A240 762
RO

/N

:NTATION PAGE

Form Approved
OPM No. 0704-0188

Lo(

@ 1 hour Der 168D0NES. INCILTING T 1Me 10f FEVIEWING INSLIUCHONS. $447ChING 9XBNING JALA SOUCES GEThNNG and Martairerg e data
g s burden estimate of any Othe aspect of this colection of Nformation, NClLdIng suGQEestions for reduCcINg e DLFSEN. 10 Wasringion

N5 Jefterson Davie Highway. Sute 1204, Aringion. VA 22202-4302, and 1o the Office of iInformation and Reguiatory Altars, Offics of

S S
1 AGENCY USE ONLY (Leave Blank)

2. REPORT DATE

3 REPORT TYFE AND DATES COVERED
Final: 31 Jul 1991 to 01 Jun 1993

4. TITLE AND SUBTITLE

Ada Compiler Validation Summary Report:InterACT Corporation, InterACT Ada
1750A Compiler System, Rel 3.5, MicroVAX 3100 Cluster (Host) to InterACT
MIL-STD-1750A Instruction Set Architecture Simulator {Target), 910705S1.11191

6. AUTHOR(S)

National Institute of Standards and Technology

Gaithersburg, MD
USA

o, FUNolNc.'z?EE!s' E { : 1
@ ' VCTE

SEP 191991

D

7 PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
National Institute of Standards and Technology
National Computer Systems Laboratory

Bidg. 255, Rm A266
Gaithersburg, MD 208399

USA

8. PERFORMING ORGANIZATION
REPORT NUMBER

NIST90ACT520_1_1.11

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Ada Joint Program Office

United States Department of Defense

Pentagon, RM 3E114

Washington, D.C. 20301-3081

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

11 SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

12b. DISTRIBU1 ION CODE

13. ABSTRACT (Maximum 200 words)

InterACT Corporation, InterACT Ada 1750A Compiler System, Rel 3.5.Gaithersburg , MD, MicroVAX 3100 Cluster (Host)
to InterACT MIL-STD-1750A Instruction Set Architecture Simulator, Release 2.3 (Bare Machine). (Target),ACVC 1.11

14 SUBJECT TERMS

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val.
Capability. Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO.

91-11069
Hll\\l M‘ VMR

15. NUMBER OF PAGES

16, PRICE CODE

177 SECURITY CLASSIFICATION
OF REPOAT
UNCLASSIFIED

18 SECURITY CLASSIFICATION I

UNCLASSIFeD |

19 SECURITY CLASSIFICATION

OF ABSTRACT
UNCLASSIFIED

TS T T~
20. LIMITATION OF ABSTRACT

NSN 7540-01-280-550

AL

\
o,

o
- \‘ 5
R
By,

~ Standard Form 298, (Rav. 2-89)
Prescribed by ANSI Std. 239-128

AVF Contrel Number: NIST90ACTS20 1 1.11
DATE COMPLETED

BEFORE ON-SITE: 1991-06-07

AFTER ON-SITE: 1991-07-05

REVISIONS: 1991-07-31

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: 91070551.11191
InterACT Corporation
InterACT Ada 1750A Compiler System, Release 3.5
MicroVAX 3100 Cluster => InterACT MIL-STD-1750A Instruction Set
Architecture Simulator, Release 2.3 (Bare Machine)

Prepared By:

Software Standards Validation Group
National Computer Systems Laboratory
National Institute of Standards and Technology
Building 225, Room A266
Gaithersburg, Maryland 20899

e e e e 4 e+ g
Accasion raor '
B r v a o o A = e ———- -
o D

NS Coacd

S . .
il TAB -
oo ted "
JooohnTet

- el L

\
1
t

PO P S

AVF Control Number: NIST90ACTS20_1 1.11
Certificate Information
The following Ada implementation was tested and determined to pass
ACVC 1.11., Testing was completed on 19%1-07-05.

Compiler Name and Version: InterACT Ada 1750A Compiler Systenm,
Release 3.5

Host Computer System: MicroVAX 3100 Cluster running under
VAX/VMS, Version 5.2

Target Computer System: InterACT MIL-STD-1750A Instruction
Set Architecture Simulator, Release
2.3 (Bare Machine)

See section 3.1 for any adaitional information about the testing
environment.

As a resu_t of this validation effort, Validation Certificate
91070551.11191 is awarded to InterACT Corporation. This
certificate expires on 01 March 1993.

This report has been reviewed and is approved.

alidation " Ada Validation/Facility
Dr. David K. J Mr. L. Arnold Johnson
Chief, Information Systems Manager, Software Standards
Engineering Division (ISED) Validation Group
Computer Systems Laboratory (CLS)

National Institute of Standards and Technology

Building 225, Room A266

Gaithersburg, MD 20899

e
fa) ion Organization . Ada Joint Program Office
.é; Directdt~Computer & Software /*~ Dr. John Solomond
Engineering Division Director
Institute for Defense Analyses Department of Defense

Alexandria VA 22311 Washington DC 20301

APPENDIX A

Declaration of Conformance

Customer: InterACT Corporaticn

Ada Validation Facility: National Institute of Standards & Technology

ACVYC Version: L.11

Certificate Awardee TmnrarACT Corporaticn

Ada Implementation .

Ada Compiler Name: InterACT Ada 1750A Compiler Svstem

Version: 3.5

Host Computer system: MicroVAX 3100 Cluster /VMS 5.2

Target Computer System: InterACT MIL-STD-1750A Instruction Set Architecture

Simulator Release 2.3 (bare machine;

Customer’s Declaration

I, the undersigned, representing InterACT declare that InterACT has no knowledge of
deliberate deviations from the Ada Language Standard ANSI/MIL-STD-1813A in the
implementation(s) listed in this declaration.

Signature Date

TABLE OF CONTENTS

CHAPTER 1
INTRODUCTION
1.1 USE OF THIS VALIDATION SUMMARY REPCRT
1.2 REFERENCES . . . o e 4 e . ..
1.3 ACVC TEST CLASSES « e e e e
1.4 DEFINITION OF TERMS
CHAPTER 2 .
IMPLEMENTATION DEPENDENCIES
2.1 WITHDRAWN TESTS
2.2 INAPPLICABLE TESTS
2.3 TEST MODIFICATIONS .
CHAPTER 3
PROCESSING INFORMATION
3.1 TESTING ENVIRONMENT
3.2 SUMMARY OF TEST RESULTS
3.3 TEST EXECUTION

APPENDIX A .

MACRO PARAMETERS

APPENDIX B

COMPILATION SYSTEM OPTIONS e e e e e e 4 e
LINKER OPTIONS &+ « ¢ o« « o o o« « o =

APPENDIX C

APPENDIX F OF THE Ada STANDARD e e e e e

|
W N 2

e el R o
|

NN DN
t
Nl e

W wwwww
1
NN

UJ?JUJ 3’3.’ ;
N Y

0N
)

CHAPTER 1

INTRODUCTION

The Ada implementation desciribed above was tested according to the
Ada Validation Procedures [Pro90] against the Ada Standard [Ada33)

using the current Ada Compiler Validation Capability (ACVC). This
Validation Summary Report (VSR) gives an account of the testing of
this Ada implementation. For any technical terms used in this

report, the reader is referred to [Pro90]. A detailed description
of the ACVC may be found in the current ACVC User's Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the
Ada Certification Body may make full and free public disclosure of
this report. n the United States, this is provided in accordance
with the "Freedom of Infcrmation Act" (5 U.S.C. #552). The results
of this validation apply only to the computers, operating systems,
and compiler versions identified in this report.

The organizations represented on the signature page of this report
do not represent or warrant that all statements set forth in this
report are accurate and complete, or that the subject
implementation has no nonconformities to the Ada Standard other
than those presented. Copies of this report are available to the
public from the AVF which performed this validation or from:

National Technical Information Service
5285 rort Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results

should be directed to the AVF which performed this validation or
to:

Ada Validation Organization

Computer and Software Engineering Division
Institute for Defense Analyses

1801 North Beauregard Street

Alexandria VA 22311-1772

1.2 REFERENCES

fAda83] Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1315A, February 1983 and ISO 8652-1987.

1-1

[Pro90] Ada Compiler Validation Procedures, Version 2.1, Ada Joint
Program Office, August 1990.

{UG89] Ada Compiler Validation Capability User's Guide, 21 June
1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC.
The ACVC contains a collection of test programs structured into six
test classes: A, B, C, D, E, and L. The first letter of a test
name identifies the class to which it beiongs. Class A, ¢, D, and
E tests are executable. Class B and class L tests are expected to
nroduce errors at compile time and link time, respectively.

The executable tests are written in a self-checking manner and
produce a PASSED, FAILED, or NOT APPLICABLE message indicating the

result when they are executed. Three Ada library units, the
packages REPORT and SPPRT13, and the procedure CHECK _FILE are used
for this purpose. The package REPORT alsoc provides a set of

identity functions used to defeat some compiler optimizations
allowed by the Ada Standard that would circumvent a test objective.
The package SPPRT13 is used by many tests for Chapter 13 of the Ada
Standard. The procedure CHECK FILE is used to check the contents
of text files written by some of the Class C tests for Chapter 14
of the Ada Standard. The operation of REPORT and CHECK_FILE is
checked by a set of executable tests. If these units are not
operating correctly, validation testing is discontinued.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is
compiled and the resulting compilation 1listing is examined to
verify that all violations of the Ada Standard are detected. Some
of the class B tests contain legal Ada code which must not be
flagged illegal by the compiler. This behavior is also verified.

Class L tests check that an Ada implementation correctly detects
violation of the Ada Standard involving multiple, separately
compiled units. Errors are expected at link time, and execution is
attempted.

In some tests of the ACVC, certain macro strings have to be
replaced by implementation-specific values -- for example, the
largest integer. A list of the values used for this implementation
is provided in Appendix A. In addition to these anticipated test
modifications, additional changes may be required to remove
unforeseen conflicts between the tests and implementation-dependent
characteristics. The modifications required for this
implementation are described in section 2.3.

1-2

For each Ada implementation, a customized test suite is produced by
the AVF. This customization consists of making the mecdifications
described in the preceding paragraph, removing withdrawn tests (see
section 2.1) and, possibly some inapplicable tests (see Section 3.2
and [UG891]).

In order Lo pass an ACVC an Ada implementation must process each
test of the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to
be added to a given host and target computer
system to allow transformation of Ada programs
into executable form and execution thereof.

Ada Compiler The means for testing compliance of Ada

Validation implementations, Validation consisting of the
Capability test suite, the support programs, the ACVC
{ACVC) Capability user's guide and the template for

the validation summary (ACVC) report.

Ada An Ada compiler with its host computer system and
Implementation its target computer system.

Ada Joint The part of the certification body which provides
Program policy and guidance for the Ada certificaticn Office
(AJPO) system.

Ada The part of the certification body which carries
Validation out the procedures required to establish the

Facility (AVF) compliance of an Ada implementation.

Ada The part of the certification body that provides
Validation technical guidance for operations of the Ada
Organization certification system.

(AVO)

Compliance of The ability of the implementation to pass an ACVC
an Ada version.
Implementation

Computer A functional unit, consisting of one or more
System computers and associated software, that uses
common storage for all or part of a program and
also for all or part of the data necessary for
the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including

1-3

Conformity

Customer

Declaration of
Conformance

Host Computer
System

Inapplicable
test
Iso

LRM

Operating
System

Target
Computer
System

validated Ada
Compiler

Validated Ada
Implementation

arithmetic operations and logic operations; and
that can execute programs that modify themselves
during execution. A computer system may be a
stand-alone unit or may consist of several
inter-connected units.

Fulfillment by a product, process or service of
all requirements specified.

An individual or corporate entity who enters into
an agreement with an AVF which specifies the terms
and conditions for AVF services (of any kind) to
ke performed.

A formal statement from a customer assuring that
conformity is realized or attainable on the Ada
implementation for which validation status is
realized.

A computer system where Ada source programs are
transformed into executable form.

A test that contains one or more test objectives
found to be irrelevant for the given Ada
implementation.

International Organization for Standardization.

The Ada standard, or Language Reference Manual,
pubiished as aNsI/MIL-StD-1815A-1983 and ISO
8652-1987. Citations from the LRM take the form
"<section>.<subsection>:<paragraph>."

Software that controls the execution of programs
and that provides services such as resource
allocation, scheduliny, input/oucpuit control,
and data management. Usually, operating systenms
are predominantly software, but partial or
complete hardware implementations are possible.

A computer system where the executable form of Ada
programs are executed.

The compiler of a validated Ada implementation.

An Ada implementation that has been validated
successfully either by AVF testing cr by
registration [Pro90].

1-4

validation

Withdrawn
test

The process of checking the conformity of an Ada
compiler to the Ada programming language and of
issuing a certificate for thils implementation.

A test found to be incorrect and not used in
conformity testing. A test may ke incorrect
because it has an invalid test objective, falls
to meet its test objective, or contains erroneous
or illegal use of the Ada programming language.

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

Scme tests are withdrawn by the AVO from the ACVC because they do
not conform to the Ada Standard. The following 94 tests had been
withdrawn by the Ada Validation Organization (AVO) At the tine cf
validation testing. The rationale for withdrawing each test 1is
available from either the AVO or the AVF. The publication date for
this list of withdrawn tests is 91-05-03.

E28005C B28006C C34006D C35508I C35508J C25508M
C35508N C35702A C35702B B41308B C43004A C45114A
C45346A C45612A C45612B C45612C C45651A c46022A
B49008A B45008B A74006A C74308A B83022B B83022H
B830258 B83025D B83026B C83026A C83041A B85001L
C86001F C94021A C97116A c98003B BA2011A CB7001A
CB70018 CB7004A CCl223A BC1226A CCl226B BC3009B
BD1BO0OZ2B BD1BO6A AD1BCS8A BD2AC2A CD2AZ1E . CD2A23E
CD2A32A CD2A41A CD2A41E CD2A87A CcD2B15C BD3006A
BD4008BA CD4022A CD4022D CD4024B cD4o024C CD4024D
CD4031A CD4051D CDS111A CcD7004C ED7005D CD7005E
AD7C06A CD7006E AD7201A AD7201E CD72048B AD7206A
BD8002A BD8004C CDo005A CD9005B CDA201E CE2107I
CE2117A CE2117B CE2119B CE2205B CE2405A CE3111cC
CE3116A CE3118A CE3411B CE3412B CE3607B CE3607C
CE3607D CE3812A CE3314A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are

irrelevant for a given Ada implementation.

The inapplicability

criteria for some tests are explained 1in documents issued by ISO
and the AJPO known as Ada Commentaries and commonly referenced in
the format AI-ddddd. For this implementation, the following tests
were determined to be inapplicable for the reasons indicated:
references to Ada Commentaries are included as appropriate.

The following 285 tests have floating-pnint type declarations
requiring more digits than SYSTEM.MAX DIGITS:

C24113F..7Y (20 tests) C35705F..Y (20 tests)
C35706F..7 (20 tests) C35707F..Y (20 tests)
C35708F..Y (20 tests) C35802F..Z2 (21 tests)

C45241F..Y¥ (20 tests) C45321F..Y% (20 tests)
C45421F..Y (20 tests) C45521F..2 (21 tests)
C45524F..2 (21 tests) C45621F..2 (21 tests)
C45641F..Y (20 tests) C46012F..2 (21 tests)

The following 21 tests check fcor the predefined type SHORT INTEGER;
for this implementation, there is no such type:

C354048B B36105C C45231B C45304B Cc45411B
C45412B C45502B C455038B C45504B C45504E
Cc456118 C45613B C456148B 456318 Ca35328
B5200C4E C55B07B B55B09D B86001Y C36006D
CD7101E

C35404D, <C45231D, B86001X, CB86006E, and CD7101C check for a
predefined 1integer type with a name other than INTEGER
LONG INTEGER, or SHCRT_ INTEGER: for this implementaticn, ther

no such type.

