
AD-A241 761

NAVAL POSTGRADUATE SCHOOL
Monterey, California

r r.

THESIS

DESIGN AND IMPLEMENTATION
OF A MULTIMEDIA DBMS:

CATALOG MANAGEMENT, TABLE CREATION AND
DATA INSERTION

by

Su-Cheng Pei

December 1990

Thesis Advisor: Vincent Y. Lum

Approved for public release; distribution is unlimited.

91-13891I ll llI ill ,~~llll *I!t 19 ;23 01 6

Unclassified
Security Classification of this page

REPORT DOCUMENTATION PAGE
la Report Security Classification 1 b Restrictive Markings
Unclassified
2a Security Classification Authority 3 Distribution Availabiiitv of Report
Unclassified Approved for public release;
2b Declassification/Downgrading Schedule distribution is unlimited.
4 Performing Organization Report Numberts) 5 Monitoring Organization Report Numberis)

6a Name of Performing Organization 6b Office Symbol 7 a Name of Monitoring Organization
Naval Postgraduate School (If Applicable) Naval Postgraduate School

Code 52
6c Address c tay, state, and ZIP code) 7b Address (city, state, and ZIP code)
%lonterev, CA 93943-5000 Monterey, CA 93943-5000
8a Name of Funding/Sponsoring Organization 8b Office Symbol 9 Procurement Instrument Identification Number

1 (If Applicable)

8c Address (city, state, and ZIP code) 10 Source of Funding Numbers
Program Eleanet Nurnoer I Project No ITask No Work Lut Acc.on No

I1 Tide (Include Security Classification) DESIGN AND IMPLEMENTATION OF A MULTIMEDIA DBMA:
CATALOG MANAGEMENT, TABLE CREATION AND DATA INSERTION (Unclassified)
1 2 Personal Author(s) Pei, Su-Chen,
13a Type of Report 13b Time Covered 14 Date of Report (year, month,day) 15 Page Count
Master's Thesis From April 90 To December 90 December 1990 199
1 6 Supplementary Notation The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the De partment of Defense or the U.S. Government
17 Cosati Codes 18 Subject Terms (corainue on reverse if necessary and identify by block number)
Field Group Subgroup Multimedia Database Management System, Multimedia,

DBMS, MDBMS, Media Database.

19. Abstract (Continue on reverse if necessary and identify by block number)
Current Database Management Systems (DBMS) manage only alphanumeric data but not multimedia data. In
order to have a DBMS that can handle both alphanumeric data as well as multimedia data, one can either build a
new system or modify an existing system. The decision was to build such a system on top of an existing system,
namely INGI ES, using the abstract data type (ADT) concept. Unfortunately the INGRES system used does not
support ADT. As a result the Multimedia Database Management System (MDBMS) prototype must design data
structures that would allow the capture and retrieval of the information relating to the data in the database.
Further, to implement the ADT concept for the multimedia data, additional tables need to be created that would
hold information relating to the multimedia data. This process of dealing with the management of information,
generally referred to as catalog management, in the MDBMS prototype is a major part of this thesis. The design
of the data structures and their applications will be explained. In addition, to be able to insert data into the
database, operations for the creation of tables and the insertion of the data are needed. These operations are not
simple, single SQL statement. Because of the potential presence of multimedia data, the generation of multiple
statements may be required from one simple user statement. The thesis will also discuss the design and
implementation of these operations.
20 Distribution/Availability of Abstract 21 Abstract Security Classification

unclassified/unlinited same as report]DTIC user Uncla fied
22a Name of Responsible Individual 22b Telephone (Include Area code) 22c Office Symbol
Vincent Y. Lum (408) 646-3091 CsLm
DD FORM 1473, 84 MAR 93 APR edition may be used until exhausted security classification of this page

All other editions are obsolete Unclassified

i

Approved for public release; distribution is unlimited.

DESIGN AND IMPLEMENTATION OF A MULTIMEDIA DBMS:

CATALOG MANAGEMENT, TABLE CREATION

AND DATA INSERTION

by

Pei, Su-Cheng

Major, Republic of China Army

B.S., Chung Cheng Institute of Technology, 1982

Submitted in partL, fulfillment of the

requirements for dhe degree of

MSTER OF SCIENCE IN ENGINEERING SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

December 1990

Author: L____40____

Su-Cheng Pe

Approved by:
Vinclt Y. Lum, Thesis Advisor

to 4t

Robert McGhee, Chairman
Department of Computer Science

ABSTRACT

Current Database Management Systems (DBMS) manage only alphanumeric data but

not multimedia data. In order to have a DBMS that can handle both alphanumeric data as

well as multimedia data, one can either build a new system or modify an existing system.

The decision was to build such a system on top of an existing system, namely INGRES,

usng the abstract I--. .ypc (ADT) ,.Jk,,~t Unfortunately the INGRES system used does

not support ADT. As a result the Multimedia Database Management System (MDBMS)

prototype must design data structures that would allow the capture and retrieval of the

information relating to the data in the database. Further, to implement the ADT concept for

the multimedia data, additional tables need to be created that would hold information

relating to the multimedia data. This process of dealing with the management of

information, generally referred to as catalog management, in the MDBMS prototype is a

major part of this thesis. The design of the data structures and their applications will be

explained. In addition, to be able to insert data into the database, operations for the creation

of tables and the insertion of the data are needed. These operations are not simple, single

SQL statement. Because of the potential presence of multimedia data, the generation of

multiple statements may be required from one simple user statement. The thesis will also

discuss the design and implementation of these operations.

V~ Co.. -

i i

I NS i

TABLE OF CONTENTS

I. INTRODUCTION .. I

A . BA CK G RO U N D ... 1

B. SYSTEM APPROACH .. 2

C. THE SCOPE OF THESIS ... 4

II. SURVEY OF PREVIOUS WORK 6

A. DATA ORGANIZATION FOR MULTIMEDIA OBJECTS 6

B. INTEGRATION OF CONVENTIONAL AND MULTIMEDIA DBMS 12

1. Relational DBMS Approach to Construct ADT 12

2. Architecture of MDBMS Prototype ... 14

3. Hardware and Software Configuration 16

III. DESIGN OF THE SYSTEM .. 18

A. SYSTEM ENVIRONMENT AND REQUIREMENT 18

1. E nvironm ents ... 18

2. Sample Application .. 20

3. Requirements ... 23

B. OVERALL SYSTEM DESIGN .. 24

1. Catalog Management .. 24

a. System tables in MDBMS 25
b. Catalog Files of MDBMS 30

2. Table Creation .. 31

3. Data Insertion .. 35

IV. IMPLEMENTATION OF THE SYSTEM DESIGN 47

A. USER INTERFACE ... 48

1. Table Creation ... 49

a. Input Phase .. 50

b. Modification Phase ... 52

c. Execution Phase .. 53

2. D ata Insertion .. 56

a. Input Phase .. 56

iv

b. Modification Phase ... 62

c. Execution Phase .. 63

B. PROGRAM STRUCTURE ... 67

C. HOW TO LINK AND RUN THE MDBMS .. 67

V. CONCLUSION AND SUMMARY 69

APPENDIX A .. 71

THE MODIFICATION INTERFACE FOR TABLE CREATION 71

APPENDIX B .. 76

SQL COMMANDS FOR TABLE CREATION .. 76

APPENDIX C .. 81

THE MODIFICATION INTERFACE FOR DATA INSERTION 81

APPENDIX D .. 86

SQL COMMANDS FOR DATA INSERTION 86

APPENDIX E .. 92

PROGRAM STRUCTURE OF THE MDBMS 92

1. Catalog Management .. 92

2. Table Creation Module ... 93

a. Input Phase .. 93

b. Modification Phase ... 94

c. Execution Phase .. 95

3. Data Insertion Module ... 96

a. Input Phase .. 96

b. Modification Phase ... 99

c. Execution Phase ... 100

APPENDIX F .. 103

PROGRAM CODE OF THE MDBMS PROTOTYPE 103

REFERENCES ... 186

INITIAL DISTRIBUTION LIST ... 188

v

LIST OF FIGURES

Figure 1. Conceptual Representation of a Value for an Instance of IMAGE Type Data

Item 8

Figure 2. Conceptual Representation of a Value for an Instance of SOUND Type Data

Item 9

Figure 3. Three Types of Schema to Model Relationships between Standard Objects

and Media 0- -cts. (a) 1:1. (b) 1:N. (c) N:M 12

Figure 4. Media Relational Tables for Media Objects (a) N. -GE Object. (b) SOt -ND

O bject ... 13

Figure 5. The Proposed Architecture of a MDBMS prototype: Building Blocks and

T heir Interactions ... 15

Figure 6. The Proposed Architecture of a MDBMS Prototype in a User's Point of

V iew .. 16

Figure 7. Hardware and Software Configuration of the MDBMS Prototype 17

Figure 8. The Navy Ship Relational Database Schemas 21

Figure 9. The Media Relational Database Schemas for Media Attributes in Figure 8... 22

Figure 10. The System Tables for Catalog Management: (a)TableList, (b)Table_, ray

and (c)A ttA rray ... 26

Figure 11. The Current Configuration of System Tables after a New Relation PERSON

is Created: (a)TableList, (b)TableArray and (c)AttArray 32

Figure 12. A Collection of Active Index of Media Attributes in Operation:

A ctM edia-List ... 34

Figure 13. The Value-Arrays for Data Insertion: (a)CValue (b)IValue (c)FValue

(d)ImgRecord (e)SndRecord .. 36

Figure 14. The Current Configuration of System Tables after a Tuple of data has

Entered for Relation SHIP: (a)TableList, (b)TableArray and

(c)A ttA rray .. 37

vi

Figure 15. The Current Collection of Active Media Attribute in ActMediaList reflects

to the Data Insertion of SHIP .. 40

Figure 16. The Internal View of Relation SHIP in Database after Insertion: (a)User-
Defined Relation SHIP and (b)Media Relations PICTUREL 40

Figure 17. The Internal View of Relation PERSON in Database before Insertion:
(a)User-Defined Relation PERSON and (b)Media Relations PHOTOS,

V O IC E 5 ... 4 1

Figure 18. The Current Configuration of System Tables after a Tuple of data has
Entered for Relation PERSON: (a)TableList, (b)TableArray and

(c)A tt_A rray ... 42

Figure 19. The Value-Arrays for Capture the Data Information of Relation PERSON:

(a)C_Value (b)IValue (c)FValue (d)Img..Record (e)SndRecord 43

Figure 20. The Internal Database View of PERSON after Insertion: (a)User-Defined

Relation PERSON and (b)Media Relations PHOTO5, VOICE5.0 45

Figure 21. The Selection Menu for Sound Management System 48

Figure 22. M ain M enu of the M DBM S ... 49

Figure 23. The Modification Menu for Table Creation 53

Figure 24. The Image of Attribute PHOTO of Mary Pas in the Relation PERSON 59

vii

ACKNOWLEDGMENTS

I am very grateful to Dr. Vincent Y. Lum who is the most influential person in the

development of this thesis. He is a devoted and patient teacher. He challenged me and

stimulated my interest with his highly intellectual deliberations and discussions. I am truly

thankful for his untiring effort to assist me in the preparation of this thesis.

In addition, I would like to express my appreciation to Dr. Kyung-Chang Kim for his

guidance and the many discussic and to my international schoo. tes, Yavuz V. Atila

and Wuttipong Pongswuan for the valuible experience of working together on the system

design of the current MDBMS prototype.

Finally, I am truly indebted to my caring and considerate wife, Jing-Feng Liang, for

her support, encouragement and understanding. Without these I could not have

accomplished my studies and completed my thesis and the academic program.

viii

I. INTRODUCTION

A. BACKGROUND

The technology of computer systems is advancing steadily. More and more

potential application areas are being impacted by this newly developing technology. One

area that has been impacted is the handling of types of data, si.ch as image. graphics, text

and sound, which can now be stored in various digitized formats economically. Data of

this kind are generally referred to as multimedia (or simply media) data i.e., unformatted

form in its data characteristics. Both hardware and software, which provide the capabilities

to record and store these multimedia data, are available today. However, at this time

conventional database management systems (DBMS) can effectively deal with only

alphanumeric data. On the other hand, many applications such as the military, publishing,

and instructional environments are increasingly required to deal with both alphanumeric and

multimedia data. It is important for us to have database systems that can manage

multimedia data in an effective manner.

Current DBMSs manage effectively the formatted data (i.e., alphanumeric data in

standard formats), having the capability to search the appropriate data efficiently based on

its contents. However, integrating the multimedia data into a DBMS causes considerable

complexity. How the current DBMS can be extended to fulfill this goal was the reason to

form the Multimedia Database Management System (MDBMS) project in the Computer

Science Department of the Naval Postgraduate School [WK87, LM88].

There have been several multimedia database management projects established in this

research area: The MINOS project at the University of Toronto and Waterloo (CH861,

designed for office automation to manage multimedia data types of text, image as well as

I

cound along with the documents; the MUSE ana ORION systems at MCC in Austin, Texas

[WK871, both of which contain a Multimedia Information Manager (MIM) for processing

multimedia data; and the projects in the IBM Tokyo Research Laboratory which developed

the two "mixed object database systems", MODES 1 and MODES2 in 1987 [KKS87]. A

discussion of these projects is presented in [LM88:p.10-1 1] and [MLW89] and will not be

repeated here. Because of the complexity of the problem and the shortness of research

history in handling multimedia data environments, the result in most projects have

attempted to develop a specialized system for a set of specialized application requirements

[LM88].

In order to develop a functional DBMS that is able to handle multimedia data for

different kinds of applications, one must design and construct a multimedia database

management system analogous to the way one would develop a normal DBMS with the

basic functions for retrieving, searching and managing multimedia data. Because of

resource constraints and because the goal is not to produce a production system, the

decision was made to construct a prototype that is built on top of an existing DBMS. This

thesis is one of several concerned on the design and the implementation of the prototype for

processing multimedia data [PO90,. -901.

B. SYSTEM APPROACH

Today's technology requires us to store these different media types of data like images

and sounds in separate files, each of which occupies a large amount of memory space and

consists of a long and varying number of small items, e.g., pixels or frequency indicators.

The value of a single image or sound, which we call a "media object". is actually an

instance of that media type of data and it is one distinct file. It corresponds to the case of a

normal database in which the NAME is an attribute with a value of "John Smith". Thus, an

image in a multimedia database stored as a file is only the value of an attribute (e.g.,

2

PICTURE or PHOTO) with an unformatted data type. There is little need to mention that

under the circumstances, a user could easily lose track of the "objects", even for a very

simple application.

One problem relating to the retrieval processes in a MDBMS is how to handle contents

search in multimedia data environments. Because automatic recognition of media data

contents is beyond the state of the art, the decision was made in the project to use natural

language descriptions as the means to specify the contents of media data, although the

architecture of the prototype allows other techniques to be incorporated into the system. In

order to understand the meaning of the natural language descriptions of the media data

contents, a PARSER was constructed in the Prolcg system. This PARSER is responsible

to recognize the syntax and the semantics of the natural language descriptions and interacts

with the MDBMS to locate the appropriate data items being searched in response to a

query. The detailed discussion of the MDBMS prototype to support contents search in

media data is given in (LM89].

To incorporate the orocessing of media data into a conventional DBMS is a complex

task. Most conventional database management systems today, including the version of the

INGRES system used for the MDBMS prototype, do not allow ADT definitions directly.

This means that the system does not and cannot handle media data processing in any simple

manner. Managing media data information is crucial if the system is to be able to know

how the data is to be handled. This process, generally known as catalog management,

represents a major task in the construction of the MDBMS prototype and will be fully

discussed later.

Further, a goal in the design and implementation of the system is to make use of

INGRES to manage the data storage and management as much as possible. Much of the

information is stored in INGRES tables. Unlike the normal tables created by the user in a

3

DBMS, many of these tables are transparent to the users, just as the case of the catalog

tables in INGRES that are used to keep track of user table information. This approach

necessitates the generation of multiple database operations even when the user of the

MDBMS prototype sees the operation as one single SQL statement. For example, when a

user creates a relaticn that contains some attributes with media data type, the system must

create multiple relations some of which are there strictly as a result of the presence of media

data. Naturally one can easily see that in order for the MDBMS prototype to operate, the

creation of tables and the insertion of data in the tables are necessary. This thesis will

discuss these operations. Of course, one cannot u~e the system without the ability to do

retrieval and updates. These operations are given in [PO90, AT90, ST91, PB91, AY91]

and will not be discussed here in this thesis except where necessary.

C. THE SCOPE OF THESIS

The overall design of the MDBMS prototype is briefly given in a companion thesis by

Wuttipong Pongswuan and Yavuz Atila [PO90, AT90]. Part of the design of the tabies for

catalog management also appears there. The design was a concurrent and team effort and

therefore is included in all three theses, [PO90, AT90, and this thesis], but different parts

appear on different levels of details. In. 090] the retrieval processes is phasized and ir,

[AT90] the management of sound data is described. In this thesis, the management of the

catalog for the prototype is discussed in detail. Moreover, table creation and data insertion

will also be the emphasis of this thesis as well.

This thesis is organized in five chapters and six appendices. The next chapter, Chapter

II, contains the description of the previous works done in the MDBMS prototype project.

It will give the general architecture of the system along with the system environment and

the hardware/software configurations in which the prototype is to be constructed. Basically

it captures the previous works to the extent that is necessary to understand the general

4

environments and the assumptions that may be presented in this thesis. Chapter III will

present the detailed environment and the requirements in which the design of the catalog

management is based and the operations of table creation and data insertion are to be

constructed. It will also discuss the structure of the system on catalog management, table

creation, and data insertion. In Chapter IV, implementation of the design will be given,

including the interface for the various operations, as well as the procedures to invoke the

modules and their executions. Chapter V will present the conclusion and the summary

along with a brief statement of other works in progress or planned.

5

II. SURVEY OF PREVIOUS WORK

The research work in the Multimedia Database Management System (MDBMS) project

at the Computer Science Department of the Naval Post Graduate School began in 1988

[LM88]. The first stage was to design the architecture of the MDBMS to process

multimedia data a5 conveniently as the processing of the standard data (formatted data) in a

normal DBMS. A direct consequence of this is to find ways to define the different

operations on multimedia data to support contents search. Because of the complexity of

multimedia data and because the different characteristics among media types, no easy

solution was found. The approach adopted is to integrate the artificial intelligence (AD and

abstract data type (ADT) techniques to develop a system on top of an existing DBMS (e.g.,

INGRES) that will allow us to process multimedia data, especially for the contents search

on the media objects. Today, the MDBMS prototype runs on a SUN-3 workstation in the

UNIX system, connected to an IBM PC used to manage sound data. In this chapter we

will discuss the general architecture of the system along with the system environment and

the hardware/software confi ration in which the MDBMS prototype is to be constructed.

Basically it captures the previous works to the extent that is necessary to understand the

general environment and the assumptions in this thesis.

A. DATA ORGANIZATION FOR MULTIMEDIA OBJECTS

As stated in the introduction, multimedia data is rich in semantics and much

information is implicitly defined, making it impossible to do contents search without any

additional help. The problem was addressed at the beginning of the research in the

MDBMS project. In this section we will briefly describe the abstract data type concepts

6

that we used on multimedia objects like image or sound, and the operations that we defined

to apply on such multimedia data.

Conventional DBMS do not support multimedia data. To have a DBMS to support

multimedia data we must fit it into a data model. It has been determined that the abstract

data type (ADT) concept is the most appropriate for this task [LM88]. The proposed data

model for the MDBMS requires integration of formatted and unformatted data processing

techniques. As we mentioned in the previous chapter, the processing of media objects

sometimes requires the recognition of the contents of a media data. Since automatic

recognition of media data contents is beyond the state of art, a proposal to supplement the

unformatted media data with descriptions in natural language form has been suggested.

In addition to the description data as a structured text data type accompanying each

media object, it is necessary to have registration data to define the characteristics of the

media data. The technology today provides a variety of digitized formats to store media

data economically, depending on the hardware and software used. As a matter of fact, the

registration data is generated automatically as a part of media data during the encoding

process. However, it is mandatory for us to distinguish the registration data from the raw

data (i.e., unformatted data with a long and varying number of small items). For instance,

in case of an image we must know the registration data like width, height, depth of a pixel

and the colormap to reproduce the image from raw data.

In our scheme, the defined media data will be represented in three parts: registration

data, raw data and description data. Conceptually we take these three parts as one data

value. Thus, Figure 1 shows the representation of a value for image and Figure 2 of a

value for sound.

7

IMAGE

REGISTRATION DATA:

Height, Width, Depth, Colormap

RAW DATA (BITMAP/RASTER FORMAT):

Matrix of Pixels

L DESCRIPTION DATA:
Text String

Figure 1. Conceptual Representation of a Value for an Instance of

IMAGE Type Data Item.

Because of the different characteristics between different -nedia objects, the registration

data and raw data will vary significantly in their representations. For example, in Figure 1

the registration data of an instance of an IMAGE type data item contains height, width,

depth and colormap and the raw data consists of matrix of pixels, but the registration data

of the SOUND data type as shown in Figure 2 has size, sample rate, encoding, duration

and resolution. The third part of the representation, description data, is strictly used to

represent the content of the media data. Although it frequently is redundant in that the

information here may already exist in the raw data, sometimes it is a complementary part to

8

the raw data. For example, a picture described by the caption "The Mississippi firing at the

enemy" may show only a gun turret firing with no indication that the gun belongs to the

ship Mississippi.

SOUND

REGISTRATION DATA:

Size, Sample-Rate, Encoding, Duration,
Resolution

RAW DATA:

Sequence of Frequency Indicators

DESext String ..

Figure 2. Conceptual Representation of a Value for an Instance of

SOUND Type Data Item.

To process media date operations must be defined to access, display, extract or

manipulate the media data. One must provide a different set of operators for each kind of

media type, effectively just like the operations defined for standard data types like integer

and character. The representation of the media data as in Figure 1 and 2 together with the

9

appropriate operations becomes the embodiment of the abstract data type concept.

Although the complexity extended from the ADT structure makes the definition somewhat

sophisticated, we can now define media data and standard data effectively the same way.

For example, we can now define simply a relation, PERSON, having attributes NAME,

AGE, PHOTO and VOICE with PHOTO being IMAGE type, VOICE being SOUND type

and NAME and AGE being standard types, namely CHARACTER and INTEGER. Users

of the MDBMS will not even be aware that the system has implemented the ADT concept

for image and sound data.

Operations for image data are defined, making use of the ISfunctions and

ISsubroutines developed by Cathy Thomas [TH88, pp7-17], which concentrate on a low

level manipulation of IMAGE media data. Another thesis by Gregory Sawyer [SA88,

pp 3 7-501 defined the set of low level functions to operate on SOUND media data. There is

no need for us to list all those functions again. However, it adds clarity to our

understanding of the database operations invoked in the MDBMS prototype if some of

these functions are briefly mentioned again. TABLE I summarizes some of these functions

which are invoked in the processes of media data insertion and retrieval. Here in TABLE I,

only the input and output of these functions are given. Three categories of operation can be

found from the scope of inputs and outputs. They are:

1. From MEDIA to REGISTRATION: it refers to the operations that extract out the

registration data by given a media object (e.q., PRLOAD, SND_LOAD and

COLORMAP etc.).

2. From MEDIA and DESCRIPTION to MEDIA ADT: it means to combine the

registration data, raw data with natural language descriptions specified by the user

according to the data's content (e.g., ISREPLACE_DESCR).

10

3. From DESCRIPTION to MEDIA: it usually refers to the retrieval process that is

engaged during some special search operations (e.g., ISSEARCH_MEDIA).

TABLE I. EXTERNAL VIEW OF MEDIA DATA OPERATIONS

FUNCTION NAME INPUT OUTPUT

PRLOAD IMAGE REGISTRATION

COLORMAP IMAGE REGISTRATION

SNDLOAD SOUND REGISTRATION

DISPLAY_IMAGE IMAGE REGISTRATION,

SIDE EFFECT,

(DESCRIPTION)

PLAYSOUND SOUND REGISTRATION,

SIDE EFFECT,

(DESCRIPTION)

ISREPLACEDESCR DESCRIPTION, IMAGE ADT,

IMAGE or SOUND ADT

SOUND

ISSEARCH_MEDIA DESCRIPTION IMAGE,

SOUND,

REGISTRATION

Generally speaking, all the functions are employing the abstract data type concept to

handle multimedia data. However, we should be able to see that, in order to access the raw

data, one must go through either registration data or description data. On the other hand, it

is expected that most of the processing done by the MDBMS will not touch the raw data at

al.[LM891

11

B. INTEGRATION OF CONVENTIONAL AND MULTIMEDIA DBMS

The principal tasks of a conventional DBMS are storage and retrieval. However, to

incorporate multimedia databases into a conventional DBMS, we need to find a way to

perform these same tasks. Because of the flexibility of the relational model in DBMS, it

has been selected as the basis to design and build our MDBMS prototype.

1. Relational DBMS Approach to Construct ADT

Three types of schema representing the one-to-one, one-to-many, and many-to-

many relationships between a standard data type instance and a media data type can be

modeled as shown in Figure 3. As shov ri in the diagram, externally or internally generated

keys are used to connect the relations p trly (Figure 3(b) and 3(c)).
OBJECT

1OID I PHOTO I VOICE

(a) 1:1 Relationship.

OBJECT OBJECTMEDIA

o-11 1 Q-11) I o- T VOICE

(b) I:N Relationship.

OBJECT CONTAINS

I°) - I I b-I
OBJECTMEDIA

SubID PHOTO VOICE

(c) N:M Relationship.

Figure 3. Three Types of Schema to Model Relationships between

Standard Objects and Media Objects. (a) 1:1. (b) 1:N. (c)
N:M.

12

However, the relations in Figure 3 are user views of the database. These are not

sufficient to represent all the necessary information. As it has been stated before, an image

is a file of many (up to several million) bytes. It can not be stored as a value in the relation

as represented in Figure 3(a), for example. File identifiers can be used for this purpose.

Simply storing the file identifiers in the place of media data has unacceptable consequences.

For example, a query requiring the search on the registration data will require the accessing

of many, many large files. This will produce extremely poor performance. A decision was

made to create additional relations, called media relations, for storing some of the

information in the registration data and all of the description data in the media data as

shown in Figure 4. Further, again for the performance reason, media data of the same type

not in the same attribute should be in different media relations. Thus each attribute of

media data type will require the creation of a unique media relation. More detailed

discussion of this topic will be given in Chapter III when we present the detail design of the

system.

PHOTO

1 ID I 1. Jeight IWidth I Depth sColl]

(a) IMAGE Object.

VOICE
SS ID -kaEl I Descrip- I Size I Samp] EncodJDura- I Resolu I

tion I Rate I ind I tion tion

(a) SOUND Object.

Figure 4. Media Relational Tables for Media Objects (a) IMAGE

Object. (b) SOUND Object.

13

2. Architecture of MDBMS Prototype

In this section we will discuss the architecture and the components of a MDBMS

prototype that actually deal with the data structures introduced in the previous sections.

The architecture is designed to provide separation of responsibilities, modularity and

flexibility to allow easy expansion and modification in the future. The resulting

components include:

1. Conventional Database Management.

2. Media Object Management.

3. Description Management.

4. Parser.

5. Language Generator.

6. Matcher.

7. Query Processor.

Each of these components has its own specific role and each relies on a low level

storage manager that takes care of things like file allocation and buffer management. For

example, the Description Management organizes the descriptions in the media objects, and

the Media Management will carry ou -y storing them in the attribute, Description, of the

media relation. Each description will be linked to its media object and the other attributes of

the same tuple by means of a tuple identifier (TID) or a surrogate. Figure 5 illustrates the

components of MDBMS as building blocks and indicates the interactions among each

other. This proposed architecture of MDBMS prototype has been generalized in [LM89,

pp2l-24].

14

I mmnnmlnn umumm n lnllum~__________ lIll

f Query
Pro.

Figure 5. The Proposed Architecture of a MDBMS prototype: Building
Blocks and Their Interactions.

The query processor accepts queries from the users (sometimes embedded in

programs) and executes them by calling the other components. Actually it is the MDBMS

interface, instead of query processor, that is responsible to perform all the operations

requested by the users. Figure 6 is the simplified architecture from a users point of view.

All the components have now been hidden.

Three major parts of the MDBMS architecture are shown in Figure 6. The first

part is the MDBMS interface between the user and the integrated DBMS; the second part is

the Conventional DBMS which manages all the formatted data; and the last part is the

Media Manager which manages all the media objects. Although not explicitly stated in the

diagram, the MDBMS interface is also responsible for initiating and coordinating the

activities between the conventional DBMS and the Media Manager to find the proper result

requested by a query.

15

MDBMS INTERFACE

Conventiona MEDIA
DBMS Manager

Standard Image Sound
DmData Dt

Figure 6. The Proposed Architecture of a MDBMS Prototype in a

User's Point of View.

3. Hardware and Software Configuration

Although we have mentioned the system environment in which the MDBMS

prototype is to be constructed, one part related to the hardware and software configuration

must be further clarified. For historical reason SOUND media data is stored in an IBM

compatible and IMAGE media data is stored in the SUN-3 workstation in which the

MDBMS operates. The relational DBMS, INGRES, runs in the iN Server. Figure 7

shows the current hardware and software configuration. The Operation Processor as

shown in the middle of diagram is responsible to initiate and coordinate the activities among

the sub-systems according to the query generated by the MDBMS interface.

16

MDBMS Configuration:

SUN-3 UNIX SYSTEM:
(MDBMSInterface",

Catalog
Management

Prolog System:

ISfunctions Oprto

ISsubroutines Processor Image
ParserDataDictionary Dt

INGRES SYSTEM: IBM PC:
DBMS SoundfC7IIIIII ~Mgemnent

Standard &
Media ADT Sound
Database Dt

L2LJ

Figure 7. Hardware and Software Configuration of the MDBMS

Prototype.

17

III. DESIGN OF THE SYSTEM

We already described the general architecture and the current hardware/software

configuration of MDBMS prototype in the previous chapter. Basically, it is an attempt to

broaden the database handling capability by providing the integrated supports of both

formatted and media data. The design and implementation of catalog management and

other high level operations in the MDBMS prototype are done based on the architecture

presented. However, several resource constraints in INGRES, the IBM compatible PC

and the SUN workstation have been found and these restrictions influence the design and

implementation of the MDBMS prototype, especially with respect to catalog management

and database maintenance. In addition, because much information as well as many DBMS

operations are handled by INGRES, much care was exercised to select the data structures

in the MDBMS prototype to provide efficient performance. In this chapter we will discuss

the system environment and the requirements on which the design of the catalog

management is based and the operations of table creation and data insertion are to be

constructed. We will also present the detailed data structures for catalog management, table

creation and data insertion.

A. SYSTEM ENVIRONMENT AND REQUIREMENT

1. Environments

As stated before, the decision was made to build the MDBMS prototype on top of

INGRES to support multimedia data. As a general database system for different

applications, the prototype does not show bias in its application areas. On the other hand, a

goal in the design and implementation of the system is to make use of INGRES to manage

the data storage and information as much as possible. Unfortunately a number of

18

restrictions are the consequence of using the INGRES DBMS (1987's version). One of the

restrictions already discussed before in section II.B.1 is that INGRES used does not

support ADT, the approach we have selected to support multimedia data. Another

restriction is that INGRES does not allow its users to get the catalog information readily.

This happens to be crucial if the system is to be able to know how the data is to be handled.

Further, although INGRES supports embedded SQL in host C language, it does not

provide a set of high level function calls available to the users. For instance, the embedded

SQL statements are pre-compiled into INGRES low level code for execution. It does not

allow the relation name and attribute name as a program variable in the high level embedded

SQL code. Although more recent versions of INGRES have removed some of the

restrictions, a significant recoding effort will be required to make MDBMS to use of the

new version.

In the meantime, a similar situation occurs in the SUN workstations. New SUN

workstations now support sound, but that would require a substantial investment to

purchase new hardware and recode some programs. It was decided that instead of these

investments, the PC would be retained to manage sound data and would be incorporated

into MDBMS prototype as a backend server by connecting it to the SUN system via a local

network, i.e., Ethernet [AT90].

Similarly, to capture images, a video card which works with a camera recorder is

installed into a PC. The PC first captures an image as a file in GIF format. This file is then

transferred to the SUN workstation by using ftp (File Transfer Protocol) in binary mode.

These image files in GIF fdrmat are transformed by software into the RASTER format

before they can be used by the MDBMS prototype. More detailed description of the

capturing process of the images is described in [PO90:pp47-571.

