
AD-A240 534 ATION PAGE =704!01"o~e

hedd utiiDtu111 11 f n is mrae or anry othe aspctofth ctin of ~ W .I. g a Kb"~ to rm~~ a mu s ue ~ lo ahV~

1 AGENCY USE: ONLY Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

Final: 01 Aug 1991 to 01 Jun 1993

4 TITLE AND SUBTITLE 5. FUNDING NUMBERS

TeleSoft TeleGen2 Ada Host Development System, Version 4.1, for
SPAROSystems, Sun-4/280 SPARC Processor (Hos & Target), 901 128W1.1 1090

6 AUTHOR(S)

Wright-Patterson AFB, Dayton, OH
USA

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Ada Validation Facility, Language Control Facility ASDISCEL REPORT NUMBER
Bldg. 676, Rm 135 AVF-VSR-421 .0891
Wright- Patterson AFB
Dayton, OH 45433
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING'MONITORING AGENCY

Ada Joint Program Office REPORT NUMBER

United States Department of Defense
Pentagon, Rm 3E1 14
Washington, D.C. 20301-3081
11. SUPPLEMENTARY NOTES

1 2a DISTRIBUTIONAVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT ('Ma... umr 200 words)

TeleSoft, TeleGen2 Ada Host Development System, Version 4.1, for SPARCsystems, Wright-Patterson AFB, Sun
Microsystems, Sun-4/280 Workstation (SPARC Processor) under Sun UNIX 4.2, Release 4.1 (Host & Target), ACVC 1.11.

14 SUBJECT TERMS 15. NUMBER OF PAGES

Ada programming language, Ada Compiler Val. Summary Report. Ada Compiler Val. 16.___PRICE __CODE_
Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO 1 RCECD

17 SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 119 SECURITY CLASSIFICATION 20, UIMITATION OF ABSTRACT
OF REPORT I OF ABSTRACT

I rOA1SS_'FIED UNCI AcS;IF~r) UNCLASSIFIED
NSN 7540 01-280-550 Standard Form 298, (Rev 2-89)9] Prescrtbe by ANSI SW 239-128

DY CLAIMEI NOTICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

AVF Control Number: AVF-VSR-421.0891
1 August 1991
90-06-28-TEL

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 901128W1.11090
TeleSoft

TeleGen2 Ada Host Development System, Version 4.1,
for SPARCSystems

Sun-4/280 SPARC Processor => Sun-4/280 SPARC Processor

Prepared By:
Ada Validation Facility

ASD/SCEL
Wright Patterson AFB OH 45433-6503

Accesion For I

NTIS CRA&I 9_'
UI

By

~........

*1
0>4 ...

D~I~I ..

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on 28 November 1991.

Compiler Name and Version: TeleGen2 Ada Host Development System,
Version 4.1, for SPARC Systems

Host Computer System: Sun Microsystems, Sun-4/280 Workstation
(SPARC Processor) under
Sun UNIX 4.2, Release 4.1

Target Computer System: Sun Microsystems, Sun-4/280 Workstacion
(SPARC Processor) under
Sun UNIX 4.2, Release 4.1

See Section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
901128WI.11090 is awarded to TeleSoft. This certificate expires on 1 March
1993.

This report has been reviewed and is approved.

Kda Validation Facility
Steven P. Wilson
Technical Director
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

I/

Ada Validaki~n Organization

Director, 'Cmputyr & Software Engineering Division
Institute for Efense Analyses
Alexandria VA 22311

Ada Joint Program Office
Dr. John Solomond, Director
Department of Defense
Washington DC 20301

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on 28 November 1991.

Compiler Name and Version: TeleGen2 Ada Host Development System,
Version 4.1, for SPARC Systems

Host Computer System: Sun Microsystems, Sun-4/280 Workstation
(SPARC Processor) under
Sun UNIX 4.2, Release 4.1

Target Computer System: Sun Microsystems, Sun-4/280 Workstation
(SPARC Processor) under
Sun UNIX 4.2, Release 4.1

See Section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
901128WI.11090 is awarded to TeleSoft. This certificate expires on 1 March
1993.

This report has been reviewed and is approved.

Ada Validation Facility
Steven P. Wilson
Technical Director
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

Ada Va afi Oiganization
tu7 Direct r, eompuor & Software Engineering Division

Institute for-5efense Analyses
Alexandria VA 22311

Ada Joint Program Office
Dr. John Solomond, Director
Department of Defense
Washington DC 2Q3CI

DECLARATION OF CONFORMANCE

Customer: TeleSoft
5959 Cornerstone Court West
San Diego CA 92121

Ada Validation Facility: AVF, ASD/SCEL
Wright-Patterson AFB, Ohio 45433-e503

ACVC Version. 1.11

Ada Implementation:

Compiler Name and Version: TeleGen2 Ada Host Development System.
Version 4.1, for SPARCSystems

Host Computer System: Sun-4/280 SPARC Processor

Target Computer System: Sun-4/280 SPARC Processor

Customer's Declaration

I, the undersigned, representing TELESOFT, declare that TELESOFT has no knowledge of
deliberate deviations from the Ada Language Standard ANSI/MIL-STD-1815A in the
implementation listed in this declaration. I declare that TELESOFT is the OWNER of the above
impleme ation a the certificate shall be awarded in the name of TELESOFT.

Date: 7 January 1991

Raymond A. Parra, Director
Contracts/Legal

Revision A: 1/7/91

CONTENTS

CHAPTER 1 INTRODUCTION

1.1 USE OF THIS VALIDATION SUMMARY REPORT 1-1
1.2 REFERENCES 1-2
1.3 ACVC TEST CLASSES 1-2
1.4 DEFINITION OF TERMS1-3

CHAPTER 2 IMPLEMENTATION DEPENDENCIES

2.1 WITIDRAVN TESTS2-1
2.2 INAPPLICABLE TESTS2-1
2.3 TEST MODIFICATIONS2-4

CHAPTER 3 PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT3-1
3.2 SUMMARY OF TEST RESULTS3-1
3.3 TEST EXECUTION3-2

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro90] against the Ada Standard [Ada83l using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
[Pro9O]. A detailed description of the ACVC may be found in the current
ACVC User's Guide rUG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the "alidation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization
Institute for Defense Analivses
1801 North Beauregard Street
Alexandria VA 22311

1-1

INTRODUCTION

1.2 REFERENCES

[Ada83] Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-815A, Febuary 1983 and ISO 8652-1987.

[Pro90] Ada Compiler Validation Procedures, Version 2.1, Ada Joint Program
Office, August 1990.

[UG891 Ada Compiler Validation Capability User's Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes:
A, B, C, D, E, and L. The first letter of a test name identifies the class
to which it belongs. Class A, C, D, and E tests are executable. Class B
and class L tests are expected to produce errors at compile time and link
time, respectively.

The executable tests are written in a self-checking manner aid produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPFFRT13,
and the procedure CHECK FILE are used for this purpose. The Dackage REPORT
also provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not operating correctly, valioation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple. Sc arately compiled units. Errors
are expected at link time. and execution i attempted.

In some tests of the ACVC. certain macro strings have to be replaced by
implementation-specific values -- for example. the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications. additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The m-difications required for
this implementation are described in ectu,.

i-2

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the
AVF. This customization consists of making the modifications described in
the preceding paragraph, removing withdrawn tests (see section 2.1) and,
possibly some inapplicable tests (see Section 2 2 and [UG89]).

In order to pass an ACVC an Ada implementation must process each test of
the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user's guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation Earget computer system.

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization
(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada
Implementation

Computer A functional unit, consisting of one or more computers and
System associated software, that uses common storage for all or

part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-written or user-I ES iznated programs; performs
user-designated data manipulation, including arithmetic
operations and logic operatiens: and that can execute
programs that modify themsel:es during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

Conformity Fulfillment by a product. process or service of all
requirements specified.

1-3

INTRODUCTION

Customer An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for AVF services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity
Conformance is realized or attainable on the Ada implementation for

which validation status is realized.

Host Computer A computer system where Ada source programs are transformed
System into executable form.

Inapplicable A test that contains one or more test objectives found to be
test irrelevant for the given Ada implementation.

Operating Software that controls Lhe execution of programs and that
System provides services such as resource allocation, scheduling,

input/output control, and data management. Usually,
operating systems are predominantly software, but partial or
complete hardware implementations ars possible.

Target A computer system where the executable form of Ada programs
Computer are executed.
System

Validated Ada The compiler of a validated Ada implemehtation.
Compiler

Validated Ada An Ada implementation that has been validated successfully
Implementation either by AVF testing or by registration [Pro90].

Validation The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

Withdrawn A test found to be incorrect and not used in conformity
test testing. A test may be incorrect because it has an invalid

test objective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programming
language.

1-4

CHAPTER 2

IMPLEMENTATION DEPENDENCIEc

2.1 WITHDRAWN TESTS

The following tests have been withd-awn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 12 October 1990.

E28005C B28006C C34006D B41308B C430C4A C45114A
C45346A C45612B C45651A C46022A B49008A A74006A
C74308A B83022B B83022H B83025B B83025D B83026B
B85001L C83026A C83041A C97116A C98003B BA2OIA
CB7001A CB7001B CB7004A CC1223A BC1226A CC1226B
BC3009B BDIBO2B BPEi.F6A ADlB08A BD2AO2A LD2A21E
CD2A23E CD2A32A CD2A41A CD2A41E CD2A87A CD2B15C
BD3006A BD4008A CD4022A CD4022D CD4024B CD4024C
CD4024D CD4031A CD4051D CD5111A CD7004C ED7005D
CD7005E AD7006A CD7006E AD7201A AD7201E CD7204B
BD8002A BD8004C CD9005A CD9005B CDA2O1E CE2107I
CE2117A CE2117B CE2119B CE2205B CE2405A CE3111C
CE3118A CE3411B CE3412B CE3o07B CE3607C CE3607D
CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test's inapplicability may
be supported by documents issued by ISO '',- AJPO known as Ada
Commentaries and ccmmonlv referenced in t1' f-rmaL AI-ddddd. For this
implementation, the following tests were derermined to be inapplicable for
the reasons indicated; references t- Ada Commentaries are included as
appropriate.

-1

IMPLEMENTATION DEPENDENCIES

The following 201 tests have floating-point type declarations requiring
more digits than SYSTEM.MAXDIGITS:

C24113L .Y (14 tests) C35705L..Y (14 tests)
C35706L. .Y 14 tests) C35707L..' (14 tests)
C35708L. .Y (14 tests) C35802L..Z (15 tests)
C45241L. .Y (14 tests) C45321L..Y (14 tests)
C45'21L. .Y (14 tests) C45521L..Z (15 tests)
C45524L. .Z (15 tests) C45621L .Z (15 tests)
C45641L .Y (14 tests) C46012L..Z (15 tests)

The following 21 tests check for the predefined type LONGINTEGER:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504C C45504F C45611C
C45612C C45613C C45614C C45631C C45632C
B52004D C55BO7A B55B09C B86001I C86006C
CD71O1F

C355081..J and C35508M. N (4 tests) include enumeration representation
clauses for boolean types in which the specified values a-e other than
(FALSE => 0, TRUE => 1); this implementation does not support a change
in representation for boolean types. (See section 2.3.)

C35702A, C35713B, C45423B, B86001T, and C86006H check for the predefined
type SHORTFLOAT.

C35713D aad B86001Z check for a predefined floating-point type with a
name other than FLOAT, LONGFLOAT, or SHORTFLOAT.

C45531M..P (4 tests) and C45532M..P (4 tests) check fixed-point
operations for types that require a SYSTEM.MAX MANTISSA of ',7 or
greater; for this implementation, MAX-MANTISSA is less than 47.

C45624A checks that th, pro-er exception is raised if MACHINE OVERFLOWS
is FALSE for floating point types with digits 5. For this
implementation, MACHINEOVERFLOWS is TRUE.

C45624B checks that the proper exception is raised if MACHINE OVERFLOWS
is FALSE for floating point types with digits 6. For this
implementation, MACHINE OVERFLOWS is TRUE.

C86001F recomp.' e package SYSTEM, making package TEXT _O, and hence
package REPORT, obsolete. For this impl=cntation. the package TEXTIO
is dependent upon package SYSTEM.

B86001Y checks 4or a predefined fixed-point type other than DURATION.

CA2009C, CA2009F. B(2204C and B.73205D instantiate generic units before
their bodies are compiled: this implementation creates a dependence on
generic units as allowed by AI-00408 and AI- F)53O such that the
compilation of the generic unit bodiez mak~- the instantiating units
obsolete.

2-2

IMPLEMENTATION DEPENDENCIES

CD1009C uses a representation clause specifying a non-default size for a
floating-point type.

CD2A84A, CD2A84E, CD2A84I..J (2 tests), and CD2A840 use representation
clauses specifying non-default sizes for access types.

The tests listed in the following table are not applicable because the
given file operations are supported for the given combination of mode
and file access method:

Test File Operation Mode File Access Method

CE2102D CREATE IN FILE SEQUENTIAL 10
CE2102E CREATE OUT FILE SEQUENTIAL_10
CE2102F CREATE INOUT FILE DIRECT IO0-
CE2102F CREATE IN FILE DIRECT 1O

CE2102J CREATE OUT FILE DIRECT-IO
CE2102N OPEN IN FILE SEQUENTIAL 10
CE21020 RESET IN FILE SEQUENTIAL 10
CE2102P OPEN OUT FILE SEQUENTIAL-IO
CE2102Q RESET OUT FILE SEQUENTIAL_10
CE2102R OPEN INOUT FILE DIRECT 10
CE2102S RESET INOUT FILE DIRECT 10
CE2102T OPEN IN FILE DIRECT-IO
CE2102U RESET IN FILE DIRECT 10
CE2102V OPEN OUT FILE DIRECT-IO
CE2102W RESET OUT FILE DIRECT 10
CE3102E CREATE IN FILE TEXTI
CE3102F RESET Any Mode TEXT_10
CE3102G DELETE TEXT 10
CE31021 CREATE OUT FILE TEXT 10
CE3102J OPEN IN FILE TEXT-IO
CE3102K OPEN OUT FILE TEXT-IO

AE21OlH, EE2401D, and EE2401G use instantiations of package DIRECT 10
with unconstrained array types and record types with discriminants
without defaults. These instantiations are rejected by this compiler.

The following 16 tests check operations on sequential, direct, and text
files when multiple internal files are associated with the same external
file and one or more are open for writing; USE ERROR is raised when this
association is attempted.

CE2107B..E CE2107G..H CE2!O 7L ¢D2110B CE211OD
CE2111D CE2111H CE3111B CE111D..E CE3114B
CE3115A

CE2203A checks that WRITE raises USE ERROR if the capacity of the
external file is exceeded for SEOUENTIAL IO. This implementation does
not restrict file capacity.

2-3

IMPLEMENTATION DEPENDENCIES

CE2403A checks that WRITE raises USE ERROR if the capacity of the
external file is exceeded for DIRECT-IO. This implementation does not
restrict file capacity.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the page
number exceeds COUNT'LAST. For this implementation, the value of
COUNT'LAST is greater than 150000 making the checking of this objective
impractical.

CE3304A checks that use error is raised by a call to set line length or
to setpagelength when the specified value is inappropriate for the
external file. This implementation has no inappropriate values for
either line length or page length.

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 18 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests:

BAIOO1A BA2001C BA2OO1E BA3006A BA3006B
BA3007B BA3008A BA3008B BA3OI3A

C35508I..J and C35508M..N (4 tests) were graded inapplicable by Evaluation
Modification as directed by the AVO. These tests attempt to change the
representation of a boolean type. The AVO ruled that, in consideration of
the particular nature of boolean types and the operations that are defined
for the type and for arrays of the type, a change of representation need
not be supported; the ARG will address this issue in Commentary AI-00564.

