. .

AD-A241 761
R

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

)

ol

o, r EPES -
s Q‘.g Pt ve s Yy
£ - d -
e :
¢ e,
. <
e *’E‘
g
i

Thesis Advisor:

DESIGN AND IMPLEMENTATION
OF A MULTIMEDIA DBMS:
CATALOG MANAGEMENT, TABLE CREATION AND
DATA INSERTION

by
Su-Cheng Pei

December 1990

Vincent Y. Lum

91-13891
IR

Approved for public release; distribution is unlimited.

1 10 23 ¢1¢

I

Unclassified

Security Classification of this page

REPORT DOCUMENTATION PAGE

la Report Security Classification 1b Restrictive Markings
Unclassified
2a Securuty Classification Authority 3 Distribution Availabiiity of Report
Unclassified Approved for public release;
2b Declassification/Downgrading Schedule distribution is unlimited.
4 Performing Orgamization Report Number(s) 5 Monitoring Organization Report Numberts)
6a Name of Performing Organizauon 6b Office Symbol 7a Name of Monritoring Organization
Naval Postgraduate School (If Applicable) Naval Postgraduate School
Code 52
6¢ Address (cuy, state, and ZIP code) 7b Address (city, state, and ZiP coae)
Monterev, CA 93943-5000 Monterey, CA 93943-5000
8a Name of Furding/Sponsoring Organization | 8b Office Symbol 9 Procurement Instrument Idenuficauon Number
(If Applicable)
8¢ Address (ciry, state, and ZIP code) 10 Source of Funding Numbers
Program Element Numoer Project No Task No | Work Unit Accession No
11 Tile t/nclude Security Classification) DESIGN AND IMPLE MENTATION OF A MULTIMEDIA DBMA:
CATALOG MANAGEMENT, TABLE CREATION AND DATA INSERTION (Unclassified)
12 Personal Author(s) Pei, Su-Cheng
13a Type of Report 13b Time Covered 14 Date of Report (year, month,day) 15 Page Count
Master's Thesis From April 90 To December 90 December 1990 199

16 Supplementary Notation The views expressed in this thesis are those of the author and do not retlect the official
policy or position of the Department of Defense or the U.S. Government

17 Cosati Codes 18 Subject Terms (cortinue on reverse if necessary and identify by block number)
Field | Group Subgroup Multimedia Database Management System, Multimedia,
DBMS, MDBMS, Media Database.

19. Abstract (Continue on reverse if necessary and identify by block number)

Current Database Management Systems (DBMS) manage only alphanumeric data but not multimedia data. In
order to have a DBMS that can handle both alphanumeric data as well as multimedia data, one can either build a
new system or modify an existing system. The decision was to build such a system on top of an existing system,
namely INGRES, using the abstract data type (ADT) concept. Unfortunately the INGRES system used does not
support ADT. As a result the Multimedia Database Management System (MDBMS) prototype must design data
structures that would allow the capture and retrieval of the information relating to the data in the database.
Further, to implement the ADT concept for the multimedia data, additional tables need to be created that would
hold information relating to the multimedia data. This process of dealing with the management of information,
generally referred to as catalog management, in the MDBMS prototype is a major part of this thesis. The design
of the data structures and their applications will be explained. In addition, to be able to insert data into the
database, operations for the creation of tables and the insertion of the data are needed. These operations are not
simple, single SQL statement. Because of the potential presence of multimedia data, the generation of multiple
statements may be required from one simple user statement. The thesis will also discuss the design and
implementation of these operations.

20 Distribution/Availability of Abstract 21 Abstract Security Classification
@ unclassified/unlimited D same as report D DTIC users Unclassified
22a Name of Responsible Individual R 22b Telephone (Include Area code) 22¢ Office Symbol
Vincent Y. Lum (408) 646-3091 CsLm
DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted security classification of this page
All other editions are obsolete Unclassified

Approved for public release; distribution is unlimited.

DESIGN AND IMPLEMENTATION OF A MULTIMEDIA DBMS:
CATALOG MANAGEMENT, TABLE CREATION
AND DATA INSERTION

by

Pei, Su-Cheng
Major, Republic of China Army
B.S., Chung Cheng Institute of Technology, 1982

Submitted in partic. fulfillment of the
requirements for the degree of
M~4STER OF SCIENCE IN ENGINEERING SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL
December 1990

Author: A %‘7 /) S

/ Su-Cheng Pe.
Approved by: /

Vmc tY. Lum Thcsm Advisor

//«;77(7%/

C. T%s Wu, Second Reader

DTS Xy

Robert McGhee, Chairman
Department of Computer Science

ABSTRACT

Current Database Management Systems (DBMS) manage only alphanumeric data but
not multimedia data. In order to have a DBMS that can handle both alphanumeric data as
well as mnltimedia data, one can either build a new system or modify an existing system.
The decision was to build such a system on top of an existing system, namely INGRES,
using the abstract data type (ADT) vunecpt. Unfortunately the INGRES system used does
not support ADT. As a result the Multimedia Database Management System (MDBMYS)
prototype must design data structures that would allow the capture and retrieval of the
information relating to the data in the database. Further, to implement the ADT concept for
the multimedia data, additional tables need to be created that would hold information
relating to the multimedia data. This process of dealing with the management of
information, generally referred to as catalog management, in the MDBMS prototype is a
major part of this thesis. The design of the data structures and their applications will be
explained. In addition, to be able to insert data into the database, operations for the creation
of tables and the insertion of the data are needed. These operations are not simple, éingle
SQL statement. Because of the potential presence of multimedia data, the generation of
multiple statements may be required from one simple user statement. The thesis will also

discuss the design and implementation of these operations.

i Aceesaslica Ver

' NG uradid
[a X FAR AT
V. weed

R e

TLALPLoul Lwis,

Sreb]lavtaite

T PR T

T - ; c-..u ;

Jastificattion o .

By . ..

TABLE OF CONTENTS

I. INTRODUCTION .. iitiiiiittitietaiteiteerorenessecsstnsesessesssanesssos 1
A. BACKGROUND ... ittt e e et eaeaeaans 1

B. SYSTEM APPROACH.coiiiiiiiiiii e 2

C. THE SCOPE OF THESIS... ..ottt 4

II. SURVEY OF PREVIOUS WORK.....ccictttiiiiinirrerriececersnrnsens 6
A. DATA ORGANIZATION FOR MULTIMEDIA OBJECTS...........cccevvinenn.n.. 6

B. INTEGRATION OF CONVENTIONAL AND MULTIMEDIA DBMS 12

1. Relational DBMS Approach to Construct ADTcoccvvvinininen, 12

2. Architecture of MDBMS PrOtOtYPe.ccoeeeeeeenaiieneraeeneennnss 14

3. Hardware and Software Configuration...........cccocrcevieiiienrrenennnnnne. 16

III. DESIGN OF THE SYSTEM. ..ttt iiiiiiiitienereeesesseecasecasosnnones 18
A. SYSTEM ENVIRONMENT AND REQUIREMENTcccccovvivininnnn.. 18

| D 211358 £33 134111 11 £ SO PP 18

2. Sample Application.........cccoiiiiiiiiiiiiiiii e 20

3. ReqUITEMENS. ..ottt ittt e e e e eae e enaans 23

B. OVERALL SYSTEM DESIGN.....ccciiiiiiiiiiiiiceeceeeee et eeeees 24

1. Catalog Managemento.oiiuiniiiiiniiiiiiiiiienie e reeaaaens 24

a. Systemtablesin MDBMSl i 25

b. Catalog Filesof MDBMScccciiiiiiiiiiiiees ciieceinnenenen. 30

2. Table Creation.........coouiuininiiiiiiieieiiniiieiieenens crrreaieneniaananens 31

3. Data InSertion.....ccicciiiiiiiiiiiiiiiiiiiiiiini et e e ea e e raes 35

IV. IMPLEMENTATION OF THE SYSTEM DESIGNcccciineuen.. 47
A. USERINTERFACEottt e e aas 48

1. Table Creation.......cccoieieiiiiiiiiiiiii i e e e e e aas 49

a. Input Phase.......cooiiiiiiiiii 50

b. Modification Phase..............c..ccoeiiiiiiiiiiiiiiii 52

c. ExecutionPhase...........oooiiiiiiiiiiiiiiiii 53

2. Data InSertioN......cc.ciiiiiiiiiiiiiiieiiiiiieeciiine e eiiereeereneeneeecneans 56

a. Input Phase......ccooviiiiiiiiiii 56

iv

C. ExXecution Phasecooiiiiiri i e e 63
B. PROGRAM STRUCTURE ...t e e e e, 67
C. HOWTOLINK AND RUNTHE MDBMS ... e, 67
V. CONCLUSION AND SUMM ARY . .iiiiiitiineeteenscsssosssancanssnas 69
APPENDIX . N 71
THE MODIFICATION INTERFACE FOR TABLE CREATION.........ovveee. 71
APPENDIX 3 76
SQL COMMANDS FOR TABLE CREATIONoiiiiiiiiie e 76
APPENDIX Cottriteeineesoseossossseasasesssesssansosanssaancenssansasossnsasess 81
THE MODIFICATION INTERFACE FOR DATAINSERTIONoovveeeee.... 81
APPENDIX) 2 86
SQL COMMANDS FOR DATA INSERTION.....ccccoiiiiiieeeereeicecceeereeeeee, 86
APPENDIX E...iii iiittitttnaenessseeceosseerisassssssocscsssnsssssscnssssnns 92
PROGRAM STRUCTURE OF THE MDBMS ...ttt 92
1. Catalog Managementcoovvtiiiiiiiiiieei et eeetitanaraaeaenaees 92
2. Table Creaton Modulecoviiiuiiiiiiiiiiiiiiiie e et ce e aeaannnnas 93
a. Input Phase.......cooiiiiiiiiiiii 93
Y, (0% 11 Te2:VaTo) 1 1) 3 1 1 - PP 94
C. EXeCUHON Phasecovviiiiiiiiiiiiiiiiii ittt it eereeeaaearrannes 95
3 Data Insertion Module.........viiiiiiiiiiit i e e raeaae e eaanns 96
a. Input Phase......ccoiiiiiiiiiiiiiii e 96
b. Modification Phase.........ooviiiiiiiiiiiiiiiiiii et ierneaenaanns 99

C. EXecution Phasecooviiiiiiiiiiiiiiiiiiiiii it retreneanneenennans 100
AP PEND X F.uiitiiietteeeneeeeesesaensssseessososssssecssscssssssnsssssssanss 103
PROGRAM CODE OF THE MDBMS PROTOTYPEoiiiiiiiiiiiiieeanaannnn. 103
REFERENCES...cccitititririninneens Ceeseesstueneanvasensonsacsstnasnnsnosans 186
INITIAL DISTRIBUTION LIST iitiiiitteeeetececessescesssesnssssasssnnsans 188

v

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure S.

Figure 6.

Figure 7.
Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.

Figure 14.

LIST OF FIGURES

Conceptual Representation of a Value for an Instance of IMAGE Type Data

Three Types of Schema to Model Relationships between Standard Objects
and Media OF zcts. (@) 1:1. (b) 1:N. (€) N:M.ooiiiiirieeceeeeeeeiee . 12

Media Relational Tables for Media Objects (a) IM. .GE Object. (b) SOL'™ND

The Proposed Architecture of a MDBMS prototype: Building Blocks and
Their Interactions...c..coiiiiiiiiii i e e 15

N (- U 16
Hardware and Software Configuration of the MDBMS Prototype............ 17
The Navy Ship Relational Database Schemas.........ccoccceniinccannnnnnn. 21

The Media Relational Database Schemas for Media Attributes in Figure 8... 22

The System Tables for Catalog Management: (a)Table_List, (b)Table_A ray
¥ (o I (D V- NS S-% ¢ § 2O RN 26

The Current Configuration of System Tables after a New Relation PERSON
is Created: (a)Table_List, (b)Table_Armay and (c)Att_Array................... 32

A Collection of Active Index of Media Attributes in Operation:
Act_Media _List ..ot 34

The Value_Arrays for Data Insertion: (a)C_Value (b)I_Value (c)F_Value
(d)Img_Record (€)Snd_Record......c.cueivuviiiiieiiniiiiiiiniieriei e 36

The Current Configuration of System Tables after a Tuple of data has
Entered for Relation SHIP: (a)Table_List, (b)Table_Array and
(VNS .Y ¢ £ TSP UPR 37

Figure 15.

Figure 16.

Figure 17.

Figure 18.

Figure 19.

Figure 20.

Figure 21.
Figure 22.
Figure 23.
Figure 24.

The Current Collection of Active Media Attribute in Act_Media_List reflects
to the Data Insertion of SHIP.......ccooiimiiiiiiiiiiiiieee e 40

The Internal View of Relation SHIP in Database after Insertion: (a)User-
Defined Relation SHIP and (b)Media Relations PICTUREIL.................. 40

The Internal View of Relation PERSON in Database before Insertion:
(a)User-Defined Relation PERSON and (b)Media Relations PHOTOS,
VOIS o e e e e 41

The Current Configuration of System Tables after a Tuple of data has
Entered for Relation PERSON: (a)Table_List, (b)Table_Array and

(PPN 4 H- 8 5 £ U PP 42
The Vaiue_Arrays for Capture the Data Information of Relation PERSON:

(a)C_Value (b)I_Value (c)F_Value (d)Img_Record (¢)Snd_Record.......... 43
The Internal Database View of PERSON after Insertion: (a)User-Defined

Relation PERSON and (b)Media Relations PHOTOS, VOICES.0............ 45
The Selection Menu for Sound Management System..........ccccccoveeeunene 48
Main Menu of the MDBMS......ccooiiiiiiiiee v 49
The Modification Menu for Table Creation........c.ccecvvvvvevinineeiierennnnn, 53

The Image of Attribute PHOTO of Mary Pas in the Relation PERSON...... 59

ACKNOWLEDGMENTS

I am very grateful to Dr. Vincent Y. Lum who is the most influential person in the
development of this thesis. He is a devoted and patient ieacher. He challenged me and
stimulated my interest with his highly intellectual deliberations and discussions. I am truly
thankful for his untiring effort to assist me in the preparation of this thesis.

In addition, I would like to express my appreciation to Dr. Kyung-Chang Kim for his
guidance and the many discussic and to my international schoo: :tes, Yavuz V. Atila
and Wuttipong Pongswuan for the valuable experience of working together on the system
design of the current MDBMS prototype.

Finally, I am truly indebted to my caring and considerate wife, Jing-Feng Liang, for
her support, encouragement and understanding. Without these I could not have

accomplished my studies and completed my thesis and the academic program.

I. INTRCDUCTION

A. BACKGROUND

The technology of computer systems is advancing steadily. More and more
potential application areas are being impacted by this newly developing technology. One
area that has been impacted is the handling of types of data, such as image. graphics, text
and sound, which can now be stored in various digitized formats economically. Data of
this kind are generally referred to as multimedia (or simply mcdia) data i.e., unformatted
form in its data characterisucs. Both hardware and software, which provide the capabilities
to record and store these multimedia data, are available today. However, at this time
conventional database management systems (DBMS) can effectively deal with only
alphanumeric data. On the other hand, many applications such as the military, publishing,
and instructional environments are increasingly required to deal with both alphanumeric and
multimedia data. It is important for us to have database systems that can manage
multimedia data in an effective manner.

Current DBMSs manage effectively the formatted data (i.e., alphanumeric data in
standard formats), having the capability to search the appropriate data efficiently based on
its contents. However, integrating the multimedia data into a DBMS causes considerable
complexity. How the current DBMS can be extended to fulfill this goal was the reason to
form the Multimedia Database Management Sysicm (MDBMS) project in the Computer
Science Department of the INaval Postgraduate School [WK87, LM§8)].

There have been several multimedia database management projects established in this

research area: The MINOS project at the University of Toronto and Waterloo (CH86],

designed for office automation to manage multimedia data types of text, image as well as

<ound along with the documents; the MUSE ana ORION systems at MCC in Austin, Texas
[WK87], both of which contain a Multimedia Information Manager (MIM) for processing
mulumedia data; and the projects in the IBM Tokyo Research Laboratory which developed
the two "mixed object database systems”, MODES1 and MODES2 in 1987 [KKS87]. A
discussion of these projects is presented in [LM88:p.10-11] and {MLW89] and will not be
repeated here. Because of the complexity of the problem and the shortness of research
history in handling multimedia data environments, the result in most projects have
attempted to develop a specialized system for a set of specialized application requirements
(LM88].

In order to develop a functional DBMS that is able to handle multimedia data for
different kinds of applications, one must design and construct a multimedia database
management system analogous to the way one would develop a normal DBMS with the
basic functions for retrieving, searching and managing multimedia data. Because of
resource constraints and because the goal is not to produce a production system, the
decision was made to construct a prototype that is built on top of an existing DBMS. This
thesis is one of several concerned on the design and the implementation of the prototype for

processing multimedia data (PO90,. [90].

B. SYSTEM APPROACH

Today’s technology requires us to store these different media types of data like images
and sounds in separate files, each of which occupies a large amount of memory space and
consists of a long and varying number of small items, e.g., pixels or frequency indicators.
The value of a single image or sound, which we call a "media object”, is actually an
instance of that media type of data and it is one distinct file. [t corresponds to the case of a
normal database in which the NAME is an attribute with a value of “John Smith”. Thus, an

image in a multimedia database stored as a file is only the value of an attribute (e.g.,

PICTURE or PHOTO) with an unformatted data type. There is little need to mention that
under the circumstances, a user could easily lose track of the "objects", even for a very
simple application.

One problem relating to the retrieval processes in a MDBMS is how to handle contents
search in multimedia data environments. Because automatic recognition of media data
contents is beyond the state of the art, the decision was made in the project to use natural
language descriptions as the means to specify the contents of media data, although the
architecture of the prototype allows other techniques to be incorporated into the system. In
order to understand the meaning of the natural language descriptions of the media data
contents, a PARSER was constructed in the Prolcg system. This PARSER is responsible
to recognize the syntax and the semantcs of the natural language descriptions and interacts
with the MDBMS to locate the appropriate data items being searched in response to a
query. The detailed discussion of the MDBMS prototype to support contents search in
media data is given in {LM89].

To incorporate the processing of media data into a conventional DBMS is a complex
task. Most conventional database management systems tcday, including the version of the
INGRES system used for the MDBMS prototype, do not allow ADT definitions directly.
This means that the system does not and cannot handle media data processing in any simple
manner. Managing media data information is crucial if the system is to be able to know
how the data is to be handled. This process, generally known as catalog management,
represents a major task in the construction of the MDBMS prototype and will be fully
discussed later. |

Further, a goal in the design and implementation of the system is to make use of
INGRES to manage the data storage and management as much as possible. Much of the

information is stored in INGRES tables. Unlike the normal tables created by the user in a

DBMS, many of these tables are transparent to the users, just as the case of the catalog
tables in INGRES that are used to keep track of user table information. This approach
necessitates the generation of multiple database operations even when the user of the
MDBMS prototype sees the operation as one single SQL statement. For example, when a
user creates a relaticn that contains some attributes with media data type, the system must
create multiple relations some of which are there strictly as a result of the presence of media
data. Naturally one can easily see that in order for the MDBMS prototype to operate, the
creation of tables and the insertion of data in the tables are necessary. This thesis will
discuss these operations. Of course, one cannot use the system without the ability to do
retrieval and updates. These operations are given in [PO90, AT90, ST91, PB91, AY91]

and will not be discussed here in this thesis except where necessary.

C. THE SCOPE OF THESIS

The overall design of the MDBMS prototype is briefly given in a companion thesis by
Wauttipong Pongswuan and Yavuz Atila [PO90, AT90]. Part of the design of the tabies for
catalog management also appears there. The design was a concurrent and team effort and
therefore is included in all three theses, [PO90, AT90, and this thesis], but different parts
appear on different levels of details. In “O90] the retrieval processes is phasized and i~.
[AT90] the management of sound data is described. In this thesis, the management of the
catalog for the prototype is discussed in detail. Moreover, table creation and data insertion
will also be the empbhasis of this thesis as well.

This thesis is organized in five chapters and six appendices. The next chapter, Chapter
II, contains the description of the previous works done in the MDBMS prototype project.
It will give the general architecture of the system along with the system environment and
the hardware/software configurations in which the prototype is to be constructed. Basically

it captures the previous warks to the extent that is necessary to understand the general

environments and the assumptions that may be presented in this thesis. Chapter III will
present the detailed environment and the requirements in which the design of the catalog
management is based and the operations of table creation and data insertion are to be
constructed. It will also discuss the structure of the system on catalog management, table
creation, and data insertion. In Chapter IV, implementation of the design will be given,
including the interface for the various operations, as well as the procedures to invoke the
modules and their executions. Chapter V will present the conclusion and the summary

along with a brief statement of other works in progress or planned.

II. SURVEY OF PREVIOUS WORK

The research work in the Multimedia Database Management System (MDBMS) project
at the Computer Science Department of the Naval Post Graduate School began in 1988
[LM88]. The first stage was to design the architecture of the MDBMS to process
multimedia data as conveniently as the processing of the standard data (formatted data) in a
normal DBMS. A direct consequence of this is to find ways to define the different
operations on multimedia data to support contents search. Because of the complexity of
multimedia data and because the different characteristics among media types, no easy
solution was found. The approach adopted is to integrate the artificial intelligence (AI) and
abstract data type (ADT) techniques to develop a system on top of an existing DBMS (e.g.,
INGRES) that will allow us to process multimedia data, especially for the contents search
on the media objects. Today, the MDBMS prototype runs on a SUN-3 workstation in the
UNIX system, connected to an IBM PC used to manage sound data. In this chapter we
will discuss the general architecture of the system along with the system environment and
the hardware/software confi~ ration in which the MDBMS prototype is to be constructed.
Basically it captures the previous works to the extent that is necessary to understand the

general environment and the assumptions in this thesis.

A. DATA ORGANIZATION FOR MULTIMEDIA OBJECTS

As stated in the introduction, multimedia data is rich in semantics and much
information is implicitly defined, making it impossible to do contents search without any
additional help. The problem was addressed at the beginning of the research in the
MDBMS project. In this section we will briefly describe the abstract data type concepts

that we used on multimedia objects like image or sound, and the operations that we defined
to apply on such multimedia data.

Conventional DBMS do not suppert multimedia data. To have a DBMS to support
multimedia data we must fit it into a data model. It has been determined that the abstract
data type (ADT) concept is the most appropnate for this task [LM88]. The proposed data
model for the MDBMS requires integration of formatted and unformatted data processing
techniques. As we mentioned in the previous chapter, the processing of media objects
sometimes requires the recognition of the contents of a media data. Since automatic
recognition of media data contents is beyond the state of art, a proposal to supplement the
unformatted media data with descriptions in natural language form has been suggested.

In addition to the description data as a structured text data type accompanying each
media object, it is necessary to have registration data to define the characteristics of the
media data. The technology today provides a variety of digitized formats to store media
data economically, depending on the hardware and software used. As a matter of fact, the
registration data is generated automatically as a part of media data during the encoding
process. However, it is mandatory for us to distinguish the registration data from the raw
data (i.e., unformatted data with a long and varying number of small items). For instance,
in case of an image we must know the registration data like width, height, depth of a pixel
and the colormap to reproduce the image from raw data.

In our scheme, the defined media data will be represented in three parts: registration
data, raw data and description data. Conceptually we take these three parts as one data
value. Thus, Figure 1 shov;'s the representation of a value for image and Figure 2 of a

value for sound.

IMAGE
(" (\X
REGISTRATION DATA:
Height, Width, Depth, Colormap.....
_ J
(RAW DATA (BITMAP/RASTER FORMAT):)
Matrix of Pixels.....
\— J/
\. _J

(DESCRIPTION DATA:
Text String.....

\
\ y

Figure 1. Conceptual Representation of a Value for an Instance of
IMAGE Type Data Item.

Because of the different characteristics between different riedia objects, the registration
data and raw data will vary significantly in their representations. For example, in Figure 1
the registration data of an instance of an IMAGE type data item contains height, width,
depth and colormap and the raw data consists of matrix of pixels, but the registration data
of the SOUND data type as shown in Figure 2 has size, sample rate, encoding, duration
and resolution. The third part of the representation, description data, is strictly used to
represent the content of the media data. Although it frequently is redundant in that the

information here may already exist in the raw data, sometimes it is a complementary part to

the raw data. For example, a picture described by the caption "The Mississippi firing at the
enemy"” may show only a gun turret firing with no indication that the gun belongs to the

ship Mississippi.

\
(SOUND
\
(,)
REGISTRATION DATA:
Size, Sample_Rate, Encoding, Duration,
Resolution.....
\ Y,
4)
RAW DATA:

Sequence of Frequency Indicators.....

\> ~)

DESCRIPTION DATA:
Text String.....

_ J
Figure 2. Conceptual Representation of a Value for an Instance of
SOUND Type Data Item.

To process media data operations must be defined to access, display, extract or
manipulate the media data. One must provide a different set of operators for each kind of
media type, effectively just like the operations defined for standard data types like integer

and character. The representation of the media data as in Figure 1 and 2 together with the

appropriate operations becomes the embodiment of the abstract data type concept.
Although the complexity extended from the ADT structure makes the definition somewhat
sophisticated, we can now define media data and standard data effectively the same way.
For example, we can now define simply a relation, PERSON, having attributes NAME,
AGE, PHOTO and VOICE with PHOTO being IMAGE type, VOICE being SOUND type
and NAME and AGE being standard types, namely CHARACTER and INTEGER. Users
of the MDBMS will not even be aware that the system has implemented the ADT concept
for image and sound data.

Operations for image data are defined, making use of the ISfunctions and
ISsubroutines developed by Cathy Thomas [TH88, pp7-17], which concentrate on a low
level manipulation of IMAGE media data. Another thesis by Gregory Sawyer [SA8S,
pp37-50] defined the set of low level functions to operate on SOUND media data. There is
no need for us to list all those functions again. However, it adds clarity to our
understanding of the database operations invoked in the MDBMS prototype if some of
these functions are briefly mentioned again. TABLE I summarizes some of these functions
which are invoked in the processes of media data insertion and retrieval. Here in TABLE I,
only the input and output of these functions are given. Three categories of operation can be
found from the scope of inputs and outputs. They are:

1. From MEDIA to REGISTRATION: it refers to the operations that extract out the
registration data by given a media object (¢.q., PR_LOAD, SND_LOAD and
COLORMAP etc.).

2. From MEDIA and DESCRIPTION to MEDIA ADT: it means to combine the
registration data, raw data with natural language descriptions specified by the user

according to the data's content (e.g., IS_REPLACE_DESCR).

10

3. From DESCRIPTION to MEDIA: it usually refers to the retrieval process that is

engaged during some special search operations (e.g., IS_SEARCH_MEDIA).

TABLE 1. EXTERNAL VIEW OF MEDIA DATA OPERATIONS

FUNCTION NAME INPUT OUTPUT
PR_LOAD IMAGE REGISTRATION
COLORMAP IMAGE REGISTRATION
SND_LOAD SOUND REGISTRATION
DISPLAY_IMAGE IMAGE REGISTRATION,
SIDE EFFECT,
(DESCRIPTION)
PLAY_SOUND SOUND REGISTRATION,
SIDE EFFECT,
(DESCRIPTION)
IS_REPLACE_DESCR DESCRIPTION, IMAGE ADT,
IMAGE or SOUND ADT
SOUND
IS_SEARCH_MEDIA DESCRIPTION IMAGE,
SOUND,
REGISTRATION

Generally speaking, all the functions are employing the abstract data type concept to
handle multimedia data. However, we should be able to see that, in order to access the raw
data, one must go through either registration data or description data. On the other hand, it
is expected that most of the processing done by the MDBMS will not touch the raw data at
all.[LM89]

11

B. INTEGRATION OF CONVENTIONAL AND MULTIMEDIA DBMS

The principal tasks of a conventional DBMS are storage and retrieval. However, to
incorporate multimedia databases into a conventional DRMS, we need to find a way to
perform these same tasks. Because of the flexibility of the relational model in DBMS, it
has been selected as the basis to design and build our MDBMS prototype.

1. Relational DBMS Approach to Construct ADT

Three types of schema representing the one-to-one, one-to-many, and many-to-

many relationships between a standard data type instance and a media data type can be

modeled as shown in Figure 3. As shown in the diagram, externally or internally generated

keys are used to connect the relations p 2rly (Figure 3(b) and 3(c)).
OBJECT
omb |} ... PHOTO | VOICE
(a) 1:1 Relationship.
OBJECT OBJECT_MEDIA
om | ... | Oo_D PHOTO | VOICE
(b) 1:N Relationship.
OBJECT CONTAINS
om | ... | o_D l Sub_ID
OBJECT_MEDIA
Sub_ID | PHOTO | VOICE
(c) N:M Relationship.

Figure 3. Three Types of Schema to Model Relationships between
Standard Objects and Media Objects. (a) 1:1. (b) L:N. (¢)
N:M.

12

However, the relations in Figure 3 are user views of the database. These are not
sufficient to represent all the necessary information. As it has been stated before, an image
is a file of many (up to several million) bytes. It can not be stored as a value in the relation
as represented in Figure 3(a), for example. File identifiers can be used for this purpose.
Simply storing the file identifiers in the place of media data has unacceptable consequences.
For example, a query requiring the search on the registration data will require the accessing
of many, many large files. This will produce extremely poor performance. A decision was
made to create additional relations, called media relations, for storing some of the
information in the regiswation data and all of the description data in the media data as
shown in Figure 4. Further, again for the performance reason, media data of the same type
not in the same attribute should be in different media relations. Thus each attribute of
media data type will require the creation of a unique media relation. More detailed

discussion of this topic will be given in Chapter IIIl when we present the detail design of the

system.

PHOTO
I ID D .dOS:“P‘ eight | Width | Depth | Colormap

(a) IMAGE Object.

VOICE
S_ID [F[LE D |PesemP- [Size [Samp [Encod]Dura_[Resolu_
— - ton Rate | ind [tion [tion

(a) SOUND Object. -

Figure 4. Media Relational Tables for Media Objects (a) IMAGE
Object. (b) SOUND Object.

13

2. Architecture of MDBMS Prototype

In this section we will discuss the architecture and the components of a MDBMS
prototype that actually deal with the data structures introduced in the previous sections.
The architecture is designed to provide separation of responsibilities, modularity and
flexibility to allow easy expansion and modification in the future. The resulting
components include:

1. Conventional Database Management.
2. Media Object Management.

3. Description Management.

4. Parser.

5. Language Generator.

6. Matcher.

7. Query Processor.

Each of these components has its own specific role and each relies on a low level
storage manager that takes care of things like file allocation and buffer management. For
example, the Description Management organizes the descriptions in the media objects, and
the Media Management will carry ov 9y storing them in the attribute, Description, of the
media relation. Each description will be linked to its media object and the other attributes of
the same tuple by means of a tuple identifier (TID) or a surrogate. Figure 5 illustrates the
components of MDBMS as building blocks and indicates the interactions among each
other. This proposed architecture of MDBMS prototype has been generalized in [LM89,
pp21-24]. '

14

Descr.
Predicate

Figure §. The Proposed Architecture of a MDBMS prototype: Building
Blocks and Their Interactions.

The query processor accepts queries from the users (sometimes embedded 1n
programs) and executes them by calling the other components. Actually it is the MDBMS
interface, instead of query processor, that is responsible to perform all the operations
requested by the users. Figure 6 is the simplified architecture from a user's point of view.
All the components have now been hidden.

Three major parts of the MDBMS architecture are shown in Figure 6. The first
part is the MDBMS interface between the user and the integrated DBMS; the second part is
the Conventional DBMS which manages all the formatted data; and the last part is the
Media Manager which mana'gcs all the media objects. Although not explicitly stated in the
diagram, the MDBMS interface is also responsible for initiating and coordinating the
activities between the conventional DBMS and the Media Manager to find the proper result
requested by a query.

15

MDBMS INTERFACE

Conventional MEDIA
DBMS Manager

=

Standard Image Sound |
Data Data | Data l

Figure 6. The Proposed Architecture of a MDBMS Prototype in a
User's Point of View.

3. Hardware and Software Configuration

Although we have mentioned the system environment in which the MDBMS
prototype is to be constructed, one part related to the hardware and software configuration
must be further clarified. For historical reason SOUND media data is stored in an IBM
compatible and IMAGE media data is stored in the SUN-3 workstation in which the
MDBMS operates. The relatonal DBMS, INGRES, runs in the N Server. Figure 7
shows the current hardware and software configuration. The Operation Processor as
shown in the middle of diagram is responsible to initiate and coordinate the activities among

the sub-systems according to the query generated by the MDBMS interface.

16

- A

MDBMS Configuration:
\
SUN-3 UNIX SYSTEM:
(MDBMS Interface)
Catalog
Management
(
Prolog System:
[Sfunctions Operation
ISsubroutines Processor
Parser
Dictionary
_ FactFiles /
[) (- N
INGRES SYSTEM: IBM PC:
DBMS Sound
Mgement -
Sound
Data
G N\ J
\ | J
Figure 7. Hardware and Software Configuration of the MDBMS

Prototype.

17

III. DESIGN OF THE SYSTEM

We already described the general architecture and the current hardware/software
configuration of MDBMS prototype in the previous chapter. Basically, it is an attempt to
broaden the database handling capability by providing the integrated supports of both
formatted and media data. The design and implementation of catalog management and
other high level operations in the MDBMS prototype are done based on the architecture
presented. However, several resource constraints in INGRES, the IBM compatible PC
and the SUN workstation have been found and these restrictions influence the design and
implementation of the MDBMS prototype, especially with respect to catalog management
and database maintenance. In addition, because much information as well as many DBMS
operations are handled by INGRES, much care was exercised to select the data structures
in the MDBMS prototype to provide efficient performance. In this chapter we will discuss
the system environment and the requirements on which the design of the catalog
management is based and the operations of table creation and data insertion are to be
constructed. We will also present the detailed data structures for catalog management, table

creation and data insertion.

