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FOREWORD

The U.S. Army Research Institute for the Behavioral and Social Sciences (ARI)
Field Unit at Fort Knox is responsible for co1-ducting research in Armor training and
simulation and human performance in Armor weapon systems. Research on antomated
performance measurement systems has gained increasing importance as Armor training
has come to rely more heavily on computer-based simulations. This research surveyed
special statistical methods designed to analyze quantitative measures scaled as circular
functions. The report illustrates the application of circular statistics to typical examples
of performance data (i.e., orieiitation, navigation, time-of-day measures). These exam-
ples show that analysis of circular measures by standard linear statistical procedures can
produce inaccurate or misleading information. Methods that are appropriate for circu-
lar measures are required in any automated performance measurement system.

This research was performed in the Summer Faculty Research and Engineering
Program under a U.S. Army Research Office contract with the Battelle Memorial Insti-
tute. The research was sponsored by a Letter of Agreement (LOA) between ARI, the
U.S. Army Armor Center and Fort Knox, the U.S. Army Materiel Command, and the
U.S. Army Training and Doctrine Command effective 16 January 1989. The LOA,
"Effects of Simulators and Other Training Resources on Training Readiness," identified
needs for research on training methods using networked simulators. The research was
related to ARI task 3204, Training Requirements for Combined Arms Simulators, part
of the ARI Exploratory Development (6.2) Program Area 3, Training for Combat Effec-
tiveness, in the Simulators and Training Devices product line.

The results of the survey and application of circular statistical procedures demon-
strate methods useful in automated collective performance measurement systems for
networked training simulators. These methods will contribute to research and develop-
ment with a prototype Unit Performance Analysis System (UPAS) to collect and analyze
spatial and temporal performance measures from the Simulation Networking (SIMNET)
testbed system. The UPAS, working with SIMNET data, will be used to examine per-
formance measurement requirements for future networked simulator systems. The
report also should be of general methodological interest to agencies that conduct tests
and evaluations or other research employing circular measures of spatial or temporal
performance.

EDGAR M. JOHNSON
Technical Director
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CIRCULAR STATISTICAL METHODS: APPLICATIONS IN SPATIAL AND
TEMPORAL PERFORMANCE ANALYSIS

EXECUTIVE SUMMARY

Requirement:

As part of an effort to develop measures for assessing leader and unit performance
during tactical exercises conducted in networked simulators, this report surveys a group of
procedures that can be used to evaluate spatial and temporal performance. The report
focuses on certain aspects of tactical operations that involve directional angles, or that are
periodic in time, and therefore are appropriately analyzed by circular statistical methods.

Procedure:

A literature review was conducted to find methods appropriate for the analysis of spatial
and temporal data. Once several procedures were identified having potential relevancy to

simulator data analysis, specific examples were then developed using these procedures to

guide the analysis of simulation data based on circular scales. Examples in navigation
performance, call-for-fire, and other directional events were evaluated within the
context of simulation network battlefield training and development.

Findings:

The results in evaluating several circular statistical procedures indicate that there are a
variety of possible problems that can emerge when using linear-based analyses on circular
variables. For example, the usual methods for describing central tendency and variance are

not appropriate for circular data. Another limitation in linear analysis concerns the issue of
'response bias' in directional measures on a plane. Traditional linear analyses may be
insensitive to directional response biases, thus, potentially limiting the information
generated from simulation network exercises useful in developing improved tactical

systems and operational doctrine. Finally, various dimensions of statistical inference are
altered when applying traditional nonparametric and parametric methods to circular data,

and as a result, can rnroduce mis'eading information on Type 1 error rates, statistical power,
or both.
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Utilization of Findings:

The statistical methods dcscribed here will be used by the U.S. Army Research

Institute Field Unit at Fort Knox to develop automated performance measurement

systems for spatial behavior in networked simulators. More generally, these methods

should be used to supplant standard statistical methods whenever researchers obtain

human or system performance data having circular scales.
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CIRCULAR STATISTICAL MFTHODS: APPLICATIONS IN SPATIAL AND
TEMPORAL PERFORMANCE ANALYSIS

Introduction

The majority of statistical techniques used in the analysis of human performance and
training data are linear. The assumptions necessar in using linear statistical methods are
often easy to specify and provide tractable mathematical solutions for modeling a wide
rai ,ge o events. However, it is indeed clear that many problems encountered in military
training scenarios do not lend themsclves to strict linear represen.tation.

One unique system ,. measures that frequently cannc, ue modeled in a linear manner
are data produced from circular scales. These variables are distinctive in the sense that datz
points are distributed on a circle instead of the traditional configuration of points on the real
number line. Circular scales nroduce cyclic or periodic data that c3mplicate traditional
analytic procedures. The complexities found in evaluating circular data are largely a
manifestation of the special interval level status the circular scale represents. Circular scales
do not have a true zero point. In addition, the fact that they are circular means that any
designation of high or low or more or less is purely arbitrary. For example, observations
on a plane surface and rhythmic temporal phenomena can be viewed as being circular in
nature, and thus appropriately analyzed by circular statistical methods.

Although biomathematics has long appreciated the idea of circular distributions in

animal behavior studies on homing, migration, escape, and exploratory behavior to name a
few, application in the human sciences remains minimal. Work in the general area of
spatial and temporal performance, such as navigation, work-system design, biological
rhythms, and sleep make issues on circular data analysis important to consider.

This paper attempts to survey some of the more basic ideas associated with the unique
analytic problems that arise from directional measures on a plane. Although, Batschelet
(1965, 1972, 1981) has pioneered many of the principles in statistical circular methods,
some of his work is no longer in print and thus not readily available. Instead, one must
rely on works in a variety of diverse areas including, biostL.istics, animal behavior, factor
analysis and circadian pt.ysiology to find examples on circular problems. The goal of the
paper is to highlight procedares that may facilitate characterizing dimensions of circular data
inaccessible to linear-based analyses. Several examples are presented that illustrate the
usefulness of circular methods and similarly, help alert the researcher to logical problems
along with the potential for information loss that may be encountered when analyzing
periodic data using linear methods.



The context in which some of the examples are developed is taken from research efforts
in simulator network training (SIMNET-T) and development (SlMNET-D). Briefly,

SIMNET-T is a networked, distributed processing simulator AirLand battlefield developed
to complement combined arms field training exercises in AirLand battlefield conditions.

