often difficult for a reader to discern which exceptions can be raised as a result
of using a program unit. The situation is analogous to side-effects (changes in
variables that are not passed as explicit parameters). In this case, the change is to
the program counter or execution path of the caller. Exceptions, like side-effects,
are difficult to track down in source text and are very undesirable as surprises at
execution time. So, be sure to document any exceptions that are nbt handled -y a
unit you write.

4.4 SUMMARY
high-level structure

* Place a package specification and its body in different files.

* Put as much as is practicable of the subunit structure within the same file as the
parent's body.

• Consider placing large subunits or task bodies in separate files.

* Consider providing a specification in a separate file for subprogram library units.

* Use a consistent file naming convention.

• Use subprograms to enhance abstraction.

• Use the pragma INLINE where call overhead is of paramount concern.

• Restrict each subprogram to the performance of a single action.

* When writing a function, make sure it has no side effects.

* If a subprogram involves a conceptually large computation, make it a
procedure.

* Use packages for information hiding and abstract data types.

• Use packages to model abstract entities appropriate to the problem domain.

* Use packages to group together related type and object declarations (e.g.,
common declarations for two or more library units).

58 Ada QUALITY AND STYLE

• Use packages to group together related program units for configuration control
or vis',ility reasons.

• Use p ickages to group together related declarations and components for later
reuse.

" Encapsulate machine dependencies in packages. Place a software interface to a
particular device in a package to facilitate a change to a different device.

* Place low-level implementation decisions or interfaces in subprograms within
packages. The pragrna INLZNE can be used to remove subprogram calling
overhead.

" Use packages and subprograms to encapsulate and hide program details that
may change.

* Make each package serve a single purpose.

" Use packages to group funcionaly related data, types, and subprograms.

" Avoid collections of unrelated objects and subprograms.

* Do not share data between packages.

" Use tasks to model abstract, asynchronous entities within the problem domain.

* Use tasks to control or synchronize access to tasks or other asynchronous
entities (e.g., asynchronous I/O, peripheral devices, interrupts).

* Use tasks to define concurrent algorithms for multiprocessor architectures.

* Use tasks to perform cyclic or prioritized activities.

visibility

* Put only what is needed for the use of a package into its specification.

• Minimize he declaration of objects in package specifications.

* Do not include extra operations simply because they are easy to build.

* Minimize the context (with) clauses in a package specification.

* Minimize the number of parameters to subprograms.

* Do not manipulate global data within a subprogram or package merely' to limit
the number of parameters.

* Avoid unnecessary visibility; hide the implementation details of a program unit
from its users.

* Avoid nesting package specifications within package specifications.

• Nest package specifications only for grouping operations, hiding common
implementation details, or presenting different views of the same abstraction.

* Restrict the visibility of program units as much as possible.

PROGRAM STRUCTURE 59

" Minimize the scope within which with clauses apply.

* Compile in the context of (with) only those units directly needed.
" Do not include task specifications in package specifications.

* Hide (mask) the fact of a tasking implementation by exporting subprograms that
call entries.

exceptions

* Use an exception to indicate an explicit misuse.

* Do not borrow an exception name from another context.

" Provide a way to avoid raising an exception.

• Provide a different exception name for each way a package's abstraction can be
misused. Raise only that exception for that misuse. Do not raise that exception
elsewhere.

• If use of a subprogram can raise an exception, export the name of that
exception, i.e., make it visible to any caller.

* Export exceptions at the right level of abstraction. Use them to enhance
abstraction.

" Never let an exception escape the boundaries of its abstraction.

" Exceptions are side effects of Ada units and should be documented as such.

60 Ada QUALITY AND STYLE

CHAPTER 5
Programming Practices

Software is always subject to change. The need for .his change, euphemistically known
as "maintenance" arises from a variety of sources. Errors need to be corrected as they
are discovered. System functionality may need to be enhanced in planned or unplanned
ways. And, inevitably, the requirements change over the lifetime of the system, forcing
continual system evolution. Often, these modifications are conducted long after the
software was originally written, usually by someone other then the original author.

Easy and successful modification requires that the software be readable,
underst: ndable, and structured according to accepted practice. If a software
component cannot be understood easily by a programmer who is familiar with its
intended function, that software component is not maintainable. Techniques that make
code readable and comprehensible enhance its maintainability. So far, we have visited
such techniques as consistent use of naming conventions, clear and well-organized
commentary, and proper modularization. We now present consistent and logical use of
language features.

Reliability is a measure of a program's correctness. While style guidelines cannot
enforce the use of correct algorithms, they can suggest the use of techniques and
language features known to reduce the number or likelihood of failures. Such
techniques include program construction methods that reduce the likelihood of errors or
that improve program predictability by defining behavior in the presence of errors.

61

62 Ada QUALITY AND STYLE

5.1 OPTIONAL PARTS OF THE SYNTAX
Parts of the Ada syntax, while optional, can enhance the readability of the code. The
guidelines given below concern use of some of these optional features.

5.1.1 Loop Names
guideline

* Associate names with loops when they are nested ([6] page 195).

example

DOCUMENT PACES:
loop

PACELINES:
loop

exit PACE LINES when LINE-NUMBER = MAXLINESONPAGE;

LINE SYMBOLS:
loop

exit LINE-SYMBOLS when CURRENT-SYMBOL - SENTINEL;

end LINESYMBOLS;

end PAGE LINES;

exit DOCUMENTPAGES when PAGE-NUMBER - MAXIMUM PAGES;

end DOCUMENT PAGES;

rationale

When you associate a name with a loop, you must include that name with the
associated end for that loop [28]. This helps readers find the associated end for any
given loop. This is especially true if loops are broken over screen or page
boundaries. The choice of a good name for the loop documents its purpose,
reducing the need for explanatory comments. If a name for a loop is very difficult to
choose, this could indicate a need for more thought about the algorithm.

Regularly naming loops will also help you follow Guideline 5.1.3.

It can be difficult to think up a name for every loop, therefore the guideline specifies
nested loops. The benefits in readability and second thought outweigh the
inconvenience of naming the loops.

PROGRAMMING PRACTICES 63

5.1.2 Block Names

guideline

• Associate names with blocks when they are. nested.

example
TRIP:

declare
-- local object declarations

begin
ARIVE AT AIRPORT:

declare
-- local object declarations

begin
-- Activities to RENTCAR,
-- Activities to CLAIM BAGGAGE,
-- Activities *to RESERVE HOTEL.
-- Exception handlers, etc.

end ARRIVEATAIRPORT;

VISITCUSTOMER:
declare

-- local object declarations
begin

-- again a set of activities...
-- exception handlers, etc.

end VISIT-CUSTOMER;

DEPARTURE PREPARATION:
declare

-- local object declarations
begin

-- Activities to RETURNCAR,
-- Activities to CHECK BAGGAGE,
-- Activities to WAIT FOR FLIGHT.
-- Exception handlers, etc.

end DEPARTUREPREPARATION;

BOARDRETURNFLIGHT;

end TRIP;

rationale

When there is a nested block structure it can be difficult to determine to which block
a given end corresponds. Naming blocks alleviates this confusion. The choice of a
good name for the block documents its purpose, reducing the need for explanatory
comments. If a name for the block is very difficult to choose, this could indicate a
need for more thought about the algorithm.

This guideline is also useful if nested blocks will be broken over a screen or page

boundary.

64 Ada QUALITY AND STYLE

It can be difficult to think up a name for each block, therefore the guideline
specifies nested blocks. The benefits in readability and second thought outweigh the
inconvenience of naming the blocks.

5.1.3 Exit Statements
guideline

• Use loop names on exit statements from nested loops.

example

See the example in Section 5.1.1.
rationale

When there is a nested loop structure and an exit statement is used, it can be
difficult to determine which loop is being exited. Naming loops and their exits
alleviates this confusion.
This guideline is also useful if nested loops will be broken over a screen or page
boundary.

5.1.4 Naming End Statements
guideline

" Include the simple name at the ends of a package specification and body.

" Include the simple name at the ends of a task specification and body.

* Include the simple name at the end of an accept statement.

" Include the designator at the end of a subprogram body.

PROGRAMMING PRACTICES 65

example

package AUTOPILOT is

function IS_ENGAGED ...

procedure DISENGAGE ...

end AUTOPILOT;

package body AUTOPILOT is

task type COURSE-MONITOR is

entry RESET ...

end COURSEMONITOR;

function IS ENGAGED ... is

end IS-ENGAGED;

procedure DISENGAGE ... is

end DISENGAGE;

task body COURSE MONITOR is

accept RESET ... do

end RESET;

end COURSEMONITOR;

end AUTOPILOT;

rationale

The ends of compound statements include indicators of what they end. Repeating
names on the ends of these units ensures consistency throughout the code. In
addition, the named end provides a reference for the reader if the unit spans a page
or screen boundary, or if it contains a nested unit.

5.2 PARAMETER LISTS
A subprogram or entry parameter list is the interface to the abstraction implemented by
the subprogram or entry. As such, it is important that it is clear, and is expressed in a
consistent style. Careful decisions about formal parameter naming and ordering can
make the purpose of the subprogram easier to understand, and easier to use when its

66 Ada QUALITY AND STYLE

purpose is understood. While not strictly an interface issue in the same sense as the
above, similar considerations apply to the use of aggregates.

5.2.1 Formal Parameters

guideline

* Name formal parameters so as to obviate the need for comments describing
their purpose.

example
procedure ASSEMBLETELEMETRYMESSAGE

(INPUTPACKET in TELEMETRYPACKET;
TRANSFERTODOWNLINKBUFFER in out PACKET BUFFER;
BUFFERFULL out BOOLEAN);

rationale

Formal parameters are local to a routine. As with local variables, their names
should fully express their purpose. Following the variable naming guidelines (3.3. 1
and 3.3.3) for formal parameters will make the code within the body read more like
natural language, and thus be self documenting. In choosing parameter names,
keep in mind that the code may be viewed by an audience that is uninitiated in the
problem domain (e.g., signal processing). Conversely, the code may be viewed by
an audience that is fluent in the problem domain and uninitiated in software
development.

5.2.2 Named Association 4
guideline

• Use named parameter association in calls of infrequently used subprograms or
entries with many formal parameters.

" Use named component association for constants, expressions, and literals in
aggregate initializations.

* Use named association when instantiating generics with many formal
parameters.

* Use named association for clarification when the actual parameter is TRUE or
FALSE or an expression.

* Use named association when supplying a non-default value to an optional
parameter.

PROGRAMMING PRACTICES 67

example
ENCODETELEMETRYPACKET

(SOURCE -> POWER ELECTRONICS;
CONTENT -> TEMPERATURE;
VALUE => READTEMPERATURESENSOR(POWER ELECTRONICS);
TIME -> CURRENT TIME;
SEQUENCE => NEXTPACKET ID;
VEHICLE => THIS_SPACECRAFT;

PRIMARYMODULE -> TRUE);

rationale

Calls of infrequently used subprograms or entries with many formal parameters can
be difficult to understand without referring to the subprogram or entry code.
Named parameter association can make these calls more readable.

When the formal parameters have been named appropriately, it is easy to determine
exactly what purpose the subprogram serves without looking at its code. This
reduces the need for named constants that exist solely to make calls more readable.
It also allows variables used as actual parameters to be given names indicating what
they are without regard to why they are being passed in a call. An actual parameter
which is an expression rather than a variable cannot be named otherwise.

note

The judgment of when named parameter association will improve readability is
essentially subjective. Certainly, extremely simple or familiar subprograms such as a
two element swap routine or a sine function do not require the extra clarification of
named association in the procedure call. You might consider any subprogram or
entry with four or more parameters as a candidate for named parameter association.

caution

A consequence of named parameter association is that the formal parameter names
may not be changed without modifying the text of each call.

5.2.3 Default Parameters

guideline

* Provide default parameters to allow for occasional special usage of widely used
subprograms or entries.

" Place default parameters at the end of the formal parameter list.

• Consider default parameters when expanding functionality.

example

Chapter 14 of the Ada LRM [28] contains many superb examples of this practice.

68 Ada QUALITY AND STYLE

rationale

Often, the vast majority of uses of a subprogram or entry will need the same value
for a given parameter. Providing that value as the default for the parameter will
make the parameter optioni on the majority of calls. It will also allow the
remaining calls to customize the subprogram or entry by providing different values
for that parameter.

Placing default parameters at the end of the formal parameter list allows the caller to
use positional association on the call, otherwise defaults are available only when
named association is used.

Often during maintenance activities, you will increase the functionality of a
subprogram or entry. This will require more parameters than the original form for
some calls. Provide new parameters to control this new functionality. Give the new
parameters default values which specify the old functionality. Calls needing the old
functionality need not be changed as they will take the defaults. New calls needing
the new functionality can specify that by providing other values for the new
parameters.

This enhances maintainability in that the places which use the modified routines do
not themselves have to be modified, while the previous functionality levels of the
routines are allowed to be "reused."

exceptions

Do not go overboard. If the changes in functionality are truly radical, you should be
preparing a separate routine rather than modifying an existing one. One indicator of
this situation would be that it is difficult to determine value combinations for the
defaults that uniquely and naturally require the more restrictive of the two functions.
In such cases it is better to go ahead with creation of a separate routine.

5.2.4 Mode Indication

guideline

0 Show the mode indication of procedure and entry parameters [18].

example
procedure OPENFILE (FILE-NAME in SPCSTRING;

OPEN STATUS out STATUS CODES);
entry ACQUIRE (KEY in CAPABILITY:

RESOURCE : out TAPEDRIVE);

rationale

By showing the mode of parameters you aid the reader. If you do not specify a
parameter mode, the default mode is in. Explicitly showing the mode indication of
all parameters is a more assertive action than simply taking the default mode.

PROGRAMMING PRACTICES 69

Anyone reviewing the code at a later date will be more confident that you intended
the parameter mode to be in.

5.2.5 Order of Parameter Declarations

guideline
9 Declare parameters in a consistent order [25].

example

In this example, the chosen order is all in parameters, followed by all in out
parameters, followed by all out parameters.

procedvi:e ASSEMBLETELEMETRY-MESSAGE
(INPUTPACKET : in TELEMETRY PACKET;
TRANSFERTODOWNLINK_BUFFER in out PACKET BUFFER;
BUFFERFULL out BOOLEAN);

rationale

By declaring all the parameters in a consistent order, you make the code easier to
read and understand. Some of your choices are to arrange the parameters by in,
in out, and out, or to group the parameters by function. In any case, all default
parameters must be at the end of the parameter list.

note

In special cases, parameters declared in a non-standard order may be more
readable. Since consistency is the goal, however, the readability or some other
quality of the code must be enhanced if you deviate from this guideline. Default
parameters are an example of the need for a special case.

5.3 TYPES
In addition to determining the possible values for variables, type names and distinctions
can be very valuable aids in developing safe, readable, and understandable code. Types
clarify the structure of your data and can limit or restrict the operations that can be
performed on that data. "Keeping types distinct has been found to be a very powerful
means of detecting logical mistakes when a program is written and to give valuable
assistance whenever the program is being subsequently maintained" [201. Take
advantage of Ada's strong typing capability in the form of subtypes, derivesi types, task
types, private types and limited private types.*

The guidelines encourage much code to be written to ensure strong typing (i.e.,
subtypes). While it might appear that there would be execution penalties for this
amount of code, this is usually not the case. In contrast to other conventional languages,
Ada has a less direct relationship between the amount of code that is written and the size
of the resulting executable program. Most of the strong type checking is performed at

70 Ada QUALITY AND STYLE

compilation time rather than execution time, so the size of the executable code is not
greatly affected.

5.3.1 Derived Types and Subtypes

guideline

* Use existing types as building blocks by deriving new types from them.
" Use range constraints on subtypes to help make the compiler's constraint

checking beneficial.
" Define new types, especially delved types, to include the largest set of possible

values, including boundary vaiues.
" Constrain the ranges of derived types with subtypes, excluding boundary values.

example

Type TABLE is - building block for !reation of new types:
type TABLE is

record
COUNT LISTSIZE := EMPTY-
LIST ENTRY-LIST EMPTY-LIST;

end record;

type TELEPHONE-DIRECTORY is nrw TABLE;

type DEPARTMENTINVENTORY is new TABLE;

The following are distinct types that cannot be intermixed in operations not
programmed explicitly to use them both:
type DOLLARS is nw NUMBER;
type CENTS is new NUMBER;

Below, 17OURCET..IL has a value outsid the range of LISTINGPAPER when the line is
empty. All the indices can be mixed in expressions, as long as the results fall within
the correct subtypes:
type cOLUMNS is range FIRST COLUMN - I .. LISTING-WIDTH + 1;
subtype LISTINGPAPER is COLUMNS

range FIRSTCOLUMN .. LISTINGWIDTH;
subtype DUMB_TERMINAL is COLUMNS

range FIRST-COLUMN .. DUMB TERMINAL WIDTH;

type LISTING LINE is array(LISTINO PAPER) of BYTES;
type TERMINALLINE is array(DUMB TERMINAL) of BYTES;

SOURCE TAIL COLUMNS ;* COLUMNS FIRST;
SOURCE : LISTING LINE;
DESTINATION TERMINAL-LINE;

DESTINATION(DESTINATION-FIRST .. (SOURCETAIL - DESTINATION"LAST))
SOURCE(COLUMNS-SUCC(DESTINATION'LAST) .. SOURCETAIL);

PROGRAMMING PRACTICES 71

rationale
The name of a derived type can make clear its intended use and avoid proliferation
of similar type definitions. Objects of two derived types, even though derived from
the same type, cannot be mixed in operations unless such operations are supplied
explicitly or one is converted to the other explicitly. This prohibition is an
enforcement of strong typing.

Define new types, derived types and subtypes cautiously and deliberately. The
concepts of subtype and derived type are not equivalent, but they can be used to
advantage in concert. A subtype limits the range of possible values for a type. It
does not define a new type.
Types can have highly constrained sets of values without eliminating useful values.
Used in concert, derived types and subtypes can eliminate many flag variables and
type conversions within executable statements. This renders the program more
readable while allowing the compiler to enforce strong typing constraints.
This combination of derived types and subtypes allows use of sentinel values. It
allows compatibility between subtypes within subexpressions without type
conversions (in C, this is called a type cast) everywhere as would happen with
derived types alone.

Many algorithms begin or end with values just outside the normal range. If
boundary values are not compatible within subexpressions, algorithms can be
needlessly complicated. The program can become cluttered with flag variables and
special cases when it could just test for zero or some other sentinel value.

note
The price of the reduction in the number of independent type declarations is that
any types derived from some base type are dependent on both the range of, and the
subprograms derived from, the base type and are subject to change without warning
when the base type is redefined. This trickle-down of changes is sometimes a
blessing and sometimes a curse.

5.3.2 Anonymous Types

guideline
* Do not use anonymcus types.

72 Ada QUALITY AND STYLE

example

-- use
type BUFFER is array (BUFFERINDEX) of CHARACTER;
INPUT LINE : BUFFER;
-- rather than
INPUT-LINE : array (BUFFERINDEX) of CHARACTER;

Warning! INPUT-LINE and OUTPUT-LINE below are of different typesl

INPUT-LINE, OUTPUT-LINE : array (BUFFER_INDEX) of CHARACTER;

rationale

Although Ada allows anonymous types, they have limited usefulness and complicate
program modification. For example, a variable of anonymous type can never be
used as an actual parameter because the type of the formal parameter will be
different. Even though this may not be a limitation initially, it precludes a
modification in which a piece of code is changed to a procedure.

note

For task types, see Guideline 6.1.2. For unconstrained arrays as formal
parameters, see Guideline 8.3.9.

You will notice, in reading the Ada LRM [28], that tiere are cases when
anonymous types are mentioned abstractly as part of the description of the Ada
computational model. These cases do not violate this guideline.

5.3.3 Private Types

guideline

* Use limited private types in preference to private types.

* Use private types in preference to non-private types.

* Explicitly export needed operations rather than easing restrictions.

PROGRAMMING PRACTICES 73

example

package PACKET TELEMETRY is
type FRAME_HEADER is limited private;
type FRAME DATA is private;
type FRAME CODES is (

MAIN BUS VOLTAGE. TRANSMITTER_I_POWER,

private
type FRAME HEADER is

record

end record;

type FRAME-DATA is
record

end record;

end PACKET-TELEMETRY;

rationale

Limited private types and private types support abstraction and information hiding
better than non-private types. The more restricted the type, the better information
hiding is served. The ripple effect of changes is thus lessened. The structure of a
non-private type is exposed to the package's users, so any operation that would be
available had the user declared the type himself is available for that type.

The more restricted the operations you allow on the types a package exports, the
more information about the package's implementation is hidden from its users.
This, in turn, allows the implementation to change without affecting the rest of the
program, and it protects the implementation of the package from corruption by
misuse. While there are many valid reasons to use exported types, it is better to try
the preferred route first, loosening the restrictions only as necessary. If it is
necessary for a user of the package to use a few of the restricted operations, it is
better to export the operations explicitly and individually via exported subprograms
than to drop a level of restriction. This practice retains the restrictions on other
operations.

Limited private types have the most restricted set of operations available to users of
a package. Of the types that must be made available to users of a package, as many
as possible should be limited private. The operations available to limited private
types are membership tests, selected components, components for the selections
of any discriminant, qualification and explicit conversion, and attributes 'BASE and
'SIZE. Objects of a limited private type have attributes 'ADDRESS, 'SIZE, and, if

74 Ada QUALITY AND STYLE

there are discriminants, "CONSTRAINED. None of these operations allow the user
of the package to manipulate objects in a way that depends on the structure of the
type.

If additional operations must be available to the type, the restrictions may be
loosened by making it a private type. The operations available on objects of private
types that are not available on objects of limited private types are assignment and
tests for equality and inequality.

5.4 DATA STRUCTURES

The data structuring capabilities of Ada are a powerful resource, therefore use them to
model the data as closely as possible. It is possible to group logically related data and let
the language control the abstraction and operations on the data rather than requiring the
programmer or maintainer do so. Data can also be organized in a building block
fashion. In addition to showing how a data structure is organized (and possibly giving
the reader an indication as to why it was organized that- way), creating the data structure
from smaller components allows those components to be reused themselves. Osing the
features that Ada provides can increase the maintainability of your code.

5.4.1 Heterogeneous Data
guideline

Use records to group heterogeneous but related data.

example
type PROPULSION KETHOD is (SAIL. DIESEL, NUCLEAR);
type A.AFT is

record
NAME STRING (...);
PLANT PROPULSIONMETHOC;
LENGTH FEET;
BEAM FEET;

DRAFT FEET;
end record:

type FLEET is array (...) of CRAFT;

rationale

By gathering related data intn the same construct, you help the maintainer fin'd all of
it, simplifying any modifications that apply to all rather than part. This in turn
increases reliability. Neither you nor an unknown maintainer are liable to forget to
deal with all the pieces of information in the executable statements.
The idea is to put the information a maintainer needs to know where it can be found
with the minimum of effort. If, as in the example, all information relating to a given

PROGRAMMING PRACTICES 75

CRAFT is in the same place, the relationship is clear both in the declarations and
especially in the code accessing and updating that information. But if it is scattered
among several data structures, it is less obvious that this is an intended relationship
as opposed to a coincidental one. In the latter case, the declarations may be
grouped together to imply intent, but it may not be possible to group the accessing
and updating code that way. Ensuring the use of the same index to access the
corresponding element in each of several parallel arrays is difficult if the accesses
are at all scattered.

note
It may seem desirable to store heterogeneous data in parallel arrays in what amounts
to a FORTRAN-like style. This style is an artif3ct of FORTRAN's data structuring
limitations. FORTRAN only has facilities for constructing homogeneous arrays.
Ada's record types offer one way to specify what are called non-homogeneous
arrays or heterogeneous arrays. If you are new to languages of this nature, you may
need to remind yourself occasionally of the opportunity afforded by Ada to group
related data.

exceptions

If you run into any one of the following scenarios, a different organization of your
data would be required:

- If the application must interface directly to hardware, the use of complex data
structures could be confusing and get in the way, or it may not map onto the
layout of the hardware in question.

- If the application must interface to foreign code, do not use structures any more
complicated than those that the foreign code supports. This will simplify the
interfacing process.

- If there are efficiency concerns about the overhead incurred for heterogeneous
data structures, group the data using comments in order to illustrate the design.
First, determine whether the concerns are well-founded.

As always, if the guideline must be violated, document what you did, and why.

5.4.2 Nested Records
guideline

" Record structures should not always be flat. Factor out commcn pans.

* Fcr a large record structure, group related components into smaller subrecords.

" Declare subrecords separately.

" For nested records, pick element names that will read well when inner elements
are referenced.

76 Ada QUALITY AND STYLE

example
type COORDINATE is

record
ROW LOCAL-FLOAT;
COLUMN LOCALFLOAT;

end record;

type WINDOW is
record

TOP LEFT COORDINATE;
BOTTOM RIGHT COORDINATE;

end record;

rationale

You can make complex data structures understandable and comprehensible by
composing them of familiar building blocks. This technique works especially well
for large record types with parts which fall into natural groupings. The components
factored into separately declared records based on a common quality or purpose
correspond to a lower level of abstraction than that represented by the larger record.

note

A carefully chosen name for the component of the larger record that will be used to
select the smaller enhances readability, e.g.,
"if WINDOWI.BOTTOMRIGHT.ROW > WINDOW2.TOPLEFT.RO then .

caution

Everything can be taken to extremes, so be wary. Do not break a structure up into
so many fragments that it becomes difficult to understand. Be careful not to nest
compound structures too deeply (e.g., arrays of records of arrays ...). Be especially
wary of discriminated records whose defaults require large amounts of storage. The
multiplication of space required by objects builds rapidly as structures are nested.
You may be taking up a good-sized portion of available memory without realizing it.

5.4.3 Dynamic Data

guideline

" Differentiate between static and dynamic data. Use dynamically allocated
objects with caution.

" Use dynamically allocated data structures only when it is necessary to create and
destroy them dynamically or to be able to reference them by different names.

" Do not drop pointers.

" Do not create dangling references.

" Initialize all access variables and components.

PROGRAMMING PRACTICES 77

" Do not rely on any properties of a garbage collector.

" Deallocate explicitly.

" Use length clauses.

" Provide handlers for STORArEERtOR.

example

These lines show how a dangling reference might be created:

P1 : new OBJECT;
P2 := P;
UNCHECKEDOBJECTDEALLOCATION(P2);

This line can raise an exception due to referencing the deallocated object:
X :- P1.DATA;

In the following three lines, if there is no intervening assignment of Pi's value to any
other pointer, the object created on the first line is no longer accessible after the
third line.
P1:= new OBJECT

P1 P2;

rationale

See also Guidelines 5.9.1, 5.9.2 and 6.1.3 for variations on these problems. A
dynamically allocated object is an object created by the execution of an allocator.
Allocated objects referenced by access variables allow you to generate aliases,
multiple references to the same object. Anomalous behavior can arise when you
reference a deallocated object by another name. This is called a dangling reference.
Totally disassociating a still-valid object from all names is called dropping a pointer.
A dynamically allocated object that is not associated with a name cannot be
deallocated explicitly or referenced.

A dropped pointer depends on an asynchronous garbage collector for reclamation
of space. It also raises questions in the mind of the reader as to whether the loss of
access to the object was intended or a mistake.

An implementation is not required to provide a ga,'bage collector at all, so of course
you cannot depend on one's properties. Using the unchecked deallocation facility
permits use of an incremental garbage collector rather than depending on an
asynchronous one. It also documents a deliberate decision to abandon the object.
A method of ensuring space reclamation is to implement an incremental garbage
collector of your own. This is normally called a free list. Any
implementation-provided garbage collector can be disabled with pragma
CONTROLLED.

Uninitialized access variables are essentially dangling references. Any uninitialized,
or un-reset, component of a record or array can also be a dangling reference or

78 Ada QUALITY AND STYLE

carry a bit pattern representing inconsistent data. The dangers of dangling
references are that you may attempt to use them, thereby overwriting reallocated
space, or reading data that was intended to be inaccessible. As a result, any
additional information you may try to store in it can be overwritten asynchronously
or, worse, you may overwrite information needed by the garbage-collection and
memory-allocation systems.

Whenever you use dynamic allocation, it is possible to run out of space. Ada
provides a facility (a length clause) for requesting the size of the pool of allocation
space at compile time. Anticipate that you can still run out at run time. Prepare
handlers for the exception STORAGEERROR, and consider carefully what alternatives
you may be able to include in the program for each such situation.

There is a school of thought that dictates avoidance of all dynamic allocation. It is
largely based on fear of the occurrence which in Ada raises STORAGE -ERROR. Facilities
such as length clauses and handlers for exception STORAGEERROR make this fear
unfounded. The situation is little different than allocating elements of an array in
FORTRAN. In Ada, much of the accounting is done for you.

5.5 EXPRESSIONS

Properly coded expressions can enhance the readability and understandability of a
program. Poorly coded expressions can turn a program into a maintainer's nightmare.

5.5.1 Range Values
guideline

* Use 'FIRST and 'LAST instead of numeric literals to represent the fist and last
values of a range.

• Use only 'FIRST and 'LAST tO represent the first and last indices of arrays.

0 Use 'RANGE wherever you can.

example
type TEMPERATURE is ALL TIME LOW .. ALLTIMEHIGH;
type WEATHER-STATIONS is I .. MAXS.ATIONS;
WEATHER DATA : array (WEATHER STATIONS) of TEMPERATURE;

WEATHER DATA (TATHER_STATIONS'FIRST) :, TEMPERATURE'LAST;

rationale

Ada provides attributes for many predefined and user-defined types. Using them
eliminates dependence on an underlying implementation such as the bounds of an
array or the range of a subtype. This enhances program reliability.

PROGRAMMING PRACTICES 79

caution

An example in ([12] page 12) shows an error where the 'RA NGE attribute was used
on the type INTEGER rather than on a constrained (array) type. Be careful that you
associate attributes with the proper types and subtypes.

5.5.2 Array Attributes
guideline

* Use array attributes 'FIRST, 'LAST, 'LENGTH, or 'RANGE instead of numeric
literals for accessing arrays.

example
subtype NAMESTRINGSIZE is POSITIVE range 1.. 30;
NAMESTRING STRING (NAMESTRING SIZE);

for I in NAMESTRING'RANGE loop
<sequence of s Latements>

end loop;

rationale

When you use attributes, the declared array size can be changed without affecting
code that depends on its 'RANGE.

Ada provides many attributes for predefined and user-defined types. Using them
eliminates dependence on an underlying implementation such as the bounds of an
array or the range of a subtype. This enhances program reliability.

5.5.3 Parenthesized Expressions

guideline

Use parentheses to specify the order of subexpression evaluation where
operators from different precedence levels are involved, and to clarify
expressions [16] [17].

example
(1.5 * (X**2)) + (6.5 * X) + 47

rationale

Parenthesizing expressions improves code readability. For cases where one might
forget which operator has higher precedence, it may be helpful to use parentheses to
specify the order of subexpression evaluation.

80 Ada QUALITY AND STYLE

5.5.4 Positive Forms of Logic

guideline

* Avoid names and constructs that rely on the use of negatives.

* Choose names of flags so they represent states that can be used in positive form.

example
-- Use
if OPERATOR MISSING
-- rather than either
if not OPERATOR FOUND
-- or
if not OPERATOR-MISSING

Both of the following improvements switch :o positive forms and help follow
Guideline 5.6.4:
-- Use
loop

exit when ENDOFFILE;
-- rather than
while not END OFFILE loop

-- Use
loop

exit when CURRENT_CHARACTER = SENTINEL;
-- rather than
while CURRENT-CHARACTER /- SENTINEL loop

rationale

Relational expressions can be more readable and understandable when stated in a
positive form. As an aid in choosing the name, consider that the most frequently
used branch in a conditional construct should be encountered first.

exception
There are cases in which the negative form is unavoidable. If the relational
expression better reflects what is going on in the code, then inverting the test to
adhere to this guideline is not recommended.