A. SYSTEM ENVIRONMENT AND REQUIREMENT
1. Environments
As stated before, the decision was made to build the MDBMS prototype on top of
INGRES to support multimedia data. As a general database system for different
applications, the prototype does not show bias in its application areas. On the other hand, a
goal in the design and implementation of the system is to make use of INGRES to manage

the data storage and information as much as possible. Unfortunately a number of

18

restrictions are the consequence of using the INGRES DBMS (1987's version). One of the
restrictions already discussed before in section II.B.1 is that INGRES used does not
support ADT, the approach we have selected to support multimedia data. Another
restriction is that INGRES does not allow its users to get the catalog information readily.
This happens to be crucial if the system is to be able to know how the data is to be handled.
Further, although INGRES supports embedded SQL in host C language, it does not
provide a set of high level function calls available to the users. For instance, the embedded
SQL statements are pre-compiled into INGRES low level code for execution. It does not
allow the relation name and attribute name as a program variable in the high level embedded
SQL code. Although more recent versions of INGRES have removed some of the
restrictions, a significant recoding effort will be required to make MDBMS to use of the
new version.

In the meantime, a similar situation occurs in the SUN workstations. New SUN
workstations now support sound, but that would require a substantial investment to
purchase new hardware and recode some programs. It was decided that instead of these
investments, the PC would be retained to manage sound data and would be incorporated
into MDBMS prototype as a backend server by connecting it to the SUN system via a local
network, i.e., Ethernet [AT90].

Similarly, to capture images, a video card which works with a camera recorder is
installed into a PC. The PC first captures an image as a file in GIF format. This file is then
transferred to the SUN workstation by using ftp (File Transfer Protocol) in binary mode.
These image files in GIF fdrmat are transformed by software into the RASTER format
before they can be used by the MDBMS prototype. More detailed description of the
capturing process of the images is described in [PO90:pp47-57].

19

All of these constraints affected the design and implementation in our MDBMS
prototype. Since the prototype construction is not intended to be a production system at
this time, and because the current system is enough to demonstrate the principles, a
decision was made not to change the structure of the system.

2. Sample Application

The multimedia database management system of the kind that we have mentioned
before is expected in the near future. Many applications increasingly require a MDBMS to
manage both alphanumeric and multimedia data. Examples can be found in the militarv
publishing, ente:tainment and instructional environments. Similar requirements can also be
expected in business management. The sample application that we will outline below can
be considered quite typical. The purpose is to give the readers a better understanding in the
design and implementation of the system for multimedia data processing.

As a general database to store the information in a navy application, one may be
required to keep information about the ships, the weapons and the officers. Let us assume
that we want to store in the database the ship's names, the ship's types, the years in which
the ships are built, the ship's ID, their displacements, the captains and the executive
officers for the ships. Further, it is natural that we want to see what the ships look like.
Thus we store also the images of the ships. Suppose that we want to know what weapons
are on the ships. But then we probably want to know the weapon's power, firing range,
and what they look like. As for the officers, undoubtedly information about their names,
ranks, salaries, etc. as well as their images and voices are relevant and should be kept. One
can see from this simple ap'plication, that we have not only the normal alphanumeric or
standard data types but also the media data types, namely image and sound. The above

information can be transformed into relations in a database as shown in Figure 8.

20

SHIP
s_name| s no | type

yr_ displace_ | capt
build ment _id
(c20) (c20) (c20) (int) (int) (int) G

P
:

r
=]
-~

N~

(image)

SHIP_WEAPON
$ NQ w_name

(c20) (c20)

WEAPON

w_name| type fire_ power | picture
range _
(€20) (c20) (c20) (int) (image)

OFFICER
o id |o_name| rank salary | rep_yr| photo | voice

@int) (c20) (c20) (int) (int) (image) (sound)
Figure 8. The Navy Ship Relational Database Schemas.

As we have mentioned earlier, the primary keys (underlined) of the relational
schemas in Figure 8 are externally defined by the MDBMS user, and the media data types
such as IMAGE or SOUND have also been defined as a data type supported by the
MDBMS prototype. But what are the data types for IMAGE and SOUND types in
INGRES which manages the relations? These data types must be expressed in terms of
standard data types. In the prototype, the data type of each media attribute is defined as
INTEGER internally. The content of the media type are integers which link to its own
media relation that has been hidden to the user. These integers are internally generated
identifiers for the tuples in the media relations as discussed previously. For each media
type, a media relation is generated. This is deemed desirable since putting media data
together, say images from different relations, does not produce benefit but actually causes
the system to degrade in performance. Hence "picture” in the relation SHIP requires a

media relation and "picture™ in WEAPON requires another. Since attribute names need not

21

be unique across relations, we must find ways to name the two PICTURE relations
differentdy. OQur solution is to append the relation’s internal identifiers to the media attribute
names. Since SHIP's internal identifier is "1", the image media relation for the attribute
"picture” in SHIP becomes PICTUREI. Similarly, because WEAPON's internal identifier
is "3" and OFFICER's internal identifier is "4”, we have the media relation’s name as
shown in Figure 9. Note that all the information just discussed is hidden from the users

who do not have to be concerned at all.
PICTUREI

iid f id descrip_| height | width | depth
tion
(int) (c64) (vc500) (int) (int) (int)

PICTURE3
iid f id descrip_| height | width | depth
tion
(int) (c64) (ve500) (int) (int) (int)

PHOTO4
iid f_id descrip_| height | width | depth
tion
(int) (c64) (vc500) (inp) (int) (int)

VOICE4

s id f id descrip_| size samp_ |encod_ |dura_ |resolu_
tion raie |ing |don tion

(int) (c64) (vc500) (int) (int) (int) (float) (int)
Figure 9. The Media Relational Database Schemas for Media Attributes
in Figure 8.

Users of the MDB.MS can now process their queries in a routine manner. For
example, a user can pose the following queries to the system:
1. What kind weapons are on the ship "Mississippi"?
2. What is the ship's name and the image of the ship whose weapons show "firing at the

enemy"?

22

3. What are the ships and their pictures that have the missile "Tomahawk" on board?

4. Who is in charge of a submarine named "Michigan" and what is his or her photo and
voice recording?

5. Display all the officers with name, rank, report_year and photo where their photos
contain the characteristics of "big nose, big eyes, blond hair, short person with
glasses".

The queries listed above is just some sample illustrations that the MDBMS can
manage; more detailed queries in retrieval process have been discussed in [PO90:pp25-31].

3. Requirements

In orde. to have a general purpose MDBMS prototype as effectively as
conventional DBMS, we should provide high level operations such as retrieval as given
above, as well as the creation of tables, insertion of tuples, and update and deletion of data.
Because of potential existence of multimedia data during each operation, a single SQL
statement is no longer sufficient if any media data is referenced in the query. Such kind of
queties must be decomposed into multiple SQL statements to process. The details of these
operations for retrieval is given in [PO90]. However, the generation of multiple SQL
statements from one simple transaction occurs in all the other operations. For example, the
creation of a user relation containing media data types requires the generation of multiple
relations which include the user relation and one or more media relations. The insertion of
a single tuple containing media data requires multiple insertions as well. The same happens
to update and deletion operations.

Since the media ADT for IMAGE and SOUND are defined abstract data types in
the MDBMS prototype, all the media relations constructed by the system are hidden from
the user. In other words, a user of MDBMS will not even be aware that the system has

implemented the ADT concept for IMAGE and SOUND data types.

23

To be able to handle the operations correctly, it becomes necessary to manage the
catalog information. As we already mentioned that INGRES does not provide the catalog
information to its user, we have to find ways to store and manage the catalog information
for media data ourselves. Moreover, we must define the data structures for catalog
management which will support all the operations effectively. That is, the data structures
must support both implementation and performance efficiently.

Many factors influence the design and implementation of the MDBMS prototype,
as reflected in this thesis as well as the companion theses [PO90, AT90, ST91, PB91,
AYO1].

B. OVERALL SYSTEM DESIGN

The overall design of the system was a team effort with individuals emphasizing
different areas. We will now explain the detailed design of the system in a simple manner.
We will start on catalog management design and then go into table creation and data
insertion. The other operations in the user's main menu such as retrieval, deletion and
update will be discussed in the other theses [PO90, ST91, AY91].

1. Catalog Management

The design for catalog management in the prototype system is ama' 'r task in this

thesis. The purpose for catalog management is the sar... as in any convenuonal DBMS.
The catalog contains information such as the structure of each file (relation), the data types
and the storage formats of the data items (attributes) in the relations. The information is ‘
used by the MDBMS softwa‘re to process data consistently and occasionally to display the
database to a user who needs the information about the various structures during an
operation. A decision was made to create the catalog in the form of system tables in the
internal memory throughout the operation of the MDBMS. Three text files named

"dbtable”, "dbatt" and "dbkey" are used to hold the information. When a user starts

24

o

running the MDBMS system, these three text files will be read into the system memory
before any operation is performed. At the end of a session the updated system tables will
be written back to these three text files. The user who created the database is the owner of
these files; no one else can access them. However, even the owner user cannot modify
them, because these three text files used to maintain the MDBMS catalog information must
be consistent with the database information in the INGRES DBMS.

a. System tables in MDBMS

The system catalog is composed of three tables (arrays or arrays of
records), Table_List, Table_Array, and Att_Array as shown in Figure 10. The contents in
the tables are based on the sample application as shown in Figure 8. Although the general
data structures of system tables are designed for catalog management, the detailed
structures are based on the performance requirements of table creation and data insertion
operations, as well as the other operations.

The use of array index to conctuct the linked lists is judged to be superior
compared to the use of pointer linked lists; it saves a lot of time in searching the catalog
tables and simplifies the implementation as well. Static index pointers instead of dynamic
pointers are used to achieve the dynamic link in an effective manner. Another reason we
use index pointers is because index pointers are integer type and easy to use, but dynamic
pointers have type constraint in the declaration process. Dynamic pointers cause a major
problem when we perform the other operations which deal with data values like data

insertion, retrieval, deletion and update.

25

Table_LIST: Table_Array:

0 o able_name |table_key |art_count ! :tt_entry
o1 0] ship 1 8 0
2l 2 1| ship_weapon 2 2 8
31 3 2| weapon 3 5 10
4 3| officer 4 7 15
51 .. 4
(a) Table_List (b) Table_Array
Att_Array:
att_name data_type | media_id | next_index|value_entry
0| s_name c20 -1 1
1 $_no c20 -1 2
5| capt_id integer -1 6
6] exo_id integer -1 7
7| picture image 1 -1
8] s_no c20 -1 9
9] w_name c20 -1 -1
10 w_name c20 -1 11
11 type c20 -1 12
14| picture image 1 -1
15| o_id c20 -1 16
16f o_name c20 -1 17
201 photo image 1 21
21 voice sound 1 -1
(c) Att_Array

Figure 10. The System Tables for Catalog Management: (a)Table_List,
(b)Table_Array and (c)Att_Array.

26

The Table_List array as shown in Figure 10 (a) is an array of integers, and
it contains the indices to Table_Array in Figure 10 (b). The number in each cell of
Table_List indicates the entry of a relation in Figure 10 (b). To read the list of relations in
the catalog, it is necessary to start from the Table_List array. This array is always updated
immediately for any table addition or deletion. This is not true for the Table_Array array
which is only updated when the user logs off the system. Thus, even though the first
column of Table_Aurray array contains all the relation names, the number of relation names
existing in this column is the same as the number in Table_List only at the start of a session
but not necessarily so afterward. It can be seen that the purpose of this integer array is
used to maintain the linked list of tables in Table_Array. It keeps the minimum of data, an
integer index instead of whole tuple of information for a relation as in Table_Array. This is
considered more efficient in performance when tables in the catalog information are inserted
and deleted. For example, to check the relation’s name, a control loop is built by following
the sequence in Table_List but not from Table_Array directly. This costs a little additional
in implementation but gains much in performance if deletions of relations occurred in
different parts of the relation list. In this way, the only movement we need to made is
accessing the indices in the Table_List instead of the many tuples in Table_Array. That
means we still keep the deleted relations in Table_Array as before the occurrence of the
deletions. However, the indices to address the deleted relations are removed from
Table_List so that the system will never address the deleted relations again.

The variable we defined for Table_List to maintain the catalog information is
Table_Count which contains the number of relations in Table_Array, i.e., the total
number of user-defined relations existing in MDBMS, not including the media relations. It

is "4" in the example because four user-defined relations have been created. It also is the

next available index in Table_List when a new relation is going to be created because a new

relation will be entered in the fifth row and therefore has an index value equal to “4" in this
example.

In Figure 10 (b), a Table_Array is given. This table contains the
information on relations, including data fields such as table_name, table_key, att_count and
att_entry. Table_name contains the names of the relations. Thus the first relation is SHIP
and the second relation is SHIP_WEAPON, and so on. Table_key is the internal identifier
of the relation. Thus the relation SHIP has identifier 1" and WEAPON has “3". These
internal identifiers are used to append to the media attribute's name as suffices to produce
unique media relation names across the database in INGRES. Att_count shows the number
of attributes in a relation. The integer value "8" in the third column of the first row
represents the total number of attributes in the relation SHIP. Att_entry is the entry to the
first attribute of the relation in the Att_Array. Thus the integer value "0" in the first row
indicates the first entry of attribute in the relation SHIP occurs in the first row of Att_Array
as shown in Figure 10 (c). The variable we defined for Table_Array is Table_Index,
which provides the next available index (tuple or row) in Table_Array for a new relation to
be entered for when the operation of table creation is invoked.

Att_Array as shown in Figure 10 (c) stores the detail attribute information
about each relation. This table has five data fields: att_name, data_type, media_id,
next_index, and value_entry. Att_name specifies the name of the attribute and data_type
tells us the attribute’s data type. Next_index in the fourth column is an index pointer that
points to the next attribute of the same relation, and a value of "-1" in this field indicates
that the attribute is the last attribute of that relation. The third column, media_id, is used to
store the systern generated media data identifier, which indicates the next available identifier
for that media attribute. This identifier will be entered in the user-defined relation in the

media data column. It serves as the index value pointing to the tuple in the media relation.

28

For example, consider the eighth tuple in the Att_Array (Figure 10 (c)) which contains "1"
in the media_id column. Suppose now a tuple is to be entered in the SHIP relation. All the
formarted data will be entered in the SHIP relation directly. However, the information on
the "picture” attribute will be entered into the media relation PICTURE]1 with a value of "1"
under the "i_id" column because "1" is the internal media data identifier in the media_id
column. The value "1" will be entered under the column "picture” in the SHIP relation as a
connection to allow the system to find that tuple of image. The entry value "1" in the
media_id column of the Att_Array will then be changed to "2", showing that the next image
entry for the attribute, "picture” in SHIP, will be the second tuple in the media relation. We
shall return to discuss this part when we illustrate the insertion operation.

It should now be apparent that only attributes with media data type will have
legitimate values in the media_id column. All non-media type attributes will have "-1" in
this column, indicating that the column is not used for those attributes. It should also be
clear that all attributes of media data type will have "1" in the column media_id when the
user relation is first created and before any data is inserted into this relation.

Although the Att_Array now groups all artributes related to the same relation
together in a sequence, it does not mean that the attributes have to be like this in a
consecutive order. The indices could point to any entry in the table. For example, if some
modification, like adding a new attribute to the relation is made by a user, the new attribute
will be added at the end of the table and the next_index entries will be adjusted accordingly.

The last column, value_entry, in the Att_Array is not used for catalog
management, but for data insertion and some other operations. It is an index pointer
pointing to a particular row of a value array corresponding to the data type of the attribute
during the data insertion process. There are five value arrays corresponding to the five data

types, namely character, integer, float, image and sound. When a relation is first created

29

and no data has been entered into this relation, the value_entry column will be empty for all
the attributes in that relation, as shown in Figure 10 (c). The system will update the
value_entry to the correct index number corresponding to the data_type when a data value
is entered. We will explain this part in detail later in this chapter when we discuss the
operation of data insertion.

The variable we defined for Att_Array to maintain the catalog information is
Att_Index which is the next available index of Att_Array. It will tell the system the next
available row in Att_Array when a new attribute is to be entered during the operation of
table creation. It now hold the value "22" in this example since twenty-one (21) tuples
have been entered in the Att_Array table in Figure 10 (c).

b. Catalog Files of MDBMS

Three text files, "dbtable”, "dbatt” and "dbkey” as mentioned at the
beginning of this section, are designed for MDBMS catalog management. Each exists for a
different purpose in the system. The data stored in these files capture all the information
stored in the system tables as in Figure 10 (b) and 10 (c) except the index pointers. The file
"dbtable" contains the information of table_name, table_key, and att_count exactly as in the
first three columns of Table_Array in Figure 10 (b); the file "dbatt" cont: s the information
of att_name, data_type and media_id exactly the same as the first .iree co..mns of
Att_Array in Figure 10 (c); and the file "dbkey" is just an integer value stored, which is "5"
in this case, indicating that the internal relation’'s identifier of the next relation is "5". Note
that "dbkey" never decreases. Thus if all the four relations are now deleted and a new
relation is inserted, the internal identifier for the new relation will still be "5".

It has been briefly stated in the previous section that the array Table_Array
is not updated even when deletions of relations are made. These deletions are reflected

only in the Table_List array which is constantly updated whenever insertions or deletions

30

are done. In other words, garbage collection is always done in Table_List but not in
Table_Array when the system is in operation. However, when the user logs off, the
system will then write out only the valid relations at that time as indicated in the content of
Table_List. That is, garbage collection in Table_List is done when the user logs off and
thus the three catalog files (i.e., "dbtable", "dbatt" and "dbkey") always contain the up-to-
date, valid relations in the database.

The catalog files are read and kept in the system environment as a part of
catalog management of the MDBMS prototype. The system will read the catalog
information from these three catalog files before any operation begins to execute when the
user starts a MDBMS session next time. Thus, the system tables for catalog infcrmation
are always loaded and packed at the beginning of each user session like that shown in
Figure 10.

2. Table Creation
As mentioned before, table creation is one of the major operations in MDBMS.
The data structures we need for table creation is based on the system tables as shown in
Figure 10. The new contents of the system tables as shown in Figure 11 show that a new
relation PERSON has been added after the operation of table creation. Let us now discuss
how this operation works.
To create a new relation, the user is responsible to enter all the information such
as relation name, attribute names and the data type of each attribute to the system. The

information is captured and stored in the system tables as shown in Figure 11.

1

31

Table_LIST: Table_Array:

ol o table_name |table_key |att_count |att_entry
1 1 0] ship 1 8 0
2l 2 1] ship_weapon 2 2 8
31 3 2| weapon 3 5 10
4 4 3] officer 4 7 15
5 4] person b) S 22
6
(a) Table_List (b) Table_Array
Att_Array:
att_name data_type | media_id |next_index |value_entry

0] s_name c20 -1 1
7| picture image 1 -1
8| s_no c20 -1 9

w_name c20 -1 -1
10| w_name c20 -1 11
14} picture image 1 -1
15 o_id c20 -1 16
21 voice sound 1 -1
22| name c20 -1 23
23} age integer -1 24
24| salary float -1 25
251 photo image 1 26
26| voice sound 1 -1

(c) An_Array

Figure 11. The Current Configuration of System Tables after a New
Relation PERSON is Created: (a)Table_List, (b)Table_Array
and (c)Att_Array.

32

In this example the user defined the relation PERSON with attributes NAME,
AGE, SALARY, PHOTO and VOICE and data types as char20, integer, float, image and
sound respectively. Thus, the relation name PERSON is stored in the first column of the
fourth row of Table_Array as shown in Figure 11 (b), and the internal identifier of that
relation is "5" (i.e., the "5" hold in the system by a program variable table_key) is stored in
the table_key column at the same row. The index of the entry of that relation is "4" and it is
entered in the fifth cell of Table_List as shown in Figure 11 (a) to indicate the index
pointing to the relation PERSON. The information about the internal structure of that
relation (i.e., the attribute names and their order) is entered into Att_Array step-by-step
following the input sequence given by the user. Thus, the first attribute NAME is stored in
the 22nd row in Att_Array and the data type of NAME, "c20", is stored in the same row;
the second attribute AGE with data type "integer” is entered into the 23rd row; and so on.
The media_id for each attribute will have the value "-1" assigned to it automatically when
the data type of that attribute is not a media data type, and "1" for any kind of media
attribute. To tie the relation PERSON to the appropriate attributes, the index to the first
attribute NAME, which is "22", is stored in the att_entry column of Table_Array
corresponding to the relation PERSON. The order of the other attributes is defined in the
column next_index in Att_Anay. Thus "23" is stored into the next_index column of
Att_Array corresponding to the attribuie NAME. The last attribute VOICE of relation
PERSON has value "-1" in the next_index column to indicate that it is the end of that
relation. Finally, because the total number of attributes of relation PERSON is "5", the
value of "5" is now entered in the att_count column of Table_Array corresponding to the
relation PERSON. In this manner one can follow a relation to its attributes and the order of

the attributes defined for that relation.

33

After the user completing the input process, the information on the relation
PERSON has been stored in the system tables; however, it can be modified before the
execution of creating the table PERSON in INGRES. That means the system tables'
contents are modified and the next_index entries changed or rearranged to reflect the
modification as given by the user. One can see that the process to update the systein tables
is very similar to that just described.

After INGRES has completed the operation of creating the relation
PERSON, the MDBMS system must proceed to create media relations, if any. In the case
of the relation PERSON, there are two media data types for attributes "photo" and "voice™.
To assist us to keep this information, the Act_Media_List array has been defined as shown
in Figure 12. This array contains the indices to the Att_Array array for the media attributes
in the relation being created. The system can follow these indices in Act_Media_List to
generate the media relations. For example, Figure 12 shows that the indices are "25" and
"26", and the rows 25 and 26 in Att_Array are "photo" and "voice" respectively. This
means media relatons, PHOTOS and VOICES must be created. Here the suffix "5" is

obtained from the table_key column corresponding to the relation PERSON entry.
Act_Media_List:

0 25
1 26
2
9

Figure 12. A Collection of Active Index of Media Attributes in
Operation: Act_Media_List.

The MDBMS will display the relation information of PERSON to let the user
confirm if any modification is required. The prototype provides the capability for the user

to modify the table structure before actual ¢~ :tion. A detailed user interface about this

34

modification will be presented in Chapter IV. After this confirmation, the MDBMS will
generate a set of SQL statements to INGRES for table creation including both user-defined
relation PERSON and media relations, which in this case are PHOTOS5 and VOICES.
Different structures for different media types are determined by checking through the
data_type colurnn of the attributes concerned. The structure of the media relations are
exactly the same as PHOTO4 and VOICE4 shown in Figure 9.

3. Data Insertion

The operation of data insertion is the first operation to enter the data values into
the MDBMS prototype and is one of the major operations in this thesis. Currently data
insertion allows only the option of tuple-at-a-time insertion in this prototype.

As stated before, the MDBMS prototype designed at this time supports five data
types: character string, integer, float, image and sound. For simplicity the only choice for
character string is ¢20 in this prototype now. As a prototype program, a string of 20
characters is enough to demonstrate the concept of data processing. Because there are five
data types corresponding to the three formatted and two media data types in MDBMS, five
value arrays are designed for data insertion as shown in Figure 13. The main purpose of
these value arrays is to hold the data values temporarily as the user enters them during
insertion.

Figure 13 shows the value arrays for the system tables shown in Figure 14. It
contains the data values for the first tuple in the user-defined relation SHIP. Recall from
the sample application and table creation we described previously that the data type of
media attribute in a user-defined relation is actually an integer type, and the value for this
attribute is an internal media data identifier (i.e., media_id) provided by the MDBMS
program. The identifier is used to link the tuple of a user-defined relation to the media data

35

defined in the media relatdon. Thus the identifier is also the value in i_id or s_id of a media

relation generated by the system.

C_Value: I_Value: F_Value:
0| Mississippi 0} 1975 0
1{ CGN40 1| 11300 1
2| cruiser 2| 101 2
3 31 201 3
19 19 19
(a) C_Value (b) I_Value (c) F_Value
Img_Record:
i_id f_id descrp height width depth
0 1 /n/virgo/../902.} has.\nhas.. 640 480 8
19
(d) Img_Record
Snd_Record:
s_id f id descrp size |samp.]enco. |dura.] reso.
0
19

(e) Snd_Record

Figure 13. The Value_Arrays for Data Insertion (a)C_Value (b)I_Value
(c)F_Value (d)Img_Record (e)Snd_Record.

Each value array needs a variable to control the next available entry in that array,
i.e.,c_index, i_index, f_index, img_index and snd_index. The index to the entry
in the value array, corresponding to the data type being entered, will be entered into the
value_entry column of Att_Array for that attribute. The index variable for a particular value
array is increased by one after each entry is made in that array, and it will start at "0" again
if the bottom cell or row of that value array is reached. That means we don't need to

initialize the index pointer aft. :very insertion.

36

Table_LIST: Table_Array:

o o table_name |table_key |att_count |att_entry
1 1 0! ship 1 8 0
2l 2 1| ship_weapon 2 2 8
3] 3 2| weapon 3 5 10
4 4 3] officer 4 7 15
5 4| person 5 5 22
6
(a) Table_List (b) Table_Array
Att_Array:
att_name data_type | media_id |next_index |value_entry

0} s_name c20 -1 1 0
1 s_no c20 -1 2 1
2| type c20 -1 3 2
3] yr_build integer -1 4 0
4] displacement integer -1 5 1
5| capt_id integer -1 6 2
6| exo_id integer -1 7 3
7| picture image 2 -1 0
8 s_no c20 -1 9

10| w_name c20 -1 11

15| o_d c20 -1 16

221 name c20 -1 23
(c) Att_Array

L

Figure 14. The Current Configuration of System Tables after a Tuple of
data has Entered for Relation SHIP: (a)Table_List,
(b)Table_Array and (c)Att_Array.

37

For example, to insert a tuple of data into the relation SHIP, the user is
responsible to enter all the information in the order given for the attributes in the relation
SHIP uaui the value of the las. attmbu:: is eniered. The Systcm tables in Figure 14 will be
updated to reflect the data being inserted. The updated system tables as shown in Figure 14
is the result after the user has entered a tuple of data for the relaton SHIP.

As discussed before, the first attribute of SHIP is "s_name" with data type "c20".
Once the user entered the ship name of "Mississippi”, it will be stored in the first cell of the
value array C_Value in Figure 13 (a), and the entry "0" will be entered into value_entry
corresponding to "s_name" in Att_Array as shown in Figure 14 (c). T:.: next atribute is
"s_no" with "c20" again, the value "CGN40" will be stored in the second cell of C_Value
in Figure 13 (a), and the entry "1" is entered into value_entry corresponding to "s_no" in
Att_Array in Figure 14 (c). All the standard data types of c20, integer and float are handled
in the same way. However, the handling of media data types is more complicated.

Suppose the "picture” of the ship "Mississippi” has a file name, say "missi.ras" in
the gif directory, and it is ready for insertion into the MDBMS database. The user will be
asked to enter the full path name of that particular image file. After the file name has been
entered, the MDBMS will start a sequence of checking processes to assure that the image
file can be opened and to examine that the image file contains a proper image through the
use of PR_LOAD given in the SUN system (i.e., the image is in RASTER format). The
system will duplicate that image, assign to it a unique file name in the MDBMS working
directory, and extract the registration data of that image object if there no error is detected.
Thus, the unique file name' like "/n/fvirgo/work/mdbms/ mdbms/90217.45643" will be
stored in the f_id column of the "0" row in Img_Record as shown in Figure 13 (d). The
registration data like height, width and depth will also be entered into the corresponding

column in the same row. Next, the user will be asked if he wants to display the image

38

before entering the description data, limited in 500 characters to describe the content of the
image object. Suppose that the user has entered the description, "has antiaircraft warfare
missiles, hias loug_range missiles against land tasget”, to describe ihat pariicular image.
This description data will be stored in the description column in the same row. Finally, the
media_id "1" is entered into the i_id column in the same row as a media data identifier. At
this point, the media data has been collected in the first row of Img_Record as shown in
Figure 13 (d). The index of this media data, "0", is now entered into the value_entry
column corresponding to the media attribute "picture” in Att_Array as shown in Figure 14
(c). Also the media_id of that attribute will now become "2" indicating that the next internal
media data identifier will be "2". Figure 14 illustrates the system updates in Att_Array after
the user has entered the whole tuple of data for the relation SHIP.

The data insertion for sound media is entered in the same manner. However, the
sound file is stored in the PC instead of the SUN workstation. The duplication of sound
file is unnecessary. In order to reduce the access times to the PC terminal, a text file
generated in the PC and sent to the SUN workstation with all the information including the
unique sound file name and registration data of that sound object provides all the necessary
information and helps to simplify the process [AT90].

As done and explained in the previous section, Table Creation, the array
Act_Media_List is used to help us process media data insertion as shown in Figure 15. As
can be seen from Figure 15, there is only one entry stored in the first cell of
Act_Media_List (i.e., the index of "7" in Att_Array), and the control variable
Act_Media_Count will have the value of “1" indicating that the total number of media
attributes is one. The index with value equal to "7" points to the attribute "picture”. Thus,
the media relation name PICTUREI1 can be found by the procedure "get_media_name()"
(see Appendix F) to perform this media data insertion.]

39

Act_Media_List:
0 7

1
<

9

Figure 15. The Current Collection of Active Media Attribute in
Act_Media_List reflects to the Data Insertion of SHIP.

The media data of "picture” stored in the first row of Img_Record shown in
Figure 13 (d) will be inserted into the media relation PICTUREI in the database. The
internal view of these data in INGRES DBMS is shown in Figure 16. More detailed

operation of data insertion will be given in the next example.

SHIP
s_name s_no | type _built | displace_ |capt_ [exo_ |picture
(c20) (c20) (c20) | (int) |ment (int) | id(int) | id(int) | (image)

Mississippi | CGN40 | cruiser | 1975 | 11300 101 | 201 1

(a) User Defined Relation
PICTUREI!
i_id f id descrp height width depth
(int) (int) (vc500) (int) (int) (int)
1 [/n/virgo/../902.] has ..\nhas ... 640 480 8
{b) Media Relations

Figure 16. The Internal View of Relation SHIP in Database after
Insertion: (a)User-Defined Relation SHIP and (b)Media
Relations PICTUREL.

To provide further insight into the operation of data insertion in this kind of
design, we now will give another example to insert one tuple of data into a user-defined
relation PERSON that we have created before. We will continue to use Figure 13, Figure

14 and Figure 15 to make our illustration. For this example, we assume that two tuples of

40

data have been entered into the relation PERSON in the database as shown in Figure 17.
That means the media data identifier for the next media data object will be "3". Figure 18,
rigure 19, and Figure 20 show the system tables, the value arrays and the internal database

after the tuple has been entered and these tables and relations have been updated.
PERSON

sal h i
Jame | age | sy | ghoto | voice
1 1

John Smithh 31 3500
an Kulp 34 4000 2 2
(a) User Defined Relation
PHOTOS
i_id f_id descrp height width depth
(int) (int) (ve500) (int) (int) (int)
1 |/n/virgo/../902.|big nose\nbige.| 640 480 8
2 | /n/virgo/../903.]blond hair\n ...| 640 480 8
VOICES
s_id f id descrp size samp_| encod_| dura_ | resolu_|
(int) (c64) (ve500) (int) rate ing tion tion
(int) (int) (float) | (int)
1 |23xx47.snd| strong voice| 20 10 4 15.4 10
2 |24xx70.snd| weak voice 20 10 4 9.2 10
(b) Media Relations

Figure 17. The Internal View of Relation PERSON in Database before
Insertion: (a)User-Defined Relation PERSON and (b)Media
Relationy PHOTOS, VOICES.

41

Table_LIST: Table_Array:

0] o table_name |table_key |att_count |att_entry
1 1 0| ship 1 8 0
202 1| ship_weapon 2 2 8
3] 3 2| weapon 3 5 10
4] 4 3| officer 4 7 15
h) 4] person 5) 22
6 :
(a) Table_List (b) Table_Array
Att_Array:
att_name data type | media_id |next_index |value_entry
0] s_name c20 -1 1 0
2| type c20 -1 3 2
6{ exo_id integer -1 7 3
71 picture image 2 -1
8 s_no c20 -1 9
9 w_name c20 -1 -1
10 w_name c20 -1 11
15| o_id c20 -1 16
22| name c20 -1 23 3
23| age integer -1 24 4
24| salary float -1 25 0
25| photo image 4 26 1
26| voice ’ sound 4 -1 0
(c) Att_Array

Figure 18. The Current Configuration of System Tables after a Tuple of
data has Entered for Relation PERSON: (a)Table_List,
(b)Table_Array and (c)Att_Array.

42

C_Value: I_Value: F_Value:

0} Mississippi 0| 1975 0| 3500
1] CGN40 3 1
2| cruiser 3] 201 2
3| Mary Pas 4i 31 3
19 19 19
(a) C_Value (b) I_Value (c) F_Value
Img_Record:
i_id f id descrp height width depth
of 1 /n/virgo/../902.] has.\nhas.. 640 480 8
11 3 /n/virgo/../901.] blue eyes\n ... 640 480 8
19
(d) Img_Record

Snd_Record:
s_id f id descrp size |samp.|enco. |dura. |reso.
o] 3 90231511.snd |sweet voice 20 10 4 155 | 10

19
(e) Snd_Record

Figure 19. The Value_Arrays for Capture the Data Information of

Relation PERSON: (a)C_Value (b)I_Value (c)F_Value

(d)Img_Record (e)Snd_Record.

