
AD-A240 762 :NTATION PAGE Form Approved

I re eons, rnlttttQ thle lne4 for tuoewmVt wotructom 5041chrq existing WZ8 wmqin gv &V~ j'Ytilig omI~~~iI ~ ~ 1 this ~IlIII~I~ II~ I ~Aouloe estimate o(any otheW asp t fe cCosdhoi at wdc muljwt lrm.,dul suggsaliori for rsdUewtg U"4 b ~ to Wftoo
?15 .Jefferson Daves grway. Suae 1204 Ajn. VA 22202-4M2. and to te Off"c of Inomtiot arid Fh~qt Aft.., Off"c of

1 AGENCY USE ONLY (Leave Slank) 2. REPORT DATE 3 REPORT TYPE AND DATES COVERED

Final: 31 Jul 1991 to 01 Jun 1993

4. TITLE AND SUBTITLE FUNDINCAUiES

Ada Compiler Validation Summary Report:lnterACT Corporation, InterACT Ada v r .L
1750A Compiler System, Rel 3.5, MicroVAX 3100 Cluster (Host) to InterACT0hC-E klb

MIL-STD-1750A Instruction Set Architecture Simulator (Target), 91070531.11191 ' SEw9 9

National Institute of Standards and Technology
Gaithersburg, MD f
USA D
7 PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

National Institute of Standards and Technology REPORT NUMBER

National Computer Systems Laboratory NIST9OACT52O_1_1.11
Bldg. 255, Rm A266
Gaithersburg, MD 20899 USA
9 SPONSORINGvMONiTORING AGENCY NAM ElS) AND ADDRESS(ES) 10. SPONISORING/"ONITORING AGENCY

Ada Joint Program Office REPORT NUMBER

United States Department of Defense
Pentagon, RM 3E114
Washington, D.C. 20301 -3081
11 SUPPLEMENTARY NOTES

12a. DISTRIBUTION/A VAI LABILITY STATEMENT 12b. DiSTRiBI-ri ION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

InterACT Corporation, InterACT Ada 1750A Compiler System, Rel 3.5,Gaithersburg ,MD, MicroVAX 3100 Cluster (Host)
to InterACT M IL-STD-1 750A Instruction Set Architecture Simulator, Release 2.3 (Bare Machine). (Target),ACVC 1.11

91-11069

14 SUBJEC- TERMS 15. NUMBER OF PAGES

Ada programming language, Ada Compiler Val. Summary Report. Ada Compiler Val. ___________

Capability. Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO. 16. PRICE CODE

17 SECURITY CLASSIFICATION 18 SECURITY CLASSIFICATION 19 SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPOR'T OF ABSTRACT

UNCLASSIFIED UNCLASSIFrtO UNCLASSIFIED__________

NSN 7540-01-280-550 Standard Form 298, (Rev 2-89)
Prescribed by ANSI Std. 239.128

AVF Control Number: NIST90ACT5201 1.11
DATE COMPLETED

BEFORE ON-SITE: 1991-06-07
AFTER ON-SITE: 1991-07-05
REVISIONS: 1991-07-31

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 910705S1.11191
InterACT Corporation

InterACT Ada 1750A Compiler System, Release 3.5
MicroVAX 3100 Cluster => InterACT MIL-STD-1750A InstrLction Set

Architecture Simulator, Release 2.3 (Bare Machine)

Prepared By:
Software Standards Validation Group
National Computer Systems Laboratory

National Institute of Standards and Technology
Building 225, Room A266

Gaithersburg, Maryland 20899

7

, ',; :I

AVF Control Number: NIST90ACT52011.11

Certificate Information

The following Ada implementation was tested and determined to pass
ACVC 1.11. Testing was completed on 1991-07-05.

Compiler Name and Version: InterACT Ada 1750A Compiler System,
Release 3.5

Host Computer System: MicroVAX 3100 Cluster running under
VAX/VMS, Version 5.2

Target Computer System: InterACT MIL-STD-1750A Instruction
Set Architecture Simulator, Release
2.3 (Bare Machine)

See section 3.1 for any adaitional information about the testing
environment.

As a resut of this validation effort, Validation Certificate
910705S1.11191 is awarded to InterACT Corporation. This
certificate expires on 01 March 1993.

This report has been reviewed and is approved.

A a alidation cAda alidatio /Facility
Dr. David K. J fer Mr. L. ArnoldeJohnson
Chief, Information Sy tems Manager, Software Standards
Engineering Division (ISED) Validation Group

Computer Systems Laboratory (CLS)
National Institute of Standards and Technology

Building 225, Room A266
Gaithersburg, MD 20899

Ada alv a ion Organization Ada Joint Program Office
.& Dire to , Computer & Software / Dr. John Solomond

Engineering Division Director
Institute for Defense Analyses Department of Defense
Alexandria VA 22311 Washington DC 20301

APPENDIX A

Declaration of Conformance

Customer: InterACT Corporation

AdaValidation Facility: National Institute of Standards & Technology

ACVC Version: 1. II

Certificate Awardee Tn,.-ACT Corporati6a

Ada Implementation

Ada Compiler Name: InterACT Ada 1750A Compiler System

Version: 3.5

Host Computer System: MicroVAX 3100 Cluster /VMS 5.2

Target Computer System: InterACT MIL-STD-1750A Instruction Set Architecture

Simulator Release 2.3 (bare machine)

Customer's Declaration

I, the undersigned, representing InterACT declare that InterACT has no knowledge of

deliberate deviations from the Ada Language Standard ANSI/MIL-STD-1815A in the

implementation(s) listed in this declaration.

Signature Date

A-1

TABLE OF CONTENTS

CHAPTER 1 . 1-I

INTRODUCTION i-I

1.1 USE OF THIS VALIDATION SUMMARY REPCRT i-1
1.2 REFERENCES I-I

1.3 ACVC TEST CLASSES *.................... 1-2

1.4 DEFINITION OF TERMS 1-3

CHAPTER 2 2-1

IMPLEMENTATION DEPENDENCIES 2-1

2.1 WITHDRAWN TESTS 2-1
2.2 INAPPLICABLE TESTS 2-1

2.3 TEST MODIFICATIONS 2-4

CHAPTER 3 3-1

PROCESSING INFORMATION 3-1
3.1 TESTING ENVIRONMENT 3-1
3.2 SUMMARY OF TEST RESULTS 3-2
3.3 TEST EXECUTION 3-2

APPENDIX A A-1

MACRO PARAMETERS A-I

APPENDIX B .. B-I
COMPILATION SYSTEM OPTIONS B-i

LINKER OPTIONS B-2

APPENDIX C C-I
APPENDIX F OF THE Ada STANDARD C-i

CHAPTER 1

INTRODUCTION

The Ada implementation desczibed above was tested according to the
Ada Validation Procedures [Pro90] against the Ada Standard [Ada83]
using the current Ada Compiler Validation Capability (ACVC). This
Validation Summary Report (VSR) gives an account of the testing of
this Ada implementation. For any technical terms used in this
report, the reader is referred to [Pro90]. A detailed description
of the ACVC may be found in the current ACVC User's Guide £UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the
Ada Certification Body may make full and free public disclosure of
this report. 7n the United States, this is provided in accordance
with the "Freedom of Information Act" (5 U.S.C. #552). The results
of this validation apply only to the computers, operating systems,
and compiler versions identified in this report.

The organizations represented on the signature page of this report
do not represent or warrant that all statements set forth in this
report are accurate and complete, or that the subject
implementation has no nonconformities to the Ada Standard other
than those presented. Copies of this report are available to the
public from the AVF which performed this validation or from:

National Technical Information Service
5285 Fort Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results
should be directed to the AVF which performed this validation or
to:

Ada Validation Organization
Computer and Software Engineering Division
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311-1772

1.2 REFERENCES

'Ada83] Reference Manual for the Ada ProQramming Lanuage,

ANSI/MIL-STD-1315A, February 1983 and ISO 8652-1987.

1-1

[Pro90] Ada Compiler Validation Procedures, Version 2.1, Ada Joint
Program Office, August 1990.

CUG89] Ada Compiler Validation Capability User's Guide, 21 June
1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC.
The ACVC contains a collection of test programs structured into six
test classes: A, B, C, D, E, and L. The first letter of a test
name identifies the class to which it belongs. Class A, C, D, and
E tests are executable. Class B and class L tests are expected to
produce errors at compile time and link time, respectively.

The executable tests are written in a self-checking manner and
produce a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when they are executed. Three Ada library units, the
packages REPORT and SPPRT13, and the procedure CHECK FILE are used
for this purpose. The package REPORT also provides a set of
identity functions used to defeat some compiler optimizations
allowed by the Ada Standard that would circumvent a test objective.
The package SPPRT13 is used by many tests for Chapter 13 of the Ada
Standard. The procedure CHECK FILE is used to check the contents
of text files written by some of the Class C tests for Chapter 14
of the Ada Standard. The operation of REPORT and CHECK FILE is
checked by a set of executable tests. If these units are not
operating correctly, validation testing is discontinued.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is
compiled and the resulting compilation listing is examined to
verify that all violations of the Ada Standard are detected. Some
of the class B tests contain legal Ada code which must not be
flagged illegal by the compiler. This behavior is also verified.

Class L tests check that an Ada implementation correctly detects
violation of the Ada Standard involving multiple, separately
compiled units. Errors are expected at link time, and execution is
attempted.

In some tests of the ACVC, certain macro strings have to be
replaced by implementation-specific values -- for example, the
largest integer. A list of the values used for this implementation
is provided in Appendix A. In addition to these anticipated test
modifications, additional changes may be required to remove
unforeseen conflicts between the tests and implementation-dependent
characteristics. The modifications required for this
implementation are described in section 2.3.

1-2

For each Ada implementation, a customized test suite is produced by
the AVF. This customization consists of making the modifications
described in the preceding paragraph, removing withdrawn tests (see
section 2.1) and, possibly some inapplicable tests (see Section 3.2
and lUG89]).

In order Lo pass an ACVC an Ada implementation must process each
test of the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to
be added to a given host and target computer
system to allow transformation of Ada programs
into executable form and execution thereof.

Ada Compiler The means for testing compliance of Ada
Validation implementations, Validation consisting of the
Capability test suite, the support programs, the ACVC
(ACVC) Capability user's guide and the template for

the validation summary (ACVC) report.

Ada An Ada compiler with its host computer system and
Implementation its target computer system.

Ada Joint The part of the certification body which provides
Program policy and guidance for the Ada certificaticn Office
(AJPO) system.

Ada The part of the certification body which carries
Validation out the procedures required to establish the
Facility (AVF) compliance of an Ada implementation.

Ada The part of the certification body that provides
Validation technical guidance for operations of the Ada
Organization certification system.
(AVO)

Compliance of The ability of the implementation to pass an ACVC
an Ada version.
Implementation

Computer A functional unit, consisting of one or more
System computers and associated software, that uses

common storage for all or part of a program and
also for all or part of the data necessary for
the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including

1-3

arithmetic operations and logic operations; and
that can execute programs that modify themselves
during execution. A computer system may be a
stand-alone unit or may consist of several
inter-connected units.

Conformity Fulfillment by a product, process or service of
all requirements specified.

Customer An individual or corporate entity who enters into
an agreement with an AVF which specifies the terms
and conditions for AVF services (of any kind) to
be performed.

Declaration of A formal statement from a customer assuring that
Conformance conformity is realized or attainable on the Ada

implementation for which validation status is
realized.

Host Computer A computer system where Ada source programs are
System transformed into executable form.

Inapplicable A test that contains one or more test objectives
test found to be irrelevant for the given Ada

implementation.

ISO International Organization for Standardization.

LRM The Ada standard, or Language Reference Manual,
puibiished as MNSI/MIL-STU-18i5A-1983 and ISO
8652-1987. Citations from the LRM take the form
"<section>.<subsection>:<paragraph>."

Operating Software that controls the execution of programs
System and that provides services such as resource

allocation, scheduling, input/oucpuL control,
and data management. Usually, operating systems
are predominantly software, but partial or
complete hardware implementations are possible.

Target A computer system where the executable form of Ada
Computer programs are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated
Implementation successfully either by AVF testing or by

registration [Pro90].

1-4

Validation The process of checking the conformity of an Ada
compiler to the Ada programming language and of
issuing a certificate for this implementation.

Withdrawn A test found to be incorrect and not used in
test conformity testing. A test may be incorrect

because it has an invalid test objective, fails
to meet its test objective, or contains erroneous
or illegal use of the Ada programming language.

1-5

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

Some tests are withdrawn by the AVO from the ACVC because they do
not conform to the Ada Standard. The following 94 tests had been
withdrawn by the Ada Validation Organization (AVO) at the time of
validation testing. The rationale for withdrawing each test is
available from either the AVO or the AVF. The publication date for
this list of withdrawn tests is 91-05-03.

E28005C B28006C C34006D C35508I C35508J C35508M
C35508N C35702A C35702B B41308B C43004A C45114A
C45346A C45612A C45612B C45612C C45651A C46022A
B49008A B49008B A74006A C74308A B83022B B83022H
B83025B B83025D B83026B C83026A C83041A B85001L
C86001F C94021A C97116A C98003B BA2011A CB7001A
CB7001B CB7004A CC1223A BC1226A CC1226B BC3009B
BD1B02B BD1B06A ADIB08A BD2A02A CD2A21E CD2A23E
CD2A32A CD2A41A CD2A41E CD2A87A CD2BI5C BD3006A
BD4008A CD4022A CD4022D CD4024B CD4024C CD4024D
CD4031A CD4051D CD511!A CD7004C ED7005D CD7005E
AD7006A CD7006E AD7201A AD7201E CD7204B AD7206A
BD8002A BD8004C CD9005A CD9005B CDA201E CE2107I
CE2117A CE2117B CE2119B CE2205B CE2405A CE3111C
CE3116A CE3118A CE3411B CE3412B CE3607B CE3607C
CE3607D CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are
irrelevant for a given Ada implementation. The inapplicability
criteria for some tests are explained in documents issued by ISO
and the AJPO known as Ada Commentaries and commonly referenced in
the format AI-ddddd. For this implementation, the following tests
were determined to be inapplicable for the reasons indicated;
references to Ada Commentaries are included as appropriate.

The following 285 tests have floating-point type declarations
requiring more digits than SYSTEM.MAXDIGITS:

C24113F..Y (20 tests) C35705F..Y (20 tests)

C35706F..Y (20 tests) C35707F..Y (20 tests)
C35708F..Y (20 tests) C35202F..Z (21 tests)

2-1

C45241F..Y (20 tests) C45321F..Y (20 tests)
C45421F..Y (20 tests) C45521F..Z (21 tests)
C45524F..Z (21 tests) C45621F.. Z (21 tests)
C45641F..Y (20 tests) C46012F..Z (21 tests)

The following 21 tests check for the predefined type SHORT INTEGER;
for this implementation, there is no such type:

C35404B B36105C C452313 C45304B C45411B
C45412B C45502B C45503B C45504B C45504E
C45611B C45613B C45614B C45631B C45332B
B52004E C55BO7B B55B09D B860017 C86006D
CD7101E

C35404D, C45231D, B86001X, C86006E, and CD7!0!G check for a
predefined integer type with a name other than INTEGER,
LONG INTEGER, or SHORTINTEGER; for this implementation, there is
no such type.

C35713B, C45423B, B86001T, and C86006H check for the predefined
type SHORTFLOAT; for this implementation, there is no such type.

C35713D and B86001Z check for a predefined floating-point type with
a name other than FLOAT, LONG FLOAT, or SHORTFLOAT; for this
implementation, there is no such type.

