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A TURBULENCE MODEL FOR RECIRCULATING FLOW

PART I: INTRODUCTION

Background

i. Although turbulence may often go unnoticed, it affects most human

activities that involve air and water. If there were no such thing as turbu-

lence, airplanes and automobiles would experience less drag, but sugar would

take much longer to dissolve in coffee. In any case, when it comes to build-

ing machines whose operation depends on fluid flow, designers Qften have

little choice but to accept and accommodate the efEeccs of turbulence.

2. Turbulence occurs whenever there is too little viscosity to prevent

small disturbances from growing and disrupting a laminar flow. Turbulent flow

contains eddies of so many different sizes that a complete representation of

the flow is usually impractical on a discrete grid. For some purposes, how-

ever, it is possible to approximate the behavior of the larger eddies if the

influence of the smaller eddies is adequately captured by a turbulence model.

In this context, the turbulence consists of all eddies that are too small to

be resolved by discretization.

3. If one averages the Navier-Stokes equations over a time interval

that is short compared with the periods of the large eddies, but long compared

with those of the turbulence, shear stresses arise that are proportional to

the time-averaged products of the fluctuating velocity components. These are

called Reynolds stresses, and the process of time averaging is called Reynolds

averaging. Strictly speaking, the complete turbulent velocity distribution

must be known in order to calculate the Reynolds stresses exactly, but engi-

neers have always used empirical approximations based on mean (Reynolds-

averaged) velocities. The simplest of these, suggested by Boussinesq (1877).

consists of supplementing the molecular viscosity with an eddy viscosity in

the Newtonian expression for shear stress. Turbulence models that use this

approximation are called eddy-viscosity models, and they are classified

according to the manner in which they obtain the eddy viscosity from the

properties of the mean flow.

4. Kinematic molecular viscosity has units of length squared divided by

time, and kinematic eddy viscosity can be made proportional to any combination
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of turbulence quantities that yields these same units. Algebraic eddy-

viscosity models extract the necessary turbulence quantities directly from the

local mean flow, without accounting for their transport by the flow itself.

Since they involve no equations for turbulence transport, these models are

also called zero-equation models. In contrast, one-equation models include a

transport equation for one of the necessary turbulence quantities, with local

algebraic approximations for the rest. Two-equation models add a transport

equation for a second quantity, and so on.

5. The k-e turbulence model (Launder and Spalding 1974) has become the

most widely used of the two-equation eddy-viscosity models. Here the symbol

k represents the turbulence energy, and e the dissipation rate of the tur-

bulence energy. Taking these as the primary turbulence quantities, each of

which is governed by a transport equation, the eddy viscosity is then propor-

tional to the ratio k2/E . By solving the two governing equations for k

and E along with the Reynolds-averaged equations for conservatiou of mass

and momentum, one can obtain mean-flow approximations that are useful within

certain limits. The standard k-e model works fairly well for two-dimensional

(2-D) flow without recirculation, as long as reliable mechanisms exist for

generating shear stress and vorticity along the boundaries.

6. The adjustments needed to accommodate recirculation are quite dif-

ferent from those needed to resolve near-wall influences in a turbulent bound-

ary layer (Patel, Rodi, and Scheurer 1985). That is, adjustments fGr recircu-

lation offer little help in determining the point at which flow separation

actually occurs, but they may be needed to avoid premature reattachment there-

after. Accurate prediction of the separation point on a smooth wall requires

a grid fine enough to resolve the separating boundary layer, as well as spe-

cial measures to approximate the distribution of shear stress near the wall.

Purpose and Scope

7. The present investigation concerns modifications needed to make the

k-c model work for 2-D recirculating flow, where the standard model may over-

predict the eddy viscosity. The overprediction may arise from too much energy

or from too little dissipation, and the remedy is to adjust the governing

equations in a way that corrects them for recirculation but leaves them essen-

tially unaffected for unidirectional shear flow. This is accomplished by
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constructing dimensionless functions of mean-flow and turbulence quantities

that can be used either for damping turbulence production or for enhancing

growth of the dissipation rate. Previous efforts have employed functions of

k , e , and mean-flow curvature (Launder, Pridden, and Sharma 1977) to modify

the standard equations. The function proposed herein employs mean-flow veloc-

ity and vorticity instead of curvature.