19

All of these constraints affected the design and implementation in our MDBMS

prototype. Since the prototype construction is not intended to be a production system at

this time, and because the current system is enough to demonstrate the principles, a

decision was made not to change the structure of the system.

2. Sample Application

The multimedia database management system of the kind that we have mentioned

before is expected in the near future. Many applications increasingly require a MDBMS to

manage both alphanumeric and multimedia data. Examples can be found in the militarv

publishing, ente.tainment and instructional environments. Similar requirements can also be

expected in business management. The sample application that we will outline below can

be considered quite typical. The purpose is to give the readers a better understanding in the

design and implementation of the system for multimedia data processing.

As a general database to store the information in a navy application, one may be

required to keep information about the ships, the weapons and the officers. Let us assume

that we want to store in the database the ship's names, the ship's types, the years in which

the ships are built, the ship's ID, their displacements, the captains and the executive

officers for the ships. Further, it is natural that we want to see what the ships look like.

Thus we store also the images of the ships. Suppose that we want to know what weapons

are on the ships. But then we probably want to know the weapon's power, firing range,

and what they look like. As for the officers, undoubtedly information about their names,

ranks, salaries, etc. as well as their images and voices are relevant and should be kept. One

can see from this simple application, that we have not only the normal alphanumeric or

standard data types but also the media data types, namely image and sound. The above

information can be transformed into relations in a database as shown in Figure 8.

20

SHIP

I Sfl~C I I build Iment I I
(c20) (c20) (c20) (int) (int) (int) (int) (image)

SHIPWEAPON
sno 1=~m

(c20) (c20)

WEAPON

(c20) (c20) (c20) (int) (image)

OFFICER

"I I Io-name I rank salary I r1QIQ voiceQ

(int) (c20) (c20) (int) (int) (image) (sound)

Figure 8. The Navy Ship Relational Database Schemas.

As we have mentioned earlier, the primary keys (underlined) of the relational

schemas in Figure 8 are externally defined by the MDBMS user, and the media data types

such as IMAGE or SOUND have also been defined as a data type supported by the

MDBMS prototype. But what are the data types for IMAGE and SOUND types in

INGRES which manages the relations? These data types must be expressed in terms of

standard data types. In the prototype, the data type of each media attribute is defined as

INTEGER internally. The content of the media type are integers which link to its own

media relation that has been hidden to the user. These integers are internally generated

identifiers for the tuples in he media relations as discussed previously. For each media

type, a media relation is generated. This is deemed desirable since putting media data

together, say images from different relations, does not produce benefit but actually causes

the system to degrade in performance. Hence "picture" in the relation SHIP requires a

media relation and "picture" in WEAPON requires another. Since attribute names need not

21

be unique across relations, we must find ways to name the two PICTURE relations

differently. Our solution is to append the relation's internal identifiers to the media attribute

names. Since SHIP's internal identifier is "1", the image media relation for the attribute

"picture" in SHIP becomes PICTUREL. Similarly, because WEAPON's internal identifier

is "3" and OFFICER's internal identifier is "4", we have the media relation's name as

shown in Figure 9. Note that all the information just discussed is hidden from the users

who do not have to be concerned at all.
PICTURE1

1id L f-id I escrip. height width i

(int) (c64) (vc500) (int) (int) (int)

PICTURE3

Lid Lijd desci-.. height width depth
tionI

(int) (c64) (vc500) (int) (int) (int)

PHOTO4

Lid jf-d descrip-.. height width depth

(int) (c64) (vc500) (int) (int) (int)

VOICE4
L d escip size sap encod_ dura- resolu1iid fjd I on aite" d g I tion I tion I

(int) (c64) (vc500) (int) (int) (int) (float) (int)

Figure 9. The Media Relational Database Schemas for Media Attributes

in Figure 8.

Users of the MDBMS can now process their queries in a routine manner. For

example, a user can pose the following queries to the system:

1. What kind weapons are on the ship "Mississippi"?

2. What is the ship's name and the image of the ship whose weapons show "firing at the

enemy"?

22

3. What are the ships and their pictures that have the missile "Tomahawk" on board?

4. Who is in charge of a submarine named "Michigan" and what is his or her photo and

voice recording?

5. Display all the officers with name, rank, report-year and photo where their photos

contain the characteristics of "big nose, big eyes, blond hair, short person with

glasses".

The queries listed above is just some sample illustrations that the MDBMS can

manage; more detailed queries in retrieval process have been discussea in [PO90:pp25-3 1].

3. Requirements

In orde. to have a general purpose MDBMS prototype as effectively as

conventional DBMS, we should provide high level operations such as retrieval as given

above, as well as the creation of tables, insertion of tuples, and update and deletion of data.

Because of potential existence of multimedia data during each operation, a single SQL

statement is no longer sufficient if any media data is referenced in the query. Such kind of

queries must be decomposed into multiple SQL statements to process. The details of these

operations for retrieval is given in [PO90]. However, the generation of multiple SQL

statements from one simple transaction occurs in all the other operations. For example, the

creation of a user relation containing media data types requires the generation of multiple

relations which include the user relation and one or more media relations. The insertion of

a single tuple containing media data requires multiple insertions as well. The same happens

to update and deletion operations.

Since the media ADT for IMAGE and SOUND are defined abstract data types in

the MDBMS prototype, all the media relations constructed by the system are hidden from

the user. In other words, a user of MDBMS will not even be aware that the system has

implemented the ADT concept for IMAGE and SOUND data types.

23

To be able to handle the operations correctly, it becomes necessary to manage the

catalog information. As we already mentioned that INGRES does not provide the catalog

information to its user, we have to find ways to store and manage the catalog information

for media data ourselves. Moreover, we must define the data structures for catalog

management which will support all the operations effectively. That is, the data structures

must support both implementation and performance efficiently.

Many factors influence the design and implementation of the MDBMS prototype,

as reflected in this thesis as well as the companion theses [PO90, AT90, ST91, PB91,

AY91I].

B. OVERALL SYSTEM DESIGN

The overall design of the system was a team effort with individuals emphasizing

different areas. We will now explain the detailed design of the system in a simple manner.

We will start on catalog management design and then go into table creation and data

insertion. The other operations in the user's main menu such as retrieval, deletion and

update will be discussed in the other theses [PO90, ST91, AY91].

1. Catalog Management

The design for catalog management in the prototype system is a ma r task in this

thesis. The purpose for catalog management is the san., as in any convenuonal DBMS.

The catalog contains information such as the structure of each file (relation), the data types

and the storage formats of the data items (attributes) in the relations. The information is

used by the MDBMS software to process data consistently and occasionally to display the

database to a user who needs the information about the various structures during an

operation. A decision was made to create the catalog in the form of system tables in the

internal memory throughout the operation of the MDBMS. Three text files named

"dbtable", "dbatt" and "dbkey" are used to hold the information. When a user starts

24

running the MDBMS system, these three text files will be read into the system memory

before any operation is performed. At the end of a session the updated system tables will

be written back to these three text files. The user who created the database is the owner of

these files; no one else can access them. However, even the owner user cannot modify

them, because these three text files used to maintain the MDBMS catalog information must

be consistent with the database information in the INGRES DBMS.

a. System tables in MDBMS

The system catalog is composed of three tables (arrays or arrays of

records), Table-List, Table_Array, and AttArray as shown in Figure 10. The contents in

the tables are based on the sample application as shown in Figure 8. Although the general

data structures of system tables are designed for catalog management, the detailed

structures are based on the performance requirements of table creation and data insertion

operations, as well as the other operations.

The use of array index to conc_.uct the linked lists is judged to be superior

compared to the use of pointer linked lists; it saves a lot of time in searching the catalog

tables and simplifies the implementation as well. Static index pointers instead of dynamic

pointers are used to achieve the dynamic link in an effective manner. Another reason we

use index pointers is because index pointers are integer type and easy to use, but dynamic

pointers have type constraint in the declaration process. Dynamic pointers cause a major

problem when we perform the other operations which deal with data values like data

insertion, retrieval, deletion and update.

25

Table-LIST: Table-Array:
0 0 table name tablekey artscount rt entry

1 0 ship 1 8 0

2 2 1 shipweapon 2 2 8

3 3 2 weapon 3 5 10

4 3 officer 4 7 15

5 4 ...
(a) TableList (b) TableArray

AttArray:

att_name data-type media.id next index valueentry

0 s-narne c20 -1 1

1 s-no c20 -1 2

5 capt-id integer -1 6

6 exo_id integer -1 7

7 picture image 1 -1

8 s-no c20 -1 9

9 wname c20 -1 -1

10 wname c20 -1 11

11 type c20 -1 12

14 picture image 1 -1

15 o id c20 -1 16

16 oname c20 -1 17

20 photo image 1 21

21 voice sound 1 -1

(c) AtAray

Figure 10. The System Tables for Catalog Management: (a)Table List,

(b)TableArray and (c)AttArray.

26

The TableList array as shown in Figure 10 (a) is an array of integers, and

it contains the indices to Table-Array in Figure 10 (b). The number in each cell of

TableList indicates the entry of a relation in Figure 10 (b). To read the list of relations in

the catalog, it is necessary to start from the TableList array. This array is always updated

immediately for any table addition or deletion. This is not true for the TableArray array

which is only updated when the user logs off the system. Thus, even though the first

column of Table_Array array contains all the relation names, the number of relation names

existing in this column is the same as the number in TableList only at the start of a session

but not necessarily so afterward. It can be seen that the purpose of this integer array is

used to maintain the linked list of tables in TableArray. It keeps the minimum of data, an

integer index instead of whole tuple of information for a relation as in TableArray. This is

considered more efficient in performance when tables in the catalog information are inserted

and deleted. For example, to check the relation's name, a control loop is built by following

the sequence in TableList but not from TableArray directly. This costs a little additional

in implementation but gains much in performance if deletions of relations occurred in

different parts of the relation list. In this way, the only movement we need to made is

accessing the indices in the TableList instead of the many tuples in TableArray. That

means we still keep the deleted relations in TableArray as before the occurrence of the

deletions. However, the indices to address the deleted relations are removed from

TableList so that the system will never address the deleted relations again.

The variable we defined for Table_List to maintain the catalog information is

Table-Count which contains the number of relations in Table_Array, i.e., the total

number of user-defined relations existing in MDBMS, not including the media relations. It

is "4" in the example because four user-defined relations have been created. It also is the

next available index in Table_List when a new relation is going to be created because a new

27

relation will be entered in the fifth row and therefore has an index value equal to "4" in this

example.

In Figure 10 (b), a Table-Array is given. This table contains the

information on relations, including data fields such as tablename, table-key, attscount and

attentry. Tablename contains the names of the relations. Thus the first relation is SHIP

and the second relation is SHIPWEAPON, and so on. Table_key is the internal identifier

of the relation. Thus the relation SHIP has identifier "I" and WEAPON has "3". These

internal identifiers are used to append to the media attribute's name as suffices to produce

unique media relation names across the database in INGRES. Att_count shows the number

of attributes in a relation. The integer value "8" in the third column of the first row

represents the total number of attributes in the relation SHIP. Att.entry is the entry to the

first attribute of the relation in the AttArray. Thus the integer value "0" in the first row

indicates the first entry of attribute in the relation SHIP occurs in the first row of AttArray

as shown in Figure 10 (c). The variable we defined for TableArray is TableIndex,

which provides the next available index (tuple or row) in TableArray for a new relation to

be entered for when the operation of table creation is invoked.

AttArray as shown in Figure 10 (c) stores the detail attribute information

about each relation. This table has five data fields: attname, data-type, media.id,

nextjindex, and value_entry. Atname specifies the name of the attribute and datatype

tells us the attribute's data type. Nextindex in the fourth column is an index pointer that

points to the next attribute of the same relation, and a value of "-V in this field indicates

that the attribute is the last attribute of that relation. The third column, mediaid, is used to

store the system generated media data identifier, which indicates the next available identifier

for that media attribute. This identifier will be entered in the user-defined relation in the

media data column. It serves as the index value pointing to the ruple in the media relation.

28

For example, consider the eighth tuple in the Att_Array (Figure 10 (c)) which contains "1"

in the mediaid column. Suppose now a tuple is to be entered in the SHIP relation. All the

formatted data will be entered in the SHIP relation directly. However, the information on

the "picture" attribute will be entered into the media relatioa PICTURE I with a value of "1"

under the "i_id" column because "1" is the internal media data identifier in the media-id

column. The value "1" will be entered under the column "picture" in the SHIP relation as a

connection to allow the system to find that tuple of image. The entry value "1" in the

media_id column of the AttArray will then be changed to "'2", showing that the next image

entry for the attribute, "picture" in SHIP, will be the second tuple in the media relation. We

shall return to discuss this part when we illustrate the insertion operation.

It should now be apparent that only attributes with media data type will have

legitimate values in the mediaid column. All non-media type attributes will have "-1" in

this column, indicating that the column is not used for those attributes. It should also be

clear that all attributes of media data type will have "1" in the column mediaid when the

user relation is first created and before any data is inserted into this relation.

Although the Aut_Array now groups all attributes related to the same relation

together in a sequence, it does not mean that the attributes have to be like this in a

consecutive order. The indices could point to any entry in the table. For example, if some

modification, like adding a new attribute to the relation is made by a user, the new attribute

will be added at the end of the table and the next_index entries will be adjusted accordingly.

The last column, value_entry, in the Att_Array is not used for catalog

management, but for data insertion and some other operations. It is an index pointer

pointing to a particular row of a value array corresponding to the data type of the attribute

during the data insertion process. There are five value arrays corresponding to the five data

types, namely character, integer, float, image and sound. When a relation is first created

29

and no data has been entered into this relation, the value-entry column will be empty for all

the attributes in that relation, as shown in Figure 10 (c). The system will update the

valueentry to the correct index number corresponding to the data-type when a data value

is entered. We will explain this part in detail later in this chapter when we discuss the

operation of data insertion.

The variable we defined for Att-Array to maintain the catalog information is

Att_Index which is the next available index of AttArray. It will tell the system the next

available row in AttArray when a new attribute is to be entered during the operation of

table creation. It now hold the value "22" in this example since twenty-one (21) tuples

have been entered in the Art_Array table in Figure 10 (c).

b. Catalog Files of MDBMS

Three text files, "dbtable", "dbatt" and "dbkey" as mentioned at the

beginning of this section, are designed for MDB3MS catalog management. Each exists for a

different purpose in the system. The data stored in these files capture all the information

stored in the system tables as in Figure 10 (b) and 10 (c) except the index pointers. The file

"dbtable" contains the information of table_name, tablekey, and att_count exactly as in the

first three columns of Table_Array in Figure 10 (b); the file "dbatt" cont. s the information

of att-name, data-type and mediaid exactly the same as the first .iree co..imns of

AttArray in Figure 10 (c); and the file "dbkey" is just an integer value stored, which is "5"

in this case, indicating that the internal relation's identifier of the next relation is "5". Note

that "dbkey" never decreases. Thus if all the four relations are now deleted and a new

relation is inserted, the internal identifier for the new relation will still be "5".

It has been briefly stated in the previous section that the array Table-Array

is not updated even when deletions of relations are made. These deletions are reflected

only in the Table_List array which is constantly updated whenever insertions or deletions

30

are done. In other words, garbage collection is always done in TableList but not in

Table-Array when the system is in operation. However, when the user logs off, the

system will then write out only the valid relations at that time as indicated in the content of

TableList. That is, garbage collection in TableList is done when the user logs off and

thus the three catalog files (i.e., "dbtable", "dbatt" and "dbkey") always contain the up-to-

date, valid relations in the database.

The catalog files are read and kept in the system environment as a part of

catalog management of the MDBMS prototype. The system will read the catalog

information from these three catalog files before any operation begins to execute when the

user starts a MDBMS session next time. Thus, the system tables for catalog infcrmation

are always loaded and packed at the beginning of each user session like that shown in

Figure 10.

2. Table Creation

As mentioned before, table creation is one of the major operations in MDBMS.

The data structures we need for table creation is based on the system tables as shown in

Figure 10. The new contents of the system tables as shown in Figure 11 show that a new

relation PERSON has been added after the operation of table creation. Let us now discuss

how this operation works.

To create a new relation, the user is responsible to enter all the information such

as relation name, attribute names and the data type of each attribute to the system. The

information is captured and stored in the system tables as shown in Figure 11.

31

TableLIST: Table-Array:
0 0 table_name tablekey an_count art_entry

1 1 0ship 1 8 0

2 2 1 ship-weapon 2 2 8

3 3 2 weapon 3 5 10

4 4 3 officer 4 7 15

5 4 person 5 5 22

6

(a) Table_Lit (b) TableArray

AttArray:

att_name data-type mediaid nextindex value-entry

0 s-name c20 -1 1

7 picture image 1 -1

8 sno c20 -1 9

9 w-name c20 -1 -I

10 w-name c20 -1 11

14 picture image 1 -1

15 oid c20 -1 16

21 voice sound 1 -1

22 name c20 -1 23

23 age integer -1 24

24 salary float -1 25

25 photo image 1 26

26 voice sound 1 -1

(c) Att.Array

Figure 11. The Current Configuration of System Tables after a New

Relation PERSON is Created: (a)TableList, (b)Table_Array

and (c)Att_Array.

32

In this example the user defined the relation PERSON with attributes NAME,

AGE, SALARY, PHOTO and VOICE and data types as char20, integer, float, image and

sound respectively. Thus, the relation name PERSON is stored in the first column of the

fourth row of TableArray as shown in Figure 11 (b), and the internal identifier of that

relation is "5" (i.e., the "5" hold in the system by a program variable table-key) is stored in

the table-key column at the same row. The index of the entry of that relation is "4" and it is

entered in the fifth cell of TableList as shown in Figure 11 (a) to indicate the index

pointing to the relation PERSON. The information about the internal structure of that

relation (i.e., the attribute names and their order) is entered into AttArray step-by-step

following the input sequence given by the user. Thus, the first attribute NAME is stored in

the 22nd row in Att_Array and the data type of NAME, "c20", is stored in the same row;

the second attribute AGE with data type "integer" is entered into the 23rd row; and so on.

The mediaid for each attribute will have the value "- 1" assigned to it automatically when

the data type of that attribute is not a media data type, and "1" for any kind of media

attribute. To tie the relation PERSON to the appropriate attributes, the index to the first

attribute NAME, which is "22", is stored in the att.entry column of Table-Array

corresponding to the relation PERSON. The order of the other attributes is defined in the

column nextindex in AttAnay. Thus "23" is stored into the next_index column of

AttArray corresponding to the attribute NAME. The last attribute VOICE of relation

PERSON has value "-1" in the nextindex column to indicate that it is the end of that

relation. Finally, because the total number of attributes of relation PERSON is "5", the

value of "5" is now entered in the att_count column of Table_Array corresponding to the

relation PERSON. In this manner one can follow a relation to its attributes and the order of

the attributes defined for that relation.

33

After the user completing the input process, the information on the relation

PERSON has been stored in the system tables; however, it can he modified before the

execution of creating the table PERSON in INGRES. That means the system tables'

contents are modified and the nextindex entries changed or rearranged to reflect the

modification as given by the user. One can see that the process to update the system tables

is very similar to that just described.

After INGRES has completed the operation of creating the relation

PERSON, the MDBMS system must proceed to create media relations, if any. In the case

of the relation PERSON, there are two media data types for attributes "photo" and "voice".

To assist us to keep this information, the ActMediaList array has been defined as shown

in Figure 12. This array contains the indices to the AttArray array for the media attributes

in the relation being created. The system can follow these indices in ActMediaList to

generate the media relations. For example, Figure 12 shows that the indices are "25" and

"26", and the rows 25 and 26 in AtArray are "photo" and "voice" respectively. This

means media relations, PHOTO5 and VOICE5 must be created. Here the suffix "5" is

obtained from the tablekey column corresponding to the relation PERSON entry.
Act Media List:

0 25
1 26

2

9

Figure 12. A Collection of Active Index of Media Attributes in

Operation: ActMediaList.

The MDBMS will display the relation information of PERSON to let the user

confirm if any modification is required. The prototype provides the capability for the user

to modify the table structure before actual c- -tion. A detailed user interface about this

34

modification will be presented in Chapter IV. After this confirmation, the MDBMS will

generate a set of SQL statements to INGRES for table creation including both user-defined

relation PERSON and media relations, which in this case are PHOTO5 and VOICE5.

Different structures for different media types are determined by checking through the

data-type column of the attributes concerned. The structure of the media relations are

exactly the same as PHOTO4 and VOICE4 shown in Figure 9.

3. Data Insertion

The operation of data insertion is the first operation to enter the data values into

the MDBMS prototype and is one of the major operations in this thesis. Currently data

insertion allows only the option of tuple-at-a-time insertion in this prototype.

As stated before, the MDBMS prototype designed at this time supports five data

types: character string, integer, float, image and sound. For simplicity the only choice for

character string is c20 in this prototype now. As a prototype program, a string of 20

characters is enough to demonstrate the concept of data processing. Because there are five

data types corresponding to the three formatted and two media data types in MDBMS, five

value arrays are designed for data insertion as shown in Figure 13. The main purpose of

these value arrays is to hold the data values temporarily as the user enters them during

insertion.

Figure 13 shows the value arrays for the system tables shown in Figure 14. It

contains the data values for the first tuple in the user-defined relation SHIP. Recall from

the sample application and table creation we described previously that the data type of

media attribute in a user-defined relation is actually an integer type, and the value for this

attribute is an internal media data identifier (i.e., mediajid) provided by the MDBMS

program. The identifier is used to link the tuple of a user-defined relation to the media data

35

defined in the media relation. Thus the identifier is also the value in iid or s-id of a media

relation generated by the system.
CValue: I-Value: F Value:

0 Mississippi 0 1975 0
1 CGN40 1 11300 1

2 cruiser 2 101 2

3 3 201 3

19 19 19

(a) CValue (b) IValue (c) FValue

lmg_Record:
i id fid descrp height width depth

0 1 /n/virgo/../902.. has..\nhas.. 640 480 8

19

(d) Img_.Record

SndRecord:

sid fjid descrp size samp. enco. dura. reso.
0

19 _ 1

(e) SndRecord

Figure 13. The Value-Arrays for Data Insertion (a)C_Value (b)I.Value

(c)FValue (d)ImgRecord (e)Snd Record.

Each value array needs a variable to control the next available entry in that array,

i.e.,c index, i index, f index, img index and snd index. The index to the entry

in the value array, correspolading to the data type being entered, will be entered into the

valueentry column of AttArray for that attribute. The index variable for a particular value

array is increased by one after each entry is made in that array, and it will start at "0" again

if the bottom cell or row of that value array is reached. That means we don't need to

initialize the index pointer aftt :very insertion.

36

Table-LIST: Table-Array:
0 0 tablename table-key att_count att-entry

1 1 0 ship 1 8 0

2 2 1 ship-weapon 2 2 8

3 3 2 weapon 3 5 10

4 4 3 officer 4 7 15

5 4 person 5 5 22

6

(a) TableList (b) Table-Array

AttArray:

attname data_type media_id nextindex value-entry

0 s-name c20 -1 1 0

1 sno c20 -1 2 1

2 type c20 -1 3 2

3 yr-.build integer -1 4 0

4 displacement integer -1 5 1

5 capt-id integer -1 6 2

6 exoid integer -1 7 3

7 picture image 2 -1 0

8 s-no c20 -1 9

10 wname c20 -1 11

15 oid c20 -1 16

22 name c20 -1 23

(c) AttArray

Figure 14. The Current Configuration of System Tables after a Tuple of

data has Entered for Relation SHIP: (a)Table_List,

(b)TableArray and (c)Att Array.

37

For example, to insert a tuple of data into the relation SHIP, the user is

responsible to enter all the information in the order given for the attributes in the relation

SIP until the value of the !as. attribu:: ib ei~iered. Thc system tables in Figure 14 will be

updated to reflect the data being inserted. The updated system tables as shown in Figure 14

is the result after the user has entered a tuple of data for the relation SHIP.

As discussed before, the first attribute of SHIP is "s-name" with data type "c20".

Once the user entered the ship name of "Mississippi", it will be stored in the first cell of the

value array CValue in Figure 13 (a), and the entry "0" will be entered into value-entry

corresponding to "s.name" in AttArray as shown in Figure 14 (c). T. next attribute is

"s_no" with "c20" again, the value "CGN40" will be stored in the second cell of CValue

in Figure 13 (a), and the entry "1" is entered into value-entry corresponding to "sno" in

Att_Array in Figure 14 (c). All the standard data types of c20, integer and float are handled

in the same way. However, the handling of media data types is more complicated.

Suppose the "picture" of the ship "Mississippi" has a file name, say "missi.ras" in

the gif directory, and it is ready for insertion into the MDBMS database. The user will be

asked to enter the full path name of that particular image file. After the file name has been

entered, the MDBMS will start a sequence of checking processes to assure that the image

file can be opened and to examine that the image file contains a proper image through the

use of PRLOAD given in the SUN system (i.e., the image is in RASTER format). The

system will duplicate that image, assign to it a unique file name in the MDBMS working

directory, and extract the registration data of that image object if there no error is detected.

Thus, the unique file name like "/n/virgo/work/mdbms/ mdbms/90217.45643" will be

stored in the f_id column of the "0" row in Img..Record as shown in Figure 13 (d). The

registration data like height, width and depth will also be entered into the corresponding

column in the same row. Next, the user will be asked if he wants to display the image

38

before entering the description data, limited in 500 characters to describe the content of the

image object. Suppose that the user has entered the description, "has antiaircraft warfare

missiles, lia iu,rrange niisbiles against land ta.get", to describe that particular image.

This description data will be stored in the description column in the same row. Finally, the

media_id "1" is entered into the i id column in the same row as a media data identifier. At

this point, the media data has been collected in the first row of ImgRecord as shown in

Figure 13 (d). The index of this media data, "0", is now entered into the valuesentry

column corresponding to the media attribute "picture" in Att_Array as shown in Figure 14

(c). Also the mediaid of that attribute will now become "2" indicating that the next internal

media data identifier will be "2". Figure 14 illustrates the system updates in AttArray after

the user has entered the whole tuple of data for the relation SHIP.

The data insertion for sound media is entered in the same manner. However, the

sound file is stored in the PC instead of the SUN workstation. The duplication of sound

file is unnecessary. In order to reduce the access times to the PC terminal, a text file

generated in the PC and sent to the SUN workstation with all the information including the

unique sound file name and registration data of that sound object provides all the necessary

information and helps to simplify the process [AT90].

As done and explained in the previous section, Table Creation, the array

ActMedia_List is used to help us process media data insertion as shown in Figure 15. As

can be seen from Figure 15, there is only one entry stored in the first cell of

Act_Media_List (i.e., the index of "7" in Att_Array), and the control variable

Act_MediaCount will have the value of "1" indicating that the total number of media

attributes is one. The index with value equal to "7" points to the attribute "picture". Thus,

the media relation name PICTURE1 can be found by the procedure "get-medianameO"

(see Appendix F) to perform this media data insertion.

39

ActMediaList:

0 7

1

Figure 15. The Current Collection of Active Media Attribute in

Act Media Li3t reflects to the Data Insertion of SHIP.

The media data of "picture" stored in the first row of ImgRecord shown in

Figure 13 (d) will be inserted into the media relation PICTUREI in the database. The

internal view of these data in INGRES DBMS is shown in Figure 16. More detailed

operation of data insertion will be given in the next example.
SHIP

s_name sno type yrbuilt displace- capt- exo picture(c20) (c20) (c20) (int) ment (int) id(int) id(int) (image)
Mississippi CGN40 cruiser 1975 11300 101 201 1

(a) User Defined Relation

PICTURE1
i_id f_id descrp height width depth
(int) (int) (vc500) (int) (int) (int)

I /n/virgo/../902.. has ... \nhas ... 640 480 8

(b) Media Relations

Figure 16. The Internal View of Relation SHIP in Database after
Insertion: (a)User-Defined Relation SHIP and (b)Media
Relations PICTURE1.

To provide further insight into the operation of data insertion in this kind of

design, we now will give another example to insert one tuple of data into a user-defined

relation PERSON that we have created before. We will continue to use Figure 13, Figure

14 and Figure 15 to make our illustration. For this example, we assume that two tuples of

40

data have been entered into the relation PERSON in the database as shown in Figure 17.

That means the media data identifier for the next media data object will be "3". Figure 18,

t-igure 19, and Figure zU snow the system tables, Lhe value arrays and the internal database

after the tuple has been entered and these tables and relations have been updated.
PERSON

name sal photo voice
(int) 0) (c2 1 (image) (sound)

John Smith 31 3500 1 1
Dan Kulp 34 4000 2 2

(a) User Defined Relation

PHOTO5

i id fid descrp height width depth
(int) (int) (vc500) (int) (int) (int)

1 /n/virgo/../902.. big nose\nbig e. 640 480 8
2 /n/virgo/../903., blond hair \n ... 640 480 8

VOICE5

sid fid descrp size samp_ encod_ dura_ resolu
(int) (c64) (vc500) (int) rate ing tion tion

(int) (int± (float (int)

1 23xx47.snd strong voice 20 10 4 15.4 10
2 24xx70.snd weak voice 20 10 4 9.2 10

(b) Media Relations

Figure 17. The Internal View of Relation PERSON in Database before
Insertion: (a)User-Deflned Relation PERSON and (b)Media

Relationy PHOTOS, VOICES.

41

Table-LIST: TableArray:________
0o table-name table-key att-count att-entry

1 0 shp1 8 0
2121 ship-weapon 2 2 8

3 3 2 weapon 3 5 10

4 4 3 officer 4 7 15

5 4 person 5 5 22

(a) Table_List (b) Table...Array

Att Array: __________________ _____

att-namne data _type media_id next-index value-entry

0 _ _ _ _ _ __n c2_ _1 1 0

2 _ _ type c2__1 3 2

6 _xoi integer -1 7 3
7__picture _ image 2 -1

8 _-n c20 -1 9

9 _-an c20 -1 -1

10 wnm c20 -1 11 _____

15 oid c2___ __1_ 16

22 name c2 123 3

23 age integer__ ___1__ 24 4

24 salary float -1 25 0

25 photo image 4 26 1
26pvo-ice sound 1 4 -1 0

(c) AtLArmay

Figure 18. The Current Configuration of System Tables after a Tuple of
data has Entered for Relation PERSON: (a)TableList,
(b)Tabie Array and (c)AttArray.

42

C Value: I Value: F Value:

0 Mississippi 0 1975 0 3500
1 CGN40 1

2 cruiser 3 201 2
3 MaryPas 4 31 3

19 19 19
(a) CValue (b) I_Value (c) FValue

lmg_Record:

i_id fid descrp height width depth
0 1 /n/virgo/../902., has..\nhas.. 640 480 8

1 3 /n/virgo/../901., blue eyes\n ... 640 480 8

19

(d) ImgRecord

Snd Record:
s_id f_id descrp size samp. enco. dura. reso.

0 3 90231511.snd sweet voice 20 10 4 15.5 10

191-
(e) SndRecord

Figure 19. The Value-Arrays for Capture the Data Information of

Relation PERSON: (a)CValue (b)IValue (c)FValue
(d)ImgRecord (e)SndRecord.

In this example, five attributes with all different data types in the relation

PERSON have been observed from Figure 18 (c). That means all five value arrays in

Figure 19 will be addressed as the process goes through each attribute. The five

value-entries which point to the corresponding cells will be updated when each data value

has been entered, one at a time following the order of the attributes. The mediaid

corresponding to the media attributes (i.e., "photo" and "voice") will also be increased by

43

one after the whole tuple of media data has been stored in the tables (i.e., Img__Record and

SndRecord). Finally, the ActMediaList will again be updated for this operation of

insertion. The content in ActMediaList is exactly the same as shown in Figure 12 before

for the operation of table creation for relation PERSON, i.e., "25" and "26". Figure 18

represents the updated system tables after the tuple of data has been entered by the user,

and Figure 19 represents the data values for all the attributes after the user's input.

After the user has confirmed that the information entered is correct, the MDBMS

will access the PROLOG system to generate the facts file for the media objects. This

process will be skipped if no media attribute is present in ti-- user-defined relation or the

description data is empty (i.e., either the media data is unknown or the description data is

not entered at all). The PARSER in the PROLOG system will be loaded at this time to

check the description data regarding both phrase structure and word spelling. The error

message will be returned to the user if an error has been detected by the PARSER and the

system will ask the user to modify the description data of that media object automatically.

A facts file, named "imageiimage-facts", is used to store the description data of all the

media objects. Further discussion on this part can be found in the next chapter.