5.5.5 Short Circuit Forms of the Logical Operators
guideline

* Use short-circuit forms of the logical operators.

PROGRAMMING PRACTICES 81

example
-- Use

if not (Y = 0) or else (X / Y / 10) ...
-- rather than either
if (Y /= 0) and (x / Y = 10) ...
-- ")r

if (X / Y - 10) ...
-- to avoid NUMERIC-ERROR.

-- Use

if TARGET /- null and then TARGET.DISTANCE < THRESHOLD then ...
-- rather than
if TARGET.DISTANCE < THRESHOLD then ...
-- to avoid referencing a field in a non-existent object.

rationale

The use of short-circuit control forms prevents a class of data-dependent errors or
exceptions that can occur as a result of expression evaluation. The short-circuit
forms guarantee an order of evaluation and an exit from the sequence of relational
expressions as soon as the expression's result can be determined.

In the absence of short-circuit forms, Ada does not provide a guarantee of the order
of expression evaluation, nor does the language guarantee that evaluation of a
relational expression is abandoned when it becomes clear that it will evaluate to
FALSE.

note

If it is important that all parts of a given expression be evaluated, the expression
probably violates Guideline 4.1.3 which prohibits side-effects in functions.

5.5.6 Type Qualified Expressioims and Type Conversions
guideline

* Use type qualified expressions instead of type conversions wherever possible.

example
type REAL is ...
type WHOLE is ...

ACTUAL SPEED REAL;
DESIRED_SPEED WHOLE; -- Console dial setting
TAILWIND WHOLE; -- Cheap sensor

ACTUAL SPEED :. REAL(DESIREDSPEED + TAIL WIND);
-- A type conversion. An addition operation inherited by subtype WHOLE is
-- used, followed by conversion of the result to REAL

ACTUAL SPEED :* REAL (DESIRED SPEED + TAILWIND);
-- A type qualified expression. A specific operator overloading + and
-- giving result type REAL is used.

82 Ada QUALITY AND STYLE

rationale

Type qualified expressions are evaluated at compile time, but type conversions are
made at execution time. Type qualifiers help in operator overload resolution by
explicitly specifying the qualified expressions' desired result type.

5.5.7 Accuracy of Operations with Real Operands

guideline

• Use "<-" and ">." in relational expressions with real operands instead of "".

example
CURRENT TEMPERATURE TEMPERATURE := 0.0;
TEMPERATURE INCREMENT TEMPERATURE := 1.0 / 3.0;
MAXIMUMTEMPERATURE constant :u 100.0;

booo

CURRENTTEMPERATURE :a CURRENT-TEMPERATURE + TEMPERATURE INCREMENT;

exit when CURRENT-TEMPERATURE >= MAXIMUM-TEMPERATURE;

end loop;

rationale

Fixed and floating point values, even if derived from similar expressions, may not be
exactly equal. The imprecise, finite representations of real numbers in hardware
always have round-off errors so that any variation in the construction path or history
of two reals has the potential for resulting in different numbers even when the paths
or histories are mathematically equivalent.

The Ada definition of model intervals also means that the use of <= is more
transportable than either < or =.

note

Floating point arithmetic is treated in Chapter 7.

exceptions

If your application must test for an exact value of a real number (e.g. testing the
precision of the arithmetic on a certain machine), then the "." would have to be
used. But never use ." on real operands as a condition to exit a loop.

5.6 STATEMENTS

Careless or convoluted use of statements can make a program hard to read and maintain
even if its global structure is well organized. You should strive for simple i -id consistent

PROGRAMMING PRACTICES 83

use of statements to achieve clarity of local program structure. Some of the guidelines in
this section counsel use or avoidance of particular statements. As is pointed out in the
individual guidelines, rigid adherence to those guidelines would be excessive, but
experience has shown that they generally lead to code with improved reliability and
maintainability.

5.6.1 Nesting
guideline

* Restrict or minimize the depth of nested expressions and control structureq
[181.

* Try simplification heuristics.

rationale

Deeply nested structures are confusing, difficult to understand, and difficult to
maintain. The problem lies in the difficulty of determining what part of a program is
contained at any given level. For expressions, this is important in achieving the
correct placement of balanced grouping symbols and in achieving the desired
operator precedence. For control structures, the question involves what part is
controlled. Specifically, is a given statement at the proper level of nesting, i.e., is it
too deeply or too shallowly nested, or is the given statement associated with the
proper choice, e.g. for if or case statements? Indentation helps, but it is not a
panacea. Visually inspecting alignment of indented code (mainly intermediate
levels) is an uncertain job at best. In order to minimize the complexity of the code,
keep the maximum number of nesting levels to between three and five.

note

Asking yourself this list of questions can help you consider alternatives to the code
and sometimes help you reduce the nesting:

- Does some part of the expression or the lower nested control structures
represent a significant, and perhaps reusable computation that I can factor into
a subprogram?

- Can I convert these nested if statements into a casp statement?

- Am I using else if where I could be using elsif?

- Can I re-order the conditional expreions controlling this nested ..- -Lure?

- Is there a different design that would be simpler?

exceptions

If nesting must be used to ensure proper scope and visibility that cannot be attained
by using subprograms, then proceed cautiously and take especial care with the
choice of identifiers and loop and block names. If deep nesting is required

84 Ada QUALITY AND STYLE

frequently, there may be overall design decisions for the code that should be
changed.

Some algorithms require deeply nested loops and segments controlled by
conditional branches. Their continued use can be ascribed to their efficiency and
time proven utility.

5.6.2 Slices
guideline

0 Use slices rather than a loop to copy all or part of an array.

example
type SQUAREMATRIX is array (ROWS, ROWS) of ELEMENT;
type DIAGONALS is array (1 .. 3) of ELEMENT;
type ROW VECTOR is array (ROWS) of ELEMENT;
type TRI DIAGONAL is array (ROWS) of DIAGONALS;
MARKOV PROBABILZTZES SQUAREMATRIX;
TEMPORARY VECTOR ROVVECTOR;
DIAGONALDATA TRIDIAGONAL;

-- Simple slice assignment.
TEMPORARY-VECTOR := MARKOVPROBABILITIES(I);

-- Remove diagonal and off-diagonal elements.
DIAGONALDATA(ROWS-FIRST)(1) := NULLVALUE;
DIAGONALDATA(ROWS'FIRST) (2 .. 3) :=

MARKOVPROBABILITIES (ROWS'FIRST) (ROWS-FIRST .. ROWSSUCC (ROWS'FIRST));

for I in ROWS'SUCC(ROWS'FIRST) .. ROWS'PRED(ROWS'LAST) loop
DIAGONAL DATA(I) :- MARKOV_PROBABILITIES(I)(I - I .. I + 1);

end loop;

DIAGONALDATA(ROWS'LAST) (1 .. 2) :=
MARKOV PROBABILITIES(ROWS'LAST) (ROWS'PRED(RC S'LAST) .. ROWS'LAST);

DIAGONALDATA(ROWS'LAST)(3) := NULLVALUE;

rationale

An assignment statement with slices is simpler and clearer than a loop, and helps the
reader see the intended action. Slice assignment can be faster than a loop if a block
move instruction is available.

5.6.3 Case Statements

guideline
• Always use an others choice on case statements

• Enumerate all possibilities, eliding over ranges.

PROGRAMMING PRACTICES 85

* If you intend a possibility to be handled in an others choice, comment that
choice out and mark it with "OTHERS" (see example).

" If you use an if statement instead of a case. statement, use marker comments
indicating the cases, and use a trailing else part for the others choice.

" Bias use of the others choice toward error detection.

example
-- (In procedure RECOGNIZE SYMBOLS)
case CURRENT-CHARACTER is

when '0' .. "9' => SCAN NUMERIC LITERAL;
when ":" => DISCERN COLON COLONEQUAL;

when 'A' . Z" => SCAN IDENTIFIER;
-- when "[' *> -- OTHERS
-- when \ -- OTHERS

when 'a' .. 'z" -> SCANIDENTIFIER;

when others -> raise ILLEGALSOURCECHARACTER;
end case;

rationale

Absen,:e of an others choice when you have not enumerated all possibilities leaves
you open to raising an exception should the omitted possibility arise. The statement
that "it can never happen" is unacceptable programming practice. You must
assume it can happen and be in control when it occurs. You should provide
defensive code routines for the "cannot get here" conditions.

A compiler will not complain about an others choice when you have enumerated all
possibilities. Commenting a possibility out shows that you did not forget that case
and points to its being handled in the others choice.

A case statement can be more efficient than a nested if-then-else structure. Where
the case statement is less efficient, marking the if statement documents the intended
purpose and allows the if to be converted back to a case should the code move to a
different implementation or machine.

Because the others choice is a catch-all for possibilities you have not enumerated, it
is better to treat those possibilities as errors than to risk performing an unintended
action for a possibility you simply forgot to list above.

5.6.4 Loops
guideline

* Use for loops wherever possible.

* Use plain loops with exit statements where for loops are -'ot appropriate.

* Avoid use of a while iteration scheme.

86 Ada QUALITY AND STYLE

example

Siuations requiring a "loop and a hair" arise often. For this use:

loop
P;
exit when CONKDTION uEPENDENT_01 F;
Q;

end loop;

rather than:
P;

while not CONDITION_ MEPER ON P 1op
Q;
P;

end loop;

rationale

A for loop is bounded, so it cannot be an 'infinite loop.' There is a certainty of
understanding for the reader and the writer not associated with other forms of loops.
The thought and care given to the iteration range is often greater than that given to
other forms of loops. P; operly coded, the iteration range can change automatically
and correctly whenever the data structures upon which the loop body operates
change.

The Ada Rationale [271 points out that the plain loop with exit statements is the
preferred looping structure for the language, and that the while construct was only
added as a special case to comfort former Pascal programmers. Once you are used
to seeing the plain loop with exit's, the exit statement no longer seems to "hide" in
the loop body.

The loop with exit statements is necessary to provide the semantics associated with
the Pascal repeat., until. It also supports loops which must terminate somewhere
within the sequence of statements of the body; that is, to provide for a "loop and a
half" construct. Complirated "loop and a half" constructs simulated with while
constructs often require the introduction of flag variables, making programs more
complex and less reliable.

Most people are better able to think in terms of stopping conditions than of
continuation conditions. An exit statement and its placement are explicit indicators
of the termination condition. A whilt loop requires inverted loi in the cont-ot
expression. The inverted logic of trying to express a continuation condition often
leads to negative forms violating Guideline 5.5.4.

As a result, the continuation condition in the while construct is often confused with
the loop invariant. If the condition programmed into the while condition happens to
be the loop invariant, the loop is guaranteed to be infinite. One way to prevent this
is to avoid the while construct. Guideline 5.6.6 discusses another way to prevent
infinite loops.

PROGRAMMING PRACTICES 87

The problem of forgetting to include an exit statement can be easily solved by having
a static analyzer warn of such loops. A warning does not preclude a loop intended to
be infinite; rather, it highlights it.

Use of several exit statements within a loop does not decrease the provability of a
program. Cristian 110 has shown that proof of multi-exit control structures is no
more diffill than proof of single-exit control structures.

exceptions

There are a few occasions when ePpressing a continuation condition is so much
more natural than expressing a stop,;ng condition that it is reasonable to use the
while loop.

5.6.5 Eit Statements
guideline

" Use E.'t stazements to enhance the readability of loop termination code [17].

" Usr "if ... then ... exit" only to express "last wishes" 1171.

" Review exit statement placement.

example

See the examples in Guidelines 5.1.1 and 5.6.4.

rationale

It is more readable to use exit statements than to try to add boolean flags to a while
loop condition to simulate exits from the middle of a loop. Even if all exit
statements would be clustered at the top of the loop body, the separation of a
complex condition into multiple exit statements can simplify and make it more
readable and clear. The sequential execution of two exit statements is often more
clear than the short-circuit control forms.

The form "if <condition> then <statements> exit; end if;" allows some
statements to be executed only on that exit path yet before that path rejoins any
other exit paths following the loop body. Such statements are termed "last wishes."
This is an important capability, but it has the disadvantage of lowering the exit
statement to a deeper nesting level. Where there is no need for last wishes, the form
"exit when <condition>" is much more readable.

Loops with many scattered exit statements can be indicative of fuzzy thinking as
regards the loop's purpose in the algorithm. Such an algorithm might be coded
better some other way, e.g., with a series of loops. Some rework can often reduce
the number of exit statements and make the code clearer.

See also Guidelines 5.1.3 and 5.6.4.

88 Ada QUALITY AND STYLE

5.6.6 Safe Programming
guideline

• Understand and consider specifying bounds on loops.
" Understand and consider specifying bounds on recursion.

example

Establishing an iteration bound:

SAFETY COUNTER := 0;
PROCESS_LIST:

loop
exit when CURRENTITEM = null;

CURRENTITEM := CURRENTITEM.NEXT;

SAFETYCOUNTER := SAFETYCOUNTER + 1;
if SAFETY COUNTER > I_000_000 then

raise SAFETYERROR;
end if;

end loop PROCESSLIST;

Establishing a recursion bound:

procedure DEPTH FIRST (ROOT : in SUBTREE;

SAFETYCOUNTER in RECURSIONBOUND := 1_000) is
begin

if SAFETY COUNTER = 0 then
raise RECURSIONERROR;

end if;
-- normal subprogram body

DEPTHFIRST(SUBROOT (SAFETYCOUNTER - 1)); -- recursive call

end DEPTHFIRST;

Using the subprogram. One call specifies a maximum recursion depth of 50. The
second takes the default (one thousand). The third uses a computed bound:

DEPTH_FIRST(TREE..... 50);
DEPTHFIRST(TREE, ...);
DEPTHFIRST(TREE CURRENTTREEHEIGHT);

rationale

Recursion, and iteration using structures other than for statements, can be infinite
because the expected terminating condition does not arise. Such faults are
sometimes quite subtle, may occur rarely, and may be difficult to detect because an
external manifestation might be absent or substantially delayed.

PROGRAMMING PRACTICES 89

By including, in addition to the loops themselves, counters and checks on the
counter values you can prevent many forms of infinite loop. The inclusion of such
checks is one aspect of the technique c.-1-d Safe Programming [2].

The bounds of these checks do not have to be exact, just realistic. Such counters
and checks are not part of the primary control structure of the program but a benign
addition functioning as an execution-time "safety net" allowing error detection and
possibly recovery from potential infinite loops or infinite recursion.

Including specific bounds can save considerable effort during program development
and maintenance. Once the loop is understood, very little effort is required to insert
the bounds check, especially if a syntax-directed editor is used.

note

If a loop uses the for iteration scheme (Guideline 5.6.4), it follows this guideline.

exceptions

Embedded control applications will have loops that are intended to be infinite. Only
a few loops within such applications should qualify as exceptions to this guideline.
The exceptions should be deliberate (and documented) policy decisions.

In general, violation of this guideline is only appropriate for trivial loops where the
termination criteria have been proven, at least informally.

5.6.7 Goto Statements
guideline

• Do not use goto statements unless you are sure there is no alternative.

" If you must use a goto statement, highlight both it and the label.

rationale

A goto statement is an unstructured change in the control flow. Worse, the label
does not require an indicator of where the corresponding goto statement(s) are.
This makes code unreadable and makes its correct execution suspect.

note

For the rare occasions in which you can present a case for using a goto statement,
highlight both it and the label with blank space and highlighting comments, and
indicate at the label where the corresponding goto statement(s) may be found.

90 Ada QUALITY AND STYLE

5.6.8 Return Statements
guideline

" Minimize the number of returns from a subprogram [17.
* Highlight returns with comments or white space to keep them from being lost in

other code.

rationale

Excessive use of returns can make code confusing and unreadable. Only use returns
where warranted. Too many returns from a subprogram may be an indicator of
cluttered logic. If the application requires multiple returns, use them at the same
level (i.e., as in different branches of a case statement), rather than scattered
throughout the subprogram code. Some rework can often reduce the number to
one and make the code more clear.

exception

Do not avoid return statements if it detrpcs from natural structure and code
readability.

5.6.9 Blocks

guideline

* Use blocks cautiously and for their intended purposes.

* Do not use blocks to place subprograms in-line "by hand."

example

INTECRATE VELOCITY FROMACCELERATION:
begin

exception
when NUMERIC-ERROR I CONSTRAINTERROR =>

-- use old velocity value

end INTEGRATEVELOCITYFROMACCELERATION;

rationale

The intended purposes of blocks ore to introduce local declarations, to define local
exception handlers, and to perform local renaming. One category included in local
declarations is, of course, tasks.

Local renaming reduces the length of qualified pathnames where there would be no
confusion. In this sense, it is analogous to the Pascal with statement.

Using abstraction in the form of subprogram calls generally enhances readability and
understandability. When performance is an issue, the pragma INLINE can be used.

PROGRAMMING PRACTICES 91

5.7 VISIBILITY
As noted in Section 4.2, Ada's ability to enforce information hiding and separation of
concerns through its visibility controlling features is one of the most important
advantages of the language, particularly when "programming-in-the-large" where a
team of programmers are producing a large system. Subverting these features, for
example by over liberal use of the use clause, is wasteful and dangerous.

5.7.1 The Use Clause

guideline

* Minimize use of the use clause [18].

* Loca!ze the effect of the use clauses you must employ.

example

This is a modification of the example from Guideline 4.2.3. The effect of a use
clause is localized.

procedure COMPILER is
..

package LISTING_FACILITIES is

procedure NEWPAGEOFLISTING;
procedure NEW LINE_OF_PRINT;
-- etc

end LISTING-FACILITIES;

package body LISTING-FACILITIES is separate;

begin --COMPILER

end COMPILER;
..- -.

92 Ada QUALITY AND STYLE

with TE.! 10;
separate (COMPILER)

package body LISTINGFACILITIES is
..procedure NEWPAGEOFLISTING is

begin

end NEW PAGEOFLISTING;

procedura NEW_LINE_OFPRINT is
use TEXTIO; -- Note use clause.

begin

end NEWLINEOFPRINT;

-- etc

end LISTING_FACILITIES;

rationale

Avoiding the use clause forces you to use fully qualified names. In large systems,
there may be many library units named in a with clause. When a corresponding use
clause accompanies the with clause, and the simple names of the library packages
are omitted (as is allow'ed by the use clause), references to external entities will be
obscured, and identification of external dependencies becomes difficult.

You can minimize the scope of the use Clause by placing it in the body of a package
or subprogram, or encapsulating it in a block to restrict visibility. Placing a use
clause in a block has a similar effect to the Pascal with statement of localizing the use
of unqualified names.

notes

Avoiding the use clause completely can cause problems when compiling with (in the
context of) packages that contain type declarations. Simply importing these types
via a with clause does not allow relational operators implicitly defined for them to be
used in infix notation. A use clause enables the use of infix notation. You can use
renaming declarations to overcome the visibility problem and enable the use of infix
notation.

Avoiding the use clause completely also causes problems with enumeration literals.
They must be fully qualified as well. Unfortunately, you cannot conveniently
overcome this problem by renaming declarations.

An argument defending the use clause can be found in [21]-.

PROGRAMMING PRACTICES 93

5.7.2 The Renames Clause
guideline

• Use the renames clause judiciously and purposefully.

• Rename a long fully qualified name to reduce the complexity if it becomes
unwieldy (Guideline 3.1.4).

* Rename declarations for visibility purposes rather than using the use clause
(Guideline 5.7.1).

* Rename parts when interfacing to reusable components originally written with
inapplicable nomenclature.

example
procedure DISKWRITE (TRACKNAME : TRACK; ITEM : DATA) renames

SYSTZM SPECIFIC.DEVICEDRIVERS.DISKHEADSCHEDULER.TRANSMIT;

rationale

If the renaming facility is abused, it can be difficult for readers of the code. A
renames clause can substitute an abbreviation for a qualifier or long package name
locally. This can make code more readable yet anchor the code to the full name.
However, the use of renames clauses can often be avoided or made obviously
undesirable by choosing names with such care that fully qualified names read well.
The list of renaming declarations serves as a list of abbreviation definitions (see
'3 2c'z : .-e 3.1.'r). t r~namig im:,?' : .'pera" 'he use clause can often
be avoided. The method prescribed in the Ada LRM [28] for renaming a type is to
use a subtype (see Guideline 3.4.1). Often the parts recalled from a reuse library
will not have names that are as general as they could be or that match the new
application's naming scheme. An interface package exporting the renamed
subprograms can map to your project's nomenclature.

5.7.3 Overloaded Subprograms

guideline

* Limit the use of overloading to widely used subprograms that perform similar
actions on arguments of different types [18].

example
function SIN (ANGLES MATRIXOFRADIANS) return MATRIX;
function SIN (ANGLES VECTORCFRADIANS) return VECTOR;
function SIN (ANGLE RADIANS) return SMALLREAL;
function SIN (ANGLE DEGREES) return SMALLREAL;

94 Ada QUALITY AND STYLE

rationale

Excessive overloading can be confusing to maintainers ([18] page 65). Only use it
when there is overwhelming reason to do so. There is also the danger of hiding
declarations if overloading becomes habitual.

note

This guideline does not necessarily prohibit subprograms with identical names
declared in different packages.

5.7.4 Overloaded Operators

guideline
" Preserve the conventional meaning of oveiioaded operators [18].

" Use "+" to identify adding, joining, increasing, and enhancing kinds of
functions.

• Use "-" to identify subtraction, separation, decreasing, and depleting kinds of
functions.

example
function "f" (X MATRIX:

Y MATRIX) return MATRIX;

SUM_MATRIX := MATRIXA + MATRIXB;

rationale

Sub.u-rtng the conventional interpretation of operators leads to confusing code.

note

There are potential problems with any overloading. For example, if there are
several versions of the "+" operator, and a change to one of them affects the
number or order of its parameters, locating the o,cur.ences that must be chq, r' ,

can be difficult.

5.8 USING EXCEPTIONS

Ada exceptions are a reliability-enhancing language feature designed to help specify
program behavior in the presence of errors or unexpected events. Exceptions are not
intended to provide a general purpose control construct. Further, liberal use of
exceptions should not be considered sufficient for providing full software fault tolerance
[15].

PROGRAMMING PRACTICES 95

5.8.1 Disasters versus State Information

guideline

* Use the exception mechanism for abnormal or extremely unusual occurrences
only.

* Use exceptions to enhance readability by separating fault handling from normal
execution.

" Treat all exceptions as disasters.

* Do not use exceptions to return normal state information. Use parameters as
flags instead.

rationale

Normal and predictabie events should be handled by the code without the
asynchronous transfer of control represented by an exception.

When fault handling and only fault handling code is included in exception handlers,
the reader of your code can concentrate on the normal processing algorithm or on
the fault handling code as the need arises.. This removes the burden of continually
cletermining, for each set of statements, into which category they fall.

"ith the above separation, an exception represents a very unusual and undesirable
event, a disaster. The very fact that the flow of control cannot return from the
handler to the point at which the exception was raised indicates the intent that
desperate measures are required to deal with the situation.

The semantics of exceptions, with a complete change in execution path, makes it
difficult to associate the point of a call with all of the points in the calling frame
where execution could continue. This situation is intolerable for returning (status)
information which is expected from the usual call. Code to discriminate among
cases presented by status information should be placed near the call to which it
pertains.

5.8.2 User-, Implementation-, and Predefined Exceptions

guideline

" Declare user-cefined exceptions for use in explicit raise statements.

* Do not explicitly raise predefined or im'nplementation-defined exceptions.

* Catch and convert or handle all predefined and implementation-defined
exceptions at the earliest opportunity.

96 Ada QUALITY AND STYLE

example

-- Use
raise POSITIONISZERO; -- User defined, signaling misuse of abstraction.
-- rather than either
raise NUMERIC_ERROR; -- This is a misuse of a predefined exception.
-- or
raise CONSTRAINTERROR; -- Tnis s a misuse of a predefined exception.

rationale

User-defined exception names can be made more descriptive in a particular
situation than the predefined exception names. In addition, there are already too
many situations that result in the predefined exceptions. Creating addtional causes
for predefined exceptions increases the difficulty of determining the source of an
exception. An exception name should have one, and not several, meanings.
Raising, say, CONSTRAINT_ERROR in an abstract data type implementation may seem
consistent %ith the interface presented by the predefined types, but this actually
obscures meaning and, in this case, makes programming (of exception handlers)
more difficult than it would be otherwise.

Implementation-defined exceptions are non-.portable and have meanings which
are subject to change even between successive compiler releases. This introduces
too much uncertainty for the creation of useful handlers.

Converting an cxception means raising a user-defined exception in the handler for
the original exception. This introduces a meaningful iiame for export to the user of
the frame. It is more informative for the reader and the writer of the code calling
the frame, since it raises the abstraction level of the error situation above that of the
hardware and language combination. Once the error situation is couched in terms
of the application, it can be handled in those terms.

5.8.3 Handlers for others

guideline

* Provide a handler for others in suitable frames to protect against unexpected
exceptions being propagated without bound.

" Use others only to catch exceptions you cannot enumerate explicitly, preferably
only to flag a potential abort.

" Use caution when programming handlers for others.

" Avoid using others during development.

rationale
Providing a handler for others allows jou to follow the other guidelines in this
section. It affords a place to catch and convert truly unexpected exceptions that

PROGRAMMING PRACTICES 97

were not caught by the explicit handlers. It may be possible to provide "fire walls"
against unexpected exception being propagated without providing handles in every
frame. By placing an others handler in every frame, however, you can convert the
unexpected exceptions as soon as they are raised. The others handler cannot
discriminate between different exceptions, and, as a result, any such handler must
treat the exception as a disaster. Even such a disaster can still be converted into an
abstraction-related user-defined exception at that point. Since a handler for
others will catch any exception not otherwise handled explicitly, one placed in the
frame of a task or of the main subprogram affords the opportunity to perform final
clean-up and to shut down cleanly.

Failing to enumerate all known exceptions and leaving it up to the handler for
others to deal with them all is shirking your duties.

Programming a handler for others requires caution because it cannot discriminate
either which exception was actually raised or precisely where it was raised. Thus the
handler cannot make any assumptions about what can be or even what needs to be
"fixed."

The use of handlers for others during development, when exception occurrences
can be expected to be frequent, can hinder debugging. It is much more informative
to the developer to see a traceback with the actual exception listed than the
converted exception. Furthermore, many tracebacks will not list the point where
the original exception was raised once it has been caught by a handler.

note

The arguments in the preceding paragraph apply only to development time, when
traceback listings are useful. They are not useful to users, and can be dangerous.
The handler should be included in comment form at the outset of development and
the double dash removed before delivery.

5.8.4 Propagation

guideline

* Handle all exceptions, both user and predefined.

* For every exception that might be raised, provide a handler in suitable frames to
protect against undesired propagation outside the abstraction.

rationale

The statement that "it can never happen" is not an acceptable programming
approach. You must assume it can happen and be in control when it occurs. You
should provide defensive code routines for the "cannot get here" conditions.

Some extant advice calls for catching and propagating any exception to the calling
unit. That advice will stop a program. What you should do is catch the exception

----- ---- -

98 Ada QUALITY AND STYLE

and propagate it, or a substitute (see Guideline 5.8.2), only if your handler is at the
wrong abstraction level to effect recovery. Effecting recovery can be difficult, but
the alternative is a program that does not meet its specification.

Making an explicit request for termination implies that your code is in control of the
situation and has determined that to be the only safe course of action. Being in
control affords opportunities to shut down in a controlled manner (clean up loose
ends, close files, release surfaces to manual control, sound alarms), and implies that
all available programmed attempts at recovery have been made.

5.8.5 Localizing the Cause of an Exception

guideline
* Do not rely on being able to identify the fault raising predefined or

implementation-defined exceptions.
" Use blocks to associate localized sections of code with their own exception

handlers.

example

See Guideline 5.6.9.

rationale

It is very difficult to determine in an exception handler exactly which statement and
which operation within that statement raised an exception, particularly the
predefined and implementation-defined exceptions. The predefined and
implementation-defined exceptions are candidates for conversion and propagation
to higher abstraction levels for handling there. User-defined exceptions, being
more closely associated with the application, are better candidates for recovery
within handlers.

User-defined exceptions can also be difficult to localize. Associating handlers with
small blocks of code helps to narrow the possibilities, making it easier to program
recovery actions. The placement of handlers in small blocks within a subprogram or
task body also allows resumption of the subprogram or task after the recovery
actions. If you do not handle exceptions within blocks, the only action available to
the handlers is to shut down the task or subprogram as prescribed in Guideline
5.8.4.

note

The optimal size for the sections of code you choose to protect by a block and its
exception handlers is very application-dependent. Too small a granularity forces
you to expend much more effort in programming for abnormal actions than for the
normal algorithm. Too large a granularity reintroduces the problems of determining
what went wrong and of resuming normal flow.

PROGRAMMING PRACTICES 99

5.9 ERRONEOUS EXECUTION
An Ada program is erroneous when it violates or extends the rules of the language
governing program behavior. Neither compilers nor run-time environments are able to
detect erroneous behavior in all circumstances and contexts. In many cases the normal
function of the hardware violates no Ada rules, but adds additional constraints. In these
cases, the erroneous Ada program is correct for the implementation. The effects of
erroneous execution are unpredictable ([28] §1.6). If the compiler does detect an
instance of an erroneous program, its options are to indicate a compile time error, to
insert the code to raise PROGRAMERROR, and possibly to write a message to that effect, or
to do nothing at all.

Erroneousness is not a concept unique to Ada. The guidelines below describe or explain
the specific instances of erroneousness defined in the Ada LRM [28].

5.9.1 Unchecked Conversion
guideline

0 Use UNCHECKED-CONVERSION only with utmost care ([28] §13.10.2).

rationale

An unchecked conversion is a bit-for-bit copy without regard to the meanings
attached to those bits and bit positions by either the source or the destination type.
The source bit pattern can easily be meaningless in the context of the destination
type. Unchecked conversions can create values that will violate type constraints on
subsequent operations. Unchecked conversion of objects mismatched in size has
implementation-dependent results.

5.9.2 Unchecked Deallocation

guideline

0 Use UNCHECKEDDEALLOCATION with caution.

rationale

Most of the reasons for using unchecked deallocation with caution have been given
in Guideline 5.4.3. When this feature is used, there is no checking that there is only
one access path to the storage being deallocated. Thus, any other access paths are
not made null. Depending on such a check is erroneous.
This feature has its place. When using an implementation that does not have an
asynchronous garbage collector, it may be better to use unchecked deallocation
than simply to "drop pointers" whenever a dynamically allocated object becomes
useless. This at least has the potential for freeing some space for reallocation.

100 Ada QUALITY AND STYLE

5.9.3 Dependence on Parameter Passing Mechanism

guideline

Do not write code whose correct execution depends on the parameter passing
mechanism used by 2n implementation [28] [8].

example

The output of this program depends on the particular parameter passing mechanism
that was used.

with TEXT 10;
use TEXT_10;
procedure OUTER is

type COORDINATES is
record

X INTEGER := 0;
Y : INTEGER :-0;

end record;

OUTER-POINT : COORDINATES;

package INTEGERIO is new TEXT_IO.INTEOERIO(INTEGER);
use INTEGER_10;

procedure INNER (INNERPOINT : in out COORDINATES) is
begin -- INNER

INNERPOINT.X := 5;

-- The following line causes the output of the program to
-- depend on the parameter passing mechanism.
PUT(OUTERPOINT.X);

end INNER;

begin -- OUTER

PUT(OUTERPOINT.X);
INNER (OUTERPOINT);
PUT (OUTERPOINT. X);

end OUTER;

If the parameter passing mechanism is by copy, the results on the standard output
file will be:
005

If the parameter passing mechanism is by reference, the results will be:
055

PROGRAMMING PRACTICES 101

rationale

The language definition specifies that a parameter whose type is array, record or
task type can be p... _d by copy or by reference. It is erroneous to assume that
either mechanism is used in a particular case.

exceptions

Frequently, when interfacing Ada to foreign code, dependence on paramet r
passing mechanisms used by a particular implementation is unavoidable. In this
case, isolate the calls to the foreign code in an interface package that exports
operations that do not depend on the parameter-passing mechanism.