C35713B, C45423B, B86001T, and C86006H check for the predefined
type SHORT FLOAT; for this implementation, there is no such type.

C35713D and B860012 check for a predefined floating-point type with
a name other than FLCAT, LONG_FLOAT, or SHORT _FLOAT: for thls
implementation, there 1s no such type.

C45531M..P and C45332M..P (8 tests) check fixed-pcint operations
for types that require a SYSTEM.MAX MANTISSA of 47 or greater; for
this implementation, MAX MANTISSA 1is less than 47.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE OVERFLOWS is FALSE for floating point types and the results
of various floating-point operations lie outside the range of the
base type; for this implementation, MACHINE OVERFLOWS is TRUE.

D64005G uses 17 levels of recursive procedure calls nesting: this
test exceeds the linkable size of 64KBytes.

R860017 uses the name of a predefined fixed-point type other than
type DURATION; for this implementation, there is no such type.

C96005B uses values of type DURATICN's base type that are outside
the range of type DURATION; for this implementation, the ranges are
the same.

CA2009C and CA2009F check whether a generic wunit can be
instantiated before its body (and any of its subunits) is compiled;
this implementation requires that generic bodies be located in the
same file or precede the instantiation.

2-2

CD1009C checks whether a length clause can specify a non-default
size for a floating-point type:; this implementation does not
support such sizes.

CD2A84A, CD2A84E, CD2A84I..J (2 cests), and CD2A840 use length
clauses to specify non-default sizeg for access types; this
implementation does not support such sizes.

B_800lA, BD800O3A, BD8004A..B (2 tests), and AD801lA use machine
code insertions; this implementation provides no package
MACHINE_ CODE.

CE2103A, CE2103B, and CE3107A use an 1illegal file name in an
attempt to create a file and expect NAME ERROR to be raised; this
implementation dces not support external files and so raises
USE_ERROR. (See section 2.3.)

The following 264 tests check operations on sequential, text, and
direct access files; this implementation does not support external
files:

CE2102A..C (3) CE2102G..H (2) CE2102K CE2102N..Y (12)
CE2103C..D (2) CE2104A..D (4) CE2105A..B (2) CE2106A..B (2)
CE2107A..H (8) CE2107L CE2108A..H (8) CE2109A..C (3)
CE2110A..D (4) CE2111A..I (9) CE2115A..B (2) CE2120A..B (2)
CE2201A..C (3) EE2201D..E (2) CE2201F..N (9) CE2203A
CE2204A..D (4) CE220Q5A CE2206A CE2208B
CE2401A..C (3) EE2401D CE2401E..F (2) EE2401G
CE2401H..L (5) CE2403A CE2404A..B (2) CE2405B
CE2406A CE2407A..B (2) CE2408A..B (2) CE2409A..B (2)
CE2410A..B (2) CE2411A CE3102A..C (3) CE3102F..H (3)
CE3102J..K (2) CE3103A CE3104A..C (3) CE3106A..B (2)
CE3107B CE3108A..B (2) CE3109A CE3110A
CE3111A..B (2) CE3111D..E (2) CE3112A..D (4) CE3114A..B (2)
CE3115A CE3119A EE3203A EE3204A
CE3207A CE3208A CE3301A EE3301B
CE3302A CE3304A CE3305A CE3401A
CE3402A EE3402B CE3402C..D (2) CE3403A..C (3)
CE3403E..F (2) CE3404B..D (3) CE3405A EE3405B
CE3405C..D (2) CE3406A..D (4) CE3407A..C (3) CE3408A..C (3)
CE3409A CE3409C..E (3) EE3409F CE3410A
CE3410C..E (3) EE3410F CE3411A CE3411C
CE3412A EE3412C CE3413A..C (3) CE3414A
CE3602A..D (4) CE3603A CE3604A..B (2) CE3605A..E (5)
CE3606A..B (2) CE3704A..F (6) CE3704M..0 (3) CE3705A..E (5)
CE3706D CE3706F..G (2) CE3804A..P (16) CE3805A..B (2)
CE3806A..B (2) CE3806D..E (2) CE3806G..H (2) CE3904A..B (2)
CE3905A..C (3) CE3905L CE3906A..C (3) CE3906E..F (2)

2.3 TEST MODIFICATIONS
Modifications (see section 1 3) were reguired for 18 tests.

The following tests were split into two or more tests because this
implementation did not report the violations ¢f the Ada Standard in
the way expected by the original tests.

B33301B B55A01A B83EO1C B83EO1D B83EOlE BA100lA BA1101B BC11092a
BC1109C BC1109D

C83030C and C86007A were graded passed by Test Modification as
directed by the AVO. These tests were modified by inserting
"PRAGMA ELABORATE (REPORT) ;" before the package declarations at
lines 13 and 11, respectively. Without the pragma, the packages
may be elaborated prior to package Report's body, and thus the
packages' calls to function REPORT.IDENT_INT at lines 14 and 13,
respectively, will raise PROGRAM_ERROR.

BC3204C and BC3205D were graded passed by Processing Modification
as directed by the AVO. These tests check that instantiations of
generic units with unconstrained types as generic actual parameters
are illegal if the generic bodies contain uses of the types that
require a constraint. However, the generic bodies are compiled
after the wunits that contain the instantiations, and this
implementation creates a dependence of the instantiating units sn
the generic units as allowed by AI-00408 and AI-00506 such that the
compilation of the generic bodies makes the instantiating units
obsolete--no errors are detected. The processing of these test:
was modified by re-compiling the obsclete units; all intendec
errors were then detected by the compiler.

CE2103A, CE2103B, and CE3107A were graded inapplicable by
Evaluation Modification as directed by the AVO. The tests abort
with an unhandled exception when USE_ERROR is raised on the attempt
to create an external file. This is acceptable behavior because
this implementation does not support external files (cf. AI-00332).

EE3412C was graded passed by Test Modification as directed by the
AVO. This test assumes that the support package REPORT uses
TEXT_IO, and that thus <calls to REPORT.SPECIAL ACTION will
increment the line count on the standard output file. But REPORT
was modified to use the implementation-defined string I/O package
named STRING_OUTPUT instead of TEXT_IO, because TEXT IO is large in
terms of object ccde size. STRING_OUTPUT is significantly smaller
than TEXT_IO, and provides for the output needs of REPORT while
allowing for the executable images of the tests to fit within a
64KByte memory limit. Because STRING_ IO operations do not affect
the status of TEXT IO files--i.p., the line count for standard
cutput file 1is unchanged--, line 46 of the test was chaned as

2-4

follows:

from: IF LINE /= C+2 THEN
to: IF LINE /= C+1 THEN

Although REPORT 1s not a test, the modifications to it is recorded
here to complete the record and to allow for accurate replication
of this test envi_onment. REPORT body was modified to use a
package named STRING_OUTPUT rather than TEXT IO because TEXT IO is
large in terms of compiled object code size. STRING _OUTPUT is
significantly smaller than TEXT_IO and provides for the output
needs of REPORT while allowing for the executable image of the
tests to fit within a 64KByte memory limit.

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested 1in this validation effort is
described adequately by the information given in the initial pages
of this report.

The tests were compiled and linked on the host computer system, as
appropriate. The executable images were transferred to the target
computer system by the communications link described above, and
run. The results were captured on the host computer system.

For technical information about this Ada implementation, contact:

Ms. Gail Ward
InterACT Corporation
417 5th Avenue
New York, New York, U.S.A. 10016

For sales information about this Ada implementation, contact:

Mr. Rich Colucci
InterACT Corporation
417 5th Avenue
New York, New York, U.S.A. 10016

Testing of this Ada implementation was conducted at the customer's
site by a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes
each test of the customized test suite in accordance with the Ada
Programming Language Standard, whether the test is applicable or
inapplicable; otherwise, the Ada Implementation fails the ACVC
[Pro90].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various
categories. All tests were processed, except those that were
withdrawn because of test errors (item b; see section 2.1), those
that require a floating-point precision that exceeds the

3-1

implementation's maximum precision (item e; see section 2.2), and
those that depend on the support of a file system -- if none is
supported (item d). All tests passed, except those that are listed
in sections 2.1 and 2.2 (counted in items b and f, below).

a) Total Number of Applicable Tests 3466
b) Total Number o. Withdrawn Tests 94
c) Processed Inapplicable Tests 610
d) Non-Processed I/0 Tests 0
e) Non-Processed Floating-Point
Precision Tests 0
f) Total Number of Inapplicable Tests 610 (c+d+e)

g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section
1.3) was taken on-site by the validation team for processing. The
contents of the magnetic tape were loaded directly onto the host
computer.

The Ada source files are compiled on a MicroVAX 3100 Cluster under
VAX/VMS using the InterACT Ada 1750A Compiler System. The Ada main
programs are then linked on the MicroVAX Cluster using InterACT
1750A Linker which produces a load module in InterACT's own load
format.

This load format is loaded and then executed within the InterAcCT
MIL-STD-1750A Instruction Set Architecture Simulator which also
executes on the MicroVAX 3100 Cluster. The Symbolic Debugging and
Simulation System runs a set script consisting only of "load",

"go", and "exit" commands. The MIL-STD-1750A Instruction Set
Architecture Simulator is a complete instruction set simulator for
the MIL-STD-1750A architecture. The 1750A Console Output

instruction in the MIL-STD-1750A Instruction Set Architecture
Simulator is defined to write character output (representing the
Ada standard output) to a dedicated Ada output file. The dedicated
Ada output file contains the output from the ACVC tests.

After the test files were loaded onto the host computer, the full
set of tests was processed by the Ada implementation.

The tests were compiled and linked on the host computer system, as
appropriate. The InterACT MIL-STD-1750A Instruction Set
Architecture Simulator, Release 2.3 (Bare Machine) [target computer
system] runs on the host computer system. The executable images
were transferred to the target <computer system by the
communications link described above, and run. The results were

3=-2

captured on the host computer system.

Testing was performed using command scripts provided by the
customer and reviewed by the validation team. See Appendix B for
a complete listing of the ©processing options for this
implementation. It also indicates the default options. The
options invoked explicitly for validation testing during this test
were:

For all tests the following explicit option was invoked:
/library=<library name>

In addition to the above, the following explicit option was invoked
for the B tests and E tests:

/list
Test output, compiler and linker 1listings, and Jjob logs were

captured on magnetic tape and archived at the AVF. The listings
examined on-site by the validation team were also archived.

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing
the ACVC. The meaning and purpose of these parameters are
explained in [UG89]. The parameter values are presented in two
tables. The first table lists the values that are defined in terms
of the maximum input-line 1length, which is the value for
$MAX IN_LEN--also listed here. These values are expressed here as
Ada string aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value

$MAX_IN_LEN 126 =-- Value of V

$BIG_ID1 (1..V=1 => 'A', V => '1")

$BIG_1ID2 (1..V=1 => 'A', V => '2")

$BIG_ID3 (1..V/2 => 'A') & '3' & (1..V-1-V/2 => 'A")
$BIG_ID4 (1..V/2 => 'A') & '4' & (1..V=-1-V/2 => 'A')
$BIG_INT LIT (1..V=3 => '0') & "298"

$BIG_REAL LIT (1..V=5 => '0') & "690.0"

$BIG_STRING1 Y & (1..V/2 => 'A') & '™

$BIG_STRING2 tMr g (1..V-1-V/2 => 'A') & '1' § 'm
$BLANKS (1..V=20 => ')

$SMAX LEN INT BASED LITERAL
n2T" & (1..V-5 => '0') & "11:"

$MAX LEN REAL BASED LITERAL
"16T" & (1..V=7 => '0') & "F.E:"

SMAX STRING LITERAL '"' & (1..V=-2 => 'A') & '

The following tabkle contains the values for the remaining
macro parameters.

Macro Parameter Macro Value
SACC_SIZE 16

SALIGNMENT 1

$COUNT _LAST 2_147_483_ 647
SDEFAULT MEM SIZE 65536
SDEFAULT_STOR_UNIT 16
S$DEFAULT_SYS NAME MIL STD 1750A
SCELTA_DOC 1.0/2.0%*(SYSTEM.MAX MANTISSA)
SENTRY_ADDRESS 12

SENTRY ADDRESS1 13

SENTRY_ ADDRESS2 14
SFIELD_LAST 35

SFILE_TERMINATOR Vo

$SFIXED NAME NO_SUCH_FIXED TYPE

SFLOAT NAME NO_SUCH_FLOAT TYPE
$FORM_STRING "

$FORM_STRING2 "CANNOT RESTRICT FILE CAPACITY"
$SGREATER_THAN DURATION 214_748.3647
$SGREATER_THAN DURATION BASE LAST 214 749.3647

SGREATER _THAN FLOAT BASE LAST
240.1111111 11111111 1111114E127

SGREATER_THAN FLOAT_SAFE_LARGE 0.999999E128
SGREATER_THAN SHORT_ FLOAT_ SAFE_LARGE 0.0

SHIGH_ PRIORITY 255

SILLEGAL EXTERNAL FILF NAMEl
SILLEGAL EXTERNAL FILE NAME2
SINAPPROPRIATE LINE_T.ENGTH
SINAPPROPRIATE PAGE LENGTH
SINCLUDE PRAGMA1
$INCLUDE_PRAGMA2
SINTEGER_FIRST

SINTEGER_LAST
SINTEGER LAST PLUS_1
SINTERFACE LANGUAGE

SLESS_THAN_ DURATION

ILLEGAL_FILE NAME 1
ILLEGAL_FILE NAME 2

-1

-1

PRAGMA INCLUDE("A28006D1.TST")
PRAGMA INCLUDE ("B28006F1.TST")
-32768

32767

32768

ASSEMBLY

-214_748.3648

$LESS_THAN DURATION_BASE_FIRST =214 749.3648

$LINE TERMINATOR
$LOW_PRIORITY
$MACHINE CODE_STATEMENT
SMACHINE_CODE_TYPE
$SMANTISSA DOC

SMAX DIGITS

SMAX_INT
$SMAX INT PLUS_1

SMIN INT

$NAME

$NAME_LIST

$NAME SPECIFICATION1
$NAME SPECIFICATION2

SNAME SPECIFICATION3

0

NULL;
NO_SUCH_TYPE
31

9

2147483647
2147483648
-2147483648
NO_SUCH_INTEGER TYPE
MIL STD 1750A
NAME SPEC_1
NAME SPEC 2

NAME SPEC 3

SNEG_BASED INT
SNEW _MEM SIZE
$NEW_STOR_UNIT
SNEW_SYS NAME
$PAGE_TERMINATOR
$RECORD_DEFINITION
$RECORD_NAME

$TASK SIZE
$TASK_STORAGE_SIZE
$TICK
$VARIABLE_ADDRESS
$VARIABLE ADDRESS1
$VARIABLE ADDRESS2

$YOUR PRAGMA

164FFFFFFFE#
65536

16

MIL_STD_ 1750A
-

NEW INTEGER;
NO_SUCH_MACHINE_CODE_ TYPE
16

1024
0.000_100
16#1000#
1641800%
16420004

N A

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted

otherwise, references in this appendix are to compiler documentation and
noct to this report.

Chapter 4
The Ada Compiler

The Ada Compiler translates Ada source code into MIL-STD-1750A object code.

Diagnostic messages are produced if any errors in the source code are detected. Warning messages are also
produced when appropriate.

Compile, cross-reference, and generatzd assembly code listings are available upon user request.

The compiler uses a program library during the compilation. An internal representation of the compilation,
which includes any dependencies on units already in the program library, is stored in the program librarv as a
result of a successful compilation.

On a successful compilation, the compiler generates assembly code, invokes the InterACT 1750A Assembler to
translate this assembly code into object code, and then stores the object code in the program library. (Optioo-

ally, the generated assembly code may also be stored in the library.) The invocation of the Assembler is com-
pletely transpareant to the user.