C45531M..P and C45532M..P (8 tests) check fixed-point operations
for types that require a SYSTEM.MAXMANTISSA of 47 or greater; for
this implementation, MAXMANTISSA is less than 47.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE OVERFLOWS is FALSE for floating point types and the results
of various floating-point operations lie outside the range of the
base type; for this implementation, MACHINEOVERFLOWS is TRUE.

D64005G uses 17 levels of recursive procedure calls nesting; this
test exceeds the linkable size of 64KBytes.

B86001Y uses the name of a predefined fixed-point type other than
type DURATION; for this implementation, there is no such type.

C96005B uses values of type DURATION's base type that are outside
the range of type DURATION; for this implementation, the ranges are
the same.

CA2009C and CA2009F check whether a generic unit can be
instantiazed before its body (and any of its subunits) is compiled;
this implementation requires that generic bodies be located in the
same file or precede the instantiation.

2-2

CD1009C checks whether a length clause can specify a non-default
size for a floating-point type; this implementation does not
support such sizes.

CD2A84A, CD2A84E, CD2A84I..J (2 bests), and CD2A840 use length
clauses to specify non-default sizes for access types; this
implementation does not support such sizes.

B-8001A, BD8003A, BD8004A..B (2 tests), and AD8011A use machine
code insertions; this implementation provides no package
MACHINECODE.

CE2103A, CE2103B, and CE3107A use an illegal file name in an
attempt to create a file and expect NAME ERROR to be raised; this
implementation does not support external files and so raises
USEERROR. (See section 2.3.)

The following 264 tests check operations on sequential, text, and
direct access files; this implementation does not support external
files:

CE2102A..C (3) CE2102G..H (2) CE2102K CE2102N..Y (12)
CE2103C..D (2) CE2104A..D (4) CE2105A..B (2) CE2106A..B (2)
CE2107A..H (8) CE2107L CE2108A..H (8) CE2109A..C (3)
CE2110A..D (4) CE2111A..I (9) CE2115A..B (2) CE2120A..B (2)
CE2201A..C (3) EE2201D..E (2) CE2201F..N (9) CE2203A
CE2204A..D (4) CE2205A CE2206A CE2208B
CE2401A..C (3) EE2401D CE2401E..F (2) EE2401G
CE2401H..L (5) CE2403A CE2404A..B (2) CE2405B
CE2406A CE2407A..B (2) CE2408A..B (2) CE2409A..B (2)
CE2410A..B (2) CE2411A CE3102A..C (3) CE3102F..H (3)
CE3102J..K (2) CE3103A CE3104A..C (3) CE3106A..B (2)
CE3107B CE3108A..B (2) CE3109A CE3110A
CE3111A..B (2) CE3111D..E (2) CE3112A..D (4) CE3114A..B (2)
CE3115A CE3119A EE3203A EE3204A
CE3207A CE3208A CE3301A EE3301B
CE3302A CE3304A CE3305A CE3401A
CE3402A EE3402B CE3402C..D (2) CE3403A..C (3)
CE3403E..F (2) CE3404B..D (3) CE3405A EE3405B
CE3405C..D (2) CE3406A..D (4) CE3407A..C (3) CE3408A..C (3)
CE3409A CE3409C..E (3) EE3409F CE3410A
CE3410C..E (3) EE341OF CE3411A CE3411C
CE3412A EE3412C CE3413A..C (3) CE3414A
CE3602A..D (4) CE3603A CE3604A..B (2) CE3605A..E (5)
CE3606A..B (2) CE3704A..F (6) CE3704M..O (3) CE3705A..E (5)
CE3706D CE3706F..G (2) CE3804A..P (16) CE3805A..B (2)
CE3806A..B (2) CE3806D..E (2) CE3806G..H (2) CE3904A..B (2)
CE3905A..C (3) CE3905L CE3906A..C (3) CE3906E..F (2)

2-3

2.3 TEST MODIFICATIONS

Modifications (see section 1 3) were required for 18 tests.

The following tests were split into two or more tests because this
implementation did not report the violations cf the Ada Standard in
the way expected by the original tests.

B33301B B55AOlA B83EOlC B83E0lD B83EOlE BA1001A BA1101B BC1109A
BC1109C BC1109D

C83030C and C86007A were graded passed by Test Modification as
directed by the AVO. These tests were modified by inserting
"PRAGMA ELABORATE (REPORT);" before the package declarations at
lines 13 and 11, respectively. Without the pragma, the packages
may be elaborated prior to package Report's body, and thus the
packages' calls to function REPORT.IDENT INT at lines 14 and 13,
respectively, will raise PROGRAM ERROR.

BC3204C and BC3205D were graded passed by Processing Modification
as directed by the AVO. These tests check that instantiations of
generic units with unconstrained types as generic actual parameters
are illegal if the generic bodies contain uses of the types that
require a constraint. However, the generic bodies are compiled
after the units that contain the instantiations, and this
implementation creates a dependence of the instantiating units on
the generic units as allowed by AI-00408 and AI-00506 such that the
compilation of the generic bodies makes the instantiating units
obsolete--no errors are detected. The processing of these test-
was modified by re-compiling the obsclete units; all intendec
errors were then detected by the compiler.

CE2103A, CE2103B, and CE3107A were graded inapplicable by
Evaluation Modification as directed by the AVO. The tests abort
with an unhandled exception when USEERROR is raised on the attempt
to create an external file. This is acceptable behavior because
this implementation does not support external files (cf. AI-00332).

EE3412C was graded passed by Test Modification as directed by the
AVO. This test assumes that the support package REPORT uses
TEXTIO, and that thus calls to REPORT.SPECIAL ACTION will
increment the line count on the standard output file. But REPORT
was modified to use the implementation-defined string I/O package
named STRING OUTPUT instead of TEXTIO, because TEXT 10 is large in
terms of object code size. STRINGOUTPUT is significantly smaller
than TEXT_10, and provides for the output needs of REPORT while
allowing for the executable images of the tests to fit within a
64KByte memory limit. Because STRING 10 operations do not affect
the status of TEXTIO files--i.p., the line count for standard
output file is unchanged--, line 46 of the test was chaned as

2-4

follows:

from: IF LINE /= C+2 THEN
to: IF LINE /= C+1 THEN

Although REPORT is not a test, the modifications to it is recorded
here to complete the record and to allow for accurate replication
of this test envi onment. REPORT body was modified to use a
package named STRINGOUTPUT rather than TEXTIO because TEXT 10 is
large in terms of compiled object code size. STRING OUTPUT is
significantly smaller than TEXTIO and provides for the output
needs of REPORT while allowing for the executable image of the
tests to fit within a 64KByte memory limit.

2-5

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is
described adequately by the information given in the initial pages
of this report.

The tests were compiled and linked on the host computer system, as
appropriate. The executable images were transferred to the target
computer system by the communications link described above, and
run. The results were captured on the host computer system.

For technical information about this Ada implementation, contact:

Ms. Gail Ward
InterACT Corporation

417 5th Avenue
New York, New York, U.S.A. 10016

For sales information about this Ada implementation, contact:

Mr. Rich Colucci
InterACT Corporation

417 5th Avenue
New York, New York, U.S.A. 10016

Testing of this Ada implementation was conducted at the customer's
site by a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes
each test of the customized test suite in accordance with the Ada
Programming Language Standard, whether the test is applicable or
inapplicable; otherwise, the Ada Implementation fails the ACVC
[Pro90].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various
categories. All tests were processed, except those that were
withdrawn because of test errors (item b; see section 2.1), those
that require a floating-point precision that exceeds the

3-1

implementation's maximum precision (item e; see section 2.2), and
those that depend on the support of a file system -- if none is
supported (item d). All tests passed, except those that are listed
in sections 2.1 and 2.2 (counted in items b and f, below).

a) Total Number of Applicable Tests 3466

b) Total Number o.. Withdrawn Tests 94
c) Processed Inapplicable Tests 610
d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point

Precision Tests 0

f) Total Number of Inapplicable Tests 610 (c+d+e)
g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section
1.3) was taken on-site by the validation team for processing. The
contents of the magnetic tape were loaded directly onto the host
computer.

The Ada source files are compiled on a MicroVAX 3100 Cluster under
VAX/VMS using the InterACT Ada 1750A Compiler System. The Ada main
programs are then linked on the MicroVAX Cluster using InterACT
1750A Linker which produces a load module in InterACT's own load
format.

This load format is loaded and then executed within the InterACT
MIL-STD-1750A Instruction Set Architecture Simulator which also
executes on the MicroVAX 3100 Cluster. The Symbolic Debugging and
Simulation System runs a set script consisting only of "load",
"go", and "exit" commands. The MIL-STD-1750A Instruction Set
Architecture Simulator is a complete instruction set simulator for
the MIL-STD-1750A architecture. The 1750A Console Output
instruction in the MIL-STD-1750A Instruction Set Architecture
Simulator is defined to write character output (representing the
Ada standard output) to a dedicated Ada output file. The dedicated
Ada output file contains the output from the ACVC tests.

After the test files were loaded onto the host computer, the full
set of tests was processed by the Ada implementation.

The tests were compiled and linked on the host computer system, as
appropriate. The InterACT MIL-STD-1750A Instruction Set
Architecture Simulator, Release 2.3 (Bare Machine) (target computer
system) runs on the host computer system. The executable images
were transferred to the target computer system by the
communications link described above, and run. The results were

3-2

captured on the host computer system.

Testing was performed using command scripts provided by the
customer and reviewed by the validation team. See Appendix B for
a complete listing of the processing options for this
implementation. It also indicates the default options. The
options invoked explicitly for validation testing during this test
were:

For all tests the following explicit option was invoked:

/library=<libraryname>

In addition to the above, the following explicit option was invoked
for the B tests and E tests:

/list

Test output, compiler and linker listings, and job logs were
captured on magnetic tape and archived at the AVF. The listings
examined on-site by the validation team were also archived.

3-3

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing
the ACVC. The meaning and purpose of these parameters are
explained in [UG89]. The parameter values are presented in two
tables. The first table lists the values that are defined in terms
of the maximum input-line length, which is the value for
$MAX IN LEN--also listed here. These values are expressed here as
Ada string aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value

$MAXINLEN 126 -- Value of V

$BIGIDl (1..V-1 => 'A', V => 'I')

$BIGID2 (l..V-1 => 'A', V => '2')

$BIGID3 (1..V/2 => 'A') & '3' & (1..V-I-V/2 => 'A')

$BIGID4 (1..V/2 => 'A') & '4' & (1..V-I-V/2 => 'A')

$BIGINTLIT (1..V-3 => '0') & "298"

$BIGREALLIT (1..V-5 => '0') & "690.0"

$BIGSTRINGI '"' & (1..V/2 => 'A') & '"'

SBIGSTRING2 '"' & (1..V-l-V/2 => 'A') & '1' & '"'

$BLANKS (1..V-20 => '

$MAX LEN INT BASED LITERAL
"2:" & (1..V-5 => '0') & "11:"

$MAXLENREALBASEDLITERAL
"16:" & (1..V-7 => '0') & "F.E:"

$MAXSTRINGLITERAL '"' & (1..V-2 => 'A') & '"'

A-i

The following table contains the values for the remaining
macro parameters.

Macro Parameter Macro Value

$ACCSIZE 16

$ALI GNMENT 1

$COUNTLAST 2_147_483_647

$DEFAULTMEMSIZE 65536

$DEFAULTSTORUNIT 16

$DEFAULTSYSNAME MILSTD_1750A

$DELTA_DOC 1.0/2.0**(SYSTEM.MAXMANTISSA)

$ENTRYADDRESS 12

$ENTRYADDRESS1 13

$ENTRYADDRESS2 14

$FIELDLAST 35

$FILETERMINATOR ' I

$FIXEDNAME NOSUCHFIXEDTYPE

$FLOATNAME NOSUCHFLOATTYPE

$FORMSTRING fill

$FORMSTRING2 "CANNOTRESTRICTFILECAPACITY"

$GREATERTHANDURATION 214_748.3647

$GREATERTHANDURATIONBASELAST 214_749.3647

$GREATERTHANFLOATBASELAST
2#0.1l111111111111111l1#E127

$GREATERTHANFLOATSAFELARGE 0.999999E128

$GREATERTHAN SHORTFLOATSAFELARGE 0.0

$HIGHPRIORITY 255

A-2

SILLEGALEXTERNALFILENAMEI ILLEGALFILENAME_]

$ILLEGALEXTERNALFILENAME2 ILLEGALFILENAME 2

$INAPPROPRIATE LINELENGTH -1

$INAPPROPRIATEPAGELENGTH -.

$INCLUDEPRAGMAI PRAGMA INCLUDE("A28006DI.TST")

$INCLUDEPRAGMA2 PRAGMA INCLUDE("B28006FI.TST")

$INTEGERFIRST -32768

$INTEGERLAST 32767

$INTEGERLASTPLUS_1 32768

$INTERFACELANGUAGE ASSEMBLY

$LESSTHANDURATION -214_748.3648

$LESSTHANDURATIONBASEFIRST -214_749.3648

$LINETERMINATOR if

$LOWPRIORITY 0

$MACHINECODESTATEMENT NULL;

$MACHINECODETYPE NOSUCHTYPE

$MANTISSADOC 31

$MAXDIGITS 9

$MAXINT 2147483647

$MAX INTPLUS_1 2147483648

$MININT -2147483648

$NAME NOSUCHINTEGERTYPE

$NAMELIST MILSTD_1750A

$NAMESPECIFICATIONI NAMESPEC_1

$NAMESPECIFICATION2 NAMESPEC_2

$NAMESPECIFICATION3 NAMESPEC 3

A-3

$NEGBASEDTNT 16#FFFFFFFE4

$NEWMENSIZE 65536

$NEWSTORUNIT 16

$NEWSYSNAME MILSTD_1750A

$PAGETERMINATOR i

$RECORDDEFINITION NEW INTEGER;

$RECORDNAME NOSUCHMACHINE CODE TYPE

$TASKSIZE 16

$TASKSTORAGESIZE 1024

$TICK 0.000_100

$VARIABLEADDRESS 16#1000#

$VARIABLEADDRESS1 16#1800#

$VARIABLEADDRESS2 16#2000#

$YOURPRAGMA NA

A-4

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report.

B-i

Chapter 4
The Ada Compiler

The Ada Compiler translates Ada source code into MIL-STD-1750A object code.

Diagnostic messages are produced if any errors in the source code are detected. Warning messages are also
produced when appropriate.

Compile, cross-reference, and generated assembly code listings are available upon user request.

The compiler uses a program librar' during the compilation. An internal representation of the compilation,
which includes any dependencies on units already in the program library, is stored in the program library as a
result of a successful compilation.

On a successful compilation, the compiler generates assembly code, invokes the InterACT 1750A Assembler to
translate this assembly code into object code, and then stores the object code in the program library. (Option-
ally, the generated assembly code may also be stored in the library.) The invocation of the Assembler is com-
pletel, transparent to the user.

4.1. The Invocation Command

The Ada Compiler is invoked by submitting the following VAX/VMS command:

$ ada1750(qualifier} source-fde-spec

4.1.1. Parametes and Qualifiers

Default values exist for all qualifiers as indicated below. All qualifier names may be abbreviated (characters
omitted from the right) as long as no ambiguity arises.

source-ile-spe:

This parameter specifies the f'de containing the source text to be compiled. Any valid VAX/VMS filename may
be used. If the rde type is owitted from the specification, rile type ada is assumed by default. If this parameter
is omitted, the user will be prompted for it. The format of the source text is descbed in Section 4.2.

4-2 The Ada Compiler

list
/nolist (default)

The user may request a source Listing by means of the qualifier list. The source listing is written to the list file.
Section 43.2 contains a description of the source listing.

If /nolist is active, no source listing is produced, regardless of any LIST pragmas in the program or any diagnos-
tic messages produced.