C52008B was graded passed by Test Modification as directed by the AVO.
This test uses a record type with discriminants with defaults that has
array comnon-nts whose size depends on the value of a discriminant of type
INTEGEE.)r elaboration of the type declaration, this implementation
raises NUMERIC ERROR as it attempts to calculate the maximum possible size
for objects of the type. The AVO ruled that this behavior was acceptable,
and that the test should be modified to constrain the subtype of the
discriminants. Line 16 was modified to cr=t a constrained subtype of
INTEGER, and discriminant specifications in lines 17 and 25 were modified
to use that subtype; these lines are given bele::

16 SUBTYPE SUBINT IS INTEGER RANGE -128 .. 127;
17 TYPE REC1(D1,D2 : SUBINT) IS

25 TYPE REC2(D1,D2,D3.D4 : SUBINT := 0) 1-

2-4

IMPLEMENTATION DEPENDENCIES

CD009A, CD1009I, CD1C03A, CD2A21C, CD2A24A, and CD2A31A..C (3 tests) were
graded as passed by Evaluation Modification as directed by the AVO. These
tests use instantiations of the support procedure LENGTH CHECK, which uses
UNCHECKED CONVERSION according to the interpretation given in AI-00590.
The AVO ruled that this interpretation is not binding under ACVC 1.11; the
tests are ruled to be passed if they produce Failed messages only from the
instantiations of LENGTH CHECK--i.e., the allowed Report.Failed messages
have the general form:

" * CHECK ON REPRESENTATION FOR <TYPEID> FAILED."

2-5

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For a point of contact for technical information about this Ada
implementation system, see:

TeleSoft Customer Support
5959 Cornerstone Court West
San Diego CA 92121-9891

For a point of contact for sales information about this Ada implementation
system, see:

TeleSoft Sales
5959 Cornerstone Court West
San Diego CA 92121-9891

Testing of this Ada implementation was conducted at the customer's site by
a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordancc -'ilh the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVC [Pro90].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

3-1

PROCESSING INFORMATION

a) Total Number of Applicable Tests 3790
b) Total Number of Withdrawn Tests 81
c) Processed Inapplicable Tests 98
d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 299

g) Total Number of Tests for ACVC 1.11 4170

All I/O tests of the test suite were processed because this implementation
supports a file system. The above number of floating-point tests were not
processed because they used floating-point precision exceeding that
supported by the implementation. When this compiler was tested, the tests
listed in section 2.1 had been withdrawn because of test errors.

3.3 TEST EXECUTION

Version 1.11 of the ACVC comprises 4170 tests. When this compiler was
tested, the tests listed in section 2.1 had been withdrawn because of test
errors. The AVF determined that 299 tests were inapplicable to this
implementation. All inapplicable tests were processed during validation
testing except for 201 executable tests that use floating-point precision
exceeding that supported by the implementation. In addition, the modified
tests mentioned in section 2.3 were also processed.

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
tape were loaded directly onto the host computer.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. The options invoked explicitly for validation testing
during this test were:

-0 2M

-L

-m

3-2

PROCESSING INFORMATION

Test output, compiler and linker listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

3-3

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in [UG89]. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for $MAX IN LEN--also listed here. These values are expressed
here as Ada string aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value

SMAXINLEN 200

$BIGIDI (1..V-l => 'A', V => '1')

$BIG ID2 (1..V-1 => 'A', V => '2')

$BIG ID3 (1..V/2 => 'A') & '3' &
(1..V-1-V/2 => 'A')

$BIGID4 (1..V/2 => 'A') & '4' &
(l..V-1-V/2 => 'A')

SBIGINTLIT (1..V-3 => '0') & "298"

SBIGREALLIT (1..V-5 => '0') & "690.0"

SBIGSTRING1 '"' & (1..V/2 => 'A') & 'll

$BIG STRINGz & (- .V-1-V/2 => 'A') & '1' &

$BLANKS (1..V-20 => '

$MAXLENINTBASEDLITERAL
"2:" & (1..V-5 => '0') & "11:"

SMAX LEN REAL BASED LITERAL
Ai16:" (1. => 0,) & "F.E:

A-1

MACRO PARAMETERS

SMAXSTRINGLITERAL '"' & (1..V-2 => 'A') & '"'

The following table lists all of the other macro parameters and their
respective values:

Macro Parameter Macro Value
--

$ACCSIZE 32

$ALIGNMENT 4

$COUNTLAST 2_147_483_646

$DEFAULTMEMSIZE 2147483647

SDEFAULT STOR UNIT 8

$DEFAULTSYSNAME TELEGEN2

$DELTA DOC 2#1.0#E-31

$ENTRYADDRESS ENT-ADDRESS

SENTRY ADDRESSI ENT ADDRESS1

SENTRYADDRESS2 ENTADDRESS2

$FIELDLAST 1000

SFILETERMINATOR ''

$FIXED NAME NO SUCH TYPE

SFLOATNAME NOSUCHTYPE

SFORMSTRING ""

$FORMSTRING2 "CANNOT RESTRICTFILE CAPACITY"

$GREATERTHANDURATION

100_000.0

$GREATERTHANDURATION BASE LAST
i31073.0

$GREATERTHANFLOAT BASE LAST

3.40283E+38

$GREATER THAN FLOAT SAFE LARGE
4.25354E+37

A-2

MACRO PARAMETERS

$GREATERTHANSHORT FLOAT SAFELARGE
_ _ - 0.0

$HIGHPRIORITY 63

$ILGL-XENA IENAME 1

$ ILLEGALETERAL-FILE -NAME2
ll/NONAME/DIRECTORY"

$INAPPROPRIATELINELENGTH
-1

$INAPPROPRIATEPAGELENGTH
-1

$INCLUDEPRAGMA1 'PRAGMA INCLUDE ("A28006D1 .TS"

$INCLUDEPRAGMA2 'PRAGMA INCLUDE ("B28006F1.TST");'

$INTEGERFIRST -2147483648

$INTEGER-LAST 2147483647

$INTEGERLASTPLUS_1 2147483648

$INTERFACELANGUAGE C

$LESSTHANDURATION -100_000.0

$LESS THAN DURTION-BASE FIRST

- - -131 073.0

$LINETERMINATOR ASCII.LF

$LOWPRIORITY 0

$MACHINE CODE STATEMENT
MCI'(OP => NOP);

$MACHINECODETYPE Opcodes

$MANTISSADOC 31

SMAXDIGITS 15

$MAXINT Z147483647

SMAX TNT PLUS 1 2147483648

SMIN TNT -21 .-. 7 ,;R

A-3

MACRO PARAMETERS

$NAME SHORTSHORTINTEGER

$NAME-LIST TELEGEN2

$NAMESPECIFICATIONi /tmp/X2120A

SNAMESPECIFICATION2 /tmp/X2120B

SNAMESPECIFICATION3 /tmp/X3119A

$NEG BASED INT 16#FFFFFFFE#

$NEWMENSIZE 2147483647

$NEWSTORUNIT 8

$NEWSYSNAME TELEGEN2

$PAGETERMINATOR ASCII.FF

$RECORDDEFINITION TESTWITHDRAWN

$RECORD-NAME TEST WITHDRAWN

$TASKSIZE 32

STASKSTORAGESIZE 2048

STICK 0.02

$VARIAELEADDRESS VARADDRESS

$VARIABLEADDRESS1 VARADDRESS1

$VARIABLEADDRESS2 VARADDRESS2

$YOUR PRAGMA NOSUPPRESS

A-4

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this Appendix are to compiler documentation and
not to this report.

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this Appendix are to linker documentation and not
to this report.

B-i

SUN-4 Validation Information

This document presents information required for the validation of TeleGen2, version 4.01, for
the SUN-4. It lists the options for the TeleGen2 Ada compiler and linker and includes
annotations to the Ada Language Reference Manual (LRM), including Appendix F.

1. Compiler and Linker options

The Ada compiler is invoked via the ada command. The general syntax of the
command is:

Lada [<option>,-.. <input_spec>

where: < input spec > is one or more Ada source files and/or an input-list file
(<name> .il) that lists the names of Ada source files. Note: ".ada" will
be appended to a source file name if no suffix is present.

NOTE-1715-VI.i(SUN4) 26OCT90

SUN-4 Validation Information

Option Action Default

Common options:
-(bfile < Libname > Specify name of Library file. -1 liblst.alb
-t(einphb < subhb > {I... } Specify temporary list of sublibs. None
-V(spacesize <value> Specify size of virtual space -V 2000

(Kbytes).
-v(erbose Output progress messages. (Opposite)

-L(ist Gcatrate source/error listing. (Opposite)
(Cannot be used with -F).

-F(ile only errs Generate listing containing er- (Opposite)
rors only. (Cannot be used with
-L).

-C(ontext <value> Request <value> context lines -C 1
with each error repoi ted.

-S(ourceasm Generate source/assembly list- (Opposite)
, ing.

-E(rror abort <value> Abort compilation after -E 999
specified number of errors or
warnings.

-e(rrors only Run front end only (for error Full compile
checks).

-i(ahibit <key,, > Suppress checks and source in- (Opposite)
formation L. object code.

-d(eb, ig Include debug information with (Opposite)
object. (-d automatically sets
-k.)

-k(eep Retain intermediate representa- (Opposite)
tion of unit. Must be used if am,
or aopt is to be used on the unit.

-m(ain <unit> Produce executable code for (Opposite)
< unit >.

-O(ptimize <keyt> Optimize code. (Opposite)
-u(pdate_ib <key> <key > = s: update library after u s

each source is processed;
< key> = i: update after corn-
jiler invocation.

-x(-cution_profile IOutput profile code in object. (Opposite)

NOTE-1715-VI.I (SUN4) 26OCT90

SUN-4 Validation Information

The Ada linker is invoked via the aid command. The linker links object code to
produce an executable module. The syntax of the command is:

aid [<option>...] <unit>

where: <option> is none or more of the options in the table below.

< unit > is the name of the main program unit whose c ect code is to be
bound and/or linked; <unit> is required.

Option Action Default

Common options:
-l(ibfile <lhbname> Specify name of library file. -1 liblst.alb
-t(emplib <sublib> { } Specify temporary list of subLibs. None
-V(spacesize <value> Specify size of virtual space-V 2000

(Kbytes)
-v(erbose Output progress messages. (Opposite)

-b(ind only Call the binc, -r only: produce Linker too
elaboration code and link script.

-o(utput <file-spec> Put executable code in <file>. In <unit>
-p(assobjects "<string>" Pass "string' arguments directly (Opposite)

to link editor.
-P(ass_options "<string>" Pass "string" options directly to (Opposite)

link editor.
-S("asm listing" Generate assembly listing for (Opposite)

-T(raceback <value> Set depth of exception traceback -T 15
to <value> levels.

-x(ecution_profile Include profile information in (Opposite)
executable module.

Tasking options:
-D(elayNonPreempt Specify non-preemptive delay. Preemptive
-X(ception_Show Report unhandied exceptions in (Opposite)

tasks.
-w("timeslice" <value> Limit task execution time to -w 0

<value> msec.
-Y <value> Allocate <value> bytes (long) -Y 8192

for task stack.
-v <value> Allocate <value> bytes (natur--y 1 4

al) for stack guard.

NO, E.1715-V.I (SUN4) 26OCT90 3

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which
are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2 147 483 648 .. 2 147 483 647;
type SHORT INTEGER is range -32 768 .. 32-76779
type SHORTSHORTINTEGER is range -128 .. 127;

type FLOAT is digits 6 range -1.70141E+38 .. 1.70141E+38;
type LONGFLOAT is digits 15 range -8.98846567431158E+307

.. 8.98846567431158E+307;

type DURATION is delta 6.10351562500000E-005 range -86400.0 .. 86400.0;

end STANDARD;

C-1

SUN-4 Validation Information

2. LRM Reference Information

This chapter provides information related to TeleGen2's implementation of the
LRM and is divided into two major sections.

" Section 2.1, "Implementation," describes TeleGen's implementation of
tasking, exception handling, pragma Interface, machine code insertions,
and interrupt handling.

" Section 2.2, "Annotations," describes the implementation-dependent
portions of the Ada language for the TeleGen2 compiler and the run-
time environment. The information is presented in the order in which it
appears in the LRM. However, only those language features that either
are not fully implemented by the current release of TeleGen2 or require
further clarification are included.

2.1. Implementation

The following sections describe TeleGen2's implementation of tasking, exception
handling, pragma Interface, machine code insertions, and interrupt handling.

2.1.1. Tasks

task stack When a task is elaborated, a fixed size stack is allocated on the
heap for its use. You can specify the size by using a length
clause. This stack is deallocated and its storage is made
available for other purposes when the task terminates.

task control block A task control block (TCB) is allocated for each task and is
deallocated when the master scope for the task is exited.

tasking support The run-time requirements of Ada tasking are met principally
by the machine-independent RSP component of the AEE.
Three of the TDRSP packages, TDMachine State Manager,
TD DelayManager, and TD Interrupt Manager, provide the
target-dependent foundation for these facilities.

rendezvous The RSP implements the semantics of the Ada rendezvous.
Tasks calling entries in other tasks are queued on doubly-
linked lists and left waiting until the called entry is free to
serve the caller. Tasks performing entry calls that are not
timed wait on a single list. The server or caller, whichever
comes last, ensures that the server is active (or placed on the
ready queue) so that the rendezvous code can be executed. A
stack of callers is maintained during the rendezvous to allow
for nested accept statements and proper relinquishing of the
appropriate caller at the end of a rendezvous.

4 NOTE-17 I5-Vl.1 (SUN4) 26OCT90

SUN-4 Validation Information

Parameter passing at a rendezvous depends on a parameter
block built by the caller at the time of the call. A pointer to
the block is passed to the called task when it reaches the
rendezvous point.

delay expiration After a specified delay has expired, an interrupt occurs in the
task executing at the time of expiration. The task that
executed the delay statement then becomes executable, and
the executable task of highest priority is dispatched. If the
interrupted task and the task whose delay has expired are of
equal priority, the delayed task is dispatched.

2.1.2. Exceptions

handling exceptions Each declared exception is identified by an address that points
to the location where the exception name resides. When an
exception is first raised, the address of the exception identifier
and the address where the exception occurred are passed to
the run-time system via various traps. The traps are encoded
to minimize the code space and to provide the reason for the
exception. The reraising of an exception (Le., raising the
handled exception inside the handler) passes along the same
information along with the original raise address. The
occurrence address is then used to determine the scope where
the exception occurred. Next, the scopes are searched and the
dynamic call link is followed until an exception handler is
found for the raised exception.

exception tables The Ada scopes with associated range of addresses and
applicable exception handlers are encoded into a set of tables
associated with each compilatica unit. Therefore, there is no
run-time overhead as each subprogram is entered, and the
run-time cost- are only incurred when an exception is raised.
In designing the exception handling system, first priority is
given to minimal space and time impact of exceptions on
regular code when not raised. Second priority is given to
reduced static space for exception tables. Following these
constraints in importance are the goals of exception traceback
quality and the speed of exception handling.

exceptions in tasks TeleGen2 adheres strictly to the requirements of exception
and non-Ada exceptions handling within tasks. See LRM Chapters 9 and 11.

Hardware or operating system exceptions are converted into
Ada exceptions and passed through the standard exception
handlers. Foreian language exceptions may or may not be
caught by the Ada exception handler. For this reason. foreign
language routines should be tested separately and then added
to Ada code.

NOTE-1715-VI.hISUN4) 26OCT90

SUN-4 Validation Information

classes of Ada exceptions There are two classes of Ada exceptions: standard predefined
exceptions and user-defined exceptions. The standard
predefined exceptions are further divided into five classes:
constrainterror, program error, storage-error,
numericerror, and tasking error. Additional information is
also provided by the compiler and run-time system to
distinguish between various cases of errors that raise the same
predefined exception, e.g., between discriminantcheck and
access check.

unhandled exceptions When an exception is not hand]k d by a user exception handler
or by the termination of a task, the exception is called an
unhandled exception (exceptions in tasks are not propagated
outside the task except for special rendezvous conditions; refer
to Chapter 9 of the LRM). Special reporting information is
provided to the user in this case. A standard format message
is sent to standard output, indicating the exception kind,
e::ception reason, and the call chain for the exception
propagation.

exception traceback The exception traceback reports relevant information on
inserted sections of code, due to macro-expanded generic
instantiations or due to inline subprogram insertions. The
original location of the exception raise point in the inserted
code is indicated as well as the point of the insertion. If there
are several levels of insertion (due to inlines containing inlined
calls, etc.), only the innermost level and the outermost
insertion point are reported.

The information from the last raise point is always complete as
the stack is not unwound until a handler is located. The
information from the original raise to the last reraise is stored
in a special table internal to the run-time system. If that table
overflows, a limited amount of information is lost in the call
chain; however, this overflow is very unlikely. If another
nested exception occurs from the handler activities and it is
caught and handled, then the information on the raise-to-
reraise call chain is also lost; however, this is a very rare
situation.