5.9.4 Multiple Address Clauses

guideline

* Use address clauses to map variables and entries to the hardware device or
memory, not to model the FORTRAN "equivalence" feature.

example
SINGLEADDRESS : CONSTANT

INTERRUPTVECTORTABLE : HARDWARE ARRAY;
for INTERRUPTVECTORTABLE use at SINGLE-ADDRESS;

rationale

The result of specifying a single address for multiple objects or program units is
undefined, as is specifying multiple addresses for a single object or program unit.
Specifying multiple address clauses for an interrupt entry is also undefined. It does
not necessarily overlay objects or program units, or associate a single interrupt with
more than one task entry.

5.9.5 Suppression of Exception Check

guideline
* Do not suppress exception checks during development.

* Minimize suppression of exception checks during operation.

rationale

If you disable exception checks and program execution results in a condition in
which an exception would otherwise occur, the program execution is erroneous.
The results are unpredictable. Further, you must still be prepared to deal with the
suppressed exceptions if they are raised in and propagated from the bodies of
subprograms, tasks, and packages you call.

102 Ada QUALITY AND STYLE

The pragma suPPRzss grants an implementation permission to suppress runtime
checks, it does not require it to do so. It cannot be relied upon as a general
technique for performance improvement.

If you need to use pragma suPPRZss, postpone it until i clear that the program is
correct, but too slow, and there is no other alternative for improving performance.
Pragma suPPazss can then be used to improve performance for specific,
well-understood objects!types.

5.9.6 Initialization
guideline

" Initialize all objects prior to use.

• Ensure elaboration of an entity before using it.
• Do not use function calls in declarations.

example

package ROBOTCONTROLLER is

function SENSE return POSITION;

end ROBOT CONTROLLER;

package body ROBOT_CONTROLLER is

GOAL : POSITION :a SENSE;
The underlined text is illegal.

function SENSE return POSITION is

end SENSE;

begin -- ROBOT CONTROLLER
GOAL :- SENSE; -- This line is legal.

end ROBOTCONTROLLER;

rationale

Ada does not define an initial default value for objects of any type other than access
types. Using the value of an object before it has been assigned a value will raise an
exception or result in erroneous program execution. Objects can be initialized
implicitly by declaration or explicitly by assignment statements. Initialization at the
point of declaration is safest as well as easiest for maintainers. You can also specify
default values for fields of records as part of the type declarations for those records.

PROGRAMMING PRACTICES 103

An unelaborated function called within a declaration (initialization) raises an
exception that must be handled outside of the unit containing the declarations. This
is true for any exception the function raises even if it has been elaborated.

Ensuring initialization does not imply initialization at the declaration. In the
example, coAL must be initialized via a function call. This cannot occur at the
declaration, but can occur as part of the sequence of statements of the body of the
enclosing package.

note

Sometimes, elaboration order can be dictated with pragma ELABORATE. Pragma
ELABORATE only applies to library units.

5.10 SUMMARY

optional parts of the syntax
" Associate names with loops when they are nested.

• Associate names with blocks when they are nested.

• Use loop names on exit statements from nested loops.

• Include the simple name at the ends of a package specification and body.

" Include the simple name at the ends of a task specification and body.

* Include the simple name at the end of an accept statement.

include the designator at the end of a subprogram body.

parameter lists
* Name formal parameters so as to obviate the need for comments describing

their purpose.

" Use named parameter association in calls of infrequently used subprograms or
entries with many formal parameters.

" Use named component association for constants, expressions, and literals in
aggregate initializations.

" Use named association when instantiating generics with many formal
parameters.

• Use named association for clarification when the actual parameter is ThUE or
FALSE or an expression.

* Use named association when supplying a non-default value to an optional
parameter.

" Provide default parameters to allow for occasional special usage of widely used
subprograms or entries.

104 Ada QUALITY AND STYLE

• Place default parameters at the end of the formal parameter list.

• Consider default parameters when expanding functionality.

* Show the mode indication of procedure and entry parameters.

* Declare parameters in a consistent order.

types

• Use existing types as building blocks by deriving new types from them.

* Use range constraints on subtypes to help make the compiler's constraint
checking beneficial.

" Define new types, especially derived types, to include the largest set of possible
values, including boundary values.

" Constrain the ranges of derived types with subtypes, excluding boundary values.

* Do not use anonymous types.

" Use limited private types in preference to private types.

* Use private types in preference to non-private types.

• Explicitly export needed operations rather than easing restrictions.

data structures

" Use records to group heterogeneous but related data.

• Record structures should not always be flat. Factor common parts.

" For a large record structure, group related components into smaller subrecords.

* Declare subrecords separately.

" For nested records, pick element names that will read well when inner elements
are referenced.

* Differentiate between static and dynamic data. Use dynamically allocated
objects with caution.

* Use dynamically allocated data structures only when it is necessary to create and
destroy them dynamically or to be able to reference them by different names.

" Do not drop pointers.

" Do not create dangling references.

" Initialize all access variables and components.

* Do not rely on any properties of a garbage collector.

• Deallocate explicitly.

PROGRAMMING PRACTICES 105

• Use length clauses.

" Provide handlers for STORAGE-ERROR.

expressions

* Use 'FIRST and 'LAST instead of numeric literals to represent the first and last
values of a range.

* Use only 'FIRST and 'LAST to represent the first and last indices of arrays.

* Use 'RANGE wherever you can.

* Use array attributes 'FIRST, 'LAST, 'LENGTH, or 'RANGE instead of numeric
literals for accessing arrays.

* Use parentheses to specify the order of subexpression evaluation where
operators from different precedence levels are involved, and to clarify
expressions.

• Avoid names and constructs that rely on the use of negatives.

* Choose names of flags so they represent states that can be used in positive form.

• Use short-circuit forms of the logical operators.

" Use type qualified expressions instead of type conversions wherever possible.

• Use "<=" and ">=" in relational expressions with real operands instead of "="

statements

" Restrict or minimize the depth of nested expressions and control structures.

• Try simplification heuristics.

" Use slices rather than a loop to copy all or part of an array.

• Always use an others choice on case statements

• Enumerate all possibilities, eliding over ranges.

I Jf you intend a possibility to be handled in an others choice, comment that
choice out and mark it with "OTHERS".

* If you use an if statement instead of a case statement, use marker comments
indicating the cases, and use a trailing else part for the others choice.

* Bias use of the others choice toward.error detection.

* Use for loops wherever possible.

* Use plain loops with exit statements where for loops are not appropriate.

* Avoid use of a while iteration scheme.

* Use exit statements to enhance the readability of loop termination code.

106 Ada QUALITY AND STYLE

* Use "if ... then ... exit" only to express "last wishes".

* Review exit statement placement.

* Unersand and consider specifying bounds on loops.
* Understand and consider specifying bounds on recursion.

* Do not use goto statements unless you are sure there is no alternative.

• If you must use a goto statement, highlight both it and the label.

* Minimize the number of returns from a subprogram.

" Highlight returns with comments or white space to keep them from being lost in
other code.

* Use blocks cautiously and for their intended purposes.

* Do not use blocks to place subprograms in-line "by hand".

visibility

" Minimize use of the use clause.

* Localize the effect of the use clauses you must employ.

* Use the renames clause judiciously and purposefully.

* Rename a long fully qualified name to reduce the complexity if it becomes
unwieldy.

• Rename declarations for visibility purposes rather than using the use clause.

" Rename parts when interfacing to reusable components originally written with
inapplicable nomenclature.

* Limit the use of overloading to widely used subprograms that perform similar
actions on arguments of different types.

• Preserve the conventional meaning of overloaded operators.

* Use "+" to identify adding, joining, increasing, and enhancing kinds of
functions.

* Use "-" to identify subtraction, separation, decreasing, and depleting kinds of
functions.

using exceptions
" Use the exception mechanism for abnormal or extremely unusual occurrences

only.
" Use exceptions to enhance readability by separating fault handling from normal

execution.

" Treat all exceptions as disasters.

PROGRAMMING PRACTICES 107

• Do not use exceptions to return normal state information. Use parameters as
flags.

* Declare user-defined exceptions for use in explicit raise statements.

* Do not explicitly raise predefined or implementation-defined exceptions.

" Catch and convert or handle all predefined and implementation-defined
exceptions at the earliest opportunity.

" Provide a handler for others in suitable frames to protect against unexpected
exceptions being propagated without bound.

" Use others only to catch exceptions you cannot enumerate explicitly, preferably
only to flag a potential abort.

* Use caution when programming handlers for others.

* Avoid using others during development.

• Handle all exceptions, both user and predefined.

" For every exception that might be raised, provide a handler in suitable frames to
protect against undesired propagation outside the abstraction.

• Do not rely on being able to identify the fault raising predefined or
implementation-de fined exceptions.

* Use blocks to associate localized sections of code with their own exception
handlers.

erroneous execution

" Use UNCHECKED_CONVERSION only with utmost care.

" Use UNCHECKEDDEALLOCATION with caution.
" Do not write code whose correct execution depends on the parameter passing

mechanism used by an implementation.
" Use address clauses to map variables and entries to the hardware device or

memory, not to model the FORTRAN "equivalence" feature.

* Do not suppress exception checks during development.

• Minimize suppression of exception checks during operation.

• Initialize all objects prior to use.

• Ensure elaboration of an entity before using it.

• Do not use function calls in declarations.

108 Ada QUALITY AND STYLE

CHAPTER 6
Concurrency

Concurrent programming is difficult and error prone. The concurrent programming
features of Ada are designed to make it easier to write and maintain concurrent
programs which behave consistently and predictably, and avoid such problems as
deadlock and starvation. The language features themselves cannot guarantee that
programs will have these desirable properties; they must be used with discipline and
care, a process supported by the guidelines in this chapter.

A pitfall to be avoided at all costs is the misuse of language features, for example using
priorities for synchronization, because of the presumed inefficiency of the proper Ada
construct (in this case, the rendezvous). Bear in mind that a program that does the
wrong thing, however fast, is incorrect, and that such misuses can be particularly
dancerous because the program may behave correctly some of the time (for example,
during testing).

Another pitfall is to assume that the rules of good sequential program design can be
applied, by analogy, to concurrent programs. For example, while multiple returns from
subprograms should be discouraged (Guideline 5.6.8), multiple task exits or termination
points are often necessary and desirable.

6.1 TASKING

Tasks provide a means, within the Ada language, of expressing concurrent,
asynchronous, threads of control, enabling some properties of concurrent programs to
be checked at compile time and to be independent of the idiosyncrasies of a particular
operating system. However, to capitalize on the potential advantages of tasks it is
important to use tasks for their intended purposes, and with a clear understanding of
their semantics and the semantics of their associated language features.

109

1 10 Ada QUALITY AND STYLE

6.1.1 Tasks
guideline

" Use tasks to model abstract, asynchronous entities within the problem domain.

• Use tasks to control or synchronize access to tasks or other asynchronous
entities (e.g., asynchronous I/O, peripheral devices, interrupts).

" Use tasks to define concurrent algorithms.

" Use tasks to perform cychc or prioritized activities [17].

rationale

These are the intended uses of tasks. They all revolve around the fact that a task
has its own thread of control separate from the main subprogram. The conceptual
model for a task is that it is a program with its own virtual processoz. This provides
the opportunity to model entities from the problem domain in terms more closely
resembling those entities, and the opportunity to deal with physical devices on their
own terms as a separate concern from the main algorithm of the application. Tasks
also allow the programming of naturally concurrent activities in their own terms, and
they can be mapped to multiple processors when these are available.

6.1.2 Task Types

guideline
" Do not use anonymous task types.

" Differentiate between static and dynamic tasks [17] [18].

example

The example illustrates the syntactic differences between the kinds of tasks
discussed here. BUFFER is static and has a name, but its type is anonymous. Because
it is declared explicitly, the task type BUFFER MANAGER is not anonymous. CHANNEL is

static and has a name, and its type is not anonymous. Like all dynamic objects,
ENCRYPTEDPACKETQUEUE.ALL is essentially anonymous, but its type is not.
task BUFFER is ...
task type BUFFER_MANAGER is
type REPLACEABLE-BUFFER is access BUFFERMANAGER;
ENCRYPTED PACKET QUEUE : POINTER TOTASK_
CHANNEL : BUFFER MANAGER;

ENCRYPTEDPACKETQUEUE :- new BUFFER MANAGER;

rationale

The consistent and logical use of task types when necessary contributes to
understandability.

CONCURRENCY 111

The use of named tasks of anonymous type would avoid a proliferation of task types
that were only used once, and the practice does communicate to maintainers that
there are no other task objects of that type. However, a program originally written
using named tasks that must be enhanced to contain several tasks of the same type
will require more work to upgrade than the same program written with zask types.
The extra work involves including task type declarations and deciding whether static
or dynamic tasks should be used.

Guideline 7.3.2 requires the use of task types because a task storage representation
clause can be applied to a task type, but not to a task object.

Identical tasks can be derived from a common task type. Dynamically allocated
task structures are necessary when you must create and destroy tasks dynamically or
when you must reference them by different names.

6.1.3 Dynamic Tasks
guideline

• Use caution with dynamically allocated task objects.
* Avoid referencing terminated tasks through their aliases.

* Avoid disassociating a task from all names.

example

In this example, the limited number of trackable radar targets are tasks continuously
updating their positions based on previous position and velocity until corrected by a
new scan. Out-of-range targets are dropped (through use of the abort statement).
There are bugs in the design.

Let these lines in subprograms in the radar package be executed first:
TARGET(LATESTACQUISITION) := new RADARTRACK;
TARGET (LATESTACQUISITION). INITIALIZE

(SELF -> TARGET(LATEST_ACQUISITION),
VELOCITY =>
POSITION -> ...

Let these lines in the body of task type RADARTRACK execute next. They are not
inside an accept statement:

NEW POSITION :a INTEGRATE(POSITION, VELOCITY);
if OUT OF RANGE(NEW POSITION) then

abort SELF; --notice abort

112 Ada QUALITY AND STYLE

Let this line in a subprogram in the radar package execute third. This line can raise
TASKING_ERROR due to calling an entry of an aborted task:
TARGET (SCANHIT). CORRECTREADINGS(POSITIONVELOCITY);

rationale

A dynamically allocated task object is a task object created by the execution of an
allocator. Allocated task objects referenced by access variables allow you to
generate aliases; multiple references to the same object. Anomalous behavior can
arise when you reference an aborted task by another name. The example illustrates
an attempt to call an entry in an aborted task after the abort operation was applied
to the alias.

A dynamically allocated task that is not associated with a name (a "dropped
pointer") cannot be referenced for the purpose of making entry calls, nor can it be
the direct target of an abort statement (see Guideline 5.4.3).

6.1.4 Priorities

guideline
0 Do not use the pragma PRIORITY to handle synchronization [18].

example

At some point in its execution, TI is blocked. Otherwise, we would not expect T2 or
SERVER to ever get anything done. If TI is blocked, it is possible for T2 to reach its call
to SERVER'S entry (OPERATION) before TI. Suppose this has happened and that Ti now
makes its entry call before SERVER has a chance to accept T2'S call.

task T1 ... PRIORITY HIGH ... SERVER.OPERATION ...
task T2 ... PRIORITY MEDIUM ... SERVER.OPERATION ...
task SERVER ... accept OPERATION ...

This is the timeline of events so far:

Ti blocks
T2 calls SERVER.OPERATION

Ti unblocks
Ti calls SERVER-OPERATION
SERVER accepts the call from TI or from T2?

Some people might expect that, due to its higher priority, ri's call would be
accepted by SERVER before that of T2. The synchronization between T1 and SERVER is
not affected (and certainly not effected) by Ti'S priority. This is called priority
inversion.

CONCURRENCY 113

rationale

The pragma PRIORITY is only intended to be used to determine relative importance
of tasks with respect to one another. Entry calls are queued in FIFO order, not
priority order. This can lead to a situation called priority inversion, where lower
priority tasks are given service while higher priority tasks remain blocked.

A program like the one in the example might behave many times as expected. You
cannot rely on it continuing to do so, as that behavior would be due more to
happenstance than to the programmed priorities. Task priorities are even less
reliable as a means of achieving mutual exclusion.

6.1.5 Delay Statements

guideline
" Do not depend on a particular delay being achievable [18].

" Never use a busy waiting loop instead of a delay.

* Design to limit polling to those cases where absolutely necessary.

* Never use knowledge of the execution pattern of tasks to achieve timing
requirements.

example
NODRIFT:

declare
use CALENDAR;
-- INTERVAL is a global constant of type DURATION
NEXT TIME : TIME := CLOCK + INTERVAL;

begin
PERIODIC:

loop
delay NEXT TIME - CLOCK;

-- some actions

NEXr TIME := NEXTTIME + INTERVAL;
end loop PERIODIC;

end NO-DRIFT;

rationale

The Ada language definition only guarantees that the delay time is a minimum. The
meaning of a delay statement is that the task will not be scheduled for execution
before the interval has expired. There is no guarantee of when (or if!) it will be
scheduled after the interval. This must be the case in light of the potentially
ever-changing task and priority mix with which the scheduling algorithm must deal.

A busy wait can only interfere with processing by other tasks. It can consume the
very processor resource necessary for completion of the activity for which it is
waiting. Even a loop with a delay can be seen as busy waiting if the wait is

114 Ada QUALITY AND STYLE

significantly longer then the delay interval. If a task has nothing to do, it should be
blocked at an accept or select statement.

Prevention of drift in a periodic activity can be achieved by calculating the next
time-to-occur based on the actual time of the current execution. The example
illustrates this tactic, but note that this tactic does not handle jitter.

Using knowledge of the execution pattern of tasks to achieve timing requirements is
non-portable since the underlying scheduling algorithm may change.

6.2 COMMUNICATION
The need for tasks to communicate gives rise to most of the problems that make
concurrent programming so difficult. Used properly, Ada's inter-task communication
features can improve the reliability of concurrent programs; used thoughtlessly they can
introduce subtle errors that can be difficult to detect and correct.

6.2.1 Defensive Task Communication
guideline

* Provide a handler for exception PROGRAMERROR wherever there is no else part in
a selective wait statement [25].

• Make systematic use of handlers for TASKINGERROR.

• Be prepared to handle exceptions during a rendezvous.

example

This block allows recovery from exceptions raised while attempting to communicate
a command to a task controlling the throttle.

ACCELERATE:
begin

THROTTLE. INCREASE(STEP);
exception

when TASKING-ERROR =>

when CONSTRAINT-ERROR
I NUMERICERROR =>

when THROTTLETOOWIDE >

end ACCELERATE;

In this select statement, if all the guards happen to be closed, the program can
continue by executing the else part. There is no need for a handler for
PROGRAMERROR. Other exceptions can still be raised while evaluating the guards or
attempting to communicate.

CONCURRENCY 115

BUFFER:
begin

select
when ... a>

accept ...

or
when

accept
else

end' slect;
exception

when CONSTRAINT ERROR
NUMERICERWOR =>

end BUFFER;

In this select statement, if all the guards happen to be closed, exception
PROGRAM_ERROR will be raised. Other exceptions can still be raised while evaluating
the guards or attempting to communicate.

BUFFER:
begin

select
when ...

accept ...

or
when ...

delay ...

end select;
exception

when PROGRAMERRoR =>

when CONSTRAINT ERROR

I NUMERIC_ERROR ->

end BUFFER;

rationale

The exception PROGRAM ERROR is raised if a selective wait statement is reached, all of
whose alternatives are closed (i.e., the guards evaluate FALSE), unless there is an else
part. When all alternatives are closed, the task can never again progress, so there is
by definition an error in its programming. You must be prepared to handle this error
should it occur.

Since an else part cannot have a guard, it can never be closed off as an alternative
action, thus its presence prevents PROGRAM ERROR. Recall, however, that an else part,
a delay alternative, and a terminate alternative are all mutually exclusive, so you will
not always be able to provide an else part. In these cases, you must be prepared to
handle PROGRAM-ERROR.

116 Ada QUALITY AND STYLE

The exception TASKINGERROR can be raised in the calling task whenever it attempts
to communicate. There are many situations permitting this. Few of them are
preventable by the calling task.

If an exception is raised during a rendezvous and not handled in the accept
statement, it is propagated to both tasks and must be ha;dled in two places. See
Section 5.8.

note

There are other ways to prevent PROGRAM ERROR at a selective wait. These involve
leaving at least one alternative unguarded, or proving that at least one guard will
evaluate TRUE under all circumstances. The point here is that you, or your
successors, will make mistakes in trying to do this, so you should prepare to handle
the inevitable exception.

6.2.2 Attributes 'COUNT, 'CALLABLE and 'TERMINATED

guideline

" Do not depend on the values of the task attributes 'CALLABLE, or 'TERMINATED

[18].
" Do not use task attributes to avoid TASKING ERRO' on an entry call.

* Do not depend on the value of the entry attribute 'COUNT.

example

This task needs at least two calls on one entry not coinciding with any calls on the
other entry as a prerequisite for an action. It is badly programmed, since it relies
upon the values of the COUNT attributes not changing between evaluating and acting
upon them.

task body INTERCEPT is

select
when (LAUNCH'COUNT > 1) and

(RECALL'COUNT = 0) ->
accept LAUNCH;
accept LAUNCH;

or
accept RECALL;

end s;lct;

If the following code is preempted between evaluating the condition and initiating
the call, the assumption that the task is still callaoie may no longer be valid.

CONCURRENCY 117

if INTERCEPT'CALLABLE then
INTERCEPT. RECALL;

rationale

Attributes -CALLABLE and -TERMINATED behave as "sticky bits." They convey reliable
information once 'CALLABLE becomes FALSE and once 'TERMINATED becomes TRUE.
Otherwise, 'TERMINATED and 'CALLABLE can change between the time your code tests
them and the time it responds to the result.
If you reference a task through an access value, another task can execute an
allocator between your interrogation of these attributes and your acting upon their
values. Should this occur, the attributes may not appear to behave as sticky bits,
thus rendering them utterly useless.

The Ada LRM [28] itself warns about the asynchronous increase and decrease of
the value of couNT. A task can be removed from an entry queue due to execution
of an abort statement as well as expiration of a timed entry call. The use of this
attribute in guards of a selective wait statement may result in the opening of
alternatives which should not be opened under a changed value of 'COUNT.

exceptions

Use extreme care.

6.2.3 Shared Variables
guideline

" Do not share variables.
" Have tasks communicate through the rendezvous mechanism.
• Do not use shared variables as a task synchronization device.

* Use pragma SHARED only when forced to by run time system deficiencies.

example

This code will print the same line more than once on some occasions and fail to print
some lines on other occasions.

118 Ada QUALITY AND STYLE

task body LINEPRINTERDRIVER is

begin
loop

CURRENT LINE :- LINE-BUFFER;
-- send to device

end loop;
end LINEPRINTERDRIVER;

task body SPOOLSERVER is

begin
loop

DISKREAD(SPOOL FILE, LINEBUFFER):
end loop;

end SPOOLSERVER;

rationale

There are many techniques for protecting and synchronizing data access. You must
program most of them yourself to use them. It is difficult to write a program that
shares data correctly; if it is not done correctly, the reliability of the program suffers.
Ada provides the rendezvous to support communication of information between
and synchronization of tasks. Data that you might be tempted to share can be put
into a task body with read and write entries to access it.

Some implementations of the rendezvous will not meet time constraints. For this
eventuality, Ada also provides pragma SHARED, which presumably has less
overhead than the rendezvous, and will implement correctly some data access
synchronization technique that you might get wrong. Pragma SHARED can serve as
an expedient against poor run time support systems. Programs containing tasks that
read or update shared data are erroneous unless non-interference can be
guaranteed. Do not use this as an excuse always to avoid the rendezvous, however,
because implementations are allowed to ignore pragma SHARED 1181. In addition,
if shared variables arc used as a buffer, pragma SHARED does not offer mutual
exclusion for simultaneous access. Rather, it affects only objects for which storage
and retrieval are implemented as indivisible operations.

note

As we pointed out above, a guarantee of non-interference may be difficult with
implementations that ignore pragma SHARED. If you must share data, share the
absolute minimum amount of data necessary, and be especially careful. As always,
encapsulate the synchronization portions of code.

The problem is with variables. Constants, such as tables fixed at compile time, may
be safely shared between tasks.

CONCURRENCY 119

6.2.4 Tentative Rendezvous Constructs
guideline

• Avoid conditional entry calls.

• Avoid selective waits with else parts.

• Avoid timed entry calls.

• Avoid selective waits with delay alternatives.

rat1onale

Use of these constructs always poses a risk of race conditions. Their use in loops,
particularly with poorly chosen task priorities, can have the effect of busy waiting.

These constructs are very much implementation dependent. For conditional entry
calls and selective waits with else parts, the Ada LRM [28] does not define
"immediately." For timed entry calls and selective waits with delay alternatives,
implementors may have ideas of time that differ from each other and from your
own.

6.2.5 Communication Complexity

guideline
a Minimize the number of accept and select statements per task.

0 Minimize the number of accept statements per entry.

example

-- use
accept A;
if MODE I then

-- do one thing
else -- MODE_2

-- do something different
end if;

-- rather than
if MODE 1 then

accept A do
-- do one thing

else -- MODE_2
accept A do

-- do something different
end if;

rationale

This guideline is motivated by reduction of conceptual complexity. With small
numbers of accept or select statements, the programmer of the task and the

120 Ada QUALITY AND STYLE

programmer of the calling units need not reason about the circumstances of an entry
call executing different code sequences dependent on the task's local state. In
addition to the reduction in conceptual complexity, the size of the resulting source
code for the task body can be controlled. Finally, a large number of accept and
select statements carries with it a large amount of inter-task communication, with its
inevitable overhead. It could be that tasks which need to communicate very
frequently are poorly designed. The communication overhead should, in general,
be insignificant compared with the independent, parallel computation.

6.3 TERMINATION
The ability of tasks to interact with each other using Ada's inter-task communication
features makes it especially important to manage planned or unplanned (e.g., in
response to a catastrophic exception condition) termination in a disciplined way. To do
otherwise can lead to a proliferation of undesired and unpredictable side effects as a
result of the termination of a single task.

6.3.1 Normal Termination
guideline

0 Do not create non-terminating tasks [18] unless you really mean it.

0 Explicitly shut down tasks dependent on library units.

example

This task will never terminate:

task body MESSAGEBUFFEF is

begin -- MESSAGE_BUFFER
loop

select
when (HEAD /= TAIL

=> accept RETRIEVE
or

when not(((HEAD a LOWER BOUND)and then
(TAIL - UPPERBOUND))or else

((HEAD/- LOWER BOUND)and then
(TAIL - BUFPER-RANGE'PRED(HEAD))

a> accept STORE (... -'

end select;
end loop;

end MESSAGE BUFFER;

CONCURRENCY 121

rationale

A non-terminating task is a task whose body consists of a non-terminating loop with
no selective wait with terminate, or a task that -is dependent on a library unit.
Execution of a subprogram or block containing a task cannot complete until the task
terminates. Any task that calls a subprogram containing a non-terminating task will
be delayed indefinitely.

The effect of unterminated tasks at the end of program execution is undefined. A
task dependent on a library unit cannot be forced to terminate using a selective wait
with terminate and should be terminated explicitly during program shutdown. One
way to terminate tasks dependent on library units is to provide them with exit
entries. Have the main subprogram call the exit entry just before it terminates.

exceptions

If you are simulating a cyclic executive, you may need a scheduling task that does
not terminate. It has been said that no real-time system should be programmed to
terminate. This is extreme. Systematic shut-down of many real-time systems is a
desirable safety feature.

If you are considering programming a task not to terminate, be certain that it is not a
dependent of a block or subprogram from which its caller(s) will ever expect to
return. In light of the fact that entire programs can be candidates for reuse (see
Chapter 8), document the fact that the task (and whatever it depends upon) will not.
terminate. Also be certain that for any other task that you do wish to terminate, its
termination does not await this task's termination. Reread and fully understand the
language reference manual [28] § 9.4 on "Task Dependence - Termination of
Tasks."

6.3.2 The Abort Statement

guideline

• Avoid using the abort statement.

rationale

When an abort statement is executed, there is no way to know what the targeted task
was doing beforehand. Data for which the target task is responsible may be left in an
inconsistent state. It is possible for a task to mistakenly execute abort statements
targeting tasks it does not intend, includinglitself, due to aliases or the tree of task
dependency. Further, the abort statement is not useful for dealing with tasks that
are no longer accessible (see Guideline 6.1.3).

The purposes of the abort statement are to stop a "runaway" or malfunctioning task,
and to free up processor resources quickly in an emergency or extremely
time-critical situation. It can be very difficult to determine whether a task is
malfunctioning. There is no guarantee that the task making that determination is

122 Ada QUALITY AND STYLE

not itself malfunctioning. The determination of what constitutes an emergency is
both difficult and political. The rare emergency situations should already have been
made quite clear in the requirements or specification of the software system. Beware
of making these decisions yourself.

An implementation is not required to do much to a task which is the target of an
abort statement until the task reaches a synchronization point. Consequently, the
purposes of freeing up processor resources and stopping runaway tasks can be
subverted. The latter is particularly futile in the case of a task in an infinite loop, as
it may never reach a synchronization point.

6.3.3 Programmed Termination

guideline

* Use a select statement rather than an accept statement alone.

* Provide a terminate alternative for e selective wait that does not require an
else part or a delay.

rationale

To do otherwise is to court deadlock. Execution of an accept statement or of a
selective wait statement without an else part, a delay, or a terminate alternative
cannot proceed if no task ever calls the entry(s) associated with that statement.
Following this guideline entails programming multiple termination points in the task
body. A reader can easily "know where to look" for the normal termination points
in a task body. The termination points are the end of the body's sequence of
statements, and alternatives of select stamnentu.

6.3.4 Abnormal Termination

guideline
• Place an exception handler for others at the end of a task body.

" Have each exception handler at the end of a task body report the task's demise.

example

This is one of many tasks updating the positions of blips on a radar screen. When
started, it is given part of the name by which its parent knows it. Should it terminate
due to an exception, it signals the fact in one of its parent's data structures.

CONCURRENCY 123

task body TRACK is
MYINDEX : TRACKS := NEUTRAL;

begin -- TRACK
select

accept START(WHO_AMI : TRACKS) do
MY INDEX :- WHOAMI;

end START ;
or

TERMINATE;
end select;

exception
when others =>

if MY INDEX /= NEUTRAL then
STATION(MYINDEX).STATUS DEAD;

end if;
end TRACK;

rationale

Unless a task reports the fact, it will become completed if an exception is raised
within it for which it has no handler. Remember that exceptions are not propagated
out of tasks. Providing exception handlers, and especially a handler for others,
ensures that a task can always regain control. Having a task report its demise allows
other tasks to start recovery from its loss. An unhandled exception in a task body
would circumvent the chance to report. Thus the need for an others handler to
catch it.

6.4 SUMMARY
tasking

• Use tasks to model abstract, asynchronous entities within the prbblem domain.

" Use tasks to control or synchronize access to tasks or other asynchronous
entities (e.g., asynchronous I/O, peripheral devices, interrupts).

" Use tasks to define concurrent algorithms.

" Use tasks to perform cyclic or prioritized activities.

• Do not use anonymous task types.

* Differentiate between static and dynamic tasks.

* Use caution with dynamically allocated task objects.

" Avoid referencing terminated tasks through their aliases.

• Avoid disassociating a task from all names.

124 Ada QUALITY AND STYLE

* Do not use the pragma PRIORITY to handle synchronization.

" Do not depend on a particular delay being achievable.

• Never use a busy waiting loop instead of a delay.