SLMNET-D is a reconfigurable SIMNET that provides a test-bed for prototyping futuristic
weapons systems and operational doctrine. These simulations allow many players to

engage in interactive, real-time battles against other human players or computer generated
opposing forces at remote locations in the U.S. and Europe. Data from these battles can be
collected and made available for analysis via the Unit Performance Analysis System
Software (White, McMeel & Gross, 1990).

Mathematical Convention

Two different conventions are used with directional measures. The angle ot is

t pically used as a measure of azimuth where 0 represents true north and rotation around
the circle is in a clockwise direction. This convention is used in navigation.

0

0

270 go0

1800

Figure 1. Directional angle computation showing clockwise rotation.

However, the mathematical convention for angular measures in statistics and computer

computational algorithms typically use the polar angle, (t, which is taken from the positive

X axis (pointing East) in a counterclockwise direction. This computational convention will

be used in this paper unless otherwise indicated.

For both types of angles, rotation opposite to the conventional direction results in

negative angles. Negative angles are subtracted from 3600to convert them to the

2



corresponding positive angles, unless it is important to retain knowledge of the direction of
rotation.

Y

0X

Figure 2. Mathematical angle computation showing counterclockwise rotation.

Temporal Measures

One particularly important circular scale is time-of-day. The time-of-day scale can be
partitioned into 24 hours each representing equal intervals of time. Angular measures are

typically taken from midnight or 12:00 AM. In equating 24 hours to 3600, each hour

represents 15 of angle from zero at midnight (i.e., 3600/24). Any unit of time similarly

can be equated to a proportional part of 3600.

We can convert time measures in any unit to angular direction (in degrees) by the

following equation:

(360) t
a (1.0)

where a is angular degrees, t is a quantity of time and PI is the number of equal interval

time units (i.e., 24 for hour, 1440 for minute, etc.) representing one rotation around the

circle.

3



North
2300 hr Jan 0100 hr

2100 hr Dec 0 Feb 0300 hr

1900 hr N0500 hr

West Oct 2090 Apr East

1700 hr Sep May

1500Jun 0900 hr

Jul
1300 hr South 1100 hr

Figure 3. Three common circular measurement systems: Navigation direction, Time-of-day
and Month-of-year.

Any circular temporal measure can be translated to angles using this method (i.e., day-
of-week, day-of-year etc.). For example, 7 days would partition the circular scale of the
week. Converting days to angular degrees would simply mean using 7 as the constant
value, p, in the above equation, with t measured in weeks. Finally, yearly measures would

mean altering the pi value to reflect the appropriate unit of measure (i.e., 365 for days, 12
for months etc.).

When time is measured in negative and positive values for events before and after a
zero point, the signs of negative angles should be retained to preserve information on the
order of events. Then to make these angles positive for further computations, add an
integral multiple of 3600. This corresponds to the addition of a constant to the time values,
shifting the zero by an integral number of time cycles.

Graphical Representation

A circular data distribution can be displayed as a scatterplot of data points on the
circumference of the circle. This method of presentation provides information on salient
characteristics of the data, such as central tendency, dispersion (or concentration), and the
number of modes that appear in the distribution. For example, in Figure 2, the data are

4



rather concentrated near 901 with no obvious modes.
0

0

270 90

1800

Figure 4. Scatterplot displaying circular data distribution.

Large amounts of data are best displayed in the form of a histogram where concentric
circles characterize the frequency attributes of the data.

0 0
15

-10
00

270 : 900

180 0

Figure 5. Frequency histogram of a circular distribution, using a grouping interval of 450.

In this case, the length and area of the bars represents the frequency of observed measures.
Similarly, Figure 6 displays a circular bimodal distribution.

5



00

15

10

.5

2700(Z 6 go

1800

Figure 6. Frequency histogram showing bimodal circular distribution, using a grouping

interval of 45'

Circular Functions

It is frequently necessary to change coordinate systems when analyzing circular data.
The Cartesian system fixes a point on a plane by referring to the x and y axes of a
rectangular representation of the event space. Rectangular coordinates read from the x and
y axes give the unique location of the data point in the space. In Figure 7, point I is located
on the unit circle by the rectangular coordinates x = 0.82 and y = 0.57, point 2 by x =
-0.64 and y - 0.77, and so on. These points satisfy the circular equasion: x2 + y2 = 1

In many cases polar coordinates are more useful. The polar coordinate system requires
the specification of the angle, 4), with respect to a zero or starting point and a straight line
distance, r, from a second reference point located in the center of the circle representing the
event space. The pair of numbers, ()and r, is known as polar coordinates and provide a
method of uniquely defining the location of a data point in the circle. Take, for example,
the four points in figure 7. If we specify the angle in respect to a northerly starting
direction, and in this case travel clockwise around the circle, our polar values will be in
azimuth (i.e. ax and r). Thus, point I is given by a = 350, and r = 1.0, point 2 by a

130' , r = 1.0 and so on.

More generally, polar coordinates can be used to specify points anywhere on a plane,
not just on a unit circle. Instead of the rectangular coordinates (xi, yi), the polar

6



coordinates (4i, r) define the location of each point in terms of its direction and distance

from the origin. Polar coordinates have the advantage of clearly separating directional and

distance information in data analysis, while rectangular coordinates confound these aspects

of spatial location. Rectangular coordinates, on the other hand, relate location to the frame

of reference provided by the coordinate axes, preserving spatial information in terms of the

orthogonal dimensions of the event space. The best choice of coordinate system for a
particular problem depends on the questions to be investigated. Often both systems are

useful for different purposes.

Y
0

sine- 0 a -350
cosine I

a 4-I 3000 0 -. 87 .57 sine +
1.0 ,.82 cosine-

270 -.64,

sine - csncosine- _ -.64 sine+

a = 2200 1 0 2- 1300

Figure 7. The unit circle displaying four data points with their rectangular (X and Y) and

polar (a, and r) coordinates.

Trigonometric functions. The cosine of a particular angle is defined as the ratio of X
and r for a circular value:

x
cos - (2.0)

r

whereas the sine of the angle is the ratio of the Y and the r for the circular value:

Y
sin - (3.0)

r



The sine of azimuth angle cx on the unit circle is sin 350 = 0.57/1.0 0.57, and the cosine

is cos 350 = 0.82/1.0 = 0.82.

Sines and cosines are the primary trigonometric functions used in circular statistical
procedures. However, the tangent, and its cotangent function are used in several statistical
tests one encounters in the literature:

tan = Y= Cos4 (4.0)
X sin0

cot X sin (5.0)
Y cost

It is important to recall that when analyzing circular data we restrict angular values to

the interval length 00 - 3600. Since one rotation around the circle will contain the total set
of angles, additional rotations can be mapped over to those angles defining this interval.