When PROLOG returns the "no error" message to the system, the MDBMS will

generate a set of SQL statements to INGRES to execute the data insertion operat 2n. In

addition to inserting a tuple in the user-defined relation, PERSON, two media data

insertions, i.e., insertion of two tuples, are required for this operation. First the image data

for attribute "photo" will be inserted into the media relation PFOTO5, and second the sound

data for attribute "voice" will be inserted into the media relation VOICE5. The SQL

statements for these media data insertions are generated for INGRES to execute right after

the data insertion to the user-defined relation is completed. The information existing in the

INGRES database after this insertion is given in Figure 20.

44

PERSON

name a e sal h ot

John Smith 31 3500 1 1
Dan Kulp 34 4000 2 2

Mary Pas 31 3500 3 3

(a) User Defined Relation

PHOTO5

i-id fid descrp height width depth
(int) (int) (vc500) (int) (int) (int)

1 /n/virgo/../902.. big nose\nbig e. 640 48 8

2 /n/virgo/../903.. blond hairn ... 640 480 8
3 !n/virgo/../901 blue eyes\n ... 640 480 8

VOICE5

s_id f_id descrp size samp_ encod_ dura_ resolu-
(int) (c64) (vc500) (int) rate ing tion tion

I(int) (int) (flat4 (int)l

1 23xx47.snd strong voice 20 10 4 15.4 10

2 24xx70.snd weak voice 20 10 4 9.2 10
3 90xxll.snd sweetvoice 20 10 4 15.5 10

(b) Media Relations

Figure 20. The Internal Database View of PERSON after Insertion:

(a)User-Defined Relation PERSON and (b)Media Relations
PHOTOS, VOICE5.

The readers have to keep in mind that the media data identifier of iid or s id in a

media relation will also be stored in the corresponding attribute of a user-defined relation.

For instance, the value of attribute "photo" in relation PERSON is "3", which is used to

link to a image tuple with the "iid" equal to "3" in media relation PHOTO5; and the value

of attribute "voice" in relation PERSON is also "3", which is used to link to a sound tuple

with the "s-id" equal to "3" in media relation VOICE5.

45

The readers can figure out that the information of the new tuples in Figure 20

(compared with Figure 17) is exactly the same as the values existed in the value arrays

shown in Figure 19.

46

IV. IMPLEMENTATION OF THE SYSTEM DESIGN

Having presented the detailed design of catalog management, table creation and data

insertion in the previous chapter, we are now ready to discuss the implementation of these

operations in this chapter. We will first introduce the user interface for the operations. In

some of the operations the capability to modify or edit the data just entered is provided.

Procedures to do these will be given along with each operation. Next we will present the

program structures of the different operations. Finally, We will briefly describe how to

link and run the MDBMS prototype from the SUN workstations. The general organization

of this chapter will help the readers follow the implementation of the program code in

Appendix F.

Conceptually the interface to the MDBMS prototype consists of extended SQL

statements. However, instead of asking a user to enter queries in formal SQL structures,

the user interface is designed to get the information interactively in a user friendly way.

After all the data are entered by the user, the MDBMS will transform the user specifications

into a set of SQL statements to be passed to INGRES for processing. In certain cases

internal, low-level function calls in INGRES have to be invoked. This happens because

INGRES does not give its users another level of interface below SQL and we have found

that it is not possible to do what we want to do entirely in SQL. The internal function calls

in INGRES were obtained by studying the sample pre-compiled embedded SQL code

generated by INGRES. Wewill explain these INGRES functions as we introduce them in

each operation.

47

A. USER INTERFACE

The user interface of the MDBMS prototype has been designed to include the high

level DBMS operations. The allowed operations in the MDBMS main menu has following

options:

1. Create a Table.

2. Insert a Tuple.

3. Retrieval.

4. Delete.

5. Modify.

6. Quit.

Currently, the first three operations have been implemented, and the. remaining two are

in progress [PB91, ST91, AY91]. The MDBMS main menu will be displayed when the

system is invoked and after each operation has been completed. However, since the sound

management is done in a PC connected by a local network and there are more than one PC

used for this purpose, a user must specify the PC's identifier before the main menu is

displayed. Figure 21 shows the selection menu of specifying the PC sound management

system in the MDBMS prototype. This is the first menu to come up on the screen after the

user logs into the MDBMS.

*****Welcome to MDBMS*****

Please select PC remote control code::

1. Prof. Lum's office
2. The MDBMS lab room.

Please Enter "1" or "2"::

Figure 21. The Selection Menu for Sound Management System.

48

Currently, as displayed in the menu, two IBM compatible PCs are installed with the

sound management system component for the MDBMS prototype. The user has to decide

which one is desired when the system is invoked.

After the user entered a PC option, the MDBMS main menu will pop up on the screen

to allow the user to select the operations (Figure 22). In the following discussion the

examples discussed in the previous chapter will be used to illustrate the operations and the

detailed implementation when appropriate. We will present the operations for table creation

and data insertion in three phases: the input phase, the modification phase and the execution

phase.

Multimedia Database Management System

1. Create Table
2. Insert Tuple
3. Retrieve
4. Delete
5. Modify
0. Quit

Select Your Choice::

Figure 22. Main Menu of the MDBMS.

1. Table Creation

When the system gets the response from the user, a confirm message will ask the

user to verify that the operation being selected is correct. This allows the user to double

check the selected operation, since the user may have selected a different operation by a

mistake and he might want to change to another operation instead. The MDBMS prototype

provides this capability before the input phase begins. For example, the system will give

the following message after the user select "1" from the main menu to create a new relation:

The operation is CREATE TABLE!!

Hit RETURN to continue, all other keys to cancel!!

49

The main menu will pop up on the screen again if the user hit any key other than

the RETURN key. Once the user hits return (i.e., <cr>), the system then responds with

appropriate instructions step-by-step. Each time when the user's response is entered

properly, the system will return to ask for the next piece of information. If the user has

responded incorrectly, the system may either give a warning message or ask the user to

reenter. Readers should recall from the example we illustrated in previous chapter. where

the relation PERSON with five attributes NAME, AGE, SALARY, PHOTO and VOICE

with the data types of c20, integer, float, image and sound respectively has been given.

The following presentation is thus required to complete the operation of creating the relation

PERSON; the Italics format represents the user's responses:

a. Input Phase

The input phase provides several checking processes to maintain the

requirements of unique table names across the database and unique attribute names within a

user-defined relation. It also includes the checking for the maximum length of both table

names and attribute names, which have been limited to 12 characters long in INGRES.

Because the media relations are identifie y appending a suffix that is equal to the

relation's internal identifier, no user-defined relation name is allowed to end with a numeric

character. These checking processes will be invoked at certain points of this input phase as

well as the modification phase. We shall return to discuss them when we later discuss the

program structures. The following shows the screen displays for creating the relation

PERSON:

Enter table name: (Maximum 12 characters)

person <ar>

Enter attribute name: (Maximum 12 characters)

50

name <C7>

Select data type of attribute::

Select:: (1)integer (2)float (3)c20 (4)image (5)sound

Select your choice:: 3 <a'>

Data type: c20? (y/n):: y <ar>

More attribute in the table? (y/n):: y <o'>

Enter attribute name: (Maximum 12 characters)

age <a>

Select data type of attribute::

Select:: (1)integer (2)float (3)c20 (4)image (5)sound

Select your choice:: 1 <r>

Data type: integer? (y/n):: y <a>

More attribute in the table? (y/n):: y <a>

Enter attribute name: (Maximum 12 characters)

salary <ar>

Select data type of attribute::

Select:: (1)integer (2)float (3)c20 (4)image (5)sound

Select your choice:: 2 <a>

Data type: float? (y/n):: y <r>

More attribute in the table? (y/n):: y <aF>

Enter attribute name: (Maximum 12 characters)

photo <oa>

Select data type of attribute::

Select:: (1)integer (2)float (3)c20 (4)image (5)sound

Select your choice:: 4 <r>

Data type: image? (y/n):: y <a>

More attribute in the table? (y/n):: y <a>

51

Enter attribute name: (Maximum 12 characters)

voice <a>

Select data type of attribute::

Select:: (1)integer (2)float (3)c20 (4)image (5)sound

Select your choice:: 5 <a'>

Data type: sound? (y/n):: y <r>

More attribute in the table? (y/n):: n <Ca>

Table Name:: person
Order Attribute Name Data Type

1 name c20

2 age integer

3 salary float

4 photo image
5 voice sound

Any change before create? (y/n) n <a,>

At this point, the input phase has been completed. The information is now

displayed to the user and the system asks if any modification is needed. The current

response is "n", and the system will thus go to the execution phase after the user hits the

<cr> key. If the user wants to modify this table structure by ering "y", the system will

display the modification menu and goes to the modif..,tion pha-e instead.

b. Modification Phase

The modification menu for table creation will come up on the screen when

the system goes into this modification phase. The modification menu provides seven

options to the users as showh in Figure 23.

52

Modification Menu for Table Creation

1. Change Table Name
2. Change Attribute Name
3. Change Data Type
4. Insert A Attribute
5. Delete A Attribute
0. Quit
h or H:: Show Current Information

Select Your Choice::

Figure 23. The Modification Menu for Table Creation.

From Figure 23 the user can select the desired operation to modify the

structure of this current relation. To change the table name, the attribute names or the data

type of an attribute, the user can just modify that particular item without going through all

the attributes in the relation. The user can either insert new attributes into the relation with

the desired order or remove attributes from that relation before creation. In addition, the

user can also type "h" or "H" to review the current structure of that relation before starting

any modification. The implementation of this modification process provides clear step-by-

step instructions for the user to follow. The process to check for duplications are invoked

at certain points in this modification phase. Selecting "h" will display the current

information and return to the modification menu; selecting "0" will go back to the end of the

input phase.

An example of going through the modification phase for table creation is

given in Appendix A.

c. Execution Phase

As discussed before, an extended SQL statement for MDBMS may require

the generation of several SQL statements for INGRES to execute. Further, the MDBMS

does not have the information to compile into SQL statements until run time. At the same

time, INGRES expects SQL statements from its users to be embedded into user programs

53

(INGRES views MDBMS programs as user programs) at compile time, so that these SQL

statements can be precompiled into C codes and low level function calls. These two

requirements and environments conflict each other and therefore cannot be satisfied using

only SQL statements with INGRES. The solution adopted in MDBMS was to work

directly with the C code generated by INGRES, although this is not an interface given by

INGRES. It is recognized that certain risks are involved as this solution is very

implementation dependent. For example, changes in INGRES function calls may cause

our programs to run incorrectly. Unfortunately, there are not many options open to us and

none of the options looked appealing. As expected, the low level functions are hard to

read; they are INGRES functions with parameter(s) called by value. The detailed

information of these execution commands is discussed in Appendix B.

Let us now continue the interface presentation of the execution phase. After

accepting the input from the user, the system displays the following:

SQL statements::

create table person (name c20,

age integer,

salary float,

photo integer,

voice integer);

CREATING STD TABLE NOW. PLEASE WAIT!!

CREATE A STD TABLE COMPLETE!!

<cr>

create table photo5 (i_id integer,

f_id c64,

descrp vc500,

height integer,

width integer,

depth integer);

54

CREATING MEDIA TABLE NOW. PLEASE WAIT!!

CREATE AN IMAGE TABLE COMPLETE!!

<a,>

create table voice5 (s-id integer,
f_id c64,
descrp vc500,

size integer,
samp-rate integer,

encoding integer,
duration float,
resolution integer);

CREATING MEDIA TABLE NOW. PLEASE WAIT!!

CREATE A SOUND TABLE COMPLETE!!

<ar>

The operation of table creation for the user-defined relation PERSON and

two associated media relations (i.e., PHOTO5 and VOICE5) has now been completed and

the system returns to the main menu (Figure 22) when <cr> is entered.

From the discussion of the execution phase, we can see that INGRES

function calls have to be invoked in between each two consecutive capitalized messages.

Further, the media data types of the media attributes (i.e.,"photo" and "voice") in relation

PERSON have been converted into integer types in the MDBMS design. In the process to

perform the user's operation, the system interacts with INGRES in various stages. During

the interactions, messages are passed from INGRES to MDBMS. If any of these messages

from INGRES shows that errors have occurred, the error messages from INGRES will be

displayed on the screen for the user and the operation is aborted. The user must decide

what is wrong from these messages as the MDBMS does not interpret them at all.

The creation commands for the media relations are constructed according to

the media attributes' entries collected in the Act_MediaList array (Figure 12). The detailed

55

implementation can be found in the procedures "ql-create-tableo" and "ql_create_media_

tableo" in Appendix F. The way in which the INGRES functions are used to construct the

SQL creation commands is described in Appendix B.

2. Data Insertion

The operation of data insertion has been implemented in a similar manner as table

creation. This is the first operation in the MDBMS prototype that processes user data.

User data must be entered correctly before other operations can work properly. Otherwise,

serious problem will occur when operations of retrieve, deletion and update are invoked.

Because the C language used to develop the prototype is not a strong typed programing

language, much care has been exercised to ensure the validity of the data during insertion.

Again, as in the operation of table creation, we will present the operation of data insertion

in thrhe rhseE and use the same example as before for illustration.

Now suppose the user wants to insert a tuple of data into the relation PERSON

created in the previous section. We assume that two tuples of data have been entered into

this relation in the example. Thus, when the user selects "2" from the main menu to insert

a tuple, The following message will appear on the screen to confirm the user's option:

The operation is INSERT TUPLE!!

Hit RETURN to continue, all the other key to cancel!!

<a,>

The main menu will be displayed on the screen if the user hits any key other than

the <cr>. With <cr> as the input, the system will go into the input phase and asks for more

information step-by-step.

a. Input Phase

Several checking processes are provided in the input phase. First, the user

needs to specify into which relation the data is to be inserted. A warning message will be

56

displayed if the relation name just entered does not exist in the database. Once the system

has received a correct table name from the user, it will ask the user to input data values

corresponding to the attributes in the order specified for that relation until the last attribute

value has been entered. The system checks the data values to assure that they correspond

correctly to the data types as defined in the relation. The system also checks the length of a

string value to ensure that the strings entered do not exceed their defined lengths. If any

error occurs in the input phase, the system will alert the user and request the data to be

entered again.

For media data types like image and sound, the system will ask for the

media file name and the description data for that media object as required in our design and

implementation. The value for a media data item could be empty. The system can also

accept a question mark (i.e., "?") for every attribute that the user does not know the value

or intentionally wants to leave it blank, thus letting the update operation to complete at a

later time. This method of entering unknown data can be applied to both formatted and

media data. The detailed implementation for this kind of empty value of an attribute will be

described in the execution phase later.

The input interface for our example will appear as follows:

Enter table name: (Maximum 12 characters); (? for help)

person <r>

Table Name :: person

Att Name :: name

Data Type ::c20'

Please Enter <<c20>> Value (? if unknown):: Mary Pas <r>

Table Name :: person

Att Name :: age

Data Type :: integer

Please Enter <<integer>> Value (? if unknown):: 31 <r>

57

Table Name person

Att Name :: salary

Data Type :: float

Please Enter <<float>> Value (? if unknown):: 3500 <a,>

Table Name :: person

Att Name photo

Data Type image

Please Enter <<image>> File Name!!

NOTE: Enter The Full Path Name:: (? if unknown)::
/n/virgo/worklmdbms/giflmarypas.ras <cr>

Now the system starts a sequence of checking processes to examine the

image file. It includes the open file operation and format check. If an error is detected

during any checking process, the system will give a warning message to tell the user what

the error is and ask the user to reenter the data again. If no error is found after checking,

the system will reproduce that image file with another internally generated, unique file name

such as "/n/virgo/work/mdbms/mdbms/90111.34511". The generic, user-defined file

name is then discarded. This is done to allow the users to generate generic file names

easily and not to have to know what file names have already been used in the database. In

the meantjmp, the registration data of that image object will be extracted for insertion in the

execution phase later.

Suppose that the user does not enter the image file name, but enters a "?" for

the attribute. Then all the above checking processes and the following messages will be

skipped and the system will proceed to ask for the value of the next attribute.

Now let us continue the process assuming that the user has entered the

image's full path name. The next message will then ask the user to enter the description

data:

Display the image before enter the description? (y/n):: y <a>

58

After the user entered "y" followed by a <cr>, the system will show on the

screen the image correspondiag to the image file just entered as shown in Figure 24. The

user can check and decide what kind of descriptions in natural language form is to be

entered for this image.

Figure 24. The Image of Attribute PHOTO of Mary Pas in the Relation

PERSON.

Suppose that the user now decides to enter the description, "blue eyes",

"blond hair" and "smiling face", for that image. He has to move the SUN workstation

cursor to the image window and perform a "quit" before he can continue further. As

mentioned before, the description data is limited to 127 characters for each phrase and 500

characters total for all the phrases. The system will perform these checks. However, the

structure of the phrases and spelling checking are done later at the beginning of execution.

We will discuss this checking when we go to that phase.

Continuing our data entry, the display on the screen will now be as follows:

Enter the description? (y/n):: y <ar>

Please enter description:

NOTE: Otte phrase per line. End with an empty line::

blue eyes <CY>

59

blond hair <a,>

smiling face <a,>

<a,>

Data entry for the attribute, photo, is now complete and we next move to

attribute voice.

Table Name :: person

Att Name :: voice

Data Type ::sound

Please Enter <<sound>> File Name!!

NOTE: Enter The Full Path Name:: (? if unknown)::

/n/virgo/work/mdbms/snd/marypas.snd <c>

Similar to the entry of images, the system will now start a sequence of

checking processes for this sound file, ask for reentry if any error, generate a unique file

name such as "9023151 1.snd", extract the registration data to be inserted later, and handles

the "?" entry as before. Suppose no error is found, the interface will then appear as

follows:

Play the sound before enter the description? (y/n):: y <r>

Playing sound (SIDE EFFECT in PC and SPEAKER)

The system sends the play sound command to the PC sound management

subsystem as requested by the user and the speaker will play Mary's voice recording. The

difference between sound and image handling in this part is that the image will be shown

on the screen until the user "quits" it, but playing sound will automatically end when

playing sound is completed. However, the system provides a loop structure to let the user

play sound again until he enters "n" followed by a <cr>. Because the sound management

component is independently controlled in the PC, the process of this input phase is not

affected by that sub-system at all. The user can actually go to the next input request before

60

the sound playing finishes. However, the user can not enter "y" to respond the system

"play sound again" before the sound management subsystem in the PC has returned to the

ready-to-receive mode. Otherwise, a communication error will happen if the second play

sound command is sent when the PC is not in the receive mode. If the sound file needs a

large amount of time to play (e.g., a song or a briefing), the user can also quit playing by

hitting the space bar on the PC keyboard. The detailed information about this sound

management subsystem is described in [AT90].

Now let us return to the interface:

Play one more time? (y/n):: n <cr>

Enter the description? (y/n):: y <o'>

Please enter description:
NOTE: One phrase per line. End with an empty line::

sweet voice <aF>

<0.>

Table Name :: person

Order Attribute Name Data Type Value

1 name c20 'Mary Pas'

2 age integer 31
3 salary float 3500.0000
4 photo image HAS VALUE
5 voice sound HAS VALUE

Media Data

Art Name : photo

Data Type :: image
File Name ::/n/virgo/work/mdbms/mdbms90111.34511

Description

blue eyes

blond hair

61

smiling face

At Name voice
Data Type sound

File Name :: 9023151 l.snd

Description

sweet voice

Any change before insert? (y/n) n <a->

As shown, the input phase to enter a tuple has been completed at this point.

The interface displays the current information to let the user confirm whether he needs to

change any value before insertion. The data items will have different kinds of presentations

depending on the data types whether empty. For example, a white space enclosed by a

single quote (i.e., '') will represent the empty value of an attribute with string type; a "0"

or "0.0000" will represent the empty value of attributes with integer or float type

respectively; and "NO VALUE" will show the empty value of media attributes. If a media

attribute does not have any value entered, then the system will not display the information

for that attribute which comes after "Media Data::" as shown above. Note that, the media

file names displayed have been changed to the unique, internally generated file ID as stated

before.

b. Modification Phase

The implementation of this modification phase before the execution of an

insertion behaves similarly -as in the input phase. The purpose is to allow the user to

double check the input data and perform corrections as needed. If the user wants to

perform modification on his data, the system goes into this phase, displaying the current

data values again, and asks for the order of the attribute that needs changing.

62

Table Name :: person

Order Attribute Name Data Type Value

I name c20 'Mary Pas'

2 age integer 31

3 salary float 3500.0000

4 photo image HAS VALUE

5 voice sound HAS VALUE

Select the order which you want to change its value::

Any other key to cancel the operation!! Select::

As it can be seen, the user can either go back to the last confirmed message

in the input phase by entering any key besides "1" to "5", or perform a modification. The

system will start the modification process only if a particular data item in the listed order is

selected by the user. The detailed interface of modification for data insertion using the

sample example is presented in Appendix C.

Recall from the user's response at the end of the input phase that no change

before insertion has been entered. The next system's response therefore is to start

constructing the SQL insert statements for execution.

c. Execution Phase

As mentioned in the previous section, run-time parameters for SQL cannot

be passed to the system in the INGRES environment. Again, we have solved this problem

the same way as in table creation. However, the program variables in table creation are all

string type. Here these variables can be different types and it becomes more complicated to

know what must be passed to the INGRES functions to get the correct result. We will

present those function calls used in MDBMS by way of examples in Appendix D. The

general rules to construct the SQL commands will be discussed there.

As discussed earlier, the descriptions of the media data items are

transformed by the parser into PROLOG predicates and literals to be used by the PROLOG

63

system for content search. These description predicates and literals are stored in the file

called the facts file. Thus, when the nser has entered any description data for the media

data items, the parser is invoked to update the facts file. This process is done before

INGRES is invoked to assure that data entered in the INGRES tables are all valid. If the

parser, for whatever reason, cannot parse the descriptions given by the user, the insertion

execution will be stopped immediately and the user will be asked to modify the description

data so that the system can try to execute the insertion again. In the case that an error code

is returned to the system from the PROLOG processor, the system will tell the user what

kind of error has been detected and where it is.

The operation to interact with the parser is achieved by invoking one of the

ISfunction calls as shown in TABLE I of Chapter II (i.e. ISREPLACEDESCR). The

detailed implementation code of this prolog processing is outlined in [TH88, pp49]. The

procedures that employ the ISfunction calls in the MDBMS programs are "checkmedia_

descrpo" and "connect_parsero" as shown in Appendix F. The user interface presentation

for this execution phase is shown in the following:

Connect to PARSER, Please wait (This message is for attribute "photo")

Connect to PARSER, Please wait (This message is for attribute "voice")

Hit RETURN to continue!

<cT>

SQL statements::

insert into person (name,

age,

salary,

photo,

voice)

values ('Mary Pas',

31,

64

3500.0000,

3,

3);
INSERTING STD TUPLE NOW. PLEASE WAIT!!

INSERT A STD TUPLE COMPLETE!!

insert into photo5 (i-id,

fid,

descrp,

height,

width,

depth)
values (3,

'/n/virgo/work/mdbms/mdbms/90111.34511 ',

'blue eyes\nblond hairnsmiling face',

640,

480,

8);
INSERTING MEDIA TUPLE NOW. PLEASE WAIT!!

INSERT A IMAGE TUPLE COMPLETE!!

<oa>

insert into voice5 (s-id,

fid,

descrp,

size,

sampjrate,
encoding,

duration,

resolution)

values (3,

'9023151 1.snd',
1sweet voice',

65

20,

10,

4,

15.5

10);
INSERTING MEDIA TUPLE NOW. PLEASE WAIT!!

INSERT A SOUND TUPLE COMPLETE!!

<a'>

At this time, the main menu as shown ir Figure 22 is displayed on the

screen once more. As shown in the displays, the operation of data insertions of the user-

defined relation, PERSON, and two associated media relations (i.e., PHOTO5 and

VOICE5) have been completed at this point. Again, the INGRES function calls are

invoked in between each two consecutive, capitalized messages. Further, as shown in the

displays, the internally assigned value for the media attribute "photo", corresponding to

"iid" in the media relation PHOTO5, has been entered with value "3" as a media data

identifiers. Similarly, another media identifier "3" is entered for the media attribute

"voice", corresponding to "sid" in the media relation VOICE5. No error message is

returned from INGRES because all the values have been entered into the database without

error. The user does not need to worry about the internally generated SQL statements and

their executions at all. The detailed implementation can be found in the procedures

"ql_createtable0" and "ql-create mediatableo" as shown in Appendix F. The INGRES

functions invoked to construct the insertion commands are included in Appendix D.

B. PROGRAM STRUCTURE

The MDBMS program is implemented using the programing language C. The

program is separated into five submodules as follows:

1. The create table module.

2. The insertion module.

66

3. The query module.

4. The deletion module.

5. The update module.

The first three modules have been completed, the other two are in progress. We will

describe the program structures with respect to the first two modules, table creation and

data insertion in Appendix E. The query module is basically the same as described in

[P090, pp4l-42], although small modifications have been made. The program code of

these three modules are included in Appendix F.

In addition to those two operation modules, table creation and data insertion, we will

also provide a discussion of the catalog management component in our prototype which is

also included in Appendix E.

C. HOW TO LINK AND RUN THE MDBMS

The MDBMS system is built on a SUN workstation under the server named Virgo at

NPS.CS.NAVY.MIL. The MDBMS program is in the mdbms directory under the user

account /n/virgo/work/mdbms. The program source code is named "db.sc" as shown in

Appendix F. This "db.sc" source code needs the INGRES precompiler to generate the

"db.c" source code before the compilation by the C compiler to generate the object code

"db.o". The object code then goes through a linking process to connect to the other object

code such as "ISfunctions.o", "ISsubroutines.o" and "comcprologl.o". The executable

module is then generated as "db". All these processes can be done by using a macro

Makefile. Thus, to complete. the compiling and linking processes of a new implementation

of the "db.sc", one simply types "make db" at the prompt of the UNIX operation system.

The Makefile is given as follows:

OBJMODS = ISfunctions.o ISsubroutines.o comcprolog1.o

67

#INGHOME = fingres

db: db.o $(OBJMODS)

cc db.c -o db\

/ingres/lib/libqlib /ingres/lib/compatlib\

$(OBJMODS)\

-Isuntool -Isunwindow -Ipixrect -Im

db.c: db.sc

esqlc db.sc

To run the MDBMS prototype, the user can set up the path from any accour.. to access

/n/virgo/work/mdbms/mdbms directory and copy all files from /n/virgo/work/mdbms/

mdbcatalog directory to the desired working directory. After this has been done, the user

must log off and log on again before he can run the MDBMS prototype. This is done to

allow the system to connect to the new path just set up for proper execution. When the

system has been restarted, the user must type "db" in that working directory to start

running the MDBMS prototype. However, you must be an authorized user to access the

INGRES DBMS. Otherwise, the system will not allow you to do anything in the

MDBMS. A message will also be presented to the user if that happens. You can ask the

system administrator to set up the path to access the INGRES system.

68

V. CONCLUSION AND SUMMARY

Many applications require the use of both formatted data and media data. The handling

of multimedia data imposes new requirements on the database management systems,

especially when the integrated support of conventional and multimedia databases is needed.

In this thesis, an approach to integrate alphanumeric and multimedia data is achieved by

using the abstract data type concept. We use the INGRES relational DBMS to manage the

conventional databases in the MDBMS prototype.

This thesis outlined a sample application for the NAVY SHIPS database. The design

of the MDBMS to support the various database operations is illustrated through the use of

that sample application. Specifically, it showed how the catalog information is stored for

the processing of both formatted and multimedia data. It also showed how table creation

and data insertion can be achieved by decomposing a user operation into multiple SQL

operations to support multimedia data management. Many examples are presented

throughout this thesis to illustrate the various points.

An interactive user interface was implemented for the system. This is believed to be

more user friendly and simpler to implement. Prompting was used generously so that a

user can work on the system with very little background or knowledge about the

MDBMS's handling of formatted and multimedia data.

The handling of formatted and multimedia data in a relational DBMS is more than just

adding new relations into thee database. The approach proposed in the MDBMS prototype

can retrieve media data based on their contents described in natural language form. The

description processing of media objects can not be done with SQL or in any database

system like INGRES. The additional parser and a PROLOG processor are integrated to

process these description daia.

69

Although the media data types presented in the MDBMS prototype are only image and

sound, it is straight forward to extend the capability to handle other media data in a similar

manner. The concept of handling both formatted and multimedia data is amply illustrated

through the capability of supporting these two kinds of media data types.

For lack of time, only three operations including the table creation, data insertion and

retrieval are completed in this prototype at this time. Two companion theses [PO90, AT90]

are done concurrently. The retrieval process is given in [P090] and the sound data

management is given in [AT90]. This thesis concentrated on the catalog management

design and the implementation of table creation and data insertion. Actually, it integrated all

the other subsystems together and outlined the system design for the MDBMS prototype in

detail. It is the entry to continue the other irmplementations of the MDBMS prototype

Further works will continue on the implementation of operations including nested

retrieval, deletion and update. The development of better graphical user interface with

window frames processing, and better help utility, are planned for the MDBMS prototype.

70

APPENDIX A

THE MODIFICATION INTERFACE FOR TABLE CREATION

Appendix A will use the same example we discussed in Chapter I and IV to illustrate

the capabilities of modification in table creation. Recall from the section IV.A. 1.b that the

modification interface will start if the user needs to change something before actual

creation. The following interface presentation will show the performance of some

functions listed in the modification menu (Figure 23). We will use a sample which has

different structures from the example we used before; we will modify them to be exactly the

same as the original. Suppose that the current information of relation PERSON has the

following structure:

Table Name:: person

Order Attribute Name Data Type

1 name c20

2 salary float

3 address c20
4 picture image
5 voice sound

Any change before create? (y/n) y <r>

At this point, the input phase has been completed. The information are now displayed

to the user and the system asks if any modification is needed. Suppose the user wants to

modify this table structure to become exactly the same as the relation PERSON that we

presented before in section IV.A. 1. Then he needs to delete the attribute "address" and add

another attribute "age". Also he needs to change the attribute name "picture" to "photo" as

well. Thus, the user enters "y" followed by a <cr> key. The modification menu for table

creation will be displayed on the screen right after the <cr> as shown in the following:

71

Modification Menu for Table Creation

1. Change Table Name
2. Change Attribute Name
3. Change Data Type
4. Insert A Attribute
5. Delete A Attribute
0. Quit
h or H:: Show Current Information

Select Your Choice::

From above menu, the user can select t& " desired operation to modify the structure of

this current relation. Five kinds of modific,. -on are provided for the user to update the

structure conveniently. Now suppose the user select "2" to change a attribute's name. The

following interface presentation will present the instructions to the user step-by-step:

Table Name:: person

Order Attribute Name Data Type

I name c20

2 salary float

3 address c20

4 picture image

5 voice sound

Select the order which you want to change attribute's name::

Any other key to cancel the operation!! Select:: 4 <Ca>

Current AutName:: picture

Change to:: photo <a>

New AtName:: photo

72

Modification Menu for Table Creation

1. Change Table Name
2. Change Attribute Name
3. Change Data Type
4. Insert A Attribute
5. Delete A Attribute
0. Quit
h or H:: Show Current Information

Select Your Choice::

At this point, the system shows the modification menu again after the <cr>. Now the

user has completed the update of attribute name from "picture" to "photo". The next thing

he needs is to select "4" to insert a new attribute "age" or select "5" to delete a attribute

"address". The point is that once the modification menu appears to the user again, it means

that the previous operation has been completed and the system is ready for the next request.

Suppose that the user select "4" to insert an attribute. The interface

presentation will be continued as shown in the following:

Table Name:: person

Order Attribute Name Data Type

I name c20

2 salary float

3 address c20

4 photo image

5 voice sound

Select the order where the new attribute you want be::

(Maximum + 1) will add new attribute at the end!!