In addition. the /list qualifier provides generated assembly listings for each compilation unit in the source file.
Section 4.3.6 contains a description of the generated assembly listing.

/xrer
/noxref (default)

A cross-reference listing can be requested by the user by means of this qualifier. If /xref is active and no severe
or fatal errors are found during the compilation, the cross-reference listing is written to the Lst fide. The cross-
reference listing is described in Section 4.3.4.

/library =fiie-spec
/library =ada1750_library (default)

Tbis qualifier specifies the current sublibrary and thereby also specifies the current program library which con-
sists of the current sublibrary through the root sublibrary (see Chapter 2). If the qualifier is omitted, the subli-
brary designated by the logical name ada 1750_library is used as the current sublibrary.

Section 4.4 describes how the Ada compiler uses the current sublibrary.

/configuration_re =file-spec
/conflgurationjfle = ada1750_config (default)

This qualifier specifies the configriration file to be used by the compiler in the current compilation.

If the qualifier is omitted, the configuration file designated by the logical name ada1750_config is used by
default. Section 4.1.4 contains a description of the configuration file.

/savesource (default)
/nosavesourte

This qualifier specifies whether the source text of the compuation uait is stored in the program library. In case
that the source text file contains several compilation units the source text for each compilation unit is stored in
the program library. The source texts stored in the program library can be extracted using the Ada PLU type
command (see Chapter 3).

Specifying /nosavesourct will prevent automatic recompilation by the Ada Recompiler. and is hence not
recommended.

The Ada Compiler 4-3

/keep assembly
/uokeep assembly (default)

When this qualifier is given, the compiler will store the generated assembly source code in the program librar.
for each compilation unit being compiled. By defauit this is not done. Note that while the assembly code is
stored in the library in a compressed form, it nevertheless takes up a large amount of library space relative :0
the other information stored in the library for a program unit.

This qualifier does not affect the production of generated assembly listings.

/check (default)
/nochecki = (checkknd,...)]

check kind ::= index access I discriminant I length I range I
division Ioverflow I elaboration I storage Iall

When this qualifer is active (which is the default), all run time checks will be generated by the compiler.

When /nocheck is specified, the checks corresponding to the particular check kinds specified will be omitte2_
These kinds correspond to the identifiers defined for pragma SUPPRESS [Ada RM 11.7]. The default kind f-r
/nocheck is all; that is, just specifying /nocheck results in all checks being suppressed.

Suppression of checks is done in the same manner as for pragma SUPPRESS (see Section F.2).

/debug
/nodebug (default)

When this qualifier is given. the compiler will generate symbolic debug information for each compilation unit M
the source File and store the information in the program library. By default this is not done.

This symbolic debug information is used by the InterACT Symbolic Debugging Sytem.

It is important to note that the identical object code is produced by the compiler, whether or not the /debug
qualifier is active. There are some minor differences in the generated assembly code, due to some extra labeis
being generated in the debug case.

/nofeoptimize

A small portion of the optimizing capability of the compiler places capacity limits on the source program (e_.,
number of variables in a compilation unit) that are more restrictive than those documented in Section F.13. III a
compile produces an error message indicating that one of these limits has been reached, for example

-* 1562S-0: Optimizer capacity exceeded. Too fmany rwnes in a basic block.

then use of this /nofeoptimize qualifier will bypass this particular optimizing capability and allow the compl.3-
tion to finish normally.

IMPORTAPIT NOTE: Do not use this qualifier for any other reason. Do not attempt to use it in its posixve

4-4 The Ada Compiler

form (/feoptmime), either with or without any of its keyword parameters. The /feopttmize qualifier as defined
in the delivered command defmition rile is preset to produce the most effective optimization possible; any other
use of it may produce either non-optimal or incorrect generated code. Similarly, do not use any other qualifiers
defined in the delivered command definition file that are not documented in this manual. Such qualifiers are
intended only for compiler maintenance purposes.

/progess
/noprogress (default)

When this qualifier is given, the compiler will write a message to sys$output as each pass of the compiler starts
to run. This information is not provided by default.

Examples of qualifier usage

$ ada1750 navigation constants

S adalTS0/list/xref event scheduler

$ adal7 O/prog/lib=test versions.alb sysSuser- (source]altitudes b

4.1.2. The Ust File

The name of the list ile is identical to the name of the source fileexcept that it has theile type lis. The file is
located in the current default directory. If any such file exists prior to the compilation, the newest version of the

il-e is deleted. If the user requests any listings by specifying the qualifiers lUst or /xref, a new list file is created.

The list file is a text file and its contents are described in Section 4.3.

4.1.3. The Diagnostic File

The name of the diagnostic file is identical to the name of the source file except that it has the file type err. It is
located in the current default directory. If any such file exists prior to the compilation, the newest version of the
file is deleted. If any diagnostic messages are produced during the compilation, a new diagnostic rile is created.

The diagnostic file is a text file containing a list of diagnostic mesages, each followed by a line showing the
number of the line in the source tez causing the me.sage, and a blank line. There is no pagination and there
are no headings. The file may be used by an interactive editor to show the diagnostic messages together with
the erroneous source tet (see Appendix A). The diagnostic messages are described in Section 4.35.

4.1.4. The Configuration I1le

Certain functional characteristics of the compiler may be modified by the user. These characteristics are passed
to the compiler by means of a configuration file, which is a text file. The contents of the configuration file must
be an Ada positional aggregate, written on one line, of the anonymous type configuration record, which is
described below. The configuration fde is not accepted by the compiler in the following cases:

The Ada Compile 4-5

* the syntax does not conform with the syntax for a positional Ada aggregate of type
coqfijprzonrecord;

" a jue is outside the ranges specified below-,

- a value is not specified as a literal;

" LINES PER PAGE is not greater than TOP-MARGIN + BOTTOM-MARGIN,

• the aggregate occupies more than one line.

If the compiler is unable to accept the configuration fide, an error message is issued and the compilation is ter-
minated.

The definition of this anonymous type is

type OUTFORMATTING is
record

LINES PER PAGE : INTEGER range 30..100;
--see Se~cion-4.3.1
TOP ,MARGIN: INTEGER range 4.. 90;
--see Section 4.3.1
BOTTOMMARGIN : INTEGER range 0.. 90;
-see Section 43.1
OUT LINELENGTH : INTEGER range 80..1.32;
-see Section 4.3.1
SUPPRESS ERRORNO: BOOLEAN;
-see Section 4.3.5.1

end record-

type INPUT FORMATS is
(ASCII);

-see Section 4.2

type INFORMATTING is
record

INPUT FOR-MAT: INPUT FORMATS;
-see Scion 4.2
INPUT LINELENGTH : INTEGER range 70.127;
-see Section 4.2

end record;

type configuroaron record is
record

IN FORMAT: INFORMAThING;
O T FORMAT: OUTFORMATTING;
ERROR LIMIT: INTEGER;
-see Section 43.5

end record;

4-6 The Ada Compiler

The Compiler System is delivered with a configuration file with the following content:

((ASCII, 126), (48, 5, 3, 100, FALSE), 200)

The name of this configuration file is passed to the compiler through the /conFturationrde qualifier.

The OUTFORMATTING components have the following meaning:

* LINES PER PAGE. Specifies the maximum number of lines written on each page (including top and
bottom margin).

* TOP MARGIN: Specifies the number of lines on top of each page used for a standard heading and
blanklines. The heading is placed in the middle lines of the top margin.

* BOTTOM MARGIN: Specifies the minimum number of lines left blank in the bottom of the page.
The number of lines available for the listing of the program is LINESPERPAGE - TOP-MARGIN
- BOTTOM MARGIN.

* OUT LINELENGTh-: Specifies the maximum number of characters written on each line. Lines
longer than OUTLINELENGTH are separated into two lines.

* SUPPRESS ERRORNO: Specifies the format of error messages, see Section 4.5.1.

4.1.5. The Generated Assembly List File

When generated assembly list files are produced, there is one such tile for each compilation unit in the source
file. Generated assembly list files have a file type of als, and a file name of the compilation unit name suffixed
with a $s if the compilation unit is a specication, or Sb if the compilation unit is a body. All files are located in
the current default directory. Unlike the source list file, existing generated assembly list files are not deleted
upon recompilation.

Generated assembly list friles are text friles and their contents are described in Section 4-3.6.

4-. The Source Text

The user submits one source text file in each compilation. The source text may consist of one or more compila-
tion units [Ada RM 10.11.

On VAX/VMS the format of the source text specified in the configuration file (see Section 4.1.4) must be
ASCII. This format requires that the source text is a sequence of ISO characters [ISO standard 646], where
each line is terminated by one of the following termination sequences (CR means carriage return, VT means
vertical tabulation, LF means line feed, and FF means form feed):

" a sequence of one or more CRs, where the sequence is neither immediately preceded nor immediately
followed by any of the characters VT, LF, or FF;

* any of the characters VT, LF, or FF, immediately preceded and followed by a sequence of zero or
more CRs.

In general, ISO control characters are not permitted in the source text with the following exceptions:

The Ada Compiler 4-7

* the horizontal tabulation character (HIT) may be used as a separator between lexical units;

L LF, VT, FF, and CR may be used to terminate lines, as described above.

The maximum number of characters in an input line is determined by the contents of the configuration file (see
Section 4.1.4). The control characters CR, VT, LF, and FF are not considered part of the line. Lines containing
more than the maximum number of characters are truncated and an error message is issued.

4.3. Compiler Output

The compiler may produce output in the list ile, the generated assembly list file(s), the diagnostic file, and on
sysSoutpuL It also updates the program library if the compilation is successful (see Section 4.4).

The compiler may produce the following text output:

1. A listing of the source text with embedded diagnostic messages is written to the list file, if the qualifier
/list is active.

2. A compilation summary is written to the list file, if /list is active.

3. A cross-reference listing is written to the list rile, if /xrf is active and no severe or fatal errors have
been detected during the compilation.

4. A generated assembly listing of the compilation units within the source file is written to the generated
assembly list file(s) if the qualifier /list is active, and if no errors have been detected during the com-
pilation.

S. If there are any diagnostic messages, a diagnostic rile containing the messages is written.

6. Diagnostic messages other than warnings are written to sysSoutput.

43.1. Format of the List File

The list file may include one or more of the following parts: a source listing, a cross-reference listing, and a
compilation summary.

The parts of the list file are separated by page ejects. The contents of each part are described in the following
sections.

The format of the output to the list file is controlled by the configuration file (see Section 4.1.4).

4.32. Source Listing

A source listing is an unnmodified copy of the source text. The listing is divided into pages and each line is sup-
plied with a line number.

The number of lines output in the source listing is governed by the following.

4-8 The Ada Compiler

* parts of the listing can be suppressed by the use of UST pragmas;

* a line containing a construct that caused a diagnostic message to be produced is printed even if it
occus at a point where Listing has been suppressed by a UST pragma.

An example of a source listing is shown in Chapter 10.

4.3.3. Compilation Summary

At the end of a compilation the compiler produces a summary that is output to the list ile if the lUst qualifier
is active.

The summary contains information about:

* the type and name of the compilation unit, and whether it has been compiled successfully or not;

* the number of diagnostic messages produced, for each class of severity (see Section 43.5);

, which qualifiers were active;

* the VAX/VMS fdename of the source file;

* the VAX/VMS filenames of the sublibraries constituting the current program library,

* the number of source text lines;

* elapsed real time and elapsed CPU time;

• a *Compilation terminated" message if the compilation unit was the last in the compilation, or "Com-
pilation of next unit initiated* otherwise.

An example of a compilation summary is shown in Chapter 10.

43.4. Cross-Reference Usting

A cross-reference listing is an alphabetically sorted list of the identifiers, operators and character literals of a
compilation unit. The list has an entry for each entity declared and/or used in the unit, with a few exceptions
stated below. Overloading is evidenced by the occurrence of multiple entries for the same identifier.

For instantiaions of generic units the visible declarations of the generic unit are included in the cross-reference
listing as declared immediately after the instantiation. The visible declarations are the subprogram parameters
for a generic subprogram and the declarations of the visible part of the package declaration for a generic pack-
age.

For type declarations all implicitly declared operations are included in the cross-reference listing.

Cross-reference information will be produced for every constituent character literal for string literals.

The following are not included in the cross-reference listing:

The Ada Compiler 4-9

* pragma identifiers and pragma argument identifiers;

* numeric literals;

* record component identifiers and discriminant identifiers. For a selected name whose selector denotes
a record component or a discriminant, only the prefix generates cross-reference information;

* a parent unit name following separate.

Each entry in the cross-reference listing contains:

* the identifier with at most 15 characters. If the identifier exceeds 15 characters, a bar ("J") is writn
in the 16th position and the remaining characters are not prined;

* the place of the definition, i.e., a line number if the entity is declared in the current compilation unit,
other-Ase the name of the compilation unit in which the entity is declared and the line number of the
declaration;

* the numbers of the lines in which the entity is used. An asterisk (*') after a line number indicates an
assignment to a variable, initialization of a constant, or assignments to functions or user-defined
operators by means of return statements.

An example of a cross-reference listing is shown in Chapter 10.

4.3-5. Diagnostic Messages

The Ada compiler issues diagnostic messages to the diagnostic file (see Section 4.13). Diagnostics other than
warnings also appear on sysSoutput. If a source text listing is requested, diagnostics are also found embedded
in the list file (see Section 4.1.2).

In a source listing a diagnostic message is placed immediately after the source line causing the message. Mes-
sages not related to a particular line are placed at the top of the listing. Every diagnostic message in the diag-
nostic file is followed by a line indicating the corresponding line number in the source text. The lines are
ordered by increasing source line numbers. Line number 0 is assigned to messages not related to any particalar
line. In sys$output the messages appear in the order in which they are generated by the compiler.

The diagnostic messages are classified according to their severity and the compiler action taken:

4-10 The Ada Compiler

Warning:. Reports a questionable construct or an error that does not influence the meaning of
the program. Warnings do not hinder the generation of object code. Example: A
warning will be issued for constructs for which the compiler detects that
CONSTRAINT ERROR will be raised at nntime.

Error: Reports an illegal construct in the source program. Compilation continues, but no
object code will be generated. Examples: most syntax errors; most static semantic
errors.

Severe Error: Reports an error which causes the compilation to be terminated immediately. No
object code is generated. Example: a library unit mentioned by a with clause is not
present in the current program library.

Fatal Error:. Reports an error in the Compiler System itself. The compilation is terminated
immediately and no object code is produced. InterACT should be informed about all
such errors (see Appendix X). The user may be able to circumvent a fatal error by
correcting the program or by replacing program constructs with alternative constructs.
Fatal errors are unlikely to affect program library integrity.

The detection of more than a certain number of errors during a compilation is considered a severe error. The
limit is defined in the configuration file (see Section 4.1.4).

42.3.1. Format and Content of Diagnostic Messages

For certain syntactically incorrect constructs, the diagnostic message consists of a pointer line and a text line. In

all other cases a diagnostic message consists of a text line only.

The pointer line contains a pointer (-) to the offending symbol or to an illegal character.

The text line contains the following information:

* the diagnostic message identification "

* the message code XY-Z where

X is the message number

Y is the severity code, a letter showing the severity of the error:

W: warning
E: error
S: severe error
F: fatal error

Z is an integer which together with the message number X uniquely identifies the compiler
location that generated the diagnostic message. Z is only useful for compiler maintenance
purposes

The Ada Compiler 4-11

The message code (with the exception of the severity code) is suppressed if the configuration
rile component SUPPRESS ERRORNO has the value TRUE (see Section 4.1.4).

* the message tet. The text may include one context-dependent field which contains the name of the
offending symbol; if longer than 16 characters, only the first 16 characters are shown.