8. Near-wall turbulence correction and boundary layer separation lie

outside the scope of the study reported here, which is concerned mainly with

flow behavior after separation. Fortunately, computed flows and real turbu-

lent flows separate whenever they encounter sharp corners, so there is no

difficulty in predicting separation points for sharp-cornered boundaries.

Given the separation point, a discrete flow-solver with an adequate turbulence

model should be able uo predict the downstream reattachment point and the

predominant features of the recirculating flow, at least for simple

geometries.

9. Part II of this report outlines the governing equations for the mean

flow and the standard turbulence model, and Part III discusses :ne associated

boundary conditions. Part IV offers proposed modifications to the k-f model:

Part V describes the numerical algorithms used to discretize and solve the

equations; Part VI enumerates the reasons for choosing the backstep as a test

problem; Part VII presents comparisons of mean-flow computations with experi-

mental results; and Part VIII sets forth conclusions and recommendations.
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PART II: GOVERNING EQUATIONS

10. The governing equations for the mean flow are the Reynolds-averaged

Navier-Stokes equations. For 2-D inco..pressible flow, tlese are the equations

for conservation of mass and momentum, given respectively by

V.u = 0 (1

u u-Vu = T - VP (2)
p

where

V = gradient operator

u = vector velocity

t = time

T = divergence of the Reynolds-averaged stress tensor

p = pressure

p - density

An underbar indicates vectors and a subscript t indicates a time derivative.

The cartesian x- and y-components of T are, respectively,

T1 = vV2u + 2 XU,. + /Y(uy + v ) (3)

T 2 = vV2v + 2vyvy + vx(v. + u') (4)

where

v = eddy viscosity

uv = x- ana y-components of u

x,y - cartesian coordinates

and the subscripts x and y indicate spatial derivatives. (Molecular vis-

cosity is neglected in Equations 3 and 4.) The eddy viscosity is related to

the turbulence energy k and the turbulence dissipation rate f by

C k2  (5)

where C, is a dimensionless empirical coefficient.

11. The governing equations for k and e are semi-empirical

transport equations, each of which has the form
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Advection = Production - Dissipation + Diffusion

In this context, advection means transport by the mean flow; production means

creation from the large eddies; dissipation means frictional loss through the

small eddies; and diffusion means the spreading that occurs because of eddy

viscosity In the standard k-f model, the governing equations are

k, - u-Vk = LF - E - ac1V.(Av7k) (6

E E 
2

CE -V.IvVeI
u.VE = CLIF 2 . Cfl

In each case, the first term on the right is the production term, which is

proportional to

F 2( - v ) (w Vx)

The second term on the right in Equations 6 and 7 is the dissipation term. and

the _hiLd term is the diffusion term. The standard set of dimensionless em-

pirical coefficients (Launder and Spalding 1974) is

C, - 0.09

C1 = 1.44

C2 = 1.92

Ck = 1.0

a, - 1.3

12. With suitable boundary conditions for u , v , p , k , and E

Equations 1, 2, 6, and 7 are sufficient for calculating 2-D flow within the

limitations of the k-E turbulence model. The STREMR finite-difference code

(Bernard 1989) was used to discretize and solve the governing equations for

the work reported here. Starting with potential flow for the initial velocity

and small uniform values for the initial turbulence quantities, STREMR obtains

steady-state solutions (if they exist) by marching forward in time.
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PART III: BOUNDARY CONDITIONS