Select the new attribute's order::

Any other key to cancel the operation!! Select:: 2 <r>

Enter attribute name: (Maximum 12 characters)

age <a>

Select data type of attribute::

73

Select:: (1)integer (2)float (3)c20 (4)image (5)sound

Select your choice:: ! <r>

Data type: integer? (y/n):: y <cr>

Modification Menu for Table Creation

1. Change Table Name
2. Change Attribute Name
3. Change Data Type
4. Insert A Attribute
5. Delete A Attribute
0. Quit
h or H:: Show Current Information

Select Your Choice::

Now the user has inserted the attribute "age" as the second attribute. He

must now select the last modification as "5" to delete an attribute. The interface

presentation will be continued as follows:

Table Name:: person

Order Attribute Name Data Type

1 name c20

2 age integer

3 salary float

4 address c20

5 photo image

6 voice sound

Select the order of attribute which you want delete::

Any other key to cancel the operation!! Select:: 4 <a>

Delete address? (y/n):: y <a,>

74

Modification Menu for Table Creation

1. Change Table Name
2. Change Attribute Name
3. Change Data Type
4. Insert A Attribute
5. Delete A Attribute
0. Quit
h or H:: Show Current Information

Select Your Choice::

Now the user has completed the deletion of the attribute, "address", at this point. The

desired updates have thus been completed in this example. The user can now type "h" or

"H" to review the current structure of this relation or just select "0" to quit the modification

menu. Suppose the user selects "0" to quit the modification phase. The previous

presentation before entering this modification phase will appear to the user again for

confirmation as follows:

Table Name:: person

Order Attribute Name Data Type

1 name c20

2 age integer

3 salary float
4 picture image
5 voice sound

Any change before create? (y/n) n <ai>

The operation of table creation can now go to the next phase to execute the operation of

table creation in INGRES DBMS. The user can return to the modification phase again if he

enters "y" followed by a <cr> instead.

This example has invoked 3 modify functions, the other two (i.e., change table name

and change data type) are implemented in the similar manner. The purpose here is just to

outline the capabilities of the modification process in our MDBMS prototype.

75

APPENDIX B

SQL COMMANDS FOR TABLE CREATION

As we have mentioned earlier in section IV.A. 1.c, the INGRES system we chose does

not provide high level function or subroutine calls that allow its users to implement an

interactive interface to create a table by using predefined embedded SQL codes in the host C

program. That means the table name, attribute name as well as the data type of an attribute

are not supposed to be implemented as any program variable in .,.-ing type. In this

appendix we will discuss the implementation of the constructions to achieve the goal,

although not supported directly by INGRES. The problem was solved by using the pre-

compiled low level functions in INGRES to construct our MDBMS to INGRES interface

internally. Although the low level functions are hard to read, they are indeed INGRES

functions with parameter(s) called by value. For example, the function "Ilwritedbo" is a

function call that we used most frequently in each MDBMS's operation when accessing the

INGRES system. It provides an actual parameter of string type inside the parenthesis. The

detailed implementation work of this kind of construction can be found from the procedures

such as "ql-create-tableo" and "ql create_media table0" in Appendix F.

From section IV.A. 1.c, the interface presentation of the execution phase for table

creation, we can see that the INGRES function calls are invoked in between each two

consecutive capitalized messages. To explain the rules of invoking these INGRES

functions, we will give an example of the SQL commands to create the user defined relation

PERSON.

The definition and use of the different INGRES internal functions are not given

anywhere. To learn the usage of these functions, we need to experiment and learn how

76

INGRES and it's precompiler work. We did this by writing different SQL statements for

various kind of operations and by reading the code generated by the precompiler to detect

the different actions INGRES responds to the different SQL operations. Through this trial-

and-error method, we learned how to use the INGRES internal functions for our purpose.

For example, to learn how to construct the SQL creation commands we wri.e a sampz

embedded SQL code in an ".sc" file, named "test.sc". The embedded SQL code is shown

as follows:

EXEC SQL

CREATE TABLE person (name c20, age integer, salary float,

photo integer, voice integer);

To compile this sample "test.sc" file, we can just type "esqlc test.sc" at the prompt of

UNIX operation system. After going through the INGRES precompiler, the ".c" source

file will be generated automatically in "test.c" file. The precompiled source code is shown

as follows:

lIsqInit (&sqlca);

IHwritedb ("create person(name=c20,age--i4,salary=f4,photo--i4,voice=i4");

IIsqSync (0,&sqlca);

As we can see from this example, three functions are used to construct the execution

SQL command (i.e., "UsqInito", "Ilwritedbo" and "UsqSynco"). The "IIsqInit(&sqlca)"

and "llsqSync(O,&sqlca)" are the commands used to tell INGRES about this creation

communication area enclosed here. The function "llwritedbO" is the one that is used to

pass the user specified information like relation name, attribute names, data types, etc. to

INGRES. In the above example, the code generated by the INGRES precompiler is for the

relation PERSON. Obviously the generated code for a different relation would be

different. We need to have a way to use this function to work for any arbitrary relation

defined by the user. We have to let the relation name, attribute names and data type of

77

attributes to be able to be used as program variables. We .an decompose the function

'llwritedbo" according to our MDBMS design. The equivalent internal code for this

creation is shown as follows:

llsqinit (&sqlca);

lIwritedb ("create)

lIwritedb (table-array[tablejist[table cursori II.table-name); <-person

Ilwritedb (CC);
lIwritedb (att-array[entryl .att-name); <-name

Ilwritedb (at-arrav renrryl.datajtype <-c2

lIwritedb C',");

Ilwritedb (att-array[entryl .att-name); <-age

H1writedb (1i4,"); <-integer

Ilwritedb (att-.arrayfentryl .att-narne); <-salary

flwritedb (1f4"); <-float

Ilwritedb (attarray[entry] .attname); <-photo

llwritedb (C'=1);

Ilwritedb ('14,"); <-integer

flwritedb (a. _array[entryl .attname); <-voi' e

Ilwritedb C"=");

llwritedb (1i4"); <-integer

ll1writedb, C)");

llsqSync (O,&sqlca);

As you cani see by now, we can modified the structure of the precompiled code to set

up loops as needed to comm~incate with INGRES. The result thus appears as follows:

printf('\nCREATEING STD TABLE NOW. PLEASE WAIT!!\n");

Hlsqlnit(&sqlca);

lIwritedb("create 1)

H1writedb (tablearray[table-ist[table-cursorli .tablc...i-ame);

78

Hlwritedb (CCt);

for (i =1; i < count; i++);

H1writedb (attanay[entry].att-name);

lIwritedb ("=");

strcpy(data-type, att-array[entryl .data_type);

if ((strcmp(data..type, "image") == 0) HI

(strcmp(data-type, 'sound") =- 0) 11

(strcmp(datajtype, "integer") ==0))

Ilwritedb (1i4,");

else

if (strcmp(datajtype, "float") == 0)

llwritedb ("f4");

else

Hwritedb (att~array[entry].data-type);

Ilwritedb (,)

entry = att-array[entry].next-index;

Hwritedb (at..array [entry] .atjane);

llwritedb ("=");

strcpy(data..type, auarray[entry].data re)

if ((strcmp(datajtype, "image") = 0) 11

(smrmp(data-type, "sound") == 0) 11

(strcmp(data..type, "integer") =0))

]Iwritedb (1i4)");

else

if (strcmp(data..3ypt, "float") == 0)

Ilwritedb (1f4)");

else

Iwriredb (attan-ay[entryj.dara-type);

79

)
IlsqSync (0,&sqlca);

if (sqlca.sqlcode != 0)

......... (error message)

printf("nCREATE A STD TABLE COMPLETE! .Nn");

The data type of an attribute is defined by passing a different code after the "=" sign.

Thus, "c20" is for the data type of character 20; "i4" is for the data type of integer, and "f4"

is for the data type of float. There are two more types that can happe in the creation of a

media relation, that is, "c64" for the data type of character 64 and "text(500)" for the data

type of vary character 500. The detailed implementation can be found from the procedures

"ql-create-tableo" and "qlcreatemediatableo" in Appendix F.

From this example we can see that all the table names, attribute names, and data types

of the attributes can now be declared in the C program as program variables. This low

level implementation is necessary to develop the MDBMS prototype interface in an

interactive mode. It allows the user to create any relation with any kind of structures with

respect to the application requirements. Another similar example will be given in Appendix

D for data insertion. To have better idea about tie construction to build.. ,imilar interface

for other operations, it is necessary to write a sample embedded SQL codes in a ".sc" file

and compile it by using the precompiler (i.e., type "esqlc sample.sc"). The low level

INGRES function code will then be presented in the ".c" file.

80

APPENDIX C

THE MODIFICATION INTERFACE FOR DATA INSERTION

Appendix C will use the same example we discussed before to ilustrate the capabiliies

of modification in data insertion. Recall from the section IV.A.2.b that the modification

interface will be invoked if the user needs to modify some values before actual insertion.

The following interface presentation will show the performance of this modification. We

will use an example which has different data entered initially from the example we used

before. We will modify them to become exactly the same as the original. Suppose that the

current tuple has information as shown in the following:

Table Name person

Order Attribute Name Data Type Value

I name c20 'mary pas'

2 age integer 31

3 salary float 2500.0000

4 photo image HAS VALUE
5 voice sound HAS VALUE

Media Data

Art Name :: photo

Data Type :: image

File Name ::/n/virgo/work/mdbms/mdbms/90111.34511

Description

blue eyes

blond hair

At Name :: voice

Data Type :: sound

File Name :: 90231511.snd

81

Description

sweet voice

Any change before insert? (y/n) y <.o>

The input phase has just been completed at this point. The system will display the

current information to let the user confirm whether he needs to change any value before

insertion. Now suppose thaz the user wants to change 'mary pas' to 'Mary Pas' and he

also has found out that the value "2500" of attribute "salary" was mistyped. Moreover, he

wants to add one more phrase in the description like "smiling face" to describe the "photo".

Thus, the user entered "y" followed by a <cr> to respond to the message shown above.

The modification phase now will become as shown in the following:

Table Name :: person

Order Attribute Name Data Type Value

1 name c20 'mary pas'

2 age integer 31

3 salary float 2500.0000
4 photo image HAS VALUE

5 voice sound HAS VALUE

Select the order which you want t -hange its value::

Any other key to cancel the operat iH! Select:: 1 <n"

Table Name person

Art Name ::name

DataType ::c20

Value :: 'mary pas'

Please Enter <<c20>> Value (? if unknown):: Mary Pas <or>

Table Name :: person

At Name :: name

Data Type ::c20

Value :: 'Mary Pas'

82

Any more change? (y/n):: y <r>

Table Name :: person

Order Attribute Name Data Type Value

1 name c20 'Mary Pas'

2 age integer 31

3 salary float 2500.0000

4 photo image HAS VALUE

5 voice sound HAS VALUE

Select the order which you want to change its value::

Any other key to cancel the operation!! Select:: 3 <a'>

Table Name :: person

Att Name :: salary

Data Type :: float

Value :: 2500.0000

Please Enter <<float>> Value (? if unknown):: 3500 <r>

Table Name :: person

Att Name :: salary

Data Type ::float

Value :: 3500.0000

Any more change? (y/n):: y <a>

Table Name :: person

Order Attribute Name Data Type Value
1 name c20 'Mary Pas'

2 age integer 31

3 salary float 3500.0000

4 photo image HAS VALUE

5 voice sound HAS VALUE

Select the order which you want to change its value::

Any other key to cancel the operation!! Select:: 4 <ar>

Table Name :: person

Att Name ::photo

Data Type :: image

83

Value

File Name ::/n/virgo/work/mdbms/mdbms/90111.34511

Description

blue eyes

blond hair

Change IMAGE file name? (y/n):: n <a,>

Change IMAGE description? (y/n):: y <a,>

Please enter description:

NOTE: One phrase per line. End with an empty line::

blue eyes <a>

blond hair <r>

smiling face <a,>

<a,>

Table Name :: person

Att Name :: photo

Data Type :: im,:ge

Value

File Name ::/rvirgo/work/mdbms/mdbms/90111.34511

Description

blue eyes

blond hair

smiling face

Any more change? (y/n):: n <aF>

Table Name :: person

Order Attribute Name Data Type Value

1 name c20 'Mary Pas'

2 age integer 31

84

3 salary float 3500.0000

4 photo image HAS VALUE

5 voice sound HAS VALUE

Media Data
Alt Name photo

Data Type image

File Name /n/virgo/work/mdbms/mdbms/90 111.34511

Description

blue eyes

blond hair

smiling face

Alt Name voice

Data Type sound

File Name 90231511.snd

Description

sweet voice

Any change before insert? (y/n) n <a,>

The operation of data insertion will now go to the execution phase to insert the tuple in

the INGRES DBMS. The user can return to the modification phase again if the he enters

"y" followed by a <cr> instead.

This example has exercised some modifications of changing different values in

different data types. The modification for other data types are implemented in similar

manner. The purpose here it just to outline the capabilities of the modification operation in

our MDBMS prototype.

85

APPENDIX D

SQL COMMANDS FOR DATA INSERTION

As we have mentioned earlier in section IV.A.2.c and Appendix B, the INGRES

system we chose does not provide high level function or subroutine calls that allow us to

implement an interactive interface to insert a tuple of data by using predefined embedded

SQL codes in the host C program. We have solved this problem by using Ihe low level

INGRES function calls. We use the precompiler to .ompile a sample embedded SQL

source code to figure out the general rules for data insertion. In this appendix we will also

discuss the implementation of this kind of constructions to achieve the goal.

As mentioned before, run-time parameters for SQL cannot be passed to the system in

the INGRES environment. Again, we have solved this problem the same way as in table

creation. However, the program variatles in table creation are all string type. Here these

variables can be different types and it becomes more complicated to know what must be

passed to the INGRES functions to get the correct result. It becomes clear if we illustrate

them by using the same example as before. One more INGRES function call is required to

pass the data values. It is always accompanied with another INGRES function call (i.e.,

"Ilwriredbo") when passing the value of a attribute. The function "lIwritedbo" has been

discussed before in Appendix B. The detailed implementation of this kind of construction

can be found from the procedures such as "ql-insert-tupleO" and "ql-insert-media_

tupleo" in Appendix F.

From section IV.A.2.c, the interface presentation of the execution phase for data

insertion, we can see that the INGRES function calls are invoked in between each two

consecutive capitalized messages. To explair the general rules of using these INGR ES

86

functions we will give an example of SQL commands to insert a tuple of data into the user

defined relation PERSON. Again as said in Appendix B, experiments had to be

constructed to learn how to use the internal functions in INGRES. First of all, we write a

"test.sc" embedded source code for insertion as follows:

EXEC SQL

INSERT INTO per-son(name,age,salary,photo,voice)

VALUES ('Mary Pas',31,3500.0000,3,3);

To compile this sample "test.sc" file, we can just type "esqlc test.sc" at the prompt of

UNIX operation system as we mentioned before in Appendix B. After going through the

INGRES precompiler, the ".c" source file will be generated automatically in "test.c" file.

The precompiled source code is shown as follows:

Isqlnit (&sqlca);

lIwritedb ("append to person(name=");

Ilsetdom (1,32,0,"Mary Pas");

Hwritedb (",age=");

Ilsetdom (1,30,4,31);
llwritedb (",salary=");

Usetdom (1,31,4,3500.0000);

Ilwritedb (",photo=");

IHsetdom (1,30,4,3);
Ilwritedb (",voice=");

Usetdom (1,30,4,3);

Ilwritedb (")");

IlsqSync (3,&sqlca);

As we can see from this, example, four functions are used to construct the execution

SQL command (i.e., "IIsql.nito", "lHwritedbo", "Ilsetdomo" and "IlsqSynco").

"IIsqlnit(&sqlca)" and "IlsqSync(3,&sqlca)" are the commands used to tell INGRES about

this insertion communication area enclosed here. The functions "Iwritedbo" and

"IIsetdomo" are used to pass the user specified information like relation name, attribute

87

names, data values, etc. to INGRES. In the above example, the code generated by the

INGRES precompiler is for the relation PERSON. Obviously the generated code for a

different relation would be different. We need to have a way to use this function to work

for any arbitrary relation defined by the user. We have to let the relation name, attribute

names and data value of attributes to be able to be used as program variables. We can

decompose the function "llwritedbo" and "INsetdomo" according to our MDBMS design.

The equivalent internal code for this insertion is shown as follows:

IIsqInit (&sqlca);

IIwritedb ("append to ");

Ilwritedb (table-array[table_list[tablescursor]].table-name); <-person

IIwritedb ("CC);

IIwritedb (att.array[entry].att-name); <-name

IIwritedb ("=");

IIsetdom (1,32,0, c-valueatt-array[entry].value-entry]); <-Mary Pas

IIwritedb (",");

IIwritedb (att-array[entryl.att-name); <-age

Ilwritedb ("=");

Ilsetdom (1,30,4, &ivalue[attarray[entry].value-entry]); <-31

IIwritedb (attarray[entry].att-name); <-salary

IIwritedb ("=");

IHsetdom (1,31,4, &f value[attarray[entry].valueentryj); <-3500.0000

IIwritedb (att.array[entry].att-name); <-photo

IIwritedb ("=");

llsetdom (1,30,4, &img.record[att..array[entry].value_entry] .i_id); <-3

Hwritedb (att-array[entryl.att-name); <-voice

llwritedb C=");

Usetdom (1,30,4, &snd__record[att-array[entry].valueentry].s-id); <-3

Hwritedb (")");

HsqSync (3,&sqlca);

88

As you can see by now, we can modified the structure of -he precompiled code to set

up loops as needed to communicate with INGRES. '--e result thus appears as follows:

printf('\nINSERTING STD TUPLE NOW. PLEASE WAIT!!\n");

IIsqlnit(&sqlca);

Ilwritedb(" append to)

lIwritedb (table-array[tablejist~tablescursorl]I.tablename);

lIwritedb CC();

for (i = 1; i < count; i++);

llwritedb (att-array~entryl.att-name);

llwritedb ("=");

strcpy(datajtype, atr arraiy [,e itry j.data type);

if (strcmp(data-type, %c20") == 0)

llsetdom (1,32,0, c-value[att-arraylentry] .value_entry]);

else

if (strcmnp(datajtype, "integer") = 0)

llsetdom (1,30,4, &iLvalue~att-array[entry] .value..entry]);

else

if (strcmp(data..ype,, "float") =-- 0)

llsetdom (1,31,4 &f..alue[att-array[entry] .value..enrry]);

else

if (strcmp(datajtype, "image") == 0)

Ilsetdom (1,30,4, &imgjecord[att-array[entry].value entryi.i_id);

else

Ilsetdorn (1,30,4, &sndjiecord[at..array[entry].value entry] .s_id);

flwritedb (,)

entry = att...array[entryl.next index;

Ilwritcdb (att-.array[entry] .att...naxne);

llwritedb ("=11);

strcpy(datajype, att-.array[entry] .data-type);

if (strcmp(datajtype, %c20") == 0)

H1setdom (1,32,0, clvalue[att..array[entry] .value-entry]);

89

else

if (strcmp(data-type, "integer") == 0)
Ilsetdom (1,30,4, &i-value[att-array[entryl .valuesentry]);

else
if (strcmp(data-type, "float") == 0)

Ilsetdom (1,31,4, &f-value[att array[entry].value-entry]);
else

if (strcmp(data-type, "image") == 0)
Ilsetdom (1,30,4, &img-record[att-array[entry].value.entryl.i-id);

else
Ilsetdom (1,30,4, &sndrecord[attarray[entry].value-entry].s-id);

Ilwritedb (")");

pnntf('AViiSERT A STD TUPLE COMPLETE!!n");

As we can see from this example, two functions (i.e.,"Ilwritedb ()" and "TTsetdomO")

are needed to construct the control loop to insert a tuple into the user-defined relation

PERSON. The data value of an attribute is defined by passing some different code in the

function "Ilsetdom0" after the "=" sign. Thus, "Ilsetdom (1,32,0, ...)" is used for

passing a value of string type; "Ilsetdom (1,30,4, &...)" is used for passing an integer

value; and "Ilsetdom (1,31,4, &...) is used for passing a float value. The detailed

implementation can be found from the procedures "ql-insertruple0" and "ql_insert_

mediajtupleo" in Appendix F.

From this example we can see that all the table name, attribute names, and data value

of each attribute can now be declared in the C programs as program variables. This low

level implementation is necessary to develop the MDBMS prototype interface in an

interactive mode. It allows the user to insert tuple of data into a relation which has been

created from the operation of table creation. Again, in order to have better idea about the

construction to build a similar interface for other operations, it is necessary to write sample

embedded SQL code in a ".sc" file and compile it by using the precompiler (i.e., type

90

"esqlc sample.sc"). The low level INGRES function code will then be presented in the

".c" file.

91

APPENDIX E

PROGRAM STRUCTURE OF THE MDBMS

The MDBMS program is implemented by using the programing language C. The

program is separated into five submodules as follows:

1. The create table module.

2. The insertion module.

3. The query module.

4. The deletion module.

5. The update module.

In this appendix, we will describe the program structures with respect to the first two

modules, table creation and data insertion. We will also provide a discussion of the catalog

management component in our prototype at the beginning of this section. The query

module has been outlined in [P090,pp4l-42]. The other two modules, deletion and

update, are in progress [PB91, ST91, AY91].

1. Catalog Management

In accordance with the catalog management design, two procedures used to

implement this function are as follows:

1.1 loaddatao: This procedure is engaged after accessing INGRES in the main

procedure "mainO". The major function of this procedure is to read catalog information

from three catalog files storerl in the working directory.

1.2 store datao: This procedure is invoked every time when the catalog information

in the system tables has been updated. The procedure further performs the writing

92

processes from the system tables in main memory to those three catalog files in external

storage devices.

2. Table Creation Module

This module is invoked when the user selects "1" from the main menu to create a

table. Three phases are included in this implementation. To make clear the process flow,

we will separate each phase and start from the first procedure to the last. The process flow

will be introduced based on the previous examples to illustrate the program structures.

However, several subprocedures may be called from different phases depending on the

actual operation.

a. Input Phase

The main procedure "create_tableo" for table creation is invoked at the

beginning of this phase; others are invoked by different procedures at the appropriate time.

The procedures are listed as follows:

a. 1 create tableo: This is the main procedure of the table creation module and is also

employed inside the "maino" of the MDBMS program. It manages two input functions

and several checking functions. The table name is read direcdy from standard I/O and the

others are listed as follows:

a. 1.1 check last.charo: This procedure checks the last character of a table name. It

returns TRUE if a numeric character is found at the end of the table name.

a.1.2 check tablenameo: The procedure checks for the duplication of the user

defined relation names. It returns TRUE if duplication has occurred.

a. 1.3 getatt nameo: This procedure reads the attribute names entered from the user.

Several subprocedures are employed here and listed as follows:

a. 1.3.1 checkattnameO: This procedure checks the first 9 characters of an attribute

name. It returns TRUE if a duplication within that same relation is found.

93

a. 1.3.2 selectdata_typeo: This procedure provides a selection menu to choose one

of five pre-defined data types for each attribute during insertion.

a.2 displayinfoo: The phase transition from input to modification and from input to

execution are achieved by this procedure depending on the user's response. One

subprocedure is employed here as follows:

a.2. I print tableo: This procedure displays the current table ztructures that the user

has entered during the input phase.

b. Modification Phase

The main procedure for the modification phase is "mod jable()". This

phase is operated one level lower than both input and execution phases. Several

subprocedures axe employed there. The program structure for modification is listed as

follows:

b.1 modifytableo: This is the first procedure invoked when modification is to be

done. It in turn calls six subprocedures, each one representing a different operation that

has been discussed in the modification menu (Figure 23). However, the modification

menu is provided by another subprocedure which is also called from here. They are listed

as follows:

b. 1.1 modify choiceo: This is the procedure to print out the modification menu.

The user's choice will be returned from here.

b.1.2 changetablenameo: This procedure updates the current relation's name.

The function "checktablenameO" discussed in 2.a.1.2 will be invoked after the user

inputs the new table name.

b.1.3 change att nameo: This procedure updates the current attribute's name. The

function "check_att._nae0" in 2.a.1.3.1 will be invoked after the user iputs the new

attribute name.

94

b. 1.4 change datatypeo: This procedure updates the data type of an attribute. The

subprocedure "selectdatajtype" in 2.a.1.3.2 is called from here too.

b.l.5 insertatt: This procedure inserts a new attribute into the current relation

before actual creation. A subprocedure "get-attnameo" in 2.a. 1.3 is called from here. An

rearrangement of the linked list in the system tables will also be completed before returning

to the caller.

b. 1.6 deleteatto: This procedure deletes an attribute and rearranges the linked list in

the system tables.

b. 1.7 printtableo: The procedure will display the current information as shown in

2.a.2.1.

c. Execution Phase

The execution phase is engaged after the procedure "displayinfoo" as

shown in 2.a.2 from the input phase is invoked. All the SQL statements and the SQL

commands for table creation are composed in this phase. The program structures are listed

as follows:

c. 1 ql create-tableo: This procedure generates the user's SQL statements for table

creation from a user-defined relation. It includes the construction of SQL commands to

create the user-defined relation. One subprocedure is employed here as follows:

c. 1.1 qlcreate-media tableo: This procedure generates the user's SQL statements

for table creation of the media relations. The SQL commands to create the media relations

are also constructed here. One subprocedure which is employed before accessing INGRES

is:

c.1.l.1 getmedia nameO: This procedure is used to generate the unique media

relation's name. It can also be used to decode the media relation name for other MDBMS

95

operations. Actually, this procedure returns the media relation name by checking through

the media attribute's name and table-key (i.., the internal relation's identifier).

c.2 storedataO: See 1.1.2.

Once the execution phase is completed, the system will update the catalog

files reflecting the changes in the system tables. Thus, the procedure "storedataO" is

invoked at this point. Now the operation of table creation has been completed.

3. Data Insertion Module

Data insertion is invoked when the user s :s "2' from the main menu to insert a

tuple. The implementation is a , divided into thre. phases as in table creation. We will

describe the program structure of this module in the same manner to outline the process

flow of this operation.

a. Input Phase

The main procedure "insert_tupleo" for data insertion is called at the

beginning of this phase; others are invoked at different stages of the insertion process. The

procedures are listed as follows:

a. 1 insert tupleo: This is main procedure of the insertion module and is employed

inside the procedure "maino" of the MDBMS program. It manages several input functions

and several checking functions. The table name is read directly from standard 1/0 and the

others are listed as follows:

a. 1.1 print alltableo: This procedure will display all the user-defined relations. It

is invoked after the user entered "T' when he needs to view the catalog information. It

prints out 15 tables on the screen one at a time.

a. 1.2 check table.nameo: This is the same procedure as in 2.a. 1.2. However, the

purpose here is to return an index entry if the table name entered already exists in the

database. It returns FALSE if the relation is not found.

96

a.1.3 gettuplevalueO: This procedure is used to determine which kind of

procedure should be invoked according to the attribute's data type. It is constructed by a

loop structure that starts with the first attribute of that relation until the last attribute is

reached. Two subprocedures are employed here. They are listed as follows:

a.1.3.1 get_std_valueO: This procedure checks the data type again and displays the

current information of that formatted attribute to the user. It will also determine which kind

of procedure should be invoked to read the input value. Three subprocedures are employed

here corresponding to the formatted data types. They are listed as follows:

a.1.3.1.1 get_int_valueO: This procedure reads the input value of the integer data

type. The value will be assigned into the next available space in the value array "IValue".

a. 1.3.1.2 getfloatvalueO: This procedure reads the input value of the float data

type. The value will be assigned into the next available space in the value array "FValue".

a. 1.3.1.3 getc20_valueO: This procedure reads the input value of the string data

type with 20 characters length. The value will be assigned into the next available space in

the value array "CValue".

a. 1.3.2 get_media valueo: This procedure checks the data type again and displays

the current information of that media attribute to the user. It will also determine which kind

of procedure should be invoked to read the input value. Two subprocedures corresponding

to the media data types are employed here. Another st 5procedure used to get the input for
the description data is also employed here. They are listed as follows:

a.1.3.2.1 getimagevalueO: This procedure governs the input value of image data

type. It reads an image file name by a standard I/O function. Several checking processes

are engaged including the "fopen", 'fclose" (i.e., standard I/O functions in C) and the

ISfunction calls. They are listed as follows:

97

a.1.3.2.1.1 pr_loadO: One f:nction in pixrect/pixrect-hs.h library which is developed

by SUN microsystem (Revision A of 9 May 1968). It loads the registration data in pixrect

sruct (i.e., *pr) and colormap (i.e., &cm).

a.1.3.2.1.2 ISimagefrompixrecto: One ISfunction which is implemented by

Thomas in [TH88,pp291. This procedure cail will reproduce the image file with a unique

file name.

a.1.3.2.1.3 show imageo: This procedure displays the image by passing the

registration data (i.e., pixrect *pr) and raw data (i.e., colormar % ") from the caller.

Several functions in suntool/sunview.h and sur.:ool/canvas.h are err. ,ed here. It opens

another process in SUN workstation concu ,enrly with the MDBMS process to display aie

image on the screen.

a.1.3.2. 2 getdescrpo: This procedure reads the description data. It consists of

several checking processes including the length of each description phrase and the length of

total descriptions. It will return the description data when the inputs are satisfied with the

limitations.

a.1.3.2.3 getsound value(: This procedure processes the input value of sound

data type. It reads a sound file na: - by a standard I/O functi Several checking

processes are engaged including the "fopen", 'fclose" (i.e., standar.. 1/O functions in C)

and "snd-loado". They are listed as follows:

a.1.3.2.3.1 sndaoado: This procedure is implemented by Atila [AT90]. It reads the

unique file ID and registration data from that text file.

a.1.3.2.3.2 playsndo: This procedure controls the playing loop of sound media.

One subprocedure is employed here as follows:

98

a.1.3.2.3.2.1 playsoundo: This procedure is also implemented by Atila [AT90]. It

serds the play sound command from MDBMS in SUN workstation to sound management

in the PC via a local network.

a. 1.3.2.4 getdescrpo: This procedure is invoked again for the description data of a

sound object. It has jeer discussed in 3.a.1.3.2.2.

a.2 displaytupleo: The phase transitions of input-modification and input-execution

are switched by this procedure depending on the user's response. Two subprocedures are

employed here as follows:

a.2.1 print tupleo: This procedure displays the input information about the current

tuple in the user-defined relation. The values are stored in the system tables temporarily.

Some of data values might have been converted or generated by the system itself for the

requirements of the MDBMS prototype.

a.2.2 print_mediatupleO: This procedure displays the input information about the

corresponding tuple in the media relations. The values are limited to two items including

the file ID and the description data.

b. Modification Phase

The main procedure for the modification phase is "modify-tupleo". This

phase is operated one level lower than both input and executior phases in the insertion

module. Several subprocedures are employed here; some of them are declared in the input

phase before. The program structure of this modification is listed as follows:

b.1 modifytupleo: This procedure is constructed by consecutive if-then-else

statements which include five subprocedures. Each one corresponds to an update function

of a data item depending on its data type. Another subprocedure is also employed here

every time after a data item is modified. A loop is provided to control the modification if

tk.; user wants to modify again. The subprocedures are listed as follows:

99

b.1.1 get_int_valueO: See 3.a.1.3.1.1.

b.1.2 get_float_value(: See 3.a.1.3.1.2.

b.1.3 getc20_valueO: See 3.a.1.3.1.3.

b. 1.4 changejimg valueO: This procedure employees two subprocedures which are

declared before in the input phase. The data entered will be updated after the oeraticn of

this procedure. Two subprocedures are listed again as follows:

b.l.4.1 getimagevalueO: See 3.a.1.3.2.1. It is invoked if the user wants to

change the image file name.

b.1.4.2 getdescrpo: See 3.a.1.3.2.2. It is invoked if the user wants to moc fy the

image description.

b.1.5 change snd valueO: This procedure also employs two subprocedures which

are declared before in the input phase. The data entered will be updated after the operation

in this procedure. Two subprocedures are listed again as follows:

b.1.5.1 get sound valueo: See 3.a.1.3.2.3. It is invoked if the user wants to

change the sound file name.

b.1.5.2 getdescrpo: See 3.a.1.3.2.2. It is invoked if the user wants to modify the

sound description.

b.1.6 print valueo: This procedure displays the new value of the modified data item.

c. Execution Phase

The execution phase is engaged after the procedure "display-tupleo" as

shown in 3.a.2 from the input phase. All the SQL statements for insertion are constructed

in this phase. However, a checking process to invoke the PROLOG system has to be done

first before the insertion in INGRES can be invoked. The program structure is listed as

follows:

100

c.1 check media-decup(: This procedure consists of another subprocedure to

connect the PARSER. It determines if the connection is required or not depending on the

"Act_MediaList" (Figure 12) and also depending on whether the description data is

empty. An error message will be received from the callee. It will also display the error

message and return to the modification phase automatically if an error is detected from the

PROLOG system. The subprocedure is listed as follows:

c. 1.1 connectparsero: This procedure employs an ISfunction call. The required

information to update the facts file is received from the caller "checkmedia descrpO" and

passed to Prolog by this procedure. The only facts file in this current prototype is

"imageiimage-facts" which is used to perform contents search. It can be separated into

several facts files depending on the media types existing in the MDBMS to gain better

performance; however, this has not been done at this time. The ISfunction is listed as

follows:

c.1.1.1 ISreplace descriptiono: This is another ISfunction call implemented by

Thomas. The main procedure can be found in [TH88,pp49]. This procedure will generate

new descriptions in facts file if the media object is new, and update the descriptions in facts

file if the media objet is an old one.

c.2 ql insert_tuple0: This procedure generates the user's SQL statements for data

insertion in the user-defined relation. It includes the construction of SQL commands to

insert a tuple. One subprocedure is employed here as follows:

c.2.1 qlinsert..media.tuple0: This procedure generates the user's SQL statements

for data insertion in the media relations. The SQL commands to create the media relations

are also constructed here. One subprocedure already declared is also employed here before

accessing the INGRES. That is:

c.2.1.1 get medianame): See 2.c.1.l.1.