" Design to limit polling to those cases where absolutely necessary.

* Never use knowledge of the execution pattern of tasks to achieve timing
requirements.

communication
" Provide a handler for exception PROGRAM_ERROR wherever there is no else part in

a selective wait statement.
" Make systematic use of handlers for TASKINGERROR.

" Be prepared to handle exceptions during a rendezvous.

" Do not depend on the values of the task attributes 'CALLABLE, or 'TERMINATED.

" Do not use task attributes to avoid TASKINGERROR on an entry call.

" Do not depend on the value of the entry attribute 'COUNT.

" Do not share variables.

- Have tasks communicate through the rendezvous mechanism.

" Do not use shared variables as a task synchronization device.

" Use pragma SHARED only when forced to by run time system deficiencies.

" Avoid conditional entry calls.

" Avoid selective waits with else parts.

* Avoid timed entry calls.

* Avoid selective waits with delay alternatives.

* Minimize the number of accept and select statements per task.

• Minimize the number of accept statements per entry.
termination

• Do not create non-terminating tasks unlirss you really mean it.

* Explicitly shut down tasks dependent on library units.

" Avoid using the abort statement.

" Use a select statement rather than an accept statement alone.

" Provide a terminate alternative for evy selective wait that does not require an
else part or a delay.

CONCURRENCY 125

* Place an exception handler for others at t: end of a task body.

* Have each exception handler at the end of a task body report the task's demise.

126 Ada QUALITY AND STYLE

CHAPTER 7
Poi Lability

The manner in which the Ada language has been defined and tightly controlled is
intended to provide considerable aid in the portability of Ada programs. In most
programming languages, different dialects are prevalent as vendors extend or dilute a
language for various reasons such as conformance to a programming environment or to a
particular application domain. The Ada Compiler Validation Capability (ACVC) [I],
was developed by the U.S. Department of Defense to ensure that implementors strictly
adhered to the Ada standard. Although the ACVC mechanism is very beneficial and
does eliminate many portability problems that plague other languages, there is a
tendency for new Ada users to expect it to eliminate all portability problems; it definitely
does not. Certain areas of Ada are not covered by validation. The semantics of Ada
leave certain details to the implementor. The implementor's choices with respect to
these details affect portability.

There are some general principles to enhancing portability exemplified by many of the
guidelines in this chapter. They are:

- Recognize those Ada constructs that may adversely impact portability.

- Avoid the use of these constructs where possible.

- Localize and encapsulate non-portable features of a program if their use is
essential.

- Highlight use of constructs that may.qause portability problems.

These guidelines cannot be applied thoughtlessly. Many of them involve a detailed
understanding of the Ada model and its implementation. In many cases you will have to
make carefully considered tradeoffs between efficiency and portability. Reading this
chapter should improve your insight into the issues involved.

The material in this chapter was largely acquired from three sources: the ARTEWG
Catalogue of Ada Run-time Implementation Dependencies [3]; the Nissen and Wallis

127

128 Ada QUALITY AND STYLE

book on Portability and Style in Ada [18]; and a paper written for the U.S. Air Force by
SofTech on Ada Portability Guidelines [191. The last of these sources, [19],
encompasses the other two and provides an in-depth explanation of the issues,
numerous examples, and techniques for minimizing portability problems. An additional
reference, [9]. is valuable for understanding the latitude allowed implementors of Ada
and the criteria often used to make decisions.

The purpose of this chapter is to provide a summary of portability issues in the guideline
format of this book. The chapter does not include all issues identified in the references,
rather the most significant. For an in-depth presentation, see [19]. A few auditional
guidelines are presented here and others are elaborated upon where the authors'
experience is applicable.

The goal of this chapter is to aid you in writing portable Ada code. There are fewer
exceptions provided for the guidelines because many of the guidelines are rules of
thumb that have been used effectively in the past.

A recent article addresses Ada I/O portability issues [141. None of its suggestions were
included herein, but it may be of interest.

7.1 FUNDAMENTALS

This section introduces some generally applicable principles of writing portable Ada
programs. It includes guidelines about the assumptions you should make with respect to
a number of Ada features and their implementations, and guidelines about the use of
other Ada features to ensure maximum portability.

7.1.1 Global Assumptions :
guideline

Make considered assumptions about the support an implementation will provide
for the following:

- Number of bits available for type INTEGER.

- Number of decimal digits of precision available for floating point types.

- Number of bits available for fixed-point types.

- Number of characters per line of source text.

- Number of bits for universal-integer expressions.

- Number of seconds for the range of DURATION.

- Number of milliseconds for DURATION'BUALL.

PORTABILITY 129

example

These are minimum values (or minimum precision in the case of DURATION'SMALL)

that a project or application might assume that an implementation will provide.
There is no guarantee that a given implementation will provide more than the
minimum, so these would be treated by the project or application as maximum
values also.

- 16 bits available for type iNTEGER.

- 6 decimal digits of precision available for floating point types.

- 32 bits available for fixed-point types.

- 72 characters per line of source text.

- 16 bits for universal-integer expressions.

- -86400 .. e6_4oo seconds (1 day) for the range of DURATION.

- 20 milliseconds for DURATION'SMALL.

rationale

Some assumptions must be made with respect to certain implementation dependent
values. If this is not done, portability might be enhanced for a few obscure machines
of historic interest but with an enormous cost in programming complexity. The
exact values assumed should cover the majority of the target equipment of interest.

note

Of the microcomputers currently available for incorporation within embedded
systems, 16-bit processors are still very prevalent. Although 4-bit and 8-bit
machines are still available, their limited memory addressing capabilities make them
unsuited to support Ada programs of any size. Using current representation
schemes, 6 decimal digits of floating point accuracy implies a representation
mantissa at least 21 bits wide, leaving 11 bits for exponent and sign within a 32-bit
representation. This correlates with the data widths of floating point hardware
currently available for the embedded systems market. A 32-bit minimum on
fixed-point numbers correlates with the accuracy and storage requirements of
floating point numbers.

The 72-column limit on source lines in the example is an unfortunate hold-over
from the days of Hollerith punched cards with sequence numbers. Much of the
current machinery and software used in manipulating source code is still bound to
assumptions about this maximum line length. The 16-bit example for
universalinteger expressions matches that for INTEGER storage.

The values for the range and accuracy of values of the predefined type DURATION are
the limits expressed in the Ada LRM ((28] § 9.6). You should not expect an
implementation to provide a wider range or a finer granularity.

130 Ada QUALITY AND STYLE

7.1.2 Actual Limits

guideline

* Determine the actual properties and limits of the Ada implementation(s) you
are using.

rationale

The Ada model may not match exactly with the underlying hardware so some
compromises may have been made in the implementation; check to see if they could
affect your program. Particular implementations may do "better" than the Ada
model requires; while some others may be just minimally acceptable. Arithmetic is
generally implemented with a precision higher than the storage capacity (this is
implied by the Ada type model for floating point). Different implementations may
behave differently on the same underlying hardware.

7.1.3 Non-Standard Character Sets

guideline

* Avoid idiosyncrasies of non-standard character sets.

rationale

An implementation is only required to recognize characters from the ISO extended
character set. Using a different character set could make the source text
unreadable.

7.1.4 Documentation

guideline
• Use highlighting comments for each package, subprogram and task where any

non-portable features are present.

" For each non-portable feature employed, describe the expectations for that
feature.

PORTABILITY 131

example

with SYSTEM;
package MEMORYMAPPED_10 is
-- WARNING - This package is implementation specific.
-- It uses absolute memory addresses to interface with the I/O system.
-- It assumes a particular printer's line length.
-- change memory mapping and printer details when porting.

PRINTER LINE LENGTH : constant := 132;
type DATA is array(l..PRINTERLINELENGTH) of CHARACTER;
procedure WRITE-LINE (LINE : in DATA);

end MEMORYMAPPED_ O;

package body MEMORYMAPPED_10 is

procedure WRITELINE (LINE : in DATA) is
BUFFER : DATA;
for BUFFER use at SYSTEM.PHYSICAL ADDRESS(16#200#);

begin
-- perform output operation through specific memory locations.

end WRITELINE;

end MEMORYMAPPEDIO ;

rationale

The explicit documentation of each breach of portability will raise its visibility and
aid in the porting process. A description of the non-portable feature's expectations
covers the common case where vendor documentation of the original
implementation is not available to the person performing the porting process.

7.1.5 Main Subprogram

guideline

Avoid using any implementation features associated with the main subprogram
(e.g., allowing parameters to be passed).

rationale

The Ada LRM [28] places very few requirements on the main subprogram.
Assuming the simplest case will increase portability. That is, assume you may only
use a parameterless procedure as a main program. Some operating systems are
capable of acquiring and interpreting returned integer values near zero from a
function, but many others cannot. Further, many real-time, embedded systems will
not be designed to terminate, so a function or a procedure having parameters with
modes out or in out will be inappropriate to such applications.

This leaves procedures with in parameters. Although some operating systems can
pass parameters in to a program as it starts, others cannot. Also, an implementation

132 Ada QUALITY AND STYLE

may not be able to perform type checking on such parameters even if the
surrounding environment is capable of providing them. Finally, real-time,
embedded applications may not have an "operator" initiating the program to supply
the parameters, in which case it would be more appropriate for the program to have
been compiled with a package containing the appropriate constant values or for the
program to read the necessary values from, say, switch settings or a downloaded
auxiliary file. In any case, the variation in surrounding initiating environments is far
too great to depend upon the kind of last-minute (program) parameterization
implied by (subprogram) parameters to the main subprogram.

7.1.6 Encapsulating Implementation Dependencies

guideline
* Encapsulate hardware and implementation dependencies in a package or

packages.

" Clearly indicate the objectives if machine or solution efficiency is the reason for
hardware or implementation dependent code.

example

See Guideline 7.1.4.

rationale

Encapsulating hardware and implementation dependencies in a package or
packages allows the remainder of the code to ignore them and thus to be fully
portable. It also localizes the dependencies, making it clear exactly which parts of
the code may need to be changed when porting the program.

Some implementation dependent features may be used to achieve particular
performance or efficiency objectives. Documenting these objectives ensures that
the programmer will find an appropriate way to achieve them when porting to a
different implementation, or explicitly recognize that they cannot be achieved.

note

Ada can be used to write machine dependent programs that take advantage of an
implementation in a manner consistent with the Ada model, but which make
particular choices where Ada allows implementation freedom. These machine
dependencies should be treated in the same way as any other implementation
dependent features of the code.

7.1.7 Location of Program Unit Specification and Body

guideline

* Separate, but be prepared to combine, the specification of a package and its
body.

PORTABILITY 133

rationale

Separation of package specification and body is desirable for a number of reasons
(see Guideline 4. 1. 1). In the context of portability, an important reason is to
facilitate the provision of multiple bodies for the.same specification, one body for
each target machine.

An implementation is permitted to require that the two be part of the same
compilation. The reasons for separation are compelling, particularly in light of the
ease with which you can catenate them upon input to compilers on so many host
systems.

7.1.8 Custom Bodies

guideline

Develop specific bodies for specific applications to meet particular needs or
constraints after porting.

rationale

When more is known about the details of a particular problem and the target
hardware, a specific, custom-built routine can almost always do better in at least
some respects than a general purpose routine that was acquired by porting. It is in
keeping with the Ada philosophy to develop a program in a general way and later
customize it through the use of specialized bodies.

7.1.9 Verifying a Port

guideline
* Do not rely on testing to show correctness of a port.

rationale

In general, no amount of testing can find all the potential errors in a program. Ada
allows variations in implementations that may render a particular implementation
incapable of demonstrating the error. This can lead to a false sense that the
program is correct. However, when the program is ported, the fault may manifest
itself because of a change in the underlying implementation. If it is known that
correct behavior of a program depends on some aspect of the implementation
outside the minimal Ada requirements, the details need to be carefully
documented.

134 Ada QUALITY AND STYLE

7.1.10 Incorrect Order Dependencies
guideline

* Avoid depending on the order in which certain constructs in Ada are evaluated
(see [28] index, page 1-17 for list).

example

This example intentionally violates some of our guidelines, including naming, use of
non-local variables, and side-effects. The important thing, here, is that the
commented line depends on "Y" being evaluated before "SQUARE(Y)".

X, Y : REAL;

function SQUARE (in VALUE : REA) return REAL is
begin

Y := VALUE * VALUE;
return Y;

end SQUARE;

X := Y + SQUARE(Y); -- sum Y and its square; make Y contain square of

-- its former self; keep the sum in X.

rationale

An incorrect order dependency may arise whenever the Ada LRM [28],
"...specifies that different parts of a given construct are to be executed in some
order that is not specified by the language [. T] he construct is incorrect if execution
of these parts in a different order would have a different effect" ([28], §1.6).

While an incorrect order dependency may not adversely effect the program on a
certain implementation, when it is ported the code might not execute correctly.
Avoid incorrect order dependencies, but also recognize that even an unintentional
error of this kind could prohibit portability.

7.2 NUMERIC TYPES AND EXPRESSIONS

A great deal of care was taken with the design of the Ada features related to numeric
computations to ensure that the language could be used in embedded systems and
mathematical applications where precision was important. As far as possible, these
features were made portable; however there is *n inevitable tradeoff between maximally
exploiting the available precision of numeric computation on a particular machine and
maximizing the portability of Ada numeric constructs. This means that these Ada
features, particularly numeric types and expressions, must be used with great care if full
portability of the resulting program is to be guaranteed.

PORTABILITY 135

7.2.1 Predefimed Numeric Types

guideline

* Do not use the predefined numeric types in package STANDARD. Use range and
digits declarations and let the implementation do the derivation implicitly from
the predefined types.

* For programs that require greater accuracy than that provided by the global
assumptions, define a package that declares a private type and operations as
needed (see [19] for a full explanation and examples).

example
-- use

type DAY OF LEAP YEAR is range 1 .. 366;
-- rather than
type DAYOFLEAPYEAR is new INTEGER range 1 .. 366;

The latter is not representable as a subrange of INTEGER on a machine with an 8-bit
wc-d The former allows a compiler to choose a multiword representation if
necessary.

rationale

An implementor is free to define the range of the predefined numeric types. Porting
code from an implementation with greater accuracy to one of lesser is a time
consuming and error-prone process. Many of the errors are not repc ad until
run-time.

This applies to more than just numerical computation. An easy-to-overlook
instance of this problem occurs if you neglect to use explicitly declared types for
integer discrete ranges (array sizes, loop ranges, etc.) (see Guidelines 5.5.1 and
5.5.2). If you do not provide an explicit type when specifying index constraints and
other discrete ranges, a predefined integer type is assumed.

exceptions

The private type and related operations approach can incur considerable overhead.
Apply alternative techniques (e.g., subtypes) to those portions of a program
requiring greater efficiency.

7.2.2 Ada Model

guideline

* Know the Ada model for floating point types and arithmetic.

rationale

Declarations of Ada floating point types give users control over both the
representation and arithmetic used in floating point operations. Portable properties

136 Ada QUALITY AND STYLE

of Ada programs are derived from the models for floating point numbers of the
subtype and the corresponding safe numbers. The relative spacing and range of
values in a type are determined by the declaration. Attributes can be used to specify
the transportable properties of an Ada floating point type.

7.2.3 Analysis

guideline

0 Carefully analyze what accuracy and precision you really need.

rationale

Floating point calculations are done with the equivalent of the implementation's
predefined floating point types. The effect of extra "guard" digits in internal
computations can sometimes lower the number of digits that must be specified in an
Ada declaration. This may not be consistent over implementations where the
program is intended to be run. It may also lead to the false conclusion that the
declared types are sufficient for the accuracy required.

The numeric type declarations should be chosen to satisfy the lowest precision
(smallest number of digits) that will provide the required accuracy. Careful analysis
will be necessary to show that the declarations are adequate.

7.2.4 Accuracy Constraints

guideline
• Do not press the accuracy limits of the machine(s).

rationale

The Ada floating point model is intended to facilitate program portability, which is
often at the expense of efficiency in the use of the underlying machine arithmetic.
Just because two different machines use the same number of digits in the mantissa of
a floating point number does not imply they will have the same arithmetic
properties. Some Ada implementations may give slightly better accuracy than
required by Ada because they make efficient use of the machine. Do not write
programs that depend on this.

7.2.5 Commentary
guideline

* Document the analysis and derivation of the numerical aspects of a program.

PORTABILITY :37

rationale

Decisions and background about why certain precisions are required in a program
are important to program revision or porting. The underlying numerical analysis
leading to the program should be documented.

7.2.6 Precision of Constants

guideline

Use named numbers or universal real expressions rather than constants of any
particular type.

rationale

For a given radix (number base), there is a loss of accuracy for some rational and all
irrational numbers when represented by a finite sequence of digits. Ada has named
numbers and expressions of type universalreal that provide maximal accuracy of
representation in the source program, These numbers and expressions are
converted to finite representations at compile time. By using universal real
expressions and numbers, the programmer can automatically delay the conversion
to machine types until the point where it can be done with the minimum loss of
accuracy.

note

See also Guideline 3.3.5.

7.2.7 Appropriate Radix
guideline

0 Represent literals in a radix appropriate to the problem.

example
type MAXIMUM SAMPLES is range 1 .. 1000_000;
type LEGALHEXADDRESS is range 16#0000# .. 16#FFF#;

type LEGALOCTALADDRESS is range 8#000_000# .. 8#777777#;

rationale

Ada provides a way of representing numbers using a radix other than ten. These
numbers are called based literals ([28] §1.4.2). The choice of radix determines
whether the representation of a radix fraction will terminate or repeat. This
technique is appropriate when the problem naturally uses some base other than ten
for its numbers.

138 Ada QUALITY AND STYLE

7.2.8 Subexpression Evaluation
guideline

Anticipate values of subexpressions to avoid exceeding the range of their type.
Use derived types, subtypes, factoring, and range constraints on numeric types
as described in Guidelines 3.4.1, 5.3.1, 5.5.3 and 5.5.6.

rationale

The Ada language does not require that an implementation perform range checks
on subexpressions within an expression. Even if the implementation on your
program's current target does not perform these checks, your program may be
ported to an implementation that does.

7.2.9 Relational Tests

guideline

* Do relational tests with <= and >= rather than <, >, -, and /=.

rationale

Strict relational comparisons (<, >. =, /=) are a general problem in floating point
computations. Because of the way Ada comparisons are defined in terms of model
intervals, it is possible for the values of the Ada comparisons A < B and A - P to
depend on the implementation, while A <- B evaluates uniformly across
implementations. Note that in Ada, "A <= B" is not the same as "not (A > B) ".

7.2.10 Type Attributes

guideline

0 Use values of type attributes in comparisons and checking for small values.

example
if abs(X - Y) <= FLOAT TYPE'SMALL -- (1)
if abs(X - Y) <= FLOATTYPE'BASE'SMALL -- (2)
if abs(X - Y) <= abs X * FLOAT TYPE'EPSILON -- (3)
if abs(X - Y) <- abs X 0 FLOAT TYPE'BASE'EPSILON -- (4)

These examples test for (1) absolute "equality" in storage, (2) absolute "equality"
in computation, (3) relative "equality" inp~orage, and (4) relative "equality" in
computation.

rationale

These attributes are the primary means of symbolically accessing the
implementation of the Ada numeric model. When the characteristics of the model
numbers are accessed symbolically, the source code is portable. The appropria'e
model numbers of any implementation will then be used by the generated code.

PORTABILITY 139

7.2.11 Testing Special Operands
guideline

* Test carefully around special values.

rationale

Tests around zero are particularly troublesome; for example, if x is any value
mathematically in the range -T' SMALL < X < T'SMALL, it is possible for either (and
maybe both) of the Ada expressions x <= o.o or x >= o.o to evaluate to TRUE.

7.3 STORAGE CONTROL
The management of dynamic storage can vary between Ada implementations. The
guidelines in this section encourage the programmer to bring dynamic storage
management under explicit program control to improve the portability of programs using
it.

7.3.1 Collection Size for Access Types
guideline

* Use a representation clause to specify the collection size for access types.
Specify the collection size in general terms using the -SiZE attribute of the object
type.

example

type PERSONNEL-INFORMATION is
record
-- desired information

end PERSONNELINFORMATION;

type SUBJECT EMPLOYEE is access PERSONNEL-INFORMATION;

for SUBJECT EMPLOYEE'STORAGE SIZE use
(NUMBER_OF. EMPLOYEES + SLACK)
* (PERSONNELINFORMATION'SIZE / SYSTEM. STORAOE_UNIT);

rationale

There are many variations among implementations of dynamic storage algorithms.
Here is a brief summary of some of the issues:

- The processing time to acquire the torage and then later free it up (with
possible garbage collection) can vary greatly;

- The time at which overhead is incurred (e.g., obtaining a pool at type
declaration time versus individual objects when created versus seemingly
random garbage collection) varies greatly;

- The total amount of space available to a given scope may be restricted.

140 Ada QUALITY AND STYLE

- Dynamic storage pools, with Ada runtime implementations that employ them,
may be shared among unconstrained arrays, records with discriminants and
miscellaneous run-time data structures.

Given this degree of variability it is advantageous to use a representation clause to
specify the exact requirements for a given type even though the representation
clause is itself an implementation dependent feature.

note

The amount of storage specified using the representation clause need not be static.

exceptions

Some implementations do not give you the exact number of objects requested, but
fewer due to allocation scheme overhead. Be certain to provide some headroom for
this possibility.

7.3.2 Task Storage
guideline

* Use a representation clause to identify the expected stack space requirements
for each task.

rationale

Implementations may vary greatly in the manner in which task stack space is
obtained. The varying methods may affect performance or access type storage
allocation (when stack space is obtained from heaps).

Even though a representation clause is an optional and implementation-dependent
feature (in the worst case it will be ignored), it provides a mechanism for control of
dynamic memory allocation with respect to task activation.

7.4 TASKING

The definition of tasking in the Ada language leaves many characteristics of the tasking
model up to the implementor. This allows a vendor to make appropriate tradeoffs for
the intended application domain, but it also diminishes the portability of designs and
code employing the tasking features. In some respects this diminished portability is an
inherent characteristic of concurrency approaches (see [18], page 37).

A discussion of Ada tasking dependencies when employed in a distributed target
environment is beyond the scope of this book. For example, multi-processor task
scheduling, inter-processor rendezvous, and the distributed sense of time through
package CALENDAR are all subject to differences between implementations. For more
information, [18] and [3] touch on these issues and [29] is one of many research
articles available in the literature.

PORTABILITY 141

7.4.1 Task Activation Order
guideline

* Do not depend on the order in which task objects are activated when declared
in the same declarative list.

rationale

The order is left undefined m the Ada LRM [28].

7.4.2 Delay Statements
guideline

* Do not depend on a particular delay being achievable [18].
* Never use a busy waiting loop instead of a delay.

• Design to limit polling to those cases where it is absolutely necessary.

" Never use knowledge of the execution pattern of tasks to achieve timing
requirements.

rationale

The rationale for this appears in Guideline 6.1.5. In addition, however, the
treatment of delay statements varies from implementation to implementation
thereby hindering portability.

7.4.3 Package CALENDAR, Type DURATION, and SYSTEM.TICK

guideline

* Do not assume a correlation between SYSTEM. TICK and package CALENDAR or type
DURATION (see Guideline 6.1.5).

rationale

Such a correlation is not required, although it may exist in some implementations.

7.4.4 Select Statement Evaluation Order
guideline

* Do not depend on the order in which guard conditions are evaluated or on the
algorithm for choosing among several open select alternatives.

rationale

The language does not define the order of these conditions, so assume that they are
arbitrary.

142 Ada QUALITY AND STYLE

7.4.5 Task Scheduling Algorithm

guideline

Do not depend on the order in which tasks are executed or the extent to which
they are interleaved. Use pragma PRIORITY to distinguish general levels of
importance only (see Guideline 6.1.4).

rationale

The Ada tasking model is based on preemption and requires that tasks be
synchronized only through the explicit means provided in the language (i.e.,
Rendezvous, task dependence, and pragma SHARED). The scheduling algorithm is
not defined by the language and may vary from time sliced to pre-emptive priority.
Some implementations (e.g., VAX Ada) provide several choices that a user may
select for the application.

note

The number of priorities may vary .between implementations. In addition, the
manner in which tasks of the same priority are handled may vary between
implementations even if the implementations use the same general scheduling
algorithm.

exceptions

In real-time systems it is often necessary to tightly control the tasking algorithm in
order to obtain the required performance. For example, avionics systems are
frequently driven by cyclic events with limited asynchronous interruptions. A
non-preemptive tasking model is traditionally used to obtain the greatest
performance in these applications. Cyclic executives can be programmed in Ada, as
can a progression of scheduling schemes from cyclic through multiple-frame-rate to
full asynchrony [13] although an external clock is usually required.

7.4.6 Abort

guideline

a Avoid using the abort statement.

rationale

The rationale for this appears in Guideline 6.3.2. In addition, however, the
treatment of abort varies from implementaion to implementation thereby hindering
portability.

PORTABILITY 143

7.4.7 Shared Variables and Pragma SHARED
guideline

* Do not share variables.

* Have tasks communicate through the rendezvous mechanism.

• Do not use shared variables as a task synchronization device.

* Use pragma SHARED only when forced to by run time system deficiencies.

rationale

The rationale for this appears in Guideline 6.2.3. In addition, however, the
treatment of shared variables varies from implementation to implementation
thereby hir-ing portability.

7.5 EXCEPTIONS
Care must be exercised using predefined exceptions as aspects of their treatment may
vary between implementations. Implementation defined exceptions must, of course, be
avoided.

7.5.1 Predefined Exceptions

guideline

* Don't depend on the exact locations at which predefined exceptions are raised.

rationale

The Ada LRM [281 gives sufficient freedom to implementors that in many cases a
predefined except for the same cause can be raised from a number of locations.
You will not be ab, .o discriminate between them. Further, each of the predefined
exceptions is associated with a variety of conditions. Any exception handler written
for a predefined exception must be prepared to deal with any of these conditions.

7.5.2 CONSTRAINTERROR and NUMERIC-ERROR
guideline

* Program for the possibility of either ¢QNSTRAINTERROR or NUMERIC_ERROR.

rationale

Either of these exceptions may be raised (and different implementations may raise
either one under otherwise similar circumstances). Exception handlers should be
prepared to handle either.

144 Ada QUALITY AND STYLE

7.5.3 Implementation-defined Exceptions

guideline

0 Do not use implementation-defined exceptions.

rationale

No exception defined by an implementation can be guaranteed portable to other
implementations whether or not from the same vendor. Not only may the names be
different, but the range of conditions triggering the exceptions may be different also.

exceptions

If you create interface packages for the implementation-specific portions of your
program, you can have those packages "export" the implementation-defined
exceptions, or better, define user exceptions. Keep the names you use for these
general. Do not allow yourself to be forced to find and change the name of every
handler you have written for these exceptions when the program is ported.

7.6 REPRESENTATION CLAUSES AND IMPLEMENTATION-
DEPENDENT FEATURES

Ada provides many implementation dependent features that permit greater control over
and interaction with the underlying hardware architecture than is normally provided by
a high-order language. These mechanisms are intended to assist in systems
programming and real-time programming to obtain greater efficiency (e.g., specific size
layout of variables through representation clauses) and direct hardware interaction
(e.g., interrupt entries) without having to resort to assembly level programming.

Given the objectives for these features, it is not surprising that you must usually pay a
significant price in portability to use them. In general, where portability is the main
objective, do not use these features. When you must use these features, encapsulate
them in packages well-documented as interfacing to the particular target environment.
This section identifies the various features and their recommended use with respect to
portability.

7.6.1 Representation Clauses

guideline

* Avoid the use of representation clauses.

rationale

The Ada LRM [28] does not require that these clauses be supported for all types.

PORTABILITY 145

exceptions

The two exceptions to this guideline are for task storage size and access collection
size, where portability may be enhanced through their use (see Guidelines 7.3.1 and
7.3.2).

7.6.2 Interrupt Entries
guideline

* Isolate interrupt receiving tasks into implementation dependent packages.

" Pass the interrupt to the main tasks via a normal entry.

• Use named constants for representation clause interrupt values.

" Place representation-clause named constants in an implementation dependent
package.

rationa!

Interrupt entries are implementation dependent features that may not be supported
(e.g., VAX Ada uses pragmas to assign system traps to "normal" rendezvous).
However, interrupt entries cannot be avoided in most embedded real-time systems
and it is reasonable to assume that they are supported by an Ada implementation.
The actual value for an interrupt is implementation defined, isolate it.

exceptions

The isolation of interrupt entries creates an additional rendezvous that will often
double the interrupt latency time. Where this is unacceptable, the interrupt entries
must be proliferated with a resulting decrease in portability. The isolation of the
interrupt value named constants will not affect performance and provides portability
between similarly supported implementations.

7.6.3 Package SYSTEM

guideline

Avoid the use of package SYSTEM constants except in attempting to generalize
other machine dependent constructs.

rationale

Since the values in this package are implementation provided, unexpected effects
can result from their use.

exceptions
Do use package SYSTEM constants to parameterize other implementation dependent
features (see [19] examples for numeric ranges (§ 13.7. 1) and access collection size
(§4.8)).

146 Ada QUALITY AND STYLE

7.6.4 Machine Code Inserts
guideline

* Avoid machine code inserts.

rationale

There is no requirement that this feature be implemented. It is possible that two
different vendors' syntax would differ for an identical target and certainly,
differences in lower-level details such as register conventions would hinder
portability.

exceptions

If machine code inserts must be used to meet another project requirement,
recognize the portability decreasing effects and isolate and highlight their use.

Include in the commentary that a machine code insert is being used, what function
the insert provides, and (especially) why the insert is necessary. Document the
necessity of using machine code inserts by delineating what went wrong with
attempts to use other, higher-level constructs.

7.6.5 Interfacing Foreign Languages
guideline

" Avoid interfacing Ada with other languages.

* Isolate all subprograms employing pragma INTERFACE to an
implementation-dependent (interface) package.

rationale

The problems with employing pragma INTERFACE are complex. These problems
include prapma syntax differences, conventions for linking/binding Ada to other
languages, and mapping Ada variables to foreign language variables, among others.

exceptions

It is often necessary to interact with other languages, if only an assembly language to
reach certain hardware features. In these cases, clearly document the requirements
and limitations of the interface and pragma INTERFACE usage.

7.6.6 Implementation-defined Pragmas And Attributes

guideline

* Avoid pragmas and attributes added by the implementor.

PORTABILITY 147

rationale

The Ada LRM [28] permits an implementor to add pragmas and attributes to
exploit a particular hardware architecture or software environment. These are
obviously even more implementation specific and therefore less portable than are an
implementor's interpretations of the predefined pragmas and attributes.

exceptions

Some implementation dependent features are gaining wide acceptance in the Ada
community to help alleviate inherent inefficiencies in some Ada features. A good
example of this is the "fast interrupt" mechanism that provides a minimal interrupt
latency time in exchange for a restrictive tasking environment. Ada community
groups (e.g. SIGAda's ARTEWG) are attempting to standardize a common
mechanism and syntax to provide this capability. By being aware of industry trends,
when specialized features must be used, you can take a more general approach that
will help minimize the porting task.

7.6.7 Unchecked Deallocation

guideline

Avoid the use of UNCHECKEDDEALLOCATION (see Guideline 5.9.2).
rational.

The unchecked storage deallocation mechanism is one method for over-riding the
default time at which allocated storage is reclaimed. The earliest default time is
when an object is no longer accessible, e.g., when control leaves the scope where an
access type was declared (the exact point after this time is implementation
dependent). Any unchecked deallocation of storage performed prior to this may
result in an erroneous Ada program if an attempt is made to access the object.

This guideline is stronger than Guideline 5.9.2 because of the extreme dependence
on the implementation of UNCHECK.EDDEALLOCATION. Its use could cause
considerable difficulty with portability.

exceptions
The use of unchecked deallocation of storage can be beneficial in local control of
highly iterative or recursive algorithms where available storage may be exceeded.
Take care to avoid erroneous situations as described above.