4.1. The Invocation Command

The Ada Compiler is invoked by submitting the following VAX/VMS command:

S adal750{qualifier} source-file-spec

4.1.1. Parameters and Qualifiers

Default values exist for all qualifiers as indicated below. All qualifier names may be abbreviated (characters
omitted from the right) as long as no ambiguity arises.

source-file-spec

This parameter specifies the file containing the source text to be compiled. Any valid VAX/VMS filename may
be used. If the file type is omitted from the specification, file type ada is assumed by default. If this parameter
is omitted, the user will be prompted for it. The format of the source text is described in Section 4.2,

42 The Ada Compiler

/Nist
/nolist (default)

The user may request a source listing by means of the qualifier /list. The source listing is wrirten to the list file.
Section 432 contains a description of the source listing,

If /oolist is active, no source listing is produced, regardless of any LIST pragmas in the program or any diagnos-
tic messages produced.

In addition, the /list qualifier provides generated assembly listings for each compilation unit in the source file.
Section 4.3.6 contains a description of the geserated assembly listing.

/xref
/noxref (default)

A cross-reference listing can be requested by the user by means of this qualifier. If /xref is active and no severe
or fatal errors are found during the compilation, the cross-reference listing is written to the bst file. The cross-
reference listing is described in Section 43.4.

Jlibrary =fiie-spec
/library=ada750_library (default)

Thus qualifier specifies the current sublibrary and thereby also specifies the current program library which con-
sists of the current sublibrary through the root sublibrary (see Chapter 2). If the qualifier is omitted, the subli-
brary designated by the logical name adal750_library is used as the current sublibrary.

Section 4.4 describes how the Ada compiler uses the current sublibrary.

/configuration_file =file-spec
/coufiguration_file=adal750 _config (default)

This qualifier specifies the configuration file to be used by the compiler in the current compilation.

If the qualifier is omitted, the configuration file designated by the logical name adal750 _config is used by
default. Section 4.1.4 contains a description of the configuration file.

/save_source (default)
/nosave source

This qualifier specifics whether the source text of the compuation unit is stored in the program library. In case
that the source text file contains several compilation units the source text for cach compilation unit is stored in
the program lLibrary. The source texts stored in the program library can be extracted using the Ada PLU type
command (see Chapter 3).

Speafying /nosave_source will prevent automatic recompilation by the Ada Recompiler, and is hence not
recommended.

The Ada Compiler 43

[keep_assembly
/ookeep_assembly {default)

When this qualifier is given, the compiler will store the generated assembly source code in the program librar,
for cach compilation unit being compiled. By defauit this is not done. Note that while the assembly code &
stored in the Library in a compressed form, it nevertheless takes up a large amount of library space relative o
the other information stored in the library for a program unit.

This qualifier does not affect the production of generated assembly listings.

/check (default)
/nocheck| = (check_kand,...)]

check _kind ::= Index | access | discriminant | length | range |
division | overflow | elaboration | storage | all

When this qualifier is active (which is the default), all run time checks will be generated by the compiler.

When /nocheck is specified, the checks corresponding to the particular check kinds specified will be omitie2.
These kinds correspond to the identifiers defined for pragma SUPPRESS [Ada RM 11.7). The default kind for
/nocheck is all; that is, just specifying /nocheck results in all checks being suppressed.

Suppression of checks is done in the same manner as for pragma SUPPRESS (see Section F.2).

/debug
/nodebug (default)

When this qualifier is given, the compiler will generate symbolic debug information for each compilation unit &
the source file and store the information in the program librarv. By default this is not done.

This symbolic debug information is used by the InterACT Symbolic Debugging System.

It is important to note that the identical object code is produced by the compiler, whether or not the /debeg
qualifier is active. There are some minor differences in the generated assembly code, due to some extra labeis
being generated in the debug case.

/oofeoptimize

A small portion of the opumizing capability of the compiler places capacity limits on the source program (eg,
sumber of vaniables in a compilation unit) that are more restrictive than those documented in Section F.13. Ifa
compile produces an error message indicating that one of these limits has been reached, for example

**® 1562$-0: Optimizer capacity exceeded. Too many names in & basic block.

then use of this /nofeoptimize qualifier will bypass this particular optimizing capability and allow the compila-
uon to finish normally.

IMPORTANT NOTE: Do ot use this qualifier for any other reason. Do not attempt to use it in its positive

44 The Ada Compiler

form (/feoptimize), cither with or without any of its keyword parameters. The /feoptimize qualifier as defined
in the delivered command definition file is preset to produce the most effective optimization possible; any other
use of it may produce cither non-optimal or incorrect generated code. Similarly, do not use any other qualifiers
defined in the delivered command definition file that are not documented in this manual. Such qualifiers are
intended only for compiler maintenance purposes.

/progress
/noprogress (default)

When this qualifier is given, the compiler will write a message to sysSoutpaut as each pass of the compiler starts
to run. This information is not provided by default.

Examples of qualifier usage

$ adal750 navigation_constants
$ adal750/list/xref event_scheduler

$ adal750/prog/lib=test_versions.alb sysSuser:{source]altitudes_b

4.12. The List File

The name of the list file is identical to the name of the source file except that it has the file type lis. The file is
located in the current default directory. If any such file exists prior to the compilation, the newest version of the
file is deleted. If the user requests any listings by specifying the qualifiers /list or /xref, a new list file is created.

The list file is a text file and its contents are described in Section 43,

4.13. The Diagnostic File

The name of the diagnostic file is identical to the name of the source file except that it has the file type err. It is
located in the current default directory. If any such file exists prior to the compilation, the newest version of the
file is deleted. If any diagnostic messages are produced during the compilation, a new diagnostic file is created.

The diagnostic file is a text file containing a list of diagnostic messages, each followed by a line showing the
oumber of the line in the source text causing the me.sage, and a blank line. There is no pagination and there
are no headings. The file may be used by an interactive editor to show the diagnostic messages together with
the erroncous source text (sec Appendix A). The diagnostic messages are described in Section 43.5.

4.1.4. The Configuration i'lle

Certain functional characteristics of the compiler may be modified by the user. These characteristics are passed
to the compiler by means of a configuration file, which is a text file. The contents of the configuration file must
be an Ada positional aggregate, written on one line, of the anonymous type configuration_record, which is
described below. The configuration file is not accepted by the compiler in the following cases:

The Ada Compiler 45

e the syntax does not conform with the syntax for a positional Ada aggregate of type
configuration record,

e avalye is outside the rangss spedfied below;

s avalue is not speaified as a literal;

e LINES_PER_PAGE is not greater than TOP_MARGIN + BOTTOM_MARGIN;
o the aggregate occupies more than one line.

If the compiler is unable to accept the configuration file, an error message is issued and the compilation is ter-
minated.

The definition of this anonymous type is

type OUTFORMATTING is
record
LINES_PER_PAGE : INTEGER range 30..100;
--see Section 43.1
TOP_MARGIN : INTEGER range 4..90;
--see Section 43.1
BOTTOM_MARGIN : INTEGER range 0.. 90;
—see Section 43.1
OUT_LINELENGTH : INTEGER range 80..132;
--see Section 4.3.1
SUPPRESS ERRORNO : BOOLEAN;
—-see Section 43.5.1
end record;

type INPUT_FORMATS is
(ASCT),
—~see Section 4.2

type INFORMATTING is
record
INPUT_FORMAT : INPUT_FORMATS;
--see Section 4.2
INPUT_LINELENGTH : INTEGER range 70..127;
-—-see Section 4.2
end record;

type configuration_record is
record
IN_FORMAT : INFORMATTING;
OUT_FORMAT : OUTFORMATTING;
ERROR_LIMIT : INTEGER;
--see Section 4.3.5
end record;

46 The Ada Compiler

The Compiler System is delivered with a configuration file with the following content:
((ASCT, 126), (48, 5, 3, 100, FALSE), 200)

The name of this configuration file is passed to the compiler through the /configuration_file qualifier.
The OUTFORMATTING components have the following meaning:

e LINES_PER_PAGE: Specifies the maximum number of lines written on each page (including top and
bottom margin).

e TOP_MARGIN: Specifies the number of lines on top of cach page used for a standard heading and
blank lines. The heading is placed in the middle lines of the top margin.

e BOTTOM_MARGIN: Specifies the minimum number of lines left blank in the bottom of the page.
The anumber of lines available for the listing of the program is LINES PER_PAGE - TOP_MARGIN
- BOTTOM_MARGIN.

. OU'I'_LU.*TELENGTH: Spedfies the maximum number of characters written on each line. Lines
longer than OUT_LINELENGTH are separated into two lines.

e SUPPRESS_ERRORNO: Specifies the format of error messages, see Section 43.5.1.

4.1.5. The Generated Assembly List File

When generated assembly list files are produced, there is one such file for each compilation unit in the source
file. Generated assembly list files have a file type of als, and a file name of the compilation unit name suffixed
with a $s if the compilation unit is a specification, or $b if the compilation unit is a body. All files are located in
the current default directory. Unlike the source list file, existing generated assembly list files are not deleted
upon recompilation.

Generated assembly list files are text files and their contents are described in Section 4.3.6.

2. The Source Text

The user submits one source text file in cach compilation. The source text may consist of one or more compila-
tion units [4da RM 10.1].

On VAX/VMS the format of the source text specified in the configuration file (see Section 4.1.4) must be
ASCI. This format requires that the source text is a sequence of ISO characters [ISO standard 646}, where
cach line is terminated by one of the following termination sequences (CR means carriage return, VT means
vertical tabulation, LF means line feed, and FF means form feed):

e asequence of one or more CRs, where the sequence is neither immediately preceded nor immediately
followed by any of the characters VT, LF, or FF;

e any of the characters VT, LF, or FF, immediately preceded and followed by a sequeance of zero or
more CRs.

In geaeral, ISO control characters are not permitted in the source text with the following exceptions:

The Ada Compiler : &7

e the horizontal tabulation character (HT) may be used as a separator between lexical units;

e LF, VT, FF, and CR may be used to terminate lines, as described above.
The maximum number of characters m an input line is determined by the contents of the configuration file (see
Scction 4.1.4). The control characters CR, VT, LF, and FF are not considered part of the line. Lines containing
more than the maximum number of characters are truncated and an error message is issued.
43. Compiler OQutput

The compiler may produce output in the list file, the generated assembly list file(s), the diagnostic file, and on
sysSoutput. It also updates the program library if the compilation is successful (see Section 4.4).

The compiler may produce the following text output:

1. A listing of the source text with embedded diagnostic messages is written to the list file, if the qualifier
/list is active.

2. A compilation summary is written to the list file, if /list is active.

3. A coss-reference listing is written to the list file, if /xref is active and no severe or fatal errors have
been detected during the compilation.

4. A generated assembly listing of the compilation units within the source file is written to the generated
assembly list file(s) if the qualifier /list is active, and if no errors have been detected during the com-
pilation.

5. If there are any diagnostic messages, a diagnostic file containing the messages is written.

6. Diagnostic messages other than warnings are written 1o sysSoutput.

43.1. Format of the List File

The list file may include one or more of the following parts: a source listing, a cross-reference listing, and 2
comptlation summary.

The parts of the list file are separated by page ¢jects. The contents of each part are described in the following
sections.

The format of the output to the list file is controlled by the configuration file (see Section 4.1.4).

432. Source Listing

A source listing is an unmodified copy of the source text. The listing is divided into pages and each line is sup-
plied with a line number.

The oumber of lines output in the source listing is governed by the following:

43 The Ada Compiler

o parts of the listing can be suppressed by the use of LIST pragmas;

e a line containing a construct that caused a diagnostic message to be produced is printed even if it
occurs at a point where listing has been suppressed by a LIST pragma.

An example of a source listing is shown in Chapter 10.

433. Compilation Summary

At the end of a compilation the compiler produces a summary that is output to the list file if the /list qualifier
is active.

The summary contains information about:
e the type and name of the compilation unit, and whether it has been compiled successfully or not;
e the number of diagnostic messages produced, for each class of severity (sec Section 43.5);
e which qualifiers were active;
e the VAX/VMS filename of the source file;
e the VAX/VMS filenames of the sublibraries constituting the current program library;
e the number of source text lines;
e clapsed real time and elapsed CPU time;

e a‘Compilation terminated” message if the compilation unit was the last in the compilation, or *Com-
pilation of next unit initiated” otherwise.

An example of a compilation summary is shown in Chapter 10.

43.4. Cross-Reference Listing
A cross-reference listing is an alphabetically sorted list of the identifiers, operators and character literals of a

compilation unit. The list has an entry for each eatity declared and/or used in the unit, with a few exceptions
stated below. Overloading is evidenced by the occurrence of multiple entries for the same identifier.

For instantiations of generic units the visible declarations of the generic unit are included in the cross-reference

listing as declared immediately after the instantiation. The visible declarations are the subprogram parameters
for a generic subprogram and the declarations of the visible part of the package declaration for a generic pack-

age.

For type declarations all implicitly declared operations are included in the cross-reference listing.
Cross-reference information will be produced for every constituent character literal for string literals.

The following are not included in the cross-reference listing:

The Ada Compiler

pragma identificrs and pragma argument identifiers;
numeric literals;

record component identifiers and discriminant identifiers. For a selected name whose selector denotes
a record component or a discriminant, only the prefix generates cross-reference information;

a parent unit name following separate.

Each entry in the cross-reference listing contains:

the identifier with at most 15 characters. If the identifier exceeds 15 characters, a bar (*|*) is wrinen
in the 16th position and the remaining characters are not printed;

the place of the definition, ie., a line number if the entity is declared in the current compilation umit,
othervise the name of the compilation unit in which the entity is declared and the line number of the
declaration;

the numbers of the lines in which the entity is used. An asterisk ("**) after a line number indicates an
assignment (o a variable, initialization of a constant, or assignments to functions or user-defined
operators by means of return statements.

An example of a cross-reference listing is shown in Chapter 10.

43.5. Diagnostic Messages

The Ada compiler issues diagnostic messages to the diagnostic file (see Section 4.1.3). Diagnéstim other than
warnings also appear on sysSoutput. If a source text listing is requested, diagnostics are also found embedded
in the list file (see Section 4.1.2).

In a source listing a diagnostic message is placed immediately after the source line causing the message. Mess-
sages not related to a particular line are placed at the top of the listing. Every diagnostic message in the diag-
nostic file is followed by a linc indicating the corresponding line number in the source text. The lines are
ordered by increasing source line numbers. Line number 0 is assigned to messages oot related to any particalar
line. In sysSoutput the messages appear in the order in which they are generated by the compiler.

The diagnostic messages are classified according to their severity and the compiler action taken:

410 The Ada Compiler

Warning: Reports a questionable construct or an error that does not influence the meaning of
the program. Warnings do not hinder the gencration of object code. Example: A
warning will be issued for constructs for which the compiler detects that
CONSTRAINT_ERROR will be raised at runtime.

Error: Reports an illegal construct in the source program. Compilation continues, but no
object code will be generated. Examples: most syntax errors; most static semantic
errors.

Severe Error: Reports an error which causes the compilation to be terminated immediately. No
object code is generated. Example: a library unit mentioned by a with clause is not
present in the current program library.

Fatal Error: Reports an error in the Compiler System itself. The compilation is terminated
immediately and no object code is produced. InterACT should be informed about all
such errors (see Appendix X). The user may be able to circumvent a fatal error by
correcting the program or by replacing program constructs with alternative constructs.
Fatal errors are unlikely to affect program library integrity.

The detection of more than a certain number of errors during a compilation is considered a severe error. The
limit is defined in the configuration file (see Section 4.1.4).
43.5.1. Format and Content of Diagnostic Messages

For certain syntactically incorrect constructs, the diagnostic message consists of a pointer line and a text line. In
all other cases a diagnostic message consists of a text line oaly.