In this example, five attributes with all different data types in the relation
PERSON have been observed from Figure 18 (c). That means all five value arrays in
Figure 19 will be addressed as the process goes through each attribute. The five
value_entries which point to the corresponding cells will be updated when each data value
has been entered, one at a time following the order of the attributes. The media_id

corresponding to the media attributes (i.e., "photo” and "voice") will also be increased by

43

one after the whole tuple of media data has heen stored in the tables (i.e., Img_Record and
Snd_Record). Finally, the Act_Media_List will again be updated for this operation of
inserdon. The content in Act_Media_List is exactly the same as shown in Figure 12 before
for the operation of table creation for relation PERSON, i.e., "25" and "26". Figure 18
represents the updated system tables after the tuple of data has been entered by the user,
and Figure 19 represents the data values for all the attributes after the user's input.

After the user has confirmed that the information entered is correct, the MDBMS
will access the PROLOG system to generate the facts file for the media objects. This
process will be skipped if no media attribute is present in t > user-defined relation or the
description data is empty (i.e., either the media data is unknown or the description data is
not entered at all). The PARSER in the PROLOG system will be loaded at this time to
check the description data regarding both phrase structure and word spelling. The error
message will be returned to the user if an error has been detected by the PARSER and the
system will ask the user to modify the description data of that media object automatically.
A facts file, named "imagei_image_facts", is used to store the description data of all the
media objects. Further discussion on this part can be found in the next chapter.

When PROLOG returns the "no error" message to the system, the MDBMS will
generate a set of SQL statements to INGRES to execute the data insertion operat °n. In
addition to inserting a tuple in the user-defined relation, PERSON, two media data
insertions, i.e., insertion of two tuples, are required for this operation. First the image data
for attribute "photo” will be inserted into the media relation PFOTOS, and second the sound
data for attribute "voice” v;ill be inserted into the media relation VOICES. The SQL
statements for these media data insertions are generated for INGRES to execute right after
the data insertion to the user-defined relation is completed. The information existing in the

INGRES database after this insertion is given in Figure 20.

PERSON

G | 3% | B | e | ha)
John SmitH 31 3500 I 1
Dan Kulp 34 4000 2 2
Mary Pas 31 3500 3 3
(a) User Defined Relation
PHOTOS
i_id fid descrp height width depth
(int) (int) (ve500) (int) (int) (int)
1 | /n/virgo/../902.big nose\nbige.] 640 48 8
2 [/n/virgo/../903.] blond hair\n ...| 640 480 8
3 |/n/virgo/../901 |blue eyes\n ... 640 480 8
VOICES
s_id f_id descrp size samp_| encod_{ dura_ | resolu_
(int) (c64) (ve500) (int) rate ing tion tion
(4nt) {inn) (floaty 1 (int)
1 |23xx47.snd] strong voice 20 10 4 15.4 10
2 |24xx70.snd| weak voice 20 10 4 9.2 10
3 |90xx1il.snd| sweet voice 20 10 4 15.5 10
(b) Media Relations

Figure 20. The Internal Database View of PERSON after Insertion:
(a)User-Defined Relation PERSON and (b)Media Relations
PHOTOS, VOICES.

The readers have to keep in mind that the media data identifier of i_idors_idin a

45

with the "s_id" equal to "3" in media relation VOICES.

media relation will also be stored in the corresponding attribute of a user-defined relation.
For instance, the value of attribute "photo” in relation PERSON is "3", which is used to
link to a image tuple with the "i_id" equal to "3" in media relation PHOTOS; and the value

of attribute "voice” in relation PERSON is also "3", which is used to link to a sound tuple

The readers can figure out that the information of the new tuples in Figure 20
(compared with Figure 17) is exactly the same as the values existed in the value arrays

shown in Figure 19.

46

IV. IMPLEMENTATION OF THE SYSTEM DESIGN

Having presented the detailed design of catalog management, table creation and data
insertion in the previous chapter, we are now ready to discuss the implementation of these
operations in this chapter. We will first introduce the user interface for the operations. In
some of the operations the capability to modify or edit the data just entered is provided.
Procedures to do these will be given along with each operation. Next we will present the
program structures of the different operations. Finally, We will briefly describe how to
link and run the MDBMS prototype from the SUN workstations. The general organization
of this chapter will help the readers follow the implementation of the program code in
Appendix F.

Conceptually the interface to the MDBMS prototype consists of extended SQL
statements. However, instead of asking a user to enter queries in formal SQL structures,
the user interface is designed to get the information interactively in a user friendly way.
After all the data are entered by the user, the MDBMS will transform the user specifications
into a set of SQL statements to be passed to INGRES for processing. In certain cases
internal, low-level function calls in INGRES have to be invoked. This happens because
INGRES does not give its users another level of interface below SQL and we have found
that it is not possible to do what we want to do entirely in SQL. The internal function calls
in INGRES were obtained by studying the sample pre-compiled embedded SQL code
generated by INGRES. We will explain these INGRES functions as we introduce them in

each operation.

47

A.

USER INTERFACE
The user interface of the MDBMS prototype has been designed to include the high

level DBMS operations. The allowed operations in the MDBMS main menu has following

options:

1.

2
3
4.
5
6

Create a Table.

. Insert a Tuple.

. Retrieval.

Delete.

. Modify.
. Quit.

Currently, the first three operations have been implemented, and the remaining two are

in progress [PB91, ST91, AY91]. The MDBMS main menu will be displayed when the

system is invoked and after each operation has been completed. However, since the sound

management is done in a PC connected by a local network and there are more than one PC

used for this purpose, a user must specify the PC's identifier before the main menu is

displayed. Figure 21 shows the selection menu of specifying the PC sound management

system in the MDBMS prototype. This is the first menu to come up on the screen after the

user logs into the MDBMS.

4)
s+*##Welcome o MDBMS**#++

Please select PC remote control code::

1. Prof. Lum'’s office
2. The MDBMS lab room.

Please Enter "1" or "2"::

\. _J

Figure 21. The Selection Menu for Sound Management System.

48

Currently, as displayed in the menu, two IBM compatible PCs are installed with the
sound management system component for the MDBMS prototype. The user has to decide
which one is desired when the system is invoked.

After the user entered a PC option, the MDBMS main menu will pop up on the screen
to allow the user to select the operations (Figure 22). In the following discussion the
examples discussed in the previous chapter will be used to illustrate the operations and the
detailed implementation when appropriate. We will present the operations for table creation
and data insertion in three phases: the input phase, the modification phase and the execution

phase.

a)

Multimedia Database Management System

1. Create'Tablex
2. Insert Tuple
3. Retrieve

Select Your Choice::

- J
Figure 22. Main Menu of the MDBMS.

1. Table Creation
When the system gets the response from the user, a confirm message will ask the
user to verify that the operation being selected is correct. This allows the user to double
check the selected operation, since the user may have selected a different operation by a
mistake and he might want to change to another operation instead. The MDBMS prototype
provides this capability befc;re the input phase begins. For example, the system will give
the following message after the user select "1" from the main menu to create a new relation:

The operation is CREATE TABLE!!
Hit RETURN to continue, all other keys to cancel!!

49

<>

The main menu will pop up on the screen again if the user hit any key other than
the RETURN key. Once the user hits return (i.e., <cr>), the system then responds with
appropriate instructions step-by-step. Each time when the user’s response is entered
properly, the system will return to ask for the next piece of information. If the user has
responded incorrectly, the system may either give a warning message or ask the user to
reenter. Readers should recall from the example we illustrated in previous chapter, where
the relation PERSON with five attributes NAME, AGE, SALARY, PHOTO and VOICE
with the data types of ¢20, integer, float, image and sound respectively has been given.
The following presentation is thus required to complete the operation of creating the relation
PERSON; the [talics format represents the user's responses:

a. Input Phase

The input phase provides several checking processes to maintain the
requirements of unique table names across the database and unique attribute names within a
user-defined relation. It also includes the checking for the maximum length of both table
names and attribute names, which have been limited to 12 characters long in INGRES.
Because the media relations are identifie .y appending a suffix that is equal to the
relation’s internal identifier, no user-defined relation name is allowed to end with a numeric
character. These checking processes will be invoked at certain points of this input phase as
well as the modification phase. We shall return to discuss them when we later discuss the
program structures. The following shows the screen displays for creating the relation
PERSON: |
Enter table name: (Maximum 12 characters)
person <>

Enter attribute name: (Maximum 12 characters)

50

name - <a>

Select data type of attribute::
Select:: (1)integer (2)float (3)c20 (4)image (5)sound
Select your choice:: 3 <>

Data type: c20? (y/n):: y <>
More attribute in the table? (y/n): y <>

Enter attribute name: (Maximum 12 characters)

age <«r>

Select data type of attribute::

Select:: (1)integer (2)float (3)c20 (4)image (S)sound
Select your choice:: 1 <>

Data type: integer? (y/n):: y <«r>

More attribute in the table? (y/n): y <a>

Enter attribute name: (Maximum 12 characters)

salary <>

Select data type of attribute::

Select:: (1)integer (2)float (3)c20 (4)image (5)sound
Select your choice:: 2 <«r>

Data type: float? (y/n):: y <cr>
More attribute in the table? (y/n):: y <«r>

Enter attribute name: (Maximum 12 characters)

photo <o>

Select data type of attribute::

Select:: (1)integer (2)float (3)c20 (4)image (5)sound
Select your choice:: 4 <«r>

Data type: image? (y/n):: y <r>

More attribute in the table? (y/n):: y <r>

51

Enter attribute name: (Maximum 12 characters)

voice <«r>

Select data type of attribute::

Select:: (1)integer (2)float (3)c20 (4)image (5)sound
Select your choice:: 5 <r>

Data type: sound? (y/n):: y <cr>

More attribute in the table? (y/n):: n <cr>

Table Name:: person

Order Attribute Name Data Type
1 name c20
2 age integer
3 salary float
4 photo image
5 voice sound
Any change before create? (y/n) n <r>

At this point, the input phase has been completed. The information is now
displayed to the user and the system asks if any modification is needed. The current

"o_n

response is "n", and the system will thus go to the execution phase after the user hits the
<cr> key. If the user wants to modify this table structure by ‘ering "y", the system will
display the modification menu and goes to the modifi. stion pha.c instead.
b. Modification Phase
The modification menu for table creation will come up on the screen when

the system goes into this modification phase. The modification menu provides seven

options to the users as shown in Figure 23.

52

1. Change Table Name

2. Change Attribute Name

3. Change Data Type

4. Insert A Attribute

5. Delete A Attribute

0. Quit

h or H:: Show Current Information

Select Your Choice::

\- _J
Figure 23. The Modification Menu for Table Creation.

From Figure 23 the user can select the desired operation to modify the
structure of this current relation. To change the table name, the attribute names or the data
type of an attribute, the user can just modify that particular item without going through all
the attributes in the relation. The user can either insert new attributes into the relation with
the desired order or remove attributes from that relation before creation. In addition, the
user can also type "h" or "H" to review the current structure of that relation before starting
any modification. The implementation of this modification process provides clear step-by-
step instructions for the user to follow. The process to check for duplications are invoked
at certain points in this modification phase. Selecting "h" will display the current
information and return to the modification menu; selecting "0" will go back to the end of the
input phase.

An example of going through the modification phase for table creation is
given in Appendix A.

c¢. Execution Phase

As discussed before, an extended SQL statement for MDBMS may require
the generation of several SQL statements for INGRES to execute. Further, the MDBMS
does not have the information to compile into SQL statements until run time. At the same

time, INGRES expects SQL statements from its users to be embedded into user programs

53

(INGRES views MDBMS programs as user programs) at compile time, so that these SQL
statements can be precompiled into C codes and low level function calls. These two
requirements and environments conflict each other and therefore cannot be satisfied using
only SQL statements with INGRES. The solution adopted in MDBMS was to work
directly with the C code generated by INGRES, although this is not an interface given by
INGRES. It is recognized that certain risks are involved as this solution is very
implementation dependent. For example, changes in INGRES function calls may cause
our programs to run incorrectly. Unfortunately, there are not many options open to us and
none of the options looked appealing. As expected, the low level functions are hard to
read; they are INGRES functions with parameter(s) called by value. The detailed
information of these execution commands is discussed in Appendix B.

Let us now continue the interface presentation of the execution phase. After

accepting the input from the user, the system displays the following:

SQL statements::

create table person (name c20,
age integer,
salary float,
photo integer,
voice integer);

CREATING STD TABLE NOW. PLEASE WAIT!!
CREATE A STD TABLE COMPLETE!!

<r>

create table photoS (i_id integer,
f_id c64,
descrp vcS00,
height integer,

width integer,
depth integer);

54

CREATING MEDIA TABLE NOW. PLEASE WAIT!!
CREATE AN IMAGE TABLE COMPLETE!!

<r>
create table voiceS (s_id integer,
f_id c64,
descrp vc500,

size integer,

samp_rate integer,

encoding integer,

duration float,

resolution integer);
CREATING MEDIA TABLE NOW. PLEASE WAIT!!
CREATE A SOUND TABLE COMPLETE!!

<>

The operation of table creation for the user-defined relation PERSON and
two associated media relations (i.e., PHOTOS and VOICES) has now been completed and
the system returns to the main menu (Figure 22) when <cr> is entered.

From the discussion of the execution phase, we can see that INGRES
function calls have to be invoked in between each two consecutive capitalized messages.
Further, the media data types of the media attributes (i.e.,"photo" and "voice") in relation
PERSON have been converted into integer types in the MDBMS design. In the process to
perform the user's operation, the system interacts with INGRES in various stages. During
the interactions, messages are passed from INGRES to MDBMS. If any of these messages
from INGRES shows that errors have occurred, the error messages from INGRES will be
displayed on the screen for .thc user and the operation is aborted. The user must decide
what is wrong from these messages as the MDBMS does not interpret them at all.

The creation commands for the media relations are constructed according to

the media attributes’ entries collected in the Act_Media_List array (Figure 12). The detailed

35

implementation can be found in the procedures "ql_create_table()" and "ql_create_media_
table()" in Appendix F. The way in which the INGRES tunctions are used to construct the
SQL creation commands is described in Appendix B.

2. Data Insertion

The operation of data insertion has been implemented in a similar manner as table
creation. This is the first operation in the MDBMS prototype that processes user data.
User data must be entered correctly before other operations can work properly. Otherwise,
serious problem will occur when operations of retrieve, deletion and update are invoked.
Because the C language used to develop the prototype is not a strong typed programing
language, much care has been exercised to ensure the validity of the data during insertion.
Again, as in the operation of table creation, we will present the operation of data insertion
in three phases and vse the same example as before for illustration.

Now suppose the user wants to insert a tuple of data into the relation PERSON
created in the previous section. We assume that two tuples of data have been entered into
this relation in the example. Thus, when the user selects "2" from the main menu to insert
a tuple, The following message will appear on the screen to confirm the user's option:

The operation is INSERT TUPLE!!
Hit RETURN to continue, all the other key to cancel!!

<>
The main menu will be displayed on the screen if the user hits any key other than
the <cr>. With <cr> as the input, the system will go into the input phase and asks for more
information step-by-step.
a. Input Phase
Several checking processes are provided in the input phase. First, the user

needs to specify into which relation the data is to be inserted. A warning message will be

56

displayed if the relation name just entered does not exist in the database. Once the syst=m
has received a correct table name from the user, it will ask the user to input data values
corresponding to the attributes in the order specified for that relation until the last attribute
value has been entered. The system checks the data values to assure that they correspond
correctly to the data types as defined in the relation. The system also checks the length of a
string value to ensure that the strings entered do not exceed their defined lengths. If any
error occurs in the input phase, the system will alert the user and request the data to be
entered again.

For media data types like image and sound, the system will ask for the
media file name and the description data for that media object as required in our design and
implementation. The value for a media data item could be empty. The system can also
accept a question mark (i.e., "?") for every attribute that the user does not know the value
or intentionally wants to leave it blank, thus letting the update operation to complete at a
later time. This method of entering unknown data can be applied to both formatted and
media data. The detailed implementation for this kind of empty value of an attribute will be
described in the execution phase later.

The input interface for our example will appear as follows:

Enter table name: (Maximum 12 characters); (? for help)

person <>

Table Name :: person

Att Name :: name

Data Type 20

Please Enter <<c20>> Value (? if unknown):: Mary Pas <«r>
Table Name :: person

Att Name :rage

Data Type :: integer

Please Enter <<integer>> Value (? if unknown):: 31 <o>

57

Table Name :: person

Att Name :: salary

Data Type :: float

Please Enter <<float>> Value (? if unknown):: 3500 <cr>
Table Name :: person

Att Name :: photo

Data Type ::image

Please Enter <<image>> File Name!!
NOTE: Enter The Full Path Name:: (? if unknown)::
Inivirgo/workimdbms/gifimarypas.ras <cr>

Now the system starts a sequence of checking processes to examine the
image file. It includes the open file operation and format check. If an error is detected
during any checking process, the system will give a wamning message to tell the user what
the error is and ask the user to reenter the data again. If no error is found after checking,
the system will reproduce that image file with another internally generated, unique file name
such as "/n/virgo/work/mdbms/mdbms/90111.34511". The generic, user-defined file
name is then discarded. This is done to allow the users to generate generic file names
easily and not to have to know what file names have already been used in the database. In
the meantime, the registration data of that image object will be extracted for insertion in the
execution phase later.

Suppose that the user does not enter the image file name, but enters a "?" for
the attribute. Then all the above checking processes and the following messages will be
skipped and the system will proceed to ask for the value of the next attribute.

Now let us éontinue the process assuming that the user has entered the
image's full path name. The next message will then ask the user to enter the description
data:

Display the image before enter the description? (y/n):: y <r>

58

After the user entered "y" followed by a <cr>, the system will show on the
screen the image corresponding to the image file just entered as shown in Figure 24. The
user can check and decide what kind of descriptions in natural language form is to be

entered for this image.

Figure 24. The Image of Attribute PHOTO of Mary Pas in the Relation
PERSON.

Suppose that the user now decides to enter the description, "blue eyes”,
"blond hair” and "smiling face", for that image. He has to move the SUN workstation
cursor to the image window and perform a "quit" before he can continue further. As
mentioned before, the description data is limited to 127 characters for each phrase and 500
characters total for all the phrases. The system will perform these checks. However, the
structure of the phrases and spelling checking are done later at the beginning of execution.
We will discuss this checking when we go to that phase.

Continuing our data entry, the display on the screen will now be as follows:

Enter the description? (y/n):: y <o>

Please enter description:
NOTE: One phrase per line. End with an empty line::

blue eyes <r>

59

blond hair <«r>
smiling face <cr>
<>
Data entry for the attribute, photo, is now complete and we next move to

attribute voice.

Table Name :: person
Att Name :: voice
Data Type :: sound

Please Enter <<sound>> File Name!!
NOTE: Enter The Full Path Name:: (? if unknown)::
/nivirgo/workimdbmsi/snd/marypas.snd <a>

Similar to the entry of images, the system will now start a sequence of
checking processes for this sound file, ask for reentry if any error, generate a unique file
name such as "90231511.snd", extract the registration data to be inserted later, and handles
the "?" entry as before. Suppose no error is found, the interface will then appear as
follows:

Play the sound before enter the description? (y/n):: y <>
Playing sound.......(SIDE EFFECT in PC and SPEAKER)

The system sends the play sound command to the PC sound management
subsystem as requested by the user and the speaker will play Mary's voice recording. The
difference between sound and image handling in this part is that the image will be shown
on the screen until the user "quits" it, but playing sound will automatically end when
playing sound is completed. However, the system provides a loop structure to let the user
play sound again until he enters "n" followed by a <cr>. Because the sound management
component is independently controlled in the PC, the process of this input phase is not

affected by that sub-system at all. The user can actually go to the next input request before

the sound playing finishes. However, the user can not enter "y" to respond the system
“play sound again" before the sound management subsystem in the PC has returned to the
ready-to-receive mode. Otherwise, a communication error will happen if the second play
sound command is sent when the PC is not in the receive mode. If the sound file needs a
large amount of time to play (e.g., a song or a briefing), the user can also quit playing by
hitting the space bar on the PC keyboard. The detailed information about this sound
management subsystem is described in [AT90].
Now let us return to the interface:
Play one more time? (y/n):: n <>
Enter the description? (y/n):: y <>

Please enter description:
NOTE: One phrase per line. End with an empty line::

sweet voice <>
<>
Table Name :: person
Order Attribute Name Data Type Value
1 name c20 'Mary Pas’
2 age integer 31
3 salary float 3500.0000
4 photo image HAS VALUE
5 voice sound HAS VALUE
Media Data
Att Name :: photo
Data Type :: image
File Name :: /n/virgo/work/mdbms/mdbms/90111.34511
Description :
<<
blue eyes
blond hair

61

smiling face

>>

Att Name 11 voice

Data Type :: sound

File Name :: 90231511.snd

Description

<<

sweet voice

>>

Any change before insert? (y/n) n <>

As shown, the input phase to enter a tuple has been completed at this point.
The interface displays the current information to let the user confirm whether he needs to
change any value before insertion. The data items will have different kinds of presentations
depending on the data types whether empty. For example, a white space enclosed by a
single quote (i.e., ' ') will represent the empty value of an attribute with string type; a "0"
or "0.0000" will represent the empty value of attributes with integer or float type
respectively; and "NO VALUE" will show the empty value of media attributes. If a media
attribute does not have any value entered, then the system will not display the information
for that attribute which comes after "Media Data::" as shown above. Note that, the media
file names displayed have been changed to the unique, internally generated file ID as stated
before.

b. Modification Phase

The implementation of this modification phase before the execution of an
insertion behaves similarly-as in the input phase. The purpose is to allow the user to
double check the input data and perform corrections as needed. If the user wants to
perform modification on his data, the system goes into this phase, displaying the current

data values again, and asks for the order of the attribute that needs changing.

62

Table Name :: person

Order Attribute Name Data Type Value
1 name c20 '‘Mary Pas’
2 age integer 31
3 salary float 3500.0000
4 photo image HAS VALUE
5 voice sound HAS VALUE

Select the order which you want to change its value::
Any other key to cancel the operation!! Select::

As it can be seen, the user can either go back to the last confirmed message
in the input phase by entering any key besides "1" to "5", or perform a modification. The
system will start the modification process only if a particular data item in the listed order is
selected by the user. The detailed interface of modification for data insertion using the
sample example is presented in Appendix C.

Recall from the user's response at the end of the input phase that no change
before insertion has been entered. The next system's response therefore is to start
constructing the SQL insert statements for execution.

c¢. Execution Phase

As mentioned in the previous section, run-time parameters for SQL cannot
be passed to the system in the INGRES environment. Again, we have solved this problem
the same way as in table creation. However, the program variables in table creation are all
string type. Here these variables can be different types and it becomes more complicated to
know what must be passed to the INGRES functions to get the correct result. We will
present those function calls' used in MDBMS by way of examples in Appendix D. The
general rules to construct the SQL commands will be discussed there.

As discussed earlier, the descriptions of the media data items are

transformed by the parser into PROLOG predicates and literals to be used by the PROLOG

63

system for content search. These description predicates and literals are stored in the file
called the facts file. Thus, when the nser has entered any description data for the media
data items, the parser is invoked to update the facts file. This process is done before
INGRES is invoked to assure that data entered in the INGRES tables are all valid. If the
parser, for whatever reason, cannot parse the descriptions given by the user, the insertion
execution will be stopped immediately and the user will be asked to modify the description
data so that the system can try to execute the insertion again. In the case that an error code
is returned to the system from the PROLOG processor, the system will tell the user what
kind of error has been detected and where it is.

The operation to interact with the parser is achieved by invoking one of the
ISfunction calls as shown in TABLE I of Chapter II (i.e. IS_REPLACE_DESCR). The
detailed implementation code of this prolog processing is outlined in [TH88, pp49]. The
procedures that employ the ISfunction calls in the MDBMS programs are "check_media_
descrp()” and "connect_parser()" as shown in Appendix F. The user interface presentation
for this execution phase is shown in the following:

Connect to PARSER, Please wait......(This message is for attribute "photo™)

Connect to PARSER, Please wait......(This message is for attribute "voice™")

Hit RETURN to continue!

<a>

SQL statements::

insert into person (name,

' age,
salary,
photo,
voice)
values ('Mary Pas’,

31,

3500.0000,

3,

3);
INSERTING STD TUPLE NOW. PLEASE WAIT!!
INSERT A STD TUPLE COMPLETE!!

<a>

insert into photo5 (i_id,
f_id,
descrp,
height,
width,
depth)
values @3,
'/n/virgo/work/mdbms/mdbms/90111.34511",
‘blue eyes\nblond hair\nsmiling face',
640,
480,
8);
INSERTING MEDIA TUPLE NOW. PLEASE WAIT!!
INSERT A IMAGE TUPLE COMPLETE!!

<a>

insert into voice$ (s_id,
f_id,
descrp,
size,
samp_rate,
encoding,
duration,
resolution)

values (3,

'90231511.snd’,
'sweet voice/,

65

20,

10,

4,

15.5

10);
INSERTING MEDIA TUPLE NOW. PLEASE WAIT!!
INSERT A SOUND TUPLE COMPLETE!!

<>

At this time, the main menu as shown ir Figure 22 is displayed on the
screen once more. As shown in the displays, the operation of data insertions of the user-
defined relation, PERSON, and two associated media relations (i.e., PHOTOS and
VOICES) have been completed at this point. Again, the INGRES function calls are
invoked in between each two consecutive, capitalized messages. Further, as shown in the
displays, the internally assigned value for the media attribute "photo”, corresponding to
"i_id" in the media relation PHOTOS, has been entered with value "3" as a media data
identifiers. Similarly, another media identifier "3" is entered for the media attribute
"voice", corresponding to "s_id" in the media relation VOICES. No error message is
returned from INGRES because all the values have been entered into the database without
error. The user does not need to worry about the internally generated SQL statements and
their executions at all. The detailed implementation can be found in the procedures
"ql_create_table()" and "ql_create_media_table()" as shown in Appendix F. The INGRES

functions invoked to construct the insertion commands are included in Appendix D.

B. PROGRAM STRUCTURE
The MDBMS program is implemented using the programing language C. The
program is separated into five submodules as follows:
1. The create table module.

2. The insertion module.

66

3. The query module.
4. The deletion module.
5. The update module.

The first three modules have been completed, the other two are in progress. We will
describe the program structures with respect to the first two modules, table creation and
data insertion in Appendix E. The query module is basically the same as described in
[PO90, pp41-42], although small modifications have been made. The program code of
these three modules are included in Appendix F.

In addition to those two operation modules, table creation and data insertion, we will
also provide a discussion of the catalog management component in our prototype which is

also included in Appendix E.

C. HOW TO LINK AND RUN THE MDBMS

The MDBMS system is built on a SUN workstation under the server named Virgo at
NPS.CS.NAVY MIL. The MDBMS program is in the mdbms directory under the user
account /n/virgo/work/mdbms. The program source code is named "db.sc" as shown in
Appendix F. This "db.sc" source code needs the INGRES precompiler to generate the
"db.c" source code before the compilation by the C compiler to generate the object code
"db.o". The object code then goes through a linking process to connect to the other object
code such as "ISfunctions.o”, "ISsubroutines.o" and "comcprologl.o". The executable
module is then generated as "db". All these processes can be done by using a macro
Makefile. Thus, to complete the compiling and linking processes of a new implementation
of the "db.sc", one simply types "make db" at the prompt of the UNIX operation system.
The Makefile is given as follows:

#

OBJMODS = ISfunctions.o ISsubroutines.o comcprologl.o

67

#ING_HOME = fingres
db: db.o $(OBJMODS)
cc db.c -o db\
/ingres/lib/libqlib /ingres/lib/compatlib\
$(OBJIMODS)\
-Isuntool -lsunwindow -lpixrect -lm
db.c: db.sc
esqlc db.sc
To run the MDBMS prototype, the user can set up the path from any accour.. to access
/n/virgo/work/mdbms/mdbms directory and copy all files from /n/virgo/work/mdbms/
mdbcatalog directory to the desired working directory. After this has been done, the user
must log off and log on again before he can run the MDBMS prototype. This is done to
allow the system to connect to the new path just set up for proper execution. When the
system has been restarted, the user must type "db" in that working directory to start
running the MDBMS prototype. However, you must be an authorized user to access the
INGRES DBMS. Otherwise, the system will not allow you to do anything in the
MDBMS. A message will also be presented to the user if that happens. You can ask the

system administrator to set up the path to access the INGRES system.

68

V. CONCLUSION AND SUMMARY

Many applications require the use of both formatted data and media data. The handling
of multimedia data imposes new requirements on the database management systems,
especially when the integrated support of conventional and multimedia databases is needed.
In this thesis, an approach to integrate alphanumeric and multimedia data is achieved by
using the abstract data type concept. We use the INGRES relational DBMS to manage the
conventional databases in the MDBMS prototype.

This thesis outlined a sample application for the NAVY SHIPS database. The design
of the MDBMS to support the various database operations is illustrated through the use of
that sample application. Specifically, it showed how the catalog information is stored for
the processing of both formatted and multimedia data. It also showed how table creation
and data insertion can be achieved by decomposing a user operation into multiple SQL
operations to support multimedia data management. Many examples are presented
throughout this thesis to illustrate the various points.

An interactive user interface was implemented for the system. This is believed to be
more user friendly and simpler to implement. Prompting was used generously so that a
user can work on the system with very little background or knowledge about the
MDBMS's handling of formatted and multimedia data.

The handling of formatted and multimedia data in a relational DBMS is more than just
adding new relations into the database. The approach proposed in the MDBMS prototype
can retrieve media data based on their contents described in natural language form. The
description processing of media objects can not be done with SQL or in any database
system like INGRES. The additional parser and a PROLOG processor are integrated to

process these description data.

69

Although the media data types presented in the MDBMS prototype are only image and
sound, it is straight forward to extend the capability to handle other media data in a similar
manner. The concept of handling both formatted and multimedia data is amply illustrated
through the capability of supporting these two kinds of media data types.

For lack of time, only three operations including the table creation, data insertion and
retrieval are completed in this prototype at this time. Two companion theses [PO90, AT90]
are done concurrently. The retrieval process is given in [PO90] and the sound data
management is given in [AT90]. This thesis concentrated on the catalog management
design and the implementation of table creation and data insertion. Actually, it integrated all
the other subsystems together and outlined the system design for the MDBMS prototype in
detail. Itis the entry to continue the other irr.plementations of the MDBMS prototype.

Further works will continue on the implementation of operations including nested
retrieval, deletion and updace. The development of better graphical user interface with

window frames processing, and better help utility, are planned for the MDBMS prototype.

70

APPENDIX A

THE MODIFICATION INTERFACE FOR TABLE CREATION

Appendix A will use the same example we discussed in Chapter III and IV to illustrate
the capabilities of modification in table creation. Recall from the section IV.A.1.b that the
modification interface will start if the user needs to change something before actual
creation. The following interface presentation will show the performance of some
functions listed in the modification menu (Figure 23). We will use a sample which has
different structures from the example we used before; we will modify them to be exactly the
same as the original. Suppose that the current information of relation PERSON has the
following structure:

Table Name:: person

Order Attribute Name Data Type
1 name c20
2 salary float
3 address c20
4 picture image
5 voice sound
Any change before create? (y/n) y <r>

At this point, the input phase has been completed. The information are now displayed
to the user and the system asks if any modification is needed. Suppose the user wants to
modify this table structure to become exactly the same as the relation PERSON that we
presented before in section IV.A.1. Then he needs to delete the attribute "address" and add
another attribute "age"”. Also he needs to change the attribute name "picture” to "photo” as
well. Thus, the user enters "y" followed by a <cr> key. The modification menu for table

creation will be displayed on the screen right after the <cr> as shown in the following:

71

VN _ N\
Modification Menu for Table Creation

1. Change Table Name

2. Change Attribute Name

3. Change Data Type

4. Insert A Attribute

5. Delete A Attribute

0. Quit

h or H:: Show Current Information

— —
-—

Select You; Choice::

G _/

From above menu, the user can select tt = desired operation to modify the structure of

this current relation. Five kinds of modific. 1on are provided for the user to update the
structure conveniently. Now suppose the user select "2" to change a attribute's name. The
following interface presentation will present the instructions to the user step-by-step:

Table Name:: person

Order Attribute Name Data Type
1 name c20
2 salary float
3 address c20
4 picture image
5 voice sound

Select the order which you want to change attribute’s name::
Any other key to cancel the operation!! Select:: 4 <>

Current Att_Name:: picture
Change to:: photo <r>

New Att_Name:: photo

<r> ’

72

Modification Menu for Table Creaton W

1. Change Table Name

2. Change Attribute Name

3. Change Data Type

4. Insert A Attribute

5. Delete A Attribute

0. Quit

h or H:: Show Current Information

Select Your Choice::

- _/

At this point, the system shows the modification menu again after the <cr>. Now the

user has completed the update of attribute name from "picture" to "photo”. The next thing
he needs is to select "4" to insert a new attribute "age" or select "5" to delete a attribute
"address". The point is that once the modification menu appears to the user again, it means
that the previcus operation has been completed and the system is ready for the next request.

Suppose that the user select "4" to insert an attribute. The interface
presentation will be continued as shown in the following:

Table Name:: person

Order Auribute Name Data Type
1 name c20
2 salary float
3 address c20
4 photo image
5 voice sound

Select the order where the new attribute you want be::

(Maximum + 1) will add new attribute at the end!!

Select the new attribute's order::

Any other key to cancel the operation!! Select:: 2 <«r>

Enter attribute name: (Maximum 12 characters)
age <>

Select data type of attribute::

73

Select:: (1)integer (2)float (3)c20 (4)image (5)sound

Select your choice:: ! <cr>
Data type: integer? (y/n):: y <a>
NN . ™)
Modification Menu for Table Creation
1. Change Table Name
2. Change Attribute Name
3. Change Data Type
4. Insert A Attribute
S. Delete A Attribute
0. Quit
h or H:: Show Current Information
Select Your Choice::
\ _/

must now select the last modification as "5§" to delete an attribute.