7.6.8 Unchecked Conversion

guideline

* Avoid the use of UNCHECKED-CONVERSION (see Guideline 5.9.1).

148 Ada QUALITY AND STYLE

rationale

The unchecked type conversion mechanism is, in effect, a means of by-passing the
strong typing facilities in Ada. An implementation is free to limit the types that may
be matched and the results that occur when object sizes differ.

exceptions

Unchecked type conversion is useful in implementation dependent parts of Ada
programs (where lack of portability is isolated) where low-level programming and
foreign language interfacing is the objective.

7.6.9 Runtime Dependencies

guideline

Avoid the direct invocation of or implicit dependence upon an underlying host
operating system or Ada run-time support system.

rationale

Features of an implementation not specified in the Ada LRM [28]-will usually differ
between implementations. Specific implementation-dependent features are not
likely to be provided in other implementations. Even if a majority of vendors
eventually provide similar features, they are unlikely to have identical formulations.
Indeed, different vendors may use the same formulation for (semantically) entirely
different features.

It is a good habit to avoid these in all coding. Consider the consequences of
including system calls in a program on a host development system. If these calls are
not flagged for removal and replacement, the program could go through
development and testing only to be unusable when moved to a target environment
which lacks the facilities provided by those system calls on the host.

exceptions

In real-time embedded systems, you will often not be able to avoid making calls to
low-level support system facilities. Isolate the uses of these facilities. Document
them as you would machine code inserts (see Guideline 7.6.4); they are in a sense
instructions for the virtual machine provided by the support system. When isolating
the uses of these features, provide an interface for the rest of your program to use
which can be ported through replacement of the interface's implementation.

7.6.10 System Partitioning
guideline

• Minimize artificial partitioning of an Ada program to exploit specific
architectures.

PORTABILITY 149

examples

Example architectures with small address spaces include many of the 16-bit
architectures such as the U.S. Air Force 1750A or Intel 8086/80186 (where only
128K bytes of the 1-2M bytes is directly addressable) or the U.S. Navy
AN/UYK-44 or AN/AYK-14 (where only 64K bytes of the 2-4M bytes is directly
addressable).

rationale

For applications whose size exceeds that of the direct address space of the target
architecture, it is often necessary for an Ada implementation to force a partitioning
that is unnatural to the Ada style (e.g. limited use of context clauses and generic
invocation). Most 32-bit architectures are better suited to Ada for this reason and
should be selected when available.

exceptions

If a limited address space target must be used, performance considerations may
force artificial partitioning.

7.7 INPUT/OUTPUT
The I/O facilities in Ada are not a part of the syntactic definition of the language. The
constructs in the language have been used to define a set of packages for this purpose.
These packages are not expected to meet all the I/O needs of all applications, in
particular embedded systems, but rather serve as a core subset that may be used on
straight-forward data, and that can be used as examples of building I/O facilities upon
the low-level constructs provided by the language. Providing an I/O definition that
could meet the requirements of all applications and integrate with the many existing
operating systems would result in unacceptable implementation dependencies.

The types of portability problems encountered with I/O tend to be different for
applications running with a host operating system versus embedded targets where the
Ada run-time is self-sufficient. Interacting with a host operating system offers the
added complexity of co-existing with the host file system structures (e.g., hierarchical
directories), access methods (e.g., ISAM) and naming conventions (e.g., logical names
and aliases based on the current directory); the section on I/O in [3] provides some
twenty examples of this type of dependency. Embedded applications have different
dependencies that often tie them to the low level details of their hardware devices.

The major defense against these inherent implementation dependencies in I/O is to try
to isolate their functionality in any given application. The majority of the following
guidelines are focused in this direction.

150 Ada QUALITY AND STYLE

7.7.1 Implementation-added Features
guideline

* Avoid the use of additional I/O features provided by a particular vendor.

rationale

Vendor added features are not likely to be provided by other implementations.
Even if a majority of vendors eventually provide similar additional features, they are
unlikely to have identical formulations. Indeed, different vendors may use the same
formulation for (semantically) entirely different features.

exceptions

There are many types of applications that require the use of these features.
Examples include: multilingual systems that standardize on a vendor's file system,
applications that are closely integrated with vendor products such as user interfaces,
and embedded systems for performance reasons. Isolate the use of these features
into packages.

7.7.2 NAME and FORM Parameters
guideline

* Use constants and variables as symbolic actuals for the NAME and FoRm
parameters on the predefined I/O packages. Declare and initialize them in an
implementation dependency package.

rationale

The format and allowable values of these parameters on the predefined 1/0
packages can vary greatly between implementations; isolation of these values
facilitates portability. Note that not specifying a FoRI string or using a null value does
not guarantee portability since the implementation is free to specify defaults.

note

It may be desirable to further abstract the I/O facilities by defining additional CREATE
and OPEN procedures that hide the visibility of the FoRM parameter entirely (see [19]
pp. 54-55).

7.7.3 File Closing
guideline

* Close all files explicitly.

PORTABILITY 151

rationale

The Ada LRM ([28] § 14. 1) states, "The language does not define what happens to
external files after completion of the main program (in particular, if corresponding
files have not been closed)." The possibilities range from being closed in an
anticipated manner to deletion.

The disposition of a closed temporary file may vary, perhaps affecting performance
and space availability [3].

7.7.4 I/0 on Access Types
guideline

* Avoid performing I/O on access types.

rationale

The Ada LRM [28] does not require that it be supported. When such a value is
written, it is placed out of reach of the implementation. Thus it is out of reach of the
reliability-enhancing controls of strong type checking.

Consider the meaning of this operation. One possible implementation of the values
of access types is virtual addresses. If you write such a value, how can you expect
another program to read that value and make any sensible use of i*? The value
cannot be construed to refer to any meaningful location within the reader's address
space, nor can a reader infer any information about the writer's address space from
the value read. The latter is the same problem that the writer would have trying to
interpret or use the value if it is read back in. To wit, a garbage collection and/or
heap compaction scheme may have moved the item formerly accessed by that value,
leaving that value "pointing" at space which is -.ow being put to indeterminable uses
"y the undeilying implementation.

7.7.5 Package LOWLEVEL_10

guideline

* Minimize and isolate the use of the predefined pack<age LOWLEVEL_10.

rationale

LOWLEVELio is intended to support direct interaction with physical devices that are
usually unique to a given host or target environment. In addition, the data types
provided to the procedures are implementation defined. This allows vendors to
define different interfaces to an identical device.

exceptions

Those poitions of an application that must deal with this level of I/O, e.g., device
drivers and real-time components dealing with discretes, are inherently

152 Ada QUALITY AND STYLE

non-portable. Where performance allows, structure these components to isolate
the hardware interface. Only within these isolated portions is it advantageous to
employ the Low LEVEL_10 interface which is portable in concept and general
procedural interface, if not completely so in syntax and semantics.

7.8 SUMMARY
fundamentals

• Make considered assumptions about the support an implementation will provide
for the following:

- Number of bits available for type INTEGER.

- Number of decimal digits of precision av-ilable for floating point types.

- Number of bits available for fixed-point types.

- Number of characters per line of source text.

- Number of bits for universal integer expressions.

- Number of seconds for the range of DURATION.

- Number of milliseconds for DURATION'SMALL.

* Determine the actual properties and limits of the Ada implementation(s) you
are using.

• Avoid idiosyncrasies of non-standard character sets.

* Use highlighting comments for each package, subprogram and task where any
non-portable features are present.

" For each non-portable feature employed, describe the expectations for that
feature.

* Avoid using any implementation features associated with the main subprogram
(e.g., allowing parameters to be passed).

* Encapsulate hardware and implementation dependencies in a package or
packages.

* Clearly indicate the objectives if machine or solution efficiency is the reason for
hardware or implementation dependent code.

* Separate, but be prepared to combine, the specification of a package and its
body.

* Develop specific bodies for specific applications to meet particular needs or
constraints after porting.

* Do not rely on testing to show correctness of a port.

PORTABILITY 153

* Avoid depending on the order in which certain constructs in Ada are evaluated.

numeric types and expressions

* Do not use the predefined numeric types in package STANDARD. Use range and
digits declarations and let the implementation do the derivation imlicily from
the predefined types.

* For programs that require greater accuracy than that provided by the global
assumptions, define a package that declares a private type and operations as
needed.

" Know the Ada model for tioating point types and arithmetic.

" Carefully analyze what accuracy and precision you really need.

* Do not press the accuracy limits of the machine (s).

* Document the analysis and derivation of the numerical aspects of a program.

* Use named numbers or universal real expressions rather than constants of any
particular type.

• Represent literals in a radix appropriate to the problem.

* Anticipate values of subexpressions to avoid exceeding the range of their type.

* Do relational tests with <= and >= rather than <, >. =. and /=.

* Use values of type attributes in comparisons and checking for small values.

* Test carefully around special values.

storage control

• Use a representation clause to specify the collection size for access types.
Specify the collection size in general terms using the sIzE attribute of the object
type.

" Use a representation clause to identify the expected stack space requirements
for each task.

tasking

* Do not depend on the order in which task objects are activated when declared
in the same declarative list.

* Do not depend on a particular delay being achievable.

• Never use a busy waiting loop instead of a delay.

" Design to limit polling to those cases where it is absolutely necessary.

" Never use knowledge of the execution pattern of tasks to achieve timing
requirements.

154 Ada QUALITY AND STYLE

* Do not assume a correlation between SYSTEM. TICK and package CALENDAR or type
DURATION.

• Do not depend on the order in which guard conditions are evaluated or on the
algorithm for choosing among several open select alternatives.

• Do not depend on the order in which tasks are executed or the extent to which
they are interleaved. Use pragma PRIORITY to distinguish general levels of
importance only.

" Avoid using the abort statement.

" Do not share variables.

* Have tasks communicate through the rendezvous mechanism.

* Do not use shared variables as a task synchronization device.

• Use pragma SHARED only when forced to by run time system deficiencies.

exceptions

• Don't depend on the exact locations at which predefined exceptions are raised.

• Program for the possibility of either CONSTRAINT_ERROR Or NUMERIC_ERROR.

" Do not use implementation-defined exceptions.

representation clauses and implementation-dependent features

" Avoid the use of representation clauses.

* Isolate interrupt receiving tasks into implementation dependent packages.

" Pass the interrupt to the main tasks via a normal entry.

" Use named constants for representation clause interrupt values.

* Place representation-clause named constants in an implementation dependent
package.

• Avoid the use of package SYSTEM constants except in attempting to generalize
other machine dependent constructs.

* Avoid machine code inserts.

* Avoid interfacing Ada with other languages.

" Isolate all subprograms employing pragma INTERFACE to an
implementation-dependent (interface) package.

" Avoid pragmas and attributes added by the implementor.

• Avoid the use of UNCHECKEDDEALLOCATION.

• Avoid the use of UNCHECKEDCONVERSION.

PORTABILITY 155

" Avoid the direct invocation of or implicit dependence upon an underlying host
operating system or Ada run-time support system.

• Minimize artificial partitioning of an Ada program to exploit specific
architectures.

input/output

* Avoid the use of additional I/O features provided by a particular vendor.

* Use constants and variables as symbolic actuals for the aME and roRM
parameters on the predefined I/0 packages. Declare and initialize them in an
implementation dependency package.

• Close all files explicitly.

• Avoid performing I/O on access types.

• Minimize and isolate the use of the predefined package LOWLEVEL_10.

156 Ada QUALITY AND STYLE

CHAPTER 8
Reusability

One of the design goals of Ada was to facilitate the creation and exploitation of reusable
parts in recognition of the potential productivity improvements that reuse can bring. To
this end, Ada proides features, such as packages and generics, that facilitate the task of
developing reusable code pans, and of adapting and exploiting them when they are
available.

The guidelines in this chapter are concerned with how to write and exploit reusable
code. The underlying assumption is that reusable parts are rarely built in isolation and
are hard to recover from code that was developed without reuse in mind. The guidelines
therefore focus on how to produce reusable parts as a by-product of developing software
for specific applications.

A reusable part must fulfill a number of different criteria:

- Reusable parts must be of the highest possible quality. They must be correct,
reliable and robust. An error or weakness in a reusable part may have
far-reaching consequences and it is important that other programmers can have
a high degree of confidence in any parts offered for reuse.

- Reusable parts must be understandable. A reusable part should be a model of
clarity. The requirements for documenting reusable parts are even more
stringent than those for parts specific to a particular application.

- Reusable parts should be adaptable. Frequently, an otherwise reusable part will
not exactly fit the needs of the current application and will need some changes
to be exploited. Anticipated changes, that is changes that can be reasonably
foreseen by the developer of the pan, should be provided for as far as possible.
Unanticipated change can only be accommodated by carefully structuring a part
so that it is as adaptable as possible. Many of the considerations pertaining to
maintainability apply. If the code is of high quality, clear and conforms to well
established design principles such as information hiding, it will be easier to adapt

157

158 Ada QUALITY AND STYLE

in unforeseen ways. One way to achieve adaptability is through generality.
Providing the complete functionality that a part might need in any context
allows a subset of the functionality to be used in a particular context, potentially
without error prone changes to the part.

- Reusable parts must be portable. They may be used in unforeseen
environments both in the context of completely different programs for different
application domains and in the context of different Ada implementations.

Many cf the guidelines in this chapter are general in nature, or cross reference and
emphasize other guidelines in this book. This is inevitable; the same considerations that
affect the quality, clarity, maintainability and portability of code also affect its
reusability.

8.1 GENERAL CONSIDERATIONS
This section addresses some general considerations related to reuse. It is intended to
encourage "thinking reuse" and maximize the amount and quality of reusable code
written and exploited.

8.1.1 Ada Features

guideline

* Exploit the features of the Ada language to write general purpose, adaptable
code that has the maximum potential for future reuse.

example

This simple example is part of a screen handling package for ASCII terminals. If
designed without reuse in mind, the software might include terminal-specific
information. All this information is separated in the example and collected into a
package containing specific terminal properties. A second package supplies cursor
and screen functions and is easily reused since the terminal-specific information is
hidden.

package TERMINALPROPERTIES is
--includes all relevant parameters for specific ASCII terminal
type ROW RANGE is range 1..24;
type COLUMN RANGE is range 1..80;
CURSOR ROW OFFSET CODE constant := 18#20#;
CURSORCOLUMNOFFSETCODE constant :a 16#32#;
-- any other necessary data

end TERMINALPROPERTIES;

REUSABILITY 159

with TERMINAL-PROPERTIES;
package ASCIIJTERMINALSCREENHANDLING is

procedure POSITIONCURSOR(ROW : in TERMINALPROPERTIES.ROW-RANGE;
COLUMN : in TERMINAL PROPERTIES.COLUMNRANGE);

--uses terminal-specific offset codes for cursor motion
procedure CLEARSCREEN;
-- any other required operations

end ASCIITERMINAL SCREENHANDLING;

Consider a disk manager, part of which is shown below, that might be reused. There
are several different collections of information that should be hidden to facilitate
change and reuse, specifically the disk head scheduling algorithm, the buffer
manager, and the details of the actual disk commands for read, write, seek, etc.
With proper information hiding, these details are hidden thereby freeing the
maximum amount of software for reuse without change and identifying what might
have to be adapted for other reuse.

package DISK OPERATIONS is
procedure READ(..); -- read and write operations
procedure WRITE(...); -- available to remainder of system

-- any other operations
end DISK-OPERATIONS;

package body DISK-OPERATIONS is

procedure SELECTNEXTOPERATION is -- disk head scheduling algorithm
begin

end SELECTNEXTOPERATION;

package BUFFERMANAGER is

end BUFFER-MANAGER;

package ACTUALDISKOPERATION is

end ACTUALDISKOPERATION;

end DISK-OPERATIONS;

rationale

Many features of Ada make it particularly suitable for the creation of reusable parts.
Packages, visibility control, and separate compilation support modularity and
information hiding. (see Guidelines in Sections 4.1, 4.2, 5.3 and 5.7). This allows
the separation of application specific parts of the code, maximizing the general
purpose parts suitable for reuse, and allows the isolation of design decisions within
modules, facilitating change. The Ada type system supports localization of data

160 Ada QUALITY AND STYLE

definitions so that consistent changes are easy to make. Generic units directly
support the development of general purpose adaptable code, that can be
instantiated to perform specific functions. Ubing these features carefully, and in
conformance to the guidelines in this book, will produce code that is more likely to
be reusable.

Be open minded about what might be reusable. Everything from small subprograms
or packages to complete systems might prove useful as part of some future
application.

8.1.2 Exploiting Existing Software
guideline

* Consider reusing existing software in preference to writing new code.

* Prefer reusing large parts to small.

rationale

Reuse is potentially a cost effective approach to programming. You are already
practicing reuse by exploiting the primitives of high level languages. Reuse of
existing proven large-scale parts will improve the quality of your code as well as your
productivity. It enables you to capitalize on the long term experience of yourself
and others.

Larger parts or subsystems often provide substantial functionality, and have
well-defined and controlled external interfaces. It may take less effort to reuse an
entire subsystem than a single module, and the return in functionality and reliability
is greater.

8.1.3 Upgrading and Adaptation

guideline
" Consider upgrading or adapting unsuitable, e.g., non-portable, code if no

appropriate reusable part is available.

• If you adapt or upgrade an existing part to reuse it, ensure that the adapted part
is suitable for future reuse.

rationale

Well written code, even if not originally intended for reuse, can often be reused
after appropriate adaptation. For example, the machine dependencies in some
piece of code might already be carefully isolated so that they can be easily changed.
Adopting the strategy of upgrading code into a reusable pan before exploiting it in
your current program will increase the stock bf reusable parts available to you and
01horr

REUSABILITY 161

8.1.4 Robustness
guideline

0 Code reusable parts to be robust in any context.

example

Suppose you are writing a binary-to-BCD converter, part of which is shown below,
and you intend the software be available for reuse. Do not assume that the input will
always be in a range that will fit into a specific number of decimal digits. If the
number of digits has to be restricted, this is an assumption and compliance should be
checked even if you "know" it is not violated by your own use.

function BINARY_TO_BCD (BINARYVALUE : in NATURAL) return BCD_IMAGE is
MAX REPRESENTABLE : constant NATURAL :- 1999;

begin
if BINARY VALUE > MAX REPRESENTABLE then

raise OUTOFRANGE;
end if;

end BINARYTOBCD;

rationale

Any part that is intended to be used again in another program, especially if the other
program is likely to be written by other people, should be robust. It should defend
itself against misuse. Defensive checks on input parameters should raise exported
exceptions, or in specialized cases, filter the "chaff" out of the input values.

note

You can restrict the ranges of values of the inputs by judicious selection or
construction of the types of the formal parameters. When you do so, the
compiler-generated checking code may be more efficient than any checks you
might write. Indeed, such checking is pdrt of the intent of the strong typing in the
language. This presents a challenge, however, for generics where the user of your
code will select the types of the parameters. Your code must be constructed so as to
deal with any value of anyL type the user may choose to select for an instantiation.

8.2 UNDERSTANDING AND CLARITY
It is particularly important that parts intended for reuse should be easy to understand.
What the part does, how to use it, what anticipated changes might be made to it, and
how it works must be immediately apparent from inspection of the documentation and
the code itself.

162 Ada QUALITY AND STYLE

8.2.1 Documenting Reusable Parts
guideline

" Document what a reusable part does.

" Document how to use it.

* Document assumptions made by the part.

" Document features of the part that are likely to change.

example

generic
type ELEMENT is private;

package BUFFERMANAGER is
-- FUNCTION:
-- Manages a pool of ELEMENT buffers.
-- Allocate using GET; exception NO MOREBUFFERS when violate MOREBUFFERS
-- exist check.
-- Deallocate using FREE.
-- Destroy buffer contents using PURGE.
-- INSERT ELEMENT into buffer; exception NONEXISTENT BUFFER when HANDLE
-- not allocated with GET, COPY or MOVE; exception ALREADYFULL when no
-- room in buffer.

-- USAGE:
-- Declare HANDLEs to attach and manipulate buffers of ELEMENTs.

-- Reset pool and destroy all buffers using FINALIZE before program end.
-- ASSUMPTIONS:
-- HANDLE objects initially DEAD. Limited number of buffers.

-- FINALIZE called before program end.
-- LIKELY CHANGES:
-- Size of buffer pool.
-- Length of each buffer.

REUSABILITY 163

type HANDLE is limited private;
DEAD : constant HANDLE;

function MOREBUFFERS (BUFFER in HANDLE) return BOOLEAN;
procedure GET (BUFFER in Out HANDLE);
NOMOREBUFFERS : exception;

procedure PURGE (BUFFER in out HANDLE);

procedure FREE (BUFFER in out HANDLE);

function IS FULL (BUFFER in HANDLE) return BOOLEAN;
procedure INSERT (ITEM in out ELEMENT;

INTO in out HANDLE);

NONEXISTENT BUFFER exception;
ALREADYFULL: exception;

function IS EMPTY (BUFFER in HANDLE) return BOOLEAN:
procedure RETRIEVE (ITEM in out ELEMENT;

FROM in out HANDLE);
ALREADYEMPTY exception;

procedure COPY (FROM in out HANDLE;
TO in out HANDLE);

UNREACHABLEBUFFER exception;

procedure MOVE (FROM in out HANDLE;
TO in out HANDLE);

procedure FINALIZE;

private

end BUFFERMANAGER;

rationale

A reusable part cannot depend on any application or textual context for
understanding; documentation in addition to that recommended by the guidelines
in Section 3.2 may be needed.

The documentation should provide application and context independent
information describing the behavior of the part so that it can be correctly selected
for reuse. It should also provide details of hiow to use it, state any assumptions that
the part makes about the environments in which it will be reused, and identify those
features that might be changed to adapt the part for reuse in a specific application.

note

Documentation of the use of the part should include comments delineating the
acceptable ranges and relationships of inputs, and of acceptable calling sequences
for abstractions having multiple operations (subprograms or task entries).

164 Ada QUALITY AND STYLE

The goal of such comments is to provide details about how the part is intended to be
used. The presence of these comments does not provide an excuse to omit
defensive checks. Comments without explicit checks may occur in contexts with
compiler-generated type checking enabled and appropriately restrictive formal
parameter types. The absence of explicit or compiler-generated checks requires
comments explaining, and validating, the assumptions about the use of the part.

If your organization or project has a formal reuse policy, or systematically
maintained reuse libraries, you must observe project standards when documenting
reusable software.

8.2.2 Application-Independent Naming

guideline
* Select the least restrictive names possible for reusable parts and their identifiers.

example

General purpose stack abstraction:

package GENERAL-STACK is

procedure PUSH(.. .);

procedure POP(...);
-- other stack operations and exceptions

end GENERALSTACK;

Renamed appropriately for use in current application:

%ith GENERALSTACK;
package CAFETERIA is

package STACK OF TRAYS renames GENERALSTACK;
-- etc.

end CAFETERIA;
...

rationale

Choosing a general or application-independent name for a reusable part encourages
its wide reuse. Renaming the part in the context of a specific application (as in the
example) ensures that its use will be clear in that context.

8.2.3 Abbreiations

guideline

* Do not use a abbreviations in identifier or unit names.

REUSABILITY 165

rationale

This is a stronger guideline than Guideline 3.1.4. However well documented, an
abbreviation may cause confusion in some future reuse context. Even universally
accepted abbreviations, such as GMT for Greenwich Mean Time can cause
problems and should be used only with great caution.

note

When reusing a part in a specific application consider renaming using abbreviations
standard to that application.

8.3 ADAPTABILITY
Reusable parts often need to be changed before they can be used in a specific
application. They should therefore be structured so that change is easy and as localized
as possible. One way of achieving adaptability is to create general parts with complete
functionality, only a subset of which might be needed in a given application. Another is
to exploit Ada's generic construct to produce parts which can be appropriately
instantiated ith different parameters. Both of these approaches avoid the error prone
process of adapting a part by changing its code, but have limitations and can carry some
overhead.

8.3.1 Functionality
guideline

Provide complete functionality in a reusable part or set of parts. Build in
complete functionality, including end conditions, even if some functionality is
not needed in this application.

example
INITIALIZEQUEUE(... -- initialization operation
if STACK FULL(... -- probing operation
SYMBOL TABLE. CLOSEFRAME ... -- finalization operation

rationale

This is particularly important in designing/programming an abstraction.
Completeness ensures that you have configured the abstraction correctly, without
built-in assumptions about its execution environment. It also assures the proper
separation of functions so they will be useful to the current application and, in other
combinations, to other applications. It is particularly important that they be
available to other applications; remember that they can be "optimized" out of the
final version of the current product.

166 Ada QUALITY AND STYLE

note

The example illustrates end condition functions. An abstraction should be
automatically initialized before its user gets a chance to damage it. When that is not
possible, it should be supplied with initiation operations. In any case, it needs
finalization operations, both explicit and default/automatic. Where possible,
probing operations should be provided to determine when limits are about to be
exceeded. Probing operations are always preferable to trying to use exceptions to
deal with such limits.

It is also useful to provide reset operations for many objects. To see that a reset and
an initiation can be different, consider the analogous situation of a "warm boot" and
a "cold boot" on a personal computer.

Even if all of these operations are not appropriate for the abstraction, the exercise of
considering them wil aid in formulating a complete set of operations, others of
which may be used by another application.

Some implementations of the language link all routines into the executable image,
ignoring whether they are used or not, making unused operations a liability. (See
Guideline 8.3.10). In such cases, v.here the overhead is significant, create a copy of
the fully functional part and comment out the unused operations with an indication
that they are redundant in this application.

8.3.2 Generic Units
guideline

* Make every unit that you write a generic unit if its reuse is even a remote
possibility.

• Anticipate change, and use generic parameters to facilitate adaptation of
generic units

example

This example is taken from Section 12.4 of the Ada LRM [28].
- ---

generic
SIZE : POSITIVE;
type ITEM is private;

package STACK is
procedure PUSH (E in ITEM);
procedure POP (E out ITEM);
OVERFLOW, UNDERFLOW : exception;

end STACK;
.- _ -

REUSABILITY 167

package body STACK is

type TABLE is array (POSITIVE range <>) of ITEM;
SPACE TABLE(. SIZE);
INDEX NATURAL := 0;

procedure PUSH(E : in ITEM) is
begin

if INDEX >= SIZE then
raise OVERFLOW;

end if;
INDEX := INDEX + 1;
SPACE(INDEX) := E;

end PUSH;

procedure POP(E : out ITEM) is
begin

if INDEX - 0 then
raise UNDERFLOW;

end if;
E := SPACE(INDEX);
INDEX := INDEX - 2;

end POP;

end STACK;

Instances of this generic package can be obtained as follows:

package STACK_INT is new STACK(SIZE => 200, ITEM => INTEGER):
package STACKBOOL is new STACK(100, BOOLEAN);

Theeafter, the procedures of the instantiated packages ran be called as follows:

STACK INT.PUSH(N);

STACKBOOL.PUSH (TRUE);

Note how simply two entirely different stack packages were obtained from this
generic package. Although a similar effect could have been obtained, in principle,
by copying the text of a non-generic package and modifying the various types, this is
time consuming and very error pione. Little additional effort was required to make
the package generic and reuse was enhanced greatly. Reuse of the package by
others who need stack data structures is also very simple.

rationale

Making a subprogram or package generic greatly facilitates its reuse. The generic
facilities in Ada provide some support within the language for reuse. The generic
parameter mechanism allows for adaption of generic units. Attempting to achieve
the same effect using an editor or similar tool is less convenient and defeats the
checking that the compiler can perform.

168 Ada QUALITY AND STYLE

note

It may seem that the effort involved in writing generic rather than non-generic units
is substantial. However, making units generic is not much more difficult or time
consuming than making them non-generic once one becomes familiar with the
generic facilities. It is, for the most part, a matter of practice. Also, any effort put
into the development of the unit will be recouped when the unit is reused, as it surely
will be if it is placed in a reuse library with sufficient visibility. Don't limit your
thinking about potential reuse to the application you are working on or to other
applications with which you are very familiar. Applications with which you are noL
familiar or future applications might be able to reuse your software.

8.3.3 Generic Type Parameters

guideline
Exploit Ada's generic construct to create readily adaptable parts that can be
instantiated to operate on different types of data.

example

See example for Guideline 8.3.2.

rationale

It is often possible to increase the potential for reuse by removing the dependence of
the software on certain types. Essentially what is being done is to take account of
those parts of the software that might need to be adapted ')r reuse and using the
language mechanism to support the adaptation.

8.3.4 Generic Subprogram Parameters

guideline

* Exploit Ada's generic construct to create readily adaptable parts that can be
instantiated to provide specific functionality using generic subprogram
parameters.

example

This is the specification of a generic sort package. The relational operator that
defines ordering is a parameter to the package to allow order to be defined in a
use-specific way.

REUSABILITY 169

generic
type ELEMENT is private;
type DATA is array (POSITIVE range <>) of ELEMENT;
with function "<" (LEFT, RIGHT : ELEMENT)*return BOOLEAN is <>;

package SORTFACILITIES is

procedure QUICKSORT (DATATOSORT: in out DATA);

-- other facilities

end SORT-FACILITIES;
...

rationale

It is often possible to increase the potential for reuse by removing the dependence of
the software on certain key operations. Essentially what is being done is to take
account of those parts of the software that might need to be adapted for reuse and
using the language mechanism to support the adaptation.

8.3.5 Iterators

guideline

• Provide iterators for traversing complex data structures within reusable parts.

example

generic
type ELEMENTS is private;

package LISTMANAGER is

type LISTS is limited private;
procedure INSERT (LIST : in out LISTS;

ELEMENT in ELEMENTS);

-- this defines a "passive" iterator
generic

with procedure PROCESS (ELEMENT in out ELEMENTS;
CONTINUE out BOOLEAN);

procedure ITERATE (LIST . in LISTS):
-- an "active" iterator involves exporting operations like
-- INITIATE_ITERATOR, MOREELEMENTS. NEXT-ELEMENT,
-- TERMINATEITERATOR

private
type LIST BLOCKS; -- deferred to package body
type LISTS is access LISTBLOCKS;

end LISTMANAGER;

with LISTMANAGER;
procedure LIST USER is

type EMPLOYEES is ...

170 Ada QUALITY AND STYLE

package MYLISTMANAGER is new LISTMANAGER (ELEMENTS => EMPLOYEES);

EMPLOYEE LIST : MY LIST MANAGER.LISTS;

procedure PRINTEMPLOYEE_INFO (EMPLOYEE in out EMPLOYEES;

CONTINUE out BOOLEAN) is
begin -- PRINTEMPLOYEE_INFO

-- print employee name and id.
CONTINUE := TRUE; -- don't stop iterating here

end PRINTEMPLOYEEINFO;

-- This instantiates a passive iterator that calls
-- PRINT EMPLOYEE INFO once for each element.
procedure PRINT EMPLOYEEREPORT is new
MYLISTMANAGER.ITERATE (PROCESS => PRINTEMPLOYEEINFO);

begin -- LISTUSER
-- call the instantiated iterator.
PRINT EMPLOYEE REPORT (EMPLOYEELIST);

end LIST_USER;

rationale

Iteration over complex data structures is often required and, if not provided by the
part itself, can be difficult to implement without violating information hiding
principles.

note

The example shows a passive iterator (for further discussion see [22]). For an
extended discussion, including examples of both active and passive iterators, see
Booch [5].

8.3.6 Part Families

guideline

Create families of generic or other parts with similar specifications.

example

The Booch parts [5] are an excellent example of the application of this guideline.

rationale

Different versions of similar parts (e.g. bounded versus unbounded stacks) may be
needed for different applications or to change the properties of a given application.
Often, the different behaviors required by these versions cannot be obtained using

REUSABILITY 171

generic parameters. Providing a family of parts with similar specifications makes it
easy for the programmer to select the appropriate one for the current application, or
to substitute a different one if the needs of the application change.

note

A reusable part which is structured from subparts which are members of part
families is particularly easy to tailor to the needs of a given application by
substitution of family members.