For example, both 6000 (1.66 revolutions) and -8400 (negative 2.33 revolutions) determine

the same point on the circle as the angle 2400. To find the angle in the 00 - 3600 interval
that corresponds to an angular value outside that interval, the value must be reduced

modulo 3600. The angular value can be expressed as the sum of two parts: and integral

multiple of 3600, 1(3600), plus a remainderb after division by 3600. The remainder b is

the desired angle within the interval. The angle 6000 = 1(3600) + 2400, and thus reduces

to 2400. Similarly, the angle -8400 = -2(360) + -120 and reduces to -120, which

corresponds to the positive angle 2400. Both 6000 and -8400 are said to be congruent to

the angle 2400 (modulo 3600).

Azimuths and 1 olar angles obey the relation a + 4 = 900 (modulo 3600), since they

sum to 900 in the first quadrant, or sum to 450° in other quadrants. Therefore, azimuths
can be easily changed to polar angles by -= (4500 - a) (modulo 3600). With ct and
reversed, this equation will change polar angles to azimuths.

8



Descriptive Statistics

Circular Measures of Central Tendency

Linear descriptive statistics are limited in precisely characterizing the central tendency of
circular distributions. For example, consider gun turret positions of a tank platoon in a

staggered column formation given as 3600, 3150, 450 and 3200 (see Figure 7).
Determining the average turret azimuth by calculating the arithmetic mean would yield

(3600 + 3150 + 320P)/4 = 2600 which indicates a mean westerly direction. In contrast, the
data points indicate that an average turret azimuth should produce a value reflecting a

northerly direction. Thus, the usual arithmetic mean is not an appropriate descriptive
measure for circular data.

North

Platoon 4
Movement

West East

South

Figure 8. Staggcred column formation showing northerly turret azimuth.

Circular mean. If we have a number of angular measurements on the circle, then the

mean of those measures should offer an estimate of the true population mean parameter pi
(in the classic probability sense). However, in order to compute the mean angle, the
rectangular coordinates of the data points must be computed:

9



n
I:cos 40

M -Y-" " - .-. . (6.0)
n

and
n
Esin (

M - -i-i (7.0)
y

n

These values allow for the computation of the length of the mean vector, r,:

r = [(R)2+ (V)21 2 . (8.0)

The average angle, 4), is determined by computing sine and cosine valucs using X, Y and r.

X

(9.0)

sin = (10.0)
r

can then be obtained from the inverse tangent function:

10



arc tangent (y/x) If x > 0
0

180 + arc tangent (y/x) if x 0 (11.0)

90 lfx=Oandy>0
270, 0 f x = 0 and y < 0

Indeterminate, If X 0 and y = 0

When X = 0 and " = 0 then the length of the mean vector, r, is equal to 0, division by zero

is undefined, and the mean direction is indeterminate.

As an example, consider the following turret azimuth data taken from one tank during a

simulation exercise. In Table 1, turret azimuths are first converted to polar angles, and then
these angles are used to compute the mean.

Table I.
Tank turret angle data

Turret Angle 4) sine 4j cosine 4j
((X)

59 31 0.515 0.857
37 53 0.797 0.602
37 53 0.797 0.602
355 95 0.992 -0.087

206 244 -0.898 -0.438
185 265 -0.996 -0.087
165 285 -0.965 0.258
164 286 -0.961 0.275

Esine 4)i = -0.719, Ecosine j - 1.982

n = 8, Y= -0.089, Y= 0.247

r = [(-0.089)2 + (0.247)211/2 = 0.296

11



s -0.089sin = 0.296 = -0.3000.296

- 0.247
Cos = 0.296 = 0.834

The average angle 40 corresponding to this sine and cosine is equal to 340.190.

Median Anile

Computing the median angle of unimodal circular data is similar to that for linear data.
In this case, we divide the the circular sample by a diameter that produces two equal sized
groups of data on both sides of the diameter. When there are an odd number of data
points, then the median is fixed on the datum such that (n -1)/2 of the points lie on one side
and the other (n -1)/2 points on the other side of this unique location. If there is an even
number of data points, then the median is located halfway between two points in such a
way that (n/2) points fall on one side and the other (n/2) points fall on the other side of this
location.

0 Median Angle
0

Median Direction

270 q.0ia

1800

Figure 9. Circular distribution displaying median direction and angle.
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Bimodal Samples

In some cases a mixture of unimodal distributions appear in a single sample. The most
tractable, from a statistical point of view, are those referred to as axial distributions. In an
axial distribution, two groups of data lie diametrically opposite each other on the diameter
of the circle. Thus, the assumption is made that the probability density from which the data

are sampled has central symmetry, with modes at P and P + 1800. We are indifferent to
direction from the origin along the axis, and are only interested in the angle of the axis. We
want to estimate one parameter p rather than two parameters for the senarate modes. It is

therefore appropriate to treat angular measures as axial whenever orientation without regard
to direction is at issue.

Batschelet (1965, 1981) discusses a procedure for analyzing axial data that requires
doubling angular measures. One of the animal behavior studies cited by Batschelet (1981)
notes that pigeons try to avoid large bodies of water. When pigeons are released from the
center of a large body of water their flight route tends to be at right angles to the long axis

of the lake, and thus the nearest shore. In this case, two sets of data lying 180' away from
each other are recorded.

In analyzing axial data, one considers a nondirected rotating line segment whose origin

lies at zero direction. A rotating line segment is restricted to angles in the interval of 0' to

1800, as opposed to the directed line that has the full 00 to 3600 interval. As a result, axial

data can be reduced by a multiple of 1800, or modulo 1800. One treats a full rotation

around the circle as falling in the interval of 0" to 1800. Thus, by doubling each angle and

reducing modulo 360' , one generates a unimodal circular sample (Taylor & Auburn,

1978).

13



0

0

270 0 
90

1800

Figure 10. Bimodal (axial) circular distribution.