Examples of diagnostic messages are:

13W-3: Warning:. Exceptin CONSTRAINT ERROR will be raised here

320E-2. Name OBJ does not denote a type

" 535E-0: Expression in return statement missing

* 8S-0. Specification for this package body not present in the library

Chapter 10 shows an example program with errors and the source listing and diagnostic file produced.

43.6. Generated Assembly Listing

The generated assembly listing is the output of the 1750A Assembler when it assembles the generated IEEE
as.embly source produced by the compiler for a compilation unit. (The assembly takes place as part of the
compile command.)

The Ada source text appears as comments in the generated assembly code, with the source text corresponding
to each Ada scope start, declaration, statement, and scope end appearing before the corresponding generated
assembly code. The line number from the Ada source file also appears in these comments. If an Ada source
text line is longer than 72 characters, it is truncated with a backslash 0 character in the listing.

If the compilation unit contains generic instantiations or inline subprogram calls where the original Ada source
text is in a different file from the unit being compiled, the source text is brought in from that file and a com-
ment is generated to indicate when that file is being referenced. If an Ada source file cannot be located
(because the user has moved or deleted it since the original compilation, or because it is for a predefined library
unit), a comment is issued to that effect, and comments are interleaved that supply only the source line
numbers.

The compiler unnests lexically nested subprogram bodies and task bodies in the generated code so that they
appear textually after their parent scopes. The Ada source line comments for these bodies do not appear in
their lexical place in the parent scopes, but rather with the unnested generated code. Occasionally special
compiler-generated routines appear in the generated code that have no particular correspondence to the Ada
source. A comment is issued to this effect when this happens.

In addition to the interleaved Ada source, comments at the beginning of the assembly listing indicate the source
f'l. name that this compilation unit came from, the compilation unit name, and the sublibrary file name that it
is be ing compiled into.

The bottom of the generated assembly listing shows the object code sizes of the compilation unit.

Note that iaoels and external names in the assembly listing often refer to program unit numbers, rather than (or
in addition to) unit names; if necessary, correspondence can be established through use of Ada PLU (see
Chapter 3).

4-12 The Ada Compiler

43.7. Returu Status

After a compilation the VAX/VMS DCL symbols $status and $severity will reflect whether the compilation
was successful. The possible values of $severity and the low-order bits of $status are 1 (success) or 2 (error).

4.4. T'he Program Ubrary

This section briefly describes how the Ada compiler changes the program library. For a more general descrip-
tion of the program irorary, see Chapter 2.

The compiler is allowed to read from all sublibraries constituting the current program library, but only the
current sublibrary may be changed.

4.4.1. Correct Compilation

In the following examples it is assumed that the compilation units are correctly compiled, i.e., that no error4 arc

detected by the compiler.

Compilation of a library unit which is a declaration

If a declaration unit of the same name exists in the current sublibrary, it is deleted together with its body unit
and possible subunits. A new declaration unit is inserted in the sublibrary, together with an empty body unit.

Compilation of a library unit which Is a subprogram body

A subprogram body in a compilation unit is treated as a secondary unit, if the current sublibrary contains a sub-
program declaration or a generic subprogram declaration of the same name and this declaration unit is not
invalid.

In all other cases it will be treated as a library unit, ie.:

* when there is no library unit of that name;

* when there is an invalid declaration unit of that name;

* when there is a package declaration, generic package declaration, or an instantiated package or sub-
program of that name.

Compilation of a library unit which Is an instantiation

A possible existing declaration unit of that name in the current sublibrary is deleted together with its body unit
and possible subunits. A new declaration unit is inserted.

Compilation of a secondary unit which Is a library unit body

The existing body is deleted from the sublibrary together with its possible subunits. A new body unit is inserted.

Compilation of a secondary unit which Is a subunit

If the subunit exists in the sublibrary, it is deleted together with its possile subunits. A new subunit is inserted.

The Ada Compiler 4-13

4.4.2. Incorect Compilations

If the compiler detects an error in a compilation unit, the program library will be kept unchanged.

If a source file consists of several compilation units and an error is detected in any of these compilation units,
the program library will not be updated for any of the compilation units.

4.5. Instantation of Generic Units

4.5.1. Order of Compilation

When instantiating a generic unit, it is required that the entire unit including body and possible subunits is com-
piled before the first instantiation or - at the latest - in the same compilation. This is in accordance with [Ada
Rm 10.3].

4Z.2. Generic Formal Private Types

This section describes the treatment of a generic unit with a generic formal private type, where there is some
construct in the generic unit that requires that the corresponding actual type must be constrained if it is an array
type or a type with discriminants, and instantiations exist with such an unconstrained type [Ada RM 12.3.2(4)].

This is considered an illegal combination. In some cases the error is detected when the instantiation is com-
piled, in other cases when a coastraint-requiring construct of the generic unit is compiled:

1. If the instantiation appears in a later compilation unit than the first constraint-requiring construct of
the generic unit, the error is associated with the instantiation which is rejected by the compiler.

2. If the instantiation appears in the same compilation unit as the first constraint-requii-,g construct of
the generic unit, there are two possibilities:

(a) If there is a constraint-requiring construct of the generic unit after the instantiation, an error
message appears with the instantiation.

(b) If the instantiation appears after all constraint-requiring constructs of the generic unit in that
compilation unit, an error message appears with the constraint-requiring construct, but
refers to the illegal instantiation.

3. The instantiation appears in an earlier compilation unit than the first constraint-requiring construct of
the generic unit, which in that case appears in the generic body or a subunit. If the instantiation has
been accepted, the instantiation corresponds to the generic declaration only, and does not include the
body. Nevertheless, if the generic unit and the instantiation are located in the same sublibrary, then
the compiler considers it an error. An error message is issued with the constraint-requiring construct
and refers to the illegal instantiation. The unit containing the instantiation is not changed, however,
and is not marked as invalid.

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
other-wise, references in this appendix are to linker documentation and
not to this report.

B-2

Chapter 5
The Ada Linker

Before a compiled Ada program can be executed it must be linked into a load module by the Ada Linker.

A single program may be linked for either a non-expanded memory 1750A configuration, or for any size of

expanded memory 1750A configuration.

In its normal and conventional usage, the Ada Linker links a single Ada program.

The Ada Linker also has the capability to link multiple Ada programs into one load module, where the pro-
grams will execute concurrently. This capability, which is outside the definition of the Ada language, is called
multiprogramrng, and is further discussed below.

The Ada link, while one command, can be seen as having two parts: an *Ada part" and a "1750A part'.

The Ada part performs the link-time functions that are required by the Ada language. This includes checking
the consistency of the library units, and constructing an elaboration order for those library units. Any errors
found in this process are reported.

To effect the elaboration order, the Ada link constructs an assembly language "elaboration caller routine' that is
assembled and linked into the executable load module. This is a small routine that, during execution, gets con-
trol from the Ada runtime executive initiator. It invokes or otherwise marks the elaboration of each Ada library
unit in the proper order, then returns control to the runtime executive, which in turn invokes the main program.
The action of the elaboration caller routine is transparent to the user.

If no errors are found in the Ada part of the link, the 1750A part of the link takes place. This consists of assem-
bling the elaboration caller routine, then invoking the InterACT 1750A Linker, linking the program unit object
modules (stored in the program library) and the elaboration caller routine together with the necessary parts of
the Ada runtime executive (and some other runtime modules needed by the generated code). The output of the
full Ada link is an executable load module fide.

The invocations of the 1750A Assembler and Linker are transparent to the user. However, qualifiers on the
Ada link command allow the user to specify additional information to be used in the target link. Through this
facility, a wide variety of rumime executive optional features, customizations, and user exit routines may be
introduced to guide or alter the execution of the program. These are described in the Ada 1750A Runtime Exe-
cutive Programmer's Guide. Tlis facility may also be used to modify or add to the standard 1750A Linker control
statements that are used in the 1750A part of the link; in this way, target memory may be precisely defined.
The control statements involved are described in the InterACT 175124 Assembler and Linker User's Manual.

5-2 The Ada Linker

Expanded Memory

Expanded memory is an optional hardware feature of the 1750A. Without the expanded memory option, the
1750A interprets 16-bit addresses as physical addresses, thereby allowing a maximum memory space of 64K
words. With the expanded memory option, the 1750A can address up to 1M words of memory by maintaining a
set of page tables which enable it to translate 16-bit logical addresses into 20-bit physical addresses. (This iM
of memory can be divided into any ratio of code to data. Some implementations of 1750A map instruction and
data fetches into separate physical hardware areas, resulting in up to 2M words of memory being available -
IM of code, 1M of data.)

However, since the 1750A is fundamentally a 16-bit processor, it does not allow direct access to the entire 1M
address space. Instead, it defines up to 16 "cootext"s known as address states, only one of which may be active at
any moment. Each address state consists of a logical memory space containing up to 64K of code and 64K of
data.

To a large degree, the difficulties involved in working with 1750A expanded memory stem from one question:
which code and data go in which address sate? This is because jumping from one address state to another,
known as context switching, is an expensive operation for real-time applications if done indiscriminately. Con-
sequently, the decision concerning what to place in each address state is best left to the system designer. Once
that decision is made, the Compiler System automates the rest of the process.

These address state bindings are done at Ada Link time. The user specifies a main program, which will reside in
address state 0, and any number of "top-lev6* compilation units, which will reside in address states specified by
the user. Calls to any subprograms defined within these top-level units (and the elaboration-time call to the
unit itself) will be made via the Long Call facility.

The Long Call facility allows a subprogram residing in one address state to call a subprogram residing in
another address state. The actual call and return is handled automatically by the Compiler System. (The
implementation consists of the 1750A Linker replacing call and return instructions with branch-to-ex.,'.tive
instructions, through which th- Ada runtime executive performs a context switch using tables set up by the
1750A Linker.) Passed paranicters, including those passed by reference (arrays and records), are also handled
automatically. Thus, inter-address state calls look no different, in the Ada source, than intra-address state calls,
and there are no restrictions on such calls.

The Ada runtime executive also automatically handles task rendezvous across address states; thus an entry call
may also involve a context switch, if the user has designated the compilation unit containing the task to reside in
a different address state from the calling task.

All units other than those specified by the user as 'long called*, automatically reside in every address state that
references them. (The implementation consists of the 175QA Linker setting up page register tables that reflect
this mapping, and the Ada runtime executive loading these page registers during initialization processing.)
Thus, calls to these units, and references to their data, have no extra execution-time cost associated with them.

In addition to user-specified address states' contents, the Compiler System automatically includes in each
defined address state (Le. makes globally shareable) the Ada runtime system, including the system heap and the
stacks for the main program and all tasks.

To summarize the memory capabilities of single program expanded memory support, a program linked for
expanded memory may contain up to 1M of code. The program's local objects and access object space is limited
to 64K. The program's library package objects (i.e., objects with static allocation) may occupy more than 64K,
with no contex switch overhead, to the extent that they are referenced in only some address states.

As an illustration, consider a simple application consisting of 6 library units: a main program fight simulator,

The Ada Linker 5-3

and packages operationsa, operations b, operationsc, utilities, and error-handler. The following diagram
portrays the relationship between the units.

fight simulator

operationsa operationsb operations_c

error handler utilities

The arrows represent dependencies (i.e. 'with" clauses). Thus, fightsimulator calls subprograms (or task
entries) in the operations packages, all of which make use of error handler. In addition, each of the opera-
tions makes use of a unit named utilities.

The system designer knows the application requires more than 64K of physical memory, thus the expanded
memory option must be used. Units might be assigned to address states as follows:

,, dress state 0 address state 1 address state 2

flight_simulator operations a operations b
(operations_a) error handler operations c
(operations b) utilities (error handler)
(operationsc) utilities

The units in parentheses indicate units not actually resident in the listed address state but referenced via the
long call facility. Thus, address state 0 contains only fight simulator which makes long calls to the operations.
Address state 1 contains operations a, utilities, and error handler. And address state 2 contains operations b
and operationsc whicn make long calls to error-handler, and ordinary calls to utilities.

Note that both error handler and utilities are accessed in address states 1 and 2. But whereas utilities actually
resides in both address states (Le. one physical instance mapped into both address states), error handler
resides only in address state 1.

Multiprogramming

As stated above, multiprogramming is the capability of linking multiple Ada programs into one load module,
where the programs will execute concurrently. As this concept is outside the defimition of the Ada language, the
discussion of multiprogramming here is specific to this Compiler System's implementation.

In multiprogramming, Ada units (comprising code, literals, and/or data) that are common to more than one
program are linked but once, and are shared by those programs. With respect to code and literals, this has no
effect upon execution, and results in more efficient memory utilization. However, with respect to data. this

5-4 The Ada Linker

means that the actions of one Ada program can affect, and possibly cause erroneous behavior in, another Ada
program. Such an interaction may be desired, as in the case of a common library package's data being used to
communicate between programs. If such an interaction is not desired, the program units that would otherwise
be common may be rewritten as generic units, and instantiated with a different name for each program that uses
them.

Elaboration of common units is only done once, by the "first" program that depends on them. This ordering is
defined by the order in which the programs are named to the Ada link command (and not by their address state
order, if an expanded memory link is being done).

In order to ensure that units are elaborated before being referenced, the runtime executive elaborates the units
of each program serially, waiting for the elaborations for one program to finish before going on to the next
program's elaborations. When all elaborations have completed, the main programs themselves are eligible to
execute. Programs, and any tasks within them, are scheduled by their Ada priority on a global basis. See the
Ada 1750,4 Awuim Erecudw Progr 'ners Guide for more details on this process, and on the criteria by which
programs are scheduled and dispatched.

The main programs involved in a multiprogramming link must all be present within the same program library.

Multiprogramming m-y be done on either a non-expanded memory or an expanded memory 1750A
configuration. In the latter case it is used in conjunction with the single program expanded memory linking
features described above. One or more programs may be defimed to an address state.

Note that it is not necessary to use multiprogramming to take advantage of a 1750A expanded memory
configuration. Multiprogramming is often best suited towards real-time 'operating systems" implemented in
Ada, where each application running under the operating system is represented as an Ada main program, and
where communication requirements among the programs are minor or absent.

5.1. The Invocation Command

The Ada Linker is invoked by submitting the following VAX/VMS command:

S ada1750/link{qualifier) main-programs [long-called-units]

main-programs.: = main-prograrn-name (single program link)
I {main-program-name{/as-qualifier I /optionsqualifier}} (multiprogramming link)

long-called-units ::= {unit-name[las-qualifier] }

As part of the "1750A part' of an Ada link, a temporary subdirectory is created below the current default direc-
tory. Use of this subdirectory, the name of which is constructed from the VAX/VMS process-id, permits con-
current linking in the same current default directory. The subdirectory contains work files only, and it and its
contents are deleted at the end of the link.

A consequence of the use of this subdirectory is that an Ada link cannot be done from a current default direc-
tory that is eight directory levels deep, as that is the VAX/VMS limit for directory depth.

Infrequently, a control-C or control-Y interrupt of an Ada link will leave the subdirectory present. If this hap-

pens, the subdirectory and its contents must be deleted, in order that subsequent links (by tLat process, in that

The Ada Linker 5-5

current default directory) may take place.

5.1.1. Parameters and Qualiflers
Default values exist for all qualifiers as indicated below. All qualifier names may be abbreviated (characters

omitted from the right) as long as no ambiguity arises.

mai--mVwn am

If a single program link is being done, main-prv-gnvame must specify a main program which is a library unit

of the current program library, but not necessarily of the current sublibrary. The li1rary unit must be a parame-

terless procedure. Note that main-progrmwname is the identifier of an Ada procedure; it is not a VAX/VMS
file specification.

When main-program-nwne is used as the file name in Ada link output (for the load module, memory map file,
etc.), the file name will be truncated to 29 characters if necessary.