Now the user has inserted the attribute "age" as the second attribute. He

presentation will be continued as follows:

Table Name:: person

Order

wn & W N -

6

Attribute Name Data Type
name c20

age integer
salary float
address c20

photo image
voice sound

Select the order of attribute which you want delete::

Any other key to cancel the operation!! Select::

Delete address? (y/n):: y <>

74

The interface

Modificaton Menu for Table Creaton

1. Change Table Name

2. Change Attribute Name

3. Change Data Type

4. Insert A Atribute

5. Delete A Attribute

0. Quit

h or H:: Show Current Information

Select Your Choice::

\ J

Now the user has completed the deletion of the attribute, "address", at this point. The

desired updates have thus been completed in this example. The user can now type "h" or
"H" to review the current structure of this relation or just select "0" to quit the modification
menu. Suppose the user selects "0" to quit the modification phase. The previous
presentation before entering this modification phase will appear to the user again for
confirmation as follows:

Table Name:: person

Order Atgibute Name Data Type
1 name c20
2 age integer
3 salary float
4 picture image
S voice sound
Any change before create? (y/n) n <«(r>

The operation of table creation can now go to the next phase to execute the operation of
table creation in INGRES DBMS. The user can return to the modification phase again if he
enters "y" followed by a <cr'> instead.

This example has invoked 3 modify functions, the other two (i.e., change table name
and change data type) are implemented in the similar manner. The purpose here is just to

outline the capabilities of the modification process in our MDBMS prototype.

75

APPENDIX B

SQL COMMANDS FOR TABLE CREATION

As we have mentioned earlier in section IV.A.1.c, the INGRES system we chose does
not provide high level function or subroutine calls that allow its users to implement an
interactive interface to create a table by using predefined embedded SQL codes in the host C
program. That means the table name, attribute name as well as the data type of an attribute
are not supposed to be implemented as any program variable in .:ring type. In this
appendix we will discuss the implementation of the constructions to achieve the goal,
although not supported directly by INGRES. The problem was solved by using the pre-
compiled low level functions in INGRES to construct our MDBMS to INGRES interface
internally. Although the low level functions are hard to read, they are indeed INGRES
functions with parameter(s) called by value. For example, the function "IIwritedb()" is a
function call that we used most frequently in each MDBMS's operation when accessing the
INGRES system. It provides an actual parameter of string type inside the parenthesis. The
detailed implementation work of this kind of construction can be found from the procedures
such as "ql_create_table()" and "ql_create_media_table()" in Appendix F.

From section IV.A.l.c, the interface presentation of the execution phase for table
creation, we can see that the INGRES function calls are invoked in between each two
consecutive capitalized messages. To explain the rules of invoking these INGRES
functions, we will give an example of the SQL commands to create the user defined relation
PERSON.

The definition and use of the different INGRES internal functions are not givcr;

anywhere. To learn the usage of these functions, we need to experiment and learn how

76

INGRES and it's precompiler work. We did this by writing different SQL statements for
various kind of operations and by reading the code generated by the precompiler to detect
the different actions INGRES responds to the different SQL operations. Through this trial-
and-error method, we learned how to use the INGRES internal functions for our purpose.
For example, to learn how to construct the SQL creation commands we wri.e a sampiz
embedded SQL code in an ".sc" file, named "test.sc". The embedded SQL code is shown
as follows:

EXEC SQL
CREATE TABLE person (name c20, age integer, salary float,
photo integer, voice integer);

To compile this sample "test.sc" file, we can just type "esqlc test.sc” at the prompt of
UNIX operation system. After going through the INGRES precompiler, the ".c" source
file will be generated automatically in "test.c” file. The precompiled source code is shown

as follows:

1IsqInit (&sqlca);
IIwritedb ("create person(name=c20,age=i4,salary=f4,photo=i4,voice=i4");
IIsqSync (0,&sqlca);

As we can see from this example, three functions are used to construct the execution
SQL command (i.e., "IsqInit()", "Owritedb()" and "IIsqSync()"). The "IIsqInit(&sqlca)"
and "IIsqSync(0,&sqlca)" are the commands used to tell INGRES about this creation
communication area enclosed here. The function "Hwritedb()" is the one that is used to
pass the user specified information like relation name, attribute names, data types, etc. to
INGRES. In the above example, the code generated by the INGRES precompiler is for the
relation PERSON. Obviously the generated code for a different relation would be
different. We need to have a way to use this function to work for any arbitrary relation

defined by the user. We have to let the relation name, attribute names and data type of

77

attributes to be able to be used as program variables. We >an decompose the function
"IIwritedb()" according to our MDBMS design. The equivalent internal code for this

creation is shown as follows:

IIsqInit (&sglca);

[Iwritedb ("create ");

[Iwritedb (table_array[table_list[table_cursor]].table_name); <-person
IIwritedb ("(");

IIwritedb (att_array[entry].att_name); <-name
Iwritedb ("=");

IIwritedb (att_arrav/entry].data_type . <-c2
IIwritedb (",");

IIwritedb (att_array[entry].att_name); <-age
Mwritedb ("=");

Nwritedb ("i4,"); <-integer
IIwritedb (att_array[entry].att_name); <-salary
Hwritedb ("=");

IIwritedb ("f4,"); <-float
IIwritedb (att_array[entry].att_name); <-photo
Iwritedb ("=");

[Iwritedb ("i4,"); <-integer
IIwritedb (a.._array[entry].att_name); <-voite
Hwritedb ("=");

Owritedb ("i4"); <-integer
Iwritedb (")");

[IsqSync (0,&sqlca);

As you can see by now, we can modified the structure of the precompiled code to set

up loops as needed to communicate with INGRES. The result thus appears as follows:

printf("\nCREATEING STD TABLE NOW. PLEASE WAIT!\n");

MsqInit(&sqica);
[Iwritedb("create ");

[Iwritedb (table_array(table_list[table_cursor]].tablc_niame);

[Iwritedb ("(");
for (i = 1; 1 < count; i++);
{
Owritedb (att_array[entry].att_name);
[Twritedb ("=");
strcpy(data_type, att_array[entry].data_type);
if ((strcmp(data_type, "image") == 0) I
(strcmp(data_type, "sound”) ==0) Il
(strcmp(data_type, "integer") == 0))
[Iwritedb ("i4,");
else
if (stremp(data_type, "float") == 0)
Hwritedb (“f4,");
else
{
[Iwritedb (att_array[entry].data_type);
IIwritedb (",");
)
entry = att_array[entry].next_index;
}
[Iwritedb (att_array[entry].att_name);
Owritedb ("=");
strcpy(data_type, att_array[entry].data_type);
if ((strcmp(data_type, "image") == 0) Il
(strcmp(data_type, "sound") == 0) Il
(strcmp(data_type, "integer”) == 0))
Owriteddb ("i4)");
else
if (strcmp(data_type, "float") == 0)
[writedb ("f4)");
else
{
Owriredb (att_array[entry].data_type);
Owritedb ("M)™);

79

}
IIsqSync (0,&sqlca);
if (sqlca.sqlcode != 0)

.........

printf("\nCREATE A STD TABLE COMPLETE!\n"),

The data type of an attribute is defined by passing a different code after the "=" sign.
Thus, "c20" is for the data type of character 20; "i4" is for the data type of integer; and "f4"
is for the data type of float. There are two more types that can happe . in the creation of a
media relation, that is, "c64" for the data type of character 64 and "text(500)" for the data
type of vary character 500. The detailed implementation can be found from the procedures
"ql_create_table()" and "ql_create_media_table()" in Appendix F.

From this example we can see that all the table names, attribute names, and data types
of the attributes can now be declared in the C program as program variables. This low
level implementation is necessary to develop the MDBMS prototype interface in an
interactive mode. It allows the user to create any relation with any kind of structures with
respect to the application requirements. Another similar example will be given in Appendix
D for data insertion. To have better idea about the construction to build .. .imilar interface
for other operations, it is necessary to write a sample embedded SQL codes in a ".sc" file
and compile it by using the precompiler (i.e., type "esqlc sample.sc"). The low level

INGRES function code will then be presented in the ".c" file.

80

APPENDIX C

THE MODIFICATION INTERFACE FOR DATA INSERTION
Appendix C will use the same example we discussed before to illustrate the capabilities
of modification in data insertion. Recall from the section IV.A.2.b that the modification
interface will be invoked if the user needs to modify some values before actual insertion.
The following interface presentation will show the performance of this modification. We
will use an example which has different data entered initially from the example we used
before. We will modify them to become exactly the same as the original. Suppose that the

current tuple has information as shown in the following:

Table Namne :: person
Order Atribute Name Data Type Value
1 name c20 'mary pas'
2 age integer 31
3 salary float 2500.0000
4 photo image HAS VALUE
5 voice sound HAS VALUE
Media Data
Att Name :: photo
Data Type :: image
File Name :: /nfvirgo/work/mdbms/mdbms/90111.34511
Description :
<<
blue eyes '
blond hair
>>
Att Name :: voice
Data Type :: sound
File Name :: 9023151 1.snd

Description
<<
sweet voice
>>

Any change before insert? (y/n)
The input phase has just been completed at this point. The system will display the
current information to let the user confirm whether he needs to change any value before
insertion. Now suppose thai the user wants to change 'mary pas' to ‘Mary Pas’ and he
also has found out that the value "2500" of attribute "salary” was mistyped. Moreover, he)
wants to add one more phrase in the description like "smiling face" to describe the "photo".
Thus, the user entered "y" followed by a <cr> to respond to the message shown above.

The modification phase now will become as shown in the following:

Table Name :: person
Order Attribute Name
1 name
2 age
3 salary
4 photo
5 voice

Data Type

c20
integer
float
image
sound

<cr>

Value

'mary pas’
31
2500.0000
HAS VALUE
HAS VALUE

Select the order which you want . -hange its value::

Any other key to cancel the operat 1! Select: 1

Table Name :: person

Att Name :: name

Data Type :1¢20 !
Value :: 'mary pas’

Please Enter <<c20>> Value (? if unknown):: Mary Pas)
Table Name :: person

Att Name :: name

Data Type ::c20

Value :: 'Mary Pas’

82

Any more change? (y/n):: y <>

Table Name :: person
Order Attribute Name Data Type Value
1 name c20 'Mary Pas'
2 age integer 31
3 salary float 2500.0000
4 photo image HAS VALUE
5 voice sound HAS VALUE

Select the order which you want to change its value::

Any other key to cancel the operaton!! Select: 3
Table Name :: person

Att Name :: salary

Data Type :: float

Value :: 2500.0000

Please Enter <<float>> Value (? if unknown):: 3500 <>
Table Name :: person

Att Name :: salary

Data Type :: float

Value :: 3500.0000

Any more change? (y/n):: y <r>

Table Name :: person

Order Attribute Name Data Type Value
1 name c20 '‘Mary Pas’
2 age integer 31
3 salary float 3500.0000
4 photo image HAS VALUE
5 voice , sound HAS VALUE
Select the order which you want to change its value::
Any other key to cancel the operation!! Select:: 4
Table Name :: person
Att Name :: photo
Data Type :: image

83

Value .

File Name :: /n/virgo/work/mdbms/mdbms/90111.34511
Description

<<

blue eyes

blond hair

>>

Change IMAGE file name? (y/n): n <r>

Change IMAGE description? (y/n):: y <a>

Please enter description:
NOTE: One phrase per line. End with an empty line::

blue eyes <«r>
blond hair <«r>
smiling face <>
<a>

Table Name :: person

Att Name :: photo

Data Type :imege

Value :

File Name :: /n/virgo/work/mdbms/mdbms/90111.34511
Description :

<<

blue eyes

blond hair

smiling face

>>

Any more change? (y/n):: n <«r>

Table Name :: person

Order Attribute Name Data Type Value
1 name c20 'Mary Pas'
2 age - integer 31

84

3 salary float 3500.0000
4 photo image HAS VALUE
5 voice sound HAS VALUE
Media Data
Att Name :: photo
Data Type :: image
File Name :: /n/virgo/work/mdbms/mdbms/90111.34511
Description :
<<
blue eyes
blond hair
smiling face
>>
Att Name 1 voice
Data Type :: sound
File Name :: 9023151 1.snd
Description
<<
sweet voice
>>
Any change before insert? (y/n) n <«r>

The operation of data insertion will now go to the execution phase to insert the taple in
the INGRES DBMS. The user can return to the modification phase again if the he enters
"y" followed by a <cr> instead.

This example has exercised some modifications of changing different values in
different data types. The modification for other data types are implemented in similar
manner. The purpose here i# just to outline the capabilities of the modification operation in

our MDBMS prototype.

85

APPENDIX D

SQL COMMANDS FOR DATA INSERTION

As we have mentioned earlier in section IV.A.2.c and Appendix B, the INGRES
system we chose does not provide high level function or subroutine calls that allow us to
implement an interactive interface to insert a tuple of data by using predefined embedded
SQL codes in the host C program. We have solved this problem by using 1ae low level
INGRES function calls. We use the precompiler to :ompile a sample embedded SQL
source code to figure out the general rules for data insertion. In this appendix we will also
discuss the implementation of this kind of constructions to achieve the goal.

As mentioned before, run-time parameters for SQL cannot be passed to the system in
the INGRES environment. Again, we have solved this problem the same way as in table
creation. However. the program variables in table creation are all string type. Here these
variables can be different types and it becomes more complicated to know what must be
passed to the INGRES functions to get the correct result. It becomes clear if we illustrate
them by using the same example as before. One more INGRES function call is required to
pass the data values. It is always accompanied with another INGRES function call (i.e.,
"IIwriredb()") when passing the value of a attribute. The function "lIwritedb()" has been
discussed before in Appendix B. The detailed implementation of this kind of construction
can be found from the procedures such as "ql_insert_tuple()” and "ql_insert_media_
tuple()" in Appendix F.

From section IV.A.2.c, the interface presentation of the execution phase for data
insertion, we can see that the INGRES function calls are invoked in between each two

consecutive capitalized messages. To explair the general rules of using these INGRES

86

functions we will give an example of SQL commands to insert a tuple of data into the user
defined relation PERSON. Again as said in Appendix B, experiments had to be
constructed to learn how to use the internal functions in INGRES. First of all, we write a
"test.sc” embedded source code for insertion as follows:

EXEC SQL
INSERT INTO person(name,age,salary,photo,voice)
VALUES (‘Mary Pas’,31,3500.0000,3,3);

To compile this sample "test.sc" file, we can just type "esqlc test.sc" at the prompt of
UNIX operation system as we mentioned before in Appendix B. After going through the
INGRES precompiler, the ".c" source file will be generated automatically in "test.c” file.
The precompiled source code is shown as follows:

[IsqInit (&sqlca);

IIwritedb ("append to person(name=");

IIsetdom (1,32,0,"Mary Pas");

Hwritedb (",age=");

IIsetdom (1,30,4,31);

[Iwritedb (",salary=");

Isetdom (1,31,4,3500.0000);

IIwritedb (",photo=");

[Isetdom (1,30,4,3);

Hwritedb (",voice=");

[Isetdom (1,30,4,3);

[Iwritedb (")");

IIsqSync (3,&sqlca);

As we can see from this example, four functions are used to construct the execution

SQL command (i.e., "IIsqlnit()", "IIwritedb()", "IIsetdom()" and "IIsqSync()").
"[IsqInit(&sqlca)" and "IIsqSync(3,&sqlca)" are the commands used to tell INGRES about

this insertion communication area enclosed here. The functions "IIwritedb()" and

"lIsetdom()" are used to pass the user specified information like relation name, attribute

87

names, data values, etc. to INGRES. In the above example, the code generated by the
INGRES precompiler is for the relation PERSON. Obviously the generated code for a
different relation would be different. We need to have a way to use this function to work
for any arbitrary relation defined by the user. We have to let the relation name, attribute
names and data value of atributes to be able to be used as program variables. We can
decompose the function "Iwritedb()" and "IIsetdom()" according to our MDBMS design.

The equivalent internal code for this insertion is shown as follows:

IIsqlnit (&sqlca);

[Iwritedb (“append to ");

IIwritedb (table_array[table_list[table_cursor]].table_name); <-person
IIwritedb ("(");

IIwritedb (att_array[entry].att_name); <-name
[writedb ("=");

I[Isetdom (1,32,0, c_valuefatt_array[entry].value_entry]); <-Mary Pas
Iwritedb (",");

Iwritedb (att_array[entry].att_name); <-age
Hwritedb ("=");

IIsetdom (1,30,4, &i_value[att_array[entry].value_entry]); <-31
ITwritedb (att_array[entry].att_name); <-salary
[Iwritedb ("=");

[Isetdom (1,31,4, &f_value(att_array[entry].value_entry]); <-3500.0000
[Iwritedb (att_array[entry].att_name), <-photo

IIwritedb ("=");
lsetdom (1,30,4, &img_record[att_array[entry].value_entry].i_id); <-3

[Twritedb (att_array[entry].att_name); <-voice
IIwritedb ("=");

IIsetdom (1,30,4, &snd_record[att_array[entry].value_entry].s_id); <-3
Iwritedb (")");

IIsqSyac (3,&sqlca);

88

As you can see by now, we can modified the structure of the precompiled code to set
up loops as needed to communicate with INGRES. . " e result thus appears as follows:

printf(\nINSERTING STD TUPLE NOW. PLEASE WAIT!'\n");
IIsqInit(&sqlca);
IIwritedb("append to ");
[Iwritedb (table_array[table_list[table_cursor]].table_name);
[Iwritedb ("(");
for (1 = 1; i < count; i++);
{
[Twritedb (att_array([entry].att_name);
Owritedb ("=");
strepy(data_type, att_aITay{eutryj.data_type);
if (strcmp(data_type, "c20") == 0)
Osetdom (1,32,0, c_value[att_array[entry].value_entry});
else
if (strcmp(data_type, "integer") == 0)
Osetdom (1,30,4, &i_value[att_array{entry].value_entry]);
else
if (strcmp(data_type, "float”) == 0)
Isetdom (1,31,4, &f_value[att_array[entry].value_entry]);
else
if (strcmp(data_type, "image") == 0)
IIsetdom (1,30,4, &img_record[att_array[entry].value_entry].i_id);
else
IIsetdom (1,30,4, &snd_record[att_array[entry].value_entry].s_id);
Owritedb (",");
entry = att_array[entry].next_index;
} ;
[Iwritedb (att_array[entry].att_name);
Mwritedb (“=");
strcpy(data_type, att_array[entry].data_type);
if (strcmp(data_type, "c20") == 0)
[Isetdom (1,32,0, c_valuefatt_array[entry].value_entry]);

89

else
if (strcmp(data_type, "integer”) == 0)
[Osetdom (1,30,4, &i_value[att_array[entry].value_entry]);
else
if (srcmp(data_type, "float") == 0)
[Osetdom (1,31,4, &f_value[att_array[entry].value_entry]);
else
if (strcmp(data_type, "image") == 0)
IIsetdom (1,30,4, &img_record[au_array[entry].value_entry).i_id);
else
IIsetdom (1,30,4, &snd_record[att_array[entry].value_entry].s_id);
IIwritedd (")");
prindf(\nINSERT A ST TUPLE COMPLETE!\n");

As we can see from this example, two functions (i.e.,"IIwritedb ()" and “J"setdom()")
are needed to construct the control loop to insert a tuple into the user-defined relation
PERSON. The data value of an attribute is defined by passing some different code in the
function "IIsetdom()" after the "=" sign. Thus, "IIsetdom (1,32,0, ...)" is used for
passing a value of string type; "lIsetdom (1,30,4, &...)" is used for passing an integer
value; and "IIsetdom (1,31,4, &...) is used for passing a float value. The detailed
implementation can be found from the procedures "ql_insert_tuple()" and "ql_insert_
media_tuple()" in Appendix F.

From this example we can see that all the table name, attribute names, and data value
of each attribute can now be declared in the C programs as program variables . This low
level implementation is necessary to develop the MDBMS prototype interface in an
interactive mode. It allows the user to insert tuple of data into a relation which has been
created from the operation of table creation. Again, in order to have better idea about the

construction to build a similar interface for other operations, it is necessary to write sample

embedded SQL code in a ".sc” file and compile it by using the precompiler (i.e., type

90

"esqlc sample.sc”). The low level INGRES function code will then be presented in the

".c" file.

91

APPENDIX E

PROGRAM STRUCTURE OF THE MDBMS

The MDBMS program is implemented by using the programing language C. The
program is separated into five submodules as follows:

1. The create table module.

2. The insertion module.

3. The query module.

4. The deletion module.

5. The update module.

In this appendix, we will describe the program structures with respect to the first two
modules, table creaton and data insertion. We will also provide a discussion of the catalog
management component in our prototype at the beginning of this section. The query
module has been outlined in [PO90,pp41-42]. The other two modules, deletion and
update, are in progress [PB91, ST91, AY91].

1. Catalog Management

In accordance with the catalog management design, two procedures used to
implement this function are as follows:

1.1 load_data(): This procedure is engaged after access}ing INGRES in the main
procedure "main()". The major function of this procedure is to read catalog information
from three catalog riles stored in the working directory.

1.2 store_data(): This procedure is invoked every time when the catalog information

in the system tables has been updated. The procedure further performs the writing

92

processes from the system tables in main memory to those three catalog files in external
storage devices.
2. Table Creation Module
This module is invoked when the user selects "1" from the main menu to create a
table. Three phases are included in this implementation. To make clear the process flow,
we will separate each phase and start from the first procedure to the last. The process flow
will be introduced based on the previous examples to illustrate the program structures.
However, several subprocedures may be called from different phases depending on the
actual operation.
a. Input Phase
The main procedure "create_table()" for table creation is invoked at the
beginning of this phase; others are invoked by different procedures at the appropriate time.
The procedures are listed as follows:

a.l create_table(): This is the main procedure of the table creation module and is also
employed inside the "main()" of the MDBMS program. It manages two input functions
and several checking functions. The table name is read direcily from standard I/O and the
others are listed as follows:

a.1.1 check_last_char(): This procedure checks the last character of a table name. It
returns TRUE if a numeric character is found at the end of the table name.

a.1.2 check_table_name(): The procedure checks for the duplication of the user
defined relation names. It returns TRUE if duplication has occurred.

a.1.3 get_att_name(): Ti'xis procedure reads the attribute names entered from the user.
Several subprocedures are employed here and listed as follows:

a.1.3.1 check_att_name(): This procedure checks the first 9 characters of an attribute

name. Itreturns TRUE if a duplication within that same relation is found.

93

a.1.3.2 select_data_type(): {'his procedure provides a selection menu to choose one
of five pre-defined data types for each attribute during insertion.

a.2 display_info(): The phase ransition from input to modification and from input to
execution are achieved by this procedure depending on the user's response. One
subprocedure is employed here as follows:

a.2.1 print_table(): This procedure displays the current table ctructures that the user
has entered during the input phase.

b. Modification Phase
The main procedure for the modification phase is "mod _table()". This
phase is operated one level lower than both input and execution phases. Several
subprocedures are employed there. The program structure for modification is listed as
follows:

b.1 modify_table(): This is the first procedure invoked when modification is to be
done. Itin turn calls six subprocedures, each one representing a different operation that
has been discussed in the modification menu (Figure 23). However, the modification
menu is provided by another subprocedure which is also called from here. They are listed
as follows:

b.1.1 modify_choice(): This is the procedure to print out the modification menu.
The user's choice will be returned from here.

b.1.2 change_table_name(): This procedure updates the current relation's name.
The function "check_table_name()" discussed in 2.a.1.2 will be invoked after the user
inputs the new table name.

b.1.3 change_att_name(): This procedure updates the current attribute's name. The
function "check_att_name()" in 2.a.1.3.1 will be invoked after the user inputs the new

attribute name.

94

b.1.4 change_data_type(): This procedure updates the data type of an attribute. The
subprocedure "select_data_type" in 2.a.1.3.2 is called from here too.

b.1.5 inseri_att(): This procedure inserts a new attribute into the current relation
before actual creation. A subprocedure "get_att_name()" in 2.a.1.3 is called from here. An
rearrangement of the linked list in the system tables will also be completed before returning
to the caller.

b.1.6 delete_att(): This procedure deletes an attribute and rearranges the linked list in
the system tables.

b.1.7 print_table(): The procedure will display the current information as shown in
2.a.2.1.

c¢. Execution Phase
The execution phase is engaged after the procedure "display_info()" as
shown in 2.a.2 from the input phase is invoked. All the SQL statements and the SQL
commands for table creation are composed in this phase. The program structures are listed
as follows:

c.1 ql_create_table(): This procedure generates the user's SQL statements for table
creation from a user-defined relation. It includes the construction of SQL commands to
create the user-defined relation. One subprocedure is employed here as follows:

c.1.1 ql_create_media_table(): This procedure generates the user's SQL statements
for table creation of the media relations. The SQL commands to create the media relations
are also constructed here. One subprocedure which is employed before accessing INGRES
is: |

c.1.1.1 get_media_name(): This procedure is used to generate the unique media

relation's name. It can also be used to decode the media relation name for other MDBMS

95

operations. Actually, this procedure returns the media relation name by checking through
the media attribute’s name and table_key (i.2., the internal relation's identifier).

c.2 store_data(): See 1.1.2.

Once the execution phase is completed, the system will update the catalog
files reflecting the changes in the system tables. Thus, the procedure "store_data()" is
invoked at this point. Now the operation of table creation has been completed.

3. Data Insertion Module
Data insertion is invoked when the users s "2" from the main menu to insert a
tuple. The implementationis a . divided into thre. phases as in table creation. We will
describe the program structure of this module in the same manner to outline the process
flow of this operation.
a. Input Phase

The main procedure "insert_tuple()" for data insertion is called at the
beginning of this phase; others are invoked at different stages of the insertion process. The
procedures are listed as follows:

a.l insert_tuple(): This is main procedure of the insertion module and is employed
inside the procedure "main()" of the MDBMS program. It manages several input functions
and several checking functions. The table name is read directly from standard I/O and the
others are listed as follows:

a.1.1 print_all_table(): This procedure will display all the user-defined relations. It
is invoked after the user entered "?" when he needs to view the catalog information. It
prints out 15 iables on the scfecn one at a time.

a.1.2 check_table_name(): This is the same procedure as in 2.a.1.2. However, the
purpose here is to return an index entry if the table name entered already exists in the

database. It returns FALSE if the relation is not found.

96

a.1.3 get_tuple_value(): This procedure is used to determine which kind of
procedure should be invoked according to the attribute's data type. It is constructed by a
loop structure that starts with the first attribute of that relation until the last atmbute is
reached. Two subprocedures are employed here. They are listed as follows:

a.1.3.1 get_std_value(): This procedure checks the data type again and displays the
current information of that formatted attribute to the user. It will also determine which kind
of procedure should be invoked to read the input value. Three subprocedures are employed
here corresponding to the formatted data types. They are listed as follows:

a.1.3.1.1 get_int_value(): This procedure reads the input value of the integer data
type. The value will be assigned into the next available space in the value array “I_Value".

a.1.3.1.2 get_float_value(): This procedure reads the input value of the float data
type. The value will be assigned into the next available space in the value array "F_Value™.

a.1.3.1.3 get_c20_value(): This procedure reads the input value of the string data
type with 20 characters length. The value will be assigned into the next available space in
the value array "C_Value".

a.1.3.2 get_media_value(): This procedure checks the data type again and displays
the current information of that media attribute to the user. It will also determine which kind
of procedure should be invoked to read the input value. Two subprocedures corresponding
to the media data types are employed here. Another st Yprocedure used to get the input for
the description data is also employed here. They are listed as follows:

a.1.3.2.1 get_image_value(): This procedure governs the input value of image data
type. It reads an image file name by a standard I/O function. Several checking processes
are engaged including the "fopen”, "fclose" (i.e., standard I/O functions in C) and the

ISfunction calls. They are listed as follows:

97

a.1.3.2.1.1 pr_load(): One functon in pixrect/pixrect_hs.h library which is developed
by SUN microsystem (Revision A of 9 May 1958). It loads the registration data in pixrect
struct (i.e., *pr) and colormap (i.e., &cm).

a.1.3.2.1.2 ISimage_from_pixrect(): One [Sfunction which is implemented by
Thomas in [TH88.pp29]. This procedure cail will reproduce the image file with a unique
file name.

a.1.3.2.1.3 show_image(): This procedure displays the image by passing the
registration data (i.e., pixrect *pr) and raw data (i.e., colormap * 1) from the caller.
Several functions in suntool/sunview.h and sur.:ool/canvas.h are em. .ed here. It opens
another process in SUN workstation concu .enrly with the MDBMS process to display .ne
image on the screen.

a.1.3.2.2 get_descrp(): This procedure reads the description data. It consists of
several checking processes including the length of each description phrase and the length of
total descriptions. It will return the description data when the inputs are satisfied with the
limitations.

a.1.3.2.3 get_sound_value(): This procedure processes the input value of sound
data type. It reads a sound file na: = by a standard I/O functic Several checking
processes are engaged including the “'fopen", "fclose" (i.e., standar. /O functions in C)
and "snd_load()". They are listed as follows:

a.1.3.2.3.1 snd_ioad(): This procedure is implemented by Atila [AT90]. It reads the
unique file ID and registration data from that text file.

a.1.3.2.3.2 play__snd():‘This procedure controls the playing loop of sound media.

One subprocedure is employed here as follows:

98

a.1.3.2.3.2.1 play_sound(): This procedure is also implemented by Atila [AT90]. It
sends the play sound command from MDBMS in SUN workstation to sound management
in the PC via a local network.

a.1.3.2.4 get_descrp(): This procedure is invoked again for the description data of a
sound object. It has ve:r discussed in 3.a.1.3.2.2.

a.2 display_tuple(): The phase transitions of input-modification and input-execution
are switched by this procedure depending on the user's response. Two subprocedures are
employed here as follows:

a.2.1 print_tuple(): This procedure displays the input information about the current
tuple 1n the user-defined relation. The values are stored in the system tables temporarily.
Some of data values might have been converted or generated by the system itself for the
requirements of the MDBMS protetype.

a.2.2 print_media_tuple(): This procedure displays the input information about the
corresponding tuple in the media relations. The values are limited to two items including
the file ID and the description data.

b. Modification Phase
The main procedure for the modification phase is "modify_tuple()". This
phase is operated one level lower than both input and executior phases in the insertion
module. Several subprocedures are employed here; some of them are declared in the input
phase before. The program structure of this modification is listed as follows:

b.1 modify_tuple(): This procedure is constructed by consecutive if-then-else
statements which include ﬂv'c subprocedures. Each one corresponds to an update function
of a data item depending on its data type. Another subprocedure is also employed here
every time after a data item is modified. A loop is provided to control the modification if

th. user wants to modify again. The subprocedures are listed as follows:

99

b.1.1 get_int_value(): See 3.a.1.3.1.1.

b.1.2 get_float_value(): See 3.a.1.3.1.2.

b.1.3 get_c20_value(): See 3.a.1.3.1.3.

b.1.4 change_img_value(): This procedure employees two subprocedures which are
declared before in the input phase. The data entered will be updated after the oneraticn of
this procedure. Two subprocedures are listed again as follows:

b.1.4.1 get_image_value(): See 3.a.1.3.2.1. It is invoked if the user wants to
change the image file name.

b.1.4.2 get_descrp(): See 3.a.1.3.2.2. It is invoked if the user wants to moc fy the
image description.

b.1.5 change_snd_value(): This procedure also employs two subprocedures which
are declared before in the input phase. The data entered will be updated after the operation
in this procedure. Two subprocedures are listed again as follows:

b.1.5.1 get_sound_value(): See 3.2.1.3.2.3. It is invoked if the user wants to
change the sound file name.

b.1.5.2 get_descrp(): See 3.a.1.3.2.2. It is invoked if the user wants to modify the
sound description.

b.1.6 print_value(): This procedure displays the new value of the modified data item.

¢. Execution Phase
The execution phase is engaged after the procedure "display_tuple()" as
shown in 3.a.2 from the input phase. All the SQL statements for insertion are constructed
in this phase. However, a checking process to invoke the PROLOG system has to be done
first before the insertion in INGRES can be invoked. The program structure is listed as

follows:

100

c.l check_media_dexcrp(): This procedure consists of another subprocedure to
connect the PARSER. It determines if the connection is required or not depending on the
"Act_Media_List" (Figure 12) and also depending on whether the description data is
empty. An error message will be received from the callee. It will also display the error
message and return to the modification phase automatically if an error is detected from the
PROLOG system. The subprocedure is listed as follows:

c.l.1 connect_parser(): This procedure employs an ISfunction call. The required
information to update the facts file is received from the caller “check_media_descrp()” and
passed to Prolog by this procedure. The only facts file in this current prototype is
"imagei_image_facts” which is used to perform contents search. It can be separated into
several facts files depending on the media types existing in the MDBMS to gain better
performance; however, this has not been done at this time. The ISfunction is listed as
follows:

c.1.1.1 ISreplace_description(): This is another ISfunction call implemented by
Thomas. The main procedure can be found in [TH88,pp49). This procedure will generate
new descriptions in facts file if the media object is new, and update the descriptions in facts
file if the media objet is an old one.

c.2 ql_insert_tuple(): This procedure generates the user's SQL statements for data
inseruon in the user-defined relation. It includes the construction of SQL commands to
insert a tuple. One subprocedure is employed here as follows:

c.2.1 ql_insert_media_tuple(): This procedure generates the user's SQL statements
for data insertion in the mcdi'a relations. The SQL commands to create the media relations
are also constructed here. One subprocedure already declared is also employed here before
accessing the INGRES. That is:

c.2.1.1 get_media_name(): See 2.c.1.1.1.

101

c.3 store_data(): see 1.2.
Once the execution phase is completed, the system will update the catalog
files reflecting the changes in the system tables. Thus, the procedure "store_data()" in 1.2

will be invoked again at this point. Then the operation of table creation is completed.