Properties of Mean Vector

Because we are working with data points falling on a circle, the mean vector locates the
center of mass of the distribution. The mean vector is a directed line from the origin to the

point defined by the Cartesian coordinates [ X or the polar coordinates (r, This

notion can be illustrated by applying vector algebra in order to determine center of mass.
For example, consider four data points falling on a unit circle. Each of these points can be

located on the circle by a unit vector, u., (i.e. directed line of length 1.0). Using a physical
anahugy, -neh point is associated with a value representing its mass, M, and location in
space. The meai vector for these data points would be found by combing vector
information (i.e., rectangular or polar coordinates) with each point's mass value:

n
E MxU

i-I I"M = 
(12.0)

n

i-I

where M is the mass of each data point and U is a column vector fixing the point's location
in space. Equation (12.0) computes the weighted mean vector accounting for differences in
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mass associated with the individual data points. If one assumes equal mass among data
points, which would be a typical framework in which to evaluate a variety of circular data,
then Equation (12.0) simplifies to:

Y, EU 1(13.0)

n

A mmean direction

Figure 11. Four points of equal mass are displayed where the mean vector meets a line
segment connecting the midpoints on two additional segments among the points.

Angular Variance

It is often useful to have a measure of dispersion around the mean vector in a sample of
circular data. The notion of angular variance is similar to that of i' linear counterpart,
namely, the quantity that defines the spread of scores around the circle's circumference.
The length of the mean vector, r, plays an important role in the variance estimate. Recall
from the vecto, algebra example, that as the data becomes more dispersed around the circle
the value of r tends toward zero. When calculating the mean vector of a distribution whose
data points are equally dispersed around the circle, the length of r will be zero. In contrast,
when computing the mean vector of sample data whose points all fall on the same location,
yields art r = 1.0. In this case, as r decreases from 1.0 to 0, the variance in the d3tribution
increases. Thus, l-r can be considered a measure of dispersion (Batschelet, 1972).
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Batschelet ( 198 1) describes several statistical similarities between linear and circular
measures, which he indicates aids in the development of circular methods.

Linear statistics Circular statistics

(xc- x) sin (4 .$

£( -X) -0 sin( T -o

(X -X) 2 2[11-cos( 4 j- )

12 21-cos(- )](X-X) s 1 -

The analogy between linear variance and angular variance shows that the actual (radial)

estimate is 2(1 - r). Taking the positive square root of this value (i.e.,[2( 1 - r)I /2) results

in the angular deviation. In this case, angular deviation is expressed in radians (i.e., 2"rr =

3600). A simple transformation can convert the deviation into degrees (Batschelet, 1965):

0

180 1/2 (14.0)degrees [21-)

In addition, there are other methods by which to compute the circular standard deviation

(see Mardia, 1972). Equasion (14.0) yields a measure that ranges from 0 0 to 81.03° , or 0
to 1.41 radians.
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Figure 12. Measure of concentration showing the effect of dispersion on the statistic r,
and angular deviation s (measured in radians).

Index of straightness. Although, an index of straightness may have limited utility in

tactical exercises where terrain features (among other things) drive route objectives, the
statistic r may be useful in providing information on deviations from planned route. This
index may be very useful when modeling Naval exercises at sea where terrain is not a

modeling constraint.

An index of straightness can be used to get approximate standard deviation values (s)
for each segment of a route composed of straight lines when the cumulative distance
traveled has been measured, but where headings and positions have not been measured

continuously or at small intervals of time. For each route segment, the planned mean
heading is obtained from the the segment start and end points. The actual mean heading

must be computed from some defined points that correspond to the start and end of the

segment, like actual positions A and B, measured when checkpoints at the start and end
segment were reported. If the straight-line distance from A to B was C, and the distance

traveled was D, then r approximates C/D, and s is obtained from r by Equation 14.0. The
planned and actual mean headings, and r or s values then can be used for further analyses.

However, these r or s values certainly will have sampling properties that differ from r or s
values computed from a set of vectors.
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Figure 13. Mapping a linear vector series to a circle showing the effects of deviations from

a straight heading on the statistic r. Here, PO gives a mean directional angle, and r

approximates the value for'length divided by distance', providing a measure of
concentration.

Grouped data. The mean angle of grouped frequency data is often necessary to
compute. In this case, taking the midpoint angle ofa group interval and multiplying it by
the frequency of a measure falling into the interval is similar to the approach taken with
linear statistics:

n

- E fi cos (15.0)
X= i=1

n

and
n

- fisin4
Y- i=l (16.0)

n

n

Note that n fi.
i-i

However, the mean vector length, r, underestimates the true population p, thus, a
correction for this bias has been proposed by Batschelet (1965). Here, the value of r

18



d7r

360 0 (17.0)

sin (-)7
360

where d is the arc length of the class interval in degrees, c is the correc.ion term and rc is
the corrected r,

rc= cr. (18.0)

The corrected r is then uiscd in Equation 14.0 to obtain the corrected angular deviation sc.
However, since r appears in both the average cosine and sine (equations 9.0 and 10.0),
neither thc tangent (equation 4.0) nor the resulting mean angle (equasion 11.0) are affected
by the correction.

Detecting bias. One particular application of circular statistics may be found in
assessing response biases on circular performance measures. Frequently, errors of
judgment in navigation, orientation or other spatial performance tasks are reported as
absolute or relative deviations from some true score (see Du Bois & Smith, 1989; Fisicaro,
1989). Rendering experimental conclusions based on linear deviations of circular measures
from a true score, where deviations fall on both sides of azimuth, means that directional
information is lost. For example, Fisicaro (1989) conducted a study of the performance
characteristics of four orientation indicators that might accompany the C1TV (Commander's
Independent Thermal Viewer). He compared several orientation displays designed to
indicate the directions of the tank hull, turret/main gun and the tank commander's sight
relative to the surrounding terrain. Operator performance measured either (a) judged
orientation of any one of these three tank components compared to its true orientation, or
(b) the absolute deviation of the difference in judged orientation between pairs of
component displays from the actual 'true' differences. Judgments were made in terms of
eight compass directions.

However, these absolute deviation values do not indicate whether errors are symmetric
around the true value, or whether there is a systematic tendency (bias) to make errors in one
direction. Furthermore, the bias, if any, may be different at different points of the
compass. For example, there might be a "forward-looking" bias, so that differences
between the tank hull and the TC's sight are underestimated for angle differences between
+ 600, but not for other differences. Thus, the use of average absolute deviations to
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measure directional errors of judgment can discard important information on directional
bias.

The notion of response bias in spatial tasks have been an important dimension in the
development of aviation navigation and remote vehicle guidance displays. Frame of
reference appears as a key element and has given rise to various frame of reference
configurations (eg. inside-out and outside-in). In addition, detecting direction errors in
judgments occurring in spatial performance tasks may be very important because of the
"rectilinear normalization" bias (Wickens, 1984). This bias characterizes a tendency of
human subjects to structure spatial information as though lying on a rectangular N-S-E-W
grid, when it may not.