If a multiprogramming link is being done, multiple main-program-names are specified, separated by commas.
The first name supplied is the one used for the file name in Ada link output.

The first three of the qualifiers below pertain to the 'Ada part* of the Ada link. The remaining qualifiers per-
tain to the "1750A part of the link

/Aog =file-spec]
/nolog (default)

The qualifier specifies whether a log file is to be produced during the linking. By default no log file is pro-
duced. If 1og is specified without a file specification, a log file named main-program-nameiog is created
in the current default directory. If a file specification is given, that file is created as the log file. The contents of
the log file are descaibed in Section 5.3.

Alibrary =file-spec
/library=ada 7501ibrary (default)

This qualifier specifies the current sublibrary and thereby also the current program library, which consists of the
current sublibrary through the root sublibrary (see Chapter 2). If the qualifier is omitted, the sublibrary desig-
nated by the logical name adal750_library is used as current sublibrary.

/mp

This qualifier specifies that a multiprogramming link be done. By default a single program link is done.

/as[= addimss-statel

This qualifier is used in two contexs. It must be used after the Ada link command verb to indicate that an
expanided memory link be done (whether ingle program or multiprogramming). By default a non-expanded
memory link is done. In this context it is used without an address-state value.

If a single program expanded memory link is being done, this qualifier is also used after each long-called-uuk, to

5-6 The Ada Linker

specify the address state that unit will reside in.

If a multiprogramming link is being done, this qualifier may be used after each main-program-name, to specify
the address state that program will reside in. However, if the qualifier is not used after any main-program-

names, the programs are assigned by the Ada link to address states in their order of appearance, one per
address state, starting with address state 0.

/options [-macn-name]

This qualifier is used to override certain default values that are used by the Ada runtime executive. If the
qualifier is omitted, no overriding takes place.

The qualifier specifies the name of an assembly language macro containing one or more conditional assembly
directive that override the default values of certain assembly-time symbols. (Note that this is a macro name,
not a VAX/VMS file name.) If /options is specified without a macro-name, main-program-name is used as the
macro name.

The names of these assembly-time symbols, their default values, and the runtime behavior that they control, are
descibed in the Ada 1750A Runime Executive Programmer's Guide. A macro file containing the def'mition of
this macro must be available to the 1750A Assembler at the time of the link by one of the means documented in
the InterACT 1750A Assembler and Linker User's Manual.

If a multiprogramming link is done, the /options qualifier may appear either after the Ada link command verb,
in which case it applies to every program being linked (or, if no macro-name is given, each main-program-name
default applies to each program being linked), or it may appear after some or all of the main-program-names, in
which case it applies to only those programs (and supercedes for those programs a /options qualifier used after

the command verb, if any).

/standardcotrol[=file-spec]
/standard control = adalink standard controi I adalinkexpmem-control (default)

This qualifier specifies the file name of 'standard" 1750A Linker control statements that are to be used for all
links for an installation or project. If fra-spec is omitted or only partially specified, [IdalinkJod is used as a
full or partial default. If the qualifier is omitted, the logical name adalink standard control or
adalink expmem control (if an expanded memory link is being done) is assumed to defime such a file, using the
same partial default. If that logical name is not def'med or the specified file does not exist, no standard control
statements are used.

/control[=fdae-specl

This qualifier specifies the file name of 'user' 1750A Linker control statements that are to be used for this par-
ticular link. If fde-spec is omitted or only partially specife, []main-program-nameiod is used as a full or par-
tial defaalt. If the qualifier is omitted or the specified file does not exist, no user control statements are used.

The fdes designated by the /standard control and /control qualifiers are used to form the full input control
statement stream to the 1750A Linker, in this concatenated order.

/standard control file (if it exists)
<statements generated by the Ada part of the link >
/control file (if qualifier active and it exists)

The Ada Linker 5-7

The statements generated by the Ada part of the link are usually just SELECT or ADDRSTATE statements for
the elaboration caller routine(s) and main program(s).

The Compiler System is delivered with adalink standard eontro and adaunk_expmemcontrol defined to
iles that contain default sets of standard control statements. These consist of the minimal SECTION state-

ments required by the 1750A Linker, and various other necessary directives.

/userrts = seach4ist
/user_rts = adalinkUser rts (default)

This qualifier specifies a VAX/VMS search list that contains either user-dependent RTE modules, such as a
change to the task scheduler for a particular application, or pragma INTERFACE (ASSEMBLY) bodies for
subprograms that are not library units (see Section F.2). Modules in this search list's directory(ies) are taken
ahead of those in the directories specified by /targetats (see below) and those in the standard RTE directory.
If the qualifier is omitted, logical name adalink user rts is used, if the name has been defined.

/targetrts =search-list
/targetrts = adalink targetrts (default)

This qualifier specifies a VAX/VMS search list that contains 1750A-implementation(target)-dependent runtime
executive (RTE) modules, such as modules to do character I/O for a particular simulator or microprocessor.
Modules in this search list's directory(ies) are taken ahead of those in the standard RTE directory. If the
qualifier is omitted, logical name adalink targetrts is used, if the name has been defimed. Note however that
if pragma NO DYNAMICOBJECTS ORVALUESUSED is specified (see Section F3), this qualifier has
no effect.

/debug
/nodebug (default)

When this qualifier is given, the Ada Linker will produce a symbolic debug information file, containing symbolic
debug information for all program units involved in the link that were compiled with the /debug compiler
qualifier active. By default no such file is produced, even if some of the program units linked were compiled
with /debug active.

This symbolic debug information file is used by the InterACT Symbolic Debugging System.

The show/containers command of Ada PLU may be used to determine which units in the program library have
debug information containers, Le., which units were compiled with /debug active.

It is important to note that the identical executable load module is produced by the Ada Linker, whether or not
the /debug qualifier is active.

/actlnkqualflers = 2750A Linker qualifices

This qualifier specifies a string containing one or more command qualifiers to be passed to the execution of the
1750A Linker.

/stop (= numberl

This qualifier, when used with no number, results in the Ada link stopping after the 'Ada part' has done all
Ada-required checking, and has created a VAX/VMS DCL command file (located in the temporary

5-8 The Ada Linker

subdirectory) that enaites the "1750A parr, but before that command file has actually been invoked.

When used with number = 1, the command file is invoked, but stops before the 1750A Linker is invoked, leav-
ing the temporary subdirectory and its files in place. When used with number - 2, it executes the 1750A Linker
but then stops before the symbolic debug information f-de is produced.

This qualifier is useful for trouble-shoong, or for giving the user an intervention point for Ada link cuatomiza-
tions not covered by any of the available options.

5.1.2. Examples

A single program, 64K memory link:

$ adal7$O/link fight simulator

A single program link for 128K expanded memory-

$ adal750/link/as fight simulator

n the above case, no long called units are necessary since only one address state is being used. Now an exam-
ple of a single program, greater than 128K expanded memory link, where long calls are necessary, for the illus-
tration presented at the beginning of this Chapter.

$ adal7SO/link/as ffight simulator operations a/as=lerror handler/as=l,-
operations b/as = 2,operations c/as = 2

Some multiprogramming examples, with 64K and then expanded memory-

$ adal75O/llnk/mp ablebaker,charle

$ adal70/link/mp/as ablebakercharle

$ adal75O0/link/mp/as able/as=O,baker/as=1,charlie/as=2

The last two examples above are equivalent. However, the following sort of assignment can only be done using
the second form:

$ ada175O/llnk/mp/as able/as=Obaksr/as=1,charlle/as=Idog/as=4

Now, an example of overriding default runtime executive values, in this case the system heap size and main
stack size:

$ adal7SO/Unk/opt fightsimulator

where fight_simulatormac in the current directory contains

The Ada Linker 5-9

FLIGHTSIPIJLATOR MACRO
IWEAP SIZE ASET 24*1024
INAINSiTACX SIZE ASET 8-1024

END MAC

Some examples of overriding values when multiprogramming is involve&*~

$ adal7sO/ilnk/mp/as/opt~large stack ablebsker charlie

would use largestackmac for all three programs, while

S ada17SO/link/mp/as/opt able~bakercharie

would use ablemac4 baker-mac, and charlleinac for the three programs respectively. Alternatively,

$ ada1750 1 'lnk/mp/as/opt large stack ablebaker/ opt =small stackcharlie

would use large staickmac for ABLE and CHARLIE, but use small stackmac for BAKER, while

S adal7SOfilnk/mp/as ablebaker/optcharlie

would use bakermac for BAKER, and all default values for ABLE and CHARLIE.

Now, an example of introducing *user' 1750A Linker control statements:

$ adal7SO/llnk/control test-driver

where test driveriod in the current directory contains

PAGESIZE 60
SELECT tdm.obectMACHECK
MOLOAD

Note that the SELECT' statement specifies the directory where the object module dmacheduLrc is located.
Now, an example of the use of user and target RTE directories:

$ define adalnk,_target rts [ttoicso.testl,tektrnicsoI
S adal7SOf lnk/user rts =sys~use- (teststor-mgrI flght _simulator

Runtime executive modules will be looked for in the directory specified by the /user rts qualifier, then in the

two directories specified by the adalink target rts logical name, and lastly in the standard RTE directory.

To revert to referencing only the standard RTE directory.

S deassiga adalink target rts
$ adal7SO/Uuk figbt simulator

510 The Ada in

52. Load Module Output

If an Ada linking Ls successiudy compicted, the 1750A Linkcr produces an executable load module file named
main-program-name.abs in the current default directory.

The load module is in IntezACr load module format, which may require further reformatting before being
loaded into 1750A hardware or simulators (see Chapter 8).

5.2.1. Symbolik Debug Iformation Output

If an Ada linking with the /debug qualifier active is successfully completed, a symbolic debug information file
named main-piogrwn-named is created in the current default directory. This file is used by the InterACT Sym-
bolic Dcbugng System.

5.3. fInker Text Cutput

The Ada Linker produces the following text output:

1. Diagnostic messages other than warnings are written to sys$output, and all messages are written to
the log file if/log s active.

2. An elaboration order list is written to the log file if flog is active.

3. A required recompilations list is written to sysSoutput if not empty, and to the log file if /og is active.

4. A linking summary is written to the log file if/log is active.

5. A 1750A Linker memory map file, main-program-namemap. (See the InwACT 1750A Assembler and
Linker User's Mwual for contents.)

6. An assembly listing of the generated module that elaborates all hibrary units, eSmain-progwn-
nameads. If a multiprogramming link is done, separate listings are produced for each program.

7. If a multiprogramming link is done, an assembly listing of a generated module that communicates
program information to the Ada nitime executive, $mp.als.

Note that the log file contains information relevant to the "Ada part" of the link, while the memory map file
contains information relevant to the "1750A part" of the link.

3.1. Diagnostic Messages

The Ada Linker may issue two kinds of diagnostic messages, warnings and severe errors.

A warning reports something which does not prevent a successful linking, but which might be an error. A warn.
ing is issued if the body unit is invalid or is lacking an object code container for a program unit which formally
does not need a body. The linking summary on the log file contains the total number of warnings issued.

A severe error message reports an error which prevents a successful linking. Any inconsistency detected by the
linker will cause a severe error message, e.g., if some required unit does not exist in the library or if some time
stamps do not agree.

The Ada Linker 5-U

Examples of diagnostic messages from the Ada Linker can be found in Chapter 10.

5.2. Elaboration Order List

The elaboration order list contains an entry for each unit included, and shows the order in which the units will
be elaborated. For each unit the unit type, the compilation time, and the dependencies are shown. Further-
more, any elaboration inconsistencies are reported.

When a multiprogramming link is done, the elaboraion order lists will contain the full elaboration order of
each program, without regard to multiprogramming These orders can be compared to the elaboration caller
assembly listing for a program, to see which elaboratims were omitted due to multiprogramming.

5.3.3. Required Recompilations List

The required recompilations list reflects any inconsistencies detected in the library, that prevented the link from
taking place.

The entries in the list contain the unit name, and an indication of the unit being a declaration unit, a body unit,
or a subunit. The list is in a recommended recompilation order, consistent with the dependencies among the
units.

If the number of recompilations is small, they can usually be performed by hand using this list. Otherwise, the
Ada Recompiler (see Chapter 6) may be used to accomplish the recompilation in a fully automatic way.

Examples of required recompilation lists can be found in Chapter 10.

S.3.4. Return Status

After an Ada link the VAX/VMS DCL symbols Sstatus and Sseverity will reflect whether the link was success-
ful. The possible values of $severity and the low-order bits of Sstatus are any of the values defined by DCL.

5,3.5. Linking Summary

The linking summary contains the following information:

* parameters and active qualifiers;

" the VAX/VMS file names of the sublibraries constituting the current program library;

* the number of each type of diagnostic messages;

" a termination message, telling whether a linking has terminated successfully or unsuccessfully.

5-12 T'he Ada Linker

S.4. Commands for Denining the Target Environment

-'here are a auinber co diffcr-nL (arget envixon.nts LU1ai AdA prugi-aE. ca" u a 4* Ju, *,u diff~rent impzmei-
tations of the MLEL-ST-17511A architectue.

Each of these environments may require some changes to either the standard linker control statements, or the
runtime azecutive modules, that are used in an Ada link. These changes may be effected by various Ada link
qualifiers and their logical name defaults, as described in Section 5.1.1. However, convenience commands, of
the form use - (for example, useact for the InterACT' 1750A Lnsmzction Set Architecture Simulator), exist to
defiL"C the appropriate Ada link logical names. These commands are invoked before an Ada lin~k, and remain in
effect for subsequent Ada links until changed by another such command.

These commands are described in full detail in the Ada 1750A Rundme Execudve Progrwrnmers Guide.

APPENDIX C

PPDMflDTY = O THE kda STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragnas, to certain machine-dependent
conventions as mentioned in Chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of this Ada implementation,
as described in this Appendix, are provided by the customer. Unless
specifically noted otherwise, references in this Appendix are to
compiler documentation and not tT this report.
Implementation-specific portions of the package STAADARD, which are
not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -32_768 .. 32_767;

type LONGINTEGER is range -2147_483_648..2_147_483_647;

type FLOAT is digits 6
range -1.0*2.0**127..0.999999*2.0**127;

type LONGFLOAT is digits 9
range -1.0*2.0**127 .. 0.99999999*2.0**127;

type DURATION is delta 1.OE-04
range -214_748.3648..214_748.3647;

end STANDARD;

C-1

Appendix F
Appendix F of the Ada Reference Manual

This appendix describes all implementation-dependent characteristics of the Ada language as implemented by
the InterACT Ada 1750A Compiler, including those required in the Appendix F frame of Ada RM.

F.1. A edefined Types In Package STANDARD

This sectioi describes the implementation-dependent predefmed types declared in the predefined package
STANDARD (Ada RMAnnex C, and the relevant attributes of these types.