102

APPENDIX F

PROGRAM CODE OF THE MDBMS PROTOTYPE

/***/
/***/

/* Multimedia DBMS */
/* The Catalog Management, Table Creation, Data Insertion and Query Interface */
/* Authors : Su-Cheng Pei in Catalog management, Creation Module and */
[* Insertion Module */
/* : Wuttipong Pongswuan in Query Module */
/* : Yavuz Altia in Sound Module */
/* Date : 19 Sep 1990 */
/* Modify : 11 Nov 1990 */
/* Descnpuon The purpose for this program is to demonstrate the prototype of the */
/* Multimedia Database Management System */

/**t*#***#***t*****&#*/
/***l

#include <stdio.h>
#include <string.h>
#include <pixrect/pixrect_hs.h>
#include <sys/wait.h>
#include <suntool/sunview.h>
#include <suntool/canvas.h>
/* For sound module had to include the socket file*/
include <sys/types.h> /* Sound module */
include <sys/socket.h> /* Sound module */
include <netinet/in.h> /* Sound module */
include <netdb.h> /* Sound module */
include "snd_errs.c”
/* To connect to the INGRES DBMS we have to set commmunication area */
include "/ingres/files/eqsqlca.h”
static ISQLCA sglca = {0}; /* SQL Communications Area */
#define NOT_FOUND 100 /* Not found for the search */
#define FILENAMELEN 64 /* Max for filename is 64 */

#define DESCRLEN 500 /* Define the description data to 500 char */

#define ERRMLEN 70

#define DESCR_WORD_ERR -30000 /* The parser check for error code */
#define DESCR_STRUCTURE_ERR -30001 /* The parser check for error code */
#define QUERY_WORD_ERR -30002 /* The parser check for error code */

#define QUERY_STRUCTURE_ERR -30003 /* The parser check for error code */
#define DESCR_TOO_LONG_ERR -30004 /* The parser check for error code */
#define PROGRAM_ERR 400 /* The parser check for error code */
#define NAME_LENGTH 13

#define ERROR_FREE 0

#define SOUND_ERROR -1

103

#define TRUE 1 /* Defined for create & insert operaton */
#define FALSE O /* Defined for create & insert operation */
#define MAX_TABLE 20 /* Defined fcr create & insert operation */
#define MAX_ATT 200 /* Defined for create & insert operation */
#define MAX_PATH 64 /* Defined for create & insert operation */
#define MAX_PHRASE 127 /* Defined for create & insert operation */
#define MAX_DESCRP 500 /* Defined for create & insert operation */
#define NOT_FOUND 100 /* Defined for create & insert operation */

/* Structure for the sound header file used to get the registration datum */
/* when insert a sound media into database */
typedef struct SND_HDR {

char sfname[13];

int s_size;

int s_samplrate;

int s_encoding;

float s_duration;

int s_resolution;

struct SND_HDR s_hdr;

char pe[7]; /* For remote PC host name */

charc; /* For cartrige return only */

char temp_media_name[3]; /* For temporary media table */
typedef char STR_name([13]; /* For both table name and att name */
typedef char STR _value[21]; /* For all vales of data type c20 */

typedef char STR_path(MAX_PATH+1]; /* The f_id of mediarecords */
typedef char STR_descrpfMAX_DESCRP+1];/* The description of media record */

/* Structure for the table catalog, used to get information from text file*/
/* "dbtable" which hold the standard relations in MDBMS */
typedef struct table {

STR_name table_name;

int table_key;

int att_count;

int att_entry;

K

struct table table_array[MAX_TABLE]; /* Relation table in database */
int table_index; /* Next available index of table_array */
int table_listtMAX_TABLE]; /* Integer array hold the index of table_array */
int table_count =0, /* # of index (relation) in table_list */

table_cursor= 0, /* Current index of table_list */

table_entry = 0; ' /* Current index of table_list which get */

/* by the function check_table_name()!! */

/* Structure for the artribute catalog, used to get information fromtext ¥/
/* file "dbatt”" which hold all attributes exist in MDBMS and grouped */
/* together associate to each relation from 1st att to last att */

typedef struct att {

STR_name att_name;
STR_name data_type;

104

int media_id;

/* Next available ID */

int next_index;
int value_entry;

struct att att_arrayfMAX_ATT];

int att_index =0,
att_cursor =0,
att_count = 0;
STR_name data_type;
char table_name[40];
char att_name[40];

int act_media_list[10];
int act_media_count;
STR_name media_name;

int table_key;

int img_value[20],snd_value[20],i_value[20];

float f_value[20];
STR_value c_value[20];
int img_index =0,
snd_index =0,
i_index =0,
f_index =0,
c_index =0;

/* All the att_name in database */

/* Next available index of att_array */

/* Current index of att_array */

/* # of attribute entered during creation */

/* Global string variable */
/* Global string variable for temterary read in */
/* Global string variable for temterary read in */
/* Declare more to avoid bus error */
/* Active index of media att_name in operation */
/* # of index in act_media_list */
/* Global string variable used to generate */
/* the unique media table name in database */
/* Append key for the media attribute name in that table */
/* Data value arrays */
/* Data value arrays */
/* Data value arrays */
/* Indices of data value arrays */
/* Indices of data value arrays */
/* Indices of data value arrays */
/* Indices of data value arrays */
/* Indices of data value arrays */

/* Structure to hold whole tuple values in image media relation */

typedef struct img |

inti_id;

STR_path f_id;
STR_descrp descrp;
int height;

int width;

};

struct img img_record[20];

int depth;

/* Values of image media relation */

/* Structure to hold whole tuple values in sound media relation */

typedef struct snd {

int s_id;
STR_path f_id;
STR _descrp descrp;

int size;

int samp_rate;
int encoding;
float duration;
int resolution;

)
struct snd snd_record[20];
STR_descrp descrp;

FILE *img_file, *snd_file;

/* Values of sound media relation */
/* Global for insert tuple operation */
/* Global for insert tuple operation */

105

typedef struct group { /* begin and end group for condition */

int begingroup;
int endgroup;

char join_condition{100];
typedef struct select_att { /* selection attribute */

STR_name t_name;

STR_name a_name;

STR_name data_type;

int media_type,

)
int look_more=0; /* use for loop the cursor */
typedef struct select_tab {

STR_name t_name;

int tab_index;

}s
struct select_att satt[10];
struct select_tab stab{10];
struct group group_count[10);
int o,p,k,numcon,numgroup,icond;

STR_name tab[10];

char *all_condition;

char condition[100};

/* Selection attribute */

/* Condition attribute */

STR_name at{10];

/* Each group of attribute */

int att_group{10];

/* Condition type of each attribute O for formatted 1 for image 2 for sound*/
int contype[10];

/* Media attribute for description */

STR_name media_att{10];

int number_media;

/* Condition for each attribute */

char con[10][100];

/* Atribute type for each select */

STR_name atttype[10];

int cond,gcond,i_cond[10],m=0,x=0,y=0,n=0,0=0;
char buff{100],a,yes_no_answer();

/**t#**#*#**tﬁ******‘***t**##**#**#********#**********#**#**************/

/* Get yes or no answer frora user */
/*#***#*‘**##ﬁt#‘**t#******&##***#t**##******t********#**************#**/

char yes_no_answer()

{
char answer ='?7";
answer = getchar();
while (!(answer ==y’ |l answer == 'n"))

printf("\nPlease answer y for yes or n for no::");

106

answer = getchar();
while ((c =getchar()) !="\n")

getchar(); /* To let the next gets() works properly and nothing else */
return (answer);
} /* End of yes_no_answer() */

/***t*****/

/* To clear screen */
/***/
void clr_scr()
{

putchar(\033');

putchar('[");

putchar('H");

putchar(\033");

putchar('[");

putchar(']");
} /* End of clr_scr() */

/***/

/* Assign -1 to next_index in the last att_name to indicate the end of list */
/**#/

void assign_end_mark()

inti=0,
last_index = 0;
for (i = 0; i < table_count; i++)

last_index += table_array(i].att_count;
att_array[last_index-1].next_index = -1; /* assign end mark here */
} /* End of for loop */
} /* End of assign_end_mark() */

/****#**t*******#****#**###*********#*******#***************************/

/* Get the PC host name to remote access to sound database */
/*********************#*******#***/

\{/oid get_pcname()

char code='"";
Evhilc ((code == '1' Il code == 2"))

Y 4

plrli';:fc(l:'(\)n*""“"**""‘WELCOME TO MDBMS *#******t*\n\n");
printf("Please Select Remote PC Code:\n");

printf("\t1.Prof. Lum's office.\n");

printf("\\2.MDBMS Lab Room 311b.\n\n");

printf("Please Select '1' or 2/, Thank You! ::");
}codc = getchar();

107

getchar(); /* To let the next gets() works properly and nothing else */
if (code =="'1")
strepy(pc,”pcluml™);
else
strepy(pe,"pelum2™);
} /* End of get_pcname() */

et sk kel R R o R s R R R K ko SRR R R ko ok kR R o ko

/* Send command from SUN to PC to play the SOUND media file */
/********t***#**/
play_sound(pcname,filename)

char *pcname;

char *filename,

{
short port=2000; /* Virtual port number between SUN & PC */

int sock;

str:t sockaddr_in server;

su -t hostent *hp, *gethostbyname();

char buf[1024];

/* Create socket */

sock = socket(AF_INET, SOCK_STREAM, 0);

if (sock < 0) {
perror("‘opening stream socket");
return;

/* Connect socket using name specified by command line. */
server.sin_family = AF_INET;
hp = gethostbyname(pcname);
if (hp==0) {
fprintf(stderr, "%s: unknown host\n", pcname);
return;

}
bcopy((char *)hp->h_addr, (char *)&server.sin_addr, hp->h_length);
server.sin_port = htons(port);
if (connect(sock,
(struct sockaddr *)&server, sizeof server) < 0) {
perror("connecting stream socket");
return;

}

if (write(sock,filename,12) <0) /*gets the filename for playing*/
perror("Writing on stream socket");

close(sock);

return;

}

/*#****“t.*t*tt‘**t##t#**********#t*#*&****##****#**#t#*****t******#*#*/

/* Get the header information from the sound text file which is already */
/* sent from PC to SUN */

/***##*#t*t**&##t#******#************#****#**#*********#*&*********v*t**/

snd_load(filename)
char *filename; '/* Given input text file */

108

{
FILE *f;
if ((f = fopen(filename,"r")) == NULL) /* open for reading */

displayerr(ROPEN);
return SOUND_ERROR;

}

[* ***%* read the header from the predesignated input file */
fscanf(f,"%s",s_hdr.sfname);
fscanf(f,"%d",&s_hdr.s_size);
fscanf(f,"%d",&s_hdr.s_samplrate);
fscanf(f,"%d",&s_hdr.s_encoding);
fscanf(f,"%f",&s_hdr.s_duration);
fscanf(f,"%d",&s_hdr.s_resolution);
fclose(f);

return;

}

/***/

/* Load catalog datum from 3 files: "dbtable", "dbatt’ and "dbkey" */

/**t********t**t***#*#*##*/

void load_data()

FILE *f, *g, *h;
STR_name dummy;
int entry=0,
i=0;

f = fopen("dbtable","r"); /* Read the table for catalog into memory */
if(!feof(f))

fscanf(f,"%s\n" ,dummy); /* Skip the first dummy line in file */
w{hile ('feof(f))

fscanf(f,"%s%d%d\n", table_array[table_index].table_name,
&table_array[table_index].table_key,
&table_array[table_index].att_count);

table_array[table_index].att_entry = entry;

entry += table_array[table_index].att_count;

table_index ++;

}
fclose(f); /* close the input file */
table_count = table_index;
if (table_count !=0) /* i.e. database is NOT empty */
for (i = 0; i < table_count; i++)
table_list{i] = i;
g = fopen("dbatt","r"); /* Read the attribute file to catalog in memory */
if(!feof(g))
fscanf(g,"%s\n",dummy); /* Skip the first dummy line in file */
\(vhilc (!feof(g))

fscanf(g,"%s%s%d\n" att_array[att_index).att_name,

109

att_array[att_index).data_type,

&att_arrayfatt_index].media_id);
att_array[att_index).next_index = att_index+1;
att_index++;

fclose(g); /* close the attribute file */
assign_end_mark();
h = fopen("dbkey","r");
if(!feof(h))

fscanf(h,”%s\n",dummy); /* Skip the first dummy line in file */
while (!feof(h))

fscanf(h,"%d\n", &table_key); /* Next available table key append to */
fclose(h); /* the end of media att_name is unique */

else

{

printf("\nEMPTY DATAE Z!"\n\nHit return to continue\n");
putchar(\007");

table_key = 1;
while((c = getchar()) != \n')

; /™ Not return do nothing */

} /* End of if */

} /* End of load_data() */

/********************************#********************************#*****/

/* Save catalog datum back to 3 files same as above */
/**t#***#t*tt********#*********************#*******#********************/

void store_data()

FILE *f, *g, *h;
STR_name dummy;

inti=0,
=0,
count =0,
entry =0;

strepy(dummy, "***dummy***"'),
if (table_count > 0)

f = fopen("dbtable”,"w");

fprintf(f,"%s\n", dummy);

for (i = 0; i < table_count; i++)

fprintd(f," %os\t%d\t%d\n", table_array[table_list{i]].table_name,

table_array{table_list{i]].table_key,
table_arrayftable_list[i]].att_count);

fclose(f);

g - fOpcn("dbatt","W");

fprintf(g,"%s\n", dummy);

for (i = 0; i < table_count; i++)

count = table_array[table_list[i]].att_count;
entry = table_array(table_list[i]].att_entry;

110

for (j = 0; j < count; j++)

fprintf(g," %s\t%s\t%d\n", att_array[entry].att_name,
att_array[entry].data_type,
att_array[entry].media_id);
entry = att_array[entry].next_index;
} /* End of for loop j */
} /* End of for loop i */
fclose(g);
h = fopen("dbkey","w");
fprintf(h,"%s\n", dummy);
fprintf(h,"%d\n", table_key);
fclose(h);
} /* End of if table_count > Q */
} /* End of store_data() */

/**********************************#*****************#t#**##*******tttt*/

/* Print out data information on screen (TEMPERARY FOR CHECKING PURPOSE) */

/**#**************/

void print_out_data()

inti=0,
i=0,
count =(,
entry = 0;

printf("\n"); /* New line */
for (i = 0; i < table_count; i++)
prindf ("% 12s\%d\N%d\%d\n", table_array{table_list(i]].table_name,
table_array[table_list[i]].table_key,
table_array[table_list[i]].att_count,
table_array[table_list[i]].att_entry);
while ((c = getchar()) !="\n")

’for (i=0; i <table_count; i++)

count = table_arrayftable_list{i]]).att_count;
entry = table_array(table_list{i]].att_entry,;
for (j =0; j < count; j++)

printf("%12s\t%12s\u%d\n" att_array[entry].att_name,
att_array{entry].data_type,
att_array[entry].media_id,
' att_array[entry].next_index);
entry = att_array[entry].next_index;
} /* End of for loop j */
while ((c = getchar()) '= \n")

} /* End of for loop i */
} /* End of print_out_data() */

/***********#***#*****it**********************t******#*#****************/

111

/* Get the user choice */
/**i *************************/

char user_choice()

char answer ='?";

while (1('0'<= answer && answer <= '6'))

{
clr_scr(;
printf(""\n\f\tMultimedia Datat ase Management System\n");

pﬁnﬁC\& =——====== == ==£fo
printf('"\n\t1. Create Table");
printf("\n\r2. Insert Tuple");
printf('"\n\t3. Retrieve");
printf("\n\t4. Delete");
printf("\n\tS. Modify");
printf('"\n\t6. Print out -urrent data information(test purpose)");
printf("\n\t0. Quit\n").
printf('"t =\n");

prindf("\n\tSelect your choice ::);
answer = getchar();
while ((c = getchar()) '= \n")
; /* Not return do nothing */

} /* End of while */

return (answer);

} /* End of user_choice() */

/**t*#****#*******t*****###*****#***t*********#**#***lﬁ*t*t#************/
/*****t**t#*tt****#******* Sta.rt for CREATION ***#*#**t**t**&**#**********/
/**##*##*##***#tt*#tt##**#****##******#**********#*****#****************/

/*t*i*t*‘it******tt‘tt*##t#*#*#**tt**t****tt*****#*t**#**‘tt************/

/* Check the table_name if its last char is any digit, which is not allowed */
/* because the media table is unique across the whole database by appending */
/* the particular table_key from ‘0’ to '999' in this program */

/**##**#*tt*****####****‘t##t#*******t***********t**t-t*#*#*************/

int check_last_char(c_last)
char c_last;

{
int found = FALSE; /* Initalize to false */
if (L <= c_last && c_last <="9")
found = TRUE;
return (found);
} /* End of check_last_chas(c_last) */

/t#i‘tl‘tt“t#‘t‘t#*“tt##t*t##****tt**##***t****#*t**********#tt*t*#**#/

/* Check the table_name if it is duplicate *

/t#*t*tttt#t*##*tttttt#t‘#t*tt**t*#tt***#t**#***********#****t*******#*t/
int check_table_name()

inti=0;
int found = 0; /* Initalize to false */

112

while ((!(found)) && (i < table_count))
if (strcmp(table_array[table_index].tabie_name,

table_array[table_list[i]].table_name) == 0)

found = TRUE;
table_entry =1; /* Don't use "tahle_cursoi = 1" because */
} /* table_cursor can't change inthe */
else /* function "change_table_name()"!! */
i++;

} /* End of while */
return (found);
} /* End of check_table_name() */

/***/

* Check the att_name if it is duplicate within the relation in the first */
/* 9 characters. Because the last 3 characters are used to append the key */
/***/
int check_att_name()
{
inti=0,
entry;
int found = 0; /* Initialize to false */
char new_att_name[9],
exit_att_name[9];
strncpy(new_att_name, att_array[att_index].att_name, 9);
new_att_name[9] = \0'; /* To end of the string */
entry = table_array[table_li. [table_cursor]].att_entry;
while ((!(found)) && (i < att_count)) /* att_count is global var */

strncpy(exit_att_name, att_array[entry].att_name, 9);
exit_att_name{9] ="\0'; /* To end of the string */
if (srecmp(new_att_name, exit_att_name) == 0)
found = TRUE;
else
(.
i++;
entry = att_array[entry].next_index;
} /* End of if els= */
} /* End of while */
return (found);
} /* End of check_att_name() */

/*****#*#t*‘t**#**f***“*ttt***************************t*****#**********/

/* Return the data_type which selected from user. We allow ¢20 as the only */
/* character data type at this time, it could be able to allocate the */
/* data value array dynamically by mallac to make it more flexible */

/t*#****t***t**tt*************#******************#*****************#****/

void select_data_type()

{

113

char answer = '?7";
while ((c = getchar()) '="\n")
; /* Not rerurn do nothing */
while (!{ 'I'<= answer && answer <='5"))
{
prind("\nSelect::(1)integer (2)float (3)c20 (4)image (5)sound”);
prirtf("\n\Select your choice :: ");
answer = getchar();
while ((c = getchar()) '= \n’)
; /* Not return do nothing */
} /* End of while */
switch (answer)

case 'l
strcpy(data_type, "integer");
break;

case 2"
strcpy(data_type, "float™);
break;

case ‘3"
strcpy(data_type, "c20");
break;

case '4"
strcpy(data_type, "image");
break;

case '5":
strcpy(data_type, "sound");
break;

rc¢ak,
} /* Ened of switch */
} /* End of select_data_type() */

/t**t**‘#*t**#*#*#**#t*##***#*****************t*#t*****i******#*******#*/

/* Get the att_name, data_type from user input */
/*t*t#t**##*#t*#*****t**t***t*****t*****#***x < 2o 3 e e 2 e ol o e <t*************/

void get_att_name()

int found = TRUE;
char set_down = 'n';
while (found)

printf('"\nEnter attribute name:(Maximum 12 characters)\n");
att_namc[0] = \0";

scanf("%s", att_name);

if (strlen(att_name) >= 13) /* Over maximum name length */

printf("\nSorry!! Attribute Name OVER 12 characters!");
putchar(\007");

else

{

suncpy(att__array[att_indcx].att_name, att_name, 12);

114

found = check_att_name();
if (found)
{

printf("The first 9 characters must unique\n");
prind("The duplicate attribute name entered™\n");
printf("Invalid attribute name! ENTER AGAIN!'\n");
putchar(\007";

else

printf("\nSelect data type of attribute::");
while (set_down !="'y")

select_data_type();
printf("\nData Type: %s? (y/n)::", data_type);
set_down = yes_no_answer();

strcpy(att_array(att_index].data_type, data_type);
} /* End of if else */
} /* End of if else */
} /*End of while */
} /* End of get_att_name() */

/***#***************************t***************************#***********/

/* Create a relation table according to the user input */
/***/
void create_table()

{

char more_att ='y'; /* More att_name or not */
inti=0,

entry,

name_len;
int table_found = TRUE, /* Initialize to true */
while (table_found)

prindf("\nEnter table_name:(Maximum 12 characters)\n");

table_name[0] = \0';

scanf("%s", table_name);

if ((name_len = strlen(table_name)) >= 13) /*Over maximum name length*/

{
printf("\nSorry!! Table Name OVER 12 characters!");
putchar(\0Q7");
}

v
it(' (check_last_char(table_name[name_len - 1]))

printf("Sorry! Please never end a table name with a digit\n");
printf("Invalid table name! ENTER AGAIN!\n");
putchar(\007");
}

115

else

strepy(table_array[table_index].table_name, table_ .me);
table_found = check_table_name();
if (table_found)

printf("The duplicate table name entered\n");
printf("Invalid table name! ENTER AGAIN!\n");
putchar(\007");

}
} /* End of if else */
} /* End of if else */

} /* End of while (found) */
table_array(table_index].table_key = table_key,
table_array[table_index].att_entry = att_index;
table_list[table_count] = table_index;
table_key++;
table_cursor = table_count;
table_count++;
att_count = 0; /* Initialize as zero at beginning, global in each time */
while (more_att =="y")

get_att_name();
att_array{att_index].media_id =1,
att_array[att_index].next_index = att_index + 1;
att_index++;
att_count++;
printf("\nMore attribute in the table? (y/n)::");
more_att = yes_no_answer();
} /* End of while */
att_array[att_index -1].next_index = -1; /* Assign the end mark */
table_array[table_index].att_count = att_count;
table_index ++;
} /* End of create_table() */

/******************* ‘***#******#*******************t**##****#*********/

/* Get the user choice to n.odify the current table in create operation */
/#******#******t***#*******t***************#**t******#*#*************#**/

char modiiy_choice()
{

char answer ='?";
getchar(); /* NOTHING but extract out the previous CR */
while (1(('0'<= answer && answer <="'5" ||

(answer == 'h') Il (answer == 'H")))

printf("\n\\tModify Table Menu for Creation\n");

rin[f("\t=======z===_—_========= ==oz=os=sn==="):

printf("\n\t1. Change Table Name");
printf("\n\t2. Change Attribute Name");
printf('"\n\t3. Change Data Type");

116

printf('\n\t4. Insert A Attribute");
printf("\n\tS. Delete A Attribute");
printf("\n\t0. Quit");
printf('""\n\th or H:: Show current information\n");
printf("\t: \n'");

prindf("\n\tSelect your choice :: ");
answer = getchar();
while ((c = getchar()) !=\n’)
; /* Not return do nothing */

} /* End of while */

return (answer);

} /* End of modify_choice() */

/***/

/* Print out the current table which the user want to modify */
/***/

void print_table()

inti=0,
count =0,
entry = 0;
clr_scr();
entry = table_ array[table_list[table_cursor]].att_entry;
count = tabie_array[table_list{table_cursor]].att_count;
prinf("\nTable Name:: %s\n",
table_array[table_list[table_cursor]].table_name);
printf("\nOrder\tAttribute Name\t\tData Type\n");
for (i=0; i < count; i++)

printf(" %d \t%13s\t\t%s\n",(i+1) , att_array[entry].att_name,

att_array[entry].data_type);
entry = att_array[entry].next_index;
} /* End of for loop i */
} /* End of print_table() */

/*******t***#**t**#***************************************#***#****##***/

/* Change the current table name which the user want to create */
/#*#**#***tt*****##*******#********t*t**t*t****t****#*#****t************/

void change_table_name()

int table_found = TRUE;
while (table_found)

{
printf("\nCurrent Table Name:: %s\n\n",
table_array[table_list[table_cursor]].table_name);
printf("Change to::");
table_name(0] = \0";
scanf("%s", table_name);
if (strlen(table_name) >= 13) /* Over maximum name length */

printf("\nSorry!! Table Name OVER 12 characters!");

117

putchar(\007");
else

strcpy(table_array(table_index].t.ole_name, table_name);
table_found = check_table_name();
if (table_found)

printf("\nThe duplicate table name entered!'\n");
pnntf('"\ninvald tabie name! ENTER AGAIN!!\n"),
putchar("\007");

B
} /* End of if else */
} /* End of while */
strcpy(table_array(table_list{table_cursor]].table_name,
table_array[table_in -vl.table_name);

printf("\nNew Table Name:: %s\n\n",
table_array[table_list[table_cur :able_name);

while ((c = getchar()) !="\n")

} "* End of change_table_name() */

/***#*********#***/

/* Change the name of current attribute which the user want to create */
/*********#****##***********###*********************************t****#**/

void change_att_name()

inti=0,

count =0,

entry =0,

order = (;
int found = TRUE;
print_table();
printf("Select the order which you want to change its name:\n");
printf("Any other ke to cancel the operation!! Select::");
scanf("%d", &order .
entry = table_array[table_list[table_cursor]].att_entry;
count = table_array{table_list{table_cursor]].att_count;
if (1 <= order && order <= count)

for (i = 1; i <order; i++)

entry = att_array{entry].next_index;
att_cursor = entry; /* Assign the current index of att_array */
while (found)

{
printf("\nCurrent Att_Name:: %s\n\n",
att_array[att_cursor].att_name);
printf("Change to::");
att_name[0] = \0";
scanf("%s", att_name);
if (strlen(att_name) >= 13) /* Over maximur: me length */

118

{
printf('"\nSorry!! Attribute Name OVER 12 characters!");
putchar(\007");

else

{

strepy(att_array[att_index).att_name, att_name);
found = check_att_name();
if (found)

printf("The dupiicate atribute name entered'\n");
printf('"\nInvalid attribute name! ENTER AGAIN!!\n");

putchar(\007");

else

strcpy(att_array[att_cursor].att_name,
att_array[att_index].att_name);

printf(""\nNew Att_Name:: %s\n\n",
att_array[att_cursor].att_name);

} /* End of if else */
} /* End of if else */
} /*End of 'while */
)

else

printf("\nSorry! You entered the wrong order!! Please redo again.\n");
putchar(\007";
while ((c = getchar()) != \n")

}/* End of if else */
} /* End of change_att_name() */

/**#*****************t*************#*********************#**************/

/* Change the data type of current attribute which the user want to create */
/**********#**#**#*********##****#*************&**************?*********/

\{/oid change_data_type()

inti=0,

count =0,

enry =0,

order = (;
char set_down = 'n’; .
print_table();
printf("'Select the order which you want to change the data type::\n");
printf("Any other key to cancel the operation!! Select::");
scanf("%d", &order);
entry = table_array[table_list[table_cursor]].att_entry;
count = table_array[table_list[table_cursor]].att_count;
if (1 <= order && order <= count)

119

for (i = 1; i < order; i++)
entry = att_array[entry].next_index;

att_cursor = entry; /* Assign the current index of atnt_array */

printf("\nCurrent Att_Name:: %s\n",
att_array{att_cursor].att_name);

prind("Current Data_Type:: %s\n",
att_array[att_cursor].data_type);

printf("Change to:: ");

while (set_down !='y’)

select_data_type();
printf("\nData Type: %s? (y/n)::", data_type);
set_down = yes_no_answer();

strcpy(att_array{att_cursor].data_type, data_type);
printf(" nAtt_Name:: %s\n", att_array{att_cursor].att_name);
print New Data Type:: %s\n",att_array[att_cursor].data_type);

else

printf("\nSorry! You entered the wrong order!! Please redo again.\n");
putchar(\007");
while ((c = getchar()) != \n")

} /* End of if else */
} /* End of change_data_type() */

/**##*****tt#****#****#**t***#*****#**************#***************#*****/

/* Insert a new attribute before create operation */
/*******t**#***********##**************************#***#*#t##****t******/

void insert_att()

inti=0,
count =0,
pre_entry =0,
entry =0,
order = 0;
print_table();
printf("Select the order where new attribute you want be!\n");
printf("(Maximum + 1) will add new attribute at the end!'\n");
printf("Select the new attribute's order::\n");
printf("Any other key to cancel the operation!! Select::");
scanf("%d", &order); .
entry = table_array(table_list{table_cursor]].att_entry;
count = table_arrayftable_list[table_cursor]].att_count;
if (1 <= order && order <= (count + 1))

for (i = 1; i < order; i++)
{
pre_entry = entry;
entry = att_array(entry].next_index;

120

get_att_name();
att_array[att_index].media_id = 1;
/* Rearrange the link list of attributes in the relation */
if (order == 1)
table_array[table_list[table_cursor]].att_entry = att_index;
else
att_array[pre_entry].next_index = att_index;
att_array[att_index].next_index = entry;
att_index++;
att_count++;
table_array[table_list[table_cursor}].att_count = att_count;

else

printf("\nSorry! You entered the wrong order!! Please redo again.\n");
putchar(\007');
while ((c = getchar()) !="\n")

}'/* End of if else */
} /* End of insert_att() */

/***/

/* Delete a attribute before create operation */
/***#***/

void delete_att()

inti=0,

count =0,

pre_entry =0,

entry =0,

order = (;
print_table();
printf("Select the order of attribute which you want delete::\n");
printf("Any other key to cancel the operation!! Select::");
scanf("%d", &order);
entry = table_array(table_list{table_cursor]].att_entry;
count = table_array(table_list{table_cursor]].att_count;
if (1 <= order && order <= count)

for (i = 1; 1 < order; i++)
{
pre_entry = entry;
entry = att_array[entry].next_index;

att_cursor = entry;
printf("\nDelete %s? (y/n)::", att_array[att_cursor].att_name);
if (yes_no_answer() =="'y")
/* Rearrange the link list of */
if (order == 1) \ /* attributes in the relation */
table_array[table_list{table_cursor]].att_entry

121

= att_array[entry].next_index;
else
att_array[pre_entry).next_index
= att_array[entry].next_index;
att_count--;
table_array[table_list[table_cursor]}.att_count = att_count;

else
; /* End of if else */

else

printf("\nSorry! You entered the wrong order!! Please redo again.\n");
putchar(\007";
while ((c = getchar()) !=\n’)

}"/* End of if else */
} /* End of delete_att() */

/*******************#******************************#************#*****t*/

/* Modify the current table which the user want to create */
/*********#*#**#*#**/

void modify_table()
{

char answer ='?";

while (answer !="'0")

{
answer = modify_choice();
switch(answer)

case '1':
change_table_name();
break;

case 2':
change_att_name();
break;

case '3':
change_data_type();
break;

case '4' :
insert_att();
break;

case 'S': .
delete_att();
break;

case '0':
break;

case 'H':

case 'h':
print_table();
break;

122

} /* End of switch */
} /* End of while */
} /* End of modify_table() */

/***/

/* Display the table information that the user entered before create */
/***/

void display_info()

char modify ='y";
while (modify =="y")

clr_scr();
print_table();
printf("\nAny change before create? (y/n)::");
modify = yes_no_answer();
if (moaify =="y’)
modify_table();
} /* End of while */
} /* End of display_info() */

/**********#***#*#******/

/* Get media table name by appending table_key at the end of att_name */
/**#t***/

void get_media_name()

int index; /* Index of string used to append table_key into att_name */
inti_key, /* Integer value of table_key */
key_no, /* # of digits of key */
i=0;
char key[3]; /* Allow maximum 3 appended table keys */
i_key = table_array{table_list[table_cursor]].table_key;
if (0 <=i_key && i_key <=9)

key[0] = i_key + 48; /* int O converts to char 0 */
key_no=1;

}
if (10 <=i_key && i_key <= 99)
key[1] = (i_key / 10) + 48; /* 1st append key */
key([0] = (i_key % 10) + 48; /* 2nd append key */
key_no=2;
)
if (100 <= i_key && i_key <= 999)
key(2] = (i_key / 100) + 48; /* 1st append key */
key[1] = ((i_key % 100) / 10) + 48; /* 2nd append key */
key[0] = (i_key % 10) + 48; /* 3rd append key */
key_no =3;

index = strlen(media_name);

123

if ((index + key_no) >= 12) /* Maximum length of att_name */

media_name[12] = \0'; /* Assign 0'to the end of string */
for (i = 0; i <key_no; i++)
media_name(index - (1 + 1)] = key{i];

else
{
media_name[index + key_no] = media_name[index}]; /* Move \0' to end*/
for (i = 0; i < key_no; i++)
media_name((index + key_no) - (i + 1)] = key[i];
} /* End of if else */
} /* End of get_media_name() */

/***/

/* Translate SQL statement to create a MEDIA relation */
/***t***********/

void gl_create_media_table()

inti=0;

for (i =0; i < act_media_count; i++)

{
strcpy(media_name, att_array[act_media_list{i]].att_name);
get_media_name();
printf(" create table %12s (", media_name);
strcpy(data_type, att_array[act_media_list[i]].data_type);
if{ (strcmp(data_type, "image") ==0)

prindf("i_id integer,\n ")
printf("f_id c64,\n "y
printf("'descrp vchar500,\n ")
printf("height integer,\n ");
printf("width integer,\n ")

! printf("depth integer);\n\n");

else

{
printf("s_id integer,\n ",
printf("f_id c64,\n ")
printf("descrp vchar500,\n ",
printf("'size integer,\n "%
printf("samp_rate integer,\n ");
printf("encoding integer,\n "
printf("duration float,\n ")
printf("'resolution integer);\n\n");

} /* End of if else */

/****#****#*CREATE MEDIA TABLE IN INGRES START I{ERE#**‘*‘**#*******/
f#s#»4xxx 4+ THE INGRES FUNCTION CALLS WRITE MANULLY ##### ks kks/
/* # line 1046 "db.sc" */ /* create table */

{ .