13. In the STREMR code, velocity components normal to the boundaries

are held fixed for inlets (nonzero mass inflow) and solid walls zero mass

inflow/outflow) and computed by a discrete radiation condition for outletq

(nonzero mass outflow). The total flow rate remains constant, as do !he

individual flow rates through each inlet and outlet. In a given time-step,

the velocity normal to any boundary segment is either constant (for inlets and

solid walls) or determined by neighboring velocities in the previous time-stet

(for outlets). STREMR uses a staggered marker-and-cell grid. with mass fl'I:

components defined on cell faces and pressures defined at cell centers.

grid arrangement, along with the specification of all boundary-normal mass

fluxes at the beginning of each time-step, allows the normal component of the

pressure gradient to be set to zero on all boundaries.

14. In principle, both the normal and tangential components of velocit'.-

should be zero on all solid boundaries. For the normal component this means

no mass flux through the boundary, and the resulting effect on the rest of the

flow can be obtained without special refinement of the grid. In the case of

the tangential component, however, the velocity gradient may be so sharp that

accurate resolution becomes difficult near the boundary itself. Thus, even

with zero tangential velocity specified on a wall, the discrete solution may

still fail to approximate the near-wall velocity distribution and its effect

on the rest of the flow.

15. Solid walls pose more of a problem than merely that of grid resolu-

tion. Since turbulence dies off very near a wall, turbulence models must also

account for wall proximity. If this is not adequately done, a flow calcula-

tion may be invalid whether or not the grid is fine enough to resolve the

velocity gradient. In general, wall effects have to be accommodated either by

using special near-wall turbulence models (Patel, Rodi, and Scheurer 1985) or

by using empirical formulas to estimate near-wall turbulence quantities (Rodi

1980).

16. Near-wall turbulence models are usually adaptations of familiar

models like the k-f model, in which coefficients and functions are modified or

added with decreasing distance from a wall. In a boundary laver or other

wall-bound shear flow, their purpose is to represent the viscous sublaver,

which is so thin and so close to the wall that the shear stress created by
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molecular viscosity vm is comparable with that created by turbulence. In a

boundary laver with no pressure gradient, the viscous sublayer is said to lie

in the range

0 < v < 10

where V' is the dimensionless noimal distance from a horizontal wall,

u.y (I10
Vt!

and u. is the friction velocity. This latter quantity is related to the

tangential shear stress - on the wall by

T = Pu 2  (11"

and the wall shear stress is given in terms of the molecular viscosity and :h,

velocity distribution by

au i2
Vw = Bum'

with the velocity derivative evaluated at the wall (y = 0) In order to cal-

culate r. from scratch, one must use a near-wall turbulence model, along

with the mean-flow equations, to calculate the velocity distribution imposed

on the viscous sublayer by the no-slip condition. Otherwise it is necessary

to assume a near-wall velocity distribution and, by implication, a value for

the wall shear stress.

17. Perhaps the most commonly used near-wall velocity profile is the

logarithmic law of the wall,

U I ln (Ey*) (13)

where K is von Karman's constant (about 0.418), and E is a roughness fac-

tor (about 9.75 for hydraulically smooth walls). This empirical formula pro-

vides a convenient relation between friction velocity, local flow velocity,

molecular viscosity, and wall roughness. It is reliable in the range 30 < v'

< 150 when there is no pressure gradient, but it has often been used to give

a rough approximation for u. even when there is a pressure gradient (Rodi
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1980) There are also modified versions of the law of the wall that take the

pressure gradient into account, but they offer little improvement over Equa--

tion 13 for separating or recirculating flow (Chen and Patel 1988).

18. In general, near-wall flow cannot be calculated independently of

the flow at large, because the interaction of the two usually determines the

location of separation and rpattachment points. Wherever there is a sharp

convex corner, however, the flow will always separate, and the downstream

rec-rculating flow may be only weakly dependent on near-wall conditions for

some distance prior to reattachment. In these circumstances it may be possi-

ble to model the effect of turbulence in the recirculating flow, even when the

wall shear stress is poorly approximated.