2.1.2.1. Example of an unhandled exception

The following program raises the unhandled exception NUMERIC ERROR.

6 NOTE-1715-VI.1(SUN4) 26OCT90

SUN-4 Validation Information

1 procedure Except is
2 procedure proc is
3
4 procedure proc2 is
5 i,j,k: integer;
5 begin
7 1 :-0;
8 k :- J/i;
9 end proc2;
10
11 begin
12 proc2;
13 exception
14 when NUMERIC ERROR ->
15 raise;
16 end proc;
17
18 begin
19 proc;
20 exception
21 when NUMERIC ERROR =>
22 raise;
23
24 end Except;

The exception traceback looks as follows:
>>> Unhandled exception: NUMERIC_ERROR (division by zero)

raised in sec/except.proc2 at line 8
called from sec/except.proc at line 12
reraised in sec/except.proc at line 15
called from sec/except.except at line 19
reraised in sec/except.except at line 22

The original raise point is in unit "sec/except," procedure "proc2" at source line
8. Following the raise point are the various calls to "proc2" and the points of
reraise (if any) as the call chain gets unwound. "proc2" was called from
procedure "proc" at source line 12. Procedure "proc" also has an exception
handler for the exception "NUMERICERROR" that was raised, and that was
reraised at source line 15. Normally the programmer might choose to place some
exception recovery code or clean-up code here prior to reraising the exception.
As the call chain gets further unwound, we see that "proc" itself was balled from
procedure "except" at source line 19. Again procedure "except" also had a
handler for exception "NUMERICERROR," and it also reraised the exception
which is reflected in the last traceback Line.

NOTE-1715-VI.I(SUN4) 26OCT90 7

SUN-4 Validation Information

2.1.2.2. Procedures Inserted into the source program

Occasionally, exceptions occur in procedures that are inserted into the source
program, either via generic instantiations or via inlining, as in the following
example. In these cases, only the innermost and outermost source line numbers
are displayed. For example, suppose that "proc2" within procedure "Except" was
inlined.

1 procedure Except is
2 procedure proc is
3
4 procedure proc2 is
5 i,j,k: integer;
6 begin
7 i :-0;
8 k := j/i;
9 end proc2;

10 pragma inline (proc2);
11
12 begin
13 proc2;
14 exception
15 when NUMERICERROR ->
16 raise;
17 end proc;
18
19 begin
20 proc;
21 exception
22 when NUMERIC ERROR ->

23 raise;
24
25 end Except;

The exception traceback at run time differs from that in the previous example.

>>> Unhandled exception: NUMERICERROR (division by zero)
raised in sec/proc.proc2 at line 8

in sec/except.proc at line 13
reraised in sec/except.proc at line 16
called from sec/except.except at line 20
reraised in sec/except.except at line 23

Because of "prdngma inline (proc2)" at source Line 10, every time the compiler
identifies a call to "proc2" in the program, it expands the body of "proc2" into the
source program at that point. This changes the manner in which the ex:eption
traceback mechanism reports the traceback. The original exception is reported at
source line 8 correctly, but as this occurred in an inlined procedure, the
subsequent line. "in sec/except.proc at line 13," relays the information that this
procedure was inlined in procedure "proc" at source line 13. The remainder of
the traceback is the same as in the previous example.

NOTE-1715-VI.(SUN4) 26OCT9

SUN-4 Validation Information

2.1.2.3. Suppressing source location information option

The user can choose to suppress source location information through compile
time switches. In this case, the exception traceback is still provided with the
maximum information possible. If line numbers in the source are suppressed,
then the location (ie., address) is provided instead. If source names are
suppressed, then the source subprogram name is represented by the address of
the subprogram. The original version of procedure Except was compiled to
suppress line number information in the code.

1 procedure Except is
2 procedure proc is
3
4 procedure proc2 is
5 i,j,k: integer;
6 begin
7 i =0;
8 k := j/i;
9 end proc2;
10
11 begin
12 proc2;
13 exception
14 when NUMERICERROR =>
15 raise;
16 end proc;
17
18 begin
19 proc;
20 exception
21 when NUMERICERROR =>

22 raise;
23
24 end Except;
25

The subsequent traceback displays addressing information instead of the source
line numbers as in the previous examples:

>>> Unhandled exception: NUMERICERROR (division by zero)
raised in sec/except.proc2 at address 00002562
called from sec/except.proc at address 00002532
reraised in sec/except.proc at address 00002550
called from sec/except.except at address 000024FC
reraised in sec/except.except at address 0000251A

NOTE-1715-VI.I(SUN4) 260CT90

SUN-4 Validation Information

2.1.2.4. System.ReportError

The user has the capability to display the call chain leading up to a handled
exception. By calling "System.Report-Error," the normal exception traceback
format is sent to standard output. After reporting exception traceback
information up to the point of invocation of "System.ReportError," the traceback
mechanism continues to report calls all the way out of the program.

In the example below, the original procedure Except includes a context clause for
package System, and System.ReportError is called in Except after
NUMERICERROR instead of raising the exception again.

1 with System;
2
3 prozedure Except is
4
5
6 procedure proc is
7
8 procedure proc2 is
9 i,j,k: integer;
10 begin
11 i : 0;
12 k :- J/i;
13 end proc2;
14
15 begin
16 proc2;
17 exception
18 when NUMERICERROR ->
19 raise;
20 end proc;
21
22 begin
23 proc;
24 exception
25 whe-i NUMERIC ERROR ->
26 System. Report Error;
27
28 end Except;

The exception traceback produced ends with the invocation of
System. ReportError because no raise statements or calls occur after that.

>>> Unhandled exception: NUMERICERROR (division by zero)
raised in sec/except.proc2 at line 12
called from sec/except.proc at line 16
reraised in sec/except.proc at line 19
called from sec/except.except at line 23
Report_Error invoked in sec/except.except at line 26

10 NOTE-1715-VI.I(SUN4) 26OCT90

SUN-4 Validation Information

If an exception is raised in a non-Ada routine and the Ada exception handler
detects it, the following message is output along with the address of the instruction
that caused the exception to be raised.

unit name and proc name unknown

Because most non-Ada routines do not follow Ada calling conventions, the
traceback may be incomplete, especially if one or all of the frame pointers have
been corrupted.

2.1.2.5. Exceptions in tasks

The binder -X switch tells the run-time system to send to standard output, in the
standard exception format, a report for an exception raised in a task. This occurs
when an exception is raised in a task and is not handled by it, causing the task to
terminate.

NOTE-4715-VI.ItSUN4) 26OCT90 il

SUN-4 Validation Information

2.1.3. Pragma Interface

The TeleGen2 system supports interfacing to other languages (for example,
assembly language), provided the interface meets appropriate conditions.

Conditions for using pragma Interface

" All communication between non-Ada routines and the Ada program
must be achieved via parameters and function results.

* The Ada routine must be described with an Ada subprogram
specification in the calling program. (LRM 13.9)

* Non-Ada routines must be specified with an appropriate "pragma
Interface" directive in the calling program, using the syntax defined in
the LRM (13.9):

pragma Interface (<language>, <subprogram name>);

" The routines must be assembled or compiled by a language processor
whose calling, data representation, and run-time conventions are
compatible with the forms supported by TeleGen2, and whose object file
format is acceptable to the UNIX linker (internal requirement).

* Pragna Interface can only be applied to subprograms for which users
can provide bodies. That is, enumeration literals, attributes, predefined
operators, and derived subprograms are not valid. (Ada Issues, A-
00306)

* The pragma is allowed to "stand for" several subprograms. However,
the pragma will be satisfied only for those subprograms declared earlier
in the same declarative part or package specification. (AI-00306)

" If the pragma is accepted and is applied to certain subprograms, it is
illegal to provide a body for any of these subprograms. It is immaterial
whether the pragma appears before or after the body. (AI-00306)

* If the subprogram named in the pragma was declared by a renaming
declaration, the pragma applies to the denoted subprogram, but only if
the denoted subprogram otherwise satisfies the requirements. (AI-
00306)

TeleGen2 offers the following four forms of pragma Interface.

pragma Interface(assembly. <subprogramname>);

pragma Interface(FORTRAN, <subprogram-name>);

pragma Interface(C, <subprogramname>);

pragma Interface(Pascal, <subprogram-name>);

12 NOTE-1715-V1.1 (SUN4) 260CT90

SUN-4 Validation Information

Ada-to-assembly calling conventions are discussed in Section 2.1.3.2. Ada-to-
FORTRAN is discussed in Section 2.1.3.5. Ada-to-C conventions are discussed in
Section 2.1.3.3. Ada-to-Pascal conventions are the same as Ada-to-C conventions.

If your program requires access to routines written in languages other than the
preceding, you need to write assembly language routines that map between the
calling conventions of those languages. You also need to examine the assembly
language listings carefully for the Ada calls and the target language entry code to
ensure that parameters are being passed and received correctly.

The following table summarizes the major points of each type of language
interface currently supported.

Table 1. Language interface summary

Ada--*ASM Ada --- C Ada -.* Pascal Ada - FORTRAN

Parameter Right to left Right to left Right to left Right to left
passing- I_ _

Calling Section 2.1.3.2 Section 2.1.3.3 Section 2.1.3.4 Section 2.13-5
conventions:

Objects are By value if 4 bytes or Scalars by value; Scalars by value; Always by reference.
passed: smaller; by reference composites by composites by

otherwise. Floating reference. reference.
point numbers are
always by value.

Names are in: Uppercase Lowercase Lowercase LwercIe

2.1.3.1. General interfacing considerations

The Ada name of the designated subprogram is referenced directly as a global
symbol; it must resolve to an identical symbol defined at link time, presumably by
the foreign language routine to be called. One implication of this fact is that the
name of the foreign language routine must conform to Ada identifier rules (e.g., it
must start with a letter; contain only letters, digits, or underscore characters; etc.).
These name restrictions can be circumvented, however, by the use of the
TeleGen2-defined pragma, Interface Information. Refer to Section 2.2.8. 1,
"Implementation-defined pragmas," for further information.

NOTE-1715-VI.I SUN4) 26OCT90) 13

SUN-4 Validation Information

2.1.3.2. Calling assembly routines from Ada

Parameter passing and calling conventions

The conventions for calling routines written in assembly language are basically the
same as for a call to an Ada-implemented routine.

2.1.3.3. Calling C routines from Ada

TeleGen2 supports pragma Interface to routines written in C and other languages
that adhere strictly to C interface conventions.

This form of pragma Interface has the following syntax.

pragma Interface (C, <Ada subprogram name>);

Pragma Interface to C is intended for interfacing to code generated by C langua
compilers, or by other non-Ada compilers that follow C conventions. Interfacing
to standard UNIX library routines is discussed within the context of examples, in
Section 2.1.3.3.

Parameter passing

Because the C programming language specifies the passing of arguments strictly
by value, only in arguments may reliably be passed to C functions. Although a C
routine can legally include an assignment to a formal parameter, it is not
guaranteed that the assignment will result in an update to te stack copy of "'e
parameter on exit from the routine, as required for Ada's model for out and in out
parameters. To pass values back to the calling program, you can specify that the
value is returned through the function return mechanism. This permits the return
of 2- and 4-byte non-aggregate data types. If you wish to return objects of other
types. you can pass pointers to the objects in the calling program (arrays, etc.)
where the results are to be stored. The called routine can then access these
objects through the C pointer mechanism.

Table 2 shows Ada types and their corresponding C types.

14 NOTE-1715-VI.1(SUN4) 26OCT90

SUN-4 Validation lnfarmation

Table 2. Type comparisons: Ada and C

Ada C

Type Passed by Bytes Type Passed by Bytes

character value 1 char value

boolean value 1 short value 2

shorthort valu2 2

integer value 4 int value
float value 4 float value 4
longfloat value 8 double value 8

access value 4 * value 4
array reference L I reference

record reference struct reference
string _ _array of chars

String parameters

In practice, one of the most commonly passed objects is the string. (Note that in
the C language, strings are "character arrays;" there is no "string passing" as such
in C or between C and other languages.)

C and Ada handle strings differently; it is nct feasible for the Ada compiler to
attemot an automatic translation between string-handling models when ".aling C
routines from Ada. You must therefore be aware of the differences, and tailor
your code to take explicit account of them.

Table 3. Ada and C string parameters

Ada String C "String"

Passed by descriptor. Passed by the address of the first
element.

Not null terminated, but you can Null terminated.
nul-terrydnate explicitly. -
Czrries implicit ind ,x values for Carries no implicit index values or
first and last element. lengths. The code handling the

string must test for the null charac-

ter that terminates the string.

I By reference if more than 4 bves. by value if 4 bytes or less.

NOTE-171-VI.I(SUN4) 26OCT90 I.

SUN-4 Validation Information

There are two ways to accommodate these differences, either by writing C code
for handling Ada strings or vice versa.

Make C follow Ada conventions. If an Ada string is passed to a C routine, the C
routine should be declared with three explicit arguments corresponding to the
Ada string p,-rameter. The first will be the address of the first element of the
string, the second will be the index value associated with it, and the third will be
the index value associated with the last element of the string. A null string in Ada
is indicated by the index value of the last element being less than the index value
of the first element.

Make Ada follow C conventions. The more common (and efficient) way to pass
strings between Ada and C routines is for the Ada code to explicitly follow C
conventions. To pass a string to a C routine, the Ada code would store a null
terminator at the end of the string and pass the address of its first element. A C
function returning a string would be declared as an Ada function returning a value
of type System Address.

One way a string may be "passed" between C and Ada is shown in Section
Z. i.3.3. 1.2, that follows.

;he command line and the global environment

The following global names have been declared in the run-time code specifically
for use in C programs:

ar'r.rn int adaargcsave; /* Number of command line arguments*/

extern char **adaargvsave; /* Pointer to array of argument strings*/

extern char **enjiron; /* Pointir to the environment variable string*/

(Note that there are two underscores following "ada" in the first two global
names.) These three variables are used in the same way as are the main prugram
arguments aigc. wrgv, and envp. (See your UNIX User's Guide for details.)
Command tine arguments such as these are accessed via pragma Interface to C.
An example of accecsir - UNIX command line arguments is provided in the
following, in Section 2.1.3.3.1.2.

Usage examples

Thi, section has examples that explain the use of pragma Interface to C.

2.1.3.3.1.1. Random number example

i section is the first of two that show how pragna Interface to C may be used
in Ada applications. In this section, an Ada procedure, RandomNumber, is
provided as an example. Random Number generates and prints a random long

Ib NOTE-1715-VI.I(SUN4) 26OCT90

SUN-4 Validation Information

integer based on a user-entered seed value. It generates this number by making a
direct call to the C library functions srand and nnd. No user-written C code is
required.

--

-- Ada procedure RandomNumber --
--

with Text_IO;
with IntegerText 10;
procedure RandomNumber is

Number : Integer;

function srand (Seed : Integer) return Integer;
pragma Interface (C, srand);

function rand return Integer;
pragma Interface (C, rand);

begin

TextIO.Put ("Enter seed for random number generator: ");
IntegerText_IO.Get (Number);
Text IO.New Line;
Number :- srand (Number);

Number := rand;

Text I0.Put ("Random number is: ");
Integer TextIO.Put (Number);

Text IO.NewvLine;

end Random Number;

In the declarative part of the program, the specifications for rand and srand are
defined in the usual fashion. The pragmas immediately follow the specifications.
For information on the Ada rules for preparing pragrna Interface specifications,
refer to Section 13.9 of the LRM.

To make the Ada procedure Random Number executable, compile and link
randomada as shown in the following. Note that file rundormada contains the
main program RandomNumber and that a copy of rm-dontada is in the product
examples directory. During linking, the linker searches the C Library for srand and
rand routines.

ada -v -m randomnumber $ /examples/random.ada

NOTE.1715-VI.! SUN4) 26OCT90 17

SUN-4 Validation Information

2.1.3.3.1.2. Command line argument example

This section provides another example of the use of pragma Interface to C. This
time, an Ada procedure, Show Argument, calls the C procedure Get Argument
to return command line arguments. The C procedure uses global variables
ada__argc save and ada__argvsave, which were mentioned in the preceding,
"Command Line and Global Environment."