101

c.3 store dataO: see 1.2.

Once the execution phase is completed, the system will update the catalog

files reflecting the changes in the system tables. Thus, the procedure "storedatao" in 1.2

will be invoked again at this point. Then the operation of table creation is completed.

102

APPENDIX F

PROGRAM CODE OF THE MDBMS PROTOTYPE

/* Multimedia DBMS
/* The Catalog Management, Table Creation, Data Insertion and Query Interface
/* Authors Su-Cheng Pei in Catalog management, Creation Module and
/* Insertion Module
/* :Wuttipong Pongswuan in Query Module
/* : Yavuz Altia in Sound Module
/* Date :19 Sep 1990 */
/* Modify :I Nov 1990 */
/* Description: The purpose for this program is to demonstrate the prototype of the
/* Multimedia Database Management System

#include <stdio.h>
#include <string.h>
#include <pixrect/pixrecths.h>
#include <sys/wait.h>
#include <suntool/sunview.h>
#include <suntool/canvas.h>
/* For sound module had to include the socket file*/
include <sys/types.h> /* Sound module */
include <sys/socket.h> /* Sound module */
include <netinetlin.h> /* Sound module */
include <netdb.h> /* Sound module */
include "snderrs.c"
/* To connect to the INGRES DBMS we have to set commmunication area */
include "/ingres/files/eqsqlca.h"

static IISQLCA sqlca = (0); /* SQL Communications Area */
#defme NOT_FOUND 100 /* Not found for the search */
#define FILENAMELEN 64 /* Max for filename is 64 */
#define DESCRLEN 500 /* Define the description data to 500 char */
#define ERRMLEN 70
#define DESCRWORD_ERR -30000 /* The parser check for error code */
#define DESCRSTRUCTbU E_ERR -30001 /* The parser check for error code */
#define QUERYWORDERR -30002 /* The parser check for error code */
#define QUERYSTRUC'URE_ERR -30003 /* The parser check for error code */
#define DESCRTOOLONGERR -30004 /* The parser check for error code */
#define PROGRAMERR 400 /* The parser check for error code */
#define NAME_LENGTH 13
#define ERRORFREE 0
#define SOUND_ERROR -l

103

#define TRUE 1 /* Defined for create & insert operation */
#define FALSE 0 /* Defined for create & insert operation */
#define MAX_TABLE 20 /* Defined fcr create & insert operation */
#define MAX_ATT 200 /* Defined for create & insert operation */
#define MAXPATH 64 /* Defined for create & insert operation */
#define MAXPHRASE 127 /* Defined for create & insert operation */
#define MAXDESCRP 500 /* Defined for create & insert operation */
#define NOTFOUND 100 /* Defined for create & insert operation */

/* Structure for the sound header file used to get the registration datum */
/* when insert a sound media into database *1
typedef struct SND_HDR I

char sfname[131;
int s-size;
int s-samplrate;
int sencoding;
float sduration;
int s_resolution;

struct SNDHDR shdr;

char pc[]; /* For remote PC host name */
char c; /* For catrige return only */
char tempmedia name[31; /* For temporary media table */
typedef char STRname[131; /* For both table name and at name */
typedef char STR_value[21]; /* For all vales of data type c20 */
typedef char STRpath[MAXPATH+I]; /* The f_id of media records */
typedef char STRdescrp[MAXDESCRP+ I];/* The description of media record */

/* Structure for the table catalog, used to get information from text file*/
/P "dbtable" which hold the standard relations in MDBMS *1
typedef struct table [

STRname tablename;
int tablekey;
int att_count;
int att_entry;

};
struct table table-array[MAXTABLE]; /* Relation table in database */
int table_index; /* Next available index of table-array */
int tablelist[MAXTABLE]; /* Integer array hold the index of tablearray */
int tablecount = 0, /* # of index (relation) in table_list */

table_cursor= 0, /* Current index of tablelist */
table-entry = 0; /* Current index of table-list which get */

/* by the function check-tablenameo!! */

/* Structure for the attribute catalog, used to get information from text */
/* file "dbatt" which hold all attributes exist in MDBMS and grouped */
/* together associate to each relation from 1 st att to last at *
typedef struct att (

STR.name an_name;
STRname data-type;

104

int media id; /* Next available ID */
hat nextindex;
int valueentry;1;

struct att art_array[MAXATI1; /* All the att_narne in database */
int attindex = 0, /* Next available index of att._array */

attcursor = 0, /* Current index of art array */
artcount = 0; /* # of attribute entered during creation */

STRname data-type; /* Global string variable */
char tablename[401; /* Global string variable for temrterary read in */
char atname[401; /* Global string variable for temterary read in */

/* Declare more to avoid bus error */
int actmediajist[10]; /* Active index of media att_name in operation */
int act_media count; /* # of index in actmediajlist */
STRname medianame; /* Global string variable used to generate */

/* the unique media table name in database */
int tableikey; /* Append key for the media attribute name in that table */
int img-value[20],snd-value[20],i-value[20]; /* Data value arrays */
float fvalue[20]; /* Data value arrays */
STRvalue c-value[201; /* Data value arrays */
hat img-index =0, /* Indices of data value arrays */

sndindex = 0, /* Indices of data value arrays */
iuindex = 0, /* Indices of data value arrays */
f_index = 0, /* Indices of data value arrays */
c_index = 0; /* Indices of data value arrays */

/* Structure to hold whole tuple values in image media relation */
typedef struct img I

int iLid;
STR.path fjd;
STRdescrp descrp;
int height;
int width;
int depth;

struct img img.record[20]; /* Values of image media relation */

/* Structure to hold whole tuple values in sound media relation */
typedef struct snd (

int s.id;
STR path fLid-
STRdescrp descrp;
int siz;
int samp rate;
int encoding;
float duration;
int resolution;

struct snd snd record[20]; /* Values of sound media relation */
STRdescrp descrp; /* Global for insert tuple operation */
FILE *img-file, *snd-file; /* Global for insert ruple operation *1

105

typedef struct group i{t begingroup /* begin and end group for condition */

int endgroup;

char join-condition[100];
typedef struct select_att { /* selection attribute */

STR-name t_name;
STRname aname;
STRname datajtype;
int mediatype;
I;

int lookmore=O; /* use for loop the cursor *1
typedef struct selecttab f

STRname tname;
int tabindex;1;

struct select_att satt[10];
struct selecttab stab[10];
struct group group-count[10];
int o,p,k,numcon,numgroup,icond;
STRname tab[10];
char *allcondition;
char condition[100];
/* Selection attribute */
/* Condition attribute */
STRname att[10];
/* Each group of attribute */
int attgroup[10];
/* Condition type of each attribute 0 for formatted 1 for image 2 for sound*/
int contype[10];
/* Media attribute for description */
STRname media.att[10];
int numbermedia;
/* Condition for each attribute */
char con[10][100];
/* Attribute type for each select */
STRname atttype[10];
int cond,gcond,iLcond[10],m=0,x=0,y=0,n=0,o=0;
char buff[l100,a,yes.no-answero;

/* Get yes or no answer froma user */

char yesjno_answer0

char answer =
answer = getcharo;
while (!(answer - 'y' II answer == W))
(
printf('"nPlease answer y for yes or n for no::");

106

answer = getcharO;
while ((=getcharo) != \NO

getcharo; /* To let the next getsO works properly and nothing else *
return (answer);

I /*' End of yes-no-answer()*

1* To clear screen *

void clr-scr()

puca((03)
putchar(\3 ');
putchar(H;
putchar(NH3');
putchar(\0');

putchar(TJ);
/* End of clr-scr()*

/* Assign -1 to next -index in the last att-name to indicate the end of list

void assign-..end-mark()

int i = 0,
last.-index =0;

for (0 = 0; i < table-count; i++)

last.-index += table-array[i].attscount;
att..array[last-index-lI].next-index = -1; /* assign end mark here *
/* End of for loop */

1/* End of assignt.end.mark()o

/* Get the PC host name to remote access to sound database *

void get-.pcnane()

char code=T?;
while (!(code =T '11 code == '2'))

clr-scrO;
prnf'******~ECM TO MDBMS **********\n\n");
printf("Please Select Remote PC Code.:\n");
printf("\%l.Prof. Lum's officeM\");
printf("\t2.MDBMS Lab Room 311 b.NWn);
printf("Please Select T1 or '2, Thbank You!::)
code = getcharo;

107

getcharO; /* To let the next getso works properly and nothing else */
if (code == '1')
strcpy(pc,"pclum 1");

else
strcpy(pc,"pclum2");

S/* End of getpcname0 */

/* Send command from SUN to PC to play the SOUND media file

play-sound(pcname,filename)
char *pcname;
char *filename;{

short port = 2000; /* Virtual port number between SUN & PC */
int sock;
str- :t sockaddrin server,
su :t hostent *hp, *gethostbynameo;
char bufl1024];
/* Create socket */
sock = socket(AF INET, SOCKSTREAM, 0);
if (sock < 0) (

perror("opening stream socket");
return;)

/* Connect socket using name specified by command line. */
server.sinjamily = AF_INET;
hp = gethostbyname(pcnarne);
if (hp =-- 0) {

fprintf(stderr, "%s: unknown host\n", pcname);
return;)

bcopy((char *)hp->h addr, (char *)&server.sinaddr, hp->h-length);
server.sin-port = htons(port);
if (connect(sock,

(struct sockaddr *)&server, sizeof server) < 0) (
perror("connecting stream socket");
return;

if (write(sockfilename,12) < 0) /*gets the filename for playing*/
perror("Writing on stream socket");

close(sock);
return;

/* Get the header information from the sound text file which is already */
/P sent from PC to SUN */

snd_load(fidename)
char *filename; I* Given input text file */

108

FILE *f;
if (f = fopen(filenamne,"r")) == NULL) /* open for reading *

displayerr(ROPEN);
return SOUND-ERROR;

**** read the header from the predesignated input file *
fscanff, %s" ,shdr. sfname);
fscanff,"%d",&s_hdr.s_size);
fscanff, "%d",&s-hdr. s-samp Irate);
fscanf(f,"%d',&s-hdr.s-encoding);
fscanf(f,'%f',&s-hdr.s_duration);
fscanff, "%d", &s_hdr. s-re solution);
fcoseff);

return;

1* Load catalog datum ft-rm 3 files: "dbtable", 'dbatt' and 'dbkey" *

void loaddata()

FILE *f, *g, *h;
STR-name dummy;
int entry=0,

f = foPen("dbtable",'r"); /* Read the table for catalog into memory *
if(feoff))
fscanff,"%s\n",dumrny); /*' Skip the first dummy line in file *

while (feofO))

fscanff,"%s%d%d'.n', table..array[table index] .table_name,
&table array[table-index] .table..key,
&table-.array[tablindexl .attscount);

table-amry[table-index].atenry = entry;
entry += table-array[tablejndex].att-count;
table-index -H-;

fcose(f); /* close the input file *
table-count = table-index;
if (table-count != 0) /* ice. database is NOT empty *

for0i= 0,i <table count; i++-
tablejistfi] = i

g = fopen("dbatt",'r"); /* Read the attribute file to catalog in memory *
if(! feof(g))

fscanf(g,"%s\n ",dummy); /* Skip the first dummy line in file ~
while (feof(g))

fscanf(g,'%s%s%d\n",atLarray[attlindex] .att-name,

109

att_array (atundex].data -ype,
&att.array[attjindexl .media-id);

att-array[attj- ndex]. .next-index = attrjndex+ 1;
att-index++;

fclose(g); /* close the attribute file ~
assignsendmarko;
h = fopen("dbkey"',"r);
if(feof(h))

fscanf(h,"% s\n'",dummy); /* Skip the first dummy line in file *
while (feof(h))

fscanf(h,"%c~ni, &tablekey); /* Next available table key append to ~
fcose(h); /* the end of media att-name is unique *

else

printf(ffEMPT DATAFE! M\nnHit return to continue\n t);
putchar(\007');
tableicey = 1;
while((c = getcharo) != Nil)

/* Not return do nothing ~
I/* End ofif */

) I End of loacddata()*

/* Save catalog datum back to 3 files same as above

void store_dara()

FILE *f, *g, *h;
STh-name dummy;
int i 0,

j =0,
count = 0,
entry = 0;

strcpy(dummy, "***durm-ny***")
if (table-count > 0)

f = fopen("dbtable",'w");
fprintf(f,"%s\n', dummy);
for (i = 0; i < table-count; i-.-i)
fPrintf(f,"%s\zt%d'nM", tablearray[table list[i]] .table- name,

tablieArry~tablejistiI .rblejcey,
table...array[tablejlist[i]] .att-count);

fcose(f);
g = fopen('dbatt","W");
fprintf(g,"%s\n", dummy);
for (i = 0; i < table_.count; i++)

count = table-array[tablejistfiJ]].att...count;
entry = table_...arry[tablb-list[i]].att--entry;

110

for 0 = 0;j < count; j++i)

fprintf(g,"%s\t%s\t%d\n", att-array [entry]. att-name,
att-array [entryl .datastype,
att-array[ennty]. media-id);

entry =att-array[entryl.next-ndex;
11* End of for loop j
/*End of for loop i

fclose(g);
h = fopen("dbkey","w");
fprintf(h,"%s\,n", dummy);
fprintf(h,"%cf\n", table-key);
fcose(h);
/* End of iftable count >OI

}/* End of store ..data()*

/* Print out data information on screen (TEMPERARY FOR CHECKING PURPOSE) *

void prnt-out-data()

mnt i =0,

j 0,
count = 0,
entry = 0;

printf('Nn"); /* New line *
for (i = 0; i < table_count; i++4)

printf("% 12s\,%dt%d~t%d~n", table_array[tablejlist[iII.table-name,
table_array~tablejlist~i]].tableicey,
table-array[tablejlist[i]] .arttsount,
tablearray[tableiist[i]I .att-entry);

while ((c = getcharo) != NVI')

for (i = 0; i < table_ count; i-H-)

count =tableaxray[tableiist[i]] .attsount;
entry =table..array[tablejlist[i]].att entry;
forj =0; j < count; j++-s)

printf("% 12s\t% 12s\xtd\n",attarray[entry].att.name,
att-array[entryl .data-type,
att-array[entzyl. medialid,

I att-array [entry] .next-index);
entry = att..array[entry].next index;
)/* End of foroop j*/

while ((c = getcharO) != Vn)

/End of for loop
)/* End of printrout-data()o

/* Get the user choice *//**********************k************************ **************************

char userchoice0

char answer -7

while (!('0'<= answer && answer <= '6'))I
clrscr0;
printf('%N\PttMultimedia Datat ase Management Systemn");
printf(-t------- W);

printf('\n\tl. Create Table");
printf('"\\t2. Insert Tuple");
printf('\rn3. Retrieve");
printf("'n\t4. Delete");
printf("\n\t. Modify");
printf(,ntt6. Print out current data information(test purpose)");
printf('An'x0. Quit\n");

printf('"n~tSelect your choice::
answer = getcharO;
while ((c = getcharo) != 'n')

/* Not return do nothing */
}/* End of while */
return (answer);

1 /* End of user_choice0 */

I****************** **** Start for CREATION * ****

/* Check the tablename if its last char is any digit, which is not allowed */
/* because the media table is unique across the whole database by appending */
/* the particular tablekey from '0' to '999' in this program */

int checklast-char(cjlast)
char cilast;
I
hat found = FALSE; /* Initialize to false */
if ('t, <= clast && clast <= '9')
found = TRUE;

return (found);
} /* End of checklastchai(cjlast) /

/* Check the tablename if it is duplicate */

int checktablename(

int i = 0;
int found = 0; /* Initialize to false *,'

112

while ((!(found)) && (i < table_count))

if (strcmp(tablearray[table-index].tabie-name,

table-array[table-list[i]].table-name) = 0)

found = TRUE;
tableentry = i; /* Dont use "table cursoi = i" because */

/* tablecursor cai't change in the */
else /* function "changetable nameO"!! */
i+- ;

/* End of while */
return (found);

}/* End of checktable name0 */

Check the att_name if it is duplicate within the relation in the first
/* 9 characters. Because the last 3 characters are used to append the key

mt check-ant name()t
int i = 0,

entry;
imt found = 0; /* Initialize to false */
char new_att name[9],

exit atname[9];
strncpy(newatt_name, att array[att_index].att_name, 9);
new_attname[9] = NO'; /* To end of the string */
entry = table-array[tablejli. [table_cursor]].att .entry;
while ((!(found)) && (i < att.count)) /* att_count is global var */

stmcpy(exit-att name, att-array[entry].att name, 9);
exitatt-name[9I = NO'; /* To end of the string *1
if (strcmp(newatt name, exit_at_name) = 0)
found = TRUE;

else
I
i++;

entry = artarray[entry].nextindex;
} /* End of if else */

} /* End of while */
return (found);

} /* End of check_atrtname()*/

/* Return the datajype which selected from user. We allow c20 as the only
/* character data type at this time, it could be able to allocate the */
/* data value array dynamically by mallac to make it more flexible

void selectdata ype0

113

char answer = 7;
while ((c = getcharo) != ,n')
; /* Not return do nothing */
while (!('T'<= answer && answer <= 5
I

printf("\nSelect::(1)integer (2)float (3)c20 (4)image (5)sound");
printf('\n"Select your choice ""
answer = getcharO;
while ((c = getcharo) != Nn')

/* Not return do nothing */
I /* End of while */
switch (answer)

case '1"
strcpy(datajtype, "integer");
break;

case '2':
strcpy(data-type, "float");
break;

case '3':
strcpy(data.type, "c20");
break;

case '4':
strcpy(data-type, "image");
break;

case '5':
strcpy(data-type, "sound");
break;

1 /* Ened of switch */
/* End of selectdatatype0 */

/* Get the att.name, data-type from user input */

void get-attname0I
int found = TRUE;
char set-down = W;
while (found)
I

printf("'nEnter attribute name: (Maximum 12 characters)\n");
attnamc[01 = *V;
scanf("%s", attname);
if (strlen(attname) >= 13) /* Over maximum name length */(

printf('\Sorry!! Attribute Name OVER 12 characters!");
putchar(T07');I

elseI
stmcpy(att-array[attindex].att name, att_name, 12);

114

found = check_at nameo;
if (found)I

printf("The first 9 characters must unique!\n");
printf("The duplicate attribute name entered!\n");
printf("Invalid attribute name! ENTER AGAIN! !\n");
putchar(007');I

else

printf('nSelect data type of attribute::");
while (set_down != 'y')
{

selectdatajtypeO;
printf('nData Type: %s? (y/n)::", data-type);
set_down = yesno_answero;I

strcpy(att-array[attLindex].datajtype, data_type);
/ /* End of if else */

) /* End of if else */
} /*End of while */
/* End of get.attname0 */

/* Create a relation table according to the user input */

void createtable0I
char more-att = 'y'; /* More att_name or not */
int i = 0,

entry,
namelen;

int table_found = TRUE; /* Initialize to true */
while (tablejound)
I
printf("\nEnter tablename:(Maximum 12 characters)\n");
tablename[O] = 'W';
scanf("%s", tablename);
if ((namelen = strlen(table-name)) >= 13) /*Over maximum name length*/I

printf('nSorry!! Table Name OVER 12 characters!");
putchar(007');

I
elseI

if (checklast_char(tablename[namejlen - 1]))(
pr rtf("Sorry! Please never end a table name with a digit!\n");
printf("Invalid table name! ENTER AGAIN! .Nn");
putchar(V"07');

115

else

strcpy(table-array[table-index] .tablename, table- -. me);
table-found = check -rablenameO;
if (tablejound)

printf("The duplicate table name entered!n"');
printfC'lInvaiid table name! ENTER AGAIN!!\n");
putchar(C\J7');

/*Edo fes
}/' End of if else */

1/* End of while (found) *
table-array~rable-index].rable-key =tableicey;
tablearray [table -index] .at.entry = atjndex;
tablejistlltablesgountl = table-index;
tablejcey++;
table-cursor = table-count;
table_counti-i;
atcount = 0; /* Initialize as zero at beginning, global in each time ~
while (more-att == 'y')

get.atnarneo;
att-array~art.jndexl.media-id = 1;
attarray[attindex] .nextrjndex = att-index + 1;
art_index-H-;
atcount++;
printfC'^nMore attribute in the table? (yin)::");
more-art = yes-.no-answerO;
ft End of while */

att..array[atindex -I1].next-index = -1; /* Assign the end mark *
table-array[table indexj.atts-ount = atcount;
table index ++;
I/* End of create-table()*

/* Get the user choice to nmodify the current table in create operation *

char modifysphoice()

char answer = 7
getcharO; ft NOTHING but extract out the previous CR *
while (!(('0'<= answer && answer <= '5') 11

(answer == Wh) 11 (answer 'H')))

printf('\Modify Table Menu for CreaionNn");

printf("\.L Change Table Name");
printf(\t2. Change Att iribute Namne");
printf("\\3. Change Data Type");

116

printf("%\V4. Insert A Attribute");
printf("\\5. Delete A Attribute");
printf("~n\tO. Quit");
printf('Nh or H:: Show current inforniation\n");

printf('Nn\tSelect your choice:
answer = getcharO;
while ((c = getcharo) != Nn')

/* Not return do nothing *
/*'s End of while *

return (answer);
/' End of modify-choice()o

/* Print out the current table which the user want to modify

void print-table()

int i = 0,
count = 0,
entry = 0;

clr-scrQ;
entry =table- array[tablejlist[table cursor]] .att-entry;
count =tabie...anay[tablejlist[table cursor]] .attsount;
printf('%nTable Name:: %s\n",

table...array[tablejist[table _cursor].tablename);
printf(NiOrdef~Lttibute Name\tzData Typefn");
for (i = 0; i < count; i+4)

printf(" %d \t%1l3s\ft%s\,n",(ii-1) , att...array[entry].att-name,
att -array[entry].data-type);

entry = attarray~entry].nextjindex;
)/* End of forloop i*/

/* End of printableo *

/* Change the current table name which the user want to create *

void change-table-nameO

int table-found = TRUE;
while (tablejound)

printf("\nCurrent Table Name:: %s\h\n",
table...array[tablejlist[table -cursor].table-name);

printf("Change to::");
table-nane[OJ ='V
scanf("%s", tablejiame);
if (strlen(table..name) >= 13) /* Over maximum name length *

printf('NnSorry!! Table Name OVER 12 characters!");

117

putchar(N\007');

else

strcpy(table-array[table-indexl t.le-name, table name);
table-found = check-table nameo;
if (table-found)

printfC'\nThe duplicate table name entered! !!\n");
prnrf(Nnlnvahd table name! ENTER AGAIN! !:\n");
putchar(N007);

1/* End of if else *
/*P End of while */

strcpy(tablearray[tablejisttable cursorli .tble..name,
table-array[tablejin 1. table-name);

printf("\nNew Table Name:: %s\nrn",
table~..array[tablejlist[table-cu- :able-name);

while ((c getcharo) != Vn)

)/* End of change-table-nameO *

/* Change the name of current attribute which the user want to create *

void change-att-name()

int i = 0,
count =0,
entry = 0,
order = 0;

int found = TRUE;
print-tableo;
printfC'Select the order which you want to change its namne::\n");
printf("Any other ke to cancel the operation!! Select::");
scanf("%d", &order
entry =table-array[tablejist[table cursori] .att~enwy;
count =table...arraytablejlist~table cursor]].at.count;
if (I <= order && order <= count)

for (i = 1; i < order i++)
entry = att-.arrayentryl.nexu-ndex;

att.-cursor = entry; 1* Assign the current index of att-array *
while (found)

printf("MCurrent Att_Name:: %s\nfn",
att-array[attcumor] .att-name);

printf("Change to::");
att-name [01 = NO';
scanf('%s", att..narne);
if (strlen(att..nare) >-t 13) /* Over maxiuun ime length *

118

{
printf('\nSorry!! Attribute Name OVER 12 characters!");
putchar(O07');

else{
strcpy(attarray[att-index.atname, artname);
found = checkattname0;
if (found)I

printf("Thu dupihcate attribute name entered!\n");
printf('\nInvalid attribute name! ENTER AGAIN!! .\n");
putchar(\007');

}
else{

strcpy(atLarray[att_cursorl.att_name,
att.array[artindex].att-name);

printf('\nNew Att_Name:: %s\nrn",
attarray[att_cursorl.attname);

) /* End of if else */
} /* End of if else */

} /*End of while */}
elseI

printf("\nSorry! You entered the wrong order!! Please redo again.\n");
putchar(\W07');
while ((c = getcharo) != \n')

} /* End of if else */
/* End of change-atLname0 */

/* Change the data type of current attribute which the user want to create */

void change-dataype0

int i = 0,
count =0,
entry =0,
order =0,

char set_down = 'n';
prinLtable0;
printf("Select the order which you want to change the data type::M");
printf("Any other key to cancel the operation!! Select::");
scanf("%d", &order);
entry - tablearray[tablelist[table cursor]].att-entry;
count = table-array[tablejlist[tablecursorl].att_count;
if (1 <= order && order <= count)

1

119

for (i = 1; i < order; i++)
entry =att..array[enury] .nextjindex;

attscursor = entry; i* Assign the current index of att-array ~
printf('\nCurrent AtName:: %s\n",

attarray[atcursorl .att-name);
printfC'Current Data-Type:: %s\n",

atarrayfatt__:.cursorJ .datajtype);
printfC'Change to:: ");
while (set-down != 'y')

select-data-ypeo;
printf("\nData Type: %s? (yin)::", data-tsype);
set-down = yes-no-answero;

strcpy(ararray[atccursor].dara-type, data-type);
printf(" nAt_ Name:: %s\n", att array~atcursorl.att-namne);
printf '4ew Data Type:: %s\n",att..array~attsursorl.darajype);

else

printf('"\nSorry! You entered the wrong order!! Please redo again.\,n");

while ((= getcharo) != \')

I/*' End of if else *
}/* End of change-lata-type()o

I* Insert a new attribute before create operation *

void insert-art()

int i= 0,
count = 0,
pre-.entry = 0,
entry = 0,
order = 0;

print-tableo;
printf("Select the order where new attribute you want be!!ni");
printf("(Maximnum + 1) will add new attribute at the end!!n");
printf("Select the new attribute's order::'An");
printf("Any other key to cancel the operation!! Select::");
scanf("%d", &ordier); 1
entry =tablc...may[table-jisttable-icursorll.att-entry;
count = mble..aray[tablelist[table-cursorljl.att-count;
if (1 <= order && order <= (count +- 1))

for 0i= 1; i <order, i++)

pre-entry = entry;
entry = att..array[enty.nextjindex;

120

get-..atnameo;
att_array[attjindex].media_id = 1;
/* Rearrange the link list of attributes in the relation *
if (order =- 1)
table-array[tablejlist[tablescursor].att-.entry = attjindex;

else
att-array[pre-enury.next -index = att-index;

att-array[attmindexl.nextmindex = entry;
att-indexi+;
att-countH-;
table-array[tableilist[tablescursor]] .att-count = att-count;

else

printfC"\nSorry! You entered the wrong order!! Please redo again.\n");
putchar('NO7');
while ((c = getcharo) != Nn')

}/* End of if else ~
1/* End of insertatt()o

/* Delete a attribute before create operation *

void delete-att()

int i = 0,
count =0,
pre-entry = 0,
entry = 0,
order = 0;

print-tableo;
printf("Select the order of attribute which you %,.ant delete::.\n");
printfC'Any other key to cancel the operation!! Select::");
scanf("%d", &order);
entry =table-array[tablejist[table _cursor]].att entry;
count =table-array[tablejist[table-cursor]].att-sount;

if (1 <= order && order <= count)

for (i = 1; i < order, i++)

pre-entry = entry;
entry = att._array[entry].next_index;

att-cursor = entry;
printf("\nDelete %s? (yin)::", att..array[attcursor] .attname);
if (yes...no-answero = 'y')

/* Rearrange the link list of *
if (order = 1) 1* attributes in the relation *

table...array[tablejlist[table cursor]].att .entry

121

= at_array[entry].next index;
else
att_array[preentry].nextindex

= att_array[entry].nextindex;
att_count--;
table_array[tablelist[tablescursor]].att-count = att_count;}

else
/* End of if else */I

else(
printf("\nSorry! You entered the wrong order!! Please redo again.n");
putchar(\007');
while ((c = getcharO) != Nn')

/* End of if else */
I /* End of delete-att0 */

/* Modify the current table which the user want to create */

void modify-tableO

char answer = 7;
while (answer != '0')

answer = modify-shoiceO;
switch(answer)I

case '1' :
change tablenameO;
break-

case '2' :
change-att_nameO;
break;

case '3' :
change-idata-typeo;
break;

case '4' :
insert_anO;
break;

case '5' :
delete_attO;
break;

case '0' : break;
case 'H':
case 1h':

print-tableQ;
break-

122

) /* End of switch */
) /* End of while */
/* End of modify-jableO */

/* Display the table information that the user entered before create */

void display-infoO

char modify ='y';
while (modify == 'y')I

clr scrO;
printtableO;
printf("\nAny change before create? (y/n)::");
modify = yes-no-answerO;
if (modify == 'y')

modify-tableo;
} /* End of while */

}/* End of displayjinfoO */

/* Get media table name by appending table-key at the end of att_name */

void getmedia.name0

int index; /* Index of string used to append tablekey into atname */
int i_key, /* Integer value of table,_key */

key-no, /* # of digits of key */
i =0;

char key[31; /* Allow maximum 3 appended table keys */
i_key = table-array[tableilist[tablecursor]].tablekey;
if (0 <= i_key && i_key <= 9)(

key[0] = iLkey + 48; /* int 0 converts to char 0*!
key-no = 1;
}

if (10 <= iLkey && i-key <= 99)
key[1] = (ikey/10) + 48; /* 1st append key*

key[O] = (ikcy % 10) + 48; /* 2nd append key */
key-no = 2;]

if (100 <= ikey && i_key <= 999)
{
key[2] = (i_.key / 100) + 48; /* 1st append key */
key[I] = ((iLkey % 100) / 10) + 48; /* 2nd append key */
key[O] = (ikey % 10) + 48; /* 3rd append key */
keyno = 3;I

index = strlen(medianame);

123

if ((index + key-..no) >= 12) /* Maximum length of arttname ~

media_name[12] = N',D; /* Assign 0'to the end of string *
for (i = 0; i < key-no; i++)

media-namel[index - (i + 1)] key[iI;

else

media_name [index + key-no] media-name [index]; /* Move NO'to, end*/
for (i = 0; i < key-.no; i++)
media_namellfindex + keyno) - (i + 1)] = key[i];

}/* End of if else */
}/"' End of get mnedia-name()o

1* Translate SQL statement to create a MEDIA relation

void ql-create..media table()

int i = 0;
for (0 = 0; i < act-mediascount; i++)

strcpy(media..name, att-array[act-media -list[i]].att~name);
get-media-nanico;
printf(" create table% 12s (", media~name);
strcpy(datajype, azLarrayfact..media list[i]]idata_type);
if (strcmnp(data.type, "image") == 0)

printf("i-id integer,\
printf("fLjd c64,\n I)

printf("descrp vchar500,\n
printf("height integer,\n
printf("width integer,\
printf("depth integer);\nfn');

else

printf("sjid integerM I')

printf("fLd c64,\n)

printf("descrp vchar500An
printf(" size integer,\n
printf("samp..rate integer,\n
printf("encoding integrr,\n
printfC'duration floatNi
printf("resolution integer) \Mn");
P /End of ifelse */

/***********CEATE M1EDIA TABLE IN INGRES START HERE*********/
/**********THIE INGRES FUNCTION CALLS WRITE MAN1JLLY***************/
/* # line 1046 "db.sc" */ /* create table *