19. In the present work, the standard law of the wall (Equation 13)

provides the needed relation between friction velocity and flow velocity adja-

cent to solid walls. In addition to a nonzero value for the shear stress on

the wall, this gives boundary values for the turbulence energy,

k. = C-1/ 2 u (14)

and also the turbulence dissipation rate,

u! (15)
Ky

These equations represent token approximations for the actual boundary condi-

tions, but they are acceptable if the flow separates at a sharp corner and

recirculates strongly thereafter.

20. Small, fixed values of k and e are specified along inlets, and

Neumann conditions (zero normal derivatives) are imposed on k and E along

outlets and slip boundaries. This combination of boundary conditions (includ-

ing the law of the wall) helps to preserve numerical stability and keeps the

computed solution from drifting.
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PART IV: MODIFICATIONS TO THE STANDARD MODEL

21. Various authors (e.g., Chapman and Kuo 1985) have reported that the

k-f model underpredicts reattachment lengths for separated flow, but the rea-

son for this underprediction is not clear. One possibility is that the stan-

dard model is unsuitable for recirculating flow because it assumes 7he normal

components of the Reynolds stress tensor to be isotropic. Indeed, in strongly

three-dimensional (3-D) flow, anisotropic normal stresses do induce secondary

(helical) mean currents that cannot be predicted with isotropy alone. In two

dimensions, however, 3-D secondary currents exist only as part of the turbu-

lence, and normal-stress anisotropy may or may not have a strong influence on

the mean flow. Speziale (1987) has developed a nonlinear k-E model that in-

cludes anisotropic normal stresses and gives somewhat improved predictions for

2-D and 3-D recirculating flow.

22. Rodi (1980) has observed that the standard model breaks down with

large departures from equilibrium; i.e., when the rate of turbulence energy

production greatly exceeds the rate of dissipation, and vice versa. To im-

prove nonequilibrium flow predictions, Rodi has proposed an empirical correc-

tion factor for the eddy viscosity, based on the average ratio of production

to dissipation for the mean flow. The use of averaging does not seem appro-

priate for recirculating flow, however, because the ratio of production to

dissipation can change abruptly with position.

23. Whatever the reason, the standard k-E model seems consistently to

underpredict reattachment lengths for backsteps. The amount of discrepancy

varies somewhat with channel width and with the numerical scheme used for

calculation, but the model invariably produces too much eddy viscosity in the

recirculating zone. To counter this tendency, one then seeks an empirical

adjustment that reduces the viscosity for separated flow, but not necessarily

for unseparated flow. The adjustment should rely on a scaling parameter that

is some dimensionless combination of turbulence and mean-flow quantities,

which should be easy to implement in the standard k-e equations.

24. Drawing on an analogy between buoyancy and curvature proposed by

Bradshaw (1969), Launder, Priddin, and Sharma (1977) have formulated an ad-

justment to the k-e model based on the streamline radius of curvature. This

correction, known as the LPS correction, was intended for boundary layers; but

it has also been used for recirculating flow by Durst and Rastogi (1980) and
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by Tingsanchali and Maheswaran (1990) among others. In this procedure, one

first defines a turbulent Richardson number (based on curvature instead of

buoyancy),

- k2  (u 2 + v 2 )1 /2 ( - u') (16)

where r is the streamline radius of curvature, given by

1 = uv(vy - u.) + u 2vx - v2uY (17)
r (u 2 . v 2 ) 31 2

The Richardson number is then used to obtain a curvature-corrected value C5

for the coefficient C2 ,

Ci = C2 (1 - CcR) (18)

where C, is a dimensionless curvature correction coefficient.

25. With Equation 18, a positive value for Ri reduces the decay rate

for the dissipation, which increases the dissipation rate and reduces the

turbulence energy. A negative value has the opposite effect.

26. Although the LPS correction improves predictions in some cases, it

is not universally satisfactory for 2-D calculations (Rodi and Scheurer 1983).