124

printf("\nCREATING MEDIA TABLE NOW. PLEASE WAIT!N\n");
[sqInit(&sqlca);

IIwritedb("create ");

writedb(media_name);

[Iwritedb("(");

if (strcmp(data_type, "image") == 0)

IIwritedb("i_id=i4,f_id=c64,descrp=text(500),"); /* vchar(500) */
[Iwritedb("height=i4,width=i4,depth=i4)"),
prindf("\nCREATE AN IMAGE TABLE COMPLETE!'\n");

else

[Iwritedb("s_id=i4.f_id=c64,descrp=text(500),"); /* vchar(500) */
IIwritedb("'size=i4,samp_rate=i4,encoding=i4,");
Owritedb("duration=f4,resolution=i4)");
printf("\nCREATE A SOUND TABLE COMPLETE!'\n");
} /* End of if else */
IIsqSync(0,&sqlca);

/* # line 1068 "db.sc" */ /* host code */
/************CREATE MEDIA TABLE IN H\IGRES STOP E{ERE****************/
while ((c = getchar()) != \n')

} ,/"' End of for loop */
} /* End of ql_create_media_table() */

/***/

/* Translate SQL statement to create a STANDARD relation */
/***/

int ql_create_table()

inti=0,

entry =0,

count =0;
act_media_count = 0;
entry = table_array[table_list{table_cursor]].att_entry;
count = table_array[table_list[table_cursor]].att_count;
prindf("\nSQL statement::\n");
printf(" create table %12s (",

table_array(table_list[table_cursor]].table_name);
for (i = 1; i < count; i++)

printf("%s ", att_array[entry].att_name);

strcpy(data_type, att_array[entry].data_type);

if ((strcmp(data_type, "image") == 0) Il
(strcmp(data_type, "sound") == 0))

printf("integer,\n"),
act_media_list{act_media_count] = entry;
act_media_count ++;

125

}

else
printf("%s.\n", att_array[entry].data_type);
printf(")
entry = att_array[entry].next_index;
} /* End of for loop i */
printf("%s ",att_array[entry].att_name);
strcpy(data_type, att_array[entry].daia_type);
if ((stremp(data_type, "image") == 0) |l
(stremp(data_type, "sound”) == 0))

printf("integer);\n\n");
act_media_list{act_mredia_count] = entry;
act_media_count ++;
}
else
printf("%s):\n\n", att_array[entry].data_type);
/*************CREATE STD TABLE m INGRES S’I‘ART }{ERE***********« -r**/
Jrwdckiokionks THE INGRES FUNCTION CALLS WRITE MANULLY # ¥ kakdok ok sokkok /
entry = table_array[table_list[table_cursor]].att_entry;
count = table_array[table_list{table_cursor]].att_count;
sqlca.sqlcode = 0; /* Initialize as error free before access INGRES */
/* # line 1120 "db.sc” */ /* create table */

{
printf("\nCREATING STD TABLE NOW. PLEASE WAIT!\n");
sqInit(&sqlca);
IIwritedb("create ");
Owritedb(table_array[table_list[table_cursor]].table_name);
IIwritedb("(");
for (i = 1; i < count; i++)

[Owritedb(att_array[entry].att_name);
Hwritedb("=");
strcpy(data_type, att_array[entry].data_type),
if ((strc :p(data_type, "image”) ==0) Il
(strcmp(data_type, "sound”) == 0) il
(strcmp(data_type, “integer”) == 0))
Owritedb("i4,");
else
if (strcmp(data_type, "float") == 0)
Owritedb("f4,");
else
{ /* char data_type */
[writedb(att_array{entry].dat2_type);
} Owritedb(",");
entry = att_array[entry].nex¢_index;
} /* End of for loop i */
HOwritedb(att_array[entry]. .ui_name);
Owritedb("=");
strepy(data_type, att_array[entry].data_type);

126

if ((strcmp(data_type, "image") ==0) Il
(strcmp(data_type, "sound”) ==0) Il
(srcmp(data_type, "integer”) == 0))
Owritedb("14)"); /* Integer type */
else
if (strcmp(data_type, "float") == () /* Float type */
Owritedb("f4)");
else
{ /* char 20 type */
Owritedb(att_array[entry].data_type);
IIwritedb(")");

}
1IsqSync(0,&sqlca);
if (sqlca.sqlcode != 0)

printf("\nAn error occured while accessing the database to create");
printf("\nthe table \'%s\",
table_array[table_list[table_cursor]].table_name);
printf("\nThe SQL ERROR CODE is %1d", sqlca.sqlcode);
printf('\nIt probably that you entered a reservered word!!");
prindf('"\nPlease check and modify it then ry again!! Thank you!!");
putchar(\007";
while ((¢c = getchar()) !=\n')

;ctum (TRUE); /* Return 1 if error occured! */

)
prinf(""\nCREATE A STD TABLE COMPLETE!\n");
}

/* #line 1164 "db.sc” */ /* host code */
/***t*t*******CREATE STD TABLE IN INGRES STOP I_{ERE******************/
while ((c = getchar()) !="\n")

if (act_media_count > 0)
ql_create_media_table();
return (FALSE);
} /* End of ql_create_table() *

/******#**l**********************#*****************#******##t*#***#t****/

/**t*******#lﬁ********tt** Star[for [NSER’I‘ION **************#*********#***/
/*******#i***#*******#*#******************************#*****************/

/"l***t***!‘l******t#****###*#*t***/

/* Print out the table catalog :nformation on screen *
/*****t*#‘*‘*****t***t*‘*#*t***#**/

void print_all_table()

{
inti=0;
printf('"\t**Table Name**\n");
for (i = 0; i < table_count; i++)

printf('"\t %s\n" table_artay[table_list[i]].table_name);

127

if (1 % 15) == 14)

{
printf("\n*RETURN TO CONTINUE*n");
while ((c = getchar()) !=\n')

printf("**Table Name**\n");

)
} /* End of for loop */
} /* End of print_all_table() */

/***#*************************/

/* Get a INTEGER value of a standard attribute from the user input */
/*******t***l

void get_int_value()

char stuff[3]; /* To provide a dummy var for \n' when user enter '?' */
i_value[i_index] =0,

scanf("%d", &i_valueli_index]);

if (i_value[i_index] == 0) /* ? or 0 entered */

{
i_value[i_index] = 0; /* if 0 entered still 0 */
stuff[0] = \O';
gets(stuff); /* To let next gets() work when ? entered in scanf() */

else
gewchar(); /* Add after scanf() to let next gets() work properly */
att_array[att_cursor].value_entry =i_index;
i_index = (i_index + 1) % 20;
} /* End of get_int_value() */

/*****###****t*********t*#*************************#********************/

/* Get a FLOAT value of a standard attribute from the user input */
/*****##****t#***********************************#*******t**************/

void get_float_value()

char stuff{3]; /* To provide a dummy var for \n' when user enter '?" */
f_value[f_index] = 0.0;

scanf("%f", &f_value[f_index]);

if{(f_value[f_indcx] == 0.0) /* ? or Q entered */

f_value[f_index] =0.0; /* if 0 entered still 0.0 */
stuff[0] = \O";
gets(stuff); /* To let next, gets() work when ? entered in scanf() */

else
getchar(); /* Add after scanf() to let next gets() work properly */
att_array[att_cursor].value_entry = f_index;
f_index = (f_index + 1) % 20;
} /* End of get_fluat_value() */

/*#tt*tt****#*t*t*******t*******t**#*t*#t**tt*‘t******&******t#******#t*/

128

/* Get a STRING value of a standard attribute from the user input */
/#********#***************#***/

void get_c20_value()
{

int over_length = TRUE; /* Initialize to true */
char c_temp[60]; /* Temp var for read in, 60 to avoid bus error */
while (over_length)

c_temp[0] = \O’;

gets(c_temp);

if (strlen(c_temp) >=21)
{

printf("\nSorry!! Value OVER 20 characters!");
putchar(\007");
printf("\nPlease Enter <<%s>> Value (? if unknow):: ", data_type);

el{sc
over_length = FALSE;
strecpy(c_value[c_index], c_temp);
if (stremp(c_value[c_index], "?") == 0)

strcpy(c_value[c_index], " "); /* Assign blank as null */

att_array[att_cursor].value_entry = c_index;
c_index = (c_index + 1) % 20;
} /* End of if else */

} /* End of while (over_length) */

} /* End of get_c20_value() */

/**#************#***/

/* Get the description of a MEDIA attribute from the user input */
/****#*****#*****************#**/

void get_descrp()
{

char phrase[MAX_PHRASE+20]; /* Maximum length of a phrase is 127 */
int phrase_len =0, /* Declared 20 char more to avoid the*/

descrp_len = 0; /* bus error! */
int stop_input = FALSE;
descrp(0] = \O';

printf("\nPlease Enter Description:");
printf(‘""\nNOTE: One phrase per line. End with an empty line:\n");
while (!stop_input)

phrase[0] = \0’;
gets(phrase);
phrase_len = strlen(phrase);
if (phrase_len >=1)
if (phrase_len >= MAX_PHRASE) /*Need end with \n & \0 in one phrase*/

{
printf("\nThe phrase OVER %d characters!", (MAX_PHRASE - 1));
printf("\nInvalid input!! TRY AGAIN!Na"); |

129

putchar(\007");
}
else
phrase[phrase_len] =
phraselphrase_len + 11 =
if (phrase_len > 1)
if ((descrp_len + phrase_len + 1) >= (MAX_DESCRP + 1))
{
stop_input = TRUE;

printf("\nThe last phrase extended beyond the maximum %d ", MAX_DESCRP);
printf("\ncharacters in description. It has been canceled!\n");

putchar(\N007");
while ((c = getchar()) !="\n")
}

else

{
strcat(descrp, phrase);
descrp_len = descrp_len + phrase_len + 1;
} /* End of if else */
}; /* End of if (phrase_len > 1) */
} /* End of if else (phrase_len >= MAX_PHRASE) */
} /* End of if (phrase_len >= 1) */
else /* Empty string input */

if (descrp_len == 0)

{

printf("\nSorry! Empty string is NOT allowed!\n");
putchar(\007");

}

else
stop_input = TRUE;
} /* End of if else */
} /* End of while (!stop_input) */
} /* End of get_descrp() */

/****#‘***ﬁ****#&t#&*#*#*t*************#**************#***#*********#t**/

/* Display the IMAGE by passing pixels and colormap from the caller. */
/* It open another process in SUN environment to display the image on the */
/* screen. It might be able to quit the image automatically before display *
/* the next image. */

/***t***ﬁ.*‘#***#*ﬁ#***‘tt*****t***t********#*#**#***###t*********#*****/

show_image(pixels, colormap)
struct pixrect *pixels;
c{:oloxmap_t *colormap;

char answer,

int i, error, pxd

Frame

130

Canvas canvas;
Pixwin *pw;
pid = fork ();
if (pid < 0)

printf ("Starting display process failed\n\n");
return (-1);

}
if (pid > 0) {
return (pid);

if (colormap == NULL)
{

printf ("Cannot show it - no colormap.\n\n");
}exit (1);
frame = window_create (NULL, FRAME, FRAME_LABEL, "IMAGE",
FRAME_NO_CONFIRM, TRUE,
WIN_WIDTH, pixels->pr_size.x + 20,
WIN_HEIGHT, pixels->pr_size.y + 50,
WIN_ERROR_MSG, "Cannot create window.", 0);
if (frame == NULL)
{

printf ("Cannot create frame\n\n");
exit (1);

canvas = window_create (frame, CANVAS,
WIN_WIDTH, pixels->pr_size.x,
WIN_HEIGHT, pixels->pr_size.y, 0);
if{(canvas == NULL)

printf ("Cannot create canvas\n\n");
exit (1);

p\&: = canvas_pixwin (canvas);

if (pw == NULL)
{

printf("pixwin is NULL\n\n");
exit (1);

}
window_fit (frame);
if {(colormap->type == RMT_EQUAL_RGB && colormap->length > 0)

pw_setcmsname(pw, "photo");

if (error = pw_putcolormap(pw, 0, colormap->length,
colormap->map([0],
colormap->map(1],
colormap->map(2]))

printf ("Cannot load colormap.\n");
printf ("error code = %d\n", error);

131

printf ("type = %d\nlength = %d\n", colormap->type,
colormap->length);
exit (1);
IR
}

else

printf ("Cannot show photo - colormap not appropriate.\n\n");
exit (1);

if (pw_write (pw, 0, 0, pixels->pr_size.x, pixels->pr_size.y,
PIX_SRC, pixels, 0, 0))
printf ("Cannot display image on screen.\n\n");
else
window_main_loop(frame);
window_destroy(frame);
pr_destroy(pixels);
exit (0);
return (0);
} /* End of show_image(pixels, colormap) */

/***#***************/

/* Get a IMAGE value of a media attribute from the user input */
/*************#*#**#*#**********/

void get_image_value()

STR_path file_name;
STR_descrp nothing;
char temp_file[100]; /* Declare more to avoid bus error */
int height = 0,

width =0,

depth =0;
struct pixrect *pr;
colormap_t cm;
int show_pid, wait_pid;
union wait status;
int over_length = TRUE; /* Initialize to true */
cm.type = RMT_NONE; /* this is absolutely necessary! Otherwise */
cm.length = 0; /* pr_load_colormap might not allocate storage */
cm.map[0] = NULL; /* for the colormap, if the garbage found in */
cm.map(1] = NULL; /* the cm structure seems to make sense. The */
cm.map(2] =NULL; /* result, of course, is segmentation fault. */
img_record[img_index].i_xd = att_array(att_cursor].media_id;
v;'hilc (over_length)

printf("\nPlease Enter <<%s>> File Name!!", data_type);
printf("\nNOTE: Enter The Full Path Name:: (? if unknow)\n");
temp_file[0] = \O’;

gets(temp_file);

iti(strlcn(temp_ﬁle) >= (MAX_PATH +1))

132

printf("\nSorry!! PATH_NAME OVER %d characters! TRY AGAIN!\n",
MAX_PATH);
putchar(\007");

else

strepy(file_name, temp_file);
if (stremp(file_name, "?7") == 0)

{
over_length = FALSE;
strcpy(img_record[img_index].f_id, " ");
strcpy(img_record[img_index].descrp, ");
img_record[img_index].height = height;
img_record{img_index].width = width;
img_record{img_index].depth = depth;

else
if ((img_file=fopen(file_name, "r")) == NULL)

printf("\n%s", file_name);

printf("\nThe File cannot be opened! Try Again!\n");

putchar(\007");
}

else {
pr = pr_load(img_file, &cm); /* Get registration data */
ISimage_from_pixrect(pr, &cm, file_name, nothing);
if (pr == NULL)

printf('"\n%s", file_name);

printf("\nThe File does not contain a proper image!");
printf("\nThe image must be in Sun Raster format!");
printf(" Try Again!™\n"),

putchar(\007");

else {
over_length = FALSE;
strepy(img_record[img_index].f_id, file_name);
printf("\nDisplay the image before enter the description?");
printf(" (y/n):: ");
if (yes_no_answer() =="y")
show_image(pr, &cm);
img_record[img_index].height = pr->pr_size.y;
img_record[img_index].width = pr->pr_size.x;
img_record[img_index].depth = pr->pr_depth;
} /* End of if else */
} /* End of if else */
fclose(img_file);
} /* End of if else */
} /*Endof ifelse */
} /* End of while (over_length) */

133

} /* End of get_image_value() */
/***/

/* Play the SOUND before enter description */

/***/

void play_snd()
{

char display ="y’
while (display =="y’)

play_sound(pc,snd_record{snd_index].f_id);
printf("\nPlaying sound.....");
while (getchar() != \n")

i)rintf("\nPlay one more time? (y/n)::");
display = yes_no_answer();

)
} /* End of play_snd() */
***/

/* Get a SOUND value of a media attribute from the user input */
/**#********/

void get_sound_value()

STR_path file_name;
char temp_file{100]; /* Declare more to avoid bus error */
int size =0,
samp_rate = 0,
encoding =0,
resolution = 0;
float duration = 0.0;
int over_length = TRUE; /* Initalize to true */
snd_record[snd_index].s_id = att_array[att_cursor].media_id;
while (over_length)

{
printf("\nPlease Enter <<%s>> File Name!!", data_type);
printf("\aNOTE: Enter The Full Path Name:: (? if unknow)\n");
temp_file[0] = \0';

gets(temp_file);
ii (strlen(temp_file) >= (MAX_PATH +1))

printf("\nSorry!! PATH_NAME OVER %d characters! TRY AGAIN!\n",
: MAX_PATH);

putchar(\007");
else

strepy(file_name, temp_file);
if (stremp(file_name, "?") ==0)

over_lergth = FALSE;

134

void get_std_value()

printf(""\nTable Name:: %s\nAtt Name :: %s\nData Type :: %s",
table_array[table_list[table_cursor]].table_name,
att_array[an_cursor].att_name,
art_array{att_cursor}.data_type);
printf('""\nPlease Enter <<%s>> Value (? if unknow):: ", data_type);
if (stremp(data_type, "integer") ==0)

get_int_value(); /* Integer data type */
else
if (strcmp(data_type, "float") == 0)
get_float_value(); /* Float data tupe */
else
get_c20_value(); /* String c20 data tupe */

} /* End of get_std_value() */
/******t**#**************t******#*#***t**********#t*****tt*t********#***/

/* Get a value of a media attribute from the user input */
/*ti*##i**t******************#******#‘#******‘***#**t****#*t**t###**#***/

void get_media_value()

{
printf("\nTable Name:: %s\nAtt Name :: %s\nData Type :: %s",
table_array{table_list{table_cursor]].table_name,
att_array[att_cursor].att_name,
att_array[att_cursor].data_type);
if{(strcrnp(data_typc, "image") ==0)

img_value[img_index] = att_array{att_cursor].media_id;
att_array[att_cursor].value_entry = img_index;
get_image_value(); /* Image data type */
if (stremp(img_record[img_index].f_id, " ") !=0)

printf("\nEnter the description? (y/n):: ");

if (yes_no_answer() == 'y')

get_descrp();
else

strcpy(descrp, " ");
strcpy(img_record[img_index].descrp, descrp);

att_array[att_cursor].media_id++;
img_index = (img_index + 1) % 20;

else
snd_value(snd_index] = att_array{att_cursor].media_id;
att_array(att_cursor].value_entry = snd_index;
get_sound_value(); /* Sound data tupe */
if (stremp(snd_record[snd_index].f_id, " ") !=0)

printf('"\nEnter the description? (y/n):: ");
if (yes_no_answer() =="y")

136

get_descrp();
else

strepy(descrp, " ");
strepy(snd_record(snd_index].descrp, descrp);

att_array[att_cursor].media_id++;
snd_index = (snd_index + 1) % 20;
} /* End of if else */
} /* End of get_media_value() */

/******t**/

/* Get the values of a tuple from the user input. It begin loop at the 1st */
/* attribute until the last attribute entered */
/*********#*#*************t**#**/

void get_tuple_value()

inti=0,
count =0;
count = able_array(table_list{table_cursor]].att_count;
att_cursor = table_array[table_list{table_cursor]].att_entry;
act_media_count =0;
for (i=0; i < count; i++) /* Loop to get value for each attribute */

strcpy(data_type, att_array([att_cursor].data_type);
if ((srcmp(data_type, "image") ==0) |l
{ (strcmp(data_type, "sound”) == ())

get_media_value();
act_media_listfact_media_count] = att_cursor; /* Collect the */
}act_mcdia_coum++; /* media indices*/
else
get_std_value();
att_cursor = att_array{att_cursor].next_index;
} /* End of for loop */
} /* End of get_tuple_value */

/#**tt#*#**#**‘t‘tt*t‘t##*tt*tt****#*‘**tt*#t*t**#***ttt‘#*t&#“*ttttt*t/

/* Insert a tuple of one particular relation */
/**tt**#‘t#*t*ttt#i**tttt‘#t#*tt***&*#**t**t#*!#****#*##*#tt*********#**/

void insert_tuple()

int table_found = FALSE; #* Initalize to false */
while ({table_found)

{

printf("\nEnter table_name::(Maximum 12 characters); (? for HELP!)\n");

table_name(0] = \0';

gets(table_name);

if (strlen(table_name) >= 13) /* Over maximum name length */

{
printf("\nSorry!! Tabl¢ Name OVER 12 characters!");

137

putchar(N\007";
else

if (stremp(table_name, "7") == Q)
print_all_table();
else
{
strcpy(table_array[table_index].table_name, table_name);
table_found = check_table_name();
if (table_found)
{
table_cursor = table_entry;
get_tuple_value();

else

{

printf("\nSorry!! Table name: %s NOT found! TRY AGAIN!!",
table_array[table_index].table _name);

putchar(\007");

} /* End of if else */

} /* End of if else */

} /* End of if else */
} /* End of while (!table_found) */
} /* End of insert_tuple() */

/*********#***t**#*.*t*#*****t*******#*****#tt*#****t*******#**t#*t**t*t/

/* Print out the value of current tuple which the user want to insert *f
/*#**#**t#t#**t****###t**##t*#**##t*##****#*********#******#**#*********/

void print_tuple()
{

inti=0,

count=0,

entry = (;
clr_scr();
entry = table_array(table_list[table_cursor]].att_entry;
count = table_arrayftable_list[table_cursor]].att_count;
printf("\nTable Name:: %s\n",

table_array(table_list{table_cursor]].table_name);

printf("\nOrder Attribute Name\tData Type\tValue\n™);
for (i = 0; i < count; i++)

{
strcpy(data_type, att_array{entry].data_type);
if (strcmp(data_type, "c20") == 0)
printf(" %d %13s\t%Ps\\\%s\\n" (i+1), att_array{entry].att_name,
att_array(entry].data_type,
c_value[att_array{entry].value_entry]);
else
if (stremp(data_type, "integer”) == 0)
prind(" %d % 13s\%s\t\s%d\n”,(i+1), att_array[entry].att_name,
) att_array[entry].data_type,

138

i_value[att_array[entry].value_entry]);

else
if (strcmp(data_type, "float”") == 0)
prind(" %d %13s\M%s\\%f\n",(i+1), au_array[entry].att_name,
aun_array(entry].data_type,
f_value[att_array[entry].value_entry});
else
if (srcmp(data_type, "image") == 0)

printf(" %d %13s\t%s\i\t”,(i+1) , att_array[entry].att_name,
an_array[enty].data_type);

if (stremp(img_record{att_array[entry].value_entry].f_id, " ") == 0)
prind("NO VALUEW"),

else
printf("HAS VALUEWn");

else

printf(" %d %13s\M%s\\t",(i+1) , att_array(entry].att_name,
art_array[entry].data_type);

if (stremp(snd_record[att_array[entry].value_entry].f_id, " ") == 0)
printf("NO VALUEW");

else
printf("HAS VALUE\");

entry = att_array[entry].next_index;
} /* End of for loop i */
} /* End of print_tuple() */

/**tt**t**#*t#***#**t*#*********#***#t**********#t*#t##***#*************/

/* Print out the description of media attribute in current the tuple */
/**t*it##**tt***t*#**t*********t***t#******t***tt#*t#****#**tt*t#**t**#*/

void print_media_tuple()

inti=0,
entry;
STR_name data_type,
printf("\nMedia Description::\n");
f({)t (i=0; i < act_media_count; i++)
printf("\nAtt_name :: %s", att_array(act_media_list{i]].att_name);
strepy(data_type, att_array[act_media_list(i]].data_type);
entry = att_array[act_media_list[i]].value_entry;
it{' (strcmp(data_type, "image") == 0)

printf('"\nFile_name ::\'%s\", img_record[entry].f_id);
printf("\nDescription:: \n<<%s>>", img_record[entry].descrp);

c:se
printf("\nFile_name ::\'%s\", snd_record[entry].f_id);

139

prirt“("\nDescription:: \n<<%s>>", snd_record[entry].descrp);
)
while ((c = getchar()) !=\n")

}, /* End of for loop */
} /* End of print_media_tuple() */

/***/

/* Print out the value of current attribute */
/***/

void print_value()

int entry;
entry = att_array[att_cursor].value_entry;
clr_scr();
printf("\nTable Name:: %s",
table_array[table_list[table_cursor]].table_name);
printf("\nAtt_Name :: %s", att_array[att_cursor].att_name);
printf("\nData Type :: %s", att_array[att_cursor].data_type);
printf("nValue :");
if (strcmp(data_type, "c20") ==0)
printf("\'%s\\n", c_value[entry]);
else
if (strcmp(data_type, "integer") == 0)
printf("%d\n", i_value[entry]);
else
if (strcmp(data_type, "float") == Q)
printf("%f\n", f_value{entry]);
else
iti (strcmp(data_type, "image") == 0)

printf("\n\t==>File_name ::\'%s\", img_record[entry].f_id);
printf("\n\t==>Description:: \n<<%s>>\n", img_record[entry].descrp);

else

printf("\n\t==>File_name ::\'%s\", snd_record[entry].f_id);
printf("\n\t==>Description:: \n<<%s>>\n", snd_record[entry].descrp);

}
} /* End of print_value() */

/******t*##**tt**#*#tt***#************t*******#*****#t***************#**/

/* Change the IMAGE valuei of current tuple which the user want to insert */
/**#******.t#*‘***‘tt*# ﬁ**************************#*******************#/

void change_img_value()

int cursor; /* Previous index of media record array */
cursor = att_array(att_cursor].value_entry;
img_value[img_index] = att_array[att_cursor].media_id;
att_array(att_cursor].value_entry = img_index;
printf("\nChange IMAGE file name? (y/n):: ");

140

if (yes_no_answer() =="y')
get_image_value(); /* Image data type */
else

img_record[img_index].i_id = att_array(att_cursor].media_id;
strepy(img_record[img_index].f_id, img_record[curscrl.f_id);
img_record[img_index].height = img_record{cursor).heigh;
img_record[img_index].width = img_record{cursor].width;
img_record[img_index].depth = img_record[cursor].depth;

}
printf("\nChange IMAGE description? (y/n):: ");
if (yes_no_answer() =="y’")

get_descrp();
strecpy(img_record(img_index].descrp, descrp);
}

else
strcpy(img_record(img_index].descrp, img_record[cursor].descrp);
att_array[att_cursor].media_id++;
img_index = (img_index + 1) % 20;
} /* End of change_img_value() */

/***»*********************/

/* Change the SOUND values of current tuple which the user wau:t to insert */
/*******#**&******************/

void change_snd_value()

{
int cursor; /* Previous index of media record array */
cursor = att_array[att_cursor].value_entry;
snd_value[snd_index] = att_array[att_cursor].media_id;
att_array[att_cursor].value_entry = snd_index;
printf("\nChange SOUND file name? (y/n):: ");
if (yes_no_answer() =="y")

get_sound_value(); /* Sound data type */

else

snd_record{snd_index].s_id = att_array(att_cursor].media_id;
strepy(snd_record(snd_index].f_id, snd_record[cursor].f_id);
snd_record{snd_index].size = snd_record[cursor].size;
snd_record(snd_index].samp_rate = snd_record{cursor].samp_rate;
snd_record[snd_index).encoding = snd_record[cursor].encoding;
snd_record[snd_index].duration = snd_record[cursor).duration;
snd_record[snd_index).resolution = snd_record[cursor].resolution;

)
if (yes_no_answer() =="'y")

get_descrp();
strcpy(snd_record{snd_index).descrp, descrp);
}

else

strepy(snd_record{snd_index].descrp, snd_record{cursor].descrp);
att_array(att_cursor].media_id++;
snd_index = (snd_index + 1) % 20;
} /* End of change_snd_value() */

/*************4***/

/* Change the values of current tuple which the user want to insert */
/***/

void modify_tuple()
{

inti =0,

count = (),

entry =0,

order = 0;
char more_change =y’
while (more_change =="y")

print_tuple();

printf("Select the order which you want to change its value:\n");
printf("Any other key to cancel the operation!! Select::");
scanf("%d", &order);

getchar(); /* To let next gets() work properly */

entry = table_array(table_list[table_cursor]].att_entry;

count = table_array[table_list, table_cursor]).att_count;

if (1 <= order && order <= ccunt)

for (i = 1,1 < order; i++)
er'ty = att_array[entry].next_index;
att_ arsor = entry; /* Assign the current index of att_array */
strcpy(data_type, att_array{att_cursor}.data_type);
print_value();
printf("\nPlease Enter <<%s>> Value (? if unknow):: ", data_type);
if (strcmp(data_type, "integer") == 0)
get_int_value(); /* Integer data type */
else
if (strcmp(data_type, "float”) == 0)
get_float_value(); /* Float data tupe */
else
if (strcmp(data_type, "c20") ==0)
1ge:t_c20_valuc(); /* String c20 data tupe */
else
if (stremp(data_type, "image") == 0)
change_img_value();
else
change_snd_value();
print_value();
}

else

printf("“nSorry! You entered the wrong order!! Please redo again.\n");
putchar(\007");

142

} /* End of if else */
printf("Any More Change? (y/n):: ");
more_change = yes_no_answer();
} /* End of while */
} /* End of modify_tuple() */

/***/

/* Display the tuple before insertion */
/***/

void display_tuple()

char modify ='y";
while (modify =="y')
{

clr_scr();
print_tuple();
while ((c= getchar()) !=\n')

if (act_media_count >= 1)
print_media_tuple();
printf("\nAny change before insert? (y/n)::");
modify = yes_no_answer();
if (modify =="y’)
modify_tuple();
} /* End of while */
} /* End of display_info() */

/***/

/* Connect to parser to generate the facts file. We put all media descrip- */
/* tion in one facts file "imagei_image_facts" at this time, it should be */
/* separate later on. */

/***/
int connect_parser(file_id, new_descrp, err_message)
STR_path *file_id;
STR_descrp *new_descrp;
c{:har *err_message;
STR_path nothing;
STR_descrp empty_descrp;
int ISerror = FALSE;
cmpty_descrp[O] =
nothing(0] =
printf(’ ‘\nConncct to PARSER, Please Wait..... \n"),
ISerror = ISreplace_description("image", "i_image", file_id, empty_descrp,
new_descrp, nothing, empty dcscrp, err_message);
/* HERE, ISfunction call, Connect to parser and generate the */
/* facts file in "imagei_image_facts" */
if (ISerror)
return(ISerror);
else
return(FALSE);

143

} /* End of connect_parser() */

/***************t***/

/* Check the media description by connecting to parser */
/***/

int check_media_descrp()
{
inti=0,
entry;
int error = FALSE;
char *err_message;
while (i < act_media_count && !error)
{
*err_message = \0';
strcpy(data_type, att_array[act_media_list[i]].data_type);
entry = att_array[act_media_list{i]].value_entry;
if[(strcmp(data_type, "image") == 0)

if (sremp(img_record[entry].descrp, " ") !=0)
error = connect_parser(img_record[entry].f_id,
img_record[entry].descrp, err_message);

}

else

if (strcmp(snd_record{entry].descrp, " ") !=0)
error = connect_parser(snd_record[entry].f_id,
snd_record[entry].descrp, err_message);

)
i++;
}

if (error)

printf("\nThe description for media \'%s\ is NOT acceptable!"”,
att_array[act_media_list[i-1]].att_name);
if (error == DESCR_WORD_ERR)

printf("\nThe system cannot understand the word >>%s<<", err_message);
else

if (error == DESCR_STRUCTURE_ERR)

printf('"\nThe system cannot interpret the phase\n >>%s<<", err_message);
else

printf("\nThe program error occur in prolog\n");
printf("\nPlease modify it. Thank you!");
putchar(\007");
while((c=getchar()) != "n")

retun(TRUE);
}
else
retum(FALSE);
} /* End of check_media_descrp() */

144

/**#****#*******/

/* Translate SQL statement to insert a media tuple */
/*#*&#**t******t##*#**/

void gl_insert_media_tuple()

inti=0,
entry;
for (i = 0; i < act_media_count; i++)

strcpy(media_name, att_array[act_media_list[i]].att_name);
get_media_name();
printf(" insertinto %12s (", media_name),
strcpy(data_type, att_array[act_media_list[i}].data_type);
entry = att_array(act_media_list[i]].value_entry;
if (strcmp(data_type, "image") == 0)

{

printf("i_id \n ");

printf("f_id \n ")

printf("descrp ,\n ")
printf("height \n ");
printf("width \n ");
printf("'depth)\n");

printf(" values(™);

printf(" %d \n "
img_record[entry].i_id);

printf("\'%s\'\n ,
img_record[entry].f_id);
printf("\'%s\'\n
img_record[entry].descrp);
printf(" %d \n
img_record[entry].height);
printf(" %d \n "

img_record[entry].width);
printf(" %d);\n\n", img_record[entry].depth);

else

printf("s_id)\ ")
printf("f_id \n ")
printf("descrp \n ")
printf("size \n ")
printf("samp_rate,\n "y,
printf("encoding \n ")
printf("duration ,\n ");
printf(“resolution)\n");
printf(" values (");
printf(" %d \n ",
snd_record[entry].s_id);
printf("\'%s\',\n "

snd_record[entry].f_id);
printf("\'%s\',\n "

145

snd_record[entry].descrp);
printf(" %d \n !
snd
printf(" %d \n "
snd_recordfentry].samp_rate);

record{entry].size);

.

printf(" %d ,\n ,
snd_record[entry].encoding);
printf(" %f \n
snd_record[entry].duration);
printf(" %d);\n\n", snd_record[entry].resolution);

)
pexsknniexsx INSERT MEDIA TUPLE IN INGRES START HERE#*##kskkikbnsns)
je*s#xxxx*xTHE INGRES FUNCTION CALLS WRITE MANULLY ** %k sk
/* #line 2100 "db.sc” */ /* insert */

{
printf("\nINSERTING MEDIA TUPLE NOW. PLEASE WAIT!\n");
[sqInit(&sqlca);
Owritedb("append to ");
Hwritedb(media_name);
Hwritedb(“(");
if (strcmp(data_type, "image") ==0)