The pointer line contains a pointer (*) to the offending symbol or to an illegal character.
The text line contains the following information:
e the diagnostic message identification ****".
o the message code XY-Z where
X is the message number

Y is the severity code, a letter showing the severity of the error:

W: warning

E: error

S: severe error
F: fatal error

Z is an integer which together with the message number X uniquely identifies the compiler
location that generated the diagnostic message. Z is only useful for compiler maintenance

purposcs

The Ada Compiler 411

The message code (with the exception of the severity code) is suppressed if the configuration
file component SUPPRESS_ERRORNO has the value TRUE (see Section 4.1.4).

o the message text. The text may include one context-dependent field which contains the name of the
offending symbol; if longer than 16 characters, only the first 16 characters are shown.

Examples of diagnostic messages are:
*** 13W-3: Warning: Exception CONSTRAINT_ERROR will be raised here
*#** 320E-2: Name OBJ does not denote a type

*** 535E-0: Expression in return statement missing

*** 1508S-0: Specification for this package body not present in the library

Chapter 10 shows an example program with errors and the source listing and diagnostic file produced.

43.6. Generated Assembly Listing

The generated assembly listing is the output of the 1750A Assembler when it assembles the generated IEEE
assembly source produced by the compiler for a compilation unit. (The assembly takes place as part of the
compile command.)

The Ada source text appears as comments in the generated assembly code, with the source text corresponding
to each Ada scope start, declaration, statement, and scope end appearing before the corresponding generated
assembly code. The line number from the Ada source file also appears in these comments. If an Ada source
text line is longer than 72 characters, it is truncated with a backslash () character in the listing.

If the compilation unit contains generic instantiations or inline subprogram calls where the original Ada source
text is in a different file from the unit being compiled, the source text is brought in from that file and a com-
ment is generated to indicate when that file is being referenced. If an Ada source file cannot be located
(because the user has moved or deleted it since the original compilation, or because it is for a predefined library
unit), a comment is issued to that effect, and comments are interleaved that supply only the source line
numbers.

The compiler unnests lexically nested subprogram bodies and task bodies in the generated code so that they
appear textually after their parent scopes. The Ada source line commeats for these bodies do not appear in
their lexical place in the parent scopes, but rather with the unnested generated code. Occasionally special
compiler-generated routines appear in the generated code that have no particular correspondence to the Ada
source. A comment is issued to this effect when this happeas.

In addition o the interleaved Ada source, comments at the beginning of the assembly listing indicate the source
filc came that this compilation unit came from, the compilation unit name, and the sublibrary file name that it
is be ing compiled into.

The bottom of the gencrated assembly listing shows the object code sizes of the compilation enit.
Note that lavels and external names in the assembly listing often refer to program unit numbers, rather than (or

in addition to) unit names; if necessary, correspondence can be established through use of Ada PLU (see
Chapter 3).

412 The Ada Compiler

43.7. Return Status

After a compilation the VAX/VMS DCL symbols Sstatus and $severity will reflect whether the compilation
was successful The possible values of $severity and the low-order bits of $status are 1 (success) or 2 (error).

4.4. The Program Library

This section briefly describes how the Ada compiler changes the program library. For a more general descrip-
tion of the program library, see Chapter 2.

The compiler is allowed to read from all sublibraries constituting the curreat program library, but only the
current sublibrary may be changed.
4.4.1. Correct Compilation

In the following examples it is assumed that the compilation units are correctly compiled, i.e., that no errors are
detected by the compiler.

Compilation of a library unit which is a declaration

If a declaration unit of the same name exists in the current sublibrary, it is deleted together with its body unit
and possible subunits. A new declaration unit is inserted in the sublibrary, together with an empty body unit.

Compilation of a library unit which is a subprogram body
A subprogram body in a compilation unit is treated as a sccondary unit, if the current sublibrary contains a sub-
program declaration or a generic subprogram declaration of the same name and this declaration unit is not
invalid.
In all other cases it will be treated as a library unit, Le.:

e when there is no library unit of that name;

e when there is an invalid declaration unit of that name;

o when there is a package declaration, generic package declaration, or an instantiated package or sub-
program of that name.

Compilation of a library unit which is an instantiation

A possible existing declaration unit of that name in the current sublibrary is deleted together with its body unit
and possible subunits. A new declaration unit is inserted.

Compilation of a secondary unit which Is a library unit body
The existing body is deleted from the sublibrary together with its possible subunits. A new body unit is inserted.
Compilation of a secondary unit which is a subunit

If the subunit exists in the sublibrary, it is deleted together with its possible subunits. A new subunit is inserted.

The Ada Compiler : 413

4.42. Incorrect Compilations
If the compiler detects an error in a compilation unit, the program library will be kept unchanged.

If a source file consists of several compilation units and an error is detected in any of these compilation units,
the program library will not be updated for any of the compilation units.

4.5. Instantiation of Generic Units

4.5.1. Order of Compilation

When instantiating a generic unit, it is required that the entire unit including body and possible subunits is com-
piled before the first instantiation or - at the latest - in the same compilation. This is in accordance with {4da
RM 10.3].

4.52. Generic Formal Private Types

This section describes the treatment of a generic unit with a generic formal private type, where there is some
construct in the generic unit that requires that the corresponding actual type must be constrained if it is an array
type or a fype with discriminants, and instantiations exist with such an unconstrained type [4da RM 12.3.2(4)].

This is considered an illegal combination. In some cases the error is detected when the instantiation is com-
piled, in other cases when a coastraint-requiring construct of the generic unit is compiled:

1. If the instantiation appears in a later compilation unit than the first constraint-requiring coastruct of
the generic unit, the error is associated with the instantiation which is rejected by the compiler.

2. If the instantiation appears in the same compilation unit as the first constraint-requiricg construct of
the geaeric unit, there are two possibilities:

(a) If there is a constraint-requiring coastruct of the generic unit after the instantiation, an error
message appears with the instantiation.

(b) If the instantiation appears after all constraint-requiring constructs of the generic unit in that
compilation unit, an error message appears with the conbstraint-requiring construct, but
refers to the illegal instantiation.

3. The instantiation appears in an carlier compilation unit than the first constraint-requiring construct of
the generic unit, which in that case appears in the generic body or a subunit. If the instantiation has
been accepted, the instantiation corresponds to the generic declaration only, and does not include the
body. Nevertheless, if the generic unit and the instantiation are located in the same sublibrary, then
the compiler considers it an error. An error message is issued with the constraint-requiring construct
and refers to the illegal instantiation. The unit containing the instantiation is oot changed, however,
and is not marked as invalid.

LINKER CPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted

otherwise, references in this appendix are to linker documentation and
not to this report.

Chapter 5
The Ada Linker

Before a compiled Ada program can be executed it must be linked into a load module by the Ada Linker.

A single program may be linked for either a non-expanded memory 1750A configuration, or for any size of
expanded memory 1750A configuration.

In its normal and conventional usage, the Ada Linker links a single Ada program.

The Ada Linker also has the capability to link multipie Ada programs into one load module, where the pro-
grams will execute concurrently. This capability, which is outside the definition of the Ada language, is called
multiprogramming, and is further discussed below.

The Ada link, while one command, can be seen as having two parts: an “Ada part” and a “1750A part”.

The Ada part performs the link-time functions that are required by the Ada language. This includes checking
the consistency of the library units, and constructing an elaboration order for those library units. Any errors
found in this process are reported.

To effect the elaboration order, the Ada link constructs an assembly language "elaboration caller routine* that is
assembled and linked into the executable load module. This is a small routine that, during execution, gets con-
trol from the Ada runtime executive initiator. It invokes or otherwise marks the elaboration of each Ada library
unit in the proper order, then returns coatrol to the runtime executive, which in turn invokes the main program.
The action of the elaboration caller routine is transparent to the user.

If no errors are found in the Ada part of the link, the 1750A part of the link takes place. This consists of assem-
bling the elaboration caller routine, then invoking the InterACT 1750A Linker, linking the program unit object
modules (stored in the program library) and the claboration caller routine together with the necessary parts of
the Ada runtime executive (and some other runtime modules needed by the generated code). The output of the
full Ada link is an executable load module file.

The invocations of the 1750A Assembler and Linker are transparent to the user. However, qualifiers on the
Ada link command allow the user to specify additional information to be used in the target link. Through this
facility, a wide variety of runtime executive optional features, customizations, and user exit routines may be
introduced to guide or alter the execution of the program. These are described in the Ada 17504 Runtime Exe-
cutive Programmer’s Guide. This facility may also be used to modify or add to the standard 1750A Linker control
statements that are used in the 1750A part of the link; in this way, target memory may be precisely defined.
The control statements involved are described in the InterACT 17504 Assembler and Linker User's Manual.

5-2 The Ada Linker

Expanded Memory

Expanded memory is an optional hardware feature of the 1750A. Without the expanded memory option, the
1750A interprets 16-bit addresses as physical addresses, thereby allowing a maximum memory space of 64K
words. With the expanded memory option, the 1750A can address up to 1M words of memory by maintaining a
set of page tables which enable it to translate 16-bit logical addresses into 20-bit physical addresses. (Thus 1M
of memory can be divided into any ratio of code to data. Some implementations of 1750A map instruction and
data fetches into separate physical hardware areas, resulting in up to 2M words of memory being available -
1M of code, IM of data.)

However, since the 1750A is fundamentally a 16-bit processor, it does not allow direct access to the entire 1M
address space. Instead, it defines up to 16 “contexts” known as address states, only one of which may be active at
any moment. Each address state consists of a logical memory space containing up to 64K of code and 64K of
data.

To a large degree, the difficulties involved in working with 1750A expanded memory stem from one question:
which code and data go in which address siae? This is because jumping from one address state to another,
known as context switching, is an expensive operation for real-time apptications if dooe indiscriminately. Con-
sequently, the decision concerning what to place in each address state is best left to the system designer. Once
that deaision is made, the Compiler System automates the rest of the process.

These address state bindings are done at Ada link time. The user specifies a main program, which will reside in
address state 0, and any aumber of “top-level” compilation units, which will reside in address states specfied by
the user. Calls to any subprograms defined within these top-level units (and the elaboration-time call to the
unit itself) will be made via the Long Call fadlity.

The Long Call fadlity allows a subprogram residing in one address state to call a subprogram residing in
another address state. The actual call and return is bandied automatically by the Compiler System. (The
implementation consists of the 1750A Linker replacing call and return instructions with branch-to-executive
instructions, through which th~ Ada runtime executive performs a context switch using tables set up by the
1750A Linker.) Passed paramcters, including those passed by reference (arrays and records), are also handled
automatically. Thus, inter-address state calls look no different, in the Ada source, than intra-address state calls,
and there are no restrictioas on such cails.

The Ada runtime executive also automatically handles task rendezvous across address states; thus an eatry call
may also involve a context switch, if the user has designated the compilation unit containing the task to reside in
a different address state from the calling task.

All units other than those specified by the user as “long called”, automatically reside in every address state that
references them. (The implementation consists of the 1750A Linker setting up page register tables that reflect
this mapping, and the Ada runtime executive loading these page registers during initialization processing.)
Thus, cails to these units, and references to thetr data, have no extra execution-time cost associated with them.

In addition to user-specified address states’ contents, the Compiler System automatically includes in each
defined address state (ie. makes globally shareable) the Ada runtime system, including the system heap and the
stacks for the main program and all tasks.

To summarize the memory capabilities of single program expanded memory support, a program linked for
expanded memory may contain up to 1M of code. The program’s local objects and access object space is limited

to 64K The program’s librarv package objects (ie. objects with static allocation) may occupy more than 64K,
with 00 context switch overhead, to the exteat that they are referenced in only some address states.

As an illustration, consider a simple application consisting of 6 library units: a main program fEght_simulator,

The Ada Linker 53

and packages operations_a, operations_b, operations_c, utilities, and error_handler. The following diagram
portrays the relationship between the units.

flight_simulator

s ¥ ey
operations_a operations b operations_c

oo, o e L

error_handler uulities

The arrows represent dependenaes (i.e. “with® clauses). Thus, flght_simulator calls subprograms (or task
entries) in the operations packages, all of which make use of error_handler. In addition, each of the opera-
tions makes use of a unit named atilities.

The system designer knows the application requires more than 64K of pbysical memory, thus the expanded
memory option must be used. Unuts might be assigned to address states as follows:

audress state 0 address state 1 address state 2

flight simulator operations_a operations_b
(operations_a) error_handler operations ¢
(operations _b) utilities (error_handler)
(operations _c) utilities

The units in parentheses indicate units aot actually resident in the listed address state but referenced via the
long call faclity. Thus, address state O contains only flight_simulator which makes long calls to the operatons.
Address state 1 contains operations_a, utilities, and error_bandler. And address statec 2 contains operations b
and operations_c¢ which make long calls to error_handler, and ordinary calls to utilities.

Note that both error_handler and uotilities are accessed in address states 1 and 2. But whereas utilities acrually
resides in both address states (ie. one physical instance mapped into both address states), error_handler
resides only in address state 1.

Multiprogramming

As stated above, multiprogramming is the capability of linking multiple Ada programs into one load module,
where the programs will execute concurrently. As this concept is outside the definition of the Ada language, the
discussion of multiprogramming here is specific to this Compiler System’s implementation.

In multiprogramming, Ada units (comprising code, literals, and/or data) that are common to more than one
program are linked but once, and arc skared by those programs. With respect to code and literals, this has no
effect upon execution, and results in more efficdent memory utilization. However, with respect to data, this

54 The Ada Linker

means that the actions of one Ada program can affect, and possibly cause erroncous behavior in, another Ada
program. Such an interaction may be desired, as in the case of a common library package’s data being used to
communicate between programs. If such an interaction is no¢ desired, the program units that would otherwise
be common may be rewritien as gencric units, and instantiated with a different name for each program that uses
them.

Elaboration of common units is only done once, by the *first” program that depeads on them. This ordering is
defined by the order in which the programs are named to the Ada link command (and not by their address state
order, if an expanded memory link is being done).

In order to ensure that units are ¢laborated before being referenced, the runtime executive elaborates the units
of cach program seriaily, waiting for the elaborations for one program to finish before going on to the next
program’s elaborations. When all elaborations have completed, the main programs themselves are eligible to
execute. Programs, and any tasks within them, are scheduled by their Ada priority on a global basis. See the
Ada 17504 Runtime Executive Programmer’s Guide for more details on this process, and on the criteria by which
programs arc scheduled and dispatched.

The main programs involved in a multiprogramming link must all be present within the same program library.
Multiprogramming m-~y be done on either a non-cxpanded memory or an expanded memory 1750A

configuration. In the latter case it is used in conjunction with the single program expanded memory linking
features described above. One or more programs may be defined to an address state.

Note that it is not necessary to use multiprogramming to take advantage of a 1750A expanded memory
configuration. Multiprogramming is often best suited towards real-time “operating systems™ implemented in
Ada, where cach application running under the operating system is represented as an Ada main program, and
where communication requirements among the programs are minor or absent.

§.1. The Invocation Command

The Ada Linker is invoked by submitting the following VAX/VMS command:

$ adal750/Yink{qualifier} main-programs [long-called-units]

main-programs :: = main-program-name (single program link)
| {main-program-name{ /as-qualifier | [options-qualifier}} (multiprogramming link)

long-called-units :: = {unit-name(/as-qualifier) }

As part of the "1750A part” of an Ada link, a temporary subdirectory is created below the current default direc-
tory. Use of this subdirectory, the name of which is constructed from the VAX/VMS process-id, permits con-
current linking in the same current default directory. The subdirectory contains work files oaly, and it and its
contents are deleted at the end of the link.

A consequence of the use of this subdirectory is that an Ada link cannot be done from a current default direc-
tory that is eight directory levels deep, as that is the VAX/VMS limit for directory depth.

Infrequently, a control-C or coatrol-Y interrug: of an Ada link will leave the subdirectory present. If this hap-
pens, the subdirectory and its contents must be deleted, in order that subsequent links (by w.at process, in that

The Ada Linker 55

current default directory) may take place.