Inferential Statisitcs

Traditional linear-based methods of statistical inference do not take into account scale
circularity when it exists, and therefore can be subject to unknown and unrecognized errors
in specified probabilities of Type I error, loss of statistical power, or both. Statistical
methods are avialable for circular data that minimize these problems, if their assuptions are
met.

The von Mises Distribution

A frequently used theoretical distribution for fitting circular data is the von Mises
distribution, which was defined by von Mises in 1918. It is best suited to modeling
symmetric unimodal circular data distributions. A two parameter density function
characterizes this distribution:

1
f(W =  27rio(k) exp[kcosine(4_ 01)1 (19.0)

where k is a concentration parameter estimated by the length of the mean vector, r, and 0 is

the polar angle of the mean vector p. Here, the quantity, Lo, found in the denominator of
the equasion is a Bessle function parameter. Bessel functions have certain important
properties for circular methods (see Batschelet: 295 - 299, 1981). Batschelet (1972, 1981)
notes that the density function takes on a maximum value at4 = 01, thus, 01 is the mode of

the distribution. Because the distribution is symmetric around the mode, 01 is the mean
angle. When k = 0 this distribution is equivalent to the uniform distribution. Tabled values
for the von Mises distribution are found in Batschelet (1972, 1981).
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Uniform Circular Distribution

If directions in a plane can occur with equal probability, then the distribution of data

points around the circumference of the circle will tend to be uniform. Thus, the density of
data fMing around :hc . irclk will be constant. The uniform circular distribution is a good

model for many random circular stochastic processes. It provides the probability density
used to test the null hypothesis of 'no preferred direction'.

Several authors have noted that the uniform circular distribution has unique properties.
However, one of the more interesting is that it appears as the only circular distribution
where, in random samples of a fixed size, the length of the mean vector and therefore the

angular variance is statistically independent from the mean angle (Batschelet, 1972;
Bingham, 1978).

Confidence Interval for Mean Angle

Characterizing the confidence with which a particular estimate closes on the population
parameter is important. Tabled values for 95% and 99% confidence limits can be found in
Batschelet (1965, 1972, 1981) and Zar (1974). In these tables, a given vector length, r,
and sample size, n, provides the quantity, d, which reflects the confidence interval for the

parameter pa'

a ± d (20.0)

We assume that the the sample is drawn from a population with a von Mises distribution,

and the sample is unimodal and symmetric about the mode. Here, the lower confidence

limit is equal to LL = a - d, and the upper confidence level equal to Lu = a + d.

The Grand Mean

It is often necessary to ccmpute the grand mean from a sample of group means.
However, in computing the grand mean of several means, it is not accurate to consider each
of the group means as an angular measure, and divide the sum of mean angles by n. Tls
procedure would assume the unlikely situation that the mean vector length of each group
mean vector was equal to 1.0 and that the angular deviation for each group was equal to
zero. Instead, we fix the location of the group means via cartesian or polar coordinates,
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and then sum across the respective coordinates:

k

E , (21.0)

9M k

k_Y
- J (22.0)

YSM k

where X and Y are the rectangular coordinates for the sample means, and k is the number

of samples. The above equations compute an unweighted mean, thus sample sizes must be

reasonably equivalent.

Similarly, if we have the polar coordinates for each of the group means, the grand mean

coordinates are computed as follows:

kEr Cos
" j- (23.0)
gm k

and

k
Er sin

=J-1 (24.0)
9m k

The equations for computing the grand mean vector length are essentially identical to those

for computing the mean vector length described in Equations (9.0 and 10.0).
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r . 2 (--) 2+(-) 2 1/2 (25.0)

gm
vm gm

and

Cos-4 g4n (26.0)os gin r
gm

sin r (27.0)
gmn

The grand mean angle would then be obtained from the inverse tangent as before (i.e.,

Equation 11.0).

As an example in computing the grand mean, consider the mean direction of travel for
three simulated tank platoons engaged in a coordinated tactical mission to close on enemy
positions. Computing the grand mean direction of travel at differing intervals of time
during the simulation might offer information that can be used in secondary analyses as to
how well the platoons were able to achieve planned route objectives.

Table 2.
Directional data of a tank company taken at times T1 to T 5

Platoon Direction of Travel (degrees)

Platoon Platoon Platoon
1 2 3

dir sin cos dir sin cos dir sin cos

T 1 270 -1.000 0.000 190 -0.174 -0.984 95 0.996 -0.087

T2 245 -0.900 -0.423 180 0.000 -1.000 40 0.642 0.766

T3 220 -0.643 -0.766 200 -0.342 -0.939 130 0.766 -0.643

T4 260 -0.985 -0.174 200 -0.342 -0.939 170 0.174 -0.985

265 -0.996 -0.087 225 -0.707 -0.707 110 0.939 -0.342

-4.524 -1.450 -1.565 -4.569 3.517 -1.291
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=252 = 199 °  o=g109°

r = 0.950 r = 0.966 r 0.749

sin - -0.90 sin t = -0.325 sin 4= 0.940

cos ) = -0.290 cos 4) = -0.914 cos ) = -0.258

We can now compute the grand mean angle by substituting the intermediate terms from the
directional data using Equations (25.0 - 29.0)

(.950) -.90 + (.966) -.324 + (.749) .940
y = = -.322

gm 3

-- (.950) -.290 + (.966) -.914 + (.749) .258
X = --. 155

gin 3

r - [(-.155)2+ (-.322)) 2 357
gm

-. 155cos -0 =M 357 -. 434
gm - .357 -44

-. 322
sin = = -.90

gM .357

Therefore, 4 gm is equal to 244.250.

When the sample sizes are unequal, equations (23.0 and 24.0) must be modified to weight

each mean by (n, 12 n ).
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Confidence Interval for Grand Mean

Similar to the confidence interval discussed for the mean angle of a sample of angles,
one can ask questions concerning the precision of the grand mean estimation of the

parameter, (D In this case, one must fist determine that the data are not uniformly
gm

distributed on the scale and that significant directionality exists. Batschelet (1981) provides

a detailed examination of confidence limits which requires knowledge on the geometry of
ellipses. Here we present a cookbook procedure for determining the limits (see Zar, 1974).
The confidence limit obtained when calculated in this manner tends to be conservative (i.e.,
greater than the I - a convention). Furthermore, it may not be symmetrical about the mean
(Zar, 1974). This method assumes that the mean vectors have a bivariate normal
distribution.