8.3.7 Extending Subprograms

guideline

* When adapting a subprogram by extending its functionality, provide default
values for any new parameters.

rationale

See Guideline 5.2.3.

8.3.8 Symbolic Constants

guideline

* Use symbolic constants and constant expressions to allow multiple
dependencies to be linked to a single or a small number of syibos.

example
procedure DISK DRIVER is

--In this procedure, a number of important disk parameters are linked.
NUMBERSECTORS constant := 4;
NUMBERTRACKS constant := 200;
NUMBERSURFACES constant := 18;
SECTOR CAPACITY constant := 4096;
TRACK cAPACITY constant :w NUMBER SECTORS * SECTORCAPACITY;
SURFACE CAPACITY constant := NUMBERTRACKS * TRACK_CAPACITY;
DISKCAPACITY constant := NUMBERSURFACES * SURFACECAPACITY;

type SECTORRANGE is range 1 .. NUMBERSECTORS;
type TRACK RANGE is range 1 .. NUMBER-TRACKS;
type SURFACERANGE is range 1 .. NUMBERSURFACES;

type TRACKMAP is array (SECTORRANGE) of ...;
type SURFACEMAP is array (TRACKJRANGE) of TRACKMAP;
type DISKMAP is array (SURFACE-RANGE) of SURFACE-MAP;

begin

end DISK-DRIVER;

172 Ada QUALITY AND STYLE

rationale

In order to reuse software that uses symbolic constants and constant expressions
appropriately, just one or a small number of constants need to be reset and all
declarations and associated code are changed automatically. Apart from easing
reuse, this reduces the number of opportunities for error.

8.3.9 Unconstrained Arrays
guideline

Make the size of local variables depend on actual parameter size where
appropriate.

example
type VECTOR is

array(VECTOR_INDEX range <>) of ELEMENT;
type MATRIX is
array(VECTOR_INDEX range <>, VECTOR-INDEX range <>) of ELEMENT;

procedure MATRIXOPERATION(SUBJECTDATA : MATRIX) is
WORKSPACE MATRIX(SUBJECTDATA'RANOE(1), SUBJECTDATA'RANGE(2));
TEMP VECTOR VECTOR(SUBJECTDATA'FIRST(i) .. 2 * SUBJECTDATA*LAST(l));

rational

Unconstrained arrays can be declared with their sizes dependent on formal
parameter sizes. When used as local variables, their sizes change automatically with
the supplied actual parameters. This facility can be used to assist in the adaption of
a part since necessary size changes in local variables are taken care of automatically.

exception

Although this is a powerful mechanism in support of reuse, unconstrained arrays can
slow procedure calls significantly because size computation takes place at run time.
If run-time efficiency is a major concern, this guideline m:ght not be used.
Naturally, if this is done, it must be well documented as must the required sizes of
the local variables.

8.3.10 Conditional Compilation

guideline

Structure reusable code to exploit dead code removal by the compiler where it is
supported by the implementation.

REUSABILITY 173

example

separate (MATRIX MATH)
procedure INVERT(...) is

type ALGORITHM is (GAUSSIAN, PIVOTING, CHOLESKI, TRIDIAGONAL);
WHICH ALGORITHM : constant ALGORITHM :- CHOLESKI:

begin -- INVERT
case WHICH ALGORITHM is

when GAUSSIAN m> ...
when PIVOTING ->
when CHOLESKI =>
when TRIDIAGONAL => ...

end case;
end INVERT;

rationale

Some compilers omit object code corresponding to parts of the program that they
can detect will never be executed. Constant expressions in conditional statements
take advantage of this feature where it is available, providing a limited form of
conditional compilation. When a part is reused in an implementation that does not
support this form of conditional compilation, this practice produces a clean
structure which is easy to adapt by deleting or commenting out redundant code
where it creates an unacceptable overhead.

caution

Be aware of whether your implementation supports dead code removal, and be
prepared to take other steps to eliminate the overhead of redundant code if
necessary.

8.3.11 'fable Driven Prograinnng

guideline

0 Write table-driven reusable parts where possible and appropriate.

example

The epitome of table driven reusable software is a parser generation system. A
specification of the form of the input data and of its output, along with some
specialization code, is converted to tables that are to be "walked" by pre-existing
code using predetermined algorithms in the parser produced. Other forms of
".pplicat-on generators" work similarly.

rationale

Table-driven (sometimes known as data-driven) programs have behavior that
depends on data with'ed at compile time or read from a file at run time. In

174 Ada QUALITY AND STYLE

appropriate circumstances, table-driven programming provides a very powerful way
of creating general purpose, easily tailorable, reusable parts.

note

Consider whether differences in the behavior of a general purpose part could be
defined by some data structure at compile or run-time, and if so structure the part to
be table driven. The approach is most likely to be applicable when a part is designed
for use in a particular application domain but needs to be specialized for use in a
specific application within the domain. Take particular care in documenting the
structure of the data needed to drive the part.

8.3.12 Exceptions
guideline

* Propagate exceptions out of reusable parts. Handle exceptions within reusable
parts only when you are certain that the handling will always be appropriate.

example

See example in Guideline 8.1.4.

rationale

On most occasions, an exception is raised because an undesired event (such as
floating-point overflow) has occurred. Such events often need to be dealt with
entirely differently with different uses of a particular software part. It is very difficult
to anticipate all the ways that users of the part may wish to have the exceptions
handled. Passing the exception out of the part is the safest treatment.

8.4 SUMMARY

general considerations
" Exploit the features of the Ada language to write general purpose, adaptable

code that has the maximum potential for future reuse.
" Consider reusing existing software in preference to writing new code.
* Prefer reusing large parts to small.

" Consider upgrading or adapting unsuitable, e.g., non-portable, code if no
appropriate reusable part is available.-

• If you adapt or upgrade an existing part to reuse it, ensure that the adapted part
is suitable for future reuse.

* Code reusable parts to be robust in any context.

REUSABILITY 175

understanding and clarity

* Document what a reusable part does.

* Document how to use it.

* Document assumptions made by the part.

* Document features of the part that are likely to change.

• Select application-independent names for reusable parts and their identifiers.

* Do not use anM abbreviations in identifier or unit names.

adaptability

* Provide complete functionality in a reusable part or set of parts. Build in
complete functionality, including end conditions, even if some functions are not
needed in this application.

" Make every unit that you write a generic unit if its reuse is even a remote
possibility.

" Anticipate change, and use generic parameters to facilitate adaption of generic
units.

* Exploit Ada's generic construct to create readily adaptable parts that can be
instantiated to operate on different types of data.

• Exploit Ada's generic construct to create readily adaptable parts that can be
instantiated to provide specific functionality using generic subprogram
parameters.

• Provide iterators for traversing complex data structures within reusable parts.

• Create families of generic or other parts with similar specifications.

" When adapting a subprogram by extending its functionality, provide default
values for any new parameters.

* Use symbolic constants and constant expressions to allow multiple
dependencies to be linked to a single or a small number of symbols.

• Make the size of local variables depend on actual parameter size where
appropriate.

* Structure reusable code to exploit dead code removal by the compiler where it is
supported by the implementation.

* Write table-driven reusable parts where possible and appropriate.

* Propagate exceptions out of reusable parts. Handle exceptions within reusable
parts only when you are certain that the handling will always be appropriate.

176 Ada QUALITY AND STYLE

CHAPTER 9
Instantiation

A number of guidelines in this book are generic in nature. That is, they present a
general principle of good Ada style, such as consistent indentation of source text, but do
not prescribe a particular instantiation of that principle. In order to allow this book to
function as a coding standard, you will need a particular instantiation.

This chapter lists all the guidelines requiring instantiation, and shows the instantiation
adopted for the examples in this book. You might want to consider this instantiation as a
codine standarcu. A code formatter can enforce many of these standards or change code
to meet them as needed.

9.1 HORIZONTAL SPACING

guideline (2.1.1)
• Employ a consistent spacing strategy around delimiters.

instantiation

- Employ at least one blank before and a.fter the following delimiters: & * +/
: < = > =>.. : = > << >> <> and - used asabinary
operator.

- Precede the minus sign used as a unary operator by at least one blank.

- Do not leave spaces before or after *' unless involved in a line break.

177

178 Ada QUALITY AND STYLE

- Except when in conflict with other parts of this instantiation, leave at least one
blank on the non-literal side of " and - when they delimit a character and a
string literal, respectively.

- Do not leave spaces before or after parentheses which delimit argument lists or
array indices.

- Where parentheses delimit an expression, leave at least one blank before the
left parenthesis and after the right parenthesis, but not between multiple left or
multiple right parentheses.

- Leave one blank before and after a short (1 character) identifier or literal within
parentheses.

- Leave at least one blank after but no space before ; and , even if they follow
a right parenthesis.

9.2 INDENTATION

guideline (2.1.2)

• Indent and align pested control structures, continuation lines, and embedded
units consistently.

" Distinguish between indentation for statement-list structure and for
continuation lines.

* Use a series of spaces for indentation, not the tab character.

instantiati' n

- Use the recommended paragraphing shown in the Ada LRM [28].

- Use 3 blanks as the basic step for indentation.

- Use 2 blanks as the basic step for indenting continuation lineg.

A label is exdented 3 spaces. A continuation line is indented 2 spaces:

<<label>> [<long statement requiring line break>
<statement> I <trailing part of same statement>

The if statement and the plain loop:

if <condition> then <name>:
<statements> loop

elsif <condition> then <statements>
<statements> exit when <condition>;

else <statements>
<statements> end loop;

end if;

INSTANTIATION 179

Loops with the for and while iteration schemes:

<name>: <name>:
for <scheme> loop I while <condition> loop

<statements> I <statements>
end loop; I end loop;

The block and the case statement as recommended in the Ada LRM [281:

<name>: case <expression> is
declare when <rhoice> a>

<declarations> <statements>
begin when <choice> =>

<statements> <statements>
exception when others ->

when <choice> a> <statements>
<statements> end case;

when others =>
<statements>

end <name>;

These case statements save space over the Ada LRM recommendation and depend
on very short statement lists, respectively. Whichever you choose, be consistent.

case <expression> is case <expression> is
when <choice> -> when <choice- -> <statements>

<statements> <statements>
when <choice> -> I. when <choice> -> <statements>

<statements> when others => <statements>
when others -> I end case;

<statements>
end case;

The various forms of selective wait and the timed and conditional entry calls:

select select
when <guard> a> <entry call>;

<accept statement> <statements>
<statements> or

or delay <interval>;
<accept statement> <statements>
<statements> end select;

or
when <guard> ->

delay <interval>;
<statements>

or select
when <guard> -> . <enter call>;

terminate; <statements>
else else

<statements> <statements>
end select; end select;

The accept statement and a subunit:

180 Ada QUALITY AND STYLE

accept <specification> do separate(<parent unit>)
<statements> <proper body>

end <name>;

Body stubs of the program units:

procedure <specification> is package body <name> is
separate; separate;

function <specification> task body <name> is
return <type> is separate;
separate;

Proper bodies of program units:

procedure <specification> is package body <name> is
<declarations> <declarations>

bagin begin
<statements> <statements>

exception exception
when <choice> => when <choice> =>

<statements> <statements>
end <name>; end <name>:

function <specification> task body <name> is
return <type name> i. <declarations>
<declarations> begin

begin <statements>
<statements> exception

exception when <choice> =>
'hen <-hcice> => <statements>

<statements> end <name>;
end <name>;

Context clauses on compilation units are arranged as a table, and are indented so as
not to obscure the introductory line of the unit itself. Generic formal parameters do
not obscure the unit itself. Function, package, and task specifications use standard
indent:

with <name>, Ifunction <specification>
<name>, I return <type>;
<name>; I

use <name>, lpackage <name> is
<name>, I <declarations>
<name>; [private

<compilation unit> I <declarations>
lend <name>;I.

generic -- <kind of unit> <name> Itask type <name> is
<formal parameters> I entry <-declaration>

<compilation unit> lend <name>;

Instantiations of generic units, and indentation of a record:

INSTANTIATION 181

type ... is
procedure <name- is record

new <generic name> <actuals> <component list>
case <discriminant name> is

function <name> is when <choice> =>
new <generic name> <actuals> <component list>

when <choice> =>
package <name> is <component list>

new <generic name> <actuals> end case;
end record;

Indentation for record alignment:

for <name> use
record <alignment clause>

<coaponent clause>
end record;

9.3 MORE ON ALIGNMENT

guideline (2.1.5)

* Align parameter modes and grouping symbols vertically.

* Use four trailing blanks for mode in and three leading blanks for mode out.

ins'.-ntiation

- Place one formal parameter specification per line.

- Vertically align parameter names; vertically align colons; vertically align the
reserved word in; vertically align the reserved word out; vertically align
parameter types.

- Place the first parameter specification on the same line as the subprogram or
entry name. If any of the parameter types are forced beyond the line length
limit, place the first parameter specification on a new line indented as for
continuation lines.

The following two subprogram specifications adhere to this rule:

procedure DISPLAY MENU (TITLE in STRING;
OPTIONS in MENVS;
CHOICE : out ALPHANUMERICS);

or

procedure DISPLAY_MENU ONPRIMARYWINDOW
(TITLE in STRING;
OPTIONS in MENUS;
CHOICE out ALPHANUMERoICS);

182 Ada QUALITY AND STYLE

9.4 PAGINATION

guideline (2.1.7)
" Mark the top of the body of each program unit and the beginning and end of its

frame.

* Mark the top and bottom of a package specification.

instantiation

- Use a line of dashes to the end of the line, beginning at the same column as the
current indentation.

- If two dashed lines would be adjacent, use only the shorter of the two.

- If there are no more than two one-line declarations within a unit, the dashed
line above the begin can be omitted.

- A line precedes, but does not separate the context clauses preceding the
reserved words package, generic, 1procedure, function from those reserved
words.

9.5 SOURCE CODE LINE LENGTH

guideline (2.1.9)

* Adhere to a maximum line length limit for source code.

instantiation

- Limit source code line lengths to a maximum of 72 characters.

9.6 NUMBERS

guideline (3.1.2)
• Represent numbers in a consistent fashion.

* Use an appropriate base tor literals.
• Use underscores to separate digits the same way commas would be used in

handwritten text.
" When using Scientific notation, make the "e" consistently either upper or lower

case.

* In an alternate base, represent the alphabetic characters in either all upper case,
or all lower case.

INSTANTIATION 183

Use underscores in alternate base numbers in the same way blanks or commas
would be used in handwritten text.

instantiation

- Decimal and octal numbers are grouped by threes beginning counting on either
side of the radix point.

- The "E" is always capitalized in scientific notation.

- Use all capitals for the alphabetic characters representing digits in bases above

- Hexadecimal numbers are grouped by fours beginning counting on either side of
the radix point

9.7 CAPITALIZATION

guideline (3.1.3)

* Make reserved words and other elements of the program distinct from each
other.

instantiation

- Use lower case letters for all reserved words.
- Use upper case for all other identifiers.

9.8 FILE HEADERS

guideline (3.2.2)

* Place in the header of Ada source code only information that "ill identify
important characteristics of the code.

* Include in header comments only what a reader will trust.

" Include copyright notices.

" Include author name(s), dates, and place.

" Indicate where to look for implementation and machine dependencies.

instantiation

The following information is to be placec in file headers:

- names of the authors of the code,

- the dates of creation and of the most recent change to the code,

184 Ada QUALITY AND STYLE

- the authors' department(s) within the organization, and the organization, if the
code is released outside without a copyright notice,

- a copyright notice, if required,

- a three-line-maxinmum description of the location of each i.,lementation- or
machine dependency, unless the file serves to isolate such dependencies.

A template for file headers used in this book follows:

-- Author:
-- Date:
-- Department:
-- Copyright:
-- Dependencies:

9.9 NAMED ASSOCIATION

guideline (5.2.2)

* Use named parameter association in calls of infrequently used subprograms or
entries with many formal parameters.

* Use named component association for constants, expressions, and literals in
aggregate initializations.

• Use named association when instantiating generics with many formal
parameters.

* Use named association for clarification when the actual parameter is TRUE or
FALSE or an expression.

* Use named association when supplying a non-default value to an optional
parameter.

instantiation

- Use named parameter association in calls of subprograms or entries called from
less than 5 places or with more than 4 formal parameters.

- Use named association when instantiating generics with more than 4 formal
parameters.

9.i1 ORDER OF PARAMETER DECLARATIONS

guideline (5.2,5)

* Declare parameters in a consistent order.

INSTANTIATION 185

instantiation

- All required in parameters are declared before any in out. parameter.

- All in out parameters are declared before any out parameters.

- All out parameters are declared before any optional parameters

- The order of parameters within these groups is derived from the needs of the
application.

9.11 NESTING

guideline (5.6.1)

* Restrict or minimize the depth of nested expressions and control structures.

* Try simplification heuristics.

instantiation

- Do not nest expressions or control structures beyond a nesting level of 5.

9.12 GLOBAL ASSUMPTIONS

guideline (7. 1. 1)

* Make considered assumptions about the support an implementation will provide
for the following:

- Number of bits available for type INTEGER.

- Number of decimal digits of precision available for floating point types.

- Number of bits available for fixed-point types.

- Number of characters per line of source text.

- Number of bits for universal integer expressions.

- Number of seconds for the range of DURATION.

- Number of milliseconds for DURATION'SMALL.

instantiation

These are minimum values (or minimum precision in the case of DURATION-SMALL)

that an implementation must provide. There is no guarantee that a given
implementation will provide more than the minimum, so these should be treated as
maximum values also.

- 16 bits available for type INTEGhR.

186 Ada QUALITY AND STYLE

- 6 decimal digits of precision available for floating point types.

- 32 bits avai!able for fixed-point types.

- 72 characters per line of source text.

- 16 bits for universal integer expressions.

- -86_400 .. s6_4oo seconds (1 day) for the range of DURATION.

- 20 milliseconds for DURATION'SMALL.

CHAPTER 10
Complete Example

This chapter contains an example program to illustrate use of the guidelines. The
program implements a simple menu-driven user interface that could be used as the front
end for a variety of applications. It consists of a package for locally defined types
(SPC_NUYERIC_TYPES), instantiations of I/O packages for those types (found in
spc intio_.a and spcrealio_.a), a package to perform Ascii terminal I/O for
generating menus, writing prompts and receiving user input (TERMINAL Io), and finally
an example using the terminal I/O routines (EXAMPLE).

Within TERMIN.'L_IO, subprogram names are overloaded when several subprograms
perform the same general function but for different data types.

The body for TERMINALIO uses separate compilation capabilities for a subprogram,
DISPLAYMENU, that is larger and more involved than the rest. Note that all literals that

would be required are defined as constants. Nested loops, where they exist, are also
named. The function defined in the file terminal io.a on line 63 encapsulaLs a local

exception handler within a loop. Where locally defined types could not be used, there is
a comment explaining the reason. The use of short circuit control forms, both on an if
statement and an exit are also illustrated.

The information that would have been in the file headers is redundant since it is

contained in the title page of this book. The file headers are omitted from the following
listings.

187

188 Ada QUALITY AND STYLE

FILE: numerics-.a

1---
2:package SPC_NUMERIC_T'PES is
3:
4: type TINYINTEGER is range -(2**7) (2**7) - 1;
5:

6: type MEDIUM INTEGER is range -(2**15) (2**15) - 1;
7:
8: type BIG_INTEGER is range -(2**31) (2.*31) - 1;
9:

10: subtype TINYNATURAL
I1: is TINYINTEGER range 0 TINY_INTEGER'LAST;

12:
13: subtype MEDIUM NATURAL
14: is MEDIUMINTEGER range 0 MEDIUM_INTEGER'LAST;
15:
16: subtype BIGNATURAL
17: is BIGINTEGER range 0 BIGINTEGER'LAST;
18:
19: subtype TINY POSITIVE
20: is TINYINTEGER range I TINY_INTEGER'LAST;
22:

22: suLtype MEDIUM POSITIVE
23: is MEDIUMINTEGER range 1 .. MEDIUM_INTEGER'LAST;
24:
25: subtype BIGPOSITIVE
26: is BIGINTEGER range 1 . BIG_INTEGER'LAST;
27:
28: type MEDIUMFLOAT is digits 6;

29: type BIG_FLOAT is digits 9;
30:
31: subtype PROBABILITIES is MEDIUMFLOAT range 0.0 .. 1.0;
32:
33:
34: function MIN (LEFT : in TINYINTEGER;
35: RIGHT : in TINYINTEGER)

36: return TINY INTEGER;
3 7 : ---
38: function MAX (LEFT : in TINYINTEGER;
39: RIGHT : in TINY-INTEGER)
40: return TINYINTEGER;

41:
42: -- Additional function declarations
43: -- to return the minimum and maximum values for each type.
44:end SPC_NUMERICTYPES;

45: --

COMPLETE EXAMPLE 189

FILE: numerics.a
1:...
2:package body SPCNUMERICTYPES is
3:
4 : -- -
5: function MIN (LEFT in TINY_INTEGER;
6: RIGHT in TINYINTEGER)
7: return TINYINTEGER is
8: begin -- MIN

9: if LEFT < RIGHT then
10: return LEFT;
11: else
12: return RIGHT;
13: end if;
14: end MIN;
15 : -- -
16: function MAX (LEFT :in TINY_-INTEGER:
17: RIGHT :in TINY-INTEGER)
18: return TINYINTEGER is
19:
20: begin -- MAX
21: it Li..: > RIGHT then
22: return LEFT;
23: else
24: return RIG'-'-,
25: end if;
26: end MAX;
2 7 : -- -
28: -- Additional functions to return minimum and maximum
29: -- value for each type defined in the package.
3 0 : -- -
31:end SPC_tCUMERIC_TYFES;
32:--

FILE: spcintio.a
1: ---
2:with SPC_NUMERIC_TYPES,
3: T*,XT_I0;
4:packa,,e SPC_SMALL_INTEGER 10 is new
5: TEXT_-IC.INTEGER_-10 (SPCNUMERIC_TYPES.TINY_-INTEGER);
6:--
7:with SPCNUMERICTYPES,
8: TEXTIC;
9:package MEDIUM_INTEGER_10 is new

10: TEXT I0.INTEGER_ IC (SPCNUMERIC_TYPES.MEDIUM_INTEGER);
11: ---
12:with SPC_NUMERIC_TYPES,
13: TEXT 10;
14:package BIG_INTEGER_10 is new
15: TEXT -1OINTEGER_-10 (SPC_-NUMERIC_-TYPES.BIG_INTEGER);
16:--

190 Ada QUALITY AND STYLE

FILE: spc realIo_.a
1:--
2:with SPCNUMERICTYPES.
3: TEXT 10;
4:package MEDIUM FLOAT 10 is new
5: TEXTIO.FLOATIO (SPCNUMERIC TYPES.MEDIUMFLOAT);
6:--
7:with SPCNUMERICTYPES,
8: TEXT_10;
9:package BIGFLOAT IO is new

10: TEXT_ IO.FLOAT_10 (SPCNUMERIC TYPES.BIGFLOAT);
11: --

FILE: terminal io_.a

1:--
2:with SPC_NUMERIC_TYPES;
3:use SPCNUMERICTYPES;
4:
5:package TERMINAL_IO is
6:
7: MAX FILENAME : constant := 30;
8: MAX-LINE : constant :3 30;
9:

10: subtype ALPHA NUMERICS is CHARACTER range "0' .. Z'
11: subtype LINES is STRING (I MAXLINE);
12:
13: EMPTYLINE : constant LINES := (others =>
14:
25: type MENUS is array (ALPHANUMERICS) of LINES;
16:
27: subtype FILENAMES is STRING (I .. MAX_FILENAME);

19: procedure GETFILENAME (PROMPT in STRING;
20: NAME out FILE NAMES;
21: NAME-LENGTH out NATURAL);
2 2 : ---
23: function YES (PROMPT : STRING) return BOOLEAN;
24:
25: function GET (PROVPT : STRING) rqturn MEDIUM_INTEGER;
2 6: ---
27: function GET (PROMPT : STRING) return MEDIUM-FLOAT;
28:
29: procedure DISPLAY MENU (TITLE in STRING;
30: OPTIONS : in MENUS;
31: CHOICE, : out ALPHANUMERICS);
3 2 : --------------------------------- ---------------------------
33: procedure PAUSE (PROMPT : STRING);
3 4 : --- --- --- -------- ---- ----- -- -- --- ------------ ---------- ----
35: procedure PAUSE;
38 : ------------- ------ -- ------- ---------- ---- --- --- ----------

37: procedure PUT (INTEGERVALUE : MEDIUM INTEGER);
3 8: ------------------------- ----------------------------------
39: procedure PUT (REAL-VALUE : MEDIUM FLOAT);

COMPLETE EXAMPLE 191

4 0 : - - - - - - - - -- - -- - -- - -- - -- - - - - - -- - -- - --- - -- - - - - - - - - - - -- - - - -- - --

42: procedure rUT (LABEL : SIRTNG;
42. INTEGERVALUE : MEDIUMINTEGER,:
4 3 : ------- -- ---- --- --- ------ ----- -- ---- ------ -- -- -- -- ------ ---
44: procedure PUT (LABEL : STRING;
45: REALVALUE : VEDIUM FLOAT);

4 6: ------- --- --- --- ---- -- -------------- --- --- -- ---- --- ------ --
47: procedure PUTLINE (INTEGERVALUE : MEDIUMINTEGER);

4 8 : --- -- --- --- --- --- --- --- ---- --- --- --- --- -
49: procedure PUTLIN. ,REALVALUE : MEDIUMFLOAT);
5 0 : ------------------------- -- --------------------------------
51: procedure PUTLINE (LABE, : STRING;
52: INTEGERVALUE : MEDIUMINTEGER);
5 3: ---------------- ---
54: procedure PUTLINE (LABEL : STRING;
55: F.ALVALUE : MEDIUMFLOAT);
5 6 : ------------------------------ -----------------------------
57:end TERMINALIO;
58: --

FILE: terminal io.a
2:--
2:with MEDIUM INTEGER 10,
3: MEDIUM FLOAT 10,
4: TEXT_:0;
5:

6:use TEXT_10;
7:
8:package body TERMINAL_10 is -- simple terminal i/o routines
9:

20: subtype RESPONSE iF STRING (1 .. 20);
12:
12: PROMPT COLUMN : constant := 30;
13: QUESTION_MARK : constant STRING := I;
14: STAN"ARZ PROMPT : constant STRING :=
15: BLANK : constant CHARACTER = ""

17: procedure PUI_PROMPT (PROMPT : STRING;
18: QUESTION : BOOLEAN := FALSE) is
29: begin -- PUT PROMPT
20: VUT(PROMPT);
21: if QUESTION then
22: PUT(QUESTIONMARK);

23: end if;
24: SET COL(PROMPT_COLUMN);
25: PUT(STANDARD_PROMPT);
26: end PUT PROMPT;
27:
28: function YES (PROMPT : STRING) return BOOLEAN is
29:
30: RESPONSESTRING : RESPONSE :- (others *> BLAEK):
31: RESPONSESTRING_LENGTH : NATURAL;

3 2: --- -- --- --- ----- ----------- --------- --- --- -------- ---- --- --
33: begin -- YES

192 Ada QUALITY AND STYLE

34: GET RESPONSE:
35: loop
36: PUT_PROMPT(PROMPT, QUESTION => TRUE);
37: GET_LINE(RESPONSESTRING, RESPONSESTRINGLENGTH);
38: for POSITION in I .. RESPONSE STRING LENGTH I .p
39: if RESPONSESTRING(POSITION) /- BLANK then

40: return ((RESPONSESTRING(POSITION) - 'Y') or
41: (RESPONSESTRING(POSITION) - 'y'));
42: end if;
43: end loop;
44: NEWLINE: -- issue prompt until non-blank response
45: end loop GET RESPONSE;
46: end YES;
47:

48: procedure GETFILE NAME
49: (PROVPT : in STRING;
50: NAME : out FILE NAMES;
51: NAMELENGTH : out NATURAL) is
52: begin -- GET FILENAME
53: PUTPROMPT(PROMPT);
54: GET LINE(NAME, NAME_L NGTH);
55: end GETFILENAME;

56:
57: functior, JET (PROMPT : STRING) return MEDIUMINTEGER is
58:
59: RESPONSESTRING: RESPONSE := (others => BLANK);
60: LAST : NATURAL; -- Required by GET_,'NE.
61: VALUE : MEDIUM_INTEGER;
62:
63: begin -- GET
64: loop
65: begin
66: PUT_PRoMPT(PROMPT);
67: GET LINE(RESPONSE STRING, LAST);
6: VALUE:=
69: MEDIUMINTEGER'VALUE(RESPONSE_STRING(l.. LAST));
70: return VALUE;
71: exception
72: when others =>
73 PUTLINE("Please enter an integer*);
74: end;
75: end loop;
76: end GET;
7 7: --------------------------------------- --------------------
78: procedure DISPLAY_MENU (TITLE in STRTNG;
79: OPTIONS : in MENUS;
80: CHOICE. out ALPHANUMERICS)
81: is separate;
8 2 : ---

83: procedure PAUSE (PROMPT: STRING) is
84: begin -- PAUSE
85: PUTLINE(PROMPT);
86: PATj.E;
87: end PAUSE;
B e: ------------ I I--

COMPLETE EXAMPLE 193

89: procedure PAUSE is
90: BUFFER RESPONSE;
91: LAST NATURAL;
92: begin -- pause
93: PUT(*Press return to continue");
94: GET LINE(BUFFER, LAST);
95: end PAUSE;
98:
97: function GET (PROMPT : STRING) return MEDIUM FLOAT is
98:
99: VALUE: MEDIUM-FLOAT;

10 0 : -- ---- ---- ------------- -- ----- ------------ ---- -- --------
101: begin -- GET
102: loop
103: begin
104: PUT PROMPT(PROMPT);
105: MEDIUMFLOAT IO.GET(VALUE);
106: SKIPLINE;
107: return VALUE;
108: exception
109: when others =>
110: SKIP LINE;
III: PUTLINE("Please enter a real number");
112: end;
113: end loop;
114: end GET;

116: procedure PUT (INTEGERVALUE : MEDIUM_INTEGER) is
117: begin -- PUT
118: MEDIUMINTEGER_I0.PUT(INTEGERVALUE, WIDTH *> 4);
119: end PUT;
120:
121: procedure PUT (REALVALUE : MEDIUMFLOAT) is
122: begin -- PUT
123: MEDIUM FLOAT_IO.PUT(REAL VALUE, FORE -> 4, AFT -> 3,
124: EXP => 0);
125: end PUT;
126:
127: procedure PUT (LABEL : STRING;
128: INTEGERVALUE : MEDIUMINTEGER) is
129: begin -- PUT
130: TEXT IO.PUT(LABEL);
131: MEDIUMINTEGERIO.PUT(INTEGER VALUE);
132: end PUT;
133:
134: procedure PUT (LABEL : STRING;
135: REAL VALUE : MEDIUM FLOAT) is
136: begin -- PUT
137: TEXT IO.PUT(LABEL);
138: MEDIUM FLOATIO.PUT(REAL VALUE. FORE -> 4, AFT -> 3,
139: EXP => 0);
140: end PUT;
141:
142: procedure PUT .LINE (INTEGER VALUE : MEDIUM INTEGER) is
143: begin -- PUTLINE