The text of the calling Ada procedure is given in the following; a copy of the
procedure in also available in file show args.ada in the product examples
directory. Note the use of C pointer types and the Ada SystemAddress type to
give the C routine access to the string object that is to contain the returned
argument.

-- Ada procedure Show-Argument --

with System;
with TextI0;
procedure Show-Argument is

package 110 is new TextIO.Integer_10 (Integer);

Position : Integer;
Argument String (I .. 1000);
Arg_Len Integer;

function getargument (Parameter_1 : Integer;
Parameter_2 System.Address)
return Integer;

pragma Interface (C, getargument);

begin

Text I0.Put ("Enter position number of argument: ");
II0.Get(Position);

Arg_Len :- getargument (Position, Argument'Address);

TextIO.PutLine ("Argument is: " & Argument (1 .. Arg Len));

end Show-Argument;

18 NOTE-1715-VI.I(SUN4) 26OCT90

SUN-4 Validation Information

The following is the text of the C routine called from the Ada procedure
Show-Argument.

/ *- *
-- C routine get argument - *I

/* --- ------------------ *

int getargument (position, arg-ptr)

int position; I* position number of argument to be returned */
char *argptr; /* pointer to string in which to store argument *I

extern int ada__argc_save; /* number of command line arguments */
extern char **ada_ argv_save; /* pointers to command line arguments *1

int strndx; /* loop counter/string index */
char c; /* temporary character */

/* check argument position number */
if (position > ada argc_save - 1) return (0);

/* one pass for every character in the parameter */
/* until the null character at the end of the */
/* parameter is found
for (strndx = 0 ; c = ada _argv_save[position][strndx] ; strndx++)

argptr[strndx] - c;

return (strndx); /* return the length of the string */

The steps involved in making this Ada procedure executable are outlined in the
following.

I. Compile the C routine To do this, compile Get-Argument with the
native C compiler. For example

cc -c $___/examples/get-arg.c

where "cc" invokes the C compiler and the -c option tells the compiler to
compile the source code in file get_arg.c without Linking it. The resulting
object code is stored in the file gearg.o. Note that the command to
invoke the C compiler may be different for your system.

NOTE-!715-VI.1 tSUN4) 26OCT90 9

SUN-4 Validation Information

2. Compile and link the calling Ada procedure First invoke the Ada
compiler and then the Ada linker. For example

ada -v $Jexamples/showarg.ada

aid -v -p 'get arg.o' show-argument

where show argada is the source file containing the Ada procedure
ShowArgument, show_agunent is the executable file the linker
produces and puts in the current working directory, and getag.o is the
argument of the -p(assobjects option. The -p option directs the
compiler to include the object file getarg.o in the link. The -p option
can also appear on the command line for ada when the -m option is
used. In this case, the compiler passes the option to the linker.

2.1.3.4. Calling Pascal routines from Ada

TeleGen2 supports pragma Interface to routines written in Pascal. This form of
pragma Inter-face has the following syntax.

pragma Interface (Pascal, <Adasubprogram_name>);

Pragma Interface to Pascal is intended for interfacing to code generated by Pascal
language compilers.

Parameter passing

Because the Pascal programming language specifies the passing of arguments
strictly by value, only in arguments may reliably be passed to Pascal functions.
Although a Pascal routine can legally include an assignment to a formal
parameter, it is not guaranteed that the assignment will result in an update to the
stack copy of the parameter on exit from the routine, as required for Ada's model
for out and in out parameters. To pass values back to the calling program, you can
specify that the value is returned through the function return mechanism. This
permits the return of 2- and 4-byte non-aggregate data types. If you wish to return
objects of other types, you can pass pointers to the objects in the calling program
(arrays, etc.) where the results are to be stored. The called routine can then
access these objects through the Pascal pointer mechanism.

Table 4 shows Ada types and their corresponding Pascal types.

20 NOTE-1715-Vl.I(SUN4) 26OCT90

SUN-4 Validation Information

Table 4. Type comparisons: Ada and Pascal

Ada Pascal

Type Passed by Bytes Type Passed by Bytes

character value 1 character value 1
boolean value 1 boolean value 2

shortinteger value 2
integer value 4 integer value 4

float value 4 real value 4
long-float value 8
access value 4 value 4
array reference I_ [I reference
record reference $ record reference

string array of
characters

By reference if more than 4 bytes. bv value if .4 bytes or less.

N()TE-17IS-VI.ISUN41) 26OCT9 21

SUN-4 Validation Information

2.1.3.5. Calling FORTRAN 77 routines from Ada

This section describes how to call FORTRAN 77 routines from Ada programs to
be compiled with the TeleGen2 system. The techniques described here are
primarily a combination of those described in the preceding on using pragma
Interface directives to interface to other languages.

The next section describes how to express the declaration of a FORTRAN 77
subprogram in Ada source code, by way of the pragma Interface directive. The
section after that describes the procedures that must be followed to pass
parameters to FORTRAN 77 subprograms.

Note: The examples included are only intended to be representative, especially
when passing characters. Please consult your FORTRAN user
documentation for specific aspects of your implementation.

Ada declaration of FORTRAN 77 subprograms

Each FORTRAN 77 subroutine or function (referred to hereafter as a
FORTRAN subprogram) that is to be called directly from Ada must be declared in
a declarative part as an Ada procedure or function, respectively. The Ada
declaration must be followed by a pragma Interface (FORTRAN) directive that
specifies the name of the subprogram. Pragma InterfaceInformation supplies
the mapping between the Ada name and the FORTRAN name of the
subprogram. For example, the FORTRAN subprogram

SUBROUTINE ZERO

would have the Ada declaration

procedure Zero;
pragma Interface (FORTRAN, Zero);
pragma InterfaceInformation (Zero, "ZERO")

In the last line, "Zero" is the Ada name, and "ZERO" is the FORTRAN name.

The number of formal parameters in the FORTRAN subprogram and
corresponding Ada subprogram declarations must be the same. However,
because the FORTRAN language passes all parameters by reference (allowing
the called routine to modify the referenced object), all parameters to FORTRAN
routines should be declared in the Ada declaration as in out parameters.
Parameters to FORTRAN routines are not copied in and out, as are Ada in out
parameters, but, instead, are passed by reference. For example, the FORTRAN
subprogram

SUBROUTINE THREE (A, B, C)
INTEGER*2 A
INTEGER*4 B

-22 NOTE-1715-VI.I(SUN4) 26OCT90

SUN-4 Validation Information

REAL*4 C

would have the following Ada declaration

procedure Three (A in out shortinteger;
B in out integer;
C in out float);

pragma Interface (FORTRAN, Three);
pragma Interface Information (Three,"THREE");

Parameter passing is described in detail in the next section.

Passing parameters to FORTRAN 77 subprograms

Parameters to be passed to a FORTRAN subprogram must be variables or
expressions of either a scalar type (that is, an integer type, a real type, or an
enumeration type) or an array type whose elements are scalars. The one
exception to this rule is that a simple record containing two Float or LongFloat
values may be passed for FORTRAN complex types. Passing of other record
types, access types, and task types is not supported. Table 5 shows a comparison
of Ada and FORTRAN types. There are limitafions on the FORTRAN types, as
discussed below.

Table 5. Type comparisons: Ada and FORTRAN

Ada FORTRAN

Type Passed by Bytes Type Passed by Bytes

character value 1 character* I reference 1
boolean value 1 logical*2 reference 1
short-integer value 2 integer*2 reference 2
integer value 4 integer*4 reference 4
float value 4 real*4 reference 4
long_float value 8 real*8 reference 8
access value 4
array reference t
record reference _

[none] real* 16 reference 16

short short integer byte reference I

2-float record complex*8 reference 8
2-longfloat record complex* 16 reference 16
string

The TeleGen2 system. when calling FORTRAN routines, passes all parameters by
reference automatically. That is, it passes the address of the argument. not its

NOTE-1715-V 1.1 (SUN4) 26OCT90 23

SUN-4 Validation Information

value. When passing constants or expressions to FORTRAN, the TeleGen2
system stores the value in a temporary location and passes the address of the
temporary location to the FORTRAN routine.

For example, a call to subprogram Three in the previous example, passing scalar
variables Zero, One, and Two, would be

Three (Zero, One, Two);

Passing scalar variables

The type of a scalar variable passed to a FORTRAN subprogram must be
compatible with the type of the corresponding formal parameter declared in that
FORTRAN subprogram. The type comparison table (Table 5) shows the
correspondence between FORTRAN and Ada scalar types. The FORTRAN
types INTEGER*2, INTEGER*4, REAL*4, REAL*8 and LOGICAL*2 types
correspond directly to the Ada types ShortInteger, Integer, Float, Long Float,
and Boolean respectively. The remaining FORTRAN types, CHARACTER,
COMPLEX, and DOUBLE COMLEX, may be used if the special procedures
described below are followed.

FORTRAN supports implicit variable declarations and declarations of variables
without explicit sizes (e.g., INTEGER vs. INTEGER*2 or INTEGER*4).
However, these types can be overridden by compile-time switches. To avoid
unexpected behavior due to the use of these switches, declare the formal
parameters in the FORTRAN program with an explicit length.

Passing CHARACTER types

The FORTRAN 77 CHARACTER type may be represented in Ada by an access
to a string parameter. For every argument of type CHARACTER, an extra
argument is passed giving the length of the value. For example, a FORTRAN
subroutine defined as

SUBPROGRAM PROCESS (LINE)
CHARACTER*80 LINE

END

could be called as shown in the following program fragment.

24 NOTE-1715-Vi.I (SUN4) 26OCT90

SUN-4 Validation Information

subtype String8O is string(l..80);
type acc_String8O is access String8O;

-- Define the FORTRAN routine
procedure Process (Line : in out accString0);
pragma Interface (FORTRAN, Process);
pragma Interface-Information (Process, "PROCESS");

-- Sample calling sequence

procedure Caller is
Str accStringaO :- new StringgO;
Len Integer;

begin

Str(l..10) :- "California";
Len :- 10;
Process (Str, Len);

end;

It is important to note that all of the string length parameters must be at the end
of the parameter list. For example, for the following FORTRAN declaration

SUBROUTINE FTN (LINE1, LINE2)
CHARACTER**80 LINEl, LINE2

END

the Ada declaration would be

procedure FTN (Linel, Line2 in out accString80;

lenl, len2 in out Integer);

Passing COMPLEX and DOUBLE COMPLEX types

The FORTRAN 77 COMPLEX and DOUBLE COMPLEX types can be
represented in Ada by a simple record containing two fields of type Float or
LongFloat, respectively. For example, a FORTRAN subroutine defined as

FUNCTION SQUARE (A)
DOUBLE COMPLEX SQUARE
DOUBLE COMPLEX A
SQUARE = A * A

RETURN
END

NOTE-1715-VI.IISUN4) 26OCT90 ";

SUN-4 Validation Information

could be called as shown in the following program fragment.

-- Define a FORTRAN Double Complex data type
type DoubleComplex is record
Real longfloat;
Imaginary long-float;

end;

-- Define the FORTRAN routine
function Square (C : in DoubleComplex);
Pragma Interface (FORTRAN, Square);

-- Sample calling sequence
procedure Caller is

x,y : DoubleComplex;
begin

x (1.0, -2.5);
y := Square (x);

end;

26 NOTE-1715-VI.I(SUN4) 26OCT90

SUN-4 Validation Information

2.1.3.6. Calling Ada from other languages

Although the Ada LRM provides pragma Interface for calling routines written in
other languages from Ada programs, it makes no provision whatsoever for calling
Ada subprograms from code written in other languages. There are good reasons
for that. An Ada program carries an implicit context that is not visible outside of
the Ada run-time system, and it would be impossible, in practical terms, for the
LRM to require implementations to support such usage in a general fashion.

Nevertheless, there are real cases where the ability to call Ada code from other
languages is at least useful, if not an absolute requirement for an application. A
common example wo, ld be an application built around an existing utility package,
where the package has a programmatic interface in which users are expected to
pass in the addresses of specific event-handling routines that they have coded. If
appropriate restrictions are observed, it is possible to use the TeleGen2 system in
this manner. You should be aware, however, that any such usage is outside the
scope of the Ada LRM, and is not likely to be portable.

Restrictions in calling Ada from other languages

* The Ada subprogram called must be a library subprogram or a
subprogram declared in the interface of a Library package.

* The subprogram called must not use Ada tasking or interact with other
Ada code that involves tasking.

" The Ada subprogram will follow TeleGen2 internal calling conventions.
If it is called from assembly code, then the calling code must reflect
those conventions.

* The subprogram must not be dependent on the prior execution of any
Ada elaboration code, unless the user can guarantee that such code has
been properly executed.

Working around elaboration code

Elaboration code is compiler-generated code that mainly allocates storage for
dynamically sized data objects and assigns initial values to things that require
them. The only reliable way to ensure that all necessary elaboration code has
been executed is to be executing out of an Ada main program. In that case, the
binder component of the Ada compiler will have generated a sequence of calls to
the elaboration procedures of all Ada compilation units in the program. That
sequence of calls will be executed by the Ada run-time system immediately prior
to invocation of the main program.

If an application can be realized as an Ada main program that happens to call
code written in another language, then that other code can make calls to Ada,
observing other restrictions, without having to worry about elaboration code.

NOTE-1715-V1.I(SUN4) 26OCT90 27

SUN-4 Validation Information

However, if the application requires that the main program be written in another
language, then execution of Ada elaboration code is likely to be a problem.

In general the only types of Ada subprograms that can be safely called from other
languages when the application is not controlled by an Ada main program are
library procedures and functions that depend only on their parameters. It is
possible to handle more general cases if the application code arranges to call the
required Ada elaboration procedures at startup time. However, this is not a
recommended practice, and documentation of how to do it is beyond the scope of
this manual. If you have a requirement for this type of usage, please contact a
customer service representative.

28 NOTE-1715-VI.I(SUN4) 26OCT90

SUN-4 Validation Information

2.1.4. Machine code insertions

The term machine code insertions refers to the concept of including target
machine instructions directly into the high-level Ada program. The uther
mechanism for including target instructions into a program is to call a routine
coded in assembly language. That routine is accessed by using pragma Interface
(assembly).

The primary advantage of machine code insertions (MCI) over calling an
assemsly language procedure is the ability to directly inline the MCI instructions.
MCI instructions in Ada are not as convenient or easy to use as normal
assemblers, but they can be used i Z provide maximum speed efficiency in
accessing low level operations. MCI instructions are most useful for inserting
special instructions on the target which are not normally produced by an Ada
program, that is, interrupt disable, etc.

In Ada, MCI instructions must be placed in an MCI procedure with no other
normal Ada instructions in that procedure (refer to Section 13.8 of the LRM).
That procedure can have any class of Ada parameters. The procedure should be
marked pragma Inline for the MCI instructions to be directly inserted into the
calling code. However, tc get an MCI procedure irilined, there must also be a
pragma Interface Information indicating an "mci" mechanism refer to Section
2.2.8.1.3). This pragma is obeyed at all levels of c,-*- iization for MCI procedures.

The user can further improve the efficiency of the inlined MCI procedure by
adding more information using pragma interface Information. This allows the
user to dictate to the compiler to pass the parameters in specific registers.
Pragma Interface Information also allows the user to indicate to the compiler
which rer,;,ters are "clobbered" (that is, used destructively and not restored). The
compiler will properly preserve any live values 0A those clobbered regif crs across
the "call." The net result of using pragmas Inline and Interface Information cn
an MCI piocedure is the direct insertion of the desired instructions using the
prcper registers into the code stream of the caller, thus achieving maximum
efficiency.

If the compiler is unable to inline the MCI procedure, a warning will be issued
and a normal call produced. The MCI instructions will be produced inside a
normal procedure so that cr le will work; however, users are encouraged to
correct the inline warning s, 2 the primary usage for MCI procedures is direct
insertion into the normal A. code stream.

2.1.4.1. User and compiler assumptions

TdeGen2 machine code insertions are "what you see is what you get." That ;.
the only instructions that are generated are those dictated by the user in code
statements in the MCI procedure. The only exception is the pseudo instruction,
LOADADDRESS (refer to the example in Section 2.1.4.4). The other overhead

NOTE-1715-VI.I(SUN4) 260CT% 29

SUN-4 Validation Information

may be instructions necessary to get the actual arguments for the call into the
user-dictated locations for the parameters (that is, loading into the proper
register). That overhead is not significantly different from using a normal
instruction in code generation.