The following parameters are found when solving for a confidence ellipse (Batschelet,
1981: 129-158) and is reported in Zar, (1974):

k-i

A 2 (30.0)
,x2

(k- 1) ExY
X2 IY2 (31.0)

k-i
-I

C- -2 (32.0)

(ixy) 2

2(k- 1) [ 1- EX2 y 2 ] Fa(), 2, k-2

D= (33.0)
k(k - 2)
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H-AC-B 2 (34.0)

G=AX 21- 2B +CY 2 D (35.0)

U -1 '2- CD (36.0)

1/2
V = (DGH) (37.0)

W=IIXY+BD (38.0)

W+V
b = (39.0)

1 U

W-V
b2 = (40.0)

The values b and b are analyzed individually, thus producing the bounds of the
confidence interval for the grand mean as follows:

2 1/2
M=(1 +b ) (41.0)

sine = bi /M (42.0)

cosine 1/M (43.0)

The confidence interval is the angle computed, or the angle plu 1800, (which ever is
closest to the grand mean) as is the appropriate value given by the convention for angular
measures on a circle:
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Ir= tangent (yx) 
ifx>o

80)= 0 (44.0)
11 80 + arc tangent (yhr) ifx< J

In this case, Zar (1974) notes that if the angle for the confidence limit is equal to (angle +

1800), and if the resulting angle is greater than 360', one subtracts 360 from this angle.

Significance Tests

One of the more frequently needed assessments on experimental data is determining

whether obtained sample data has been generated from a population distribution different
than one generating a random distribution of measures. In circular data, the question may
be whether a mean direction in the population data exits. This question is similar to one

found in a linear system, except the null hypothesis characterizes a uniform distribution
(i.e., equal density of points on the circle) that can yield a computable mean by chance
alone. A simple nonparametric test for the competing hypotheses; a) H: the data comes
from a uniformly distributed population, and b) HI: the data comes from a non-uniform

circular distribution, is the Rayleigh test.

The Rayleigh test essentially asks how large the statistic r must be in order to indicate a
significant departure from uniformity. The "Rayleigh R" is computed as follows:

R = nr, (45.0)

where, n = to sample size and r is = to the mean vector length of the sample data. The

Rayleigh z score is used to test the null hypothesis of uniformity:

R
2

Z = (46.0)
n

Tabled values for this test are found in Batschelet (1965, 1972, 1981) and Zar (1974). In
addition, one can compute the probability function using Durrand and Greenwood's (1958)

formulation.

If the null hypothesis is rejected using the above test, we may assume that significant
directionality exists in the data. In order to interpret the data in this fashion, we must
assume that the distribution is unimodal. Similarly, in retaining the null and concluding the
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data has been sampled from a uniform population distribution, caution must be used to
guarantee the distribution is not multimodal. For example, an axial distribution, while
displaying significant directionality, will have an r = 0.

Durrand and Greenwood (1958) provide a modification to the Rayleigh test which
allows for the specification of an apriori expectation for a particular mean direction. In this
case, the null hypothesis would indicate that the population of angles appear with equal
density around the circle, or the concentration population parameter, r, equal to zero. In
contrast, the alternate hypothesis proposes that r is not equal to zero and that a specific
direction exists in the data.

In the example given above for computing the mean turret angle, consider that we had
expected a mean angle of 2700. This alternate hypothesis would be tested by the V test.
The V statistic is computed as follows:

V '- Rcos (T - i0) (47.0)

where p, is the mean angle predicted. Tables for the V statistic are found in Batschelet
(1972, 1981). The critical values for this statistic have been found to approximate a one-
tailed normal deviate, Z. In this case, for ax = .10, .05, or .01, if n> 5 the one-tailed
normal curve values 1.282, 1.643, or 2.236 can be used with a deviation less than 3%
from the nominal a. For more extreme values of, ,, use Table 1 in Batschelet (1981, pp.
336).

p- - - (48.0)
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Table 3.
Tank turret data

4) (degrees) sine 4) cosine 4)
Turret Angle

31 0.515 0.357
53 0.797 0.602
53 0.797 0.602
95 0.992 -0.087

244 -0.898 -0.438
265 -0.996 -0.087

285 -0.965 0.258
286 -0.961 0.275

Ysined) = -0.719, ,Xcosine 4 = 1.982
n=7, Y=-0.089, X=0.247

r = [(-0.089)2 + (0.247)2]1/2 = 0.296

sin "- -0.089
s -0 08 -0.3000.296

- = 0.247 0.834cos 4)fi-0.3
0.296

-) - 340.190.

Rayleigh's R atid the V test:

R' (8X0.296) - 2.368
o o

V=Rcos (340.19 - 270)

0

= 2.368 cos(70.19 )

= 0.802
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2 1/2

2 1/2

- 0.802 (r)

-0.401

The tabled value for V (p < .05, n=8) is equal to 1.649. Therefore, we retain the null
hypothesis that no mean directionality exists in the data, or that the population distribution
is uniform in nature.

One-Sample Mean Angle Test

The Rayleigh and V tests are appropriate for testing the hypothesis of a random
distribution of data points on a circle. However, if one is interested in determining whether
the population mean angle is equal to some specified value, then we use the one-sample
mean test. The one-sample test can be considered an analog to the t-test in linear statistics.
The procedure used for the one-sample test is simply the determination of whether or not
our observed angle lies within the 1 - aX confidence interval for our specified population
mean angle. The procedure is essentially the same for determining the confidence limits for
the mean population angle described earlier. Values for the r statistic and the observed
mean sample angle are used to identify the tabled value of d for the confidence interval. If
the confidence interval doe not contoin the hypothesized mean, then we reject the null
hypothesis of the sample mean being equal to some specified population value:

H0 : The population mean has a mean of X, (i.e., Pa = X)

V.S.