194 Ada QUALITY AND STYLE

144: TERMINAL IO.PUT(INTEGERVALUE);
145: TEXT IO.NEW LINE;
146: end PUT_LINE;
1 4 7 :- ---------------------
148: procedure PUT LINE (REALVALUE : MEDIUM FLOAT) is
149: begin -- PUT LINE
150: TERMINAL *O.PUT(REALVALUE);
151: TEXT_I O.NEWLINE;
152: end PUT LINE;
153:
154: procedure PUT-LINE (LABEL : STRING;
155: INTEGER-VALUE : MEDIUM INTEGER) is
156: begin -- PUT LINE
157: TERMINAL _O.PUT(LABEL, INTEGERVALUE);
158: TEXTIO.NEWLINE;
159: end PUTLINE;
160:
161: procedure PUT LINE (LABEL STRING;
162: REALVALUE MEDIUMFLOAT) is
163: begin -- PUT LINE
164: TERMINAL O.PUT(LABEL, REAL VALUE);
165: TEXT IO.NEW LINE;
166: end PUTLINE;
1 6 7 : -- --- ------------
168:
169:end TERMINAL_10;
170: --

FILE: terminalio display_menu.a
1: --
2:separate (TERMINAL_IO)
3:procedure DISPLAYMENU (TITLE : in STRING;
4: OPTIONS : in MENUS;
5: CHOICE : out ALPHANUMERICS) is
6:
7: LEFTCOLUMN : constant := 15;
8: RIGHT COLUMN : constant := 20;
9: PROMPT : constant STRING : >

10:
11: type ALPHAARRAY is array (ALPHANUMERICS) of BOOLEAN;
12:
13: VALID : BOOLEAN;
14: VALID OPTION : ALPHAARRAY :- (others -> FALSE);
15:
16: procedure DRAW-MENU (TITLE :.TRING;
17: OPTIONS : 9ENUS) is
18: begin -- DRAW MENU
19: NEW PAGE;
20: NEWLINE;
21: SET COL(RIGHT COLUMN);
22: PUTLINE(TITLE);
23: NEWLINE;
24: for CHOICE in ALPHA NUMERICS loop
25: if OPTIONS(CHOICE) /- EMPTY LINE then

COMPLETE EXAMPLE 195

26: VALIDOPTION(CHOICE) := TRUE;
27: SET_COL(LEFTCOLUMN);
28: PUT(CHOICE & -- -);
29: PUT LINE(OPTIONS(CHOICE));
30: end if7
31: end loop;
32: ene DRAWMENU;

34: procedure GET RESPONSE (VALID out BOOLEAN;
35: CHOICE out ALPHANUMERICS) is
36:
37: BUFFERSIZE : constant :- 20;
38: DUMMY : constant ALPHANUMERICS :' "X';
39:
40: FIRSTCHAR CHARACTER;
41: BUFFER : STRING (I .. BUFFERSIZE);
42:
43: -- IMPLEMENTATION NOTE:
44: -- The following two declarations do not use
45: -- locally defined types because a variable of type
46: -- NATURAL is required by the TEXT_10 routines for
47: -- strings, and there is no relational operator defined
48: -- for our local TINY_ , MEDIUM_, or BIG-POSITIVE and
49: -- the standard type NATURAL.
50: LAST : NATURAL;
51: INDEX : POSITIVE;
52:
53: function UPPERCASE fCURRENTCHAR : CHARACTER)
54: return CHARACTER is
55:
56: CASE DIFFERENCE : constant :- 16#20#;
57:
58: begin -- UPPERCASE
59: if CURRENT CHAR in 'a' .. 'z' then
60: return CHARACTER'VAL(CHARACTER'POS(CURRENTCHAR)
61: - CASEDIFFERENCE);
62: else
63: return CURRENT-CHAR;
64: end if;
65: end UPPER-CASE;
66:
67: begin -- GET-RESPONSE
68:
69: NEW LINE;
70: SET COL(LEFTCOLUMN);
71: PUT(PROMPT);
72:
73: GETLINE(BUFFER, LAST);
74:
75: INDEX := POSITIVE'FIRST;
78: loop
77: exit when ((INDEX >= LAST) or else
78: (BUFFER(INDEX) in ALPHANUMERICS)
79: INDEX := POSITIVE'SUCC(INDEX);
80: end loop;

196 Ada QUALITY AND STYLE

81:
82: FIRST-CHAR := UPPERCASE(BUFFER(INDEX));
83:
84: if (FIRST_CHAR not in ALPHANUMERICS) or else
85: (not VALIDOPTION(FIRSTCHAR)) then
86: VALID := FALSE;
87: CHOICE := DUMMY;
88: else
89: VALID := TRUE;
90: CHOICE := FIRSTCHAR;
91: end if;
92:
93: end GET-RESPONSE;

94:
95: procedure BEEP is
96: begin
97: PUT(ASCII.BEL);

98: end BEEP;

99:
100:begin -- DISPLAYMENU
101: loop
102: DRAW MENU(TITLE, OPTIONS);
103: GET_RESPONSE(VALID. CHOICE);
104: exit when VALID;
105: BEEP;
106: end loop;
107:end DISPLAY-MENU;
108: --

COMPLETE EXAMPLE 197

FILE: example.a
1: -

2:with SPCNUMERICTYPES.
S: TERMINALIO;
4 : -

3:procedure EXAMPLE is
6:
7: Package 710 renames TERNINAL_1O;
8:
9: EXAMPLE MENU :constant TIO.MENUS :

10: TIO.MENUS'('A' =>"Add item
21: D >"Delete item
12: 'M' =>"Modify item
13: ,'Q' "Quit
14: others => TIO.EMPTYLINE);
15:
16: USERCHOICE :TIO.ALPHA NUMERICS;
17: ITEM SPCNUMERICTYPES.MEDIUMINTEGER;
18: -- -

ig:begin -- EXAMPLE
20:
21: loop
22: TIO.DISPLAY_-MENU("ExamplO Menu", EXAMPLE-MENU,
23: USER-CHOICE);
24:
25: case USER CHOICE is
26: when 'A' =>

27: ITEM :=TIO.GET("Item to add");
28: when '0' =>
29: ITEM :=TIO.GET("Item to delete");
30: when 'M' =>
32: ITEM :=TIO.GETC"Item to modify");
32: when 'Q' .>
33: exit;
34: when others -> -- error has already been

3--null; -- signaled to user
36: end case;
37:
38: end loop;
39:
40:end EXAMPLE;
41: -- -

42:
43:-- This is what is displayed, anything but A. D. M or Q beeps
44:--
45:-- Excample Menu
46:--
47:-- A -- Add item
48:-- D -- Delete item
49:-- U -- modify item
50:-- Q -- Quit
51:--
52:--

198 Ada QUALITY AND STYLE

APPENDIX A
Map from Ada Language Reference

Manual to Guidelines

1. Introduction

1.1 Scope of the Standard
I. 1.1 Extent of the Standard
1.1.2 Conformity of an Implementation with the Standard
1.2 Structure of the Standard
1.3 Design Goals and Sources 2
1.4 Language Summary
1.5 Method of Description and Syntax Notation 2.1.2, 2.1.8, 2.1.9, 9.2, 9.4
1.6 Classification of Errors ... 5.9, 5.9.1, 5.9.3, 5.9.4, 5.9.5, 5.9.6, 7.1.10,

7.6.7, 7.6.8, 7.7.3

2. Lexical Elements

2.1 Character Set .. 7.1.3
2.2 Lexical Elements, Separators, and Delimiters 2.1.1, 2.1.6, 2.1.9,

9.1, 9.5

2.3 Identifiers . 3.1.1, 3.1.3, 3.1.4, 3.2.1, 3.3, 3.3.1, 3.3.2, 3.3.3, 3.3.4,
3.3.5, 5.1.1, 5.1.2, 5.2.1, 5.5.4, 8.2.2, 8.2.3, 9.6

2.4 Numeric Literals 3.1.2, 3.3.5, 7.2.6, 7.2.7, 9.5
2.4.1 Decimal Literals 3.1.2, 3.3.5, 9.5
2.4.2 Based Literals 3.1.2, 3.3.5, 7.2.7, 9.5
2.5 Character Literals
2.6 String Literals
2.7 Comments 3.2.1, 3.2.2, 3.2.3, 3.2.5, 5.2.1, 5.6.3, 5.6.3, 5.6.7,

5.6.8, 7.1.4, 7.1.6, 7.2.5, 8.2.1, 9.7

199

200 Ada QUALITY AND STYLE

2.8 Pragmas
2.9 Reserved W ords 3.1.3, 9.6
2.10 Allowable Replacements of Characters 7.1.3

3. Declarations and Types

3.1 Declarations 2.1.4, 2.1.8, 3.4.1, 5.9.6, 7.2.8, 8.3.8
3.2 Objects and Named Numbers 2.1.4, 3.3.3, 7.2.6, 8.3.8
3.2.1 Object Declarations 2.1.4, 3.3.3
3.2.2 Number Declarations 2.1.4, 7.2.6, 8.3.8
3.3 Types and Subtypes ... 3.3.2, 4.1.5, 5.3.1, 5.3.3, 5.5.1, 5.9.1, 7.1.2,

7.2.8, 7.7.4, 8.1, 8.1.4
3.3.1 Type Declarations 2.1.4, 3.3.2, 3.4.1, 5.3.1, 5.3.2, 7.2.8
3.3.2 Subtype Declarations 3.4.1, 5.3.1, 5.5.1, 7.2.1, 7.2.8
3.3.3 Classification of Operations
3.4 Derived Types 3.4.1, 5.3.1, 7.2.8
3.5 Scalar Types .. 3.4.1
3.5.1 Enumeration Types 2.1.4, 3.4.2, 3.4.3
3.5.2 Character Types ... 7.1.3
3.5.3 Boolean Types
3.5.4 Integer Types 5.3.2, 7.1.1, 7.1.2, 7.2.1, 9.11
3.5.5 Operations of Discrete Types
3.5.6 Real Types 7.1.1, 7.1.2, 9.11
3.5.7 Floating Point Types 5.3.2, 7.1.1, 7.1.2, 7.2.1, 7.2.2, 7.2.3, 9.11
3.5.8 Operations of Floating Point Types 7.2.2, 7.2.3, 7.2.10
3.5.9 Fixed Point Types 5.3.2, 7.1.1, 7.1.2, 7.2.1, 9.11
3.5.10 Operations of Fixed Point Types
3.6 Array Types 5.3.2, 5.5.1, 5.5.2, 5.6.2, 5.9.3, 7.3.1, 8.3.9
3.6.1 Index Constraints and Discrete Ranges 5.5.1, 5.5.2, 5.6.2, 7.3.1
3.6.2 Operations of Array Types 5.5.1, 5.5.2, 5.6.2, 8.3.9
3.6.3 The Type String
3.7 Record Types 5.3.2, 5.4.1, 5.4.2, 5.9.3, 9.2
3.7.1 Discrim inants 5.4.1, 5.4.2, 7.3.1
3.7.2 Discriminant Constraints 5.4.1, 5.4.2, 7.3.1
3.7.3 Variant Parts 5.4.1, 5.4.2, 9.2
3.7.4 Operations of Record Types 5.4.1, 5.4.2
3.8 Access Types 5.4.3, 5.9.2, 5.9.6, 6.1.2, 6.1.3, 6.2.2, 7.3.1, 7.3.2,

7.6.7,7.7.4

APPENDIX A 201

3.8.1 Incomplete Type Declarations 5.4.3
3.8.2 Operations of Access Types 5.4.3, 7.3.1
3.9 Declarative Parts

4. Names and Expressions

4.1 Nam es 3.3, 3.3.1, 8.2.2, 8.2.3
4.1.1 Indexed Components
4.1.2 Slices .. 5.6.2
4.1.3 Selected Components
4.1.4 Attributes
4.2 Literals
4.3 A ggregates .. 5.2.2, 9.8
4.3.1 Record Aggregates
4.3.2 Array Aggregates

4.4 Expressions 2.1.1, 2.1.3, 4.1.3, 5.3.1, 5.5.1, 5.6.1, 7.1.10, 7.2.2,
7.2.8, 7.2.9, 7.2.11, 8.3.8, 9.1, 9.10

4.5 Operators qnd Expression Evaluation . 2.1.3, 5.3.1, 5.5.3, 5.5.5, 5.6.1,
5.7.2, 7.1.10, 7.2.2, 7.2.8, 7.2.9, 7.2.11, 9.10

4.5.1 Logical Operators and Short-circuit Control Forms 2.1.5, 5.5.4,
5.5.5, 5.6.5

4.5.2 Relational Operators and Membership Tests 5.5.4, 5.5.5, 5.5.7,
5.6.5, 7.2.9, 7.2.11

4.5.3 Binary Adding Operators
4.5.4 Unary Adding Operators
4.5.5 Multiplying Operators
4.5.6 Highest Precedence Operators 5.5:3, 5.6.1, 9.10
4.5.7 Accuracy of Operations with Real Operands .. 5.5.7, 7.1.2, 7.2.1, 7.2.2,

7.2.3, 7.2.4, 7.2.8

4.6 Type Conversions 5.3.1, 5.5.6, 5.9.1, 7.2.6, 7.2.8
4.7 Qualified Expressions 5.5.6, 7.2.8
4.8 Allocators... 5.4.3, 5.9.2, 5.9.6, 6.1.2, 6.1.3, 6.2.2, 7.3.1. 7.3.2, 7.6.7

4.9 Static Expressions and Static Subtypes 3.3.5, 5.3.1, 7.2.6
4.10 Universal Expressions 7.2.6

5. Statements

5.1 Simple and Compound Statements - Sequencer of Statements 2.1.2,
2.1.6, 2.1.8, 5.6.1, 9.2, 9.10

5.2 Assignment Statement 2.1.3, 5.6.2

202 Ada QUALITY AND STYLE

5.2.1 Array Assignments 2.1.5
5.3 If Statements 2.1.5, 3.2.4, 5.6.1, 5.6.3, 5.6.5, 9.2, 9.10
5.4 Case Statements 3.2.4, 5.6.1, 5.6.3, 9.2, 9.10
5.5 Loop Statements .. 5.1.1, 5.1.3, 5.6.1, 5.6.2, 5.6.4, 5.6.5, 5.6.6, 6.2.4,

7.4.2, 9.2, 9.10
5.6 Block Statements 3.2.4, 5.1.2, 5.6.1, 5.6.9, 5.8.5, 6.3.1, 9.2, 9.10
5.7 Exit Statements 2.1.5, 5.1.1, 5.1.3, 5.6.4, 5.6.5, 5.6.6
5.8 Return Statem ents .. 5.6.8
5.9 Goto Statemen. 5.6.7, 9.2

6. Subprograms

6.1 Subprogram Declarations 2.1.5, 2.1.8, 3.3.4, 4.1.2, 4.1.5, 4.2.1, 4.2.4,
5...1, 5.2.5, 5.6.6, 5.6.8, 5.6.9, 5.8.5, 5.9.3,6.3.1,

7.1.4, 7.1.5, 7.1.8, 8.1, 8.3.7, 8.3.9, 9,9,
6.2 Formal Parameter Modes . 2.1.5, 4.1.2, 5.2.1, 5.2.4, 5.9.3, 7.1.5, 8.3.7
6.3 Subprogram Bodies 3.2.4, 4.1.2, 5.1.4, 7.1.4, 7.1.5,

7.1.8, 8.3.7, 9.2, 9.3
6.3.1 Conform ance Rules 5.9.3
6.3.2 Inline Expansion of Subprograms 5.6.9
6.4 Subprogram Calls 5.2.2, 5.6.6, 5.9.3, 7.1.5, 8.3.7, 8.3.9, 9.8,
6.4.1 Parameter Associations 5.2.2, 5.9.3,8.1.4, 8.2.1, 8.3.7, 8.3.9, 9.8
6.4.2 Default Parameters ... 5.2.2, 5.2.3, 5.2.5, 5.6.6, 5.9.3, 8.3.7, 9.8, 9.9
6.5 Function Subprograms ... 2.1.5, 3.3.4, 4.1.2, 4.1.3, 5.6.8, 5.9.3, 5.9.6
6.6 Parameter and Result Type Profile - Overloading of Subprograms . 5.7.3,

5.9.3, 8.1.4, 8.2.1
6.7 Overloading of Operators 5.7.4

7. Packages

7.1 Package Structure 4.1.4, 4.1.5, 4.1.6, 4.2.1, 4.3.1, 4.3.2, 7.1.4,
7.1.6, 8.1, 8.2.1, 8.3.1, 9.2,

7.2 Package Specifications and Declarations 3.3.4, 4.1.1, 4.1.4,
4.1.5, 4.1.6, 4..2.1, 4.2.2, 4.2.4, 4.3.1, 4.3.2, 5.1.4,

5.7.1, 5.7.2; 5.9.6, 7.1.4,7.1.6, 7.1.7. 7.1.8, 8.1,

8.2.1, 8.3.1, 9.3,
7.3 Package Bodies 3.2.4, 4.1.1, 4.1.4, 4.1.5, 4.1.6, 4.3.1, 4.3.2,

5.1.4, 7.1.4, 7.1.6, 7.1.7, 7.1.8, 8.1, 8.2.1, 8.3.1
7.4 Private Type and Deferred Constant Declarations 5.3.3, 8.1
7.4.1 Private Types 5.3.3, 7.2.1

APPENDIX A 203

7.4.2 Operations of a Private Type 5.3.3
7.4.3 Deferred Constants
7.4.4 Lim ited Types .. 5.3.3
7.5 Example of a Table Management Package
7.6 Example of a Text Handling Package

8. Visibility Rules

8.1 Declarative Region 4.1.4, 4.1.6, 4.2.3
8.2 Scope of Declarations 4.1.4, 4.1.6, 4.2.3, 4.3.2, 7.6.7, 8.1
8.3 Visibility 2.1.8, 4.1.4, 4.1.6, 4.2.1, 4.2.3, 5.7.1, 8.1
8.4 Use Clauses 2.1.8, 4.2.1, 4.2.3, 5.6.9, 5.7.1, 5.7.2, 8.1, 9.3
8.5 Renaming Declarations 3.4.1, 4.2.4, 5.6.9, 5.7.1, 5.7.2
8.6 The Package Standard 7.2.1
8.7 The Context of Overload Resolution 4.1.6

9. Tasks

9.1 Task Specifications and Task Bodies 2.1.8, 3.2.4, 3.3.4,
4.1.1, 4.1.7, 4.2.4, 5.1.4, 5.3.2, 5.8.5, 6.1.3, 6.1.4,

6.1.1, 6.1.2, 6.3.1, 7.1.4, 7.6.2, 9.2, 9.3
9.2 Task Types and Task Objects .. 4.1.7, 5.9.3, 6.1.1, 6.1.2, 6.1.3, 6.3.1
9.3 Task Execution - Task Activation 6.1.1, 6.1.4, 6.2.2, 6.3.1,

6.3.2, 7.4.1, 7.4.5
9.4 Task Dependence - Termination of Tasks ... 6.1.1, 6.1.4, 6.2.2, 6.3.1,

6.3.2, 6.3.3, 6.3.4, 7.4.1

9.5 Entries, Entry Calls, and Accept Statements 3.3.4, 4.1.7, 4.2.4,
5.1.4,5.2.1, 5.2.4, 5.2.5, 5.9.4, 6.1.1, 6.1.3, 6.1.4,6.1.5,

6.2.1, 6.2.2, 6.2.3, 6.2.4, 6.2.5, 6.3.1, 6.3.2, 6.3.3, 7.6.2,

8.1.4, 8.2.1, 9.2, 9.9
9.6 Delay Statements, Duration, and Time 4.1.7, 6.1.5, 7.1.1,

7.4.2, 7.4.3, 9.11
9.7 Select Statements % 6.1.5, 6.2.4, 6.2.5, 7.4.4
9.7.1 Selective Waits 6.1.5, 6.2.1, 6.2.2, 6.2.4, 6.3.1, 6.3.3, 7.4.4, 9.2
9.7.2 Conditional Entry Calls 6.1.5, 6.2.4, 9.2
9.7.3 Timed Entry Calls 6.1.5, 6.2.2, 6.2.4, 9.2
9.8 Priorities 4.1.7, 6.1.1, 6.1.4, 6.1.5, 6.2.4, 7.4.5, 7.4.5
9.9 Task and Entry Attributes 7.3.1
9.10 Abort Statements 6.2.2, 6.3.2, 7.4.6

204 Ada QUALITY AND STYLE

9.11 Shared Variables 6.2.3, 7.4.7
9.12 Example of Tasking 4.1.7

10. Program Structure and Compilation Issues

10.1 Compilation Units - Library Units 4.1.1, 4.1.4, 4.2.3, 5.7.1,
6.3.1, 7.1.5, 7.1.7, 8.1

10.1.1 Context Clauses - With Clauses 4.2.1, 4.2.3, 5.7.1, 9.2, 9.3
10.1.2 Examples of Compilation Units
10.2 Subunits of Compilation Units 4.1.1, 4,2.3, 7.1.7, 8.1, 9.2
10.2.1 Examples of Subunits
10.3 Order of Compilation 4.2.3, 7.1.7, 8.1
10.4 The Program Library 8.1
10.5 Elaboration of Library Units
10.6 Program Optim ization 8.3.10

11. Exceptions

11.1 Exception Declarations ... 4.3.1, 4.3.2, 5.8.1, 5.8.2, 7.5.3, 8.1.4, 8.2.1

11.2 Exception Handlers 4.3.1, 4.3.2, 5.6.9, 5.8.1, 5.8.2, 5.8.3, 5.8.4,
5.8.5, 5.9.5, 5.9.6, 6.2.1, 6.2.2, 6.3.4, 7.5.1, 7.5.2,

7.5.3, 8.3.12, 9.2
11.3 Raise Statements 4.3.1, 4.3.2, 5.8.2, 7.5.1, 7.5.3, 8.1.4, 8.2.1
11.4 Exception Handling 4.3.1, 4.3.2, 5.8.1, 5.8.2, 5.8.3, 5.8.4, 5.8.5,

5.9.5, 5.9.6, 6.2.1, 6.2.2, 6.3.4, 7.5.1, 7.5.2, 7.5.3, 8.3.12
11.4.1 Exceptions Raised During the Execution of Statements 5.6.3, 5.8.1,

5.8.2, 7.5.1
11.4.2 Exceptions Raised During the Elaboration of Declarations 5.8.1,

5.8.2, 7.5.1
11.5 Exceptions Raised During Task Communication 5.8.1, 5.8.2,

6.2.1, 7.5.1
11.6 Exceptions and Optimization
11.7 Suppressing Checks 5.9.5, 8.3.12

12. Generic Units

12.1 Generic Declarations 2.1.8, 3.3.4, 4.2.2, 5.2.1, 8.1, 8.1.4, 8.2.1,
8.3.1, 8.3.2, 8.3.3, 8.3.4, 9.2, 9.3

12.1.1 Generic Formal Objects 2.1.8, 5.2.4, 8.1, 8.3.2
12.1.2 Generic Formal Types 2.1.8, 8.1, 8.3.2, 8.3.3

APPENDIX A 205

12.1.3 Generic Formal Subprograms 2.1.8, 8.1, 8.3.2, 8.3.4
12.2 Generic Bodies 8.1, 8.3.1, 8.3.2, 9.3
12.3 Generic Instantiation 3.3.4, 5.2.2, 8.1, 8.1.4, 8.2.1,

8.3.1, 8.3.2. 9.2, 9.8
12.3.1 Matching Rules for Formal Objects
12.3.2 Matching Rules for Formal Private Types 5.3.3
12.3.3 Mat-hing Rules for Formal Scalar Types
12.3.4 Matching Rules for Formal Array Types
12.3.5 Matching Rules for Formal Access Types
12.3.6 Matching Rules for Formal Subprograms
12.4 Example of a Generic Package

13. Representation Clauses and Implementation-Dependent Features

13.1 Peoresentation Clauses 7.1.6, 7.6.1
13.2 Lt.ngth Clauses 5.4.3, 6.1.2, 7.1.6, 7.3.1, 7.3.2, 7.6.1
13.3 Enumeration Representation Clauses 3.4.2, 7.1.6, 7.6.1
13.4 Record Repiesentation Clauses 7.1.6, 7.6.1, 9.2
13.5 Address Clauses 5.9.4, 7.1.6, 7.6.1, 7.6.2
13.5.1 Interrupts 5.9.4, 6.1.1, 7.4.5, 7.6.1, 7.6.2
13.6 Change of Representation 7.1.6, 7.6.1
13.7 The Package System 7.1.6, 7.4.3, 7.6.3
13.7.1 Sys'em-Dependent Nzmed Numbers
13.7.2 Represer:ation Attributes 7.3.1, 7.3.2
13.7.3 Representation Attributes of Real Types 7.2.2, 7.2.3, 7.2.4
13.o Machine Code Insertions 7.1.6, 7.6.4
13.9 Interface to Other Languages 5.9.3, 7.1.6, 7.6.5, 7.6.8
13.10 Unchecked Programming 5.9.1, 7.1.6, 7.6.7, 7.6.8
13.10.1 Unchecked Storage Deallocation 5.4.3, 5.9.2, 7.6.7
13.10.2 Unchecked Type Conversions 5.9.1, 7.6.8

14. Input-Output

14.1 External Files and File Objects 7.7.1, 7.7.3, 7.7.4
14.2 Sequential and Direct Files
14.2.1 File M anagement 7.7.2, 7.7.3
14.2.2 Sequential Input-Output 7.7.4
14.2.3 Specification of the Package Sequential JO
14.2.4 Direct Input-Output 7.7.4
14.2.5 Specification of the Package Direct 1O

206 Ada QUALITY AND STYLE

14.3 Text Input-Output 4.2.2
14.3.1 File M anagem ent .. 7.7.3
14.3.2 Default Input and Output Files
14.3.3 Specification of Line and Page Lengths
14.3.4 Operations on Columns, Lines, and Pages
14.3.5 Get and Put Procedures
14.3.6 Input-Output of Characters and Strings
14.3.7 Input-Output for Integer Types
14.3.8 Input-Output for Real Types
14.3.9 Input-Output for Enumeration Types
14.3.10 Specification of the Package TextIO 4.2.2
14.4 Exceptions in Input-Output
14.5 Specification of the Package 10 Exceptions
14.6 Low Level Iriput-Output 7.7.5
14.7 Example of Input-Output

Annexes

A. Predefined .anguage Attributes ... 3.3.5, 3.4.2, 5.3.3, 5.5.1, 5.5.2, 6.2.2,
7.2.10, 7.2.11, 7.3.1, 7.3.2

B. Predefined Language Pragmas 4.1.2, 4.1.4, 4.2.4, 5.4.3. 5.6.9, 5.9.5,
6.1.4, 6.2.3, 7.4.5, 7.4.7, 7.6.5

C. Predefined Language Environment 3.4.1, 5.4.3, 5.8.2, 5.8.5, 5.9.6, 6.1.3,
6.1.5, 6.2.1, 7.1.1, 7.1.2, 7.1.3, 7.2.1, 7.2.2, 7.2.4,

7.4.3, 7.5.1, 7.5.2, 9.11

Appendices

D. Glossarv
E. Syrtax Summary
F. Implementation-Dependent Characteristics 7.1.1, 7.1.2, 7.1.6, 7.2.1, 7.2.2,

7.2.4, 7.3.1, 7.3.2, 7.4.3, 7.5 3, 7.6.1, 7.6.2, 7.6.3,
7.6.4, 7.6.5, 7.6.6, 7.7.1, 9.11

REFERENCES

[1] ACVC (Ada Compiler Validation Capability). Ada Validation Facility,
ASD/SIOL. Wright-Patterson Air Force Base, OH.

[21 Anderson, T. and R. W. Witty. 1978. Safe Programming. BIT (Tidscrift
Nordisk for Informations behandling) 18:1-8.

[3] ARTEWG. November 5, 1986. Catalogue of Ada Runtime Implementation
Dependencies, draft version. Association for Computing Machinery,
Special Interest Group for Ada, Ada Run-Time Environments Working
Group.

[4] Barnes, J. G. P. 1989. Programming in Ada. third edition. Reading, MA.:
Addison-Wesley.

[51 Booch, G. 1987. Software Components with Ada - Structures, Tools and
Subsystems. Menlo Park, Ca.: The Benjamin/Cummings Publishing
Company, Inc.

[6] Booch, G. 1987. Software Engineering with Ada. second edition. Menlo Park,
CA: The Benjamin/Cummings Publishing Company, Inc.

[7] Charrette, R. N. 1986. Software Engineering Environments Concepts and
Technology. Intertext Publications Inc. New York: McGraw-Hill Inc.

[8] Cohen, N. H. 1986. Ada as a Second Language. New York: McGraw-Hill Inc.

207

208 Ada QUALITY AND STYLE

[9] Conti, R. A. March 1987. Critical Run-Time Design Tradeoffs in an Ada
Implementation. Proceedings of the Joint Ada Conference, Fifth National
Conference on Ada Technology and Washington Ada Symposium.
pp. 486-495.

[101 Cristian, F. March 1984. Correct and Robust Programs. IEEE Transactions on
Software Engineering. SE-10(2):163-174.

111] Foreman, J. and J. Goodenough. May 1987. Ada Adoption Handbook: A
Program Manager's Guide. Version 1.0, CMU/SEI-87-TR-9
ESD-TR-87-110. Software Engineering Institute.

1121 Goodenough, J. B. March 1986. A Sample of Ada Programmer Errors.
Unpublished draft resident in the Ada Repository under file name
PD2 : <ADA. EDUCATION>PROGERRS. DOC. 2.

[13] MacLaren, L. November 1980. Evolving Toward Ada in Real Time Systems.
ACM Sigplan Notices. 15(11):146-155.

[14] Matthews, E. R. September, October 1987. Observations on the Portability of
Ada I/O. ACM Ada Letters. VII(5):100-103.

[15] Melliar-Smith, P. M. and B. Randell. March 1987. Software Reliability: The
Role of Programmed Exception Handling. ACM Sigplan Notices.
12(3):95-100 .

[16] Mowday, B. L. and E. Normand. November 1986. Ada Programming
Standards. General Dynamics Data Systems Division Departmental
Instruction 414.717.

[17] NASA. May 1987. Ada Style Guide. Version 1.1, SEL-87-002. Goddard Space
Flight Center: Greenbelt, MD 20771.

[18] Nissen, ;. and P. Wallis. 1984. Portability and Style in Ada. Cambridge
University Press.

[19] Pappas, F. March 1985. Ada Portability Guidelines. DTIC/NTIS #AD-A160
390.

[20] Pyle, I. C. 1985. The Ada Programming Language. second edition. UK.:
Prentice-Hall International.

[21] Rosen, J. P. November, December 1987. In Defense of the 'Use' Clause. ACM
Ada Letters. VI1(7):77-81.

REFERENCES 209

[22] Ross, D. March-April 1989. The Form of a Passive Iterator. ACM Ada Letters.
IX(2):102-105.

[23] Schneiderman, B. 1986. Empirical Studies of Programmers: The Territory,
Paths and Destinations. Empirical Studies of Programmers. ed. E. Soloway
and S. Iyengar. pp. 1-12. Norwood, NJ: Ablex Publishing Corp.

[24] Soloway, E., J. Pinto, S. Fertig, S. Letovsky, R. Lampert, D. Littman, K. Ewing.
December 1986. Studying Software Documentation From A Cognitive
Perspective: A Status Report. Proceedings of the Eleventh Annual Software
Engineering Workshop. Report SEL-86-006, Software Engineering

Laboratory. Greenbelt, Maryland:NASA Goddard Space Flight Center.

[25] St.Dennis, R. May 1986. A Guidebook for Writing Reusable Source Code in Ada
-Version 1.1. Report CSC-86-3:8213. Golden Valley, Minnesota:
Honeywell Corporate Systems Development Division.

[261 United Technologies. February 9, 1987. CENC Programmer's Guide. Appendix
A Ada Programming Standards.

[27] U.S. Department of Defense, Ada Joint Program Office. 1984. Rationale for the
Design of the Ada Programming Language.

[28] U.S. Department of Defense, Ada Joint Program Office. January 1983.
Reference Manual for the Ada Programming Language.
ANSI/MIL-STD-1815A.