F.1.1. Integer Types

Two predefined integer types are implemented, INTEGER and LONGINTEGER. They have the following
attributes:

INTEGER'FIRST - -32 768
INTEGER'LAST = 32767
INTEGER'SIZE - 16

LONG INTEGER'FIRST = -2 147 483648
LONG-INTEGER'LAST = 2 147 483647
LONG-INTEGER'SIZE = 32 -

F.12. Floating Point Types

Two predefined floating point types are implemented, FLOAT and LONG-FLOAT. They have the following
attributes:

FLOAT'DIGITS = 6
FLOATEPSILON = 953674316406250E-07
FLOAT'FIRST = -1.0 * 2.0'127
FLOAT'LARGE - 1.93428038904620E + 25
FLOAT'LAST = 0.999999 * 2.000127

FLOAT'MACHINE EMAX = 127

F-2 Appendix F of the Ada Reference Manual

FLOATMACHINE EMIN = -128
FLOATMACHINE MANTISSA 23
FUDAT"MACFINtI OV7ERi"LOWS = TRUE
FLOATMACHINE RADIX = 2
FLOAT'MACHINE-ROUNDS = FALSE
FLOAT'MANTISSA = 21
FLOAT'SAFE EMAX = 127
FLOAT'SAFE LARGE = FLOAT LAST
FLOA'rSAFE-SMALL = 0.5 " 2.0"*(-127)
FLOAT'SIZE = 32

LONG FLOATDIGITS = 9
LONG-FLOATEPSILON = 9.3132257461.5479E-10
LONG FLOATFIRST = -1.0 * 2.0"127
LONG-FLOAT'LARGE = 2.0"*124"(1.0-0"*(-31))
LONG-FLOAT"LAST .99999(9: * 2.0"'127

LONG FLOATMACHINE EMAX = 127
LONG FLOAT'MACHINE EMIN = - 128
LONG FLOAT'MACHINE MANTISSA = 39
LONG FLOATMACHINE OVERFLOWS = TRUE
LONG FLOATMACHINE RADIX = 2
LONG FLOATMACHINE ROUNDS = FALSE
LONG FLOATMANTISSA. = 31
LONG FLOATSAFE EMAX - 127
LONG FLOATSAFE I RGE= LONG FLOATLAST
LONG FLOAT'SAFE-SMALL = 0.5 * 2;='(-127)
LONG FLOATSIZE = 48

F.1.3. Fixed Point Types

Two kinds of anonymous predefined fixed point types are implemented, fixed and long~jixed (which are not
defined in package STANDARD, but are used here only for reference), as well as the predefined type. DURA-
TION.

For objects of fixed types, 16 bits are used for the representation of the object. For objects of longJfixed types,
32 bits are used for the representation of the object.

For fixed and longjlred there is a virtual predefined type for each possible value of small [Ada RM 3.5.9]. The
pos'ble values of small are the powers of two that are representable by a LONG FLOAT value, unless a length
clause specifying T'SMALL is given, in which case the specified value is used.

The lower and upper bounds of these types are:

lower bound ofLred types = -32768 * small
upper bound offixed types = 32767 * small
lower bouad of long Jixed types = -2 147 483 648 * small
upper bound of long jixed types = 2_147_483 647 * small

A declared fixed point type is represented as that predefined fixed or long fixed type which has the largest value
of small not greater than the declared delta, and which has the smallest range that includes the declared range

Appendix F of the Ada Reference Manual F-3

constraint.

Any fixed point type T has the following attributes:

TMACHINE OVERFLOWS = TRUE
TMACHINE-ROUNDS = FALSE

The predefined fixed point type DURATION has the following attributes:

DURATION'AFT = 4
DURATION'DELTA = 1.OE-04
DURATION'FIRST = -214 748.3648
DURATION'FORE = 7
DURATION'LARGE = DURATION'LAST
DURATION'LAST = 214 748.3647
DURATION'MANTISSA 31
DURATION'SAFE LARGE = DURATION'LARGE
DURATION'SAFE SMALL = DURATION'SMALL
DURATION'SIZE = 32
DURATTON'SMALL = 1.OE-04

F.2. Predefined Language Pragmas

This section lists all language-defimed pragmas and any restrictions on their use and effect as compared to the
definitions given in Ada RM.

F-2.1. Pragma CONTROLLED

This pragma has no effect, as no automatic storage reclamation is performed before the point allowed by the
pragma.

F.2.2. Pnrpna ELABORATE

As in Ada RM.

F.2.3. Prugua INLMN

This pragma causes inline expansion to be performed, except in the following cases:

1. The whole body of the subprogram for which inline expansion is wanted has not been seen. This
ensures that recursive procedures cannot be inline expanded.

2. The subprogram call appears in an expression on which conformance checks may be applied, i.e., in a
subprogram specification, in a discriminant part, or in a formal part of an entry declaration or accept
statement.

F-4 Appendix F of the Ada Reference .Manual

3. The subprogram is an instantiation of 0 ,e predefined generic subprorams
UNCHECKED CON"VERSION or UNCHECKED DEALLOCATION. Calls to such subpr'ogams
are expanded inlne by the compiler automatically.

4. The subprogram is declared in a generic unit. The body of that gener unit is compiled as a secon-
dary unit in the same compilation as a unit containing a call to (an instance of) the subprogram.

5. The subprogram is declared by a renaming declaration.

6. The subprogram is passed as a generic actual parameter.

A warning is given if inline expansion is not achieved.

F.2.. Pragnma NTERFACE

This pragma is supported for the language names defined by the enumerated type INTERFACE LANGUAGE
in package SYSTEM. Languages other than BIF support Ada calls to subprograms whose bodies are written in
that language. Language BIF (for 'built-in function") supports inline insertion of assembly language macro invo-
cations; the macros themselves may consist of executions of 1750A hardware built-in functions, or of an,
sequence of 1750A instructions. Thus, pragma INTERFACE (BIF) serves as an alternative to machine code
insertions.

Language ASSEMBLY

For pragma INTERFACE (ASSEMBLY), the compiler generates a call to the name of the subprogram. The
subprogram name must not exceed 31 characters in length. Parameters and results, if any, are passed in the
same fashion as for a normal Ada call (see Appendix P).

Assembly subprogram bodies are not elaborated at runtime, and no runtime elaboration check is made when
such subprograms are called.

Assembly subprogram bodies may in turn call Ada program units, but must obey all Ada calling and environ-
mental conventions in doing so. Furthermore, Ada dependencies (in the form of context clauses) on the called
program units must exist. That is, merely calling Ada program units from an assembly subprogram body will
not make those program units visible to the Ada Linker.

A pragma INTERFACE (ASSEMBLY) subprogram may be used as a main program. In this case, the pro-
cedure specification for the main program must contain context clauses that will (transitively) name all Ada
program units.

If an Ada subprogram declared with pragma INTERFACE (ASSEMBLY) is a hibrary unit, the assembled sub-
program body object code module must be put into the program library via the Ada Library Injection Tool (see
Chapter 7). The Ada Linker will then automatically include the object code of the body in a link, as it would the
object code of a normal Ada body.

If the Ada subprogram is not a library unit, the assembled subprogram body object code module cannot be put
into the program library. In this case, the user must direct the Ada Linker to the directory containing the object
code module (via the /userrts qualifier, see Section 5.1), so that the 1750A Linker can find it.

Appendix F of the Ada Reference Manual F-5

Language BIF

For pragma INTERFACE (BIM, the compiler generates an infine macro invocation that is the name of the
subprogram. The subprogram name must not exceed 31 characters in length. Subprogram parameters and
results, if any, are passed in the same fashion as for a normal Ada call (see Appendix P), except that the macro
invocation replaces the call. However, subprogram parameters may be passed in registers if pragma
INTERFACE PARAMETERS is used (see Section F.3.7). Use of this pragma, as well as pragma
INTERFACE SCRATCH and, if desired, pragma INTERFACERESULT (again, see Section F3.7) is recom-
mended for most efficient usage of pragma INTERFACE (BIF). No macro arguments are passed on the invo-
cation.

A macro file must exist at the time of the compile containing a macro definition with the same name as the sub-
program. This macro file must be available by one of the means documented in the InterACT 1750A Assembler
and Linker User's Manual.

Languages O V7L and FORTRAN

These languages may also be specified for pragma INTERFACE, but are equivalent to language ASSEMBLY.
The compiler generates calls to such subprograms as if they were Ada subprograms, and does not do any spe-
cial data mapping or parameter passing peculiar to the interACT JOVIAL or FORTRAN compilers.

F.2.S. Pragma LIST

As inAda RM.

F2.6 Prpnag MEMORY SIZE

This pragma has no effect. See pragma SYSTEM-NAME.

F.2.7. Pragma OPTIMIZE

This pragma has no effect.

F.2J. PraVpa PACK

This pragma is accepted for array types whose component type is an intege-, tzumeration, or fixed point type
that may be represented in 16 bits or less. (The pragma is accepted but has no effect for other array types.)

The pragma normally has the effect that in allocating storage for an object of the array type, the components of
the object are each packed into the next largest r bits needed to contain a value of the component type. This
calculation is done using the minimal size for the component type (see Section F.6.1 for the definition of the
minimal size of a type).

However, if the array's component .tye is declared with a size specification length clause, then the components
of the object are each packed into exactly the number of bits specified by the length clause. This means that if
the specified size is not a power of two, and if the array takes up more than a word of memory, then some com-
ponents will be allocated across word boundaries. This achieves the maximum storage compaction but makes
for less efficient array indexing and other array operations.

F-6 Appendix F of the Ada Reference Manual

Some examples:

type 100. AAR is array (I..32) of BOOLEAN; -- OOLEAN minimal size is 1 bit
prlgm PACK (UOL._ARR); -- each component packed into 1 bit

type TINY INT is range -2..1; -- minimet size is 2 bits
type TINY AIR is array (1..32) of TINY INT;
prm PACK (TINY ARR); -- each component packed into 2 bits

type SMALLINT is range 0..63; minimal size is 6 bits, not a power of two
type SMALL AIR is array (1..32) of SHALL IMT;
preagm PACK (SMALLARR); -- thus, each comonent packed into 8 bits

type SMALLINT_2 is range 0..63; minimal size is 6 bits, but
foc SMALL INT 2'SIZE use 6; -- this time length ctause is used
type SHALL ARR 2 is array (1..32) of SNALL_IT_2;
pragm PACK (SMALLARR 2); thus, each coe ,nt packed into 6 bits;

-- sae components cross word boundaries

Pragma PACK is also accepted for record types but has no effect. Record representation clauses may be used to
.pack' components of a record into any desired number of bits; see Section F.63.

F2.9. Prapma PAGE

As inAda RM.

F2.10. Pragma ;k-JORITY

As in Ada RM. See the Ada 1750A Runtime Executive Programmer's Guide for how a default priority may be
set.

F.2.11. Pragma SHARED

This pragma has no effect, in terms of the compiler (and a warning message is issued). However, based on the
current method of code generation, the effect of pragma SHARED is automatically achieved for all scalar and
acces objects.

F2.12. Pragma STORAGE UNIT

This pragma has no effect. See pragma SYSTEM-NAME.

F.2.13. Prapna SUPPRESS

Only the "identifier' argument, which identifies the type of check to be omitted, is allowed. The *[ON = >]
name" argument, which isolates the check omission to a specific object, type, or subprogram, is not supported.

Pragma SUPPRESS with all checks other than DIVISION CHECK and OVERFLOW CHECK results in the
corresponding checking code not being generated. The implementation of arithmetic operations is such that, in
general, pragma SUPPRESS with DIVISION CHECK and OVERFLOW CHECK has no effect. In this case,
runtime executive customizations may be usedto mask the overflow interrupts that are used to implement these
checks (see the Ada 1750,4 Runtime Executive Programmer's Guide for details). However, in certain cases

Appendix F of the Ada Reference Manual F-7

involving multiplication by constants or numeric type conversions, pragma SUPPRESS with
DIVISION CHECK or OVERFLOW-CHECK results in code being generated such that the overflow inter-
rupt cannot occur.

F.214. PMma STEMNAME

This pragma has no effect. The only possible SYSTEM NAME is MIL STD1750A. The compilation of
pragma MEMORY SIZE, pragma STORAGE-UNIT, or this pragma does not cause an implicit recompilation
of package SYSTEM.

F.3. impicinatation-dependent Pragmas

F3.1. Program Library Basis Pragmas

Certain pragmas defined by this Compiler System apply to Ada programs as a whole, rather than to individual
compilation units or declarative regions. These pragmas are

" NO DYNAMIC OBJECTS OR VALUES USED
* NO DYNAMIC MULTIDIMEPSIONAL ARRAYS USED
" SEf MACHINE OVERFLOWS FALSE-FORANONYMOUS FIXED

These pragmas apply on a program library wide basis, and thus apply to any and all programs compiled and
linked from a given program library. The meanings of these pragmas is described in the subsections below, the
way in which these pragmas are specified is described in this subsection.

These pragmas may only be specified within the implementation-defined library unit LIBRARY PRAGMAS,
which in turn may only be compiled into a root (predefimed) sublibrary. If either of these restrictions are not
honored, the pragmas have no effect.

The contents of this library unit when delivered are

peckage LISBRARYPlAGAS is

MO DYNAMIC OBJECTSOR VALUESUSED : constant BOOLEAN :* FALSE;

MODYNAMICMJLTIDINENSIONAL ARRAYSUSED : constant "OLEAN :a FALSE;

SET MACNI NEO ERFLOWS FALSE FOR ANONYMOUS FIXED : constant BOOLEAN := FALSE;

wid LIBRARY _PtAG14AS;

In order to specify any or all of the pragmas, the source for this package is modified to include the pragmas
after the constant declarations (the source file is defined by the logical name actadallbrarypragmas). For
example,

F-8 Appendix F of the Ada Reference Manual

pockage LIBRARY PRAGNAS is

NO DYNAMICOBJECTSORVALUESUSED : constant UOOLEAN :a FALSE;

NODYMNMIC_.JLTIDIMENSIONALARRAYSUSED : constant BOOLEAN := FALSE;

SET.MACHINE OVERFLOWS FALSE FOR ANONYMWJS FIXED : constant BOOLEAN :w FALSE;

pram NODYNAMICOBJECTS OR VALUESUSED;

pragn SETMACHIME OVERFLOWSFALSEFORANONYNOUS_F IXED;

and LI |MARY _PRtAGAS;

This modified source is then compiled into the predefined library.

In addition to the effects described in the subsections below, the pragmas have the effeA uf changing the initiali-
zation value to TRUE for the corresponding constant objects.

If unit LIBRARY PRAGMAS is modified and compiled by the user, it must be compiled before any other user
compilation unit. If it is not, the program will be erroneous.

Note that while these pragmas apply to an entire program library, it is possible to create more than one pro-
gram library (via the Ada PLU command create/root; see Chapter 3), with each library having these pragmas
specified or not according to user desire.

An example sequence for specifying the pragmas for the delivered program library-

$ set def sysSuser.libranes]
$ copy actadaUbrary_prgmas []librarypragmas_sada
$ eve libraryragmass.ada
<add desired pragmas, as described above>
S ada1750/lib= predefined library library_pragmas_s
$ ada1750/plu ! create user libraries under predefined
create appiication.alb predefinedlibrary
exit
$ define adal7SOlibrary application.alb

An example sequence for specifying the pragmas for a new program library, leaving the delivered program
library intact:

$ set def sysUserjllbrwies]
$ ada1750/plu ! create new predefined library
create/root prag uaroot~ab
exit
$ copy actada-brarypragnas [1 .brzryragmassda
S eve Ub-aryprapas.ada
<add desired pragmas, as described above>
$ adal7SO/Ub=pragnmsrooLalb library_pragmas_s
S adal7SO/plu ! create user libraries under new predefined
create appicaton.alb pragmasrootalb
exit
$ define ada1750_library application.alb

Appendix F of the Ada Reference Manual F-9

F.3.2. Pragma NODYNAMICOBJECTSOR VALUESUSED

This pragma works on a program library basis. See the subsection at the beginning of this section for how such
pragmas are used.

Use of this pragma informs the compiler that all created objects and all computed values have statically known
sizes. The language usages that do not meet this assertion are

* T'IMAGE for integer types

* arrays objects or values of (sub)types with non-static index constraints, or -ith component subtypes
with non-static index constraints

* array aggregates of an unconstrained type

" catenations (even with statically sized operands)

* collections with non-static sizes

Programs that violate the assertion of this pragma are erroneous.

The effect of this pragma is to use a different, and more efficient, set of compiler protocols for runtime stack
organization and register usage. These variant protocols are described in Appendix P.