H,: The population mean is not equal to X, (i.e., /A not equal to X).
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Multiple-Sample Mean Angle Test

An extension of the one-sample mean angle test is found when one considers the null
hypothesis that the mean angle from one sample is equal to the mean angle of a second or

third sample and so on ( i.e., p ;l = 1 2= ....... P f d. The Watson-Williams test

(1956) uses a modification of the linear F-test replacing the standard group mean estimates

with Rayleigh's R values generated from the sample data. The two sample parametric F
test follows:

(N- 2) (RI+ R2- R)
F K - (49.0)N-R - R

1 2

where N is the combined sample size, R, and R2 are Rayleigh's R values computed

independently for the samples, and R is Rayleigh's R value computed for the combined
sample data. The K factor is a tabled value that corrects for the bias in the F-test and and
can be found in Batschelet (1972,1981), Zar (1974). It can also be computed from

equations developed by Mardia (1972). In using the K correction factor for the Watson-
Williams test, one computes a weighted mean vector length:

n r +n r

r_ 11 22 (50.0)

N

As an example, consider the gun elevation angles among four simulated tank platoons

engaging enemy forces in a simulation network exercise. In this exercise, there were 16

tanks in a degraded-mode gunnery operation, each firing at the same target, but using two
different methods of estimating target range to select the aiming point on a sight reticle.

Since the range estimates were not recorded, gun elevation was used as a directly related
substitute measure to determine if the average range was different for the two methods.

31



Table 4.
Gun elevation angles taken from four tank platoons

Group #1 Group #2
Gun Angle Gun Angle

(degrees) sine cosine (degrees) sme cosine

37 .60181 .79863 22 .37460 .92718
19 .32556 .94551 20 .34202 .93969
20 .34202 .93969 16 .27563 .96126
67 .92050 .39073 44 .69465 .71934
13 .22495 .97437 39 .62932 .77714

122 .84804 -.52991 52 .78801 .61566
40 .64278 .76604 87 .99863 .05233
29 .48481 .87462 12 .20791 .97814

n,= 8 .sin = 4.39 Ecosin = 5.16 n2 = 8 £sin = 4.31 £,cosin = 5.97

Y = .548 X = .645 Y = .538 X =.746

r, = .846 2 =.919

sin i5 = .64 7 7 cosin 1 .7624 sin l2 - .5854 cosin 2 .8117

I = 400 2= 360

R1 = 6.768 R2 = 7.352

Combining the values from both groups yields:

'sin 4.39 + 4.31 = 8.70

cosin= 5.16 + 5.97 =11.13

N = 8+8
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8.70
Y - - -. 5437

16

11.13
X - - .6956

16

r = .8828

R = 14.124

_ 6.768 + 7.352r -=.8825

16

(N- 2) (R 1 + R2- R)
F=K

N-RI-R 2

(16 -2) (6.768 + 7.352 - 14.124

= 1.0823
20 - 6.768 - 7.352

-.0560
= 1.0823 =-.0103

5.88

F, 0.05, 1, 14 = 4.60

Therefore, we do not reject the null hypothesis and conclude there is no statistical
difference among gun elevation angles between the two groups.

The multi-group Watson-Williams test is a generalized form of the two group test
configured for k groups:
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k

(N-k) (jERJ- R )
F= K (51.0)

(k- ) (N-z E)

where, k is the number of groups, Rj is Rayleigh's R for each group, and R is Rayleigh's
R combined across groups. N is the total number of elements across groups. The tabled
correction factor K is found using:

k
Enr

- j-1 i J

r = . (52.0)
N

Time Series Analysis of Periodic Data

Perhaps, one of the more difficult circular statistical procedures is encountered
analyzing data where the basic unit of measurement is a temporal sequence of observations
across time. in time series analysis, the somewhat restrictive assumption that sources of
individual and measurement error variance can be modeled as a random process is not
applicable. This is due to the fact that the analysis is based on repeated observations on the
same subject.

The analysis of periodic time series data can take several forms depending on the types
of variables included in the design. The different bivariate variable configurations can be
a) circular dependent variable/linear independent variable, b) circular dependent
variable/circular independent variable, or c) linear dependent variable/circular independent
variable, where the independent variable is a fixed effect. However, one of the more
statistically tractable variable combinations, and one routinely found in the literature, is the
latter case; a linear dependent variable and circular independent variable. Frequently, a
hypothesis to be tested using circular time series data is that the time series exhibits some
sort of predictable regularity of period, and that the series begins repeating itself after a
certain interval of time. This particular hypothesis is especially important in the field of
chronobiology, which concerns itself with changes in many linear scaled
biological/behavioral processes over a circular measure such as time-of-day. The label
chronobiologists give to a particular rhythmic process references its temporal domain.
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Thus, periods of less than a day are referred to as ultradian rhythms, of approximately a
day as circadian rhylhms and more than a day as infradian rhythms.

One of the principal aims in resolving the periodic characteristics of many

biological/behavioral processes in chronobiological research is attempting to identify a
single rhythm of a specific period, size and shape fora time series. In this case, the time
series can be reduced and described by a small number of parameters. Typically, the
procedures used in the study of temporal periodic phenomena are largely efforts in periodic
regression, where a linear variable (i.e., body temperature) is regressed on a circular
variable (i.e., time-of-day).

The major parameters of a periodic time series are the period or length of the cycle,
amplitude (the range between the minimum and maximum of the linear variable), phase
(position of the rhythm in relation to a time standard), and acrophase (the point on the
circular scale where the linear variable is at a maximum. The acrophase is the phase angle.
The angle measure derives from the origins of Fourier analysis. The length of the period of

the rhythm is considered to be 360 (27r radians). The acrophase indexes the distance in
circumference (in degrees) from a reference point (i.e., time standard). Finally, the mesor
of the rhythm represents the level of the curve which indexes the origin of the circular
function, or the 'center line' in the linear rlot of the circular function.

Minnesota cosinor technicue. One particular application of determining the periodicity
in simulation training data might be found in studying the relationship between some
simulation based linear performance measure and routinely scheduled subcaliber live fire
training exercises. A possible question in this case might be asked on how the timing of
the subcaliber exercises affect simulation performance. That is, given that subcaliber

exercises are conducted quarterly, is there a particular sinusoidal rhythm in simulator
performance that may be attributed to these exercises. A particular procedure for estimating
the parameters described above is using the Minnesota cosiner approach, which is one of

several single sinusoid fitting procedures (Halberg et al., 1977). The time series data can
be generated from a longitudinal study where a small sample of individuals are monitored
over a long period of time. In contrast, the series data can be generated from a transverse
study where a large number of individuals each contribute a small time series. In any case,
the initial stage of the analysis is to create a number of short time series by either chopping
up a long series or considering each of the short series (Monk, 1981).
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One begins the analysis by fitting a single sinusoid to each of the k time series (see

Batschelet, 1981). The estimates of the phase and amplitude parameters are computed for

/\ J\

each of the k series yielding k pairs of parameters (R P , h - 1, 2, 3 ...... k).
h9 h

The parameters are then transformed to rectangular coordinates, producing k pairs of x and

y values.