Apparently something more than curvature alone is needed for improving the k-f

model in two dimensions. As an alternative parameter, consider the eddy

Reynolds number R, defined as follows:

= (u 2 
+ v 2 ) 1/ 2  6 E (19)

V

The length scale bE is obtained from the mean-flow velocity and vorticity

through the relation

6E = (u 2 + v2 )1 /2  (20)1 v. - UY I

When Equations 19 and 20 are combined with Equation 5, the expression for RE

becomes

(u 2 + v 2 ) e (21)
RE = C~k 2 Iv. uY I

This quantity is a convenient parameter for tuning the production and dissipa-

tion of turbulence, because it increases with velocity and dissipation rate,

12



but decreases with energy and with energy production (which increases roughly

as the square of vorticity).

27. In the range of y* associated with the law of the wall, RE

takes values in excess of 30. If the k-e model is to retain its applicability

for wall-bound shear flows, any correction factor based on the eddy Reynolds

number should approach unity at values of RE near 30 or more. With this in

mind, consider the following adjustment for the coefficient C2 in the

standard model:

C = C1 C2 - C1  (22)

Equation 22 exhibits the desired behavior for RE > 30 as long as the empiri-

cal coefficient Rc is given values of about 10 or less. In this context.

R, represents a cutoff value for RE , below which C rapidly approaches

C1 . Above R, , the altered coefficient C gradually approaches the

standard C2 .

28. For future reference, Equation 22 will be called the eddy Reynolds

number (ERN) correction for the k-e turbulence model. Aside from their depen-

dence on vorticity and streamline curvature, the main qualitative difference

between the ERN and LFS corrections is that LPS may either increase or de-

crease the decay rate for dissipation, while ERN can only decrease it. These

adjustments represent two of many plausible corrections that one might propose

for the standard model. Both are easy to implement, and neither adds signifi-

cantly to the computer time required for the standard model.

13



PART V: NUMERICAL ALGORITHMS

29. The STREMR computer code ordinarily uses only the MacCormack

predictor-corrector scheme (MacCormack 1969; Bernard 1989) to solve the momen-

tum equation (Equation 2), but for this study a special version of the code

was set up to use an upwind predictor-corrector scheme as well. To discretize

the advective terms i- 7quation 2, the MacCormack solver uses forward spatial

differencing in the predictor phase of each time-step, and backward differenc-

ing in the corrector (or vice versa). The upwind solver uses two-point upwind

differencing in both the predictor and corrector phases. The MacCormack

scheme is second-order accurate (at best) in space, while the upwind scheme is

only first-order accurate. By running the same calculations with these two

different numerical methods, one can roughly ascertain the degree to which

model predictions may be algorithm dependent.

30. Both versions of STREMR use a single-step (predictor phase only)

upwind scheme for solving the k-c equations, regardless of the method employed

for the momentum equation. The code begins with potential flow for the mean

flow and with small, uniform values for k and c . It then marches through

time toward a steady state (if one exists). The same time-step size is used

for every cell on the grid, but this is updated every 10 time-steps to the

maximum value allowed by numerical stability considerations.

31. In each time-step, the eddy viscosity is first calculated using

existing values of k and e . This viscosity is then used to compute new

values for u , v , k , and E . The pressure needed to maintain conserva-

tion of mass is obtained from the solution to a Poisson equation in each pre-

dictor and corrector phase.

14



PART VI: TEST PROBLEM
4

32. The flow past a backstep (abrupt channel expansion) has been chosen

to test the proposed ERN correction for the k-f turbulence model. In select-

ing a test problem, one seeks to eliminate or reduce the influence of compet-

ing mechanisms that create confusion and render calculations inconclusive. In

the case of the backstep, the flow is essentially unidirectional and parallel

to the wall when it separates at the channel expansion, regardless of the

upstream velocity distribution.