F.33. Pragma NODYNAMIC MULTIDIMENSIONALARRAYS USED

This pragma works on a program library basis. See the subsection at the beginning of this section for how such
pragmas are used.

Use of this pragma informs the % tpile- that all declarations of multidimensional array types or objects have
static index constraints [Ada RM 4.9 (11)], and that the component subtypes of such arrays, if arrays them-
selves, also have static index constraints. That is, all multidimensional arrays have statically known size. Pro-
grams that violate the assertion of this pragma are erroneous.

The effect of this pragma is to use a special technique, known as bias vectors, in the generated code for the cal-
culation of array indexed component offsets for multi-dimensional arrays. This technique involves building a
data structure that contains some precomputed offsets, and then indexing into that structure. The major advan-
tage of this technique is that few or no multiplication operations need be generated. The major drawback is
that additional literal area space is required, although this can be minimized if the first dimension of the array is
the shortest.

The bias vector data structures are allocated as part of elaboration of the constrained array subtype declaration
(or object declaration that implicitly declares such a subtype).

Bias vectors are not used if the array index base type is LONG INTEGER or if pragma PACK applies to the
array.

F-10 Appendix F of the Ada Reference Manual

F.3.4. Pragmas ESTABLISHOPTIMIZEDREFERENCE and ASSUMEOPTIMIZEDREFERENCE

These pragmas are used to direct the compiler to generate code that more efficiently references objects in a
package. This efficiency is achieved by using a base register to address the package objects.

Pragma ESTABLISH OPTIMIZED REFERENCE instructs the compiler to load a base register with the
beginning address of te objects in the designated package, and to access such objects using the base register.
The pragma has the form

pragma ESTABLISHOPTIMIZED REFERENCE (packagename);

The pragma may appear anywhere within a program unit; the load and subsequent usage of the base register
will begin at the point of the pragma appearance. The pragma applies only to the program unit it appears in; it
does not apply to program units nested within that unit.

Pragma ASSUME OPDTIIZED REFERENCE instructs the compiler to assume that the designated
package's beginnin address has been loaded into a base register, and to access such objects using the base
register. The pragma has the form

pragma ASSUMEOPTIMIZEDREFERENCE (packagename);

The pragma should appear at the beginning of the declarative part of a program unit. The pragma applies only
to the program unit it appears in; it does not apply to program units nested within that unit. It is not necessary
to use this pragma after an instance of pragma ESTABLISH OPTIMIZED REFERENCE; rather, it must be
used in program units that are called from the unit that contains the pragma
ESTABLISHOPTIMIZED REFERENCE. If there are intervening (in terms of calls) units between the unit
containg pragma ESTABLISH OPTIMIZED REFERENCE and the unit desiring to use pragma
ASSUME OPTIMIZED REFERENCE, then those intervening units must also use pragma
ASSUME OPTIMIZED REFERENCE.

The pragmas apply only to packages that are library units. Only the objects in the specification part of the
package, and within base register range of the package beginning, are accessed by base register.

Only one base register is used by these pragmas, that being register 12. Thus, the pragmas can be in effect for
only one package at any given time during execution.

An example of the use of these pragmas:

pockage GLOAL VARS is

snd GLULVAS;

with GLOSAL VARS; use GLOBALVARS;
procedure P is

pragim ESTABLISN_ OPTINIZEDREFEREMCE (GLOSALVARS);

procedure INNER is
premg ASSUMEOPTIMIZEDREFERENCE (GLOSALVARS);

begin

end INNER;

begin

INNEiR;

Appendix F of the Ada Reference Manual F-11

end P;

F.3.5. Prgina EXPORT

This pragma is used to define an external name for Ada objects, so that they may be accessed from non-Ada
routines. The pragma has the form

pnagna EXPORT (objectname [,zemalname_stringiteral]);

The pragma must appear immediately after the associated object declaration. If the second argument is omit-
ted, the object name is used as the external name. If the resulting external name is longer than 31 characters, it
will be so truncated.

The associated object must be declared in a library package (or package nested within a library package), and
must not be a statically-valued scalar constant (as such constants are not allocated in memory).

Identical external names should not be put out by multiple uses of the pragma (names can always be made

unique by use of the second argument).

As an example of the use of this pragma, the objects in the following Ada library package

package GLOBAL is

ABLE : FLOAT;
prom EXPORT (ABLE);

BAKER : STRING(1..8);
propm EXPORT (BAKER, "gtobet.bsker");

wd GLOBAL;

may be accessed in the following assembly language routine

NOULE LOW-LEVEL
CSECT COE

EXTIEF ABLE
LDL ABLE,RO ; get value of ABLE
EXTREF GLOBAL.BAKER
LD SGLOBAL.BAKER,R2 ; get address of BAKER

END

F3.6. Pragma IMPORT

This pragma is used to associate an Ada object with an object defined and allocated externally to the Ada pro-
gram.

pragma IMPORT (objectname [,ezemalname string literal]);

The pragma must appear immediately after the associated object declaration. If the second argument is

F- 12 Appendix F of the Ada Reference Manual

omitted, the object name is used as the external name. If the resulting external name is longer than 31 charac-
ters, it will be so truncated.

The associated object must be declared in a library package (or package nested within a library package). The
associated object may not have an explicit or implicit initialization.

As an example of the use of this pragma, the objects in the following Ada library package

pecksge GLOAL is

AILE : FLOAT;
preqnm IMPORT (ABLE);

BAKER : STAINO-(..8);
prom IMPORT (BAKER, 9LobeL.beker");

and GLOBAL;

are actually defined and allocated in the following assembly language module

MODULE GLORALVALUES
CSECT DATA

EXTOEF ABLE
ABLE RES 2

EXTDEF GLOBAL .3AKER
GLOBAL.5AKER DATAC 'Ibcdefgh'

END

F3.7. Prugmas INTERFACEPARAMETERS, INTERFACERESULT and INTERFACE SCRATCH

These pragmas are used in conjunction with pragma INTERFACE (BIF) to name the specific 1750A machine
registers to be used during BIF processing.

The type PRAGMA INTERFACE PARAMETER LOCATIONS in package SYSTEM defines names for the
1750A machine registers that must be used in association with these pragmas.

Registers 10, 11, and 15 should not be used with these pragmas as they serve special purposes in the compiler
(see Appendix P for details). If they are used, it is the user's responsibility to save and/or restore the registers
inside the BIF macro.

Sample usage of these pragmas

funtian BIT OPERATION (X, Y : INTEGER) return INTEGER;
pragn INTERFACE (81F, lIT-OPERATION);
prom IMTERFACE PARAMETERS (IITOPERATION, X - R4, Y 3, R5);
preg IMTERFACE[RESULT (lIT OPERATION, R9);
preiss INTERFACESCRATCH (BIT-OPERATION, R6, R3);

Pragma INTERFACE PARAMETERS specifies the 1750A machine registers that should be used to pass the
actual parameters of the subprogram. If this pragma is not specified, the subprogram parameters will be passed
according to standard compiler protocol (see Appendix P). The pragma has the form

Appendix F of the Ada Reference Manual F- 13

pragma INTERFACE-PARAMETERS (subprogramname,
parameter name = > pragmaanterface.parameter-locations enumeration literal
[parameter name = > prgmag iterfaceparameter locations enumerationiterall);

Pragma INTERFACE RESULT specifies the 1750A machine register to be used for a function's return result.
If this pragma is not provided, registers will be used according to standard compiler protocol (see Appendix P).
The pragma has the form

pagma INTERFACE RESULT (subprvgram name, pragma interface laram eter locations enumeration literal);

This pragma will only be accepted for a function and cannot be used if the result type is an array or record.

Pragma INTERFACE SCRATCH is used to identify the 1750A machine registers that will be used as scratch
registers inside the macro. If the pragma is provided. the compiler will only save those registers specified in the
pragma prior to BEF execution. If this pragma is not provided, the compiler will save all necessary registers
prior to BIF execution. The pragma has the form

pragma INTERFACESCRATCH (subprogramname, pragrna interfacearameter locations enumeration literal
[jpragrna interface.parameteroc atons-enumeration_literal]);

F.3.& Pag=a INTERFACE SPELLING

This pragma is used to define the -xternal name of a subprogram written in another language, if that external
name is different from the subprogram name (if the names are the same, the pragma is not needed). The
pragma has the form

pragnma INTERFACESPELLING (subprogram_name, eemal name string literal);

The pragma should appear after the pragma INTERFACE for the subprogram. This pragma is useful in cases
where the desired external name contains characters that are not valid in Ada identifiers. For example,

procedure CONNECT EUS (SIGNAL : INTEGER);
pre INTERFACE (ASSEMBLY, CONNECTBUS);

pregas INTERFACE SPELLING (CONNECT BUS, "SCONNECT.IUS");

F.3.9, Prgma MEMORY-UNIT

This pragma is used in the Compiler System's support for maory association. This is where Ada objects
(whether variables or constants) are associated at compile time with different classes of memory. Then at link
time, these classes of memory can be treated differently. For instance, objects can be associated with fast
memory or slow memory;, with local or global memory in a multiprocessor environment; with different areas of
memory in a signal processor/array processor/SIMD type of architecture; and so on.

The classes of memory are implemented through the InterACT 1750A Linker CSECT and section facilities (see
InterACT'Linker Reference Manual for a complete description of these facilities).

The types MEMORY SECTION-NUMBER and USER MEMORY SECTIONS in package SYSTEM define
the CSECT numbers available for use in connection with this pragma; the first t, pe defines all those available
in the 1750A Linker, the second subtype those available to users (not reserved by the compiler or runtime

F-14 Appendix F of the Ada Reference Manual

executive).

The basic scheme of the memory association support is that the user defines an enumeration type naming the
different classes of memory, and then a enumeration representation clause assigning each of those classes to a
CSECT number. Pragma MEMORY UNIT is then defined for Ada objects (or types, applying to all objects of
the type), specifying the memory clas for that object. The compiler allocates the object in a CSECT with the
corresponding CSECT number. The user then creates 1750A Linker SECTION control statements to allocate
the memory classes as desired.

The following type declarations define the memory classes. The user must code them, and they must be visible
wherever pragma MEMORYUNIT appears.

type MEMORY UNIT is
(memoy unit enumeration literal [,memoryunt enumeration literal]);

subtpe RESERVED MEMORY UNITS is MEMORYUNIT range
memoy_untenumeration litera..memory unitenumeration literal

for MEMORY UNIT use
(memory unitenumeration literal = > csect number
[,memory unit enumeration literal = > csectnumber]);

The fia declaration defines all the types of memory that (static data and literal) objects and types can be asso-
cated with, and the CSECT numbers to which they will be allocated. The second declaration specifies which of
these kinds of memory may share a CSECT with existing compiler CSECTs (e.g. if
memory unt enumeration fiteral is to contain both the stack/heap and some static data).

Associations of particular objects and types to memory is accomplished by the following:

pragma MEMORY UNIT (memoryunit enumeration literal, simple-name(,simple-name]);

where simple-name is a type or object. Up to 32 objects and 32 data types may be specified within each
occurrence of the pragma.

Any base type, derived type, or objects of them may be associated. Only one association is allowed for a type or
an object. Once a type is associated, all objects of that type inherit the association. When associating a type, it is
necessary for the type to be declared in same package as the pragma, and the pragma to be located before any
object4s of that type are declared. Any object can be associated providing that its type was not associated.

This pragma may be used in any compilation unit but subprogram variables may only be associated with a
memory that shares the heap/stack area.

This pragma cannot be used in conjunction with address clauses, collections or pragmas
ESTABLISH OPTIMIZED REFERENCE and ASSUME OPTIMIZED REFERENCE.

F.310. Pralna SET MACHINE OVERFLOWS FALSE FOR ANONYMOUS FIXED

This pragma works on a program hbrary basis. See the subsection at the beginning of this section for how such
pragmas are used.

The effect of this pragma is that any f'x,:d point type T of anonymous predefined fired type (i.e., represented in
16 bits) has the attribute

Appendix F of the Ada Reference Manual F-0_

TMACHINE OVERFLOWS = FALSE

such that NUMIERIC ERROR is not raised in overflow situations [Ada RM 4.5.7 (7)].

The result of operations in overflow situations is either the lower or upper bound of the *virtual' predefined
type for T ([Ada RM 3.5.9 (10)], this document Section F.1), depending on the direction of overflow. These
bounds are -32 768 * TSMALL and 32 767 " T'SMALL respectively. These bounds will equal TFIRST and
T'LAST if the range constraint for T is so declared.

Note that this implementation of fixed point types relies on the 1750A fixed point overflow interrupt being
enabled and not masked; any user exit or customization routines in the Ada runtime executive must not do
differently.

F.3.11. Pragma SUBPROGRAM SPELLING

This pragma is used to define the external name of an Ada subprogram. Normally such names are compiler-
generated, based on the program library unit number. The pragma has the form

piagma SU?RORAMSPELLING (subprogwnname [,=emalname string literal]);

The pragma is allowed wherever a pragma INTERFACE would be allowed for the subprogram. If the second
argument is omitted, the subprogram name is used as the external name. If the resulting external name is
longer than 31 characters, it will be so truncated.

This pragma is useful in cases where the subprogram is to be referenced from another language.

F.4. Implementation-dependent Attributes

None are defined.

F.S. Package SYSTEM

The specification of package SYSTEM is:

F-16 Appendix F of the Ada Reference Manual

package SYSTEM is

type ADORESS is rgw INTEGER;

ADORESS MULL : constant ADDRESS :a 0;

type NME is (MILSTD_1750A);

SYSTEMNMANE : corstant NMNE :a NIL STD_1750A;

STORAGE UNIT : corotant := 16;
MEMORY SIZE : canstant :a 64 * 1024;

MIM IJT : constant := -2 147 3647-1;
MAX INT : constant :a 2 147 483 647;
MAX DIGITS : costant :2 9;
MAX MANTISSA : constant :z 31;
FIN DELTA : constant :a 1.0 / 2.0 ** MAX MANTISSA;
TICK : constant :a 0.000_100;

sIubtype PRIORITY is INTEGER range 0..255;

type INTERFACE-LANGUAGE is (ASSEMBLY, lIF, JOVIAL, FORTRAN);

type ME]MORY SECTIONNLDBER is range 0..31;
subtypo USERMEMORYSECTIONS is MEMORYSECTION NIJIBER range 16..31;

type PRAGMAINTERFACE PARAMETER LOCATIONS is
(3O, RI, R2, R3, R4, R5, R6, R7,

R8, R9, RIO, R11, R12, R13, R14, R15);

end SYSTEM;

v.6. I Representation Clauses

The three kinds of type representation clauses - length clauses, enumeration representation clauses, and
record representation clauses - are all allowed and supported by the compiler. This section describes any res-
trictions placed upon use of these clauses.

Change of representation [Ada RM 13.61 is allowed and supported by the compiler. Any of these clauses may
be specified for derived types, to the extent permitted by Ada RM.

F.AA. Lmemth Clauses

The compiler accepts all four kinds of length clauses.

Sin spedflcato. T'SIZE

The size specification for a type T is accepted in the following cases.

If T is a discrete type then the specified size must be greater than or equal to the minimal size of the type, whiJ
is the number of bits needed to represent a value of the type, and must be less than or equal to the size of the
underlying predefined integer type.

The calalation of the minimal size for a type is done not only in the context of length clauses, but also in the
context of pragma PACK, record representation clauses, the T'SIZE attribute, and unchecked conversion. The
derinition presented here appiles to all these contexts.

Appendix F of the Ada Reference Manual F- 17

The minnal size for a type is the minimum number of bits required to represent all possible values of the type.
When the minimal size is calculated for discrete types, the range is extended to include zero if necessary. That
is, both signed and unsigned representations are taken into account, but not biased representations. Also, for
unsigned representations, the component subtype must belong to the predefined integer base type normally
associated with that many bits.