Nwritedb("i_id=");

IIsetdom(1,30,4, &img_record[entry].i_id);
Hwritedb(" ,f_id=");

setdom(1,32,0, img_record[entry].f_id);
IIwritedb(" ,descrp=");

[Isetdom(1,32,0, img_record{entry].descrp);
Hwritedb(" ,height=");

IIsetdom(1,30,4, &img_record[entry].height);
Iwritedb(" ,width=");

IIsetdom(1,30,4, &img_record[entry].width);
Owritedb(" ,depth=");

IIsetdom(1,30,4, &img_record[entry].depth);
Hwritedb(")");

}pﬁntf("\n[NSERT AN IMAGE TUPLE COMPLETE!N\n");

else

{

[Iwritedb("s_id=");

IIsetdom(1,30,4, &snd_record[entry].s_id);
[Iwritedb(" ,f_id=");

IIsetdom(1,32,0, snd_record[entry].f_id);
IIwritedb(" ,descrp=");

IIsetdom(1,32,0, snd_record{entry].descrp);
Owritedb(" ,size=");

Isetdom(1,30,4, &snd_record[entry].size);
IIwritedb(" ,samp_rate=");

IIsetdom(1,30,4, &snd_record[entry].samp_rate);
Hwritedb(" ,encoding=");

IIsetdom(1,30,4, &snd_record(entry].encoding);

146

Owritedb(" ,duration=");

Osetdom(1,31,4, &snd_record[entry].duration);
Mwritedb(" ,resolution=");

Isetdom(1,30,4, &snd_record{entry].resolution);
Ilwritedb(")");

printf(""\nINSERT A SOUND TUPLE COMPLETE!"n");

)
[IsqSync(3.&sqlca);

/* # line 2147 "db.sc” */ /* insert */

/**************INSERT MEDLA TUPLE [N INGRES STOP HERE***************/

while ((c = getchar()) '= \n')

}’ /* End of for loop */
} /* End of ql_insert_media_tuple() */

/***#**************#**/

/* Translate SQL statement to insert a standard tuple

/***/

void ql_insert_tuple()

inti=0,

count =0,

entry = 0;
clr_scr();
entry = table_array[table_list[table_cursor]].att_entry;
count = table_array(table_list[table_cursor}].att_count;
printf("\naSQL statement::\n");
printf(" insertinto %12s (",

table_array(table_list[table_cursor}].table_name);

for (i = 1, i < count; i++)

printf("%12s,\n", att_array[entry].att_name);
pnn tf(tr ");
entry = att_array[entry].next_index;

printf("%12s)\n", att_array[entry].att_name);
printf(" values (");
entry = table_array[table_list[table_cursor]].att_entry;
for (i = 1, i < count; i++)
{
strcpy(data_type, att_array{entry].data_type);
if (strcmp(data_type, "c20") == 0)
fﬁntf("\'%s\',\n", c_value[att_array[entry).value_entry]));
else
if (strcmp(data_type, "integer") == 0)
;l)rintf(" %d \n", 1_value[att_array[entry].value_entry));
else
if (sremp(data_type, "float") == 0)
Frintf(" %f \n", f_value[att_array[entry].value_entry));
else

147

if (sremp(data_type, "image”) == 0)
printf(" %d \n", img_value[att_array{entry].value_entry});

else
printf(" %d \n", snd_value[att_array[entry].value_entry});
printf(" 'l);

entry = att_array[entry].next_index;

strcpy(data_type, att_array[entry].data_type);
if (strcmp(data_type, "c20") ==0
printf("\'%s\);\n\n", c_value[att_array[entry].value_entry]);
else
if (strcmp(data_type, "integer") == ()
printf(" %d);\n\n", i_value[att_array(entry].value_entry]);
else
if (stremp(data_type, "float") == 0)
printf (" %f);\n\n", f_value[att_array[entry].value_entry]);
else
if (strcmp(data_type, "image") == 0)
prind(" %d);\n\n", img_value{att_array[entry].value_entry]);
else
printf(" %d);\n\n", snd_value{att_array[entry].value_entry}]);
/************INSER’I’ S"['D TUPLE IN’ IN’GRES START HERE******************/
fr¥dxkdkxkkkxTHE INGRES FUNCTION CALLS WRITE MANULLY # ook ok dokok /
entry = table_array[table_list{table_cursor]].att_entry;
count = table_array(table_list[table_cursor]].att_count;
/* #line 2213 "db.sc" */ /* insert */

{
printf(""\nINSERTING STD TUPLE NOW. PLEASE WAIT!\n");
Msqlnit(&sqlca);
Owritedb("append to ");
Owritedb(table_array[table_list[table_cursor]].table_name);
Iwritedb("(");
for (i = 1; 1 < count; i++)

IIwritedb(att_array[entry].att_name);
Owritedb("="),
strepy(data_type, att_array(entry].data_type);
if (swemp(data_type, "c20") == 0)
Osetdom(1,32,0, c_value[att_array[entry].value_entry]);
else
if (strcmp(data_type, "integer") == 0)
[Isetdom(1,30,4, &i_value[att_array[entry].value_entry]);
else
if (strcmp(data_type, "fToat") == 0)
IIsetdom(1,31,4, &f_value[att_array[entry].value_entry]);
else
if (strcmp(data_type, "image") == 0)
Osetdom(1,30,4, &img_value[att_array[entry].value_entry]);
else
IIsetdom(1,30,4, &snd_value{att_array[entry].value_entry]);
Owritedb(" ,");

148

entry = att_array[entry).next_index;

Hwritedb(att_array(entry).att_name);
writedb("=");
strcpy(data_type, att_array{entry].data_type);
if (strcmp(data_type, "c20") == 0)
IIsetdom(1,32,0, c_value{att_array[entry].value_entry]);
else
if (strcmp(data_type, "integer") == 0)
IIsetdom(1,30,4, &i_value[att_array[entry].value_entry]);
else
if (stremp(data_type, "float") == 0)
[Isetdom(1,31,4, &f_value[att_array[entry].value_entry]);
else
if (strcmp(data_type, "image") == 0)
Osetdom(1,30,4, &img_value[att_array[entry].value_entry]);
else
IIsetdom(1,30,4, &snd_value[att_array[entry].value_entry]);
IIwritedb(")");
IIsqSync(3,&sqlca);
printf("\nINSERT A STD TUPLE COMPLETE!\n");

}

/* # line 2261 "db.sc” */ /* insert ¥/

/****************INSERT S'I'D TUPLE IN’ [NGRES STOP HERE***************/
while ((c = getchar()) !="\n")

if (act_media_count >= 1)
gl_insert_media_tuple();
} /* End of ql_insert_tuple() */

/*****:ll****#***************************#********************************/
/**************************Begin O Tetrieve® % %ok ek ek e dede de e dods el |
/*****#******#*****#**/
/* Procedure initialize the array to empty */
/* Initialize all parameters used in the retrieve to null *

/******************#****t#**t*****/

void init()

inti,j;

icond=0;

geond=0;

numgroup=0;

numcon=0;

for :=0;i<10;i++) {

for (j=0j < 13;j++) {
satt{i].t_name(j] =0;
satt[i].a_name(j} =0;
stab[i].t_name(j] =0;
an{i](jl=0;
t}ab[i][j]=0;

149

for (j=0;j<100;j++) {
con(i][j]='0"

}

/***/

/* This procedure get the table name, attribute name of that table */
/* and then return the attribute type to the user */
/***/
getatttype(tab_name,att_name,att_type)

STR_name tab_name;

STR_name att_name;

STR_name att_type;

int i,j,k,found,count;
found = 0;
for (i=0;i < table_count;i++) {
if (strcmp(table_array(i}.table_name,tab_name)==0) {
j = table_array([i].att_entry;
count = table_array(i].att_count;
i = 1000;
}

)
for (k=0;k < count;k++) {
if (strcmp(att_array[j].att_name, att_name)==0) {
strepy(att_type,att_array[j].data_type),

/* For test only */
printf("\n%s",att_array(j].att_name);
prind('"\t%s\n" ,att_type);
found=1,

k = 1000;

j = att_array(j].next_index;

/***************************#***/

/* procedure search media attribute search for the media attribute in the */
/* Relaton and retum to_att to caller */
/**********t*******t*******#***#******************#*******t*#*t#*tt#*t**/
void search_media_att (m_att)
STR_name m_att;
[
int j;

for (j=0;j<numcon;j++) {

if (contype(jl==1) {
strepy(m_att,att(j]);

if (contype[j]==2) (
strepy(m_att,att[j]);

150

/***/

/* procedure to process the sound condition */
/* put the result in the media tale [number condition] for process later */
/***/
void process_icon3(query_phrase,number)
char query_phrase[DESCRLEN+1};
int number;
{
int id;
char answer, repeat, yes_no_answer (),con_number,medianum,;
int i, query_err, query_len, in_len, f_flag,found;
struct pixrect *pr;
colormap_t cmy;
char descr[DESCRLEN+1];
int show_pid, wait_pid;
union wait status;
int imageno;
printf ("\nEntering RETRIEVE ..\n");
cm.type = RMT_NONE;
cm.length =0;
cm.map[0] = NULL;
cm.map(1] = NULL;
cm.map(2] = NULL;
/* this is absolutely necessary!!!! Otherwise pr_load_colormap might
not allocate storage for the colormap, if the garbage found in
the ¢cm structure seems to make sense. The result, of course, is
segmentation fault. This bug was very hard to find. */

{
/* # line 193 "p2.sc" */ /* create table */

IIsqInit((char *)0);
IIwritedb("create "),
temp_media_name[0]='m’;
medianum=number+48;
temp_media_name[1}=medianum,;
temp_media_name(2]=0;
printf("\n%s" temp_media_name);
Owritedb(temp_media_name);
IIwritedb("(");
writedb("s_id=i4)");
[IsqSync(0,(char *)0);

}
/* # line 194 "p2.sc” */ /* host code */
printf("The query description now is:\n>>%s<<\n\n",query_phrase);
printf ("Searching\n");
/* exec sql declare cl1 cursor for
select i_id, PIXRECT (i_image), COLORMAP (i_image),
DESCRIPTION (i_image)

from emp_imgl
where SHOWS (i_image, query_phrase);

151

The statement is deleted by the preprocessor.

However, the output functions and the selection conditions
associated with the cursor c1 will be used later.

The following declarations are generated: */

int ISerrorcl;
char ISerrmcc1{ERRMLEN+1];
char ISfnc1[FILENAMELEN + 1];
char ISdescrc1[DESCRLEN + 1};
sqlca.sglcode = 0;
ISerrmcc1[0] = \0';
/* exec sql opencl; */
/* exec sql whenever not found go to closecl; */
/* translated by preprocessor into: */
if (ISerrorcl = ISshows_open("image”,"i_image",ISfncl,query_phrase,ISerrmccl))

sqlca.sqlcode = [Serrorct;
if (sqlca.sqlcode == QUERY_WORD_ERR Il
sglca.sglcode == QUERY_STRUCTURE_ERR)
strepy(sqlca.sqlerrm.sqlerrmc,ISerrmec1);

/* end of preprocessor output for open c1 */
if (!sqlca.sglcode)
{

f flag=0;
for (i)

/* exec sql fetch cl

into :imageno, :pr, :cm, :descr;
This is translated by the preprocessor into: */

if(ISerrorc1=ISshows_fetch("image","i_image",ISfnc1,query_phrase,ISerrmccl))
sqlca.sqlcode = ISerrorcl;

if (sqlca.sqlcode == NOT_FOUND)
goto closecl;

f flag=1;

if (!sqlca.sqlcode)

/* # line 653 "pl.sc" */ /* select */
strcpy (table_array(table_index].table_name, tab[number]);
found = check_table_name();
table_cursor = table_entry;
strcpy(media_name,att[number]);
get_media_name(); '
printf("%s",media_name),

{
Osqlnit(&sqlca);
IIwritedb("retrieve(imageno=");
Hwritedb(media_name);
IIwritedb(".s_id,ISdescrc1=");
Owritedb(media_name);
Owritedb(".descrp)w");

152

Hwritedb("here ");
Owritedb(media_name);
ITwritedb(".f_id=");
Isetdom(1,32,0,1Sfncl);
ITwritedb(" ");
IIsqRinit(&sqlca);
if (Ilerrtest() == 0) {
if (IInextget() '=0) {
[Iretdom(1,30,4,&imageno);
Iretdom(1,32,0,1Sdescrcl);
} /* IInextget */
IIsqFlush(&sqlca);
} /* llerrtest */

}
/* #line 657 "pl.sc" */ /* host code */
if (!sqlca.sqlcode)
{

ISerrorcl = ISdescription (ISfncl, ISdescrcl, descr);
sglca.sqlcode = ISerrorcl;

else
sqlca.sqlcode = PROGRAM_ERR;

/* end of preprocessor output for fetch c1 */
if (sqlca.sqlcode)
goto closecl;
id = imageno;
/* # line 270 "p2.sc” */ /* insert */

IIsqInit((char *)0);
Iwritedb("append to ");
Hwritedb(temp_media_name),
Owritedb("(s_id=");
IIsetdom(1,30,4,&id);
[Twritedb(")");
IIsqSync(3,(char *)0);

)
/* # line 272 "p2.sc" */ /* host code */
} /* end for loop of cursor c1 */
closecl:
/* exec sql close cl; */
/* translated by the preprocessor into: */
sqlca.sqlcode=ISshows, close("image","i_image" ,ISfnc1,query_phrase,ISerrmccl);
/* # line 693 "pl.sc” */ /* host code */
} /* end of successful open c1; correct query descripton */
} /* end of preprocessor declaration block */
if (sqlca.sqlcode == QUERY_WORD_ERR)

printf("The system cannot understand the word >>%s<<\n",

sqlca.sqlerrm.sqlerrmc);
query_err = 1;

153

}
if (sqlca.sqlcode == QUERY_STRUCTURE_ERR)

printf("The system cannot interpret the phrase\n>>\n%s<<\n",
sqlca.sqlerrm.sqlerrmc);
query_err = 1,

if (query_err)
{

}

}
if (!f_flag)
printf("There are no media matching that query description.\n");
if (sqlca.sqlcode)
printf("An error has occured while accessing the database\n\
sql error code: %d\n", sqlca.sqlcode);
clr_scr();
} /* end of retrieve_photo () */

/****************#**********************#****************************t**/

/* procedure to process the image condition */
/* put the result in the media tale [number condition] for process later */
/**#**/
void process_icon2(query_phrase,number)
char query_phrase[DESCRLEN+1};
i{nt number;
int id;
char answer, repeat, yes_no_answer (),con_number,medianum;
int i, query_err, query_len, in_len, f_flag,found;
struct pixrect *pr;
colormap_t cm;
char descr{DESCRLEN+1];
int show_pid, wait_pid;
union wait status;
int imageno;
printf ("\nEntering RETRIEVE ..\n");
cm.type = RMT_NONE;
cm.length = 0;
cm.map[0] = NULL,;
cm.map[1] = NULL;
cm.map{2] = NULL;
/* this is absolutely necessary!!!! Otherwise pr_load_colormap might
not allocate storage for thie colormap, if the garbage found in
the cm structure seems to make sense. The result, of course, is
segmentation fault. This bug was very hard to find. */

/* # line 193 "p2.sc” */ /* create table */

[IsqInit((char *)0);
IIwritedb("create ");

154

temp_media_name{0]="m",
medianum=number+48;
temp_media_name{1]}=medianum;
temp_media_name[2]=0:
printf("\n%s" ,temp_media_name);
IIwritedb(temp_media_name);
[Twritedb("(");
[Iwritedb("i_id=14)");
IIsqSync(0,(char *)0);

)
/* # line 194 "p2.sc" */ /* host code */
printf("The query description now is:\n>>%s<<\n\n",query_phrase);
printf ("Searching\n");
/* exec sql declare cl cursor for
select i_id, PIXRECT /i .image), COLORMAP (i_image),
DESCRIPTION (i_image)
from emp_imgl
where SHOWS (i_image, que: y_phrase);
The statement is deleted by the preprocessor.
However, the output functions and the selection conditions
associated with the cursor c1 will be used later.
The following declarations are generated: */

int ISerrorcl;
char ISerrmccl[ERRMLEN+1];
char ISfnc1[FILENAMELEN + 1];
char ISdescrc1[DESCRLEN + 1];
sqlca.sqlcode =0;
ISerrmcc1{0] = "\0';
/* exec sql open cl; */
/* exec sql whenever not found go to closecl; */
/* wanslated by preprocessor into: */
if (ISerrorcl = ISshows_open("image","i_image",ISfnc1,query_phrase,ISerrmccl))

{
sqlca.sqlcode = ISerrorcl;
if (sqlca.sqlcode == QUERY_WORD_ERR |
sqlca.sqlcode == QUERY_STRUCTURE_ERR)
strepy(sqlca.sqlerrm.sqlerrmce,ISerrmcc1);

/* end of preprocessor output for open c1 */
if (!sqlca.sglcode)

f_flag =0;
Eor G

/* exec sql fetchcl
into :imageno, :pr, :cm, :descr;
This is translated by the preprocessor into: */
if (ISerrorcl =
ISshows_fetch("image","i_image",ISfnc1,query_phrase,ISerrmccl))
sqlca.sgicode = ISerrorcl;

155

if (sqlca.sqlcode == NOT_FOUND)
goto closecl;

f flag=1;

if (!'sqlca.sqlcode)

/* # line 653 "pl.sc” */ /* select */
strcpy (table_array[table_index].table_name, tab[number]);
found = check_table_name();
table_cursor = table_entry;
strcpy(media_name,att[number]);
get_media_name();
printf("%s",media_name);

{
IsqInit(&sqlca);
[Iwritedb("'retrieve(imageno=");
Owritedb(media_name);
IIwnitedb(".i_id,ISdescrc1=");
Iwritedb(media_name);
Owritedb(".descrp)w");
Owritedb("here ");
Hwritedb(media_name);
[Iwritedb(".f_id=");
Osetdom(1,32,0,ISfncl);
[writedb(" ");
IIsqRinit(&sqlca);
if (Ilerrtest() == 0) {
if (Ilnextget() !'=0) {
IIretdom(1,30,4,&imageno);
IIretdom(1,32,0,ISdescrcl);
} /* Ilnextget */
IIsqFlush(&sqlca);
} /* Ilerrtest */

)
/* # Line 657 "pl.sc” */ /* host code */
if (!sqlca.sglcode)
{

if (!(ISerrorcl = ISpixiect (ISfncl, ISdescrci, &:nr)))
if (1(ISerrorcl = IScolormap (ISfncl, ISdescr~1, &cm)))
ISerrorcl = ISdescription (ISfncl, ISdescrc, descr);
s;qlca.sqlcode = [Serrorcl;

clse
sqlca.sqlcode = PROGRAM_ERR;

/* er- of preprocessor output for fetch c1 */
if (sqlca.sqlcode)
goto closecl;
id = imageno;
/* # line 270 "p2.sc" */ /* insert */

{
MIsqInit((char *)0);

156

[writedb("append to ");
[Owritedb(temp_media_name);
[writedb("(i_id=");
IIsetdom(1,30,4,&id);
[Twritedb("”)");
[IsqSync(3,(char *)0);

}
/* # line 272 "p2.sc™ */ /* host code */
} /* end for loop of cursor cl */
closecl:
/* exec sql close c1; */
/* translated by the preprocessor into: */
sqlca.sqlcode =
ISshows_close("image"”,"i_image",1Sfnc1,query_phrase,ISerrmccl);
/* # line 693 "pl.sc" */ /* host code */
} /* end of successful open c1; correct query description */
} /* end of preprocessor declaration block */
if (sqlca.sqicode == QUERY_WORD_ERR)

printf("The system cannot understand the word >>%s<<\n",
sqlca.sqglerrm.sqlerrmc);
query_err=1;

}
if (sqlca.sqlcode == QUERY_STRUCTURE_ERR)

printf("The system cannot interpret the phrase\n>>\n%s<<\n",
sqlca.sqlerrm.sglerrmc);

query_err = |;
if (query_err)
{
}

}
if (!f_flag)
printf("There are no media matching that query description.\n");
if (sqlca.sqlcode)
prindf("" An error has occured while accessing the database\n\
sql error code: %d\n", sqlca.sqlcode);
clr_scr();
} /* end of retrieve_photo () */

/*****t********#****##********#*************************#***************/

/* present photo the the user present number and description too

/*#***t#***’***##********************##*************************t*******/

present_photo (number, pixels, colormap, description)
int number;

struct pixrect *pixels;

colormap_t *colormap;

char *description;

char answer, yes_no_answer ();

157

int i, error, pid;
Frame frame;
Canvas canvas;
Pixwin *pw;
printf ("\nThe following photo has been found:\n\n");
printf ("Number: %d\n", number);
printf ("Description:\n>>%s<<\n\n", description);
printf ("Do you want to see the photo? ");
answer = yes_no_answer ();
if (answer =='n’)
return (0);
else {
pid = fork ();
if (pid < 0) {
printf ("Starting display process failed\n\n");
return (-1);

}

if (pid > 0) /* this is parent process */
return (pid);

if (colormap == NULL) {
printf ("Cannot show it - no colormap.\n\n");
exit (1);

}
frame = window_create (NULL, FRAME,
FRAME_LABEL, "IMAGE",
FRAME_NO_CONFIRM, TRUE,
WIN_WIDTH, pixels->pr_size.x + 20,
WIN_HEIGHT, pixels->pr_size.y + 50,
WIN_ERROR_MSG, "Cannot create window.", 0);
if (frame == NULL) {
printf ("Cannot create frame\n\n");
exit (1);
)
canvas = window_create (frame, CANVAS,
WIN_WIDTH, pixels->pr_size.x,
WIN_HEIGHT, pixels->pr_size.y, 0);
if (canvas == NULL) {
printf ("Cannot create canvas\n\n");
exit (1);
}
pW = canvas_pixwin (canvas);
if (pw == NULL) {
printf ("pixwin is NULL\n\n");
exit (1);)

}
window_fit (frame);
if (colormap->type == RMT_EQUAL_RGB
&& colormap->length > 0) {
pw_setcmsname (pw, "photo");
if (error = pw_putcolormap (pw, 0, colormap->length,
colormap->map[0], colormap->map(1], colormap->map(2])) {

158

I _

prind ("Cannot load colormap.\n");
printf (“error code = %d\n", error);
printf ("type = %d\nlength = %d\n", colormap->type, colormap->length);
/* for (i = 0; i < colormap->length; i++) {
printf (" %x %x %x\n", *(colormap->map(0] + i),
*(colormap->map[1] + i), *(colormap->map(2] + 1));
} */
exit (1);

}

else {
printf ("Cannot show photo - colormap not appropriate.\n\n");
exit (1): !

if (pw_write (pw, 0, O, pixels->pr_size.x, pixels->pr_size.y,
PIX_SRC,
pixels, 0, 0))
printf ("Cannot write image to screen.\n\n");
else
window_main_loop (frame);
window_destroy (frame);

exit (0);
} /* of (answer =y"), showing the photo */
return (0);
/***/
/* This procedure search through the media relation and get the */
/* file name that match with the result table and send to the */
/* present photo procedure */

/***#**#************/

display_photo (imageno,tupleno)
int imageno;
int tupleno;

char answer, repeat, yes_no_answer ();
char query_phrase[DESCRLEN+1},
in_phrase[DESCRLEN+1};
int i=0,j=0, k, c, pid, query_err, query_len, in_len, f_flag,look_more=0;
struct pixrect *pr;
colormap_t cm; .
char ISfn1(FILENAMELEN+1];
char desct[DESCRLEN+1];
int show_pid, wait_pid; !
int ISerror;
STR _path file_name;
char ISdescr1[DESCRLEN+1];
cm.type = RMT_NONE;
cm.length =0;
cm.map(0] = NULL,;
cm.map(1) = NULL;
cm.map[2] = NULL;

159

/* this is absolutely necessary!!!! Otherwise pr_load_colormap might
not allocate storage for the colormap, if the garbage found in
the cm structure seems to make sense. The result, of course, is
segmentation fault. This bug was very hard to find. */
/* exec sql select PIXRECT (i_image), COLORMAP (i_image),
DESCRIPTION (i_image)
into :pr, :cm, :descr

from image
where i_id = :imageno;
This Image-SQL statement is transformed into the following
sequence of statements by the preprocessor:
*/
{
[IsqInit ((char *)0);
writedb("retrieve unique(c=(count(");
Owritedb("'result");
Hwritedb(".");
Owritedb(satt[imageno].a_name);
[Iwritedb(")))");
OsqRinit((char *)0);
if (Ilerrtest()==0) {
if (IInextget() !=0) {
IIretdom(1,30,4,&c);

}
lsqFlush((char *)0);
)

if (HcsrOpen((char *)0,"cursor_outputl”,"db1",0,media_name) !=0) {
Owritedb("retrieve(ISfn1=");
IIwritedb(media_name);
Owritedb(".");
[Iwritedb("f_id,ISdescr1=");
Owritedb(media_name);
Hwritedb(".descrp");
IIwritedb(")where ");
Owritedb(media_name);
Owritedb(".i_id=");
Hwritedb("result.");
IIwritedb(satt{im.geno].a_name);
HcsrQuery ((char *)0);
} /* lcsropen */
while (look_more==0) { '
if (HesrFetch((char *)0, "cursor_outputl”,"db1") !=0) {
csrRet(1,32,0,1Sfnl);
IIcsrRet(1,32,0,ISdescrl);
for (i=0;i<MAX_PATH+1;i++) {
if ISfn1[i]==32) {
file_name(i]=0;
} _

160

else {
file_name[i]=ISfnl{i};

}
} /* end for */
printf("\nRecord no %d filename :%s:",j+1, ISfnl),
if ((img_file=fopen(file_name,"r"))==NULL)
{

printf("\n%s", file_name);
prind('"\nThe file cannot be opened !"\n");
putchar(\007");

else {
pr=pr_load(img_file, &cm);
if (pr==NULL) {
printf("\nThe file does not contain proper image");
putchar(\007");
}

else {
printf("\nShow image");
present_photo(j+1,pr,&cm,ISdescrl);
} /* end else */
} /* end else */
fclose(img_file);

)
printf("\n");
HcsrEFetch((char *)0);
j++;
if G==c¢) (
look_more = 1;

};
)
[IcsrClose((char *)0,"cursor_outputl”,"db1");
}

/***/

/* This procedure search through the media relation and get the */
/* file name that match with the result table and send to the */
/* play sound procecre */

/*******#******##***#*******t***/

display_sound (soundno,tupleno)
int soundno;
i{nt tupleno;
char answer. repeat, yes_no_answer ();
char query_phrase[DESCRLEN+1],
in_phrase{DESCRLEN+1];
int i=0,j=0, k, ¢, pid, query_err, query_len, in_len, f_flag,look_more=0;
int show_pid, wait_pid,;
int 1Serror;
STR_path file_name;
char ISfnl{FILENAMELEN+1];

161

char ISdescr1[DESCRLEN+1];
{
Osqlnit ((char *)0);
IIwritedb("retrieve unique(c=(count(");
Owritedb("result");
Owritedb(".");
[writedb(satt[soundno].a_name);
Mwritedb(")))");
OsqRinit((char *)0);
if (Lerrtest)==0) {
if (Mnextget() !=0) {
IIretdom(1,30,4,&c);

}
IIsqFlush((char *)0);

}
if (IcsrOpen((char *)0,"cursor_outputl”,"db1",0,media_name) !=0) {
Owritedb("'retrieve(ISfn1=");
Owritedb(media_name);
Mwritedb(".");
ITwritedb("f_id,ISdescrl=");
Owritedb(media_name);
1iwritedb(".descrp™);
IIwritedb(")where ");
Owritedb(media_name);
Mwritedb(".s_id=");
Owritedb("result.”);
IIwritedb(satt[soundno}.a_name);
HcsrQuery ((char *)0);
} /* lcsropen */
while (look_more==0) {
if (ecsrFetch((char *)0, "cursor_outputl”,"db1") 1= 0) {
HcsrRet(1,32,0,ISfnl);
IIcsrRet(1,32,0,ISdescrl);
for (1=0;i<MAX_PATH+1;i++) {
if ASfn1[i]==32) {
file_name[i]=0;

else (
} file_name[i]=ISfn1[i];

}
printf("\nRecord no %d " j+1);
printf("\nPlay the sound ? (y/n) :: ");
if (yes_no_answer() =='y") {
pla}y_sound(pc.ﬁlc_namc);

printf("\n");
OcsrEFetch((char *)0);
j++;

if (j==¢) {

162

look_more = 1;

}
} /* ICSRFECCH */
} /* end while */
IIcsrClose((char *)0,"cursor_outputl”,"db1");
} /* end of display_sound () */

/***/

present_photo2 (number, pixels, colormap, description)
int number;
struct pixrect *pixels;
colormap_t *colormap;
char *description;
{
char answer, yes_no_answer ();
int i, error, pid;
Frame frame;
Canvas canvas;
Pixwin *pw;
printf ("Number: %d\n", number);
printf ("Description:\n>>%s<<\n\n", description);
answer =y’
if (answer == 'n’)
return (0);
else {
pid = fork ();
if (pid < 0) {
printf ("Starting display process failed\n\n");
return (-1);

if (pid > 0) /* this is parent process */
return (pid);

if (colormap == NULL) {
printf ("Cannot show it - no colormap.\n\n");
exit (1);

}
frame = window_create (NULL, FRAME,
FRAME_LABEL, "IMAGE",
FRAME_NO_CONFIRM, TRUE,
WIN_WIDTH, pixels->pr_size.x + 20,
WIN_HEIGHT, pixels->pr_size.y + 50,
WIN_ERROR_MSG, "Cannot create window.", 0);
if (frame == NULL) {
printf ("Cannot create frame\n\n");
exit (1);

}
canvas = window_create (frame, CANVAS,
WIN_WIDTH, pixels->pr_size.x,
WIN_HEIGHT, pixels->pr_size.y, 0);
if (canvas == NULL) {
printf ("Cannot create canvas\n\n");

163

exit (1);

PW = canvas_pixwin (canvas),
if (pw == NULL) {
printf ("pixwin is NULL\n\n");
exit (1);

}
window_fit (frame);
if (colormap->type == RMT_EQUAL_RGB
&& colormap->length > 0) {
pw_setcmsname (pw, "photo");
if (error = pw_putcolormap (pw, 0, colormap->length,
colormap->map(0], colormap->map{1], colormap->map(2])) {
printf ("Cannot load colormap.\n");
printf ("error code = %d\n", error);
printf ("type = %d\nlength = %d\n", colormap->type, colormap->length);
/* for (i = 0; i < colormap->length; i++) {
printf (" %x %x %x\n", *(colormap->map[0] + 1),
*(colormap->map[1] + i), *(colormap->map[2] + 1));
} ¥
exit (1);

else {

printf ("Cannot show photo - colormap not appropriate.\n\n");
exit (1);

if (pw_write (pw, 0, 0, pixels->pr_size.x, pixels->pr_size.y,
PIX_SRC, pixels, 0, 0))
printf ("Cannot write image to screen.\n\n");
else
window_main_loop (frame);
window_destroy (frame);
exit (0);
} /* of (answer ="y"), showing the photo */
return (0);

/************************#*********************#******************t*****/

/* This procedure create the embeded psudo extended SQL for user
/* display on the screen

/**************************##***/

‘{/oid processquery2()

char a;
int i,j,k;
STR_name media_att;
int medianum=0;
int image_select=0; /* For the choose of the extra attribute of type image */
int snd_select=0; /* For the choose of extra type sound */
/* For test purpose only */
for (j=0;j<numcon;j++) {

164

printf("\nGroup %d Att %s Atttype %d Con %s",att_groupl[jl.att{j},contypefjl,con[j]);
if (contyne[jl==1) {
printf("nCREATE TABLE M%d AS SELECT i_id FROM %s WHERE
CONTAIN (%s)", j,attfjl,con[j]);
image_select =1;

if (contype(j]==2) {
printf("\nCREATE TABLE M%d AS SELECT s_id FROM %s WHERE
CONTAIN (%s)", j.att{j],con(jl);
snd_select=1;

}

}
/* End test */
printf("\nProcess Ingres Interface in the database");
if (icond==0) {
printf("\nProcess only formatted data");
printf("\n\nExec SQL Select ");
for (i=0;i < n;i++) {
printf("%s.%s" satt[i].t_name,satt[i].a_name);
if (i <n-1) {
pl’intf(",");

)
} /* End for */
printf("\nFrom ");
for (i=0;i < m;i++) {
printf("%s",stab[i].t_name);
if (<m-1) {
prind (",

}
if (cond==1) {
printf("\nWhere ");
if (numcon == 0) {
gcond=0;
numgroup=0;

}
if (m>1) {
prindf("(%s) and ", join_condition);

if (numgroup >=1) {
\ printf("(");

k=0;
if (m>1) {
printf("(");

}

if (gcond==1) {

for (i=0;i<=numgroup;i++) (

printf("\nGroup %d, Begin %d, End %d\n", i,group_count[k].begingroup,
group_count{k].endgroup);

for (j=group_count[k].begingroup;j <= group_count[k].endgroup;j++) {

165

if (contypefjl==1) {
printf("Contain (%s.%s,%s) ",tab[j}.att[j],con[j]);

}

if (contype[jl==2) {

printf("Contain (%s.%s.%s) ",tab[jl,attj],con[j]);
}

else {
printf(" %s.%s %s ".tab[j],att[j],con[jl);
}

if (j!=group_count(i].endgroup) {
printf(" and ");

)
k=k+1;
if (numgroup >=1) {
printf(")");
if (k <= numgroup) {
printf(" or (");
}

}
}

)

if ((gcond==1)&&(numcon == 1)) {
if (contype[0]==1) {
printf("Contain (%s.%s,%s) ",tab[0],att[0],con[0]);
}

else {
printf(" %s.%s %s ",tab[0],att[0],con{0]);