§.1.1. Parameters and Qualifiers

Default values exist for all qualifiers as indicated below. All qualifier names may be abbreviated (characters
omitted from the right) as long as no ambiguity arises.

main-prograrm-name

If a single program link is being done, main-program-1ame must specify a main program which is a library unit
of the current program library, but not necessarily of the current sublibrary. The library unit must be a parame-
terless procedure. Note that main-program-name is the identifier of an Ada procedure; it is not a VAX/VMS
file specification.

When main-program-name is used as the file name in Ada link output (for the load module, memory map fil,
etc.), the file name will be truncated to 29 characters if necessary.

If a multiprogramming link is being done, multiple main-program-names are specfied, separated by commas.
The first name supplied is the one used for the file name in Ada link output.

The first three of the qualifiers below pertain to the "Ada part” of the Ada link. The remaining qualifiers per-
tain to the "1750A part” of the link.

Nog| =file-spec]
/nolog (default)

The qualifier specifies whether a log file is to be produced during the linking, By default no log file is pro-
duced. If /log is specified without a file specification, a log file named main-program-namelog is created
in the current default directory. If a file specification is given, that file is created as the log file. The contents of
the log file are described in Section 53.

[library=file-spec
Nibrary=adal750 library (default)

This qualifier specifies the current sublibrary and thereby also the current program library, which consists of the
current sublibrary through the root sublibrary (see Chapter 2). If the qualifier is omitted, the sublibrary desig-
nated by the logical name adal750_library is used as current sublibrary.

/mp
This qualifier specifies that a multiprogramming link be done. By default a single program link is done.
/as(=address-state)

This qualifier is used in two contexts. It must be used after the Ada link command verb to indicate that an
expauded memory link be done (whether single program or multiprogramming). By default a non-expanded
memory link is done. In this context it is used without an address-state value.

If a single program expanded memory link is being done, this qualifier is also used after each long-called-unz, to

56 The Ada Linker

specify the address state that unit will reside in.

If a multiprogramming link is being done, this qualifier may be used after cach main-program-name, to specify
the address state that program will reside in. However, if the qualifier is not used after any main-program-
names, the programs are assigned by the Ada link to address states in their order of appearance, one per
address state, starting with address state 0.

/options | =macro-name])

This qualifier is used to override certain default values that are used by the Ada runtime executive. If the
qualifier is omitted, no overriding takes place.

The qualifier specifies the name of an assembly language macro containing one or more conditional assembly
directives that override the default values of certain assembly-time symbols. (Note that this is a macro name,
not a VAX/VMS file name.) If /options is specified without a macro-name, main-program-name is used as the
macro name.

The names of these assembly-time symbols, their default values, and the runtime behavior that they control, are
described in the Ada 17504 Runtime Executive Programmer’s Guide. A macro file containing the definition of
this macro must be available to the 1750A Assembler at the time of the link by one of the means documented in
the InterACT 175044 Assembler and Linker User's Manual.

If a multiprogramming link is done, the /options qualifier may appear cither after the Ada link command verb,
in which case it applies to every program being linked (or, if no macro-name is given, cach main-program-name
default applies to each program being linked), or it may appear after some or all of the main-program-names, in
which case it applies to only those programs (and supercedes for those programs a /options qualifier used after
the command verb, if any).

/standard_coatrol{ =file-spec]
/standard_control =adalink_standard_control | adalink_expmem_control (default)

This qualifier specifies the file name of "standard® 1750A Linker control statements that are to be used for all
links for an installation or project. If file-spec is omitted or only partially specified, []adalinklod is used as a
full or partial default. If the qualifier is omitted, the logical name adalink standard_control or
adalink_expmem_coatrol (if an expanded memory link is being done) is assumed to define such a file, using the
same partial default. If that logical name is not defined or the specified file does not exist, no standard control
statements are used.

/control] = file-spec]

This qualifier specifies the file name of “user” 1750A Linker control statements that are to be used for this par-
ticular hink. If file-spec is omitted or only partially specified, { }main-program-namelod is used as a full or par-
tial default. If the qualifier is omitted or the specified file does not exist, no user control statements are used.

The files designated by the /standard_control and /control qualifiers are used to form the full input coatrol
statement stream to the 1750A Linker, in this concatenated order:

/standard_control file (if it exists)
< statements generated by the Ada part of the link >
/coatrol file (if qualifier active and it exists)

The Ada Linker . 57

The statements generated by the Ada part of the link are usually just SELECT or ADDRSTATE statements for
the claboration caller routine(s) and main programqs).

The Compiler System is delivered with adalink standard _coatrol and adalink_expmem_control defined to
files that contain default sets of standard control statements. These consist of the minimal SECTION state-
ments required by the 1750A Linker, and various other necessary directives.

[user_rts =search-list
/user_rts=adalink user_rts (default)

This qualifier specifies a VAX/VMS search list that contains either user-dependent RTE modules, such as a
change to the task scheduler for a particular application, or pragma INTERFACE (ASSEMBLY) bodies for
subprograms that are not library units (see Section F2). Modules in this search list’s directory(ies) are taken
ahead of those in the directories specified by /target_rts (see below) and those in the standard RTE directory.
If the qualifier is omitted, logical name adalink _user_rts is used, if the name has been defined.

/target_rts =search-list
/target_rts=adalink_target rts (default)

This qualifier specifies a VAX/VMS search list that contains 1750A-implementation(target)-dependent runtime
executive (RTE) modules, such as modules to do character 1/O for a particular simulator or microprocessor.
Modules in this search list’s directory(ies) are taken ahead of those in the standard RTE directory. If the
qualifier is omitted, logical name adalink_target rts is used, if the name has been defined. Note however that
if pragma NO_DYNAMIC_OBJECTS_OR_VALUES_USED is specified (see Section F3), this qualifier has
no effect.

/debug
/nodebug (default)

When this qualifier is given, the Ada Linker will produce a symbolic debug information file, containing symbolic
debug information for all program units involved in the link that were compiled with the /debug compiler
qualifier active. By default no such file is produced, even if some of the program units linked were compiled
with /debug active.

This symbolic debug information file is used by the InterACT Symbolic Debugging System.

The show/containers command of Ada PLU may be used to determine which units in the program library have
debug information containers, i.c., which units were compiled with /debug active.

It is important to note that the identical executable load module is produced by the Ada Linker, whether or not
the /debug qualifier is active.

/actink_qualifiers =°17504 Linker qualifiers”

This qualifier specifies a string containing one or more command qualifiers to be passed to the execution of the
1750A Linker.

/stop{=number}

This qualifier, when used with no number, results in the Ada link stopping after the "Ada part® has done all
Ada-required checking, and has created a VAX/VMS DCL command file (located in the temporary

X The Ada Linker

subdirectory) that executes the *1750A part®, but before that command file has actuaily been invoked.

When used with auwnber = 1, the command file is invoked, but stops before the 1750A Linker is invoked, leav-
ing the temporary subdirectory and its files in place. When used with number = 2, it executes the 1750A Linker
but then stops before the symbolic debug information file is produced.

This qualifier is useful for trouble-shooting, or for giving the user an intervention point for Ada link customiza-
tions nok covered by any of the available options.

5.12. Examples

A single program, 64K memory link:
$ adal1750/link flght simulator

A singie program link for 128K expanded memory:
$ adal750/link/as fEght_simulator

In the above case, no long called units are necessary since only one address state is being used. Now an exam-
ple of a single program, greater than 128K expanded memory link, where long calls are necessary, for the illus-
tration presented at the beginning of this Chapter:

$ adal750/link/as flght_simulator operations_a/as=1.error_handler/as=1,-
operations_b/as=2,operations _c/as=2

Some multiprogramming examples, with 64K and then expanded memory:

$ adal1750/link/mp able,baker charlie
$ adal750/link/mp/as ablebakercharlie

$ adal750/link/mp/as able/as=0,baker/as=1,charlie/as=2

The last two examples above are equivalent. However, the following sort of assignment can only be done using
the second form:

$ adal750/link/mp/as able/as=0baker/as=1charlie/as=1,dog/as=4

Now, an example of overriding default runtime executive values, in this case the system heap size and main
stack size:

$ adal750/link/opt flght simulator

where fight_simulator.mac in the current directory contains

The Ada Linker 5-9

FLIGHT _SIMULATOR MACRO

IHEAP_SI2E T ASET 24*1024
IMAINSTACK SIZE ASET 8*102¢
ENOMAC

Some examples of overriding values when multiprogramming is involved:
$ adal750/link/mp/as/opt=large_stack able,bakercharlie

would use large_stack.mac for all three programs, while
$ adal750/link/mp/as/opt ablebakercharlie

would use able.mac, baker.mac, and chartie.mac for the three programs respectively. Alternatively,
$ adal750/link/mp/as/opt=large stack able,baker/opt=small_stackcharlie

would use large_stack.mac for ABLE and CHARLIE, but use small_stack.mac for BAKER, while
$ adal750/link/mp/as ablebaker/opt.charlie

would use baker.mac for BAKER, and all default values for ABLE and CHARLIE.

Now, an example of introducing “user” 1750A Linker control statements:
$ adal750/link/control test_driver

where test_driverJod in the current directory contains

PAGESIZE 60
SELECT (dma.objectIDMACHECK
NOLOAD

Note that the SELECT statement specifies the directory where the object module dmacheck.ric is located.
Now, an cxample of the use of user and target RTE directories:

$ define adalink target rts [tektromics.o.test],[tektronics.o]
$ adal750/link/user_rts=sysSuser:(teststor_mgr] flight simulator

Runtime executive modules will be looked for in the directory specified by the /user_rts qualifier, then in the
two directories specified by the adalink_target_rts logical name, and lastly in the standard RTE directory.

To revert to referencing only the standard RTE directory:

$ deassign adalink_target rts
$ adal1750/link flght_simulator

510 The Ada Linker

52. Load Module Output

If an Ada linking 15 successialy compieted, ihe 1750A Lanker produces an executable load module file named
main-program-name abs in the current default directory.

The load module is in InterACT load module format, which may require further reformatting before being
loaded into 1750A bardware or simulators (see Chapter 8).

$2.1. Symbolic Debug Information Qutput

If an Ada linking with the /debug qualifier active is successfully completed, a symbolic debug information file
named main-program-name d is created in the current default directory. This file s used by the InterACT Sym-
bolic Debugging System.

§3. Linker Text Cutput

The Ada Linker produces the following text output:

1. Diagnostic messages other than warnings are written to sysSoutput, and all messages are written to
the log file if /log is active.

2. An elaboration order list is written to the log file if /log is active.
3. A required recompilations list is written to sys$output if not empty, and to the log file if /log is active.
4. A linking summary is written to the log file if /log is active.

S. A 1750A Linker memory map file, main-program-name map. (Sece the InterACT 17504 Assembler and
Linker User's Manual for contents.)

6. An assembly listing of the generated module that elaborates all Library units, eSmain-program-
nameals. If a multiprogramming link is done, separate listings are produced for each program.

7. If a multiprogramming link is done, an assembly listing of a generated module that communicates
program information to the Ada runtime executive, Smpt.als.

Note that the log file contains information relevant to the "Ada part” of the link, while the memory map file
contains information relevant to the "1750A part” of the link,

3.1. Diagnostic Messages

The Ada Linker may issue two kinds of diagnostic messages, warnings and severe errors.

A warning reports something which does not prevent a successful linking, but which might be an error. A warn-
ing is issued if the body unit is invalid or is lacking an object code container for a program unit which formally
does not need a body. The linking summary on the log file contains the total oumber of warnings issued.

A severe error message reports an error which prevents a successful linking. Any inconsistency detected by the
linker will cause a severe error message, €.g., if some required unit does not exist in the library or if some time
stamps do not agree.

The Ada Linker 1
Examples of diagnostic messages from the Ada Linker can be found in Chapter 10.

$32. Elaboration Order List

The elaboration order list contains an entry for each unit included, and shows the order in which the units will
be elaborated. For each unit the unit type, the compilation time, and the dependencies are shown. Further-
more, any elaboration inconsistencies are reported.

When a multiprogramming link is done, the claboration order lists will contain the full elaboration order of
cach program, without regard to multiprogramming. These orders can be compared to the elaboration caller
assembly listing for a program, to see which claborations were omitted due to multiprogramming.

$33. Required Recompilations List

The required recompilations list reflects any inconsistencies detected in the library, that prevented the link from
taking place.

The entries in the list contain the unit name, and an indication of the unit being a declaration unit, a body unit,
or a subunit. The list is in a recommended recompilation order, consistent with the dependencies among the

umits.

If the number of recompilations is small, they can usually be performed by hand using this list. Otherwise, the
Ada Recompiler (see Chapter 6) may be used to accomplish the recompilation in a fully automatic way.

Examples of required recompilation lists can be found in Chapter 10.

5§3.4. Return Status
After an Ada link the VAX/VMS DCL symbols $status and $severity will reflect whether the link was success-
ful. The possible values of $severity and the low-order bits of $status are any of the values defined by DCL.
$3.5. Linking Summary
The linking summary contains the following information:

e parameters and active qualifiers;

e the VAX/VMS file names of the sublibraries constituting the current program library;

e the number of cach type of diagnostic messages;

e atermination message, telling whether a linking has termirated successfully or unsuccessfully.

512 The Ada Linker

5.4. Commands for Deflning the Target Environment

ihere are a aumber o« differont larger eavirona.cats thai Ada progians cau run w, Juc (o different inicmea-
tations of the MIL-STD-1750A architecture.

Each of these eavironments may require some changes to cither the standard linker control statements, or the
runtime executive modules, that are used in an Ada link. These changes may be effected by various Ada link
qualifiers and their logical name defaults, as described in Section 5.1.1. However, convenience commands, of
the form wse~ (for example, useact for the InterACT 1750A Instruction Set Architecture Simulator), exist to
defiuc the appropriate Ada ink logical names. These commands are invoked before an Ada link, and remain in
cffect for subsequent Ada links until changed by another such command.

These commands are described in full detail in the Ada 17504 Runtime Executive Programmer’s Guide.

APPENDIX C

APPENNTY ® 2AF THI 2ada STANDARD

. —

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in Chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of this Ada implementation,
as described in this Appendix, are provided by the customer. Unless
specifically noted otherwise, references 1n this Appendix are to
compiler documentation and not to this report.
Implementation-specific portions of the package STANDARD, which are
not a part of Appendix F, are:

package STANDARD is
type INTEGER is range -32_768 .. 32_767;
type LONG_INTEGER is range -2_147_483_648..2_147_483_647;

type FLOAT is digits 6
range =~1.0%2,0%%*127.,.0.999999%2.0%*127;

type LONG_FLOAT is digits 9
range -1.0%2,0%*127 .. 0.99999999*%2.0**127;

type DURATION is delta 1.0E-04
range -214_748.3648..214_748.3647;

end STANDARD;

Appendix F
Appendix F of the Ada Reference Manual

This appendix describes all implementation-dependent characteristics of the Ada language as implemented by
the InterACT Ada 1750A Compiler, including those required in the Appendix F frame of Ada RM.

F.1. 2 :defined Types in Package STANDARD
This secuos describes the impiementation-dependent predefined types declared in the predefined package
STANDARD (Ada RM Annex C], and the relevant attributes of these types.