124

printf("\nCREATING MEDIA TABLE NOW. PLEASE WAIT! !Nn");
Usqlnit(&sqlca);
Ilwritedb('create)

Ilwritedb(media-name);
Ilwritedb("(');
if (strcmp(data..sype, "image") == 0)

Ilwritedb("i-id=i4,f id=c64,descrp=text(500),"); 1* vchar(500) *
Ilwritedb("height=i4,width=i4,depth=i4)");
printf('%nCREATE AN IMAGE TABLE COMPLETE! !\");

else

Ilwritedb(" s-id=i4,f _id=c64,descrp=text(500),"); /* vchar(500) *
*lIwritedb("size=i4,sampsrate=i4,encoding=i4,");

llwritedb("duration=f4,resolution=i4)");
printf('\nCREATE A SOUND TABLE COMPLETE!! ni");
}/* End of if else *

IsqSync(0,&sqlca);

1* # line 1068 "db.sc" */ /* host code *
/************CEAE MEDIA TABLE IN INGRES STOP HERE****************/

while ((c = getcharo) != Nn')

/End of for loop
)/*~ End of qi-create-mediatable()*

1* Translate SQL statement to create a STANDARD relation *

int qL-createjable()

int i= 0,
entry = 0,
count = 0;

act-media-count = 0;
entry =table-array[table-jist[table-cursor]att-.entry;
count =table array[tablejst[table cursor].attsount;
printf('NnSQL statement::.n");

* printf(" create table % 12s ('.
table-_array[tablejlistjltablescursorl] .table...jame);

for (i = 1; i< count; i++)

printf("%s ", att-array[entry.att-name);
strcpy(datajtype, attarray[entry] .data..sype);
if ((strcmp(data..type, "image") = 0) 11

(strcmp(data-type, "sound") ==0))

printf("integer,\n");
act_mediajlist~act_mediascountl = entry;
act-media-count +-f;

125

else
printf("%sM",% att-array[entryl .data-type);

printfC')
entry = att-array [entry].next-index;
/* End of for loop i *1

printf("%s ",att~array [entry] .att..name);
strcpy(data-type, att-array[entryl .daua-type);
if ((strcrnp~data-type, "image") == 0)11

(strcmp(datajtype, "sound") ==0))

printf("integer);\njn");
act_mediajisiiac -media count] = entry;
act-media-count ++;

else
printf("%s)M\n", attarray~entry] .data-type);

/*************CREATE STD TABLE IN INGRES START HERE****~ ***
//**********THE INGRES FUNCTION CALLS WRITE MANULLY*************/

entry =table-array [tablej- ist[table-cursorl] .att-entry;
count =table-array[table-list[tables- ursorl]].att_count;
sqlca.sqlcode = 0; /* Initialize as error free before access INGRES ~

/* # line 1120 "db.sc" */ /* create table *

printf("\nCREATLNG STD TABLE NOW. PLEASE WAIT! rni");
Isqlnit(&sqlca);
llwritedb("create")
llwritedb(table-array[table-ist[table_cursorj]htable_name);
IIwritedb("(");
for (i = 1; i < count; i+i-s)

flwritedb(att-.array[enury].att-name);
Ilwritedb("=");
strcpy(data-type, att...array[enryl.data-type);
if ((strc 'ip(datajtype, "image") = 0) 11

(strcrn~p(data..type, "sound") =-- 0) 11
(strcm p(data..type, "integer") =0))

ilwritedb("i4,");
else

if (strcmp(daajtype, "float") == 0)
llwritedb("f4,");

else
/* char data-type *

]Iwritedb(au..arrnyfenuryi.data_type);
llwritedb(",");

entry = attarray[entry] .next -index;
)/* End of for loop i*/

Ilwritedb(att-arrayfentry]. htt-name);
[Iwritedb("=");
strcpy(data-type, att-array[entryl.data-type);

126

if ((strcmp(datajtype, "image") == 0) 11
(strcmp(data_type, "sound") == 0) 11

(strcmp(data-type, "integer") == 0))
Hwritedb("i4)"); /* Integer type */

else
if (strcmp(data-type, "float") == 0) /* Float type */
Ilwritedb("f4)");

else
/* char 20 type */

flwritedb(att-array[entry].data-type);
Ilwritedb(")");I

IlsqSync(0,&sqlca);
if (sqlca.sqlcode != 0)

printf('NrAn error occured while accessing the database to create");
printf("\nthe table \'%s\',

table-array[tablejlist[table_cursor]].tablename);
printf("\nThe SQL ERROR CODE is %ld", sqlca.sqlcode);
printf('nIt probably that you entered a reservered word!!");
printf('Please check and modify it then try again!! Thank you!!");
putchar(W007');
while ((c = getcharo) != ')

return (TRUE); /* Return 1 if error occured! */

printf('MCREATE A STD TABLE COMPLETE!r\n");
}

/* # line 1164 "db.sc" */ /* host code */
/*************CREATE STD TABLE IN INGRES STOP HERE******************/

while ((c = getcharo) != Wn')

if (actmediacount > 0)
qlcreatemediatableo;

return (FALSE);
I /* End of ql_create_tableo *

•/************************ Start for INSERTION *

/* Print out the table catalog ,nformation on screen

void print.alltableo

int i = 0;
prinff('%**Table Name**\n");
for (i = 0; i < table_count; i++)

printf('Nt %s\n",table_artay [tablelist[ill.tablename);

127

II
if ((i % 15) 14)

prinff('M*RETURN TO CONTINUE*\n");
while ((c = getchar0) !- Nn')

prinff('"**Table Name**\n");
)

} /* End of for loop */
/ End of print-aUstable0 "1

/* Get a INTEGER value of a standard attribute from the user input "1

void getint-value0
{*

char stuff!3!; / To provide a dummy var for Nn' when user enter '?' 1
ivalue[iindex] = 0;
scanf('%d", &i-value[i_indexl);
if (i value[i index] =--= 0) /* ? or 0 entered */

{
i-value[iindex] = 0; / if 0 entered still 0 */
stufflO] = W;
gets(stuff); /* To let next gets() work when ? entered in scanf0 *1I

else
getcharO; /* Add after scanf0 to let next gets() work properly */

att-array[attscursorl.valueentry = ijindex;
i-index = (i-index + 1) % 20;

} /* End of getjintvalue0 */

1* Get a FLOAT value of a standard attribute from the user input "I

void getjfloat-value0
I
char stufft3]; /* To provide a dummy var for Nn' when user enter '?' */
fLvalue[findex] = 0.0;
scanf("%f", &fLvalue[f_index]);
if (fLvalue[findex] = 0.0) /* ? or 0 entered "I
I
fvalue[findex] = 0.0; /P if 0 entered still 0.0 */
stuffIl = "0';

gets(stuff); * To let next, gets() work when ? entered in scanfo */I
else

getcharO; /* Add after scanf0 to let next gets() work properly */
att.array[att_cursor].value-entry = fLindex;
f-index = (fjindex + 1) % 20;

} /* End of getjfloat.valueO "/

128

/* Get a STRING value of a standard attribute from the user input */

void get-c20_valueo
{.
int over_length = TRUE; /* Initialize to true */
char c_temp[60]; /* Temp var for read in, 60 to avoid bus error */
while (overlength)
I

c temp[0] = NO'
gets(cjtemp);
if (strlen(cjtemp) >= 21)I

printf('"nSorry!! Value OVER 20 characters!");
putchar('\007');
printf('NnPlease Enter <<%s>> Value (? if unknow):: ", data-type);I

else{
over_length = FALSE;
strcpy(c_value[c_index], c-temp);
if (strcmp(c-yalue[c-index], "?") == 0)
strcpy(c.value[clindexl," "); /* Assign blank as null */

attarray[attcursorl.valuesentry = cindex;
c_index = (c-index + 1) % 20;
} /* End of if else */
/* End of while (overlength) */

)/* End of get-c20_.valueo */

/* Get the description of a MEDIA attribute from the user input */

void get-descrp0
I

char phrase[MAXPHRASE+20]; /* Maximum length of a phrase is 127 */
int phraseJen =0, /* Declared 20 char more to avoid the*/

descrp_len =0; /* bus error! *1
int stop-input = FALSE;
descrp[0] = "\0';
printf('MPlease Enter Description:");
printf("\nNOTE: One phrase per line. End with an empty line::\,n");
while (!stopjinput)
I
phrase[O] = W;
gets(phrase);
phrase-len = strlen(phrase);
if (phrase_len >= 1)

I
if (phrase_len >= MAXPHRASE) /*Need end with \n & NO in one phrase*/
I
printf("\nThe phrase OVER %d characters!", (MAXPHRASE - 1));
printf('nlnvalid input! TRY AGAIN! 1N");

129

putchar(\007');

elset
phrase[phrase_len] = 'n';
phrse[phrase_len + 11 = WO';
if (phraselen > 1)(
if ((descrp_len + phrase_len + 1) >= (MAXDESCRP + 1))I
stop-input = TRUE;
prinff('NnThe last phrase extended beyond the maximum %d ", MAXDESCRP);
printf('Ancharacters in description. It has been canceled!\n");
purchar(N\007');
while ((c = getcharO) != n')

else(
strcat(descrp, phrase);
descrpien = descrplen + phrase_len + 1;
} /* End of if else */

}; /* End of if (phrase-len > 1) */
) /* End of if else (phrasejlen >= MAX_PHRASE) */
/* End of if (phraselen >= 1) */

else /* Empty string input */
I
if (descrplen = 0)
I
printf('AnSorry! Empty string is NOT allowed! N");
putchar('\007');

else
stop-input = TRUE;
/* End of if else */

I /* End of while (!stopinput) */
/* End of get_descrpO *1

/* Display the IMAGE by passing pixels and colormap from the caller. */
/* It open another process in SUN environment to display the image on the
/* screen. It might be able to quit the image automatically before display
/* the next image. */

showimage(pixels, colormap)
struct pixrext *pixels;
colormap-t *colormap;I
char answer,
int i, error, pid;
Frame frame;

130

Canvas canvas;
Pixwin *pw;
pid = fork 0;
if (pid < 0)
I
printf ("Starting display process failed\n\n");
return (-1);
I

if (pid > 0)
return (pid);I

if (colormap == NULL)
{
printf ("Cannot show it - no colormap.\n");
exit (1);I

frame = windowcreate (NULL, FRAME, FRAMELABEL, "IMAGE",
FRAMENO_CONFIRM, TRUE,
WINWIDTH, pixels->pr-size.x + 20,
WINHEIGHT, pixels->pr-size.y + 50,

WINERRORMSG, "Cannot create window.", 0);
if (frame == NULL)(

printf ("Cannot create frame\n'n");
exit (1);I;

canvas = window_create (frame, CANVAS,
WINWIDTH, pixels->pr-size.x,
WINHEIGHT, pixels->pr._size.y, 0);

if (canvas == NULL)
I
printf ("Cannot create canvas\nj");
exit (1);

pw = canvaspixwin (canvas);
if (pw == NULL)
I
printf("pixwin is NULL\n\n");
exit (1);I

windowfit (frame);
if (colormap->type = RMT_EQUALRGB && colormap->length > 0){

pw-setcmsname(pw, "photo");
if (error = pw.putcolormap(pw, 0, colormap->length,

colormap->map[0],
colormap->map[l],
colorrnap->map[21))I

printf ("Cannot load colormap.\n");
printf ("error code = %dn", error);

131

prinff ("type = %d\nlength = %dWn", colormap->type,
colormap->length);

exit (1);
}) ;}

else(
printf ("Cannot show photo - colormap not appropriate.\nfn");
exit (1);}

if (pw.write (pw, 0, 0, pixels->prsize.x, pixels->pr-size.y,
PIXSRC, pixels, 0, 0))

printf ("Cannot display image on screen.\nh");
else

windowmain-loop(frame);
window_destroy(frame);
pr-destroy(pixels);
exit (0);
return (0);
} /* End of showimage(pixels, colormap) */

/* Get a IMAGE value of a media attribute from the user input */

void getimage-valueO
{

STRpath file-name;
STRdescrp nothing;
char tempjfile[100]; /* Declare more to avoid bus error */
int height = 0,

width =0,
depth =0;

struct pixrect *pr;
colormap_t cm;
int showpid, waitpid;
union wait status;
int over_length = TRUE; /* Initialize to true */
cm.type = RMT_NONE; /* this is absolutely necessary! Otherwise */
cm.length = 0; /* pr-load colormap might not allocate storage */
cm.map[0] = NULL; /* for the colormap, if the garbage found in */
cm.map[l] = NULL; /t the cm structure seems to make sense. The */
cm.map[2] = NULL; /* result, of course, is segmentation fault. */
img.record[img.indx].id = attarray[attcursorl.media_id;
while (overjength)(

printf('NnPlease Enter <<%s>> File Name!!", data-type);
printf('\nNOTE: Enter The Full Path Name:: (? if unknow).n");
tempfile[0] = 0';
gets(temp-ile);
if (strlen(tempfile) >= (MAXPATH +1))
{

132

pitfC'%nSorry!! PATHNAME OVER %d characters! TRY AGAIN! TW',
MAX-PATH-);

putchar('007');

else

strcpy(file-name, templfile);
if (strcmp(file-name, "" =0)

over-length = FALSE;
strcpy(img-record[img-index] .fj-d,"
strcpy(imgjyecord[img-index] .descrp,
iing-ecord[img-ndex.height =height;

imgjecord[img-ndex].width =Width;

img-record[img-index].depth =depth;

else

if ((img-jile=fopen(filename, "r")) == NULL)

printf("\n%s", file-name);
printf("\nThe File cannot be opened! Try Again! N\n");
putchar('\007');

else(
pr =prjoad(img&.flle, &cm); /* Get registration datam
ISimage-..frompixrect(pr, &cm, file-..name, nothing);
if (pr ==NULL)

printf('\n%s", file-.name);
printf('\nThe File does not contain a proper image!");
printf("\nThe image must be in Sun Raster format!)
printfC' Try Again! r\n");
putchar('007);

else(
overjlength = FALSE;
strcpy(img-record[ingindexl~fjid, flle..name);
printf('NnDisplay the image before enter the description?");
printf(" (yin):: ");
if (yes no_answerO ='y')
showjimage(pr, &cm);

img-ecord[img..index]. height =pr->pr...size.y;

img-record~img-indexI.width =pr->pr-size.x;

img-ecord[imgjindex] .depth =pr->pr-depth;

)/* Endof ifelse*
)/* End of if else *

fclose(img-jile);
/* End of if else *

/* End of if else */
)/* End of while (overjlength) ~

133

} /* End of getjimage-valueO */

/* Play the SOUND before enter description */

void play-sndO
{

char display ='y';
while (display == 'y')
I

play-sound(pc,snd-record[snd_index] .fid);
printf("\nPlaying sound
while (getchar0 != Nn')

printf("\nPlay one more time? (y/n)::");
display = yesio answero;1;

I /* End of play-snd0 */

/* Get a SOUND value of a media attribute from the user input */

void get-sound_value0
{
STR path filename;
char tempjfile[100]; /* Declare more to avoid bus error */
int size = 0,

samp jate = 0,
encoding =0,
resolution =0;

float duration = 0.0;
int overlength = TRUE; /* Initialize to true */
sndrecord[sndjindex].s_id = attarray[attscursor].media_id;
while (overjlength)
I
printf('MnPlease Enter <<%s>> File Name!!", data_type);
printf('\nNOTE: Enter The Full Path Name:: (? if unknow)\n");
tempfile[0] = '\O';
gets(tempjfile);
if (strlen(tempjfile) >= (MAX_PATH +1))I

printf('aSorry!! PATH-NAME OVER %d characters! TRY AGAIN! .\n",
MAXPATH);

putchar(O%07');}
else(

strcpy(file-name, tempjfile);
if (strcmp(filename, "?") == 0)I

overIergth = FALSE;

134

void get...std-value()

printf('NnTable Name:: %s\nAtt Name :: %s~nData Type:: %"
table-array[table-ist[tablescursor] .table_name,

att_array (attscursorl. .3tt name,
art_array [ats-ursorl .data-type);

printf("' nPlease Enter <<%s>> Value (? if unknow):: ",datajtype);

if (strcmp(data-type, 'integer') == 0)
getmnt..valueO; /* Integer data type ~

else
if (strcmp(datype, "float') == 0)

get-float- valueO; 1* Float data tupe1
else

get-c2O -valueO; /* String c20 data tupe *
}/* End of get-std-value()o

1* Get a value of a media attribute from th,,- user input *

void get-media value()

printf("\Table Namne:: %s\nAtt Name :: %s\nData Type:: %"
table-array~table-ist~table-cursorll.table name,

att...array[att-cursorl .att--name,
attarray[attscursor] .data_type);

if (strcmp(data..type, "image") == 0)

img..yalue[img-index] = at...amy[attscursor] .medial-d,
att array[atts. ursorl.value..entry = img...index;
getjmage-..valueo; /* Image data type ~
if (strcmp(imgjrecordfimg-index.fjd,")! 0)

printf('\nEnter the description? (yin)::")
if (yes...no...answer() ='y')
get-.descrpo;

else
strcpy(descrp,")

strcpy(img-record[img.-ndex.descrp, descrp);

at-army[att-cursorj.media-id++;
imggirdex = (irngjndex + 1) % 20,

else

snd-value(snd-index] =att.ary[att-pursorb~media-id;

att_array(attcursorI.value entry = snd -ndex;
get-sound-valueO; /* Sound data tupe ~
if (strcmp(snd recordlsnd~index. Lfid, ")!=0)

printf("\nEnter the description? (y/n)::')
if (yes...no...answer() ='y')

136

getj..escrpo;
else

strcpy(descrp,
strcpy(snd-record(snd-indexj .descrp, descrp);

atarray[att_..cursor].media_id++;
snd_index = (snd_index + 1) % 20;
/* End of if else */

} I End of get-media-value()*

1* Get the values of a tuple from the user input. It begin loop at the I st
/* attribute until the last attribute entered

void getuple..value()

int i =0,
count = 0;

count = tablearray[tablejst[table cursori] .attcount;
at?_cursor = table_array~cablejisttable..cursorll .arc..entry;
act-media~count =0;
for (i = 0; i < count; i+-.) /* Loop to get value for each attribute ~

strcpy(data-t.ype, atarray[att...ursorl.daca type);
if ((strcmp(data...ype, "image") == 0) 11

(strcmp(datajtype, "sound") == 0))

get.media valuecO;
act-mediajlist[act~media-count] = att-.cursor, /* Collect the *
act-media-count++; /* media indices*/

else
get-std-yalueo;

att....umor = att..arraylatt.cursor.next..index;
S/* End of for lop */

1/* End of get-uple..value/

/* Insert a tuple of one particular i-elation *

void insert-tupleO

int table-found = FALSE; W* Initialize to false *
while (!cablej'ound)

printf("NiEnter table-name::(Maximum 12 characters); (?for HIELP)\n);
cable-name(OJ = V
gets(table-name);
if (strlen(table-name) >= 13) P* Over maximum name length ~

printf('Na~Sorry!! Table Name OVER 12 characters!");

137

putchar(*\007');

else

if (strcmp(table..name, ") =0)

print-all-ableo;
else

strcpy(table-array~table-index1. table name, table_name);
table-found = check-tablenameo;
if (tablejfound)

table_cursor = table_.entry;
get -uple..valueo;

else

printf(\nSorry!! Table name: % s NOT found! TRY AGAIN!!",
table-...aray[tble-indexl .tble- name);

putcharC0 7);
I/"' End of if else *
1* End of if else *

1/* End of if else */
/* End of while (!table-found) *

/* End of insertumple()*

/* Print out the value of current tuple which the user want to insert *

void print-tuple()

int i = 0,
count = 0,
entry = 0,

clr..sCrO;
entry =table...array[tablejlist(table-cursor]].att..entry;

count =tablearray[tablejistltable-ursor].att-count;

printf('\nTable Namne:: %sW'",
table_;aaytablejist(tablecursor]].table.name);

printf('MOrder Attribute Nanie\,LData Type~talue\n");
for (i = 0; i < count; i++)

strcpy(data-ype, atk..arry~entryl.data-type);
if (strcmp(data..type, %c20") =--0)

att-array [entry] .datajype,
c-value[att-.array[enwry.value-entryj);

else
if (strcmp(datype, "integer") ==0)
printf(" %d % 13s\z~cs\ts%d\n",(i+l) ,attarray[entryl.attnamne,

atarray[entry] .data-type,

138

ival ue(atarray[e nrry.value..entry]);
else
if (strcmp(daaty pe, "float") == 0)
printf(" %d % l3s\t%s\N\%f\n",(i+1) , arr..array[enury].att-name,

att_arravt[entry].data-type,
f-value (att-array [ennty]. valueentry]1);

else
if (strcmp(datajtype, "image") == 0)

printf(" %d %13s\t%s\zWz,(i+l) , attarray[entrly.att-namne,
art-array[entryl .datajtype);

if (strcmp(img-secord[at-array [enrry].value_ entry .Lid,") 0)
printf("NO VALUEWn");

else
printf("HAS VALUE\n");

else

printf(" %d %13s\t%sW't,(i+1) , att..aray[enrtry].att_name,
art-array[entry].data-.type);

if (strcmp(snd- record[att-array[enrryl.value-entryl.fjd, ")=0)

printf("NO VALUE\n");
else

printfC'HAS VALUE\n");

entry = att-.array[entry].next-index;
* /End of for loop i*/

1/* End of printuple()O

/* Print out the description of media attribute in current the tuple *

void print-mjediajtuple()

int i = 0,
entry;

5TR~name data-type;
printf(9*4Media Description: :An");
for 0 =0; i< act_media-ount; i++)

printf("\nAtt-.name ::%s", att-array[act-media-list~i]l.at-name);
strcpy(data...ypc att..array[act-medialist[i)]].damtype);
entry = att...array(actjit-dia-ist~i]].value.entry;
if (strcmp(data ype, "image") ==0)

prinf('NnFile_name :: %s\", imgjrecord[entry).fLid);
printf('NnDescription:: \n<%s>>", img-rccord[entry].descrp);

else

printf('NnFile-name \' %s\!", sndjecord(entry].f..d);

139

prirrT(\nDescription:: \n«<%s>>", snd-record [entryl .descrp);

while ((c = getcharo) != Nn')

}/*" End of for loop *
/* End of print-media tuple()o

/* Print out the value of current attribute *

void printvalue()

int entry;
entry = att-array[attscursor].value-entry;
clr-scrO;
printf("\nTable Namne:: %s",

table-array[table-ist[table_cursor]].tablenamne);
printf("\nAttName %s", att-.array[attscursorl.arttname);
printf('\nData Type: %s", att-array[attscursor] .data..type);
printfC(n Value ::)
if (strcmp(data-.sype, %c20") == 0)

printf('\%s\V\n", c-..value[entryl);
else
if (strcmp(datajtype, "integer") = 0)
printf("%dn", i-value[entry]);

else
if (strcmp(data-type, "float") == 0)

printf("%f\n", fvalue[enury]);
else
if (strcmp(datajtype, "image") == 0)
I
prirxtf("\Nz==>File-name :: \'%s\", img-record[entry].fid);
printf("\Nx==>Description:: \n«%s> \n", img-ecord[entry.descrp);

else
I
printf("\N\.==>File_name :: \'%s\"', snc~record[entry.fLid);
printf(""N\==>Description:: \n«%s> \n", snd-record[entry] .descrp);
I

*) ~/* End of print-valueO *

* ~/* Change the WMAGE value of current tuple which the user want to insertn

void change-jmg.yalue()

in? cursor, /* Previous index of media record array ~
cursor = at?_armyatsursor].valueentry;
img-value[img-index] = attarray[artlsursor.mediaid;
atx...array~att ursorJ .valueentry = img-index;
printf("\nChange IMAGE file name? (yin):: ");

140

if (yesnoanswer() == 'y')
get mage-valueO; /* Image data type *

else

img-record[img-indexl .iid = att-array latt-cursor] .media_id;
strcpy(imrngecord[img-indexj f -id, irng-record~curs~rl .f-id);
img record[img index] .height =img record[cursor]. hei ght;,
img-record [img-index].width =imngrecord(c ursorl. width;
img-record[img-ndex].depth =imngjecord[cursor].depth;

printf'\nChange IMAGE description? (yin):: *)
if (yes-no-answer() == 'y')

get-descrpo;
strcpy(img-recordtimg-indexl.descrp, descrp);

else
strcpy(img-recordimgmindexl.descrp, img-ecord~cursorl .descrp);

attarray[att-ursor] .media-id++;
img~index = (img-index + 1) % 20;
}/* End of changejimgvalue()o

1* Change the SOUND values of current tuple which the user wait to insert *

void change..snd-value()

int cursor, /* Previous index of media record array *
cursor = attarray[ats- ursor.value-entry;
snd-value~sndj ndex = aut-array[att-cursorl .media-idL
att~array[at~cursorj.value..entry = snd-index;
printf('NnChange SOUND file name? (yin)::)

if (yes..no-.answer() == 'y')
get-sound-valueO; /* Sound data type *

else

snd-record[snc~index] .sjid = att...array[attscursorl.media-id;
strcpy(sndrecord~snd index].fLid, sndrecord~cursorl. Lid);
snd -record [sndjindex]. size = snd-record[cursor]. size;
snd~recordtlsndmindexl. samp- rate = snd -ecord[cursorl .sampjrate;
snd- record[sncdindex] .encoding = snc~record[cursor] .encoding;
snd -record[snd-index].duration = snd-record[cursor] .duration;
snd~record(snd-index].wsolution = sndjrecord [cursor] .resolution;

printf('NnChange SOUND description? (y/n)::")
if (ycsno-answer() == 'y')

get-descrpo;
strcpy(sndjecordfsndjindex.descrp, descrp);

else

141

strcpy(sndjrecordl snd-index] .descrp, snd-recordjlcursorl .descrp);
att -array~attsursor.media_id+r;
snd_index = (sndjindex + 1) % 20;
I/* End of change-sndvalue()*

/* Change the values of current tuple which the user want to insert *

void modify-tupleo

int i = 0,
count = 0,
entry = 0,
order = 0;

char mores-hange = 'y';
while (more-change == 'y')

print-tupleo;
printf("Select the order which you want to change its value::\nW);
printf("Any other key to cancel the operation!! Select::');
scanf("%d", &order);
getcharo; /* To let next getso woric properly *
entry = table..array[tablejiist[table cursor]].att -entry;
count = table-array[tablejist~table_cursor]].att-count;
if (1 <= order && order <= count)

for (i = 1; i < order; i++)
er'ly = att-arrayfennry].nextjindex;

att-. arsor = entry; /* Assign the current index of att-array ~
strcpy(datajtype, att-arrayllatt cursor] .dataj-ype);
print..valueo;
printf("\.Please Enter <<%s>> Value (? if unknow):: ",data-type);

if (strcmp(datajtype, "integer") == 0)
get-intyalueo; /* Integer data type *

else
if (strmp(data -ype, "float") == 0)
getjloatyalueQ; 1* Float data tupe ~

else
if (strcmp(datajtype, "c20") == 0)

getsc20.yalueO; /* String c20 data tupe ~
else
if (strvmp(datatype, "image") =-- 0)

changejmg..valueo;
else

change-snd-valueo;
print-valueo;

else

printf("\n Sorry! You entered the wrong order!! Please redo again.\n");
putchar(\007');

142

}/* End of if else */
printf("Any More Change? (y/n)::);
morechange = yes no answerO;
}/* End of while */
/* End of modify-tupleO */

/* Display the tuple before insertion */

void display juple0

char modify ='y';
while (modify 'y')
{

clrscrO;
printjupleO;
while ((c= getcharo) != n)

if (act mediacount >= 1)
print-media-tupleO;

printf('NnAny change before insert? (yin)::);
modify = yes-no-answero;
if (modify == 'y')
modify tupleO;

/* End of while */
}/* End of display-info() *

/* Connect to parser to generate the facts file. We put all media descrip- */
/* tion in one facts file "imageiLimagejacts" at this time, it should be */
/* separate later on. */

int connect-parser(fileid, newdescrp, errmessage)
STR.path *file id;
STRdescrp *new_descrp;
char *err message;

STR-path nothing;
STR_descrp empty-descrp;
int ISerror = FALSE;
empty-descrp[O] = NO';
nothing[O] = NO';
printf('\nConnect to PAR. ER, Please Wait \n");
ISerror = ISreplace descripfion("image", "i-image", file-id, empty-descrp,

new-descrp, nothing, empty-descrp, err-message);
/* HERE, ISfunction call, Connect to parser and generate the */
/* facts file in "imagei-image-facts"

if (ISerror)
return(ISerror);

else
return(FALSE);

143

1 * End of connect-parser()*

/* Check the media description by connecting to parser *

int check-media-descrp()

int i = 0,
entry;

int error = FALSE;
char *err-message;
while (i < act_mediacount && !error)

*err-message = \O';
* strcpy(data-type, atarray[act-media-listfiJ].datajtype);

entry = att-arrayllact-media-list[i]].valuesentry;
if (strcmp(data..type, "image") == 0)

if (strcmp(img-record[entryj.descrp,")! 0)
error = connect-..parser(img...record[entry] .fjd,

imgjrecord[entry].descrp, errmessage);

else

if (strcmp(snd-ecord[entryl.descrp,")! 0)
error = connectparser(snd record[entry.fLid,

snd_record[entry].descrp, errmessage);

i++
if (error)

printf('\nThe description for media \'%s\' is NOT acceptable!",
att...array[act -media -list[i- 1]] .att-name);

if (error = DES CRWORD-ERR)
printf(v nThe system cannot understand the word >>%s<<", err-message);

else
if (error = DES CR_STRUCTURE_ ERR)

printf('NnThe system cannot interpret the phase\n >>%s<<", err-..message);
else
printf('%n'he program error occur in prolog!\n");

printf('\Wlease modify it. Thank you!");
putchar(V007');
while((c=getcharo) != S n')

retumn(TRUE);

else
return(FALSE);

1/* End of check-media..descrp()o

144

/* Translate SQL statement to insert a media tuple *

void ql-insert- media-tuple()

int i = 0,
entry;

for (i = 0; i < act-mediascount; i++)

strcpy(media-name, att~array[act-media.list[iI] .attname);
get-media-name0;
printfC' insert into % 12s (", media_name);
strcpy(data-type, att-array[actmedia-list[i].data-type);
entry = att-array(act -mediaiistfiI.values.ntry;
if (strcmp(data-type, "image") -=0)

pinf"id \
printf("Cid ,\n

printf("descrp ,\n
printf("height ,\n
printfC'width \n
printf("depth)Nn");
printf(" values(");
printf(" %d ,\n

img...record[entry] .iid);
printfCN%%s\'A\n

img-record [entry] .fjd);
printf(I\#%s\!,\n

img-.record[entry] .descrp);
printfC' %d \

img-..record[entry] .height);
printfC' %d ,\n

img..yecord [entry. .width);
printf(" %d);nnimg-ecord[entry].depth);

else

printf(s-d Mn
printfC'fjd ,\n
printf("descrp ,\n
printf("size \n
printf("samp-rate,\n
printf("encoding a
printfC'duration \n
printf("resolution)\n");
printf(" values (");
printfC' %d An

snd-record[entryl.s-id);
printf("'N%s\'A\n

snd-record~entry].f id);
printf('\%s\!An

145

snd-record [entry]. descrp);
printfC' %d,\M

snd-record [entry].size);
printfC' %d,\n

snd_record[enwryl.samnprn-te);
printf(" %d ,n

snd-record [entryj].encoding);
printf(' %f,\n

snd-record[entryj.duration);
printf(" %d);nnsnd-jecord[entry] .resolution);