33. The flow downstream of a backstep is not completely insensitive to

upstream conditions, but it is less sensitive than that for a forestep (abrupt

contraction) or a block (contraction followed by expansion). With the fore-

step and the block, the upstream velocity governs the flow separation angle at

the contraction, which likewise governs the recirculating flow downstream.

Turbulence model tests for these configurations will be inconclusive unless

both the upstream and downstream flow can be accurately predicted from

scratch. The backstep eliminates much of the upstream dependence, and this

makes it more convenient for model tests in recirculating flow.

34. After the flow separates at the corner, it recirculates for some

distance in the wake of the backstep. At some point, however, the flow again

becomes unidirectional (no backflow), and this is called the point of reat-

tachment. The channel expansion ratio h 2/h, is the main parameter that con-

trols the reattachment point, where h, and h2 are the depths upstream and

downstream of the expansion in the xy-plane (Figure 1). The step height h

is the difference between h 2 and hj:

h = h2 - h, (23)

If horizontal position x is measured from the backstep, and xR is the re-

attachment length, then x,/h increases with h2/h1 . Although Reynolds num-

ber also has some influence on reattachment, it is less important than the

expansion ratio (Durst and Tropea 1981).

15
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Figure 1. Computational grid for channel expansion
with h2/h1 - 1.1
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PART VII: COMPUTED RESULTS

35. STREMR calculations were executed for uniform inflow into a channel

expansion (Figure 1) with the law of the wall imposed on the lower (backstep)

boundary and perfe ct slip on the upper (symmetry) boundary. The computational

domain was a rectangle with a length of 30h and a width of llh, which was

divided into a grid with 200 spaces in the x-direction and 40 spaces in the

y-direction. Channels with different expansion ratios were created by ulock-

ing out rows of cells along the upper boundary of the rectangle. Although the

grid spacing was uneven far from the backstep, the grid cells in the recircu-

lation zone were uniformly square (Ax A Ay - h/10) in all cases. The expan-

sion ratio was varied from 1.1 to 2.0, but the conventional (molecular)

Reynolds number was held fixed at R, - 5 x 10' , where

u h
P' -- (24)

and u0 is the inflow velocity.

36. Figure 2 shows streamlines computed for an expansion ratio of 1.48

with the MacCormack flow-solver and the ERN turbulence correction. Note that

for R, = 0 the ERN correction reduces to the standard k-e model. It is evi-

dent from these results that the adjusted turbulence model predicts greater

reattachment lengths and stronger recirculation than the standard model.

37. In Figure 3 the turbulence-energy predictions for h2/hl = 1.48

are compared with the measurements made by Kim, Kline, and Johnston (1980) for

h2/h, - 1.50 . The ERN correction (R, - 5) produces less energy than the

standard model (R, - 0) upstream of the reattachment point (xR/h = 7.5), where

the ERN predictions are more nearly in agreement with the experimental data.

Downstream of reattachment, the predicted energies are almost the same. A

similar comparison with the velocity data (Figure 4) shows that the ERN cor-

rection yields a stronger and longer backflow than the standard model, and

that the ERN predictions are generally in better agreement with the

measurements.

38. The agreement between calculation and observation in Figures 3 and

4 is about as good as can be expected with the MacCormack solver And rv- ERN

turbulence correction; it is unlikely that before-the-fact predictions will be
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a. Computational grid

b. Standard model (Rc - 0)

C. ERN correction (R. = 5)

Figure 2. Streamlines computed with MacCormack flow-solver for
channel expansion with h2/h1 - 1.48
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much better than the results shown here. It may often be possible to find a

value for R, that forces agreement for a specific case after the fact (as

was done here), but that does not imply that the same will be achieved in

general. Thus, it is important to investigate the performance of the model

for other expansion ratios, and also the extent to which predictions may vary

with an alternative numerical scheme and turbulence correction.

39. Durst and Tropea (1981) have compiled experimental measurements of

x,/h from fifteen different sources (including their own work) for 1 < h/hl

< 2 with Reynolds numbers in the range 2.5 x 103 < R 1.3 x 105 These

are the data with which model results for reattachment length will be com-

pared.