The analysis assumes the x and y values have been sampled from a bivariate normal

distribution, thus, estimates of mean X and mean Y and the confidence interval in the X

and Y dimensions can be computed. The mean is represented by the average of the X

values and the average of the Y values. Once the average X and Y values are computed,

one can then backtransform these values to polar coordinates and produce the final

estimates of phase and amplitude:

A 2 2 1/2
R=(X +Y) (53.0)

A
P -arctan YX

As Halberg et al. (1977) indicates, valid estimates presume the k short times series to

be true estimates of the final time series. Non-stationarity with respect to phase will reduce

the average value of amplitude thus producing an underestimate of this parameter.

Therefore, in comparing two time series one cannot discuss the issue of differences in

amplitude without the assumption that both series are stationary.

36



Y

y= RhsinP h -

I I

x- RhcosP h

Figure 14. Transforming the polar coordinates p h and R h to rectangular coordinates.

The confidence limits around the mean X and Y values of the bivariate normal
distribution provides for a 'significance area'. This area is equal to an ellipse on the polar
plot with the point representing the final estimates of phase and amplitude at its center. The
computational techniques for generating confidence ellipses are similar to those for the
grand mean and can be found in Tong (1977) orBatschelet (1981). The rhythm is
statistically reliable if the ellipse does not contain the origin of the coordinate system. Since
non-stationarity reduces the final estimate of amplitude, then weaknesses in the
assumptions of stationarity will affect the significance test (i.e., the test is sensitive to both

phase and amplitude information).

CircularAinear regression. If we have information on the periodicity characteristics of
the data (i.e., phase, amplitude etc.) we can apply traditional least-squares regression for
fitting a regression line to the series. For example, consider simulation data on 'call-for-
fire' performance. The interest here might be in examining the predictability between
directional errors in call-for-fire (i.e., dependent variable) and distance from target (i.e.,
independent variable). One may suspect a particular bias emerges as a function of distance.
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Figure 15. Representation of directional response errors in call-for-fire as a function of
distance from target.

A general sinusoidal model can be defined for fitting periodic data,

Y = M + A cos (wX - t) (54.0)

where, M is the mesor, A is amplitude, wo is angular frequency (3600/period) and ,) is equal
to the acrophase. Here, a linear dependent variable would be regressed on a circular
independent variable. However, one could develop the equation for the call-for-fire
example in which regression of a circular dependent variable on a linear independent
variable was the object of analysis,

A (sin (toX-4))) = a + b(X) (55.0)

where, a is a constant and b is a linear slope coefficient. In both cases, we assume that the
angular frequency is given, and thus, focus on estimating the linear parameters M, b, X
and Y. The least squares principle can be used to fit the data.

One might begin the call-for-fire analysis ay plotting angular deviations between target
position and 'called-grid' in an effort to get a feel for the distributional characteristics of the
data. Clearly, if the deviation scores plot as a linear function of distance from target,
traditional regression methods will apply. However, a cosine model may prove more
accurate in capturing the variation in deviation scores for linear analysis. Therefore, a
heuristic approach for applying circular/linear regression to the deviation call-for-fire
example might be developed. First, it would be useful to generate a linear plot of the
deviation scores in an effort to center the data. This allows for a clear idea as to whether a
symmetric unimodal distribution is at hand, and provides one with minimum/maximum
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values which illuminate phase and amplitude features of the data. Second, it is useful to
compare a linear plot of the deviation scores with cosine deviatien scores in order to
determine which values provide the best linear fit. In addition, alternate transformations
(i.e., log, square root etc.) may be found to better suit fitting the data. The caution here is
that one not simply select a cosine model because of the circular nature of the problem,
rather, plot the data and consider a transformation that will optimize model fit.

Linear/circular correlation. Frequently, an index characterizing the strength in the
relationship between a linear and circular variable is of interest. For example, the relation
between a linear performance measure such as number of hits/misses and the circular
measure time-of-day may be of interest when conducting an extended or sustained
simulation exercise in an effort to capture the effects of fatigue and sleep loss on simulation
performance. In this case, we are not interested in estimating the parameters associated
with the periodicity in the data (i.e., phase, amplitude, mesor). Instead, we are interested
in determining if Y is correlated with 4).

Because we have assumed the period to be some value (say 3600), we can apply
traditional linear zero-order correlation to the Y, 4) data pairs.

If:ryc =corr (Y, cos 4)), rys = corr (Y, sin 4)), rc = corr (cos 4), sin4))

then we can define the correlation between the data pairs to be

r =(r2+ r2 2 r yryr )/(I - r2). (56.0)

2Batschelet ( 1981 ) notes that if Y and 4) are independent, then (nr2) is distributed like a 2

2
variable, thus allowing X as the significance test.

Discussion

The results of this survey appear to indicate that traditional 'linear-based' statistics may
not satisfactorily characterize the statistical properties of data generated from circular scaled
variables. Further, under some conditions, these traditional methods can produce
misleading information regarding the moments of a data distribution. In analyses of data
taken from networked simulator tactical exercises, the usual arithmetic mean and standard
deviation were shown to be inappropriate descriptive measures for circular data. The
arithmetic mean angle, for example, may indicate an entirely erroneous average direction,
and thus mislead a researcher on the expected value in a given data distribution. In
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addition, the usual standard deviation may often be based on deviations from an inaccurate
mean.

Similarly, traditional statistical analyses can not always be counted on to maximize the
information contained within spatial and temporal performance measures. For example, the
use of the average absolute deviations to measure directional errors of judgment discard
important information on directional bias. The average direction measured by the circular
mean angle provides an indication of bias in directional judgments or other directional
errors. The information on directional bias may be important in developing
recommendations regarding tactical system configurations or operation doctrine.

Many of the problems associated with the use of traditional statistical methods for
Jescribing circular data also emerge when discussing statistical inference. The usual
parametric or nonparametric methods of statistical inference do not take into account scale
circularity when it exists. Therefore, these methods will be subject to serious, often
unknown and unrecognized errors in stated probabilities associated with Type 1 error rates,
loss of statistical power, or both. This survey supports the notion that statistical methods
are available for use that minimize the interpretational risks associated with circular data
analysis when certain distributional assumptions are met.

Finally, failure to recognize the circularity of one or more variables in time series,
regression, or correlation analysis may lead to overlooking important systematic
relationships among variables. The use of appropriate circular methods can assist the
researcher in simplifying statistical relationships and improve the fit of data models.
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