/***********INSERT MEDIA TIJPLE IN INGRES START HERE,****************/
/********THE INGRES FUNCTION CALLS WRITE MANLJLLY**************I
/* # line 2100 "db.sc" */ 1* insert */

printfQ'\nINSERTING MEDIA TUPLE NOW. PLEASE WAIT! !\n");
llsqlnit(&sqlca);
llwritedb('append to")
llwritedb(media..name);
llwritedb('C');
if (strcmp(data..ype, "image") == 0)

llwritedb("ijid=");
lIsetdom(1,30,4, &imgjrecord[entry].iid);
lIwritedb(" Lfid=");
llsetdom(1,32,0, img-record[entry].fjd);
llwritedb(" ,descrp=");
llsetdom(1,32,0, img-ecord[entry] .descrp);
Ilwritedb(" ,height=");
Ilsetdon(1,30,4, &img-ecord[entry] .height);
Ilwritedb(" ,width=");
Ilsetdon(1,30,4, &img-ecord[entry] .width);
flwritedb(" ,depth=");
lIsetdon(1,30,4, &img-record~entryI .depth);
lIwritedb(")");
printf('nI[NSERT AN IMAGE TUPLE COMPLETE! rn")

else

Ilwritedb("sid=");
Ilsctdom(1,30,4, &snd_record [entry. sid);
llwritedb(" ,f~id=");
Ilsetdon(1,32,0, snd_recordientry] .fjd);
Ilwritedb(" ,descrp=");
Ilsetdom(1,32,0, sndjecord[entry].descrp);
Ilwritedb(" ,size=");
llsetdom(1,30,4, &snd_record [entry].-size);
Ilwritedb(" ,samnp_ate=");
lIsetdom(1,30,4, &sndrecord[entry].sarnp rate);
Ilwritedb(" ,encodin-=");
Llsetdom(1,30A4 &snd-record[entryl. encoding);

146

Hwritedb(" ,duration=");
llsetdom(1,31,4, &snd-record (entryj].duration);
llwritedb(' ,resolution=");
llsetdom(1 ,30,4, &snd-record[entry].resolution);
Ilwritedb(" Y);
printf('\xiNSERT A SOUND TUPLE COMPLETE!!\n');

IlsqSync(3,&sqlca);

1* # line 2147 "db.sc" */ /* insert ~
/**************INSERT MEDIA TUPLE IN INGRES STOP HERE***************/

while ((c = getcharo) != Nn')

f* End of for loop *
/* End of ql-insert-media tupleO *

/* Translate SQL statement to insert a standard tuple *

void qL-insert-tuple()

int i = 0,
count = 0,
entry = 0;

clr-scrQ;
entry = able...array[ablejlist[table_ cursor]] .att..entry;
count =table-array[tableiist[table-cursor]].att_count;
printf('NnSQL statement: :\n");
printf(" insert into % 12s (",

table -array[tablejistzable-Cursorll. table..name);
for (i = 1; i < count; i++)

printfC'%1I2s,\n", att-array[enury].att-name);
prirnfC' v)
entry = atLarray[entry].nextjindex;

printf("%l12s)\n", att..array[entryl .att-name);
prinrf(' values CH);
entry = table-array[tablejist[table_ cursoril .att~entry;
for (i = 1; i < count; ift+)

strcpy(data-type, att-array[entry] .datajtype);
if (strcmp(data - ype, "%20") ==0)
printf('\'%s\',\n", c....aluefatt..array [entry]. valuesentry]);

else
if (strcxnp(data..type, "integer") = 0)
printf(" %d ,\n", iLvalue[att-array [entry]I.value entry]);

else
if (strcmp(data-type, "float") =-- 0)
printf(" %f \,n", fvalue~atuarrayfentry].valueentry]);

else

147

if (strcmp(datajtype, "image") == 0)
printf(" %d ,\n", img-value~att..array(entryj .value..entryl);

else
printf(" %d ,\n", snd -value [attarray [entry].value-enryl);

printf(" t)

entry = att-array (entry.nextjinde x;

strcpy(data-type, att -array[entryl.data-type);
if (strcrnp(datajtype, "%20") == 0)

printfC'%%s\');\nrn", c..yalue~att..array[enu-y].value-entryD);
else
if (strcmp(data..type, "integer") == 0)
printfC' %d);ni-value[att-aray[entry.value-entrv]);

else
if (strcmnp(datajtype, "float") == 0)
printf(" %f);\n~n", f..value[att...array [entry].value-entry]);

else
if (strcmp(data-type, "image") == 0)
printf(" %d);nnimg-value[att..array[entry].value_ entry]);

else
printf(" %d);\n~n", snd-value[au...array[entryl.value- entry]);

/************INSERT STD TUPLE IN INGRES START HERE******************/
/**********THE INGRES FUNCTION CALLS WRITE MANULLY***************/

entry =table-array[tableiist[table cursor]] .att-entiy;
count =table...array[tablejist[table -cursori]].attscount;

1* # line 2213 "db.sc" */ 1* insert ~

printf("\nINSERTING STD TUPLE NOW. PLEASE WAIT!!\");
llsqlnit(&sqlca);
Ilwritedb("append to")
Iwritedb(table...array[tablejist[table_ sursor.table.name);
IIwritedb("(");
for (i = 1; i< count; i++)
I
[Iwritedb(att array[entry].att name);
llwritedb("=");
strcpy(data..type, att...ary[entry.data-type);
if (strcmp(data-type, "%20") =- 0)
Isetdom(1,32,0, c-..value[att-array[entry].value.enwry]);

else
if (strcrnp(data-type, "integer") -= 0)
Ilsetdom(1,30,4, &iL.value[att-array[entry] .value..entry]);

else
if (strcinp(data ype, "float") == 0)

Ilsetdom(1,31,4, &f.value[att-array[enury] .value..entry]);
else
if (strcmp(data..sype, "image") -= 0)

Ilsetdom(1,30,4, &iing-v.alue[att..array[entry].value _entry]);
else

Hsetdom(1 ,30,4, &snd-value[att-array~entry].value entry]);
H~writedbC' ,)

148

entry = att..array[ennry].next_index;

Uwritedb(art-array[entry].att name);
Ilwritedb("=");
strcpy(data I ype, att..array[entryl.data type);
if (strcmp(datajtype, %c20") == 0)

Ilsetdom(1,32,0, c-value~atarraylentryl.value-entryl);
else
if (strcmp(data-type, "integer") == 0)

Ilsetclom(1,30,4 &iLvalue[atrt..array[en try]. vaueen try]);
else
if (strcmnp(datajtype, "tfloat") == 0)
Ilsetdom(1,31,4, &fyalue[att-.array[entryl .value...entry]);

else
if (strcrnp(data-type, "image") == 0)
]Isetdom(1,30,4, &img..yalue[att..array[entry] .valueentryJ);

else
Ilsetdom(1,30,4, &snd- value[att-array[entryl.value..entryl);

lIwritedb(')Y);
lIsqSync(3,&sqlca);
prmntf('MnlNSERT A STD TUPLE COMPLETE!!\");

P~ # line 2261 "db.sc" */ /* insert ~
/****************INSERT STD TUPLE IN INGRES STOP HIERE***************/

while ((c = getcharo) != Nn')

if (act_ media count >= 1)
qljinsert-media~tupico;

1 I End of qLinsert..tuple()o

/**************************Begin for retrieve*********************I

1* Procedure initialize the array to empty *
I* Initialize all parameters used in the retrieve to null

void init()

int ij;
icond4O;
gcond=O;
nurngroup=O;
nurrncon=O;
for 40;i<10;i++)(
for 0j=0,j <~ 13,j++)(

sactij.tnameUjJ =0;
satt[i].a.namcUl =0;
stab~il.tLnameU] =-0;

tab[iIUI=:;

149

for 0j=0;j<100;,j++)(
con~i]UI='O';

/* This procedure get the table name, attribute name of that table *
1* and then return the attribute type to the user *

getatttype(tab name,att -name,att-type)
STR_name tab name;
STR~name att -name;
STR-name att-type;

int ij,k,found,count;
found = 0;
for (i=0O;i < table-count;i++)

if (strcmp(table...aay[i.tablename,tab-name)=0O)
j = table-array[i].attentry;
count = table -array [i].attscount;
i = 1000;

for (k=0O;k < countk++)
if (strcrnp(att-arrayUl.att-name, att..name)==-0)

strcpy(att-type,attcarryU] .data-type);
/* For test only */

prinrf('\n%s",att..arrayU] .att-namne);
printf('Nt%s\,n",att-type);
found = 1;
k = 1000;

j = att -array U].next-index;

/* procedure search media attribute search for the media attribute in the *
i* Relation and return inatt to caller *

void search-media-att (rn..att)
STR-name m....azt
I

* intj;
for (j=0-jcnumcon;j++)(

if (contypeo]=1I) (
strcpy(mnatt~att~I);

if (contypeoj]=-2)(
strcpy(m~att,atto]);

150

I

/* procedure to process the sound condition */
/* put the result in the media tale [number condition] for process later

void process-icon3(query-phrase,number)
char query-phrase[DES CRLEN+ 11;
int number;I

int id;
char answer, repeat, yesnoanswer 0,connumber,medianum;
int i, query-err, query-len, in-len, fjflag,found;
struct pixrect *pr,
colormapt cm;
char descr[DESCRLEN+ 1];
int show-pid, waitpid;
union wait status;
int imageno;
printf ('"nEntering RETRIEVE ...\n");
cm.type = RMTNONE;
cm.length = 0;
cm.map[O] = NULL;
cm.map[l] = NULL;
cm.map[2] = NULL;
/* this is absolutely necessary!!!! Otherwise prIoad-colormap might

not allocate storage for the colormap, if the garbage found in
the cm structure seems to make sense. The result, of course, is
segmentation fault. This bug was very hard to find. */

I
/* # line 193 "p2.sc" */ /* create table */

I
Ilsqlnit((char *)O);
llwritedb("create ");
temp-.media -name[0]I='m';
medianum=number+48;
temp medianame[]=medianum;
temp-media.name[2]=0;
printf('n%s",tempmedia.name);
Uwritedb(tempjmediajiame);
Ilwritedb("(");
lIwritedb("sjd--i4)");
IHsqSync(O,(char *)0);I

/* # line 194 "p2.sc" */ /* host code */
printf("The query description now is:m>>%s<<\n\n",query-phrase);
printf ("Searching Nn");

/* exec sql declare cI cursor for
select ijid, PIXRECT (ilimage), COLORMAP (ilimage),

DESCRIPTION (iimage)
from emp-img I
where SHOWS (i_mage, query-phrase);

151

The statement is deleted by the preprocessor.
However, the output functions and the selection conditions
associated with the cursor c I will be used later.
The following declarations are generated: *

int ISerrorci1;
char ISerrmncc I [ERRMLEN+ 1I1
char ISfnclI[FILENAMELEN + 1]J;
char ISdescrclI[DESCRLEN + 11;
sqlca.sqlcode = 0;
ISerrmccl[O] = '\O';

/* exec sql open ci1; */
/* exec sql whenever not found go to closec 1; *
/* translated by preprocessor into: */
if (ISerrorci = ISshows...open("image", 'i-mage",ISfnc l,query-phrase,ISerrmcc1))

sqlca.sqlcode = ISerrorc I
if (sqlcasqlcode == QUERYWORDERR 11

sqlca.sqlcode == QUERY_STRUCflJRE_ERR)
strcpy(sqlca.sqlerrm.sqlerrmc,JSerrmncc 1);

/* end of preprocessor output for open c I/
if (!sqlca.sqlcode)

f lag= =0;
for (;

/* exec sql fetch c I
into :imageno, :pr, :cm, :descr;

This is translated by the preprocessor into: ~
if(ISerrorc I =ISshows_fetch("image" , "iimage",ISfnc 1 ,query-..phrase,ISerrmcc 1))

sqica. sqicode = ISerrorc 1;
if (sqlcasqlcode = NOTFOUND)

goto closec ;
fUfag =1;
if (!sqlca.sqlcode)

P* # line 653 "p 1.sc" *1 * select *
strcpy (table...array[tablejindex].table-name, tab[numberl);
found = check-table-nanieO;
table_cursor = table_entry;
strcpy(mediajname,att[number]);
get-media-nameo;
printf("%s",media.name);

Ilsqlnit(&sqlca);
Iwritedb("retrieve(imageno=");
Iwrtedb(media--name);
lIwritedb(".s I d,ISdescrc 1=");
llwritedb(media-name);
Hwritedb(".descrp)w");

152

llwritedb("here)
llwritedb(media-name);
llwritedb(" .f-jd=");
llsetdom(1I,32,0,ISfnc 1);
Ilwritedb(' ");
IlsqRinit(&sqlca);
if (llerrtesto ==O0)

if (Iinextget)! = 0)
llretdorn(1I,30,4,&imageno);
llretdom(1,32,O,ISdescrc 1);

IlsqFlush(&sqlca);

/*Hrts
/* # line 657 "p 1.sc" ~/ /* host code *

if (!sqlca.sqlcode)

ISerrorcl. = ISdescription (ISfncl, ISdescrcl, descr);
sqlca.sqlcode =ISerrorcl;

else
sqlca.sqlcode = PROGRAM_ERR;

/* end of preprocessor output for fetch c I/
if (sqlca.sqlcode)

goto closec 1;
id = imageno;

/* # line 270 "p2.sc" *1 /* insert ~

Ilsqlnit((char *)0);
llwritedb("append to";
Uwriertemp-media-name);
llwritedb(C(s-jd=");
Ilsetdom(1I,30,4,&id);
Ilwritedb(")");
IsqSync(3,(char *)0);

/* # line 272 "p2.sc" *1 /* host code ~
) /* end for loop of cursor c 1/

closed :
/* exec sql close c; 1;
/* translated by the preprocessor into: ~

sqlca.sqlcode=ISshows .close("image","i-image" ,ISfnclI,query-phrase,ISerrmcc 1);
/* line 693 "p 1.sc" */ /* host code *1

) /*' end of successful open ci1; correct query description *
) f* end of preprocessor declaration block */
if (sqlca.sqlcode == QUERYWORD..ERR)

printf("The system cannot understand the word >>%s<cNn",
sqlca.sqlerrm.sqlerrmc);

query__.err =1

153

I
if (sqlca.sqlcode == QUERY_STRUCTUREERR){

printf("The system cannot interpret the phrase\n>>\n%s<<',
sqlca. sqlerrm.sqlerrmc);

query-err = 1;I
if (query-err)I
}

}
if(!fflag)

printf("There are no media matching that query description.\n");
if (sqlca.sqlcode)

printf("An error has occured while accessing the database\n\
sql error code: %dWn", sqlca.sqlcode);

clr scr(;
} /* end of retrieve-photo 0 */

/* procedure to process the image condition */
/* put the result in the media tale [number condition] for process later

void process-icon2(query-phrase,number)
char query-phrase[DESCRLEN+1];
int number,

int id;
char answer, repeat, yes-noanswer 0,con-number,medianum;
int i, query-err, queryjlen, in-len, fflag,found;
struct pixrect *pr,
colormap.t cm;
char descr[DESCRLEN+ 1];
int show-pid, wait pid;
union wait status;
int imageno;
printf ('"nEntering RETRIEVE ...\n");
cm.type = RMTNONE;
cm.length = 0;
cm.map[O] = NULL;
cm.map[l] = NULL;
cm.map[2] = NULL;
/* this is absolutely necessary!!!! Otherwise prj-oad.colormap might

not allocate storage for die colormap, if the garbage found in
the cm structure seems to make sense. The result, of course, is
segmentation fault. This bug was very hard to find. */

I
/* # line 193 "p2.sc" *//* create table */I

IIsqlnit((char *)0);
Ilwritedb('create ");

154

temp-jnedia-name[O] ='m';
medianuzn=number+48;
temp....media-.name[li]=medianurn;
temp__medianane[21=0:
prinf("A\n%s",temp-.media-name);
Ilwritedb(temp_..media.name);
Ilwritedb("();
lwritedb("iLid=i4)");
lIsqSync(O,(char *)Q);

/* # line 194 "p2.sc" *11/* host code *
prinf("he qerydescription now is:\n >%s<An\n",query..phrase);

printf ("Searching .. \n)
1* exec sql1 declare ci1 cursor for

select Lid, PIXREC'r 'i -image), COLORMAP (ilimage),
DESCRIPTON (L-image)

from emp-imglI
where SHOWS (image, que:y...phrase);

The statement is deleted by the preprocessor.
However, the output functions and the selection conditions
associated with the cursor c I will be used later.
The following declarations are generated: *

int iSerrorc 1;
char ISerrmcc 1 [ERRMLEN+ 11;
char ISfnc I[FILENAMELEN + 1];
char ISdescrc 1[DESCRLEN + lI];
sqlca.sqlcode = 0;
ISerrmccl111] ='\O';

/* exec sql open ci1; */
/* exec sql whenever not found go to closec 1; *
/* translated by preprocessor into: */

if (ISerrorc 1 = IS shows-o.pen(" image", ,"iimage" ,IS fnc 1 ,query-phrase,ISerrmcc 1))

sqlca.sqlcode = ISerrorcl;
if (sqlcasqlcode - QUERY_WORD_ERR 11

sqlca.sqlcode = QUERYSTRUCTUREERR)
strcpy(sqlca.sqlerrni.sqlerrmc,ISernmcc 1);

/* end of preprocessor output for open c I/
if (! sqlcasqlcode)

f flag=O0;
for (;
I

/* exec sql fetch c I
into :imageno, :pr, :cm, :descr,
This is translated by the preprocessor into: ~
if (ISerrorclI =

ISshowsjfetch(" image", "L-image" ,IS fnc 1 ,query-phrase,ISerrmcc 1))
sqlca.sqicode = ISerrorcl;

155

if (sqlca.sqlcode == NOTFOUND)
goto closec ;

fLflag = 1;
if (!sqlca.sqlcode)

1* # line 653 'pl.sc" *11/* select *
strcpy (table-array[tablejindex] .table_name, tab[numberj);
found = check-table-nameO;
table_cursor = table_entry;
strcpy(media-name,att[numberl);
get media-nameo;
printf("%s",z-nedia-name);

Isqlnit(&sqlca);
Ilwritedb('retieve(imageno=");
llwxitedb(media-name);
Ilwritedb(".iid,ISdescrc 1=");
[Iwritedb(media- name);
Hwritedb(" .descrp)w");
llwritedb(" here ");
Ilwritedb(media-name);
Hwritedb(' .fjd=");
llsetdom(1,32,O,ISfnc 1);
lIwritedb(" ");
lIsqRinit(&sqlca);
if (Ilerrtest() == 0){
if (Ilnextget() ! = 0)

Hretdom(1,30,4,&imageno);
llretdom(1,32,0,ISdescrc 1);

1/* llnextget */
IlsqFlush(&sqlca);
1 * lHen-test *

1* # line 657 "pl.sc" */ /* host code ~
if (!sqlca.sqlcode)

if (!(ISerrorclI = ISpixitct (ISfncl1, ISdescrc 1, A'nr)))
if (!(ISerrorcl1 = IScolormap (ISfncl1, ISdescr- 1, &cm)))

ISerrorc 1 = ISdescription (ISfnc 1, ISdescrcl1, descr);
sqlca.sqlcode = lSerrorc 1;

else
sqlca.sqlcode = P~ROGRAM-ERR;

1* P- -, 3f preprocessor output for fetch c I1
if (sqlca.sqlcode)

goto closec: ;
id = imageno;

1* # line 270 "*p2.sc' */ /* insert ~

llsqlnit((char *)0);

156

lIwritedb("append to ");
llwritedb(temp.-.media-name);
llwritedb("(i-id=");
Ilsetdom(1,30,4,&id);
Ilwritedb(")");
IlsqSync(3,(char *)0);

/* # line 272 "p2.sc" */ /* host code */
}/* end for loop of cursor ci I/

closec 1:
/* exec sql close c 1;*/
/* translated by the preprocessor into: */

sqlca.sqlcode =
ISshows_close("image","iimage",IS fnc 1,query-phrase,ISerrmcc 1);

/* # line 693 "pl.sc" */ /* host code */
) /* end of successful open c 1; correct query description */
) /* end of preprocessor declaration block */
if (sqlca.sqlcode == QUERYWORDERR)

printf("The system cannot understand the word >>%s<<\n",
sqlca.sqlerrm.sqlerrmc);

queryerr = 1;

if (sqlca.sqlcode == QUERYSTRUCTUREERR){
prinrf("The system cannot interpret the phrase\n>>\n%s<<\n",

sqlca.sqlerrm.sqlerrmc);
query-err = I;I

if (query-err)I
)

if (!fflag)
printf("There are no media matching that query description.n");

if (sqlca.sqlcode)
printf('An error has occured while accessing the database\n\

sql error code: %d\n", sqlca.sqlcode);
clrscro;

} /* end of retrieve-photo 0 */

/* present photo the the user present number and description too */

present-photo (number, pixels, colormap, description)
mt number,
struct pixrect *pixels;
colormap-t *colormap;
char *description;

char answer, yes-no-answer 0;

157

int i, error, pid;
Frame frame;
Canvas canvas;
Pixwin *pw;
printf ("\nThe following photo has been found:\n\n");
prinff ("Number: %d\n", number);
printf ("Description:\n>>%s<<\n\n", description);
printf ("Do you want to see the photo? ");
answer = yes-noanswer O;
if (answer == 'n')
return (0);

else {
pid = fork 0;
if (pid < 0) {

printf ("Starting display process failed\n\n");
return (-1);
I
if (pid > 0) /* this is parent process */

return (pid);
if (colormap == NULL) {
prinrf ("Cannot show it - no colormap.\n ");
exit (1);
I
frame = windowcreate (NULL, FRAME,

FRAMELABEL, "IMAGE",
FRAMENOCONFIRM, TRUE,
WINWIDTH, pixels->pr-size.x + 20,
WIN_HEIGHT, pixels->prsize.y + 50,
WINERRORMSG, "Cannot create window.", 0);

if (frame == NULL) {
printf ("Cannot create frame\n\n");
exit (1);I

canvas = windowcreate (frame, CANVAS,
WINWIDTH, pixels->prsize.x,
WINHEIGHT, pixels->prsize.y, 0);

if (canvas = NULL) I
printf ("Cannot create canvasnM");
exit (1);

I
pw = canvas.pixwin (canvas);
if (pw == NULL) I
printf ("pixwin is NULL\nfn");
exit (1);}

window_fit (frame);
if (colormap->type == RMTEQUALRGB

&& colormap->length > 0) {
pw-setcmsname (pw, "photo");
if (error = pw.putcolormap (pw, 0, colormnap->length,

colormap->map[O], colormap->map[1, colormap->map[2])) I

158

printf ("Cannot load colormap.\n");
pi-intf ("error code = %d\n", error);
printf ("type = %d\nlength = %dn", colormap->type, colormap->length);

/* for (i = 0; i < colormap->length; i++)(
printf (" %x %x %x\n", *(colormap.>map[0] + i),

*(colormap.>map[lI] + i), *(colomap->map[2I + i));

exit (1),

else
printf ("Cannot show photo - colormap not appropriate.nM");
exit (1):

if (pwwrite (pw, 0, 0, pixels->pr-size.x, pixels->pr-size.y,
PIX-.SRC,
pixels, 0, 0))

printf ("Cannot write image to screen.\nrn");
else

window_main-loop (frame);
window - estroy (frame);
exit (0);
1/* of (answer = 'y'), showing the photo I

return (0);

/'* This procedure search through the media relation and get the *
/* file name that match with the result table and send to the *
/* present photo procedure *

display-photo (irnageno,tupleno)
int imageno;
int tupleno;

char answer, repeat, yes-no-answer 0
char query-phrase[DESCRLEN+ 11,

inphrase[DESCRLEN+1 I;
mnt i=Oj=O, k, c, pid, query__.err, query-len, ien, flag,look-more=O;
struct pixrect *pr
colormapj cm.;
char ISfn 1(IFILENAMELEN+ 11;
char descrIIDESCRLEN+1I;
mnt show-pid, wait..pid;
mnt ISerror,
STR-path file_name;
char ISdescrl[DESCRLEN+ 1];
crn.type = RMTNONE;
cm.length = 0;
cm.map(O] = NULL;
cm.map[1j = NULL;
cm.map[21 = NULL;

159

/* this is absolutely necessary!!!! Otherwise priload colormap might
not allocate storage for the colormap, if the garbage found in
the cm structure seems to make sense. The result, of course, is
segmentation fault. This bug was very hard to find. */

/* exec sql select PIXRECT (L-image), COLORMAP (L-image),
DESCRIPTION (iLimage)

into :pr, :cm, :descr

from image
where i-id = imageno;

This Image-SQL statement is transformed into the following
sequence of statements by the preprocessor:

fisqlnit ((char *)O);
llwritedb('retrieve unique(c=(count(");
Hwritedb("result");
llwritedb(".");
Iwritedb(satt~imagenol .a-name);
lwritedb(")))');
llsqRinit((char *)0);
if (llerrtestO==0O) (

if (Ilnextget() !=O0)
Ilretdom(1,30,4,&c);

IlsqFlush((char *)Q);

if (llcsrOpen((char *)(J,"cursor -outputl1","dblI",0,media,_name) !=0)
Ilwritedb("retrieve(ISfn 1Is)
Ilwritedb(media- name);
Uwritedb(".");
Ilwritedb("fjd,ISdescrl1=");
Hwritedb(media -name);
lIwritedb(".descrp");
Ilwritedb(")where ");
Ilwritedb(mediajiame);
Ilwritedb(".i-id=");
llwritedb("result. ");
IIwritedb(satt[imzgeno].a~name);
llcsrQuery ((char *)0);

) /* Icsropen */
while (look-more==O)

if (UcsrFetch((char *)0, "cursor...outputl","dbl1") !=0)
IlcsrRet(l1,32,0,ISfn 1);
IlcsrRet(l1,32,0,ISdescrl);

for (i=O;i<MAXPATH+1;i++){
if (ISfnl[i]==32)

tile-namex[ij=0;

160

else{
file-name[i]=ISfnl [i];

1/* end for *
printf(-\nRecord no %d filename :%s:',j+l1, lSfn 1);

if ((imgjile=fopen(file-name"r"))==NULL)

printfC'\n%s', file-name);
printf(\niThe file cannot be opened !!n");
putcharOO7 ;

else{
pr--prjoad(imgjfile, &cm);
if (pr==N1JLL) {

printfQ'\nThe file does not contain proper image");
putchar(NOO07);

else
printf("\nShow image).

present-photooj+1,pr,&cm,ISdescrl);
1/* end else ~

I/* end else *
fclose(img..file);

pinfW)
llcsrEFetch((char *)0);

if 0==c)(
look-more = 1;

llcsrClose((char *)O,"cursor outputl1","dbl1");

1* This procedure search through the media relation and get the
1* file name that match with the result table and send to the *
/* play sound proce4C>'re *

display-sound (soundno,tupleno)
int soundno;
int tupleno;

char answer, repeat, yes-no-answer 0
char query...phrase[DES CRLEN+ I1

in phraseDESCRLEN+1 I;
int i=Oj=O, k, c, pid, query-.err, query-len, ien, fjlag,look-More=-O;
mnt show-pid, wait..pid;
int ISerro-,
STR...path filename;
char ISfnlI[FILENAMELEN+l 1;

161

char lSdescrlI [DES CRLEN+ 1]

llsqlnit ((char *)1J);
llwritedb('retrieve unique(c=(count(D;
Hlwritedb("result");
I[Iwi-itedb(".');
Hlwritedb(satt[soundno] .a-name);
Ilwritedb(")))");
llsqRinit((char *)O);
if (llerrtestO==-O)(

if (ilnextget() !--O)
lIretdom(l1,30u,4,&c);

lIsqFlush((char *)O);

if (IlcsrOpen((char *)O,'cursor _outputlI","db1" ,O,medianame) !=0)
ilwritedb("retrieve(ISfn 1 =)
llwritedb(media-namne);
lwritedb('.');

Ilwritedb(fjd,ISdescrl1="t);
llwritedb(media-name);
'NwritedbC'.des.,rp");
lIwritedb(")where ");
llwritedb(media.name);
Hwritedb(".s-id=");
llwritedb('result.");
Iwritedb(satt[soundnol .a.name);
UcsrQuery ((char *)0);

) /* llcsropen */
while (look-mnre==O){

if (JlcsrFetch((char *)Q, "cursor.-.outputl ",'dblt)! 0)
IlcsrRet(1,32,0,ISfn 1);
IHcsrRet(1,32,0,ISdescr 1);

for (i=0O;i<MAXPATH+1;i++)f
if (ISfnl[iJ==32) (

file-name~i]=O;

else(
file_name[i]=ISfnlI[i];

printf("\nRecord no 'rod "j+l);
printf('M\Play the sound ? (yin):

if (yes-no-answer() == 'y') (
play...sound(pc,filename);

printfC'M");
IlcsrEFetch((char *)O);

if (j-C) 1

162

lookmore = I;}
}/* IICSRFECCH */

}/* end while */
IIcsrClose((char *)0,"cursoroutput 1","db 1");

/* end of displaysound 0 */

present photo2 (number, pixels, colormap, description)
int number,
struct pixrect *pixels;
colormapt *colormap;
char *description;(

char answer, yesnoanswer 0;
int i, error, pid;
Frame frame;
Canvas canvas;
Pixwin *pw;
printf ("Number: %d\n", number);
prinff ("Description:\n>>%s<<\nV\n", description);
answer = 'y';
if (answer == 'n')
return (0);

else I
pid = fork 0;
if (pid < 0)

printf ("Starting display process failed\nN");
return (-1);

if (pid > 0) /* this is parent process */
return (pid);

if (colormap =- NULL) (
printf ("Cannot show it - no colormap,"');
exit (1);

frame = windowcreate (NULL, FRAME,
FRAMELABEL, "IMAGE",
FRAMENOCONFIRM, TRUE,
WINWIDTH, pixels->pr.size.x + 20,
WINHEIGHT, pixels->pr.size.y + 50,
WINERROR_MSG, "Cannot create window.", 0);

if (frame =-- NULL) (
printf ("Cannot create framenn");
exit (1);I

canvas = window-create (frame, CANVAS,
WINWIDTH, pixels->pr.size.x,
WIN_HEIGHT, pixels->pr_.size.y, 0);

if (canvas == NULL) (
printf ("Cannot create canvas\n\f");

163

exit (1);)
pw = canvas-pixwin (canvas);
if (pw == NULL) {
printf ("pixwin is NULLXnn");
exit (1);

window_fit (frame);
if (colormap->type == RMTEQUALRGB

&& colormap->Iength > 0) (
pw setcmsname (pw, "photo");
if (error = pw-putcolormap (pw, 0, colormap->length,

colormap->map[0], colorrnap->map[I], colormap->map[2]) {
printf ("Cannot load colormap.\n");
printf ("error code = %dWn", error);
printf ("type = %d\nlength = %dWn", colormap->type, colormap->length);

/* for (i = 0; i < colormap->length; i++) [
printf (" %x %x %x\n", *(colormap->map[0] + i),

*(colormap->map[I] + i), *(colormap->map[2] + i));1 */
exit (1);}

}
else {

printf ("Cannot show photo - colormap not appropriate.\n");
exit (1);}

if (pwwrite (pw, 0, 0, pixels->pr.siLe.x, pixels->prsize.y,
PIXSRC, pixels, 0, 0))

printf ("Cannot write image to screen.\nfn");
else
window-mainloop (frame);

window-destroy (frame);
exit (0);
} /* of (answer = 'y'), showing the photo */

return (0);}

/* This procedure create the embeded psudo extended SQL for user *1
/* display on the screen */

void processquery20
{

char a;
int ij,k
STRname media-art;
int medianum=o;
int image-select=O; /* For the choose of the extra attribute of type image */
int snd-select=O; /* For the choose of extra type sound */

/* For test purpose only */
for (j=o;j<numcon;j++).(

164

printf('NnGroup %d Att %s Atttype %d Con %s",att...groupfj],attUj],contypeU],conoj]);
if (contypej]=1)

printf("\nCREATE TABLE M%d AS SELECT i_id FROM %s WHERE
CONTAIN (%s)", j,atto],conU]);

image-select =1;

if (contypeUl==2){
printf("\nCREATE TABLE M%d AS SELECT s_id FROM %s WHERE

CONTAIN (%s)", j,art[jJ,con~jI);
snd -select=1;

f* End test *
printf('\nProcess Ingres Interface in the database");
if (icond==-O) (

printf("\nProcess only formatted data");
printf("\n\nExec SQL Select")
for (i=O;i < n;i-i+)

printf("%s.%s" ,satt[iI .t-name,satt[i] .a..name);
if (i < n-1)I

printf(",");

}/* End for/
printf("\nrom")
for (i=O;i < m;i++)(

printf(" %s ",stab~i].tname);
if (i < -1) (

printf(",");

if (cond==1){
printf('NnWhere")

if (numcon == 0)
gcond=0;
numgroup=0O;

I
if (rn>){

printf(" (%s) and ",join-ondition);

if (numngroup >= 1)(

k=0;
if(M> I)

printf("(")

if (gcond= 1)(
for (i=O;i<=numgroup;i++)
printf("\nGroup %d, Begin %d, End %dn", i,group-countfkl.begingroup,

groupscountlk] .endgroup);
for 0 =group-count~kI. begin group J <= group-countfkI.endgroup-,j++){