Any use of foreign code, either through pragma Interface or MCI procedures, has
the potential of making a program erroneous. The compiler can do nothing to
prevent this. In the implementation of MCI instructions, it is assumed that gained
flexib-lity and efficiency take priority over gained "safety." However, the
mechanisms that provide this flexibility should . explcit, so the user can
determine what is .)ccurring.

Basic assumptions about the use of MCI procedures:

* The user needs to understand the calling conventions sufficiently so as to
not violate the stack structure. User specified "clobbered" registers are
always protected by the compiler.

* It is the user's responsiiiity to assure that the stack, registers, and
system data structures are accessed correctly by the code. For cxampie,
the compiler does not check whether in mode parameters are modified
by code statements. The compiler also does not check whether other
registers are clobbered besides those specified by the user.

2.1.4.2. Ada LRM definitions for machine code insertions

Section 13.8 of the Ada Language Reference Manual defines requirements and
syntax for Ada machine code insertions.

A machine code insertion is achieved in Ada by calling a procedure containing
code statements. A procedure body, if it contains a code s'-tement, may contain
onhv code statements; no other Ada statement, such as return, is allowed.

A code statement is a fl~ty qualified record aggregate. The base type of the
aggregate must be defined in the predefined package MachineCode. Although
restrictions may c p!aced on the expressions allowed as components of the
aggregate, it has the same syntax as that which would appear on the right hand
side of a record assignment.

2.1.4.2.1. Machine code insertion procedures

The declarative part of a machine code insertion procedure may contain only a
use clause; no local data may be defined.

An MCI procedure can have any number of parameters of any mode. The mode
(in, out, or in out) is iot enforced by the compiler, but must be observed by the
user. If the user specifies that the parameters are passed in specific registers,
then those parameters should be accessed through those registers. Note.- All

30 NOTE-1715-VI.I (SUN4) 26OCT90

SUN-4 Validation Information

parameters must be passed in registers. If the user does not indicate the passing
parameters in registers, the parameters are passed using the same conventions as
for normal Ada subprograms (refer to Section 2.1.3.2). 'The offset of that
parameter from the frame pointer can be obtained using 'Offset. If the MCI
procedure is inlined, but has not specified the parameters in registers, then the
actuals are evaluated and placed on the caller stack, where again 'Offset can be
used to get the displacement from the frame pointer.

If any compiler-generated parameters exist, such as a descriptor for an
unconstrained array, the user must know its format and location as well.

Please note that this mechanism allows uniform reference to the parameters if the
MCI procedure is inlined, and if register parameters are specified. Also note that
the most efficient usage of the MCL instructions will be obtained by using Inline
and register parameters.

2.1.4.2.2. Implementation-dependent attribute to access Ada objects

For MCI users who need to access Ada objects other than register parameters,
two attributes are utilized, 'Address and 'Offset. -These attributes allow you to
access compiler information on the location of variables. 'Address is a language-
defined attribute that has implementation-specific characteristcs; 'Offset is an
implementation-defined attribute.

'Address This attribute is normally used to access some global control
variable or composite structure. 'Address is also used in
conjunction with local labels. See details in the following
sections on usage of 'Address in the actual code statements.
Note that no special code is generated automatically- this
attri'bute simply provides the appropriate value for the
absolute address.

'Offset This attribute yields the offset of an Ada object from its parent
frame. For a global object, this is the offset from the base of
the compilation unit data section (although 'Address is the
preferred way to access globals). For objects inside
subprograms, 'Offset yields the offset in the local stack frame.
This is primarily for usage with parameters that are not passed
in registers. A secondary usage is to code an MCI "function"
whet , an Ada function is wrapped around an MCI procedure
declaration and then calls the MCI procedure with inlining.
provides an efficient way to overcome the language Limitation
that MCI subprograms can only be procedures.

NOTE-!7i5-.IStA'4) 260CT90 31

SUN-4 Validation Information

2.1.4.3. Code statements

2.1.4.3.1. Requirements

A code statement is an aggregate of a record type specified in package
Machine Code, which is implementation supplied and cannot be modified by the
user (similar to package System). in general, no limitations are placed on the
expressions appearing in a record aggregate; in particular, they do not have to be
static. In the case of machine code aggregates, however, the components of an
aggregate do have to be static. The exception is 'Address, since it is part of the
compiled code prior to run time.

Code statement aggregates are treated very much like other record aggregates,
with the additional restriction that the component expressions must be static and
yield a literal of a discrete type. This limits each component in the aggregate to
one of

- an enumeration literal,
- an integer literal,
- a constant or named number,
- an object_name'Address for an object.
- an object_name'Offset, or
- an expression consisting of the above and using only predefined

operators.

This list is consistent with that given in Section 4.9 of the LRM, except that

- user-defined functions cannot appear,
- implementation-defined attributes are allowed, and
- each expression must be statically computed (not just computable).

A compile-time error message is issued if any of these conditions are violated.

2.1.4.3.2. Syntax

The LRM defines Machine Code as the package where the code statement
record type(s) are declared. In addition, the package defines enumeration types
describing the target registers and addressing modes. Package Machine Code
does not have a body. The specification of this package is provided in a file in the
product run-time source files directory. and it is printed in the next section.

All possible code statements are defined by a single variant record. MCI, with one
discriminant, the assembly instruction. In general, a code statement is of the form

MCI'(<opcode>,<operand>,...,<operand>);

where < opcode > is an enumeral of the type InstructionName and < operand > is
an attribute of the MCI record specification. The number of operands depends

32 NOTE-171S-VI.i (SUN4) 26OCT90

SUN-4 Validation Information

on the instruction.

An MCI record takes as a discriminant one of a number of instruction names.
The type MCI is defined near the end of package Machine-Code, which is listed
in the product documentation.

NOTE-1715-Vi.I(SUN4) 26OCT90 33

SUN-4 Validation Information

2.1.5. Interrupts

The Ada LRM provides for interrupt handlers written in Ada. The approach is to
associate a task entry with an interrupt source by means of an address clause.
Such an entry is referred to as an interupt entry (LRM 13.5.1). A task containing
an interrupt entry is referred to in this section as an intempt task. When an
interrupt occurs, it is handled as if an entry call had been made by the hardware to
the entry associated with that interrupt. For example (according to the LRM)

task Interrupt-Handler is
entry Done;
for Done use at 16#40#; -- Assume that System.Address

-- is an integer type
end Interrupt Handler;

In this example, the interrupt entry Done is associated with the interrupt vector at
hexadecimal address 40. When a physical device causes an interrupt through that
vector, an entry call is made to Done, which can handle the interrupt in an accept
statement.

The AEE provides the facilities required by the LRM and goes substantially
beyond those requirements to meet the needs of realistic systems. This section
describes the interrupt-related facilities of the AEE and contrasts them with the
minimal mechanism defined by the LRM.

2.1.5.1. Programmer interface

Package Interrupt, in the run-time sublibrary, provides types and subprograms
that allow you to define the source of an interrupt. The remainder of this section
describes the types and subprograms provided by the package Interrupt.

In the TeleGen2 approach, the address clause designating an interrupt entry refers
to the address of an interrupt descriptor rather than to the address of the physical
interrupt source. The Interrupt package provides a private descriptor type for this
purpose.

type Descriptor is private;

If a suitable descriptor object of this type is declared, the LRM example then
appears as follows.

Device: Interrupt. Descriptor;

task ItiterruptHandler is
entry Done;
for Done use at Device'Address;

end InterruptHandler;

34 NOTE.I715-V1.1 (SUNA' 260CT9

SUN-4 Validation Information

2.1.5.1.1. Software interrupts

For software interrupts, package Interrupt provides a type to represent the signal
associated with the interrupt.

subtype InterruptIdentification is Signal;

The function Source takes a parameter designating a signaL allocates an interrupt
descriptor, associates that descriptor with the vector address, and returns the
descriptor.

function Source (Vector: in InterruptIdentification) return Descriptor

A call to this function can be used to initialize a Descriptor object, such as
Actuator in the following example.

Actuator: Interrupt.Descriptor := Interrupt.Source (Interrupt.Sighup);

2.1.5.1.2. A simple example

In the following example, a user-implemented InterruptSetup package localizes
the descriptor objects and their software interrupt sources.

with Interrupt;
package InterruptSetup is

Actuator: Interrupt.Descriptor :-
Interrupt.Source('-terrupt. Sighup);

end Interrupt Setup;

A program might then contain a driver task that provides the handler (interrupt
entry) for this interrupt.

with Interrupt_Setup;
procedure Example Application is

task Actuator Driver is
entry Device Ready;
for DeviceReady use at Interrupt Setup.Actuator'Address;

end ActuatorDriver;

begin
null;

end Example Application;

The entry Device Ready handles the software interrupt when the signal is
delivered to the program.

NOTE-1715-VI.ISUN4) 26OCT90 3;

SUN-4 Validation Information

2.1.5.1.3. Interrupts as conditional entry calls

The LRM allows the entry call representing the interrupt to be in an ordinary
entry call, a timed entry call, or a conditional entry call. In TeleGen2's interrupt
facility, interrupts are represented by conditional entry calls. If the interrupt
handler is not ready to service the interrupt when it occurs, a backup handler in a
failure task is invoked instead. Here is how this conditional entry call to the
preceding example would look if represented in Ada.

select
ActuatorDriver.DeviceReady;

else
Failure.DeviceReadyHandler;

end select;

Failure entries are handled as interrupt entries in that they are associated through
address clauses with failure handlers. The package Interrupt provides the relevant
type.

type FailureDescriptor is private;

An additional version of the Source function allows a program to explicitly
designate a failure handler when an interrupt descriptor is created.

function Source (Vector: Interrupt-Identification;
Failure: Failure-Descriptor)
return Descriptor;

When no explicit failure handler is designated (as in the versions of the function
Source introduced earlier), a default failure handler defined within the Interrupt
package is assigned to the newly created interrupt descriptor. The default failure
handler will call the procedure TDInterrupt Manager.UnhandledInterrupt in
the environment module.

This procedure is a subunit of package TD InterruptManager and can be
replaced by the user. The source for the subunit can be found in the run-time
library source files directory. The default implementation calls the unix "-psignal"
utility to print a message indicating that a signal was delivered to the process but
not handled.

The following is an example of a user-defined failure handler declaration.

with Interrupt;

package Failure-Example is

FailureDesc Interrupt.FailureDescriptor;
PrimaryDesc Interrupt.Descriptor

:- Interrupt.Source(Interrupt.Sighup. FailureDesc)

task Failure Handler is

36 NOTE-.715-V|.I (SUN4) 26OCT90

SUN-4 Validation Information

entry UnhandledInterrupt;
for Unhandled Interrupt use at FailureDesc'Address;

end FailureHandler;

task Primary Handler is
entry InterruptOccurred;
for Interrupt Occurred use at Primary Desc'Address;

end Primary_Handler;

end FailureExample;

package body Failure-Example is

task body Failure-Handler is
begin

loop
accept UnhandledInterrupt do

-- actions for handling interrupt when primary server is
-- unavailable

end accept;
end loop;

end Failure Handler;

task body PrimaryHandler is
begin

loop
accept Interrupt_Occurred do

-- actions required to handle interrupt
end InterruptOccurred;

end loop;
end Primary-Handler;

end Failure-Example;

2.1.5.1.4. Changing the failure handler

The Interrupt package provides a procedure Configure that allows the association
between an interrupt descriptor and a failure handler to be changed. The user
can therefore have customized failure handlers, such as a failure handler for
startups that ignores interrupts and a real failure handler for run-time failures.
The failure handler can be changed as many times as necessary. Procedure
Configure has the following interface.

procedure Configure (Which: Descriptor;
Failure: Failure-Descriptor);

2.1.5.1.5. Optimized interrupt entries

The facilities described so far are sufficient to implement interrupt handlers in
Ada. However. the process of handling an interrupt in this fashion is potentialy
complicated and time-consuming. Ada does not restrict the language features that

NOTE-I715-VI. I(SUN4) 260CT90 37

SUN-4 Validation Information

can be used inside the body of an accept statement. Therefore, an interrupt
handler could contain entry calls to other tasks or even delay statements.
Furthermore, in the general case, a full Ada context switch must be made to the
interrupt handler task and then a full context switch back to the interrupted task
(or potentially some other ready task) when the rendezvous is completed.

In some cases, the properties of fully general Ada interrupt handlers may suit the
intended application. In other cases, however, it may be necessary to trade a
reduction in generality for an increase in performance in order to meet
application requirements. The AEE addresses these needs by allowing
programmers to select one of two optimized constructs by which task entries can
handle interrupts.

synchronization The interrupt serves only to cause the handler task to
optimizations become ready to execute without requiring an actual

context switch as part of servicing the interrupt.

tunction-mapped All processing associated with handling the interrupt
optimizations occurs during the rendezvous (in the body of the accept

statement) and no interactions with other tasks occur
during the rendezvous.

2.1.5.1.6. Synchronization optimizations

A synchronization optimization corresponds to having an empty accept body that
simply puts the interrupt handler on a ready queue. This optimization is always
applied when appropriate, without explicit programmer request. In the following
example, occurrence of the sighup signal causes ActuatorDriver to be placed in
the ready queue.

task body Actuator Driver is
begin

accept Device-Ready;
-- Actions responding to the device-ready signal

end Actuator Driver;

ActuatorDriver is activated when its priority is higher than the priorities of

competing tasks.

2.1.5.1.7. Function-mapped optimizations

In a function-mapped optimization, all the interrupt handling work is done inside
the accept body during the rendezvous. When this optimization is invoked, the
compiler maps the accept body into a function that can be directly called from the
signal handler. This kind of optimization is restricted to accept statements that do
not interact with other tasks during the rendezvous. The following fragment
illustrates the use of pragma Interrupt.

38 NOTE-1715-VI.I (SUN4) 26OCT90

SUN-4 Validation Information

task body Actuator-Driver is
begin
pragma Interrupt (FunctionMapping);
accept DeviceReady do
-- Actions responding to the DeviceReady interrupt.

end Device Ready;
end Actuator-Driver;

The pragma Interrupt applies to the statement immediately following it, which
must be one of the following three constructs:

1. A simple accept statement, as described in the preceding.

2. A while loop directly enclosing only a single accept statement, discussed
in the following.

3. A select statement that includes an interrupt accept alternative.

For reasons related to the loop optimization discussed in the following, the server
task with a function-mapped accept cannot have a user-specified priority.

The body of the accept statement handling the interrupt is executed in the
environment of the interrupted current task. Note that the function-mapped body
acts much like a classic interrupt procedure and requires no context switch even
though it acts in the proper lexical environment.

The interrupt server often executes a small or null amount of non-handler code
between accepting interrupt entry calls. The interrupt support is designed to take
advantage of this occurrence to minimize latency in the driver and execute another
handler with the minimum number of task switches. The best special case for this
is an accept statement directly embedded inside a loop. For instance, the actuator
driver is presented with a buffer of actuator commands. The driver contains a
loop that waits on successive occurrences of the Device-Ready interrupt and
issues commands out of the buffer. The function-mapping optimization caters to
this possibility as well.

The following fragment shows the second class of constructs to which the
function-mapping optimization can be applied-a while loop that contains only an
accept statement for an interrupt entry. The accept statement must meet the
constraint described earlier (i.e., contain no interactions with other tasks).

task body ActuatorDriver is
begin

pragma Interrupt (Function-mapping);
while MoreCommands loop

accept Device-Ready do
-- Issue the next command

NOTE-1715-Vi.I (SUN4) 26OCT96 39

SUN-4 Validation Information

end Device-Ready;
end loop;

end Actuator-Driver;

2.1.5.1.8 Rationale for function-mapped optimizations

This section explains why the accept body is mapped into a function rather than
into a procedure. The mapping is done so that the value of the loop control
expression can be returned as the value of the function. The function value
therefore indicates whether there will be another cycle through the loop to wait
again for a Device Ready interrupt. If the function value is True, the loop
continues; if the value is False, the loop terminates.