F.1.1. Integer Types

Two predefined integer types are implemented, INTEGER and LONG_INTEGER. They have the following
attributes:

INTEGER'FIRST = 32,768
INTEGER'LAST = 32777
INTEGER'SIZE = 16
LONG_INTEGER'FIRST = -2 147 483 648
LONG_INTEGER'LAST = 2 147 483 647
LONG_INTEGER'SIZE = 32

F.12. Floating Point Types

Two predefined floating point types are implemented, FLOAT and LONG_FLOAT. They have the following
attributes:

FLOATDIGITS = 6

FLOAT EPSILON = 953674316406250E-07
FLOATFIRST = -1.0*20°°127
FLOAT'LARGE = 1.93428038904620E + 25
FLOAT LAST = 0.999999 * 2.0°*127

FLOATMACHINE_EMAX

127

F-2 Appendix F of the Ada Reference Manual

- FLOAT'MACHINE_EMIN = a2
FLOATMACHINE_MANTISSA = 23
FLOATMACHINE_OVERFLOWS = TRUE
FLOAT'MACHINE_RADIX = 2
FLOAT'MACHINE_ROUNDS = FALSE
FLOAT'MANTISSA = 2
FLOAT'SAFE_EMAX = 127
FLOAT'SAFE_LARGE = FLOAT'LAST
FLOAT'SAFE_SMALL = 05*20%*(-127)
FLOAT'SIZE = R
LONG_FLOAT'DIGITS = 9
LONG_FLOATEPSILON = 931322574615479E-10
LONG_FLOATFIRST = -10°20%*127
LONG_FLOAT'LARGE = 20°*124%(1.0-2.0°*(-31))
LONG_FLOAT'LAST = .59999999% 2.0%*127
LONG_FLOAT'MACHINE_EMAX = 127
LONG_FLOAT'MACHINE_EMIN = -128
LONG_FLOAT'MACHINE_MANTISSA = 39
LONG_FLOAT'MACHINE_OVERFLOWS = TRUE
LONG_FLOAT'MACHINE_RADIX = 2
LONG_FLOAT'MACHINE_ROUNDS = FALSE
LONG_FLOAT'MANTISSA. = 31
LONG FLOAT'SAFE_EMAX = 127
LONG_FLOAT 5AFE_I ARGE = LONG_FLOATLAST
LONG_FLOAT'SAFE_SMALL = 05°2%%(-127)
LONG_FLOAT'SIZE = 48

F.13. Fixed Point Types

Two kinds of anonymous predefined fixed point types are implemented, fixed and long fixed (which are not
defined in package STANDARD, but are used here only for reference), as well as the predefined rvmne DURA-
TION.

For objects of fixed types, 16 bits are used for the representation of the object. For objects of long fixed types,
32 bits are used for the representation of the object.

For fixed and long_fixed there is a virtual predefined type for each possible value of small [Ada RM 3.5.9). The
possible values of smail are the powers of two that are representable by a LONG_FLOAT value, unless a length
clause specifying TSMALL is given, in which case the specified value is used.

The lower and upper bounds of these types are:

lower bound of fixed types = .32768 * small

upper bound of fixed types = 32767 * small

lower bouad of long fixed types = -2_147 483 648 * smail
upper bound of long fixed types = 2_147_483 647 * small

A declared fixed point type is represented as that predefined fixed or long_fixed type which has the largest value
of smail not greater than the declared delta, and which has the smallest range that includes the declared range

Appendix F of the Ada Reference Manual ’ F-3

constraint.

Any fixed point type T has the following attributes:

TMACHINE_OVERFLOWS
TMACHINE_ROUNDS

TRUE
FALSE

The predefined fixed point type DURATION has the following attributes:

DURATION'AFT = 4
DURATION'DELTA = 10E-04
DURATION'FIRST = -214 7483648
DURATION'FORE = 7
DURATION'LARGE = DURATIONLAST
DURATION'LAST = 214 7483647
DURATION'MANTISSA = 31
DURATION'SAFE LARGE = DURATIONLARGE
DURATION'SAFE SMALL = DURATION'SMALL
DURATIONSIZE = 3
DURATION'SMALL = 10E-04

F2. Predefined Language Pragmas

This section lists all language-defined pragmas and any restrictions on their use and effect as compared to the
definitions given in Ada RM.

F2.1. Pragma CONTROLLED

This pragma has no effect, as no automatic storage reclamation is performed before the point allowed by the
pragma.

F22. Pragma ELABORATE

As in Ada RM.

F23. Pragma INLINE
This pragma causes inline expansion to be performed, except in the following cases:

1. The whole body of the subprogram for which inline expansion is wanted has not been seen. This
ensures that recursive procedures cannot be inline expanded.

2. The subprogram call appears in an expression on which conformance checks may be applied, i.e., in a
subprogram specification, in a discriminant part, or in a formal part of an entry declaration or accept
statement.

F-4 Appendix F of the Ada Reference Manual

3. The subprogram is an instantiation of the predefined generic subprograms
UNCHECKED_CONVERSION or UNCHECKED_DEALLOCATION. Calls to such subprograms
are expanded inline by the compiler automatically.

4. The subprogram is declared in a generic unit. The body of that generi~ unit is compiled as a secon-
dary unit in the same compilation as a unit containing a call to (an instance of) the subprogram.

S. The subprogram is declared by a renaming declaration.
6. The subprogram is passed as a generic actual parameter.

A warning is given if inline expansion is not achieved.

F2.4. Pragma INTERFACE

This pragma is supported for the language names defined by the enumerated type INTERFACE_LANGUAGE
in package SYSTEM. Languages other than BIF support Ada calls to subprograms whose bodies are written in
that language. Language BIF (for "built-in function”) supports inline insertion of assembly language macro invo-
cations; the macros themselves may comsist of executions of 1750A hardware buiit-in functions, or of any
sequence of 1750A instructions. Thus, pragma INTERFACE (BIF) serves as an alternative to machine code
insertions.

Language ASSEMBLY

For pragma INTERFACE (ASSEMBLY), the compiler generates a call to the name of the subprogram. The
subprogram name must not exceed 31 characters in length. Parameters and results, if any, are passed in the
same fashion as for a normal Ada call (see Appendix P).

Assembly subprogram bodies are not elaborated at runtime, and no runtime elaboration check is made when
such subprograms are called.

Assembly subprogram bodies may in turn call Ada program units, but must obey all Ada calling and environ-
mental conventions in doing so. Furthermore, Ada dependencies (in the form of context clauses) on the called
program units must exist. That is, merely calling Ada program units from an assembly subprogram body will
not make those program units visible to the Ada Linker.

A pragma INTERFACE (ASSEMBLY) subprogram may be used as a main program. In this case, the pro-
cedure specification for the main program must contain context clauses that will (transitively) name all Ada
program units.

If an Ada subprogram declared with pragma INTERFACE (ASSEMBLY) is a library unit, the assembled sub-
program body object code module must be put into the program library via the Ada Library Injecticn Tool (see
Chapter 7). The Ada Linker will then automatically include the object code of the body in a link, as it would the
object code of a normal Ada body.

If the Ada subprogram is not a library unit, the assembled subprogram body object code module cannot be put
into the program library. In this case, the user must direct the Ada Linker to the directory containing the object
code module (via the /user_rts qualifier, sce Section 5.1), so that the 1750A Linker can find it.

Appendix F of the Ada Reference Manual F-5

Language BIF

For pragma INTERFACE (BIF), the compiler generates an inline macro invocation that is the name of the
subprogram. The subprogram name must not exceed 31 characters in length. Subprogram parameters and
results, if any, are passed in the same fashion as for a normal Ada call (see Appendix P), except that the macro
invocation replaces the call However, subprogram parameters may be passed in registers if pragma
INTERFACE_PARAMETERS is used (see Section F3.7). Use of this pragma, as well as pragma
INTERFACE_SCRATCH and, if desired, pragma INTERFACE_RESULT (again, see Section F3.7) is recom-
mended for most efficient usage of pragma INTERFACE (BIF). No macro arguments are passed on the invo-
cation.

A macro file must exist at the time of the compile coutaining a macro definition with the same name as the sub-
program. This macro file must be available by one of the means documented in the /nter4CT 17504 Assembler
and Linker User's Manual.

Languages JOVIAL and FORTRAN

These languages may also be specified for pragma INTERFACE, but are equivalent to language ASSEMBLY.
The compiler gencrates calls to such subprograms as if they were Ada subprograms, and does not do any spe-
cial data mapping or parameter passing peculiar to the interACT JOVIAL or FORTRAN compilers.

F2.5. Pragma LIST

As in 4da RM.

F26. Pragma MEMORY _SIZE

This pragma has no effect. See pragma SYSTEM_NAME.

F2.7. Pragma OPTIMIZE

This pragma has no effect.

F238. Pragma PACK

This pragma is accepted for array types whose component type is an intege-, -2umeration, or fixed point type
that may be represented in 16 bits or less. (The pragma is accepied but has no effect for other array types.)

The pragma normally has the effect that in allocating storage for an object of the array type, the components of

the object are cach packed into the next largest 2° bits needed to contain a value of the component type. This
calculation is done using the minimal size for the component type (see Section F.6.1 for the definition of the
minimal size of a type).

However, if the array’s component rvoe is declared with a size specification length clause, then the components
of the object are each packed into exactly the number of bits specified by the length clause. This means that if
the specified size is not a power of two, and if the array takes up more than a word of memory, then some com-
ponents will be allocated across word boundaries. This achieves the maximum storage compaction but makes
for less efficient array indexing and other array operations.

F-6 Appendix F of the Ada Reference Manual

Some examples:

type B800L_ARR is arrey (1..32) of BOOLEAN; -- BOOLEAN minimal size is 1 bit
pregma PACK (BOOL_ARR); -- each component packed into 1 bit

type TINY_INT is range -2..1; -- minimal size is 2 bits

type TINY_ARR is array (1..32) of TINY_INT;

pragmes PACK (TINY_ARR); -~ each component packed into 2 bits

type SMALL_INT is range 0..63; -- minimal size is 6 bits, not 8 power of two
type SMALL_ARR is array (1..32) of SMALL_INT;

pragms PACK (SMALL_ARR); -- thus, each component packed into 8 bits
type SMALL_INT_2 is renge 0..43; -- minimal size is 6 bits, but

for SMALL_INT_2/SIZE use 6; -- this time length crause is used

type SMALL_ARR_2 is erray (1..32) of SMALL_INT_2;

pragms PACK (SMALL_ARR_2); -- thus, esech component packed into 6 bits;

-~ sOome components cross word boundaries

Pragma PACK is also accepted for record types but has no effect. Record representation clauses may be used to
“pack” components of a record into any desired number of bits; see Section F.6.3.
F2.9. Pragma PAGE

As inAda RM.

F2.10. Pragma ¢xIORITY

As in Ada RM. Scc the Ada 17504 Runtime Executive Programmer’s Guide for how a default priority may be
set.

F2.11. Pragma SHARED

This pragma has no effect, in terms of the compiler (and a warning message is issued). However, based on the
current method of code generation, the effect of pragma SHARED is automatically achieved for all scalar and
access objects.

F2.12. Pragma STORAGE_UNIT

This pragma has no effect. See pragma SYSTEM_NAME.

F2.13. Pragma SUPPRESS

Oaly the “identifier” argument, which identifies the type of check to be omitted, is allowed. The “[ON =>]
name" argument, which isolates the check omission to a specific object, type, or subprogram, is not supported.

Pragma SUPPRESS with all checks other than DIVISION_CHECK and OVERFLOW_CHECK results in the
corresponding checking code not being generated. The mplcmcntauon of arithmetic opcrauons is such that, in
geoeral, pragma SUPPRESS with DIVISION_CHECK and OVERFLOW_CHECK has no effect. In this case,
runtime executive customizations may be used to mask the overflow i mtcrrupts that are used to nnplcmcnt these
checks (see the Ada 17504 Runtime Executive Programmer’s Guide for details). However, in certain cases

Appendix F of the Ada Reference Manual F.7

involving multiplication by constants or numeric type conversions, pragma SUPPRESS with
DIVISION_CHECK or OVERFLOW_CHECK results in code being generated such that the overflow inter-
rupt cannot occur.

F2.14. Pragma SYSTEM_NAME

This pragma has no effect. The only possible SYSTEM_NAME is MIL_STD_1750A. The compilation of
pragma MEMORY _SIZE, pragma STORAGE_UNIT, or this pragma does not cause an implicit recompilation
of package SYSTEM.

F3. Impiementation-dependent Pragmas

F3.1. Program Library Basis Pragmas

Certain pragmas defined by this Compiler System apply to Ada programs as a whole, rather than to individual
compilation units or declarative regions. These pragmas are

e NO_DYNAMIC OBJECTS_OR_VALUES_USED
e NO DYNAMIC MULTID[MENSIONAL ARRAYS USED
. SE’I' MACHINE _OVERFLOWS FALSE_ FOR ANONYMOUS FIXED

These pragmas apply on a program library wide basis, and thus apply to any and all programs compiled and
linked from a given program library. The meanings of these pragmas is described in the subsections below; the
way in which these pragmas are specified is described in this subsection.

These pragmas may only be specificd within the implementation-defined library unit LIBRARY_PRAGMAS,
which in turn may only be compiled into a root (predefined) sublibrary. If cither of these restrictions are not
honored, the pragmas have no effect.

The contents of this library unit when delivered are

package LIBRARY_PRAGMAS is
NO_DYNAMIC_OBJECTS_OR_VALUES_USED : constant BOOLEAN :® FALSE;
NO_DYNAMIC_MULTIDIMENSIONAL_ARRAYS_USED : constant ROOLEAN :» FALSE;
SET_MACNINE_OVERFLOWS_FALSE_FOR_ANONYMOUS_FIXED : constant BOOLEAN := FALSE;
ond LIBRARY_PRAGMAS;
In order to specify any or all of the pragmas, the source for this package is modified to include the pragmas

after the constant declarations (the source file is defined by the logical name actada_library _pragmas). For
example,

F-8 Appendix F of the Ada Reference Manual

package LIBRARY _PRAGMAS is
NO_DYNAMIC _OBJECTS_OR_VALUES_USED : constant BOOLEAN := FALSE;
NO_DYMAMIC_MULTIDIMENSIONAL_ARRAYS_USED : constant BOOLEAN := FALSE;
SET_MACHINE_OVERFLOWS_FALSE_FOR_ANONYMOUS_FIXED : constant BOOLEAN :x FALSE;
pragma NO_DYNAMIC_OBJECTS_OR_VALUES_USED;
pragma SET_MACHINE_OVERFLOWS_FALSE_FOR_ANONYMOUS_FIXED;

end LIBRARY_PRAGMAS;

This modified source is then compiled into the predefined library.

In addition to the effects described in the subsections below, the pragmas have the effeu uf changing the initiali-
zation value to TRUE for the corresponding constant objects.

If unit LIBRARY_PRAGMAS is modified and compiled by the user, it must be compiled before any other user
compilation unit. If it is not, the program will be erroneous.

Note that while these pragmas apply to an entire program library, it is possible to create more thar one pro-
gram library (via the Ada PLU command create/root; sce Chapter 3), with each library having these pragmas
ified or not according to user desire.

An example sequence for specifying the pragmas for the delivered program library:

$ setdef sysSuser|libraries]

$ copy actada library pragmas []library_pragmas_s.ada
$ eve library_pragmas s.ada

<add desired pragmas, as descnibed above >

$ adal750/lib=predefined_library library_pragmas s

$ ada1750/plu ! create user libraries under predefined
create application.alb predefined library
exit

$ define adal750 library application.ald

An example sequence for specifying the pragmas for a new program library, leaving the delivered program
library intact:

$ set def sysSuser:{libraries]

$ adal750/plu ! create new predefined library
create/root pragmas rootalb
exit

$ copy actada_library pragmas (]library pragmas sada
$ eve library pragmas sada
<add desired pragmas, as described above >

$ adal750/lib=pragmas_rootalb library_pragmas s

$ adal750/plu ! create user libraries under new predefined
create application.alb pragmas_rootalb
exit

$ define adal750 library application.ald

Appendix F of the Ada Reference Manual ’ F-9

F32. Pragma NO_DYNAMIC_OBJECTS_OR_VALUES_USED

This pragma works on a program library basis. See the subsection at the beginning of this section for how such

pragmas are used.

Use of this pragma informs the compiler that all created objects and all computed values have statically known
sizes. The language usages that do not meet this assertion are

e TIMAGE for integer types

e arrays objects or values of (sub)types with non-static index constraints, or “ith component subtypes
with non-static index constraints

e array aggregates of an unconstrained type
e catenations (even with statically sized operands)
e collections with non-static sizes
Programs that violate the assertion of this pragma are erroneous.

The effect of this pragma is to use a different, and more efficient, set of compiler protocols for runtime stack
organization and register usage. These variant protocols are described in Appendix P.