40. Identical sets of calculations were done for each of four possible

combinations of flow-solver (MacCormack or upwind) and turbulence correction

(ERIN or LPS). The predicted reattachment lengths x, are compared with ex-

perimental data in Figures 5 and 6. Note that the turbulence model reduces to

the standard k-f model when R, = 0 with the ERN correction, and when C. = 0

with the LPS correction.

41. The standard model (R,. - 0) consistently underpredicts the reat-

tachment length with both flow-solvers, but the underprediction is greater

with the upwind scheme. This is to be expected, because the MacCormack solver

produces less numerical diffusion than does the upwind. Even so, the upwind

does not fare badly in comparison with the MacCormack, except perhaps for

expansion ratios near unity.

42. The ERN correction pushes the predictions in the right direction,

achieving the best overall results for R, . 5 with the MacCormack scheme

(Figure 5). The end points of the predicted curve are about cight, but the

slope is rather different from that indicated by the experiments for expansion

ratios near unity. The observed reattachment lengths climb sharply in the

range 1.1 < < 1.3 and gently otherwise. The predicted values, on the

contrary, exhibit a gradual increase with expansion ratio in the range between

1.1 and 2.0 This discrepancy may reflect some inconsistency in the experi-

mental data, or (more likely) it may imply that R. is not a perfectly satis-

factory parameter for adjusting the turbulence model.

43. The predicted results with the LPS correction (Figure 6) are gener-

ally worse than those with the ERN correction. With the upwind flow-solver,

the LPS calculations were numerically stable for all values of C, in the
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range 0.0 < C, < 0.2 and for all expansion ratios in the range

1.1 < h2/h1 < 2.0 . On the other hand, with the MacCormack flow-solver

(Figure 6a) these calculations failed to converge for h2/h1 > 1.4 when C,

was 0.1 or greater. Even with the upwind scheme, the LPS reattachment curves

(Figure 6b) are less in agreement with the data than are the ERN curves

(Figure 5b).
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PART VIII: CONCLUSION

44. The proposed ERN (eddy Reynolds number) correction reduces the

turbulence energy and eddy viscosity generated by the standard k-E model in

the presence of recirculation. This consistently improves flow predictions

for backsteps (channel expansions) with expansion ratios between

1 and 2, even though the computed reattachment lengths do not follow precisely

the curve outlined by the experimental data.

45. The LPS (curvature) correction proposed by Launder, Priddin, and

Sharma (1977) does not work in general for recirculating flow. The upwind

flow-solver converges with the LPS correction (Equation 18), but the predicted

variation of reattachment length with channel expansion ratio has the wrong

shape. The MacCormack solver converges with LPS when Cc = 0.05 or less, but

it may encounter difficulties with convergence or stability when Cc = 0.10

or more. In any case, to tune the ERN correction (Equation 22) properly for

the k-E model, one should always use experimental data like those of Durst

and Tropea (1981) to help find Rc for the particular numerical flow-solver

being used. No two algorithms will give precisely the same results, and some-

times the disparity in predictions can be significant.

46. The ERN turbulence correction should be viewed as a tentative

adjustment which is helpful in two dimensions, but not necessarily in three.

This is not to say that the ERN is without merit as a scaling parameter in

three dimensions, but that other parameters may be necessary along with a more

advanced turbulence model than an eddy-viscosity model. Even in two dimen-

sions, the ERN correction merely represents an empirical extension that im-

proves predictions; it does not offer a better understanding of the turbulence

itself.

47. Within the limitations of 2-D flow, there still remains the problem

of resolving near-wall effects well enough that reliable predictions can be

made for separation and reattachment on boundaries of arbitrary shape. Once

this problem has been adequately solved, the k-E model may prove quite useful

for general hydrodynamic and aerodynamic applications in two dimensions.
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