This information about loop continuation can be used productively in the interrupt
handling process. If the loop is to continue, it is highly desirable to return as
quickly as possible to the interrupt accept statement so as to be ready for the next
interrupt. Therefore, the rescheduling that ordinarily occurs on exit from an
accept body is bypassed in this case. That is, the program continues executing at
the priority of the interrupt handler until it reaches the accept statement again.
Recall that the Ada LRM specifies that interrupt handler priorities are always
more urgent than any other priorities expressible in Ada.

On the other hand, if the loop is to completi after the execution of the accept
body, then the rescheduling on exit from the accept body is necessary and is done.
These effects of the function value on the interrupt handling process are explained
further in the next section.

A function-mapped optimization for a simple accept statement, that is, one not in
a while loop, produces a function that always returns False. Such an optimization
can dramatically reduce the time required to begin executing the interrupt
handler. After the function-mapped routine has handled the immediate interrupt
processing, it causes a rescheduling event to activate the server task. This
preemption is justified by the assumption that only small amounts of non-interrupt
code will need to be executed before another handler will be reached. This
approach expedites reaching the next occurrence of the handler, which reduces
the period in which interrupts from the device must be delivered to the failure
handler.

This subtle treatment of priorities in order to improve interrupt throughput is only
legal if no explicit pragma Priority applies to the interrupt handler task. In that
case, the LRM allows the implementation to determine the priority of that task,
and this optimization is legal. If an explicit priority does apply to an interrupt
handling task, this optimization pragma is ignored by the compiler.

40 NOTE-1715-VI.I (SUN4) 26OCT90

SUN-4 Validation Information

2.1.5.2. Rationale behind the TeleGen2 interrupt strategy

This section discusses several of the important attributes of the TeleGen2
approach to interrupt handling and the benefits that result from that approach.
The attributes discussed are the following

" Use of interrupt descriptors in address clauses instead of physical vector
addresses.

" Treatment of interrupts as conditional entry calls.

" Provision for optimized interrupt entry calls.

2.1.5.2.1. Interrupt descriptors

This fundamental aspect of the TeleGen2 approach, in addition to having its own
merits, is crucial to supporting the other attributes without making Ada language
extensions. The key result of the descriptor approach is to allow separation
between the declaration of the entry (and the associated address clause) from the
specification of the corresponding interrupt source. This separation:

" Promotes portability and maintainability of interrupt software because
the physical interrupt source can be hidden from the driver (interrupt
handler task), which usually does not need to depend on that
information.

* Eases the construction of test frames for interrupt software in either
host environments or special developmental target configurations.
During testing, different vector addresses or software interrupts may be
substituted for hardware interrupts. Like the LRM approach, the
TeleGen2 approach preserves the option of calling interrupt entries
from ordinary Ada tasks, which may be simulating the operation of
hardware.

* Allows delayed associations between handler tasks and interrupt
sources, such as to ensure that hardware can be put in a suitable state
before the association occurs.

2.1.5.2.2. Interrupts as conditional entry calls

The obvious benefit of this approach is greater robustness in the face of hardware
failures (such as unanticipated interrupts) or software failures (such as drivers
that are not engineered properly for interrupt rates that occur in practice).
Default failure handlers are automatically provided if programmers choose not to
specify failure handlers explicitly. Also, failure handlers for a given interrupt can
be dynamically changed as the situation warrants.

NOTE-1715-V..I (SUN4) 26OCT90 41

SUN-4 Validation Information

2.2. Annotations

TeleGen2 compiles the full ANSI Ada language as defined by the Reference
Manual for the Ada Programming Language (LRM) (ANSI/MIL-STD. 1815A).
The following sections describe the portions of the language that are designated
by the LRM as implementation dependent for the compiler and'run-time
environment.

The information is presented in the order in which it appears in the LRM. In
general, however, only those language features that are not fully implemented by
the current release of TeleGen2 or that require clarification are included. The
features that are optional or that are implementation dependent, on the other
hand, are described in detail. Particularly relevant are the sections annotating
LRM Chapter 13 (Representation Clauses and Implementation-Dependent
Features) and Appendix F (Implementation-Dependent Characteristics).

2.2.1. LRM Chapter 2 - Lexical Elements

[LRM 2.1] Character Set

The host and target character set is the ASCII character set.

[LRM 2.2] Lexical Elements, Separators, and Delimiters

The maximum number of characters on an Ada source line is 200.

[LRM 2.8] Pragmas

TeleGen2 implements all language-defined pragmas except pragma Optimize. If
pragma Optimize is included in Ada source, the pragrna will have no effect.
Optimization is implemented by using pragma Inline and the optimizer.

Limited support is available for pragmas MemorySize, Storage Unit, and
SystemName; that is, these pragmas are allowed if the argument is the same as
the value specified in the System package.

Pragmas Page and List are supported in the context of source/error listings, as
described in the Compiler/Linker chapter of the TeIeGen2 User Guide.

2.2.2. LRM Chapter 3 - Declarations and Types

[LRM 3.2.1] Object Declarations

TeleGen2 does not produce warning messages about the use of uninitialized
variables. The compiler will not reject a program merely because it contains such
variables.

42 NOTE.1715-V1.I (SUN4) 26OCT90

SUN-4 Validation Ifrsormation

[LRM 3.5.1] Enumeration Types

The maximum number of elements in an enumeration type is 2147483647 (the
value of System.MaxInt). This maximum can be realized only if rf±neration of
the image table for the type has been deferred, and there are no references in the
program that would cause the image table to be generated. Deferral of image
table generation for an enumeration type, P, is requested by the statement

pragma Images (P, Deferred);

Section 2.2.8.1, "Implementation-defined pragmas," describes more about pragrna
Images.

[LRM 3.5.4] Integer Types

There are three predefined integer types: Short Short Integer, ShortInteger,
and Integer. The attributes of these types are shown in TAble 6. Note that using
explicit integer type definitions instead of predefined integer types should result in
more portable code.

Table 6. Attributes of predefined integer types -

Attribute -_ Type
Short Shor: Integer Short Integer Integer

'First -128 -32768 -2147483648
'Last 127 32767 2147483647
'Size 8 16 32
'Width 14 16 1

[LRM 3.5.8] Operations of Floating Point Types

There are two predefined floating point types: Float and LongFloat. The
attributes of types Float and LongFloat are shown in Table 7. This floating point
facility is based on the IEEE standard for 32-bit and 64-bit numbers. Note that
using explicit real type definitions should lead to more portable coje.

The type Short_Float is not i,-plemented.

NOTE-1715- 'N4) 26OCT90 43

SUN-4 Validation Information

Table 7. Attributes of predefined floating point types

Attribute Type
Float Long Float

'Machine Overflows TRUE TRUE
'Machine-Rounds TRUE TRUE
'Machine-Radix 2 2
'Machine-Mantissa 24 53
'Machine-Emax 128 1024
'Machine-Emin -125 -1021
'Mantissa 21 51
'Digits 6 15
'Size 32 64

'Emax 84 204
'Safe Emax 125 1021
'Epsilon 9.53674E-07 8.881784197001251z- 16
'Safe Large 4.25353E + 37 2.24711641857789E + 307
'Safe Small 1. 17549E-38 2.22507385850720E-308
'Large 1.93428E + 25 2.57110087081438E + 61
'Small 2.58494E-26 1.94469227433161E-62

2.2.3. LRM Chapter 4 - Names and Expressions

[LRM 4.10] Universal Expressions

There is no limit on the accuracy of real literal expressions. Real literal
expressions are computed using an arbitrary-precision arithmetic package.

2.2.4. LRM Chapter 9 - Tasks

[LRM 9.6] Delay Statements, Duration, and Time

This implementation uses 32-bit fixed point numbers to represent the type
Duration. The attributes of the type Durati-in are shown in Table 8.

Table 8. Attributes of type Duration

Attribute Value
'Delta 2**(-14)
First -86400.0
'List 86,400.0

44 NOTE-1715-VI.! (SUN4) 26OC90

SUN-4 Validation Information

[LRM 9.8] Priorities

Sixty-four levels of priority are available to associate with tasks through pragma
Priority. The predefined subtype Priority is specified in the package System as

s'btype Priority is Integer range 0..63;

Currently the priority assigned to tasks without a pragma Priority specification is
31; that is,

(System.Priority'First + System.Priority'Last) / 2

[LRM 9.11] Shared Variables

The restrictions on shared variables are only those specified in the LRM.

2.2.5. LRM Chapter 10 - Program Structure and Compilation
Issues

[LRM 10.1] Compilation Units - Ubrary Units

All main programs are assumed to be parameterless procedures or functions that
return an integer result type.

2.2.6. LRM Chapter 11 - Exceptions

[LRM 11.1] Exception Declarations

Numeric Error is raised for integer or floating point overflow and for divide-by-
zero situations. Floating point underflow yields a result of zero without raising an
exception.

Program-Error and StorageError are raised by those situations specified in
LRM Section 11.1.

NOTE-171 I(SIN4) 26)CT90 45

SUN-4 Validation Information

2.2.7. LRM Chapter 13 - Implementation-Dependent Features

The current release of TeleGen2 supports most LRM Chapter 13 facilities, as
summarized below. The sections that follow the summary describe the LRM
Chapter 13 facilities that are either not implemented or that require explanation.
Facilities imp emented exactly as described in the LRM are not mentioned.

13.1 Representation clauses Supported, except as indicated in the following (LRM
13.2-13.5). Pragma Pack is supported except for
dynamically sized components.

13.2 Length clauses Supported:
'Size
'Storage-Size for collections
'Storage Size for task activation
'Small for fixed-point types

13.3 Enumeration Supported except for type Boolean or types derived from
representation clauses Boolean. Users can easily define a non-Boolean

enumeration type and assign a representation clause to it.

13.4 Record representation Supported except for records with dynamically sized
clauses components.

13.5 Address clauses Supported for: objects (including task objects).
Not supported for: packages, subprograms, or task units.

13.5.1 Interrupts For interrupt entries, the address of a TeleGen2-defined
interrupt descriptor can be given.

13.7 Package System Conforms closely to the LRM model. The specification is
Listed in Section 2.2.7.7.

13.7.1 System-dependent Defined in the specification of package System (Section
named numbers 2.2.7.7).

13.7.2 Representation Implemented as described in the LRM except that:
attributes 'Address for packages is unsupported.

'Address of a constant yields a null address.

13.7.3 Representation Shown in Table 7 in Section 2.2.2.
attributes of real types

13.8 Machine code insertions Fully supported. The TeleGen2 implementation defines
an attribute, 'Offset, that, along with the language-defined
attribute 'Address, allows addresses of objects and offsets
of data items to be specified in stack frames. Section 2.1.4,
"Machine code insertions," describes the implementation

46 NOTE-1715-Vi.I(SUN4) 26OCT90

SUN-4 Validation Information

and use of machine code insertions.

13.9 Interface to other Pragna Interface is supported for assembly, FORTRAN,
languages Pascal, and C. Section 2.1.3, "Pragma Interface," describes

the implementation and use of pragma Interface.

13. 10 Unchecked Supported except as noted in the following (LRM 13.10.2).
programming

13.10.2 Unchecked type Supported except for the case where the destination type is
conversions an unconstrained record or array.

NOTE-1715-VI.I(SUN4) 26OCT90 47

SUN-4 Validation Information

2.2.7.1. The TeleGen2 Implementation of pragma Pack

Pragma Pack with Boolean arrays

You can pack Boolean arrays by the use of pragma Pack. The compiler allocates
8 bits for a single Boolean, 8 bits for a component of an unpacked Boolean array,
and 1 bit for a component of a packed Boolean array. The first figure illustrates
the layout of an unpacked Boolean array; the figure that follows it illustrates a
packed Boolean array.

Unpacked Boolean array

UnpackedBoolArrType is array (Natural range 0..1) of Boolean
UBErr: UnpackedBoolArrType :- (True,False);

Packed Boolean array

PackedBoolArr_Type is array (Natural range 0..6) of Boolean;
pragma Pack (PackedBool Arr Type);
P_B Arr: PackedBool ArrType :=
(PB Arr(O) -> True, P_BArr(5) -> True, others -> False);

MSB LSB

Bit: 15 0

Element: 0 1 2 3 4 5 6 (unused)

Figure 1. Packed and unpacked Boolean arrays

2.2.7.2. [LRM 13.2] Length Clauses

A length clause specifies an amount of storage associated with a type. The
sections that follow describe how length clauses are supported in this
implementation of TeleGen2 and how to use length clauses effectively within the
context of TeleGen2.

2.2.7.2.1. (a) Specifying size: T'Size

The prefix T denotes an object. The size specification must allow for enough
storage space to accommodate every allowable value of these objects. The
constraints on the object and on its subcomponents (if any) must be static. For an
unconstrained array type, the index subtpes must also be static.

48 NOTE.1715-VI.!(SUN,) 26OCT'%

SUN-4 Validation Information

For this implementation, Min Size is the smallest number of bits logically
required to hold any value in the range; no sign bit is allocated for non-negative
ranges. Biased representations are not supported; e.g., a range of 100 .. 101
requires 7 bits, not 1.

Caution: In the current release, using a size clause for a aiscrete type may
cause inefficient code to be generated. For example, given

type Nibble is range 0 .. 15;
for Nibble'Size use 4;

each object of type Nibble will occupy only 4 bits, and relatively
expensive bit-field instructions will be used for operations on
Nibbles. (A single declared object of type Nibble will be aligned
on a storage-unit boundary, however.)

For floating-point and access types, a size clause has no effect on the
representation.

For composite (array or record) types, a size clause acts like an implicit pragma
Pack, followed by a check that the resulting size is no greater than the requested
size. Note that the composite type will be packed whether or not it is necessary to
meet the requested size. The size clause for a record must be a multiple of storage
units.

2.2.7.2.2. (b) Specifying collection size: T'StorageSize

A collection is the entire set of objects created by evaluation of allocators for an
access type.

The prefix T denotes an access type. Given an access type Acc_Type, a length
clause for a collection allocated using AccType objects might look like the
following.

for Acc_Type'StorageSize use 64;

In TeleGen2, the above length clause allocates from the heap 64 bytes of
contiguous memory for objects created by AccType allocators. Every time a new
object is created, it is put into the remaining free part of the memory allocated for
the collection, provided there is adequate space remaining in the collection.
Otherwise, a StorageError is raised.

Keeping the objects in a contiguous span of memory allows system storage
reclamation routines to deallocate and manage the space when it is no longer
needed. Pragma Controlled can prevent the deallocation of a specified collection
of objects. Objects can be explicitly deallocated by calling the
Unchecked Deallocation procedure instantiated for the object and access types.

NOTT-1715-VI.USUN4) 260CT90 49

SUN-4 Validation Information

Given an access type which does not have a length clause specified, the
'StorageSize attribute will return a value of 0.

Header record

In this configuration of TeleGen2 information needed to manage storage blocks
in a collection is stored in a collection header adjacent to the collection, in
addition to the value specified in the length clause.

Minimum Size

When an object is deallocated from a collection, a record containing link and size
information for the space is put in the deallocated space as a placeholder. This
enables the space to be located and reallocated. The space allocated for an object
must therefore have the minimum size needed for the placeholder record. For
this TeleGen2 configuration, this minimum size is the sum of the sizes of an access
type and an integer type.

Dynamically Sized Objects

When a dynamically-sized object is allocated, a record accompanies it to keep
track of the size of the object for when it is put on the free list. The record is used
to sst the size field in the placeholder record since compaction may modify the
value.

Size Expressions

Instead of specifying an integer in the length clause, you can use an expression to
specify storage for a given number of objects. For example, suppose an access
type DictRef references a record Symbol_Rec containing five fields:

type Tag is String(l..8);

type SymbolRec;
type Dict Ref is access Symbol_Rec;

type SymbolRec is
record

Left Dict Ref;
Right : Dict Ref;
Parent Dict Ref;
Value Integer;
Key Tag;

end record;

To allocate 10 Symbol_Rec objects, you could use an expression such as

for DictRef'StorageSize use ((SymbolRec'Size * lO)+X);

50 NOTE-1715-VI.I(SUN4) 26OCT0

SUN-4 Validation Information

where X is the extra space needed for the header record. (Symbol_Rec is
obviously larger than tht minimum size required, which is equivalent to one access
type and one integer.)