F33. Pragma NO_DYNAMIC_MULTIDIMENSIONAL _ARRAYS_USED

This pragma works on a program library basis. See the subsection at the beginning of this section for how such
pragmas are used.

Use of this pragma informs the « 1piles that all declarations of multidimensional array types or objects have
static index constraints [Ada RM 4.9 (11)], and that the component subtypes of such arrays, if arrays them-
selves, also have static index constraints. That is, all multidimensional arrays have statically known size. Pro-
grams that violate the assertion of this pragma are erroncous.

The effect of this pragma is to usc a special technique, known as bias vectors, in the generated code for the cal-
culation of array indexed component offsets for multi-dimensional arrays. This technique involves building a
data structure that contains some precomputed offsets, and then indexing into that structure. The major advan-
tage of this technique is that few or no multiplication operations need be generated. The major drawback is
that additional literal area space is required, although this can be minimized if the first dimension of the array is
the shortest.

The bias vector data structures are allocated as part of elaboration of the constrained array subtype declaration
(or object declaration that implicitly declares such a subtype).

Bias vectors are not used if the array index base type is LONG_INTEGER or if pragma PACK applies to the
array.

F-10 Appendix F of the Ada Reference Manual

F3.4. Pragmas ESTABLISH_OPTIMIZED REFERENCE and ASSUME_OPTIMIZED REFERENCE

These pragmas are used to direct the compiler to generate code that more efficiently references objects in a
package. This efficency is achieved by using a base register to address the package objects.

Pragma ESTABLISH OPTIMIZED REFERENCE instructs the compiler to load a base register with the
beginning address of the objects in the designated package, and to access such objects using the base register.
The pragma has the form

pragma ESTABLISH _OPTIMIZED REFERENCE (package_name);

The pragma may appear anywhere within a program unit; the load and subsequent usage of the base register
will begin at the point of the pragma appearance. The pragma applies only to the program unit it appears in; it
does not apply to program units nested within that unit.

Pragma ASSUME_OPTIMIZED REFERENCE instructs the compiler to assume that the designated
package’s beginning address has been loaded into a base register, and to access such objects using the base
register. The pragma has the form

pragma ASSUME_OPTIMIZED_ REFERENCE (package_name);

The pragma should appear at the beginning of the declarative part of a program unit. The pragma applies only
to the program unit it appears in; it does not apply to program units nested within that unit. It is not necessary
to use this pragma after an instance of pragma ESTABLISH_OPTIMIZED REFERENCE; rather, it must be
used in program units that arc called from the unit that contains the pragma
ESTABLISH_OPTIMIZED _REFERENCE. If there are intervening (in terms of calls) units between the unit
containing pragma ESTABLISH OPTIMIZED REFERENCE and the unit desiring to use pragma
ASSUME_OPTIMIZED REFERENCE then those intervening units must also wuse pragma
ASSUME OPTIMIZED REFERENCE.

The pragmas apply only to packages that are library units. Only the objects in the specification part of the
package, and within base register range of the package beginning, are accessed by base register.

Only one base register is used by these pragmas, that being register 12. Thus, the pragmas can be in effect for
only one package at any given time during execution.

An example of the use of these pragmas:

package GLOBAL_VARS is
end GLOBAL_VARS;
with GLOBAL_VARS; use GLOBAL_VARS;
procedure P is
pragme ESTABLISH_OPTIMIZED_REFERENCE (GLOBAL_VARS);

procedure INNER is
pragme ASSUME _OPTIMIZED_REFERENCE (GLOBAL_VARS);
begin
end INNER;
begin

INNER;

Appendix F of the Ada Reference Manual F-11

F35. Pragma EXPORT

This pragma is used to define an external name for Ada objects, so that they may be accessed from non-Ada
routines. The pragma has the form

pragma EXPORT (object_name [,external_name_string_literal]);

The pragma must appear immediately after the associated object declaration. If the second argument is omit-
ted, the object name is used as the external name. If the resulting external name is longer than 31 characters, it
will be so truncated.

The associated object must be declared in a library package (or package nested within a library package), and
must not be a statically-valued scalar constant (as such constants are not allocated in memory).

Identical external ﬁmes should not be put out by multiple uses of the pragma (names can always be made
unique by use of the second argumeat).

As an example of the use of this pragma, the objects in the following Ada library package

package GLOBAL is

ABLE : FLOAT;
pragma EXPORT (ABLE);

BAKER : STRING(1..8);
pregme EXPORT (BAKER, "global.baker®);

end GLOBAL ;

may be accessed in the following 2ssembly language routine

MODULE LOW_LEVEL

CSECT CODE

EXTREF ABLE

LoL ABLE,RO ; get value of ABLE
EXTREF GLOBAL .BAKER

L #GLOBAL . BAKER, R2 ; get address of BAKER
END

F3.4. Pragma IMPORT

This pragma is used to associate an Ada object with an object defined and allocated externally to the Ada pro-
gram.

pragma IMPORT (object_name [, external_name_string_literal]),

The pragma must appear immediately after the associated object declaration. If the second argument is

F-12 Appendix F of the Ada Reference Manual

omitted, the object name is used as the external name. If the resulting external name is longer than 31 charac-
ters, it will be so truncated.

The associated object must be declared in a library package (or package nested within a library package). The
associated object may not have an explicit or implicit initialization.

As an example of the use of this pragma, the objects in the following Ada library package

peckage GLOBAL is

ABLE : FLOAT;
pragma INPORT (ABLE);

BAKER : STRING(1..8);
pragma IMPORT (BAKER, “global.baker™);

end GLOBAL;

are actually defined and allocated in the following assembly language module

MODULE GLOBAL _VALUES

CSECT DATA
EXTDEF ABLE
ABLE RES 2

EXTOEF GLOBAL .BAKER
GLOBAL.BAKER DATAC ‘abcdefgh’

F3.7. Pragmas INTERFACE_PARAMETERS, INTERFACE_RESULT and INTERFACE_SCRATCH

These pragmas are used in conjunction with pragma INTERFACE (BIF) to name the specific 1750A machine
registers to be used during BIF processing.

The type PRAGMA_INTERFACE_PARAMETER_LOCATIONS in package SYSTEM defines names for the
1750A machine regstcrs that must be used in association with these pragmas.

Registers 10, 11, and 15 should not be used with these pragmas as they serve special purposes in the compiler
(see Appendix P for details). If they are used, it is the user’s responsibility to save and/or restore the registers
inside the BIF macro.

Sample usage of these pragmas:

function BIT_OPERATION (X, Y : INTEGER) return INTEGER;
progme INTERFACE (BIF, BIT_OPERATION);

pragme INTERFACE_PARAMETERS (BIT_OPERATION, X => R4, Y => RS);
pragme INTERFACE_RESULT (BIT_OPERATION, R9);

pregms INTERFACE_SCRATCH (BIT_OPERATION, R6, R3);

Pragma INTERFACE_PARAMETERS specifies the 1750A machine registers that should be used to pass the
actual parameters of the subprogram. If this pragma is not specified, the subprogram parameters will be passed
according to standard compiler protocol (see Appendix P). The pragma has the form

Appendix F of the Ada Reference Manual F-13

pragma INTERFACE_PARAMETERS (subprogram_name,
parameter_name = > pragma_interface_parameter_locations_enumeration_literal
{parameter_name = > pragma_interface_parameter_locations_enumeration_literal]);

Pragma INTERFACE_RESULT specifies the 1750A machine register to be used for a function’s return result.
If this pragma is not provided, registers will be used according to standard compiler protocol (see Appendix P).
The pragma has the form

pragma INTERFACE_RESULT (subprogram_name, pragma_interface_parameter_locations_enumeration_literal);

This pragma will only be accepted for a function and cannot be used if the result type is an array or record.

Pragma INTERFACE_SCRATCH is used to identify the 1750A machine registers that will be used as scratch
registers inside the macro. If the pragma is provlded, the compiler will only save those registers specified in the
pragma prior to BIF execution. If this pragma is not provided, the compiler will save all necessary registers
prior to BIF execution. The pragma has the form

pragma INTERFACE _SCRATCH (subprogram_name, pragma_interface_parameter_locations_enumeration_literal
[pragma_interface_parameter_locations_enumeration_literal]);

F3.38. Pragms INTERFACE_SPELLING

This pragma is used to define the =xternal name of a subprogram written in another language, if that external
name is different from the subprogram name (if the names are the same, the pragma is not needed). The
pragma has the form

pragma INTERFACE_SPELLING (subprogram_name, external_name_string_literal);

The pragma should appear after the pragma INTERFACE for the subprogram. This pragma is useful in cases
where the desired external name contains characters that are not valid in Ada identifiers. For example,

procedure CONNECT_BUS (SIGNAL : INTEGER);
progme INTERFACE (ASSEMBLY, CONMNECT_BUS);
pregms INTERFACE_SPELLING (CONNECT_BUS, “SCONNECT.BUS™);

F39. Pragma MEMORY_UNTT

This pragma is used in the Compiler System’s support for memory association. This is where Ada objects
(whether variables or constants) are associated at compile time with different classes of memory. Then at link
time, these classes of memory can be treated differently. For instance, objects can be associated with fast
memory or slow memory; with local or global memory in a multiprocessor environment; with different areas of
memory in a signal processor/array processor/SIMD type of architecture; and so on.

The classes of memory are implemented through the InterACT 1750A Linker CSECT and section facilities (see
InterACT Linker Reference Manual for a complete description of these facilities).

The types MEMORY_SECTION_NUMBER and USER_MEMORY_SECTIONS in package SYSTEM define
the CSECT numbers available for use in connection with this pragma; the first t: pe defines all those available
in the 1750A Linker, the second subtype those available to users (not reserved by the compiler or runtime

F-14 Appendix F of the Ada Reference Manual

executive),

The basic scheme of the memory association support is that the user defines an enumeration type naming the
different classes of memory, and then a enumeration representation clause assigning each of those classes to a
CSECT number. Pragma MEMORY_UNIT is then defined for Ada objects (or types, applying to all objects of
the type), specifying the memory class for that object. The compiler allocates the object in a CSECT with the
corresponding CSECT number. The user then creates 1750A Linker SECTION control statements to allocate
the memory classes as desired.

The following type declarations define the memory classes. The user must code them, and they must be visible
wherever pragma MEMORY _UNIT appears.

type MEMORY_UNIT is
(memory_unit_ enumcrauon literal [memory_unit_enumeration_literal]);
subtype RESERVED MEMORY_UNITS is MEMORY_UNIT range
memory_unit_enumeration_literal. memory_unit_enumeration _literal

for MEMORY_UNIT use
(memory_unit_enumeration_literal = > csect_number
[ynemory_unit_cnumeration_literal = > csect_number});

The first declaration defines all the types of memory that (static data and literal) objects and types can be asso-
ciated with, and the CSECT numbers to which they will be allocated. The second declaration specifies which of
these kicds of memory may share a CSECT with existing compiler CSECTs (eg if
memovy_unit_enumeration_literal is to contain both the stack/heap and some static data).

Associations of particular objects and types to memory is accomplished by the following:
pragma MEMORY_UNIT (memory_unit_enumeration_literal, simple-name(,simple-name]);

where simple-name is a type or object. Up to 32 objects and 32 data types may be specified within each
occurrence of the pragma.

Any base type, derived type, or objects of them may be associated. Only one association is allowed for a type or
an object. Once a type is associated, all objects of that type inherit the association. When associating a type, it is
necessary for the type to be declared in same package as the pragma, and the pragma to be located before any
objects of that type are declared. Any object can be associated providing that its type was not associated.

This pragma may be used in any compilation unit but subprogram variables may only be associated with a
memory that shares the heap/stack area.

This pragma cannot be used in conjunction with address clauses, collections or pragmas
ESTABLISH_OPTIMIZED REFERENCE and ASSUME_OPTIMIZED REFERENCE.
F3.10. Pragma SET_MACHINE_OVERFLOWS_FALSE FOR_ANONYMOUS FIXED

This pragma works on a program library basis. See the subsection at the beginning of this section for how such
pragmas arc used.

The effect of this pragma is that any fixed point type T of anonymous predefined fixed type (i.c., represented in
16 bits) has the attribute

Appendix F of the Ada Reference Manual F-15

TMACHINE_OVERFLOWS = FALSE

such that NUMERIC_ERROR is not raised in overflow situations [4da RM 4.5.7 (7)].

The result of operations in overflow situations is either the lower or upper bound of the “virtua!” predefined
type for T ([Ada RM 3.5.9 (10)], this document Section F.1), depending on the direction of overflow. These
bounds are -32_768 * T'SMALL and 32_767 * T'SMALL respectively. These bounds will equal TFIRST and
TLAST if the range constraint for T is so declared.

Note that this implementation of fixed point types relies on the 1750A fixed point overflow interrupt being
enabled and not masked; any user exit or customization routines in the Ada runtime executive must not do
differently.

F3.11. Pragma SUBPROGRAM_SPELLING

This pragma is used to define the external name of an Ada subprogram. Normally such names are compiler-
generated, based on the program library unit number. The pragma has the form

pragma SUBFROGRAM _SPELLING (subprogram_name [,£xtemal_name_string_literal]);

The pragma is allowed wherever a pragma INTERFACE would be allowed for the subprogram. If the second
argument is omitted, the subprogram name is used as the external name. If the resuiting external name is
longer than 31 characters, it will be so truncated.

This pragma is useful in cases where the subprogram is to be rcfcrénccd from another language.

F.4. lmpiementation-dependent Attributes

None are defined.

F.S. Package SYSTEM

The specification of package SYSTEM is:

F-16 Appendix F of the Ada Reference Manual

peckage SYSTEM is

type ADORESS is new INTEGER;

ADORESS_NULL : constant ADORESS := 0;

type NAME is (MIL_STD_1750A);

SYSTEM_NAME : constant NAME := MIL_STD_1750A;
STORAGE_UNIT : congtant := 16;

MEMORY_SI2E : constant := 66 * 1024;

MIN_INT : constant :x -2 147 483 _647-1;
MAX_INT : congtant :x 2 147 _483 &7;

MAX _DIGITS : constant := 9;

MAX_MANTISSA : constant := 31;

FINE_DELTA : constant = 1.0 / 2.0 ** MAX_MANTISSA;
TiCcK : constant := 0.000_100;

subtype PRIORITY is INTEGER range 0..255;
type INTERFACE_LANGUAGE is (ASSEMBLY, BIF, JOVIAL, FORTRAN);

type MEMORY SECTION_NUMBER is range 0..31;
subtyps USER_MEMORY_SECTIONS is MEMORY_SECTION_NUMBER range 16..31;

type PRAGMA_INTERFACE_PARAMETER_LOCATIONS is
(RO, R1, R2, R3, R4, RS, R6, R7,
R8, R9, R10, R11, R12, R13, R14, RIS);

end SYSTEM;

6. Type Representation Clauses

The three kinds of type representation clauses - length clauses, enumeration representation clauses, and
record representation clauses - are all allowed and supported by the compiler. This section describes any res-
trictions placed upon use of these clauses.

Change of representation [4da RM 13.6] is allowed and supported by the compiler. Any of these clauses may
be specified for derived types, to the extent permitted by 4da RM.

FA4.1. Length Clauses

The compiler accepts all four kinds of length clauses.

Size specification: T'SIZE

The size specification for a type T is accepted in the following cases.

If T is a discrete type then the specified size must be greater than or equal to the minimal size of the type, whi:
is the number of bits aceded to represent a value of the type, and must be less than or equal to the size of the
underlying predefined integer type.

The calculation of the minimal size for a type is done not only in the context of length clauses, but also in the

context of pragma PACK, record representation clauses, the T'SIZE attribute, and unchecked conversion. The
definition preseated here appiies to all these contexts.