Some examples:

type SMALL_INT is range -2..1;
for SALLINT'SIZE use 2; -- OK, signed representation, needs minium 2 bits

type U_SALL_INT is range 0..3;
for UUPALL INT'SIZE use 2; -- OK, unsigned representation, needs minima 2 bits

type I_SALLtNT is range 7..10;
for I_ SMALL_ INT'SIZE use 2; -- itLegat, wouid be biased representation
for ISHALLINT'SIZE use 4; -- OK, the extended 0.10 range needs minimum 4 bits

type U_BIG_IT is range 0..65_535;
for U IBIG INT'SIZE use 16; -iLegaL, range outside of 16-bit INTEGER predefined type
for UBIG INT'SIZE use 17; -- OK, range within (17-bit aps to) 32-bit LONGINTEGER predefined type

If T is a fixed point tyVe then the specified size must be greater than or equal to the minimal size oi d' ype,
and less than or equal to the size of the underlying predefined fixed point type. The same definition of minimal
size applies as for discrete types.

If T is a floating point type, an access type or a tisk type, the specified size must be equal to the number of bits
normally used to represent values of the type (floating point types 32 or 48, access types 16, task types 16).

If T is an array type the size of the array must be static and the specified size must be equal to the minimal
number of bits needed to represent a value of the type. This calculation takes into account whether or not the
array type is declared with pragma PACK.

If T is a record type the specified size must be greater than or equal to the minimal number of bits needed to
represent a value of the type. This calculation takes into account whether or not the record type is declared
with a record representation clause.

The effect of a size specification length clause for a type depends on the context the type is used in.

The allocation of objects of a type is unaffected by a length clause for the type. Objects of a type are allocated
to one or more storage units of memory. The allocation of components in an array type is also unaffected by a
length clause for the component type (unless the array type is declared with pragma PACK); components are
allocated to one or more storage units. The allocation of components in a record type is always unaffected by a
length clause for any component types; components are allocated to one or more storage units, unless a record
representation clause is declared, in which case components are allocated according to the specified component
clauses.

There are two important contexts where it is necessary to use a length clause to achieve a certain representa-
tion. One is with pragma PACK, when component allocations of a non-power-of-two bit size are desired (see
Section F.28). The other is with unchecked conversions, where a length clause on a type can make that type's
size equal to another type's, and thus allowed the unchecked conversion to take place (see Section F.9).

Speciflstio of colectioa size: T'STORAGE SIZE

This value controls the size of the collection (implemented as a local heap) generated for the given access type.

F- 18 Appendix F of the Ada Reference Manual

It must be in the range ot the predefined type NATURAL. Space for the collection is deallocated when the
scope of the acces type is left.

See the Ada Runtime Executive Programmer's Guide for full details on how the storage in collections is
managed.

Specification of storage for a task activation: T'STORAGESIZE

This value controls the size of the stack allocated for the given task. It must be in the range of the predefined
type NATURAL

It is also possible to specify, at link time, a default size for all task stacks, that is used if no length clause is
present. See the Ada Runtime Executive Programmer's Guide for full details, and for a general description of
how task stacks, and other storage associated with tasks, are allocated.

Specification of a smal for a fixed point type

Any real value (less than the specified delta of the fxed point type) may be used.

F.6.2. Enumeration Representation Clauses

Enumeration representation clauses may only specify representations in the range of the predefined type
INTEGER.

When enumeration representation clauses are present, the representation values (and not the logical values) are
used for size and allocation purposes. Thus, for example,

type ENU is (ABLE, BAKER, CHARLIE);
for ENLN use (ABLE - 1, BAKER a; 4, CHARLIE => 9);

for ENLI'SIZE use 2; -- iltegat, 1..9 range needs minima 4 bits
for ENLIN'SIZE use 4; .. OK

type AR is array (ENUN) of INTEGER; -- witt occupy 9 words of storage, not 3

Enumeration representation clauses often lead to less efficient attribute and indexing operations, as noted in
[Ada AM 13.3 (6)].

FA.3. Record Representation Clauses

Alignment clauses are allowed, but the only permitted value is one.

In terms or allowable component clau-cs, r cord components fall into three classes:

" integer and enumeration types that may be represented in 16 bits or less;

* statically-bounded arrays or records composed solely of the above;

a all others.

Components of the "16-bit integer/enumeration" class may be given a component clause that specifies a storage
place at any bit offset, and for any number of bits, as long as the storage place is greater than or equal to the

Appendix F of the Ada Reference Manual F- 19

minima size of the component type (see Section F.6.1) and does not cross a word boundary.

Components of the "array/record of 16-bit integer/enumeration' class may be given a component clause that
specifies a storage place at any bit offset, if the size of the array/record is less than a word, or at a word offset
otherwise, and for any number of bits, as long as the storage place is large enough to contain the component
and none of the individual integer/enumeration elements of the array/record cross a word boundary. The com-
ponent clause cannot specify a representation different from that of the component's type. Thus, an array com-
ponent that is given a packed representation by a component clause must be of a type that is declared with
pragma PACK; smilaly, a record component that is given a non-standard representation by a component
clause must be of a type that is declared with a record representation clause.

Components of the "all others' class may only be given component clauses that specify a storage place at a word
offset, and for the number of bits aormaily allocated for objects of the underlying base type.

Components that do not have component clauses are allocated in storage places beginning at the next word
boundary following the storage place of the last component in the record that has a component clause.

Records with component clauses cannot exceed 2K words (32K bits) in size.

F.7. Implementatlon-dependent Names for Implementation-dependent Components

None are defined.

F.& Address Clauses

In general, address clauses are allowed and supported for objects, for subprogram and task units, and for inter-
rupt entries. Address clauses are not allowed for package units.

Address clauses occurring within generic units are always allowed at that point, but are not allowed when the
units are instantiated if they do not conform to the implementation restrictions described here. In addition, the
effect of such address clauses may depend on the context in which they are instantiated (e.g. library package or
subprogram; see below).

F.&I. Address Clauses for Objects or Subprogram Units

Address clauses for objects or subprogram units must be static zxpressions of type ADDRESS in package SYS-
TEM.

Address clauses are not allowed for constant scalar objects with static initial values, as such objects are not allo-
cated in memory.

Address clauses for objects declared within library packages cause the Compiler System to reserve space for the
object at that address, since the object exists for virtually the entire length of Ada program execution. Address
cla'ses for objects declared within subprograms do rot cause space to be reserved for the object, since the
object only exists during the subprogram's execution. It is the user's responsibility to reserve space for such
objects (1750A Linker control statements may be used if desired).

Type ADDRESS is a 16-bit signed integer. Thus, addresses in the memory range 16#8000#..16#FFFF# (Le.,
the upper half of 1750A memory) must be supplied as negative numbers, since the positive (unsigned) interpre-
tations of those addresses are greater than ADDRESS'LAST. Furthermore, addresses in this range must be

F-20 Appendix F of the Ada Reference Manual

declared as named numbers, with the named number (rather than a negative numeric literal) being used in the
address clause. The hexadecimal address can be retained in the named number declaration, and user computa-
tion of the negative equivalent avoided, by use of the technique illustrated in the following example:

X: INTEGER;
for X use at 16#7FFF#; -- legal

Y: INTEGER;
for Y ue at 16#FFFF#; - illegal

ADDR FFFF: constant: 16#FFFF# - 65536;
Y: INTEGER;
for Y use at ADDRFFFF; - legal, equivalent to unsigned 16#FFFF#

F.&2. Address Clauses for Interrupt Entries

Address clauses for interrupt entries do not use type SYSTEM.ADDRESS; rather, the address clause must be a
static integer expression in the range 0..15, naming the corresponding 1750A interrupt.

The following restrictions apply to interrupt entries. An interrupt entry must not have formal parameters.
Direct calls to an interrupt entry are not allowed. An accept statement for an interrupt entry must not be part of
a selective wait, ie., must not be part of a select statement. If any exception can be raised from within the accept
statement for an interrupt entry, the accept statement must include an exception handler.

When the accept statement is encountered, the task is suspended. If the specified interrupt occurs, execution of
the accept statement begins. When control reaches end of the accept statement, the special interrupt entry pro-
cessing ends, and the task continues normal execution. Control must again return to the point where the accept
statement is encountered in order for the task to be suspended again, awaiting the interrupt.

There are many more details of how interrupt entries interact with the 1750A machine state and with the Run-
time Executive. For these details, see the Ada 1750A4 Runtime Executive Programmers Guide.

F9. Unchecked Conversion

Unchecked type conversions are allowed and supported by the compiler.

Unchecked conversion is only allowed between types that have the same size. In this context, the size of a type
is the miima size (see Section F.6.1), unless the type has been declared with a size specification length clause,
in which case the size so specified is the size of the type.

In addition, if UNCHECKED-CONVERSION is instantiated with an array type, that array type must be stati-
cally constrained.

In general, unchecked conversion operates on the data for a value, and not on type descriptors or other
compiler-generated entities.

For values of scalar types, array types, and record types, the data is that normally expected for the object. Note
that objects of record types may be represented in two ways that might not be anticipated: there are compiler-
generated extra components representing array type descriptors for each component that is a discriminant-
dependent array, and all dynamically-size array components (whether discriminant-dependent or not) are

Appendix F of the Ada Reference Manual F-21

represented indirectlyin the record object, with the actual array data in the system heap.

For values of an access type, the data is the address of the designated object; thus, unchecked conversion may
be done in either direction between access types and type SYSTEMADDRESS (which is derived from type
INTEGER). (The only excepton is that access objects of unconstrained access types which designate uncon-
strained array types cannot reliably be used in unchecked conversions.) The named number
SYSTEM.ADDRESSNULL supplies the type ADDRESS equivalent of the access type literal null.

For values of a task type, the data is the address of the task's Task Control Block (see the Ada 1750A Runtime
Eecustive Potwners Guide).

For unchecked conversions involving types with a size less than a full word of memory, and different representa-
tional adjustment within the word (scalar types are right-adjusted within a word, while composite types are left-
adjusted within a word), the compiler will correctly re-adjust the data as part of the conversion operation.

Some examples to illustrate all of this:

type BOL_ARR is array(l..16) of BOOLEAN;
pragam PACK (50L AIR);

function UC is new UNCHECKED-CONVERSION (BOOLARR, INTEGER); -- OK, both have size 16

type BITS_8 is array(1..8) of BOOLEAN;
pro" PACK (BITS 8);

function UC is new UNCHECKEDCONVERSION (BITS_8, INTEGER); -- iLLegaL, sizes are 8 and 16

type S ALL_INT is range -128..127;
function UC is new UNCHECKEDCONVERSION (BITS_8, SNALL_INT); --OK, both have size 8

type BYTE is rang. 0..255;
function UC is new UNCHECKED-CONVERSION (BITS_8, BYTE); --OK, both have size 8

type BIGBOOLEAN is new BOOLEAN;
for BIG iOOLEAN'SIZE use 8;
function UC is new UNCHECKED-CONVERSION (BITS 8, BIG BOOLEAN); --OK, both have size 8

SM SMALL _NT; -- actual data is rightmost byte in object's word
I BITS_8; -- actuaL data is Leftmost byte in object's word

SM := UC (1I); -- actuat data is moved from Leftmost to rightmost byte as part of conversion

Calls to instantiations of UNCHECKEDCONVERSION are always generated as inline calls by the compiler.

The instaiation of UNCHECKED-CONVERSION as a library unit is not allowed. Instantiations of
UNCHECKED-CONVERSION may not be used as generic actual parameters.

F-22 Appendix F of the Ada Reference Manual

F.10. Other Chapter 13 Areas

F.0.1. Change of Representation

Change of representation is allowed and supported by the compiler.

F.O12. Representatloa Attributes

All representation attributes [Ada RM 13.7.Z 13.7.31 are allowed and supported by the compiler.

For certain usages of the X'ADDRESS attribute, the resulting address is ill-defined. These usages are: the
address of a constant scalar object with a static initial value (which is not located in memory), the address of a
loop parameter (which is not located in memory), and the address of an inlined subprogram (which is not
uniquely located in memory). In all such cases the value SYSTEM.ADDRESS NULL is returned by the attri-
bute, and a warning message is issued by the compiler.

When the X'ADDRESS attribute is used for a package, the resulting address of that of the machine code asso-
ciated with the package specification.

The X'SIZE attribute, when applied to a type, returns the minimum size for that type. See Section F.6.1 for a
full definition of this size. However, if the type is declared with a size specification length clause, then the size
so specified is returned by the attribute.

Since objects may be allocated in more space than the minimum required for a type (see Section F.6.1), but not
less, the relationship O'SIZE > = T'SIZE is always true, where 0 is an object of type T.

F.10.3. Machine Code Insertions

Machine code insertions are not allowed by the compiler. Note that pragma INTERFACE (BIF) may be used
as an alternative to machine code insertions.

F.10A. Unchecked Deallocation

Unchecked storage deallocation is allowed and supported by the compiler.

Calls to instantiations of UNCHECKEDDEALLOCATION are always generated as inline calls by the com-
piler.

The instanfiation of UNCHECKED DEALLOCATION as a library unit is not allowed. Instantiations of
UNCHECKED DEALLOCATION may not be used as generic actual parameters.

Appendix F of the Ada Reference Manual F-23

F.11. Input-Output

The predefined library generic packages and packages SEQUENTIAL 10, DIRECT 10, and TEXT_10 are
supplied. However, file input-output is not supported except for the standard input and output fides. Any
attempt to create or open a file will result in USE-ERROR being raised.

TEXT 1O operations to the standard input and output files are implemented as input from or output to some
visible device for a given implementation of MIL-STD-1750A. Depending on the implementation, this may be a
console, a workstation disk drive, simulator files, etc. See the Ada 175&,4 Rundme Erecutive Programmer's
Guide for more details. Note that by default, the standard input file is empty.

The range of the type COUNT defined in TEXT 10 and DIRECT-10 is 0.. SYSTEM.MAX INT.

The predef'med hbrary package LOW LEVEL 10 is empty.

In addition to the predefined library units, a package STRING OUTPUT is also included in the predefined
library. This package supplies a very small subset of TEXT_10 operations to the standard output file. The
specification is:

package STRINGOUTPUT is

proceure PUT (ITEM : in STRING);

procedure PUTLINE (ITEM : in STRING);

procedure NEW LINE;

wid STRING OUTPUT;

By using the 'IMAGE attribute function for integer and enumeration types, a fair amount of output can be done
using this package instead of TEXT 10. The advantage of this is that STRING-OUTPUT is smaller than
TEXT_10 in terms of object code size, and faster in terms of execution speed.

Use of TEXT 10 in multiprogramming situations (see Chapter 5) may result in unexpected exceptions being
raised, due to the shared unit semantics of multiprogramming. In such cases STRING-OUTPUT may be used
instead.

F.12. Compiler System Capacity I.mitations

The following capacity limitations apply to Ada programs in the Compiler System:

* the space available for the constants of a compilation unit is 32K words;

* the space available for the static data of a compilation unit is 32K words;

* any single object can not exceed 32K words;

* the space available for the objects local to a subprogram or block statement is 32K words;

* the names of all identifiers, including compilation units, may not exceed the number of characters
specified by the INPUTLINELENGTH component in the compiler configuration file (see Section
4.1.4);

F-24 Appendix F of the Ada Reference Manual

a sublibrary can contain at most 4096 compilation units (library units or subunits). A program library
can contain at most eight levels of sublibraries, but there is no limit to the number of sublibraries at
each level. An Ada program can contain at most 32768 compilation units.

The above limitations are all diagnosed by the compiler. Most may be circumvented straightforwardly by using
separate compilation facilities.