In another implementation, SymbolRec might be a variant record that uses a
variable length for the string Key.

type SymbolRec(Last : Natural :-0) is
record

Left Dict Ref;
Right Dict Ref;
Parent Dict Ref;
Value Integer;
Key String(l..Last);

end record;

In this case, SymbolRec objects would be dynamicaly sized depending on the
length of the string for Key. Using a length clause for Dict Ref as above would
then be illegal since SymbolRec'Size cannot be consistently determined. A
length clause for Symbol Rec objects, as described in (a) above, would be illegal
since not all components of Symbol_Rec are static. As defined, a Symbol Rec
object could conceivably have a Key string with Integer'Last number of characters.

2.2.7.2.3. (c) Specifying storage for task activation: T'StorageSize

The prefix T denotes a task type. A length clause for a task type specifies the
number of storage units to be reserved for an activation of a task of the type.

2.2.7.2.4. (d) Specifying 'Small for fixed point types: T'Small

Small is the absolute precision (a positive real number) while the prefix T denotes
the first named subtype of a fixed point type. Elaboration of a real type defines a
set of model numbers. T'Small is generally a power of 2, and model numbers are
generally multiples of this number so that they can be represented exactly on a
binary machine. All other real values are defined in terms of model numbers
having explicit error bounds. For example, consid:'r a type Fixed.

type Fixed is delta 0.25 range -10.0 .. 10.0;

Fixed'Small - 0.25 -A power of2

3.0 - 12 * 0.25 - A model number but not a power of 2

The value of the expression of the length clause must not be greater than the delta
of the first named subtype. The effect of the length clause is to use this value of

'Small for the representation of values of the fixed point base type. The length
clause thereby also affects the amount of storage for objects that have this type.

NOTE-1715-VI.ISUN4) 26(CT90 51

SUN-4 Validation Information

If a length clause is not used, for model numbers defined by a fixed point
constraint, the value of Small is defined as the largest power of two that is not
greater than the delta of the fixed accuracy definition.

If a length clause is used, the model numbers are multiples of the specified value
for Small. For this configuration of TeleGen2, the specified value must be
(mathematically) equal to either an exact integer or the reciprocal of an exact
integer.

Examples of model numbers:

1.0, 2.0, 3.0, 4.0, -- legal
0.5, 1.0/3.0, 0.25, 1.0/3600.0 -- legal
2.5, 2.0/3.0, 0.3 -- illegal

2.2.7.3. [LRM 13.3] Enumeration Representation Clauses

Enumeration representation clauses are supported, except for Boolean types.

Note: Be aware that use of such clauses may introduce considerable overhead
into many operations that involve the associated type. Such operations
include indexing an array by an element of the type, or computing the
'Pos, 'Pred, or 'Succ attributes for values of the type.

2.2.7.4. [LRM 13.4] Record Representation Clauses

Since record components are subject to rearrangement by the compiler, you must
use representation clauses to guarantee a particular layout. Such clauses are
subject to the following constraints:

" Each component of the record must be specified with a component
clause.

" The alignment of the record is restricted to mods 1, 2, and 4; byte, word,
and long-word aligned, respectively.

• Bits are ordered with bit zero as the most significant bit.

" Floating point and fixed point components may not cross word
boundaries.

Here is a simple example showing how the layout of a record can be specified by
using representation clauses.

package Repspec_Example is
Bits constant := 1;
Word constant :- 4;

52 NOTE-1715-VI.I (SUN4) 26OCT90

SUN-4 Validation Information

type Five is range 0 .. 16#lF#;
type Seventeen is range 0 .. 16#1FFFF#;
type Nine is range 0 .. 511;

type RecordLayoutType is record
Elementl Seventeen;
Element2 Five;
Element3 Boolean;
Element4 Nine;

end record;

for RecordLayoutType use record at mod 2;
Elementl at O*Word range 0 .. 16;
Element2 at 0*Word range 17 .. 21;
Element3 at O*Word range 22 .. 22;
Element4 at O*Word range 23 .. 31;

end record;

RecordLayout : Record LayoutType;
end Repspec Example;

2.2.7.5. [LRM 13.5] Address Clauses

The Ada compiler supports address clauses for objects and entries. Address
clauses for packages and task units are not supported.

Address clauses for objects can be used to access hardware memory registers or
other known memory locations. The use of address clauses is affected by the fact
that the System.Address type is private. For the SUN-4 target, literal addresses
are represented as integers, so an unchecked conversion must be applied to these
literals before they can be passed as parameters of type System.Address. The
examples in this document often assume the following declaration:

function Addr is new UncheckedConversion (Integer,System.Address);

This function is invoked when an address literal needs to be converted to an
Address type. Naturally, user programs can implement a different convention.
The following is a sample program that uses address clauses and this convention.
Package System must be explicitly withed when using address clauses.

with System;
with Unchecked Conversion;
procedure HardwareAccess is

function Addr is new Unchecked Conversion (Integer, System.Address);
Hardware Register : integer;
for Hardware-Register use at Addr (16#FFOOOO#);

begin

end HardwareAccess;

When using an address clause for an object with an initial value, the address
clause should immediately follow the object declaration.

NOTE-I715-Vi.I SUN4) 26OCT90 53

SUN-4 Validation Information

ObJ: SomeType :- <init-expr>;
for ObJ use at <addrexpr>;

This sequence allows the compiler to perform an optimization wherein it
generates code to evaluate the <addr expr> as part of the elaboration of the
declaration of the object. The expression < init expr > will then be evaluated and
assigned directly to the object, which is stored at <addr expr>. If another
declaration had intervened between the object declaration and the address clause,
the compiler would have had to create a temporary object to hold the initialization
value before copying it into the object when the address clause is elaborated. If
the object were a large composite type, the need to use a temporary could result
in considerable overhead in both time and space. To optimize your applications,
therefore, you are encouraged to place address clauses immediately after the
relevant object declaration.

As mentioned above, arrays containing components that can be allocated in a
signed or unsigned byte (8 bits) are packed, one component per byte. The
following example indicates how these facts allow access to hardware byte
registers:

with System;
with Unchecked Conversion;

procedure Main is
function Addr is new UncheckedConversion(Integer, System.Address);
type Byte is range -128..127;
HWRegs : array (0..1) of Byte;
for HWRegs use at Addr (16#FFF310#);

StatusByte : constant integer :- 0;
Next Block Request: constant integer :- 1;
Request Byte : Byte := 119;
Status : Byte;

begin
Status = HW Regs(Status Byte);
HWRegs(NextBlockRequest) := Request Byte;

end Main;

Two byte hardware registers are referenced in the example above. The status byte
is at location 16#FFF310# and the next block request byte is at location
16#FFF311#.

Function Addr takes an integer as its argument. Integer'Last is 16#7FFFFFFF#,
but there are certainly addresses greater than Integer'Last. Those addresses with
the high bit set, such as FFFAOOOO, cannot be represented as a positive integer.
Thus, for addresses with the high bit set, the address should be computed as the
negation of the 2's complement of the desired address. According to this method,
the correct representation of the sample address above would be
Addr(-16#00060000#).

54 NOTE-1715-VI.1(SUN4) 26OCT90

SUN-4 Validation Information

2.2.7.6. [LRM 13.6] Change of Representation

TeleGen2 supports changes of representation.

2.2.7.7. [LRM 13.Tj The Package System

The specification of TeleGen2's implementation of package System is presented in
the LRM Appendix F section at the end of this chapter, in Section 2.2.8.3.

2.2.7.8. [LRM 13.7.2] Representation Attributes

The compiler does not support 'Address for packages.

2.2.7.9. [LRM 13.7.3] Representation Attributes of Real Types

The representation attributes for the predefined floating point types are presented
in Table 7.

2.2.7.10. [LRM 13.8] Machine Code Insertions

Machine code insertions, an optional feature of the Ada language, are fully
supported in TeleGen2. Refer to Section 2.1.4, "Machine code insertions," for
information regarding their implementation and for examples of their use.

2.2.7.11. [LR'. 13.9] Interface to Other Languages

In TeleGen2, pragma Interface is supported for Assembly, C, FORTRAN, and
Pascal. Refer to Section 2.1.3, "Pragma Interface," for information on the use of
pragma Interface.

2.2.7.12. (LRM 13.10] Unchecked Programming

Unchecked Conversion is allowed except when the target data subtype is an
unconstrained array or record type. If the size of the source and target are static
and equal, the compiler will perform an exact copy of data from the source object
to the target object.

Where the sizes of source and target differ, the following rules apply.

* If the size of the source is greater than the size of the target, the high
address bits will be truncated in the conversion.

* If the size of the source is less than the size of the target, the source will
be moved into the low address bits of the target.

The compiler will issue a warning when Unchecked Conversion is instantiated
with unequal sizes for source and target subtype. UncheckedConversion
bet-xeen objects of different or non-static sizes will usually produce less efficient

NOTE-1715 S) 26OCT90 '

SUN-4 Validation Information

code and should be avoided, if possible.

56 NOTE-1715-VI.I(SUN4) 26OCT90

SUN-4 Validation Information

2.2.8. LRMV Appendix F for TeleGen2

The Ada language definition allows for certain target dependencies. These
dependencies must be described in tht reference manual for each implementation,
in an "Appendix F' that addresses each point listed in LRM Appendix F. The
summary in this section constitutes Appendix F for this implementation. Points
that require further clarification are addressed in sections referenced in the
summary.

Implementation-dependent Implementation-defined pragmas:
p112285 pragma, Comment pragma Linlaiame

pragma Images pragma, NoSuppres
pragma Interface Informatior pragma Preserve -Layc.
pragma Interrupt pragma 1uppressAll

Predefined pragrnas with implementation-dependent
characteristics:

Fully supported predefined pragnmas:

pragma Controlled pragma Priority
pragma Elaborate pragna Shared
pragma Inline pragma Suppress

Partly supported predefined pragmas:

pragma Memory-Size
pragma Storage Unit
pragma SystemName

Unsupported predefined pragrnas:

pragma Optimize

[mp lementation-dependent 'Extended-Image 'ExtendedFore
attributes 'Extended_-Value 'Subprogram-Value

'Extended-Wjidth 'Address
'ExtendedAft 'Offset (in MCI)
'ExtendedDigits

'Address is not supported for packages.

Package System Defined in Section 2.2.7.7.

Restrictions on representation Summari7 Ad in Section 2.2.7.
clauses

NOTE- 1715. I.f SUN4) Z60CT90

SUN-4 Validation Information

Implementation-generated None.
nam~s

Address clause expression An expression that appears in an oLject address clause is
interpretation interpreted as the address of the first storage unit of the

object.

Restrictions on unchecked Summarized in Section 2.2.7.
conversions

Implementation-depender: 1. In Text 10, type Count is defined as follows:
characteristics type Count is range 0..(2 ** 31)-2;
of the u/O packages

2. :n Text_10, type Field is defined as follows:

subtype Field is integer range 0..1000;

3. In Text_10, the Form parameter of procedures Create
and Open is not supported. (If you supply a Form
parameter with either procedure, it is ignored.)

4. The standard hbr",-' contains preinstantiated versions
of TextIO.IntegerIO for types Short Integer and
Integer, and of Text_IO.Float IO for types Float and
Long_Float. We suggest that you use the following to
eliminate multiple instantiations of these packages:

Integer_Text_IO Short Integer Text_10
FloatTextIO LongFloatText_IO

2.2.8.1. Implem(zntation-defined pragmas

There are eight implementation-defined pragmas in TeleGen2: pragmas
Comment, images, Interface Information, Interrupt, Linkname, NoSuppress,
PreserveLayout, and Suppress A,.

2.2.8.1.1. Pragma Comment

Pragma Comment is used for embedding a com,-cnt into the object code. The
syntax is:

pragma Comment (<stringliteral>);

where < strinc literal > represents the characters to be embedded in the object
code. Pragma Con,,-nt is allowed only within a declarative part or immediately
with i a package specification. Any number of comments may be entered into the
object code by use of praerno CorT ment.

58 N 'TE-1715 VI.IkSUN4) 26OCT90

SUN-4 Validation Information

2.2.8.1.2. Pragma Images

Pragma Images controls the creation and allocation of the image and index tables
for a specified enumeration type. The image table is a literal string consisting of
enumeration literals catenated together. The index table is an array of integers
specifying the location of each literal within the image table. The length of the
index table is therefore the sum of the lengths of the literals of the enumeration
type; the length of the index table is one greater than the number of literals.

The syntax of the pragma is:

pragma Images(<enumerationtype>, Deferred);

pragma Images(<enumerationtype>, Immediate);

The "Deferred" option saves space in the literal pool by not creating image and
index tables for an enumeration type unless the 'Image, 'Value, or 'Width attribute
for the type is used. If one of these attributes is used, the tables are generated in
the literal pool of the compilation unit in which the attribute appears. If the
attributes are used in more than one compilation unit, more than one set of tables
is generated, eliminating the benefits of deferring the table. In this case, the
"Immediate" option saves space by causing a single image table to be generated in
the literal pool of the unit declaring the enumeration type. For tie SUN-4,
"immediate" is the default option.

For a very large enumeration type, the length of the image table will exceed
Integer'Last (the maximum length of a string). In this case, using either

pragma Images(<enumeration_type>, Immediate);

or the 'Image, 'Value, or 'Width attribute for the type will result in an error
message from the compiler. Therefore, use the "Deferred" option, and avoid
using 'Image, 'Value, or 'Width in this case.

2.2.8.1.3. Pragma Interface-Information

The existing Ada interface pragma only allows specification of a language name.
In some cases, the optimizing code generator will need more information than can
be derived from the language name. Therefore there is a need for an
implementation-specific pragma, Interface-Information.

There is an extended usage of this pragma for machine code insertion procec(ares
that do not use a preceding pragrna Interface. Other than that case. a pramna
Interface Information is always associated with a pragma Interface. The pragra
has the tolluv, inc svntax:

N)TE-115-A I.I 4SN4) 26OCT90 59

SUN-4 Validation Information

pragma Interface-Information (Name,
Link Name,
Mechanism,
Parameters,
Clobbered Regs);

The parameters to the pragma are defined as follows:

Name :- ada subprogram identifier, required
Link Name :- string, default -
Mechanism :- string, default -
Parameters :- string, default -
ClobberedRegs :- string, default -

Scope of usage

Praema Interface Information is allowed wherever the standard pragma Interface
is allowed, and must be immediately preceded by a pragma Interface referring to
the same Ada subprogram, in the same declarative part or package specification;
no intervening declaration is allowed between the Interface and
Interface Information pragmas. Unlike pragma Interface, this pragma is not
allowed for overloaded subprograms (it specifies information that pertain to one
specific body of non-Ada code). If the user wishes to use overloaded Ada names,
the Interface Information pragma may be applied to unique renaming
declarations.

The pragma is also allowed for a library unit; in that case, the pragma must occur
immediately after the corresponding Interface pragma, and before any subsequent
compilation unit.

This pragma may be applied to any interfaced subprogram, regardless of the
language or system named in the interface pragma. The code generator is
responsible for rejecting or ignoring illegal or redundant interface information.
The optimizing code generator will process and check the legality of such
interfaced subprograms at the time of the spec compilation, instead of waiting for
an actual use of the interfaced subprogram. This will save the user from extensive
recompilation of the offensive specification and all its dependents should an illegal
pragma have been used.

This pragma is also used for Machine Code Insertion (MCI) procedures. In that
case. the "mechanism" should be set to "mci." This allows the user to specify.
detailed parameter characteristics for the call and inlined call to the MCI
procedure. When used in conjunction with pragma Inline, this allows the user to
directly insert a minimal set of instructions into the call location.

Parameters

Name

This parameter is an Ada subprogram identifier. The rule detailed in LRM

64) NOTE-1715-VI.I(SUN4) 26OCT90

SUN-4 Validation Information

13.9 for a subprogram named in a pragma Interface applies here as well. As
explained above, the subprogram must have been named in an immediately
preceding Interface pragma.

This is the only required parameter. Since the other parameters are
optional, positional association can only be used if all parameters are
specified, or only the rightmost ones are defaulted.

Link Name

This parameter is a string literal. When specified, this parameter indicates
the name the :ode generator must use to reference the named subprogram.
This string name may contain any characters allowed in an Ada string and
must be passed unchanged (in particular, not case-mapped) to the code
generator. The code generator will reject names that are illegal in the
particular language or system being targeted.

If this parameter is not specified, it defaults to a null string. The code
generator will interpret a default link name differently, depending on the
target language/system (the default is generally the Ada name, or is derived
from it, for example, "_Adaname" for 'Cf calls).