Appendix F of the Ada Reference Manual F-17

~ The minimal size for a type is the minimum number of bits required to represent all possible values of the tvpe.
When the minimal size is calculated for discrete types, the range is extended to include zero if necessary. That
is, both signed and unsigned representations are taken into account, but not biased representations. Also, for
unsigned representations, the component subtype must belong to the predefined integer base type normally
associated with that many bits.

Some examples:

type SMALL_INT is range -2..1;

for SMALL_INT'SI2E use 2; -- OK, signed representation, needs minimum 2 bits

type U_SMALL_INT is range 0..3;

for U_SMALL_INT'SIZE use 2; -- 0K, unsigned representation, needs minimum 2 bits

type B_SMALL_INT is range 7..10;

for 8_SMALL_INT/SI2E use 2; ~-- illegal, would be bissed representation

for B_SMALL_INT’/SIZE use 4; +- OK, the extended 0..10 range needs minimum 4 bits

type U_BIG_INT is range 0..85_535;

for U_BIG_INT'SIZE use 16; -- illegal, range outside of 16-bit INTEGER predefined type

for U_BIG_INT'SIZE use 17; -- OK, range within (17-bit meps to) 32-bit LONG_INTEGER predefined type

If T is a fixed point type then the specified size must be greater than or equal to the minimal size of L. iype,
and less than or equal to the size of the underlying predefined fixed point type. The same definition of minimal
size applies as for discrete types.

If T is a floating point type, an access type or a task type, the specified size must be equal to the aumber of bits
normally used to represent values of the type (floating point types 32 or 48, access types 16, task types 16).

If T is an array type the size of the array must be static and the specified size must be equal to the minimal
number of bits needed to represent a value of the type. This calculation takes into account whether or not the
array type is declared with pragma PACK

If T is a record type the specified size must be greater than or equal to the minimal number of bits needed to
represent a value of the type. This calculation takes into account whether or not the record type is declared
with a record representation clause.

The effect of a size specification length clause for a type depends on the context the type is used in.

The allocation of objects of a type is unaffected by a length clause for the type. Objects of a type are allocated
to one or more storage units of memory. The allocation of components in an array type is also unaffected by a
length clause for the component type (unless the array type is declared with pragma PACK); components are
allocated to one or more storage units. The allocation of components in a record type is always unaffected by a
length clause for any component types; components are allocated to one or more storage units, unless a record
representation clause is declared, in which case components are allocated according to the specified component
clauses.

There are two important contexts where it is necessary to use a length clause to achieve a certain representa-
tion. One is with pragma PACK, when component allocations of a non-power-of-two bit size are desired (see
Section F.2.8). The other is with unchecked conversions, where a length clause on a type can make that type’s
size equal to another type’s, and thus allowed the unchecked conversion to take place (see Section F.9).
Specification of collection size: TSTORAGE_SIZE

This value controls the size of the collection (implemented as a local heap) generated for the given access type.

F-18 Appendix F of the Ada Reference Manual
It must be in the range oi the predefined type NATURAL. Space for the collection is deallocated when the
scope of the access type is left.

See the Ada Runtime Executive Programmer’s Guide for full details on how the storage in collections is
managed.

Specification of storage for a task activation: TSTORAGE_SIZE

This value controls the size of the stack allocated for the given task. It must be in the range of the predefined
type NATURAL.

It is also possible to specify, at link time, a default size for all task stacks, that is used if no length clause is
present. Sec the Ada Runtime Executive Programmer’s Guide for full details, and for a general description of
how task stacks, and other storage associated with tasks, are allocated.

Specification of a smail for a fixed point type

Any real value (less than the specified delta of the fixed point type) may be used.

F.62. Eoumeration Representation Clauses

Enumeration representation clauses may only specify representations in the range of the predefined type
INTEGER.

When enumeration representation clauses are present, the representation values (and not the logical values) are
used for size and allocation purposes. Thus, for example,

type EMUM is (ABLE, BAKER, CHARLIE);
for ENUM use (ABLE => 1, BAKER => &, CHARLIE => 9);

for ENUM’SIZE use 2; -- illegal, 1..9 range needs minimm 4 bits
for ENUM’SIZE use 4; -- K
type ARR is array (ENUM) of INTEGER; -- will occupy 9 words of storage, not 3

Enumeration representation clauses often lead to less efficient attribute and indexing operations, as noted in
[Ada RM 13.3 (6)].
F4J3. Record Represeatation Clauses
Alignment clauses are allowed, but the only permitted value is one.
In terms of allowable component clau<=s, record components fall into three classes:
e integer and enumeration types that may be represented in 16 bits or less;
e statically-bounded arrays or records composed solely of the above;

e all others.

Components of the "16-bit integer/caumeration” class may be given a component clause that specifies a storage
place at any bit offset, and for any aumber of bits, as long as the storage place is greater than or equal to the

Appendix F of the Ada Reference Manual F-19

minimal size of the component type (see Section F.6.1) and does not cross a word boundary.

Components of the "array/record of 16-bit integer /enumeration” class may be given a component clause that
specifies a storage place at any bit offset, if the size of the array/record is less than a word, or at a word offset
otherwise, and for any number of bits, as long as the storage place is large enough to contain the component
and none of the individual integer /enumeration elements of the array/record cross a word boundary. The com-
poneat clause cannot specify a representation different from that of the component’s type. Thus, an array com-
ponent that is given a packed representation by a component clause must be of a type that is declared with
pragma PACK; similarly, a record component that is given a non-standard representation by a component
clause must be of a type that is declared with a record representation clause.

Componeats of the "all others" class may only be given component clauses that specify a storage place at a word
offset, and for the number of bits aormaily allocated for objects of the underlying base type.

Components that do aot have component clauses are allocated in storage places beginning at the next word
boundary following the storage place of the last component in the record that has a component clause.

Records with component clauses cannot exceed 2K words (32K bits) in size.

F.7. Implementation-dependent Names for Implementation-dependent Components

None are defined.

F8. Address Clauses

In general, address clauses are allowed and supported for objects, for subprogram and task units, and for inter-
rupt entries. Address clauses are not allowed for package units.

Address clauses occurring within generic units are always allowed at that point, but are not allowed when the
units are instantiated if they do not conform to the implementation restrictions described here. In addition, the
effect of such address clauses may depend on the context in which they are instantiated (c.g. library package or
subprogram; see below).

F3.1. Address Clauses for Objects or Subprogram Units

Address clauses for objects or subprogram units must be static =xpressions of type ADDRESS in package SYS-
TEM.

Address clauses are not allowed for constant scalar objects with static initial values, as such objects are not allo-
cated in memory.

Address clauses for objects declared within library packages cause the Compiler System to reserve space for the
object at that address, since the object exists for virtually the eatire length of Ada program execution. Address
clarses for objects declared within subprograms do rot cause space to be reserved for the object, since the
object only exists during the subprogram’s execution. It is the user’s responsibility to reserve space for such
objects (1750A Linker control statements may be used if desired).

Type ADDRESS is a 16-bit signed integer. Thus, addresses in the memory range 16#8000#..16#FFFF# (ic.,
the upper half of 1750A memory) must be supplied as negative numbers, since the positive (unsigned) interpre-
tations of those addresses are greater than ADDRESS'LAST. Furthermore, addresses in this range must be

F-20 Appendix F of the Ada Reference Manual

declared as named numbers, with the named number (rather than a negative numeric literal) being used in the
address clause. The hexadecimal address can be retained in the named number declaration, and user computa-
tion of the negative equivalent avoided, by use of the technique illustrated in the following example:

X INTEGER;
for X use at 16#7FFF#; --legal

Y : INTEGER;
for Y use at 16#FFFF#, - illegal

ADDR_FFFF : coustant : = 16#FFFF# - 65536;
Y : INTEGER;
for Y use at ADDR_FFFF, -- legal, equivalent to unsigned 16#FFFF#

F3.2. Address Clauses for Interrupt Entries

Address clauses for interrupt entries do not use type SYSTEM.ADDRESS; rather, the address clause must be a
static integer expression in the range 0..15, naming the corresponding 1750A interrupt.

The following restrictions apply to interrupt entries. An interrupt entry must not have formal parameters.
Direct calls to an interrupt entry are not allowed. An accept statement for an interrupt entry must not be part of
a sclective wait, i.e, must not be part of a select statement. If any exception can be raised from within the accept
statement for an interrupt entry, the accept statement must include an exception handler.

When the accept statement is encountered, the task is suspended. If the specified interrupt occurs, execution of
the accept statement begins. When control reaches end of the accept statement, the special interrupt entry pro-
cessing ends, and the task continues normal execution. Coantrol must again return to the point where the accept
statement is encountered in order for the task to be suspended again, awaiting the interrupt.

There are many more details of how interrupt entries interact with the 1750A machine state and with the Run-
time Executive. For these details, see the Ada 17504 Runtime Executive Programmer’s Guide.

F9. Unchecked Conversion
Unchecked type conversions are allowed and supported by the compiler.

Unchecked conversion is only allowed between types that have the same size. In this context, the size of a type
is the minimal size (see Section F.6.1), unless the type has beea declared with a size specification length clause,
in which case the size so specified is the size of the type.

In addition, if UNCHECKED_CONVERSION is instantiated with an array type, that array type must be stati-
cally constrained.

In general, unchecked conversion operates on the data for a value, and not on type descriptors or other
compiler-generated entities.

For values of scalar types, array types, and record types, the data is that normally expected for the object. Note
that objects of record types may be represented in two ways that might not be anticipated: there are compiler-
generaled extra components representing array type descriptors for each component that is a discriminant-
dependent array, and all dynamically-size array components (whether discriminant-dependent or not) are

Appendix F of the Ada Reference Manual F-21

represented indirectly in the record object, with the actual array data in the system heap.

For values of an access type, the data is the address of the designated object; thus, unchecked conversion may
be done in cither direction between access types and type SYSTEM.ADDRESS (which is derived from type
INTEGER). (The only exception is that access objects of unconstrained access types which designate uncon-
strained array types cannot reliably be used in unchecked conversions.) The named number
SYSTEM.ADDRESS_NULL supplies the type ADDRESS equivalent of the access type literal null.

For values of a task type, the data is the address of the task’s Task Control Block (see the Ada 175044 Runtime
Executive Programmer’s Guide).

For unchecked conversions involving types with a size less than a full word of memory, and different representa-
tional adjustment within the word (scalar types are right-adjusted within a word, while composite types are left-
adjusted within a word), the compiler will correctly re-adjust the data as part of the conversion operation.

Some examples to illustrate all of this:

type BOOL_ARR is srray(1..16) of BOOLEAN;
pragma PACK (BOOL_ARR);

function UC is new UNCHECKED_CONVERSION (BOOL_ARR, INTEGER); -- OK, both have gize 16

type 817S_8 is srray(1..8) of BOOLEAN;
pragmes PACK (BITS_B8);

function UC is new UNCHECKED_CONVERSION (B1TS_8, INTEGER); = illegal, sizes are 8 and 16

type SMALL_INT is range -128..127;
function UC is new UNCHECKED_CONVERSION (BITS_8, SMALL_INT); --OK, both have size 8

type BYTE is range 0..255;
function UC is new UNCHECKED_CONVERSION (BITS_8, BYTE); --0K, both have size 8

type B1G_BOCLEAN is new BOOLEAN;
for B1G_BOOLEAN’SIZE use 8;
function UC is new UNCHECKED_CONVERSION (BITS_8, BIG_BOOLEAN); --OK, both have size 8

SM : SMALL_INT; -- sctusl data is rightmost byte in object’s word
Bl : BITS_S; -- sctusl data is leftmost byte in object’s word
M := UC (BI1); -- actual data is moved from leftmost to rightmost byte as part of conversion

Calls to instantiations of UNCHECKED CONVERSION are always gencrated as inline calls by the compiler.

The instantiation of UNCHECKED_CONVERSION as a library unit is not allowed. Instantiations of
UNCHECKED_CONVERSION may not be used as generic actual parameters.

F-2 Appendix F of the Ada Reference Manual

* F.10. Other Chapter 13 Areas

F.10.1. Change of Representation

Change of representation is allowed and supported by the compiler.

F.102. Representation Attributes
All representation attributes [4da RM 13.7.2, 13.7.3] are allowed and supported by the compiler.

For certain usages of the X’ADDRESS attribute, the resulting address is ill-defined. These usages are: the
address of a constant scalar object with a static initial value (which is not located in memory), the address of a
loop parameter (which is not located in memory), and the address of an inlined subprogram (which is not
uniquely located in memory). In all such cases the value SYSTEM.AADDRESS NULL is returned by the attri-
bute, and a warning message is issued by the compiler.

When the X’ADDRESS attribute is used for a package, the resulting address of that of the machine code asso-
cated with the package specification.

The X'SIZE attribute, when applied to a type, returns the minimum size for that type. See Section F.6.1 for a
full definition of this size. However, if the type is declared with a size specification length clause, then the size
so specified is returned by the attribute.

Since objects may be allocated in more space than the minimum required for a type (sec Section F.6.1), but not
less, the relationship O’SIZE > = TSIZE is always true, where O is an object of type T.

F.103. Machine Code Insertions

Machine code insertions are not allowed by the compiler. Note that pragma INTERFACE (BIF) may be used
as an alternative to machine code insertions.

F.104. Unchecked Deallocation

Unchecked storage deallocation is allowed and supported by the compiler.

Calls to instantiations of UNCHECKED DEALLOCATION are always gencrated as inline calls by the com-
piler.

The instantiation of UNCHECKED DEALLOCATION as a library unit is not allowed. Instantiations of
UNCHECKED_ DEALLOCATION may not be used as generic actual parameters.

Appendix F of the Ada Reference Manual F-23

F.11. Input-Output

The predefined library generic packagcs and packages SEQUENTIAL 10, DIRECT IO, and TEXT_IO are
supplied. However, file input-output is not supported except for the ‘standard input and output files. Any
attempt to create or open a file will result in USE_ERROR being raised.

TEXT _IO operations to the standard input and output files are implemented as input from or output to some
visible device for a given implementation of MIL-STD-1750A. Depending on the implementation, this may be a
console, a workstation disk drive, simulator files, etc. See the Ada 17504 Runtime Executive Programmer’s
Guide for more details. Note that by default, the standard input file is empty.

The range of the type COUNT defined in TEXT_IO and DIRECT [0 is 0.. SYSTEM.MAX_INT.
The predefined libeary package LOW_LEVEL IO is empty.

In addition to the predefined library units, a package STRING_OUTPUT is also included in the predefined
library. This package supplies a very small subset of TEXT_IO operations to the standard output file. The

specification is:
package STRING_OUTPUT is
procedure PUT (ITEM : in STRING);
procedure PUT_LINE (ITEM : in STRING);
procedure NEW_LINE;

end STRING_OUTPUT;

By using the 'IMAGE attribute function for integer and enumeration types, a fair amount of output can be done
using this package instead of TEXT_IO. The advantage of this is that STRING_OUTPUT is smaller than
TEXT_IO in terms of object code size, and faster in terms of execution speed.
Use of TEXT_IO in multiprogramming situations (sec Chapter 5) may result in unexpected exceptions being
raised, due to the shared unit semantics of multiprogramming. In such cases STRING_OUTPUT may be used
instead.
F.12. Compiler System Capacity Limitations
The following capacity limitations apply to Ada programs in the Compiler System:

e the space available for the constants of a compilation unit is 32K words;

e the space available for the static data of a compilation unit is 32K words;

e any single object can not exceed 32K words;

o the space available for the objects local to a subprogram or block statement is 32K words;

e the names of all identifiers, including compilation units, may not exceed the number of characters

ified by the INPUT_LINELENGTH component in the compiler configuration file (sce Section
4.1.4);

F-24 Appendix F of the Ada Reference Manual

e asublibrary can contain at most 4096 compilation units (library units or subunits). A program library
can contain at most eight levels of sublibraries, but there is no limit to the number of sublibraries at
cach level. An Ada program can contain at most 32768 compilation units.

The above limitations are all diagnosed by the compiler. Most may be circumvented straightforwardly by using
separate compilation facilities.