[29] Volz, R. A., Mudge, Naylor and Mayer. May 1985. Some Problems in
Distributing Real-time Ada Programs Across Machines. Ada in Use.
Proceedings of the Ada International Conference. pp. 14-16. Paris.

210 Ada QUALITY AND STYLE

BIBLIOGRAPHY

ACVC (Ada Compiler Validation Capability). Ada Validation Facility, ASD/SIOL.
Wright-Patterson Air Force Base, OH.

Anderson, T. and R. W. Witty. 1978. Safe Programming. BIT (Tidscrift Nordisk for
Informations behandling) 18:1-8.

ARTEWG. November 5, 1986. Catalogue of Ada Runtime Implementation
Dependencies, draft version. Association for Computing Machinery, Special
Interest Group for Ada, Ada Run-Time Environments Working Group.

Bardin, Thompson. Jan-Feb 1988. Composable Ada Software Components and the
Re-Export Paradigm. ACM Ada Letters. VIII(1):58-79.

Bardin. Thompson. March-April 1988. Using the Re-Export Paradigm to Build
Composable Ada Software Components. ACM Ada Letters. VIII(2):39-54.

Barnes, J. G. P. 1989. Programming in Ada. third edition. Reading, MA.:
Addison-Wesley.

Booch, G. 1987. Software Components with Ada - Structures, Tools and Subsystems.
Menlo Park, CA.: The Benjamin/Cuimings Publishing Company, Inc.

Booch, G. 1987. Software Engineering with Ada. second edition. Menlo Park, CA: The
Benjamin/Cummings Publishing Company, Inc.

Brooks, F. B. 1975. The Mythical Man-Month. Essays on Software Engineering.
Reading, MA:Addison-Wesley.

211

212 Ada QUALITY AND STYLE

Chareue, R. N. 118f. cfti are Ergineering Envirornments Cocepsa wd TeC1.,hhL4,,Oy.
Intertext Publications Inc. New York: McGraw-Hill Inc.

Cohen, N. H. 1986. Ada as a Second Language. New York: McGraw-Hill Inc.

Conti, R. A. March 1987. Critical Run-Time Design Tradeoffs in an Ada
Implementation. Proceedings of the Joint Ada Conference, Fifth National
Conference on Ada Technology and Washington Ada Symposium. pp. 486-495.

Cristian, F. March 1984. Correct and Robust Programs. IEEE Transactions on
Software Engineering. SE-10(2):163-174.

Foreman, J. and J. Goodenough. May 1987. Ada Adoption Handbook: A Program
Manager's Guide. Version 1.0, CMU/SEI-87-TR-9 ESD-TR-87-110.
Software Engineering Institute.

Gary, B. and D. Pokrass. 1985, Understanding Ada A Software Engineering Approach.
John Wiley & Sons.

Goodenough, J. B. March 1986. A Sample of Ada Programmer Errors. Unpublished
draft resident in the Ada Repository under file name
PD2 :<ADA.EDUCATION>PROGERIS.DOC. 2.

Herr, C. S. August 1987. Compiler Validation and Reusable Software. St. Louis: a
Report from the CAMP Project, McDonnell Douglas Astronautics Company.

International Workshop on Real-Time Ada Issues. 1987. ACM Ada Letters. VII(6).
Mortonhampstead, Devon, U.K.

International Workshop on Real-Time Ada Issues II. 1988. ACM Ada Letters. VIII(6).
Mortonhampstead, Devon, U.K.

Matthews, E. R. September, October 1987. Observations on the Portability of Ada I/O.
ACM Ada Letters. VII(5):100-103.

MacLaren, L. November 1980. Evolving Toward Ada in Real Time Systems. ACM
Sigplan Notices. 15(11):146-155.

Melliar-Smith, P. M. and B. Randell. March 1i987. Software Reliability: The Role of
Programmed Exception Handling. ACM Sigplan Notices. 12(3):95-100 .

Mowday, B. L. and E. Normand. November 1986. Ada Programming Standards.
General Dynamics Data Systems Division Departmental Instruction 414.717.

BIBLIOGRAPHY 213

NASA. May 1987. Ada Style Guide. Version 1.1, SEL-87-002. Goddard Space Flight
Center: Gzeenbelt, MD 20771.

Nissen, J. C. D., P. Wallis, B. A., Wichmann, et al. 1982. Ada-Europe Guidelines for
the Portability of Ada Programs. ACM Ada Letters. I(3):44-61.

Nissen, J. and P. Wallis. 1984. Portability and Style in Ada. Cambridge University

Press.

Pappas, F. March 1985. Ada Portability Guidelines. DTIC/NTIS #AD-A160 390.

Pyle, I. C. 1985. The Ada Programming Language. second edition. UK:Prentice-Hall
International.

Rosen, J. P. November, December 1987. In Defense of the 'Use' Clause. ACM Ada
Letters. VII(7):77-81.

Ross, D, March-April 1989. The Form of a Passive Iterator. ACM Ada Letters.
IX(2):102-105.

Rymer, J. and T. McKeever. September 1986. The FSD Ada Style Guide. IBM Federal
Systems Division Ada Coordinating Group.

Schneiderman, B. 1986. Empirical Studies of Programmers: The Territory, Paths and
Destinations. Empirical Studies of Programmers. ed. E. Soloway and S.
Iyengar. pp. 1-12. Norwood, NJ: Ablex Publishing Corp.

SofTech Inc. December 1985. ISEC Reusability Guidelines. Report 3285-4-247/2.
also US Army Information Systems Engineering Command. Waltham MA.

Soloway, E., J. Pinto, S, Fertig, S. Letovsky, R. Lampert, D. Littm.an, K. Ewing.
December 1986. Studying Software Documentation From A Cognitive
Perspective: /' Status Report. Proceedings of the Eleventh Annual Software
Engineering Workshop. Report SEL-86-006, Software Engineering
Laboratory. Greenbelt, Maryland:NASA Goddard Space Flight Center.

Stark M. and E. Seidewitz. March 1987. Towards A General Object-Oriented Ada
Lifecycle. In Proceedings of the Joint Ada Conference, Fifth National
Conference on Ada Technology and Washington Ada Symposium. 213-222.

St.Dennis, R. May 1986. A Guidebook for Writing Reusable Source Code in Ada
-Version 1.1. Report CSC-86-3:8213. Golden Valley, Minnesota: Honeywell
Corporate Systems Development Division.

214 Ada QUALITY AND STYLE

United Technologies. February 9, 1987. CENC Programmer's Guide. Appendix A Ada
Prugramming Standards.

U.S. Department of Defense, Ada Joint Program Office. 1984. Rationalefor the Design
of the Ada Programming Language.

U.S. Department of Defense, Ada Joint Program Office. January 1983. Reference
Manual for the Ada Programming Language. ANSI/MIL-STD-1815A.

VanNeste, K.F. January/February 1986. Ada Coding Standards and Conventions.
ACM Ada Letters. VI(1):41-48.

Volz, R. A., Mudge, Naylor and Mayer. May 1985. Some Problems in Distributing
Real-time Ada Programs Across Machines. Ada in Use, Proceedings of the Ada
International Conference. pp. 14-16. Paris.

INDEX

For convenience, each entry in this index refers to the page number of the beginning of
the guideline containing the indexed item rather than the page number on which the
indexed item appears.

Attributes '\IAL 35
'VALUE, 35

'ADDRESS, 72

'BASE, 72 A
'CALLABLE, 116

'CONSTRAINED, 72 abbreviation, 19, 21, 28, 93, 164
'COUNT, 116 abortstatement, 116, 121, 142

'FIRST, 78, 79 task, 111

'IMAGE, 35 abstract data type, 45

'LAST, 78, 79 abstraction, 29, 30, 41, 43, 50, 55, 65, 72,
74, 90, 95, 96, 97, 98, 110, 162, 164,

'LENGTH, 79 165
'POS, 35 accept statement, 64, 111, 113, 114, 119,

'PRED, 32, 35 122, 178

'RANGE, 78, 79 access
collection size, 144

'SIZE, 72, 139 synchronization, 110

'SMALL, 128, 139, 185 task, 110, 111, 116
type, 100, 102, 139, 140, 147, 151

'SUCC, 32, 35 variable, 76

T1ERMINATED, 116 accuracy, 20, 136, 137

215

216 Ada QUALITY AND STYLE

acronym, 28 asynchronous

actual parameter, 66, 71, 14 attribute value change, 116
control, 110

adaptation, 157, 158, 160, 165, 168 interrupt, 142

address clause, 101 programs, 109

aggregate, 66 attribute
'ADDRESS, 72

alas, 76, 111, 121 'BASE, 72

alignment 'CALLABLE, 116

and nesting, 83 'CONSTRAINED, 72

declaration, 12 'COUNT, 116

operator, 11 'FIRST, 78, 79

parameter, 12, 181 'IMAGE, 35

record, 178 'LAST, 78, 79

source text, 7 'LENGTH, 79

vertical, 8, 11, 12, 181 'POS, 35
'PRED, 32, 35

allocation, 116 'RANGE, 78, 79
task, 111 'SIZE, 72, 139

allocator, 76, 111 'SMALL, 128, 139, 185
'SUCC, 32, 35

alternative 'TERMINATED, 116
delay, 114, 119, 122 'VAL, 35
select, 141 'VALUE, 35
terminate, 114, 120, 122 implementation-defined, 146

anonymous numeric, 135

task type, 110
type, 71, 75, 110 B

array
constrained, 78 based literals, 137
parallel, 74
size, 135 binary operator, 8, 177

slices, 84 blank lines, 14
type, 100 blank space, 89
unconstrained, 71, 139, 172 . s
use of attributes with, 78, 79 block

indentation, 178
assignment localizing cause of exception, 98

private types, 72 localizing scope of use clause, 91
statement, 84, 102 marker comment for, 26

assumptions, global, 185 name, 26, 63, 83

INDEX 217

nesting, 63 clause
statement, 90 address, 101

blocked, 53, 112, 113 context, 15, 48, 51, 91, 93, 178, 182
length, 76

body renames, 21, 91, 93
function, 64, 91, 98, 101, 133 representation, 35, 139, 140, 144, 145
package, 64, 91, 101, 102, 132, 133 use, 91, 93
procedure, 64, 91, 98, 101, 133 with, 51, 91
stubs, 178 code, structure, 19, 22, 23, 26
subprogram, 64, 91, 98, 101, 133
task, 64, 98, 101, 122 collection size, 139

bounds comment, 19, 22, 23
for reuse, 162

loop, 88 header, 24, 183
highlighting, 11, 22, 27, 53, 89, 90, 120,

busy wait, 113, 119, 141 121, 130, 187
marker, 22, 26, 84
meta, 27

C obviated by constants, 32
obviated by naming, 28, 62, 63, 66

CALENDAR, 141 removal before delivery, 96
unit function description. 24

CONSTRAINT_ERROR, 95, 143 communication, 114, 117, 119, 120

CONTROLLED, 76 compilation

call conditional, 172
conditional entry, 53, 119, 178 context, 50, 51, 91
default parameters in, 67 separate, 42, 132, 187
entry, 53, 66, 111, 116, 119, 178, 184 component
exception propagation through, 95 aggregate, 66
function, 66, 102, 184 association, 66
procedure, 66, 184 record, 75, 76
subprogram, 66, 184 compound
timed entry, 53, 116, 119, 178 name, 19

capitalization, 19, 21, 182, 183 statement, 15, 64

case concurrent
lower, 20, 21, 182, 183 algorithms, 110
statement, 26, 83, 84, 90, 178 programming, 109, 114, 140

upper, 20, 21, 182, 183 condition

category, 29 continuation, 85
exception, 120

character set, non-standard, 130 termination, 85

218 Ada QUALITY AND STYLE

conditional type, 70, 81, 99, 137, 147
compilation, 172 unchecked, 99
entry call, 53, 116, 119, 178 copyright notice, 24, 183
expression, 26, 83, 139 cyclic executive, 120, 142
statement, 172

configuration control, 45 D
constant, 32

as actual parameters to main program, DURATION, 128, 141, 185
131 dangling references, 76

examples, 187 data
expression, 171, 172 coupling, 47
in aggregate initializations, 66, 184 dynamic, 76
in establishing interrupt entries, 145 static, 76
symbolic, 171 structure, 29, 74, 76, 139, 169, 173

constraint, 34, 70, 99, 135 deadlock, 53, 109
declaration

context alignment, 12
clause. 15, 48, 51, 91, 93, 173, 182 automatic change, 171
compilation, 50, 51, 91 constant, 32
dependency, 48 digits, 135
of exceptions, 54 exception, 54
to shorten names, 28 function call in, 102

unchecked conversion, 99 grouping, 45

continuation hiding. 93

condition, 85 minimization, 48

line, 9, 178 name, 55
named number, 32

control number per line, 15
expression, 85 numeric, 136
flow, 95 parameter, 69, 184

nesting, 21, 83, 185 range, 135

short circuit, 87, 187 record, 74, 102
renames. 21, 91, 93

structure, 9, 21, 94, 178 spacing, 14
synchronization, 110 sacin, 14task, 90, 110
thread of, 110 type, 29. 34, 135

conversion within blocks, 90
exception, 95 default
explicit, 72 initialization, 102
numeric, 20 parameter, 67, 69, 171

INDEX 219

de!ay else par, 114, 119, 122
alternative, 114, 119, 122 elsif, 83
interval. 113 embedded system, 128, 131, 134, 145, 148,

statement, 113, 141 1,

delimiter, 8, 177 encapsulation, 41, 45, 91, 132, 144, 187

dependency end, name, 64
context, 48
implementation, 24, 119 ntry
machine, 24 attnbute, 116

task, 120, 121, 142 call, 53, 66, 111, 116, 119, 178, 184
default parameter, 67

derived type, 34, 69, 70, 138 hiding, 53

design interrupt, 101, 144, 145

concurrent, 109 minimizing number of, 119

document, 23, 24 name, 181

impact of typing, 34 name selection, 30

impact on nesting. 83 parameter, 65, 68

principles, 157 queue, 116

reusable part, 173 task, 101, 111, 145, 162

sequential, 109 entry call

digits declaration, 13c conditional, 53, 116, 119, 178
timed, 53, 116, 119, 178

discriminant, 72, 139 enumeration

documentation. 7. 23, 24. 27, 29, 55, 84, literal, 12, 36, 91
120, 130. 132, 133, 136, 146, 148, 162, type, 35
164, 173 equality, tests for, 72

drift. time, 113 erroneous execution, 99, 100, 101, 102,

dropped pointer, 111 147

dynamic exception, 54, 94, 95

allocation, 99, 140 avoiding, 165

data, 76 CONSTRAINTERROR, 95, 143

storage, 139, 140 cause, 98

task, 110, 111, 116 check, 101
condition, 120
conversion, 95

E declaration, 54
export, 161

ELABORATE, 102 handler, 41, 55, 90, 95, 96, 97, 98, 114,
122, 143, 144, 174, 187

elaboration, 32, 102 implementation-defined, 95, 98, 144

220 Ada QUALITY AND STYLE

NUMERICERROR, 143 naming conventions, 42
name, 54, 35 organization, 42
others, 122 temporary, 11%
PROGRAM ERROR, 99, 114 fixed point
predefined, 95. 97, 98, 143 number, 82
propagation, 54, 55, 97, 98, 101, 114, precision, 128, 185

174
raise, 55, 84, 102, 143, 161, 174 floating point

STORAGEERROR, 76 arithmetic, 135

suppress, 101 model, 136

TASKING ERROR, li, 114, 116 number, 82

user-defined, 95, 97 precision, 128, 13o, 185

type, 130, 135, 136

entry, 120 flow of control, 95

statement, 64, 85, 87, 187 for loop, 85, 88, 178

expression, 78 foreign languages, 74, 99, 103, 146, 147

alignment, 11, 12 formal parameter, 66, 184
as actual parameter. 66, 184 name, 65, 66, 184
conditional, 26, 83, 139 type matching, 71, 161, 162
constant, 171, 172 formatter, 7, 8, 9, 19, 21, 177
control, 85
function calls in, 44 fraction, 20

nesting, 83, 185 function
numeric, 134 and anonymous types, 72
order dependency within, 134 body, 64, 91, 98, 101, 132
parenthesizing, 79 call, 66, 102, 184
qualified, 81 default parameter, 67
relational. 80, 82 example, 187
spacing. 8, 177 generic, 166
static, 32 INLINE, 90
universalreal, 137 naming, 30

overload, 93
parameter, 131

F parameter list, 65
'procedure versus, 44

FORM. 150 recursive calls, 88
relation to nesting, 83

fault, 95, 98 return, 90

file side effect, 44

close, 97, 150 specification, 178
header, 24, 183, 187 functional cohesion, 46

INDEX 221

G INTERFACE, 146
identifier, 19, 28

garbage collection, 76, 99, 139, 151 abbreviation, 21, 164
generic constant, 32aid to adaption, 165 number, 32function, 166 object, 29

funcion,166reusable part, 164instantiation, 66, 158, 161, 165, 168, spelg 19, 21, 183
178, 184 spe, 9

names of units, 30 type, 29
package, 50, 54, 166 visibility, 48
parameter, 165, 166, 168, 170, 178 if statement, 26, 83, 84, 187
procedure, 166 implementation dependency, 24, 99, 119,
subprogram, 166 132, 139, 140, 144, 145, 146, 148, 150,
unit, 66, 157, 158, 166, 170 151

goto statement, 89 implementation-defined exception, 95, 98

guard, 114, 116, 141 indentation, 7, 9, 177, 178
of declarations, 12
of nested statements, 21, 83

H of pagination markers, 182
of parameter specifications, 181

handler inequality, tests for, 72
exception, 55, 90, 95, 96, 97, 98, 114, infinite loop, 88, 121

122, 143, 144, 174, 187 infix operator, 91, 93
others, 54, 55, 96
STORAGEERROR, 76 information hiding, 41, 45, 53, 55, 72, 91,

headers, file, 24, 183, 187 157,158,169
initialization

hiding abstraction, 165
declarations, 93 aggregate, 66
tasks, 53 default, 102

highlighting, 27 function calls in, 102
comment, 11, 22, 27, 53, 89, 90, 120, in declaration, 12

121, 130, 187 mandatory, 102

horizontal spacing, 7, 8, 177 input/output, 149, 150, 151
instantiation, generic, 30, 66, 158, 161,

165, 168, 184
interface

comments describing, 24
INLINE, 43, 45, 53, 90 foreign languages, 74, 99, 100, 146, 147

222 Ada QUALITY AND STYLE

minimizing, 48 example, 187
package, 35, 144, 146 in aggregates, 66, 184

interrupt linear independence of, 32

access to, 110 numeric, 78, 79, 137, 182

asynchronous, 142 spelling, 20

entry, 101, 144, 145 string, 8, 177

interval, delay, 113 local renames, 90

iteration, 85, 88 logical operator, 80

iterator, 169 loop
bounds, 88
busy wait, 113, 119
condition, 87

J exit, 82, 87
for, 85, 88

jitter, 113 indentation, 178
infinite, 88, 120, 121
invariant, 85

L name, 62, 64, 83
nesting, 62, 64, 187

LOW LEVEL 10, 151 range, 135
statement, 82

label, 89. 178 substituting slices, 84

length, line, 16 while, 85, 178

length clause, 76 lower case, 20, 21, 182, 183

library
package, 91 M
reuse, 93
unit, 42, 45, 48, 51, 91, 102, 120 machine code, 146

limited private type, 69, 72 machine dependency. 24, 45, 145, 146,

line 160, 183

blank, 14 main subprogram
continuation, 9, 178 handler for others, 96
length, 7, 16, 182 relationship to tasks, 110
statements per, 15 termination, 97, 120

linear independence, 32, 171 maintenance, 12, 22, 24, 27, 32, 41, 47, 48,

literal 51, 61, 67, 74, 78, 82, 93, 102, 109,

based, 137 157, 162

enumeration, 12, 36, 91 management, 7, 21, 185

INDEX 423

marker comment, 22, 26, 84 parameter, 66, 181

mathematical application, 134 predefined, 34
qualified, 21, 50, 90, 91, 93

membership test, 72 reusable, 164

meta comment, 27 simple, 91

mode
subprogram, 26, 181

indication, 68 subtype, 34
paramte , 68, 1task, 26, 110, 111
parameter, 12, 68, 181 type, 29, 34

model named
floating point, 136 constant, 145
interval, 138 number, 32, 137
numbers, 138tasking, 110 named association, 48, 184taskin, 110component, 66

modularity, 9, 45, 158 parameter, 66

multiprocessor architecture, 47, 110 nesting

mutual exclusion, 112, 117 block, 63
control structure, 21, 83, 185
expression, 83, 185
loop, 62, 64, 187

N package, 50
specification, 50

NUMERIR 10 non-interference, 117
non-terminating task, 120

name, 28, 30 normal termination, 120
abbreviation, 21, 164
block, 26, 63, 83 number
capitalization, 21 fixed point, 82
component, 66 floating point, 82
compound, 19 named, 32
declaration, 55 representation, 20, 182
end, 64 numeric
entry, 181 conversion, 20
exception, 55 declaration, 136
formal parameter, 65, 66 encoding, 35
loop, 62, 64, 83 expression, 134
number, 32 literal, 78, 79, 137, 182
object, 29, 34, 80 precision, 134, 135, 136, 185
obviating comments, 24 representation, 135
package, 26, 93 type, 134, 135, 136

224 Ada QUALITY AND STYLE

Q package, 45
body, 64, 91, 101, 102, 132, 133

object CALENDAR, 141

dynamically allocated, 99 comments in, 24, 26, 130

identifier, 29 constant, 131

initialization, 102 coupling, 47

name, 29 documenting non-portable, 130
example, 187

operation, 24, 35, 48, 70, 100, 162, 165 exceptions raised in, 55

operator generic, 50, 54, 166
alignment, 11 grouping subprograms in, 41, 45, 46

binary, 8, 177 interface, 35, 100, 132, 144, 146, 150

infix, 91, 93 LOW. LEVELIO, 151

logical, 80 library, 91

overload, 94 minimizing interfaces, 48

precedence, 11, 79, 83 name, 93
relational, 91, 139 naming, 30
short circuit, 80, 87, 187 nested, 50

unary, 8, 177 predefined, 150, 151
reusable, 157, 158

optional parameter, 66, 184 STANDARD, 34, 13,5

order dependency, 44 SYSTEM, 141, 145
separate compilation, 42

others specification, 14, 48, 50, 53, 54, 64, 132,
and abstractions, 55 178, 182
case, 84 TEXT 10, 50, 55
exception, 122 user, 72
handler, 54, 96 pagination, 7, 14, 26, 182, 187

overload
enumeration literal, 36 paragraphing, 9, 178
function, 93 parameter
operator, 94 actual, 66, 71, 184
procedure, 93 alignment, 12, 1R1
subprogram, 93, 187 array, 100
type, 34 association, 66

declaration, 15, 69, 184
default, 69

p default value, 67, 171
description, 24

PRIORITY, 112, 142 entry, 68
FORM, 150

PROGRAM-ERROR, 99, 114 formal, 66, 71, 161, 162, 184

INDEX 225

function, 131 precedence, operator, 11, 79, 83
generic, 165, 166, 168, 170, 178 precision
mode, 12, 68, 181 actual 130
NAME, 150 fixed point, 128, 185
name, 66, 181 fin point, 128, 185
named association, 184 floating point, 128, 136, 185numbe, 48numeric, 134, 135, 136
number, 48 peeieoptional, 66, 184 predefined
order, 94 exception, 95, 97, 143
procedure, 68, 131 package, 150, 151
record, 100 type, 34, 78, 79, 95, 135
size, 172 preemption, 142
specification, 181 priority, 110, 112
subprogram, 171 and delays, 113

parameter list and tentative rendezvous, 119
entry, 65 for portable scheduling, 142
formal, 67 for synchronization, 109
function, 65 inversion, 112
named association, 66 private type, 69, 72, 135
procedure, 65
subprogram. 65 procedure

and anonymous types, 72
parentheses, 8, 12, 79, 177 body, 64, 91, 98, 101, 132

periodic activity, 113 call, 66, 184
default parameter, 67

pointer, dropped, 76, 99, 111 generic, 166
polling, 113, 141 INLINE, 90

portable, 9, 16, 27, 45, 95, 113, 127, 128, naming, 30

130, 132, 133, 134, 135, 136, 139, 141, overload, 93
142, 143, 144, 145, 146. 147, 148, 149, parameter, 68, 131
150, 151, 157, 160 parameter list, 65

correctness of, 133 recursive calls, 88
relation to nesting, 83

pragma return, 90
CONTROLLED, 76 versus function, 44
ELABORATE, 102 s
INLINE, 43, 45, 53, 90 processor
INTERFACE, 146 resource, 113, 121
implementation-defined, 146 virtual, 110
PRIORITY, 112, 142 program
SHARED, 117, 142, 143 asynchronous, 109
SUPPRESS, 101 structure, 11, 21, 157

226 Ada QUALITY AND STYLE

termination, 97, 150 discriminated, 75, 139

unit, 14, 30, 45, 51, 101, 132, 178, 182 indentation, 178

propagation, exception, 97, 98, 101, 114, structure, 75

174 type, 100, 102

recursion bounds, 88

relational
expression, 80, 82
operator, 91, 139

qualified
expression, 81 renames

name, 21, 50, 90, 91, 93 clause, 21, 91, 93

overloaded name, 36 declaration, 21, 91, 93
local, 90

queue, entry, 112, 116 subprogram, 93
type, 34

R rendezvous
and interrupts, 145
exceptions during, 114

race condition, 53, 119 for synchronization, 109, 142

radix, 20, 137 tentative, 119
versus shared variables, 117, 143

raise
exception, 55, 96, 98, 143, 161, 174 representation
statement, 95 clause, 35, 139, 140, 144, 145

numeric, 135
range storage, 110

constraint, 70
DURAT7ON, 128, 185 reserved word, 9, 21, 182, 183
declaration, 135
discrete, 135 return
loop, 135 from subprograms, 109
scalar types, 34 function, 90
values, 78 procedure, 90

statement, 90
real-time, 120, 131, 142, 144, 145, 148, subprogram, 90

151
reuse, 7, 24, 45, 67, 70, 74, 83, 93, 120,

record, 74 157, 158, 160, 161, 162, 164, 165, 166,

alignment, 178 168, 169, 171, 172, 173, 174
component, 75, 76 library, 93
declaration, 102
default, 102 robust software, 161

INDEX 227

S source text, 7
spacing

SHARED, 117, 142, 143 blank, 89

STANDARD, 34, 135 horizontal, 7, 8, 177

STORAGE ERROR, 76 specification
comments in, 24

SUPPRESS, 101 function, 178
package, 14, 48, 50, 53, 54, 64, 132, 178,SYSTEM, 141, 145 182

safe numbers, 135 parameter, 181
reusable part families, 170

safe programming, 88 task, 53, 64, 178

scheduling, 113, 120, 142 spelling, 19, 21

scientific notation, 20, 182 stack space, 140

scope starvation, 53, 109

access type, 147 statement, 82
exception name, 55 abort, 116, 121, 142
minimizing, 51 accept, 64, 111, 113, 114, 119, 122, 178
nesting, 83 assignment, 84, 102
use clause, 91 block, 90

select case, 26, 83, 84, 90, 178
alternative, 141 compound, 15,64

statement, 113, 114, 116, 119, 120, 122, delay, 113, 141
141, 178 exit, 64, 85, 87, 187

selected component, 72 goto, 89

sentinel value, 70 if, 26, 83, 187
indentation, 9, 178

separate compilation, 42, 132, 187 list, 9, 102, 178

shared variable, 117, 143 loop, 82
number per line, 15

short circuit raise, 95
control, 87, 187 return, 90
operator, 80, 87, 187 select, 113, 114, i16, 119, 120, 122, 141,

" 178
side effect, 44, 55, 80 15

simple name, 91
static

simple statement, 15 data, 76

simplification heuristics, 83 expresion, 32
storage, 139

slice, 84 task, 110

228 Ada QUALITY AND STYLE

storage relation to nesting, 83
dynamic, 139, 140 renames, 93
representation clause, 110 return, 90, 109
task, 140 subrecords, 75
task size, 144

subtype, 34, 69, 70, 78, 93, 135
strong typing, 34, 41, 69, 147, 151, 161 subunit, 51, 178
structure suffix, 29

code, 19, 22, 23, 26
control, 9, 21, 94, 178 symbolic
data, 29, 76, 139, 169, 173 constant, 171
highlighting comments for, 27 value, 32
program, 11, 21 synchronization, 109, 110, 112, 117, 121
proper, 41
record, 75
reusable code, 172 T
reusable part, 165, 173
subunit, 42 TASKINGERROR, 111, 114, 116

subexpression, 70, 79, 138 TEXT10, 50, 55

subprogram, 43 tab character, 9, 178
and anonymous types, 72 task, 47, 109, 110, 140
body, 64, 91, 98, 101, 133 abort, 111
call, 66, 184 access, 110, 111, 116
comments in, 24, 26 activation order, 141
default parameter, 67 allocation, 111
documenting non-portable, 130 anonymous, 110
documenting reusable, 162 attribute, 116
example, 187 body, 42, 64, 98, 101, 122
exceptions raised in, 55 comments in, 26
generic, 166 communication, 53, 114, 143
grouping in packages, 41, 46 declaration, 90, 110
hiding task entries, 53 dependency, 120, 121, 142
INLINE, 90 documenting non-portable, 130
main, 96, 97, 110, 131 dynamic, 110, 111, 116
name, 181 .entry, 44, 53, 101, 119, 145, 162
naming, 30 execution interleaving, 142
overload, 93, 187 fast interrupt, 146
parameter, 171 grouping in packages, 41
parameter list, 48, 65 hiding, 53
procedure versus function, 44 model, 110
recursive calls, 88 name, III

INDEX 229

named, 110 declaration, 34, 135
naming, 30 derived, 34, 69, 70
non-terminating, 120 enumeration, 35
scheduling, 120, 142 example, 187
specification, 53, 64, 178 floating point, 130, 3.5, 136
static, 110 grouping in packages, 46
storage, 140 identification, 29
storage size, 144 limited piivate, fi, 72
synchronization, 142, 143 name, 29,34
termination, 97, 111, 120 name selection, 34
type, 69, 71, 110 numeric, 134, 135, 136
unterminated, 120 predefined, 34, 78, 79, 95, 135

private, 69, 72, 135
tentative rendezvous, 119 record, 100, 102
terminate alternative, 114, 120, 122 renaming, 34

termination strong, 34, 41, 69, 147, 151, 161
task, 69, 71, 110

abnormal, 97, universal, 32
code, 87 I

condition, 85
normal, 120 U
program, 97, 120, 150
programmed, 122 unary operator, 8, 177
task, 97, 111, 120 unchecked conversion, 99, 147

testing, 133 unchecked deallocation, 76, 99, 116, 147

thread of control, 110 unconstrained array, 71, 139, 172

time-critical, 121 underscore, 19, 20, 42, 182

timed entry call, 53, 116, 119, 178 unit

timing, 113 calling, 97
t43 descriptive comments for, 24

constraints, 3generic, 66, 158, 166, 170

tool, 7, 8, 23 library, 42, 45, 48, 51, 91, 102, 120
type program, 44, 30, 4551, 101, L132, 178,

access, 100, 102, 139, 140, 147, 151 . e 182
anonymous, 7L 75, 110 universalinteger, 32, 128, 185
array, 100 universal-real, 32, 137
checking, 162 upper case, 20, 21, 182, 183
constraints, 99
conversion, 70, 81, 99, 137, 147 use clause, 91, 93
DURATION, 128, 141, 185 user-defined exception, 95, 97

230 Ada QUALITY AND STYLE

V
virtual processor, 110

visibility, 48, 51, 83, 91, 93, 158

variable
access, 76 W
shared,143 while loop, 85, 178

vertical alignment, 8, 11, 12, 181 with clause, 51, 91