}
if (m>1) {
printf(")");

} /* End if condition */
else

for (i=0;i <= numgroup;i++) {
printf("\nprocess group %d", i);

printf("\nExec sql create table G%d as JOIN f%d and m%d ", i,i,i);
printf("\nCREATE TABLE {%d as SELECT ".i);

for (i=0;i<n-1;i++) {
printf("%s.%s, ",sat'{i].t_name,satt[i].a_name);

printf("%s.%s ",satt[i].t_name,satt[i].a_name);
printf("\nFrom "),
for (j=0;j < m;j++) {
printf("%s",stab[j}.t_name);
if G <m-1) {
printf(","); .
}

166

} /* End from */
printf ("\nWhere ");
if (m>1) {
printf("(%s) and (", join_condition);

for (j=group_count(i].begingroup;j < group_count{i}.endgroup;j++) {
if (contype[jl==1) {
printf(" (%s in select i_id from M%d) ",att[jl,j);

}
if (contypelj]==2) {

printf(" (%s in select s_id from M%d) ",att[jl.j);
}

else {
printd(" %s %s ",att{j],con[j]);

}

if (j!'=group_count[i].endgroup-1) {
printf(" and ");
}

}
k=k+1;
if (numgroup >=1) {
printt(")");
if (k <= numgroup) {
;})rintf(" or(");

}

}
if (m>1) {
I}m'ntf(")"

}
if (numgroup > 0) {
printf ("\nEXEC SQL CREATE TABLE OUTPUT AS SELECT ALL FROM ");
for (i=0;i< numgroup;i++) {
printf ("G%d or ",i);

}
printf("G%d", 1);
) /* End if more than one group */
/* Print out the data */
prindf("\nSELECT ");
for (i=0;i<n-1;i++) {
printf("%s, ",satt[i].a_name);

printf("%s ",satt[i].a_name);

prindf("\nFROM OUTPUT");
/**#****##t#***t*#**ﬁ#tt*#***#******#***********************************/
/* This procedure create the embeded psudo extended SQL for user */
/* display on the screen */

/*#**tt*t*t*****t#*****tt*t****************************#***#************/
void processquery()

167

char a;
int i,j,k;
int medianum=0;
number_media=0;
printf('"\n\nSelect ");
for (i=0;1 < n;i++) {
printf("%s.%s" satt[i].t_name,sartt{i].a_name);
if i <n-1) {
;})rimf(",");

}
printf("\nFrom "),
for (i=0;1 < m;i++) {
printf("%s",stab[i].t_name);
if i<m-1) {
;})rintf(",");

}
if (cond==1) {
printf("\nWhere ");
if (numcon == 0) {
gecond=0;
numgroup=0;

if (numgroup >= 1) {
printf("(");

k=0;
if (gcond==1) {
for (i=0;i<=numgroup;i++) {
for (j=group_count{k].begingroup;j < group_count{k].endgroup;j++) {
if ((contype[j}==1)li(contype[j]==2)) {
printf("Contain (%s,%s) ",att(j].con(j]);
strepy(media_att{[number_media],att[j]);
number_media=number_media+1;

else {
printf(" %s %s ",att{j],con{j});

if (j!=group_count[i].endgroup-1) {
printf(" and "),

} .
} /* END FOR] */
k=k+1;
if (numgroup >= 1) {
printf(")");
if (k <= numgroup) {
printf(" or (");
}

168

} /* End second for */
}
/* only one condition process */
if (numgroup == 0) {
if ((contype[0]==1)li(contype[0]==2)) {
printf("Contain (%s,%s) ".att[0],con[0]);
strcpy(media_att{number_media},att[0]);
number_media=number_media+1;
}
else {
prntf(" %s %s ",att[0},con{0});

} /* End if condition */

processquery2();
/***/
/* This procedure get the query description for the media attribute */
/* from the user phrase by phrase */

/********************#**/
char process_icon()

char answer, repeat, yes_no_answer ();
char query_phrase[DESCRLEN+1],
in_phrase[DESCRLEN+1];
int 1, query_err, query_len, in_len, f_flag;
char descr[DESCRLEN+1];
int show_pid, wait_pid;
int imageno;
icond = 1;
do
{
query_err =0,
query_len =0;
query_phrase[0] = "\0’;
printf("\nPlease enter your query description (one phrase per line;\n\
end with empty line):\n");
c[io /* until query_phrase input */

i=0;

while ((in_phrase[i++] = getchar()) '="\n' && 1 < 127);
if (in_phrase[i-1] !="\n")

(

in_phrase[i-1] = \n}
printf ("The phrase is too long, it will be shortened\n");
while (getchar () !="\n");

} /*Endif*/

in_phrase[i] = \0';

if ((in_len=i)>1)

if (query_len + in_len < DESCRLEN)

169

{
strcat(query_phrase,in_phrase);
query_len = query_len + in_len;
} /* End if */

else

prind("The last phrase extended beyond the maximum\
description length \nit will be ignored\n™);
break;
} /* Endelse */
} /*Endif*/
if (!query_len)
printf("\nAn empty string is not allowad 2s a query description.\n\
Please type at least a single word:\n");
} /* End do */
while ((in_len > 1) Il 'query_len); /* end query_phrase input */
print("The query description now is:\n>>%s<<\n\n",query_phrase);
} while (query_err);
strcpy(con[numcon],query_phrase);
if (contype[numcon]==1) {
process_icon2 (query_phrase,numcon);

if (contype[numcon]==2) {
process_icon3 (query_phrase,numcon);

/***********************#***/

/* This procedure accumulate the condition from the user and form */
/* the group condition of and and or */
/* Mean condition that compose of disjunctive normal form *

/*******t***/

void gcondition()

int endgroup,i,more,found=FALSE;
char ans,ans2;
geond=1;
endgroup = 0;
more = (;
numcon=0,
numgroup=0;
group_count[0].begingroup = 0;
while (more !=1) { .
while (endgroup != 1) {
t;or (i=0;i < att_index;i++)
if(m>1){
printf("\nEnter table name ");
gets(tab[numcon});
strcpy (table_array(table_.ndex].table_name, tab{numcon]),

170

r“j

if (m==1) {
strepy (tab[numcon}, stab{0].t_name);

printf("\nEnter attribute ");

gets(att[numcon});
att_group[numcon]=numgroup;

getatttype{tab[numcon], att[numcon],atttype[numcon});
if (stremp(atttype{numcon], image")==0)

contype[numcon]=1;
process_icon();

else if (strcmp(atttype[numcon],"sound”)==0)

contype{numcon]=2;
process_icon();

else {
printf("Enter the condition \n");
gets(con[numcon});
contype[numcon]=0;
printf("\nWhere %s %s" ,att{[numcon],con[numcon]);
)

numcon=numcon+1;

printf("\nEnd group 7");

ans=yes_no_answer();

if ((ans==121)li(ans==89)) {
endgroup=1;
printf("\nGroup %d",numgroup);
pn&t{)("\nCondition %d" ,numcon);
1=600;

}
} /* End for */
} /* END WHILE */
printf("\nEnd condition ?");
ans=yes_no_answer();
if ((ans==121)il(ans==89))
{

group_count{numgroup].endgroup = numcon-1;
endgroup=1,

more = 1;

i=0;

}

else |
more =0,
endgroup-=0;
more = 0;
i=0;
group_count[numgroup).endgroup = numcon-1;
numgroup=numgroup+1;
group_count[numgroup].begingroup=numcon;

171

} /* End more */

/*********#**lk/

/* process the array of the variable and generate the query of the SQL */
/* to process in procedure join */
Rk e o o o R RS R ks R R S R R R R RR kR KRR R K KRR KR ok ok ok ok kol ok ok |

void processcondition()

char ans2,a;

int i,j;

cond=l1;

geond=0;

printf("\nGroup condition ? (y/n) ");
ans2=yes_no_answer();

if ((ans2==121)l{(ans2==89))

gecond=l;
geondition();

else
{
geond=0;
f(m>1){
printf("\nEnter table name ");
gets(tab[0]);
)

if (m==1) {
strcpy (tab[0], stab[0].t_name);

prind('"\nEnter attribute name ");
gets(art[0]);
printf("\n%s %s %s", tab[0], att[0], autype[0]);
getatttype(tab(0],att{0],atttype[0]);
i(f (strcemp(atttype[0],"image")==0)

contype(0]=1;
process_icon();

)
{clse if (strcmp(atttype[0],"sound")==0)

contype(0]=2;
process_icon();

else {
printf("Enter the condition \n");
gets(con[0]);
contype([0]=0;
printf("\nWhere %s",con{0]);
}
)

172

/*#**##*********/

/* This procedure print the atribute name of the table assign to */
/***/
void p_att(tab_name)
STR_name tab_name;
{
int i,j;
for (i=0;i<= table_count;i++) {
if (strcmp(table_array[i].table_name,tab_name)==0) {
X =1
y = table_array[i].att_enwy;
printf("\nTable Name: %s\n" table_array[i].table_name); /* print table name */
printf("\n**Attribute****Data Type**");
while (y I=-1) {
printf(""\n%13s %s",att_array(y].att_name,att_array[y].data_type);
y = att_array[y].next_index;
} /* End while y!=-1 */
if (y==-1) {
printf("\n");
i=500;
} /* Exit loop */
} /*Endif */
} /* End for */

/***/

/* Generate the result table for retrieval process */
/* This procedure process the query and condition */
/* By using the select_array and conditon_array */
/* also group_array */

/***/
void gl_retrieve()

int i,j,k,1;
char grnum,medianum,operator{4];
i=0; /* set up index to 0 */
/* Below is the embeded C code for the SQL C for INGRES */
/* This is equivalent to the SQL query */
/* exec sql select (varl, var2, ...)
from (tablel, table2,...)
. where (condition1 and/or condition2 and/or ...);
/
k=0;
i=0;
i=0;
1=0;
if(gcond==1) {
for (1=0;i<=numgroup;i++) {
for (j=group_count[i].begingroup;j<=group_count[i].endgroup;j++) {
printf("Test group %d, numcon %d, condition %s", i,j,con[jl);

173

} /* end if gcond */
IIsqInit((char *)0);
ITwritedb("'retrieve into result(");
for (i=0;i<n-1;i++) {
Nwritedb(satt[i].t_name);
Nwritedb(".");
IIwritedb(satt[i].a_name);
Mwritedb(",");

} /* end for */
[Iwritedb(satt{i].t_name);
Owritedb(".");
Owritedb(satt{i].a_name);
IIwritedb(")");
if (cond==0) {

if (m>1) {

Owritedb("where(");
HIwritedb(join_condition);
Owritedb(™)");

}

if (cond==1) {

[Iwritedb("where(");

if (m>1) {

Owritedb("(");
IIwritedb(join_condition);
Owritedb(")");
Owritedb(" and ");

}
if (gcond == 1) {
/* for (i=0;i<=numgroup;i++) { *//* Test for 1 group */
for (j=0;j<group_count[0].endgroup;j++) {
prind('"\nThis is test");
if (contype[j]==0) {
Owritedb(tab(j]);
IIwritedb(".");
Owritedb(att(j]);
Owritedh(con(j]);
writedb(" and ");
} /* endif */
if (contype[j]==1) {
HOwritedb(tab{j]);
IIwritedb(".");
Owritedb(att(j]);
Owritedb("=");
temp_media_name[0]="'m’;
medianum=j+48;
temp_media_name[1]=medianum;
temp_media_name[2]=0;
Owritedb(temp_media_name);
IIwritedb(".");

174

Owritedb("i_id");
Owritedb(" and “);

}
if (contypel[jl==2) {
Owritedb(tab[j]);
[Iwritedb(".");
[writedb(att]j]);
Owritedb("=");
temp_media_name[0]=m’;
medianum=j+48;
temp_media_name[1]=medianum;
temp_media_name[2]=0;
Owritedb(temp_media_name);
[Iwritedb(".");
Mwritedb("s_id");
Owritedb(” and ");

}
} /* end for j*/
j=group_count[0].endgroup;
if (contype[j}==0) {
Mwritedb(tab(j]);
[Twritedb(".");
Owritedb(att(j]);
Owritedb(con[j]);
} /* end if */
if (contype[jl==1) {
Owritedb(tab(j]);
IIwritedb(".");
Owritedb(att(j]);
Owritedb("=");
temp_media_name[0]="m";
medianum=j+48;
temp_media_name[1]=medianum;
temp_media_name(2]=0;
writedb(temp_media_name);
IIwritedb(".");
Owritedb("i_id");

)
if (contype[j}==2) {
[Owritedb(tab(j]);
Owritedb(".");
[writedb(att(j]);
Uwritedb("'="); ‘
temp_media_name[0]="m’;
medianum=j+48;
temp_media_name[1]=medianum;
temp_media_name{2]=0;
Mwritedb(temp_media_name);
[writedb(".");
%Iwritedb("s__id");

175

} /* end if gcond */
/* if no group */
if (gcond==0) {
if (contype[0]==0) {

[Iwritedb(tab{0]);
IIwritedb(".");
Owritedb(an[0]);
Hwritedb(con[0]);
} /* end if */
if (contype[0]==1) {
Owritedb(tab{0]);
IIwritedb(".");
Iwritedb(att[0]);
Owritedb("=");

temp_media_name[{0]='m/;

medianum=0+48;

temp_media_name(1}=medianum;

temp_media_name[2]=0;

Owritedb(temp_media_name);
IIwritedb(".");
Mwritedb("i_id");

}
if (contype[0]==2) {

writedb(tab[0]);

IIwritedb(".");

Nwritedb(att[0});

Hwritedb("=");
temp_media_name[0]="m’;
medianum=0+48;
temp_media_name({1]=medianum;
temp_media_name(2]=0;
writedb(temp_media_name);

[Iwritedb(".");

Hwritedb("s_id");

}
} /* end if no group */
Iwritedb(")");

} /* end if condition */

IIsqSync(0,(char *)0);
/****#*****#t***/
/* This procedure set the cursor point to result table and print */
/* After finish the formatted data then go to the media data */
/* The media data begin with image and then sound *f

/#ttt*t‘#*‘tt#t#t#*tt*tt**##***********#******t****t**#**********#******/
void ql_printdata()
int ¢=0,j=0,k=0,1=0,temp;

char char_value(21],a;
char file_name[20];

176

int integer_value,media_value,found,medial _value;
float real_value;
int i=0,select=0;
/* # line 3169 "db.sc" */ /* select */
{

IIsqInit((char *)0);
Owritedb('retrieve(c=(count(");
Nwritedb("'result");
Owritedb(".");
Iwritedb(satt[0].a_name);
IIwritedb(")))");
OsqRinit((char *)0);
if (ITerrtest() ==0) {
if (IInextget() '=0) {
Iretdom(1,30,4,&c);
} /* IInextget */
IsqFlush((char *)0);
} /* Ilerrtest */
)
1=0;
printf(""\nThere are %d records that match the query",c);
if (c==0) {
printf('"\nPress ENTER to continue...");
a=getchar();
return;

}
/* # line 3171 "db.sc" */ /* host code */

if (HcsrOpen((char *)0,"cursor_output”,"db1",0,"result") !=0) |

Uwritedb("'retrieve(™);

tor (select=0;select<n-1;select++) {
Owritedb(satt{select].a_name);
ilwritedb("=");
1lwritedb("result.”);
[Iwritedb(satt[select].a_name);
writedb(",");

Iwritedb(sartt[select].a_name);
[Iwritedb("=");
Owritedb("result.”);
Owritedb(satt[select].a_name);
IIwritedb(")");
HcsrQuery((char *)0);
} 7* lcstOpen */ .
printf(\n");
look_more=0;
1=0;
if (c==0) {
look_more=1;

/* Fetch the cursor to the result relation which is the intermediate table
hold the result from the query, then print out the tuple one at a ime

177

until no more record to print to the user */
while (look_more ==0) (

if (IcsrFetch((char *)0,"cursor_output”,"db1") !=0) {

printf("record id %d \t",1+1);
for (i=0;i<n;i++) {

if (stremp(satt[i].data_type,"c20")==0) {
IcsrRet(1,32,0,char_value);
printf("%s : %s",satt[i].a_name,char_value);

if (stremp(satt[i].data_type,"integer")==0) {
[csrRet(1,30,4,&integer_value);
printf("%s : %d ",satt[i].a_name,integer_value);

if (strcmp(satt[i].data_type,"float")==0) |
IIcstRet(1,31,4,&real_value);
printf("%s : %8.2f ",satt[i].a_name,real_value);

if (strcmp(saufi].data_type,"image")==0) {
IIcsrRet(1,30,4,&media_value);
printf("%s id is %d ",satt[i].a_name,media_value),

if (strcmp(satt{i].data_type,"sound")==0) {
[IcsrRet(1,30,4,&medial_value);
printf("%s %d" satt[i].a_name,medial _value);

} /* end for select < n*/
print("™\n");
HcsrEFetch((char *)0); /* fetch the next record to the cursor */
1++; /* increment 1 as the counter */
if (I==c) { /* check if no more data to print */
look_more =1; /* exit of the loop */

}
} /* HcsrFetch */
} /* end while */
IIcsrClose((char *)0,"cursor_output”,"db1"); /* close the cursor */
printf("Press ENTER to continue ..");
/* stop before change to the next function so
the user can see the result on screen, until he hit ENTER key */
a= getchar();
/* this for the check for the media selection */
if (c==0) (
i=9999; /* if no record for the media data not process any thing */

for (i=0;i<n;i++) {

if (stremp(satt[i].data_type,"image")==0) (
strcpy(table_array[table_index].table_name, satt{i].t_name),

found = check_table_name(); /* search for the media name */

table_cursor = table_entry;

strcpy(media_name,satt[i].a_name);

get_media_name();

display_photo(i,j);

178

/* display photo search for the image relation
that match the result tuple then open the file */

}
if (strcmp(satt(i].data_type, sound")==0) {
prindf('"\nSound management");
strcpy(table_array[table_index].table_name, satt[i].t_name);
found = check_table_name();
table_cursor = table_entry;
strcpy(media_name,sattfi}.a_name);
get_media_name();
display_sound(i,j);
/* play sound search for the sound relation
that match the result tuple then open the file */

} /* end for select < n*/
printf("\n");
/* Drop table result after finished print */

{
IIsqInit((char *)0);
Owritedb("'destroy result™);
IIsqSync(0,(char *)0),

IIsqInit((char *)0);
[Iwritedb("destroy m0");
[IsqSync(0,(char *)0);

IIsqInit((char *)0);
[Iwritedb("destroy m1");
[IsqSync(0,(char *)0);

IIsqInit((char *)0);
IIwritedb("destroy m2");
IIsqSync(0,(char *)0);

IsqInit((char *)0);
[Iwritedb("destroy m3");
[IsqSync(0,(char *)0);

IIsqInit((char *)0);
TIwritedb("destroy m4");
IIsqSync(0,(char *)0);

)

/*******t*****t**t*****#*lll**#lll*****t*****#***********t#*****************/

/* The main procedure for the retrieve operaton */
/* m and n is the parameter for table and attribute repec dvely */

179

/* For retrieve table name and attribute name from the user */
/***/

void retrieve()

int i,j,x,y,z,found=0;
char table_name[20],attname[20),att_type[20],Ans,More,a;
init();

{
IIsqInit((char *)0);
[Iwritedb("destroy m0");
IIsqSync(0,(char *)0);

sqlInit((char *)0);
Iwritedb("destroy m1");
IIsqSync(0,(char *)0);

IIsqInit((char *)0);
Hwritedb("'destroy m2");
IIsqSync(0,(char *)0);

}

[IsqInit((char *)0);
IIwritedb("destroy m3");
IIsqSync(0,(char *)0);

IIsqInit((char *)0),
Iwritedb("destroy m4");
}IIsqSync(O,(char *)0);

/* Select table */
for (i=0;i<100;i++) {
buff[i] = \0';/* assign null value or end of string to buffer*/

}

m={;

i=0;

k=0;

gecond=0;

numcon=0;

strepy(buff "?7");

while (stremp(buff,"?")#=0) { /* select loop for help function */

printf("\nSelect the table(s) saparate by comma <,> : (<?> for HELP!)");

printf(""\nSELECT TABLE(S): ");

gets(buff);

if (stremp(buff,"?")==0)
print_all_table();

} /* end while vuff == 0 */

while (i<=table_count) { /* check loop with the maximum number table */
for (j=0;j<13;j++) /* each table has less than or equal to 12 char only */

180

{

if (bufflk]==44) {
stab[i].t_name[j]= \0’;
j=55;
k=k+1;
i=1+1;

else {

if (bufflk] =="")

j=55; /* Skip the white space if the user typped in*/

else

stab[i].t_name(j]=buff(k];

if (buff{k]==0) { /* if null value in buffer (end of string) */
m=1+1;
j=55;
1=1000;

}
=k+1;
}

)
} /* End while */
for (i=0;i<m;i++) {
strcpy(table_array[table_index].table_name, stab[i].t_name);
found = check_table_name(); /* search for the media name */
if (!(found)) {
/* check for the valid table name if not found then return to calling program */

putchar(\007");

printf("\nTable %s not found please redo again !!!" ,stab{i].t_name);
printf("\nPress ENTER to continue !!");

a=getchar();

return;

} /* end else */
} /* end for loop */
/* Specify the join condition if there are more than 2 tahle select */
if(m>1){
strepy(join_conditior.,"?");
while (strcmp(join_condition,"?")==0) {
printf('"\nPlease enter your join condition: (<?> for help!)");
gets(join_condition);
if (strcmp(join_condition,"?")==0) {
for (i=0;i<m;i++) {
printf("\nTable %s ", stab[i].t_name),
p_att(stab[i].t_name);
} /* end for loop */
} /* end if need help for join */
} /* end while */
} /* end if more than 1 table select */
/* Select attribute */
for (i=0;i<100;i++) {
buffli] = \O';

181

~

i=0;
i=0;
k=0
x=0;
z=0;

/* Select attribute for one table at a time */
for (y=0;y<m;y++) {
printf("\nTable %s ", stab[y].t_name);
strcpy(buff,”?");
while (stremp(buff,"?")==0) {

printf("\nSelect the attribute(s) separate by comma <,>: (<?> for HELP!)");

printf("\nSELECT ATTRIBUTE(S): ");
gets(buff);
if (stremp(buff,"?")==0) {
p_att(stab[y].t_name);
} /* end if buff =="7" */
} /* end while need help */
while (i < 100) {
for (j=0;j<13;j++)

{
if (buffk]==44) {
satt[x).a_name[j]= \0’
strcpy(satt{x].t_name, stab[y].t_name);
j=55;
=k+1;
i=i+]1;
x=x+1;

else {
if (bufflk]=="'"
j=55; /* Skip the white space if user typped in */
else
satt[x].a_name[j]=bufflk];
if (buffTk]==0) {
strcpy(satt[x].t_name, stab[y].t_name);
n=x+1;
=55,
1=1000;
;}Jrintf("%d",n);
k=k+1;

} /* end else */
} /* end forj < 13 */

x=x+1;

k=0;

for (i=0;i<100;i++) {
buff[i] = \O';

)

1=0;

} /* End select attribute for each table go to the next table */

182

for (i=0;i<n;i++) {
printf(""\n%s.%s", satt[i].t_name,satt[i}.a_name);
getatttype(satifi].t_name,sartt[i).a_name,satt[i].data_type);

}

printf("\n");

cond=0;

printf("\nAny condition ? (y/n) ");
Ans=yes_no_answer();

if ((Ans==121)ll(Ans==89))

cond=l1;
processcondition();

processquery();
ql_retrieve();
ql_printdata();

} /* End procedure */

/***/

/* Main program for MDBMS */
/***/
r(nain()

int wrong_descrp = TRUE;

int error_create = TRUE;

int i=0,j=0;

char Ans, a;

char functon =0,

char choice ='?";

printf(""\nConnect to database ");

printf(""\nwait ")

[OsqConnect (&sqlca,0,"virgo::mdb", (char *)0);
/* this code use for connect to the database */

if (sqlca.sglcode '=0) /* error in connection to database */

printf("\nSorry, but we cannot connect to the database at this ime\n\
It could be that you are execute the program in the wrong system.\n\
Please write down your code and give them to the administrator:\n\
sqlca.sqlcode = %ld\n", sqlca.sqlcode);
exit(1);

) ,
load_data(); /* load catalog from the file into memory */
/* # line 3504 "db.sc" */ /* destroy */
{ /* Drop table result in database */
IIsqInit((char *)0);
Owritedb("destroy result");
IIsqSync(0,(char *)0);
)

get_pcname(); /* Get remote PC name to access the sound database */

183

clr_scr();
while (choice !="'0)

{

choice = user_choice(); /* print the choice for user select on screen */

switch(choice) /* User select case */
{
case '1": [* create table */
clr_scr();

printf("\nYour Selection is CREATE TABLE!");
printf("\nHit Return to continue! (Any other key to QUIT!)");
if (getchar() !="\n")

getchar(); /* To let next getchar() work well */
break;

create_table();
error_create = TRUE;
while (error_create)

{
display_info();
error_create = gql_create_table();

store_data(); /* save data back in the file */
break;
case 2': /* insert tuple */
clr_scr();
printf("\nYour Selection is INSERT A TUPLE!");
printf('"\nHit Return to continue! (Any other key to QUIT!)"),
if (getchar() '="\n")

getchar(); /* To let next getchar() work well */
break;

insert_tuple();
wrong_descrp = TRUE;
while (wrong_descrp)

{
display_tuple();
wrong_descrp = check_media_descrp();

if (!wrong_descrp)
printf("\n\nHit RETURN to Continue!!");
while ((¢c = getchar()) '="\n")
)
store_data();
ql_insert_tuple();
ak.

case 3': /* retrieve */
clr_scr();

184

printf("\nYour Selection is RETRIEVAL!");
printf("\nHit Return to continue! (Any other key to QUIT")");
if (getchar() '=\n)

{

getchar(); /* To let next getchar() work well */
break;
}
retrieve();
break;
case '4': /* deletion */
clr_scr();
printf("Your selection %c is: ", choice);
printf("Delete \n");
while ((c = getchar()) '=\n")
; /* Not return do nothing */
break;
case '5': /* update or modify */
clr_scr();
printf("Your selection %c is: ", choice);
printf("Modify \n");
while ((c = getchar()) !'="\n")
; /* Not return do nothing */
break;
case '6': /* Test purpose now */
clr_scr();
print_out_data();
break;
case '0':
clr_scr();
printf("Thank you for using MDBMS \n");
break;
} /* End of switch */
} /* End of while choice !="'0" */
/* # line 1895 "dbpei.sc" */ /* disconnect */

{
IIsqExit(&sqlca);

}
/* # line 1896 "dbpei.sc” */ /* host code */
} /* End of main() */

185

[AT90]

[AYO1]

[CH86]

[KKS87]

[LM&8]

[LM89]

[MLW89]

[PBI1]

(PO90]

REFERENCES

Atila, Y.V., Design and Implementation of a Multimedia DBMS: Sound
Management Integration, Master's Thesis, Naval Postgraduate School.
Department of Computer Science, Monterey, CA, December 1990.

Aygun, H., Design and Implementation of a Multimedia DBMS: Complex
Query Processing, Master's Thesis, Naval Postgraduate School, Depariment of
Computer Science, Monterey, CA. (in progress)

Chrisodoulakis, S.. Theodoridou, M., Ho, F., Papa, M., and Pathria, A,,
Muliimedia Document Presentation, Information Extraction, and Document
Formation in MINOS: A Model and a System, ACM Transactions. on Office
Information Systems, vol. 4, no. 4, Oct. 1986, pp. 345-383.

Kosaka, K., Kajitani, K., and Satoh. M., An Experimental Mixed-Object
Datrabase System. in Proc IEEE CS Office Automation Symposium
(Gaithersburg, MD, April 1987), IEEE CS Press, order no. 770, Washington
1987, pp. 57-66.

Lum, V.Y, and Meyer-Wegener, K., A Conceptual Design of a Multimedia
DBMS for Advanced Applications, report no. NPS52-88-025, Naval
Postgraduate School, Monterey, CA, August 1988.

Lum, V.Y. and Meyer-Wegener, K., A Multimedia Database Management
System Supporting Contents Search in Media Data, report no. NPS$52-§9-020,
Naval Postgraduate School, Monterey, CA, March 1989. Also in Advances in
Computing and Information, Proceedings of the International Conference on
Computing and Information (ICCI'90), Niagra Falls, Canada, May 23-26,
1990 And to appear in Lecture Notes in Computer Science, Springer Verlag.

Meyer-Wegener, K., Lum, V.Y.. and Wu, C.T., Image Database Management
in a Multimedia System, in Visual Database Systems, (IFIP TC2/G2.6 Working
Conference, Tokyo, Japan, April 3-7, 1989), Ed. T.L. Kunii, North-Holland,
Amsterdam 1989, pp. 497-523.

Peabody, C., Design and Implementation of a Multimedia DBMS: Graphical
User Interface Design and Implementation, Master's Thesis, Naval
Postgraduate School, Department of Computer Science, Monterey, CA. (in
progress)

Pongsuwan, W.,Design and Implementation of a Multimedia DBMS: Retrieval

Management, Master's Thesis, Naval Postgraduate School, Department of
Computer Science, Monterey, CA, December 1990.

186

[SA88]

[STO1]

[THS88]

[WK87]

Sawyer, G., Managing Sound in a Relational Multimedia database System,
Master's Thesis, Naval Postgraduate School, Deparmment of Computer Science.
Monterey, CA, December 1988.

Stewart, R., Design and Implementation of a Multimedia DBMS: Modification
and Deletion, Master's Thesis, Naval Postgraduate School, Department of
Computer Science, Monterey, CA. (in progress)

Thomas, C.A., A Program Interface Prototype for a Muliimedia Database
Incorporating Images, Master's Thesis, Naval Postgraduate School,
Department of Computer Science, Monterey, CA, December 1988.

Woelk, D. and Kim, \'. Multimedia Management in an Object-Oriented

Database System, Proc. 13th Int. Conf on VLDB, Brighton (England).
September 1987.

187

INITIAL DISTRIBUTION LIST

. Defense Technical Information Center

Cameron Staton
Alexandria, Virginia 22304-6145

. Library, Code 052
Naval Postgraduate School
Monterey, California 93943-5100

. Center for Naval Analysis
4401 Ford Ave.
Alexandria, Virginia 22302-0268

. John Maynard

Code 042

Command and Control Departments
Naval Ocean Systems Center

San Diego, California 92152

. Dr. Sherman Gee

ONT-221

Chief of Naval Research

880 N. Quincy Street
Arlington, Virginia 22217-5000

. Leah Wong

Code 443

Command and Control Departments
Naval Ocean Systems Center

San Diego, California 92152

. Professor Vincent Y. Lum

Code CsLm

Naval Postgraduate School
Department of Computer Science
Monterey, California 93943

188

(3]

10.

11.

12.

13.

14.

. Professor C. Thomas Wu

Code CsWu

Naval Postgraduate School
Department of Computer Science
Monterey, California 93943

. Commander Shiao-Wen Wang

Material Test and Evaluation Center
Combined Service Forces

P.O. Box 90502, Nankang

Taipei, TAIWAN, R.O.C.

Data Processing Center
Combined Service Forces
P.O. Box 90487, Nankang
Taipei, TATWAN, R.O.C.

Ning-Li Lan
P.O. Box 90040-16, Ta-Chih
Taipei, TAIWAN, R.O.C.

Department of Computer Science
Chung Cheng Institute of Technology
P.O. Box 90047, Ta-Shi

Tao-Yuan, TAIWAN, R.O.C.

Su-Cheng Pei
2F. No. 1-41, Gan Shuh Rd. Sansia
Taipei, TAIWAN, R.O.C.

Professor Klaus Meyer-Wegener
University of Erlangen-Nuernberg
IMMD VI, Martensstr.3,

8250 Erlangen / GERMANY

189

(3]

15. Dr. Bernhard Holtkamp
University of Dortmund
Department of Computer Science
Software Technology
P.O. Box 500 500
D-4600 Dortmund 50 / GERMANY

190

SUPPLEMENTARY

INFORMATION

pz

!

/)

Iy
/ ‘k,

’

1

-

/:f/%/“'f-

A

O S VN ll—

31

s

MNP0 [053U00 eBONOA uioMp Ny, jo wimBagp spruisyog
qQ 013 Zvoni 4 - 3uav

AgL-
AD9~ AGL-

iy 'Ig
3 | — A

BOLSISNVYSL
2003Sv2

S5.7CA zmqmu.AL

T
—— e e

P l L BT Rl e s

——— — —

AS}- 3= IYNOS

. @ k.._.w ty ISIIVILING
. o-m '
| om= |
2L H. ,

14 . (A'66'6*=~eA0)
TYNOIS TOMINOD
*—$——=-0 39vI0A NIVHG

o PA

AGi*

ERRNTA A E 44778/

.-

Sz__aﬁmJ%m joutaia-N eyl jo weilleyp %oo0ig
P84 2901 Y - 3yav

- 3OVIT0A Nivia

_ N IYNOIS
3000 103135 11NoYID - VI
VN e—— 3000 = T0HINOD _
- 39VII0A 3ivp e T <0 N9IS
¥ =34 ALELNZQ! an | | 1951004
- . . - —<—0"IGHIND
.00~ r A9V170A
~ya1e O e — Y 3lvulisans ivuisans
-+ _ 3]
H3ILNT
30V1S puz ——
€L oY
1] +_u
{
A14dNS . IC .
s] INTEND Pi v)
s ¥) B0 HYIWOD a3y 114 1 Y oy SHDN 1NdM|
. EOIVHVEAOS » 3SYLT0A . Sg oul ”m Sidd
—ees - |
...m,,wum o— > 3 Linouo
SSHVILIN Alddns TYNOIS W0UINO)
: INFHHND NiIvHo \ NIVUG
OIS JONINGD LINJHID 0HINGD : . N3y
EL IR IR >