165

if (contypeU]==1)
printf(" Contain (%s. %s,%s) ',tabU] ,attfj],conU]);

if (contypeUjI==2){
printf(CContain (%s.%s,%s) ",tabU1,attUj],conj);

else
printf(" %s.%s %s ",tab U],attU],conU]);

if (j!=group-count[i.endgoup)
printf(' and)

k=k+ 1;
if (numngroup >= 1)

printfC'Y');
if (k <= numngroup){

printfC' or ;

if ((gcond==1)&&(numcon 0)
if (contype[O]==1) {
printfC' Contain (%s.%s,%s) ",tab[O] ,att[O] ,con[O]);

else
printf(" %s.%s %s ",tab[O],att[O],con[OI);

if (m>1)
printfC' 'D

I/"' End if condition ~

else
I
for (i=-O;i <= numgroup;i++)

printf('\nprocess group %d", i);
* printf('\nExec sql create table G%d as JOIN fod and m%d ",ij,i);

printfC'\nCREATE TABLE Hold as SELECT ",i);
for (i=O;i<n- 1 ;i++) {

pinfs%,"sti.naesti]anm)
printf("%s. %s ",satt[i] .t...name,sati].aname);

printf'nFrom ");
for 0j=0,j < m;j++)

printf("%s",stabUj.t-name);
if 0< rn-i)I

printfC',");

166

/*P End from *1
printf ('\nWhere")

if (m>1)
printf("(%s) and (,join-condition);

for (J=group-sounllil.begingroup;j < group-ountfi.endgoup;j++)
if (contypelj]==1)(

printfC' (%s in select i-id from M%d) ",att[j],j);

if (contypeoj]==2)
printfC' (%s in select s-id from M%d) ",attUj],j);

else
printf(C %s %s ",attrj],con[Jl);

if (j! =group-countfiI.endgroup- 1)
printf(" and")

k=k+ 1;
if (numgroup >= 1)

printfQ')");
if (k <= numngroup){

printf(" or C)

if (m>1)(
printf('")

if (nuzngroup > 0)J
printf ('\NrEXEC SQL CREATE TABLE OUTPUT AS SELECT' ALL FROM")
for (i=O;i< numgoup;i++)

printf ("G%d or ",i);

printf("G-Ad"i)
I/"' End if mnore than one group ~

/* Print out the datam
prinrf("\.SELEC'T)
for (i=0;i<n- 1 ;i++)
printf("%s, ",satt~i].ajiamne);

printf("%s ",satti.a..name);
printf('MnFROM OUTPUT');

/* This procedure create the embeded psudo extended SQL for user *
1* display on the screen *

void processqueryo

167

char a;
int ij,k;
int medianum=-O;
number-media=O;
printfC",n\nSelect ;
for (i=O;i < n;i++)

printf("%s.% s" ,satt~i] .tname,sattlJ.a-name);
if (i < n-1)[

printf(",");

* ~printf('\nFrom)
for (i=-O;i < m;i++)

printf("%s",stab[i].t-name);
if (i< m-1) [

printff',");

if (cond==1){
printf('NnWhere ')

if (numcon == 0){
gcond=-O;
numgroup=-O;

if (numgroup >= 1)
printfC'(");

I
k=O;
if (gcond==1)

for (i=-O;i<=numgroup;i++)
for (j=group-.sount[kj.begingroup~j < group-ount[k.endgroupj±+)

if ((contypeo]==1)1I(contypeUj]==2)) {
printf("Contain (%s,%s) ",attU],conU]);
strcpy(mediaatt[number _media] ,attUl);
number _media=nuxnber_media+1;

else(
printf(" %s %s ",attU],conUj);

if (j!=group-.count[i].endgroup-1)
printf(' and")

) * END FOR J/
k=k+l;
if (nurngroup >= 1)(

printfC')");
if (k <= numgroup)

printf(' or C)

168

)/* End second for ~

I* only one condition process *
if (numgroup == 0)

if ((contv~pe[O]==l)I(contype[0j==2))
printfC' Contain (%s,%s) ",att[0I,con[OI);
strcpy(media-at[number-mediaJ ,att[0I);
number-media=number _media+ 1;

else
printfQ' % s %s, ",att[0II,con[OD);

I/'* End if condition *
processquery2(O;

/* This procedure get the query description for the media attribute *
/* from the user phrase by phrase *

char process-icon()

char answer, repeat, yes_no_answer 0
char query-phrase[DESCRLEN+ 1],
in~phrase[DESCRLEN+11;
mnt i, query..err, query-len, ien, fjflag;
char descr[DESCRLEN+1I
mnt show-pid, wait..pid;
int imageno;
icond = 1;
do

query-err = 0;
query-len = 0;
query-..phrase[0) = '\O';
printf('Wnlease enter your query description (one phrase per line;\n\

end with empty line) :\n");
do /* until query-phrase input ~

S= 0;
while ((inphrasefi++] = getcharo) != NV'&& i < 127)
if (in-phrase[i-1] != Vn)

inphrasei-1I] =Nn
printf ("The phrase is too long, it will be shortened\n");
while (getchar 0 M=N');

in phrasefiJ = W;'
if ((men = i) >1)

if (query-len + in-len < DESCRLEN)

169

strcat(query-phrase,in-phrase);
query-len = query-len + in-len;
) /* End if ~
else
I
printfC"'he last phrase extended beyond the maximum \

description length,\it will be ignoredtnD;
break;

) * End else
/* End if */

if (!query-len)
printf('\nAn empty string is not allowed as a query description.\n\

Please type at least a single word:.\nD;
)/* End do *I

while ((inlen > 1) 11 !query-len); /* end query-phrase input *
prnUX"The query description now is:\n>>%s<<\n\n",query-phrase);
) while (queryserr);

strcpy(con [numconl ,query-phrase);
if (contype~numconl== 1) (
process-icon2 (query-phrase,numcon);

if (contype[numcon]==2)
process-icon3 (query-phrase,numcon);

1* This procedure accumulate the condition from the user and form *
/* the group condition of and and or *
/* Mean condition that compose of disjunctive normal form

void gcondition()

mnt endgroup,i,more,found=FALSE;
char ans,ans2;
gcond=l;
endgroup = 0;
more = 0;
numcon=0;
numgroup=0;
groups- ount[0.begingroup =0;
while (more != 1) (
while (endgroup ! = 1)
for (i=0;i < att-index;i+.)

if (in> 1)I
printf("\nEnter table name)

gets(tabllnuinconl);
strcpy (table-array [table, fldex].table-nane, tab[numcon]);

170

if (m==1)
surcpy (tabfnumcon], stab [0]. t-name);

printfCAnEnter attribute)
gets(attllnumconD);

att-groupnumcon=ntimroup;
getatttypeltab[numcon], att~numconl .atttype[numconl);

if (strcmp(atttype[numcon], "image ")==O)

contypeljnumconl= 1;
process-icono;

else if (strcmp(atttype[numconI,"sound")==O)

contype[numconj=2;
processicono;

else
printf('Enter the condition \n")
gets (con[numcon 1);
contype[numcon]l=0;
printf("\nWhere %s %s' ,att[numconl,conllnumconD,;

numcon=numcon+ 1;
printf('NnEnd group ?");
ans=yes-no-answero;
if ((ans==12l)I(ans==89))

endgroup= 1;
printf(AnGroup %d",numgoup);
printfC'NnCondition %d",numcon);
i=600;

/* End for *
)/* END WHILE*

printf("\nEnd condition ?");
ans=yes-no-answero;
if ((ans==121)1I(ans==89))

group-sount (nunigroupl].end group =numcon- 1;
endgroup= 1;
more = 1;

else
more =0;
endgroup-0O;
more = 0;
i=0;

group-count[numgroupl .endgroup =numcon- 1;
numgroup=numgroup+ 1;
grou p-ountf numgroup]. begin gou p=n umcon;

171

S/"' End more ~

1* process the array of the variable and generate the query of the SQL
1* to process in procedure join *

void processcondition()

char ans2,a;
int id;

cond=1;
gcond=-O;
printfQ"\nGroup condition ? (yin)')
ans2=yes-no-answero;
if ((ans2==12l1U(ans2==89))

gcond=1;
gconditiono;

else

gcond=-O;
if (in> 1)
printf("\nEnter table name')
gets(tab[OD);

if (m==1)
strcpy (tab[O], stab[OI.t_name);

printf(v*%nEnter attribute name)

gets(att[O]);
printfC\n%s %s %s", tab[O], att[O], atttype[O]);
getamtype(tabO] ,att[O] ,atttype[O]);

if (strcmp(atttype[01, ,"image ")=--O)

contype[O]I ;
process iconO;

else if (strcinp(atttype[O], "sound") =-O)

contype[O]=2;
process icono;

else{
printfC'Enter the condition Nn'D
gets(con[O]);
contype[01 =0;
printfQ\nWhere %s",confO]);

172

/* This procedure print the attribute name of the table assign to */

void p-att(tab-name)
STRname tab-name;{

int i,j;
for (i=Oi<= table count;i++) {
if (strcmp(tablearray[i].table_name,tab_name)==O)
x =i;
y = tablearray[i].attentry;
printf("\nTable Name: %s\n",table-array[i].table-name); /* print table name */

prinff('N**Attribute****Data Type**");
while (y != -1) {
printf('"n% 13s %s",att-array[y].attname,att-array[y].data type);
y = att-array[y].nextindex;
} /* End while y!=-I */
if (y==-1) {

printf('"n");

i=500;
]/* Exit loop *f

} /*End if*/

/* End for */

* *** * ** ** ** * ** *** * * *** ***** * ** * *** *** ** * *** ** ** ** *** * ** ** * **** ** * ** ** ****

/* Generate the result table for retrieval process */
/* This procedure process the query and condition V
/* By using the select-array and condition-array */
/* also group-array */

void ql_retrieve0

int ij,k,l;
char grnum,medianum,operator[4];
i--O; /* set up index to 0 */

/* Below is the embeded C code for the SQL C for INGRES */
/* This is equivalent to the SQL query */
/* exec sql select (varl, var2, ...)

from (table 1, table2,...)
where (condition I and/or condition2 and/or ...);

,/

k--0;
i=0;j---;
1=0;
if(gcond==1) {
for (i--O;i<=numgroup;i++) {

for j=group-count[i].bgingroup;j<=group-count[i].endgroup;j++)
printfCTest group %d, numcon %d, condition %s", ij,con[jI);

1

173

I/*" end if gcond *
Ilsqlnit((char *)O);
lIwritedb("retrieve into result(");
for (i=-O;i<n- 1;i-4-+)!
Ilwntedb(satt[i] .t-name);
Ilwritedb(".');
llwritedb(satt~i] .a...name);
lw-ritedb(",");

1 * end for *
Ilwritedb(satt[iI .t-name);
llwritedb(". ");

) llwritedb(satt[i].a name);
Ilwritedb(")");
if (cond==O)

if (m>1)[
llwritedb("where(");
llwritedbojoin_condition);
Hwritedb(")");

if (cond==1)
IlwritedbC where(");

if (m>1)
Ilwritedb("C');
Iwritedbojoin-condition);
llwritedb(");
]Iwritedb(" and)

if (gcond == 1)
/* for (i=-O;i<=numgroup;i++) (1* Test for 1 group *

for (j=O-,j'group-countllO].endgroup;j+4-)
printf('M77his is test");
if (contypeU]==-O)

Hwritedb(tabU]);
Ilwritedb(".");
Tilwritedb(attUl);
flwritedh(conol);
Ilwritedb(" and")
) /"' end if */

if (contypeo]=1I)
flwritedb(tabo]);
llwritedb(".");
ilwritedb(attU]);
Ilwritedb("=");

temp-media-nanme[O]='m';
medianum=j+48;
temnp- nedia_nane[I1]=medianum;
tempjnedia name[2]=O;
llwritedb~temp-media -name);

Ilwritedb(".");

174

llwritedb('ijid");
Ulwritedb(' and)

if (contypeU]==2)
Ilwritedb(tabUl);
Hwritedb(".");
Iwritedb(attol);

temp-media-nane[O]='m';
medianum=js48;
temp-media-name[1 I-medianurn;
temp--media-name[21O0;
Hvwritedb(tenp.media..fame);

lIwritedb(".");
Ilwritedbsid");
llwritedb(' and)

/* end for j/
j=groupscount[O] .endgroup;
if (contypeU]==O)

Uwritedb(tabol);
Ilwritedb(".");
llwritedb(attol);
llwritedb(conUI]);
) /* end if */

if (contypeU]==1)
Ilwritedb(tabUl);
Ilwritedb('.");
llwritedb(atUI);
Ilwriedb("-");

temp-.media...name[01='m';
medianum=j+ 4 8;
tempjnedia-ame[1=niedianum;
tempjnedia narme[21M0;
Hlritedb(temp-media-flame);

IUwritedbil');

if (contypeU]2)
llwritedb(tabUI);
llwritedb(".");
Iwritedb(attU]);
ilwritedb("=");

temp-mcdia-name[OI='m';
medianuzn=j+48;
temp-....meanamet 11=medianum;
temp_.media name[21=0;
flwritedb(temp..media- name);

lwritedb(CY');
Ilwritedb(s-id");

175

/* end if gcond *
/* if no group ~

if (gcond==-O)
if (contype[O]==O)

llwritedb(tab[O]);
Ilwritedb('.");
llwritedb(at[O]);
flwritedb(con[OD);
)/* end if */

if (contype[O]==1)
llwritedb(tab[O]);
lIwritedb('.");
llwritedb(at[O]);
llwritedb("=");

temp-.media-name[J=m';
medianum=0+48;
tc-,npmedia~name[1]--medianum;
temp__media name[21=O;
llwritedb(tempmedia-name);

lIwritedb(".");
llwritedb("L -id");

if (contype[O]==2)
llwritedb(tab[O]);
Iwritedb('.");
llwritedb(att[O]);
IlwritedbC=");

temp-.media name[OI='m';
medianum~z+48;
temp..media name[l1I-medianum;
tempjnedia name[2]=O;
llwritedb(tempjnedia namne);

Ilwritedb(".");
Ulwritedb("s-id");

/* end if no group ~
llwritedb(")");
/* end if condition ~

llsqSync(O,(char *)O);

/* This procedure set the cursor point to result table and print *
/* After finish the formatted data then go to the media data *
/* The media data begin with image and then sound *

void ql-printdata()

mnt c=Oj-Ok=O,l=-O,temp;
char char-value[2 I] ,a;
char file-name[201;

176

int integer...value,media-yalue,found,media I -vyalue;
float real_value;
int i=0O,select=0O;

/* # line 3169 "db-sc" ~I /* select *

llsqlnit((char *)0);
llwritedb("retrieve(c=(count(C);
llwritedb("result');
llwritedb(".');
flwritedb(satt[O] .aname);

llsqRinit((char *)O);
if (Ilerrtest() == 0)(
if (lIne xtget() ! = 0)

llretdom(1,30,4,&c);
1 * Ilnextget */

HsqFlush((char *)O);

printf("\nThere are %d records that match the query",c);
if (c==O) (

printf("\nPress ENTER to continue...");
a=getcharo;
return;

1* # line 3171 "db.sc' * /"' host code *
if (IlcsrOpen((char *)0, "cursor output'Y'"db1"%0, "result") !=0)
Uwritedb("retrieve(");
for (select=0O;selectczn- 1 ;select++)
Tlwritedb(satt[select] .ajiame);
ilvvritedbC"=");
"Llwritedb("result.");
IIlwritedb(satt[selectJ.a~name);
Ilwrittedb(",);

llwritedb(satt[selectl .a...name);
IlwritedbC'=");
Ilwritedb("result.");
Hwritedb(satt[select.anare);
11writedb(")");
lcsrQuery((char *)0);

Jf* lcsrOpenf
printf('\.n);
look-rnore=0,
140;
if (c==O)(

look-rnore= 1;

/* Fetch the cursor to the result relation which is the intermediate table
hold the result from the query, then print out the tuple one at a time

177

until no more record to print to the user ~
while (look-more == 0)(

if (llcsrFetch((char *)O,"cursor output" dbl') != 0)1
printf("record id %d\t",l+l);

for (i=-O;i<n;i++) t
if (strcmp(satt[il.data-type,"c20")==0)
lIcsrRet(lI,32,0,char value);
printf("%s : %s",satt[i].a..name,char-value);

if (strcmp(satt[i].data type,"integer")==0) I
lIcsrRet(1,30,4,&integervalue);
printf('%s : %d ",satt[i] .a-name,integeryvalue);

if (strcmp(satt[i].data-type,'floatC)==0) I
IlcsrRet(1,31 ,4,&real value);
printf('%s : %8.2f ",satt[i].anamerealvalue);

if (strcmp(s att[i] .data-type, "image ")==O) I
IlcsrRet(l1,30,4,&mediayvalue);
printf('%s id is %d ",satt[i].a_name,media-value);

if (strcmp(satt[i] .data-type," sound")==O)
lIcsrRet(1,30,4,&media I value);
printfC'%s %d",satt[i] .aname,media 1 -value);

I/* end for select < n*/
printfCR'.n');
llcsrEFetch((char *)0); /* fetch the next record to the cursor ~
1+-.; /* increment 1 as the counter */
if (1==c) (/"' check if no more data to print ~

look-more = 1; 1* exit of the loop *

/ * HcsrFetch ~
I/* end while */

IlcsrClose ((char *)0,"cursor _output","dbl1'); /* close the cursor *
printfC'Press ENTER to continue ..");
/* stop before change to the next function so

the user can see the result on screen, until he hit ENTER key *
a= getcharO;

1* this for the check for the media selection *
if (c=-O)

i=9999; /* if no record for the media data not process any thing *

for (i=O;i<n;i++)
if (strmp(satt[iI .data-type,imageD==0O)

strcpy(tablearrway[tablejindexl .mble-name, satt[i] .tname);
found = checktable-nameo; /* search for the media name ~
table-cursor = table-jentry;
strpy(miedia-name,satt[iI .aname);
get-nedia nameo;
display-photo(i,j);

178

/* display photo search for the image relation
that match the result tuple then open the file *

if (strcmp(satt[i] .data-type,"sound")==-O)
printf("\nSound management");

strcpy(table-array[tablejindex] table-name. satt [ii .tname);
found = check-table-nameO;
table-cursor = table._entry;
strcpy(media-name,satt[i] .a-name);
get-media-nameo;
display-sound(i,j);
/* play sound search for the sound relation

that match the result tuple then open the file L

I'* end for select < n*/ 1

printf("\n");
/* Drop table result after finished print *

Ilsqlnit((char *)O);
Hwritedb("destroy result");
IlsqSync(O,(char *)O);

Hlsqlnit((char *)Q);
Ilwritedb("destroy mO");
IlsqSync(O,(char *)O);

lIsqlnit((char *)Q);
lIwritedb("destroy m2");
IlsqSync(O,(char *)O);

Ilsqlnit((char *)Q);
lIwrtedb("destroy m2");
IlsqSync(O,(char *)O);

lIsqlnt((char *)O);
Hwritedb("destroy m3");
IsqSync(O,(char *)iJ);

/*Temi rcdr ortertiv prto
{*r n steprmtrfr al n trbt ee vl

I~sq~nt((cha *)7)

/* For retrieve table name and attribute name from the user *

void retrieve()

int ij,x,y,z,found=0;
char tablejiame[20] ,attnarne[20] ,atttype[203 ,Ans,More ,a;
initO;

Ilsqlnit((char *)O);
Ilwritedb("destroy mO");
IlsqSync(O,(char *)O);

Ilsqlnit((char *)O);
lIwritedb("destroy mlI");
IlsqSync(O,(char *)O);

Ilsqlnit((char *)Q);
Ilwritedb("destroy m2");
HlsqSync(0,(char *)O);

Usqlnit((char *)0);
Ilwritedb("destroy m3");
IlsqSync(O,(char *)Q);

Ilsqlnit((char *)Q);
Ilwritedb("destroy m4");
flsqSync(0,(char *)O);

/* Select table ~
for (i=0;i<100;i++)

buffl = NOV;* assign null value or end of string to buffer*/

m=-O;
i=O;
k=0;
gcond=-O;
numcon=O;
strcpy(buff "?");
while (strcmrp(buff,"T')-,=O) (/* select loop for help function *
prinrf('M\Select the table(s) saparate by comma <,>: (<?> for HELP!)");
printf("\nSELECT TABLE(S):")
gets(buff);
if (strcmp(buff,"?')==O)

print...all-tableo;
/* end while buff 0=*/

while (i<=table-count) f I/' check loop with the maximum number table *
for (j=O;j<13;j++) /* each table has less than or equal to 12 char only *

180

if (buff[k]==44)
stab[i].t nameU]= '\0';
j=55;
k=k+l;
i=i+1;

I
else

if (buff[k] =='")
j=55. /* Skip the white space if the user typped in*/

else
stab[il.t-name[j]=buff[k];

if (buff[k]==O) { /* if null value in buffer (end of string) */
m=il ;
j= 55 ;
i=1000;

k=k+1;
I

}/* End while */
for (i--O;i<m;i++)

strcpy(table-array[table-index].table-name, stab[i] .tname);
found = checktablenameO; /* search for the media name */
if (!(found)) (

/* check for tle valid table name if not found then return to calling program */
putchar(\007');
printf('MTable %s not found please redo again !!!" ,stab[i].tname);
printf("\nPress ENTER to continue !!");
a=getcharO;
return;
) /* end else */

/* end for loop */
/* Specify the join condition if there are more than 2 table select */
if(m> 1) {
strcpy(join conditior.,"?");
while (strcmp(joincondition,"?")=O)

printf('\Please enter your join condition: (<?> for help!)");
getsjoin condition);
if (strcmp(join_condition,"?")=-O)

for (i=O;i<m;i++) (
printf("MTable %s ", stab[i].t.name);
p.att(stab[i].t_name);

/* end for loop */
}* end if need help for join */

1/* end while */
}/* end if more than 1 table select */
/* Select attribute */
for (i=O;i<100;i++)

buff[i] = '\)';

181

i= 0;
j =0;
k =0;
x =0;
Z =0;
/* Select attribute for one table at a time ~
for (y=O;y<m;y++)

printf("NnTable %s ", stab[y1. t-name):
strcpy (buff,"?");
while (strcmp(buff,"?")==O)

prin tfC'\n Select the attribute(s) separate by comma <,:(<9> for HELP)");
printf('"\nSELECT A7ITRIBUTE(S):)

gets(buffO;
if (strcmp(buff,'?")==O)
patt(stab[y] .tname);

} * end if buff == "T' ~
1/* end while need help *

while (i < 100)(
for 0j=Oj<13;j++)

if (bufflkll=-44)
satxl.a-nameUj= NO';
strcpy(sattlx.tname, stabflyj.t name);
j=55;
k=k+ 1;
i=i+ 1;
x=x+l1;

else
if (bulffl ='
j=55; /* Skip the white space if user typped in ~

else
sautx].a nameU]j=buff~k];

if (buffqk]==0O)
strcpy(satt[x].Lnarne, stab[y].t-name);

j=55;
i=1000;

printf('d",n);

k=k+1;
I/' end else */

}/* eforjf < 13*

x=x+ 1;
k-=0-
for (i=-O;i<100;i++)(

bufflil = 'NO';

i=-O;
/* End select attribute for each table go to the next table *

182

for (i=0O;i<n;i++)
printf(\n%s.%s', sattlil .t-name,satt[i I.a-name);
geratttypesati]tname,satt[i] .a name,sat[ij.data-type);

printf(');
cond=-O;
printfQ'nAny condition ? (yin))
Ans=yes-no-answer();
if ((Ans==l2l1)I(Ans==89))

cond=l;
processconditionO;

processqueryo;
qlrentieveo;
ql-printdataO;

/"' End procedure *

/* Main program for MDBMS *

main()

int wrong-descrp = TRUE;
int error -create = TRUE;
int i=0,j=0O;
char Axis, a;
char function = 0;
char choice =-7
printf("\nConnect to database)
printf(A^\nwait

[IsqConnect (&sqlca,O,"virgo::mdb", (char *)0);
i* this code use for connect to the database /

if (sqlca. sqlcode !=0) /* error in connection to database /

printf('NnSorry, but we cannot connect to the database at this timet\n\
It could be that you are execute the program in the wrong system.\n\
Please write down your code and give them to the administrator:.\n\

sqica. sqlcode = %ld\n", sqlca.sqlcode);
exit(l);

load-dataO; /41 load catalog from the file into memory ~
/* # line 3504 "db.sc" 41/ /*~ destroy 41/

{ /41 Drop table result in database *
Hsqlnit((char *)0);
lIwritedb("destroy result");
llsqSync(0,(char *)(j);

get-pcnameo; /* Get remote PC name to access the sound database /

183

clr..scrO;
while (choice != '0')

choice = user-choiceo:, /* print the choice for user select on screen ~
switch(choice) /* User select case *

case '1' 1* create table *
clr-scrO-

pri ntf('\n Your Selection is CREATE TABLE!");
printf('\n~it Return to continue! (Any other key to QUIT!)');
if (getchar() != \n')

getcharo; /* To let next getchar() work well *
break;

create-tableO;
error-create = TRUE;
while (error-create)

display-infoo;
error -create = ql-create..tableO;

store-dataO; /* save data back in the file ~
break;

case '2' :/* insert tuple *
dr-scrO;

prnfA~u Selection is INSERT A TUPLE!")
pnintf("\n~ir Return to continue! (Any other key to QUIT!)");
if (getchar() != \n')

getcharo; 1* To let next getchar() work well *
break;

insert-tupleo;
wrong-descrp = TRUE;
while (wrong..descrp)

display-tupico;
wrong-descrp = check-media-descrpo;

if (!wrong..descrp)

printf('\nnit RETURN to Continue!!");
while (C=getcharo) != \n')

store-dataO;
ql-insert-tupleo;

break;
case '3* /* retrieve ~

cir-scro;

184

pintf("'%nYour Selection is RETRIEVAL!");
printf('?\nHit Return to continue! (Any other key to QUIT!)");
if (getchar() != %n')

getcharo; /* To let next getchar() work well *
break;

retrieveO;
break;

case '4 : /* deletion ~
dlr -scrO;
printf("Your selection %c is: ", choice);
printf("Delete \n");
while ((c = getcharo) != \n')
;/* Not return do nothing ~

break;
case '5' : /* update or modify *

dlr-scrO;
printf("Your selection %c is: ", choice);
printf("Modify \ni");
while ((c = getcharo) != Nn')
;/* Not return do nothing *

break;
case '6 : /* Test purpose now ~

dir-scrO;
print -out-data();
break;

case '0':
dr-scrO;
printf("Thank you for using MDBMS \n");
break;

} I" End of switch *
/*'End of while choice != '0' *

/* # line 1895 "dbpei.sc" P/ disconnect *
I
llsqExit(&sqlca);

1* # line 1896 "dbpei.sc" *//* host code ~
/* End of maino*

185

REFERENCES

[AT90] Atila, Y.V., Design and Implementation of a Multimedia DBMS: Sound
Management Integration, Master's Thesis, Naval Postgraduate School.
Department of Computer Science, Monterey, CA, December 1990.

[AY91] Aygun, H., Design and Implementation of a Multimedia DBMS: Complex
Query Processing, Master's Thesis, Naval Postgraduate School, Department of
Computer Science, Monterey, CA. (in progress)

[CH86] Chrisodoulakis, S., Theodoridou, M., Ho, F., Papa, M., and Pathria, A.,
Multimedia Document Presentation, Information Extraction, and Document
Formation in MINOS: A Model and a System, ACM Transactions. on Office
Infc,;mation Systems, vol. 4, no. 4, Oct. 1986, pp. 345-383.

[KKS87] Kosaka, K., Kajitani, K., and Satoh, M., An Experimental Mixed-Object
Database System. in Proc IEEE CS Office Automation Symposium
(Gaithersburg, MD, April 1987), IEEE CS Press, order no. 770, Washington
1987, pp. 57-66.

[LM88] Lum, V.Y., and Meyer-Wegener, K., A Conceptual Design of a Multimedia
DBMS for Advanced Applications, report no. NPS52-88-025, Naval
Postgraduate School, Monterey, CA, August 1988.

[LM89] Lum, V.Y. and Meyer-Wegener, K., A Multimedia Database Management
System Supporting Contents Search in Media Data, report no. NPS52-89-020,
Naval Postgraduate School, Monterey, CA, March 1989. Also in Advances in
Computing and Information, Proceedings of the International Conference on
Computing and Information (ICCI'90), Niagra Falls, Canada, May 23-26,
1990 And to appear in Lecture Notes in Computer Science, Springer Verlag.

[MLW89] Meyer-Wegener, K., Lum, V.Y.. and Wu, C.T., Image Database Management
in a Multimedia System, in Visual Database Systems, (IFIP TC2/G2.6 Working
Conference, Tokyo, Japan, April 3-7, 1989), Ed. T.L. Kunii, North-Holland,
Amsterdam 1989, pp. 497-523.

[PB91] Peabody, C., Design and Implementation of a Multimedia DBMS: Graphical
User Interface Design and Implementation, Master's Thesis, Naval
Postgraduate School, Department of Computer Science, Monterey, CA. (in
progress)

[PO901 Pongsuwan, W.,Design and Implementation of a Multimedia DBMS: Retrieval
Management, Master's Thesis, Naval Postgraduate School, Department of
Computer Science, Monterey, CA, December 1990.

186

[SA881 Sawyer, G., Managing Sound in a Relational Multimedia database System,
Master's Thesis, Naval Postgraduate School, Department of Computer Science.
Monterey, CA, December 1988.

[ST91] Stewart, R., Design and Implementation of a Multimedia DBMS: Modification
and Deletion, Master's Thesis, Naval Postgraduate School, Department of
Computer Science, Monterey, CA. (in progress)

[TH881 Thomas, C.A., A Program Interjce Protozype for a Multimedia Database
Incorporating Images, Master's Thesis, Naval Postgraduate School,
Department of Computer Science, Monterey, CA, December 1988.

[WK87] Woelk, D. and Kim, ,". Multimedia Management in an Object-Oriented
Database System, Proc. 13th Int. Conf on VLDB, Brighton (England).
September 1987.

187

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2

Cameron Station

tlexandria, Virginia 22304-6145

2. Library, Code 052 2

Naval Postgraduate School

Monterey, California 93943-5100

3. Center for Naval Analysis

4401 Ford Ave.

Alexandria, Virginia 22302-0268

4. John Maynard

Code 042

Command and Control Departments

Naval Ocean Systems Center

San Diego, California 92152

5. Dr. Sherman Gee

ONT-221

Chief of Naval Research

880 N. Quincy Street

Arlington, Virginia 22217-5000

6. Leah Wong

Code 443

Command and Control Departments

Naval Ocean Systems Center

San Diego, California 92152

7. Professor Vincent Y. Lum 2

Code CsLm

Naval Postgraduate School

Department of Computer Science

Monterey, California 93943

188

8. Professor C. Thomas Wu

Code CsWu

Naval Postgraduate School

Department of Computer Science

Monterey, California 93943

9. Commander Shiao-Wen Wang

Material Test and Evaluation Center

Combined Service Forces

P.O. Box 90502, Nankang

Taipei, TAIWAN, R.O.C.

10. Data Processing Center

Combined Service Forces

P.O. Box 90487, Nankang

Taipei, TAIWAN, R.O.C.

11. Ning-Li Lan

P.O. Box 90040-16, Ta-Chih

Taipei, TAIWAN, R.O.C.

12. Department of Computer Science

Chung Cheng Institute of Technology

P.O. Box 90047, Ta-Shi

Tao-Yuan, TAIWAN, R.O.C.

13. Su-Cheng Pei 2

2F. No. 1-41, Gan Shuh Rd. Sansia

Taipei, TAIWAN, R.O.C.

14. Professor Klaus Meyer-Wegener

University of Erlangen-Nuernberg

IMMD VI, Martensstr.3,

8250 Erlangen / GERMANY

189

15. Dr. Bernhard Holtkamp

University of Dortmund

Department of Computer Science

Software Technology

P.O. Box 500 500
D-4600 Dortmund 50/ GERMANY

I

190

SUPPLEMENTARY

INFORMATION

tY)
I~.

I -4-

U

0~

4q~4j;

4

'a-
'-a

I
*

cn

-J I
w ~

a.;

~ *~C>
4

z~o2 I'

pA (ii I rr p.

;~~~ ~ (J"416

~- c*~-~Cyr

CC

Laa

20-M

uj m

-j ii,.

IJ = S