Mechanism

This parameter is a string literal. The only mechanism currently
implemented is the "mci" mechanism used strictly in conjunction with
Machine Code Insertion procedures.

Parameters

This parameter is a string literal. When present, this string tells the code
generator where to pass each parameter. This string is interpreted as a
positional aggregate where each position refers to a parameter of the
interfaced subprogram. Each position may be one of the following: null,
the name of a register, or the word "stack." Null arguments imply standard
conventions. Thus the string "r3, stack, r5" specifies that the first
parameter is to be passed in register r3, the second parameter is to be put
on the stack in the parameter block (in the proper position of the second
parameter), and the third parameter is to be passed in register r5.

ClobberedRegs

This parameter is a string literal indicating the registers (in a comma-
separated list) that are destroyed by this operation. The code generator will
save anything valuable in these registers at the point of the call.

The following is a simple example of the use of pragma Interface Information.

N)TE-1715-V1.1 (SUN4) 26oCT1) 91

SUN-4 Validation Information

procedure DoSomething (Addr: System.Address; Len: Integer);
pragma Interface (Assembly, DoSomething);

pragma InterfaceInformation (Name -> DoSomething,
.Link Name -> "DOIT",
Parameters -> "00,02");

2.2.8.1.4. Pragma Interrupt

Pragma Interrupt is described in Section 2.1.5, "Interrupts." Please refer to
Section 2.1.5.1.5, "Optimized interrupt entries," and Section 2.1.5.1.7, "Function-
mapped optimizations," for a detailed discussion.

2.2.8.1.5. Pragma Linkname

Pragma Linkname is used to provide interface to any routine whose name cannot
be specified by an Ada string literal. This allows access to routines whose
identifiers do not conform to Ada identifier rules.

Pragma Linkname takes two arguments. The first is a subprogram name that has
been previously specified in a pragma Interface statement. The second is a string
Literal specifying the exact link name to be employed by the code generator in
emitting calls to the associated subprogram. The syntax is

pragma Interface (assembly, <subprogram-name>);
pragma Linkname (<subprogramname>, <string_literal>);

If pragma Linkname does not immediately follow the pragma Interface for the
associated program, a warning will be issued saying that the pragma has no effect.

A simple example of the use of pragma Linkname is

procedure DummyAccpss(DummyArg : System.Address);

pragma Interface (assembly, DummyAccess);

pragma Linkname (Dummy Access, "-access");

Note: It is preferable to use pragma Intertace Information for this functionality.

Linkname is orly provided for compatibility.

2.2.8.1.6. Pragma NoSuppress

NoSuppress is a TeleGen2-defined pragma that prevents the suppression of
checks within a particular scope. It can be used to override pragma Suppress in
an enclosing scope. NoSuppress is particularly useful when you have a section of
code that relies upon predefined checks to execute correctly, but you need to
suppress checks in the rest of the compilation unit for performance reasons.

62 NOTE-1715-VI.1(SUN4) 26OCT9

SUN-4 Validation Information

Pragma No Suppress has the same syntax as pragma Suppress and may occur in
the same places in the source. The syntax is

pragma NoSuppress (<identifier> f, [ON ->1 <name>]);

where < identifier > is the type of check you want to suppress. Checks that may
be suppressed are Access Check, DiscriminantCheck IndexCheck
Length Check, Range Check, DivisionCheck, Overflow Check,
Elaboration_Check, and StorageCheck (refer to LRM 11.7).

< name > is the name of the object, type/subtype, task unit, generic unit or
subprogram within which the check is to be suppressed; <name> is optional.

If neither Suppress nor NoSuppress is present in a program, checks will not be
suppressed. You may override this default at the command level, by compiling the
file with the -i(nhibit option and specifying with that option the type of checks you
want to suppress.

If either Suppress or No Suppress are present, the compiler uses the pragma that
applies to the specific check in order to determine whether that check is to be
made. If both Suppress and No Suppress are present in the same scope, the
pragma declared last takes precedence. The presence of pragma Suppress or
No_Suppress in the source takes precedence over an -i(nhibit option provided
during compilation.

2.2.8.1.7. Pragma PreserveLayout

he TeleGen2 compiler reorders record components to minimize gaps withi
records. Pragma Preserve_Layout forces the compiler to maintain the Ada source
order of components of a given reccrd type, thereby preventing the compiler from
performing this record layout optimization.

The syntax of this pragma is

Pragma Preserve_Layout (ON -> RecordTypeName)

PreserveLayout must appear before any forcing occurrences of the record type
and must be in the same declarative part, package specification, or task
specification. This pragma can be applied to a record type that has been packed.
If Preserve Layout is applied to a record type that has a record representation
clause, the pr agma only applies to the components that do not have component
clauses. These components will appear in Ada source order after the components
with component clauses.

2.2.8.1.8. Pragma SuppressAll

Suppress_AU is a TeleGen2-defned pragma that will suppress all checks in a
givet, scope. Praigna SuppressAl contains no arguments and can be placed in
ne same scopes as prarna Suppress.

(TE-71.-Vj'.IhSUN4) 26OCT90 63

SUN-4 Validation Information

In the absence of pragma Suppress All or any other suppress pragma, the scope
which contains the pragma will have checking turned off. This pragma should be
used in a safe piece of time critical code to allow for better performance.

2.2.82. Implementation-dependent attributes

2.2.8.2.1. 'Address and 'Offset

These were discussed within the context of using machine code insertions, Section
2.1.4.2.2, "Implementation-dependent attributes to access Ada Objects."

2.2.8.2.2. Extended attributes for scalar types

The extended attributes extend the concept behind the Text 10 attributes 'Image,
'Value, and 'Width to give the user more power and flexibility when displaying
values of scalars. Extended attributes differ in two respects from their predefined
counterparts:

1. Extended attributes take more parameters and allow control of the
format of the output string.

2. Extended attributes are defined for all scalar types, including fixed and
floating point types.

Extended versions of predefined attributes are provided for integer, enumeration,
floating point, and fixed point types:

Integer. 'ExtendedImage, 'Extended Valu, 'ExtendedWidth

Enumeration: 'Extended Image, 'ExtendedValue, 'ExtendedWidth

Floating Point: 'Extended Image, 'ExtendedValue, 'Extended-Digits

Fixed Point: 'Extended Image, 'Extended-Value, 'ExtendedFore,
'Extended Aft

The extended attributes can be used without the overhead of including Text 10 in
the linked program. The following are examples that illustrates the difference
between instantiating Text_1O.Float 10 to convert a float value to a string and
using Float'ExtendedImage:

64 NOTE-I715-VI.I SUN4) 26OCT90

SUN-4 Validation Information

with Text IO;
function ConvertToString (Fl : Float) return String is
TempStr : String (I .. 6 + Float'Digits);

package Flt_IO is new TextIO.Float IO (Float);
begin

FltIO.Put (TempStr, Fl);
return TempStr;

end ConvertToString;

function ConvertToString No TextI0(Fl : Float) return String is
begin

return Float'Extended Image (Fl);
end ConvertToStringNoTextIO;

with Text_10, ConvertToString, Convert To StringNoTextIO;
procedure Show Different Conversions is

Value : Float :- 10.03376;
begin

Text IO.PutLine ("Using the ConvertTo_String, the value of
the variable is " & Convert ToString (Value));
Text_IO.Put_Line ("Using the ConvertToStringNoTextIO,
the value is : " & ConvertToStringNoText_IO (Value));

end ShowDifferentConversicns;

NOTE-1715-VI.1 SUN4) 26OCT90 65

SUN-4 Validation Information

2.2.8.2.2.1. Integer attributes

'ExtendedImage
X'Extended_Image(Item,Width,Base,Based,SpaceIfPositive)

Returns the image associated with Item as defined in Text IO.Integer_10.
The Text 10 definition states that the value of Item is an integer literal with
no underlines, no exponent, no leading zeros (but a single zero for the zero
value), and a minus sign if negative. If the resulting sequence of characters
to be output has fewer than Width characters, leading spaces are first
output to make up the difference. (LRM 14.3.7:10,14.3.7:11)

For a prefix X that is a discrete type or subtype, this attribute is a function
that may have more than one parameter. The parameter Item must be an
integer value. The resulting string is without underlines, leading zeros, or
trailing spaces.

Parameters

Item The item for which you want the. image; it is passed to the
function. Required.

Width The minimum number of characters to be in the string
that is returned. If no width is specified, the default (0) is
assumed. Optional.

Base The base in which the image is to be displayed. If no base
is specified, the default (10) is assumed. Optional.

Based An indication of whether you want the string returned to
be in base notation or not. If no preference is specified,
the default (false) is assumed. Optional.

Space_If_Positive An indication of whether or not a positive integer should
be prefixed with a space in the string returned. If no
preference is specified, the default (false) is assumed.
Optional.

Examples

subtype X is Integer Range -10..16;

V!ues yielded for selected parameters:

X'Extended_Image(5) - "5"
X'Extended_Image(5,0) - "5"

X'Extended_Image(5,2) = " 5"
X'Extended Image(5,0,2) - "101"1

66 NOTE-1715-VI.IISUN4) 26OCT90

SUN-4 Validation Information

X'ExtendedImage(5,4,2) - " 101"
X'ExtendedImage(5,O,2,True) - "2#1101#"
X'ExtendedlImage(5,O,10,False) - "5"
X'ExtendedImageC5,O,1O,False,True) - " 5"

X'ExtendedImage(-l 0,10,False,False) - "-l"
X'Extended -mage(-1,0,1O,False,True) - "-1"
X'ExtendedImage(-1,1,10,False,True) - "-l"
X'ExtendedImage(-1,0,2,True,True) - "-2111"
X'ExtendedImage(-1,10,2,True,Trie) -" -21111

NOTE.1715A% "SLN4) 26OCT'90 67

SUN-4 Validation Information

'ExtendedValue
X'ExtendedValue(Item)

Returns the value associated with Item as defined in TextIO.IntegerIO.
The Text 10 definition states that given a string, it reads an integer value
from the beginning of the string. The value returned corresponds to the
sequence input. (LRM 14.3.7:14)

For a prefix X that is a discrete type or subtype, this attribute is a function
with a single parameter. The actual parameter Item must be of predefined
type string. Any leading or trailing spaces in the string X are ignored. In
the case where an illegal string is passed, a Constraint-Error is raised.

Parameter

Item A parameter of the predefined type string; it is passed to
the function. The type of the returned value is the base
type X. Required.

Examples
subtype X is Integer Range -10..16;

Values yielded for selected parameters:

X'ExtendedValue("5") = 5
X'ExtendedValue(" 5") = 5
X'ExtendedValue(" 2#101#") - 5
X'ExtendedValue("-i") - -1
X'ExtendedValue(" -1") = -1

68 NOTE-1715-Vi.I(SUN4) 26OCT90

SUN-4 Validation Information

'ExtendedWidth

X'ExtendedIWidth(Base,Based,SpaceIfPositive)

Returns the width for subtype of X. For a prefix X that is a discrete
subtype, this attribute is a function that may have multiple parameters. This
attri'bute yields the maximum image length over all values of the type or
subtype X

Parameters

Base The base for which the width will be calculated. If no base
is specified, the default (10) is assumed. Optional.

Based An indication of whether the subtype is stated in based
notation. If no value for based is specified, the default

(false) is assumed. Optional.

Space If Positive An indication of whether or not the sign bit of a positive
integer is included in the string returned. If no preference
is specified, the default (false) is assumed. Optional.

Examples

subtype X is Integer Range -10..16;

Values yielded for selected parameters:

X'ExtendedWidth - 3 - "-10"
X'ExtendedWidth(10) = 3 - "-0"
X'ExtendedWidth(2) - 5 - "10000"

X'ExtendedWidth(10,True) = 7 -"-10#10#"
X'ExtendedWidth(2,True) = 8 - "2#10000#"
X'ExtendedWidth(10,False,True) = 3 -"16"
X'Extended Width(10.True,False) = 7 -"-10#10#"

X'ExtendedWidth(10,True,True) = 7 - "1I0#16#"
X'ExtendedWidth(2,True,True) - 9 -"2#10000#"

X'Extended Width(2,False,True) = 6 --"10000"

NOTE-1715-VI.IISUN4) 26oCT90 69

SUN-4 Validation Information

2.2.8.2.2.2. Enumeration type attributes

'Extended-Image

X'Extended_Image(Item,Width,Uppercase)

Returns the image associated with Item as defined in
TextIO.EnumerationIO. The Text 10 definition states that given an
enumeration literal, it will output the value of the enumeration literal (either
an identifier or a character literal). The character case parameter is
ignored for character literals. (LRM 14.3.9:9)

For a prefix X that is a discrete type or subtype; this attribute is a function
that may have more that one parameter. The parameter Item must be an
enumeration value. The image of an enumeration value is the
corresponding identifier, which may have character case and return string
width specified.

Parameters

Item The item for which you want the image; it is passed to the
function. Required.

Width The minimum number of characters to be in the string
that is returned. If no width is specified, the default (0) is
assumed. If the Width specified is larger than the image
of Item, the return string is padded with trailing spaces. If
the Width specified is smaller than the image of Item, the
default is assumed and the image of the enumeration value
is output completely. Optional.

Uppercase An indication of whether the returned string is in
uppercase characters. In the case of an enumeration type
where the enumeration literals are character literals,
Uppercase is ignored and the case specified by the type
definition is taken. If no preference is specified, the
default (true) is assumed. Optional.

70 NOTE-1715-VI.I (SUN4) 26OCT90

SUN-4 Validation Information

Examples
type X is (red, green, blue, purple);
type Y is ('a', 'B', 'c', 'D');

Values yielded for selected parameters:

X'ExtendedImage~red) - "RED"
X'ExtendedImage(red, 4) M "RED
X'Extended_ Emage(red,2) M"RED"
X'Extended_Image(red,O0false) m "red"
X'ExtendedImage(red,lO,false) - "red
Y'ExtendedImage('a') - "'a'"
Y'ExtendedImage('B') - "P B'"
Y'E-xtended_Image('a',6) - "'a' t

Y'Extended_Image(a,O,tru~e) - "'a'"

NOTE.I7I5-1vT1hSUN4) 26OCT94) 71

SUN-4 Validation Information

'Extended Value

X'ExtendedValue(Item)

Returns the image associated with Item as defined in
TextIO.Enumeration IO. The Text_10 definition states that it reads an
enumeration value from the beginning of the given string and returns the
value of the enumeration literal that corresponds to the sequence input.
(LRM 14.3.9:11)

For a prefix X that is a discrete type or subtype, this attribute is a function
with a single parameter. The actual parameter Item must be of predefined
type string. Any leading or trailing spaces in the string X are ignored. In
the case where an illegal string is passed, a Constraint-Error is raised.

Parameter

Item A parameter of the predefined type string; it is passed to
the function. The type of the returned value is the base
type of X. Required.

Examples

type X is (red, green, blue, purple);

Values yielded for selected parameters:

X'ExtendedValue("red") = red
X'ExtendedValue(" green") = green
X'ExtendedValue(" Purple") = purple
X'ExtendedValue(" GreEn ") = green

NOTE-I7!5-V1.ISUN4) 2)6OCT9)

SUN-4 Validation Information

'Extended Width
X'Extended Width

Returns the width for subtype of X

For a prefix X that is a discrete type or subtype; this attribute is a function.

This attribute yields the maximum image length over all values of the
enumeration type or subtype X

Parameters

There are no parameters to this function. This function returns the width of
the largest (width) enumeration literal in the enumeration type specified by
X.

Examples

type X is (red, green, blue, purple);
type Z is (Xl, X12, X123, X1234);

Values yielded:

X'ExtendedWidth - 6 -"purple"
Z'ExtendedWidth = 5 - "K1234"

NOTE- I 715-'.i SUN4) 26OCT90 73

SUN-4 Validation Information

2.2.8.2.2.3. Floating point attributes

'Extended_Image

X'ExtendedImage(Item,Fore,Aft,Exp,Base,Based)

Returns the image associated with Item as defined in Text IO.Float 10.
The Text 10 definition states that it outputs the value of the parameter Item
as a decimal literal with the format defined by the other parameters. If the
value is negative, a minus sign is included in the integer part of the value of
Item. If Exp is 0, the integer part of the output has as many digits as are
needed to represent the Liteger part of the value of Item or is zero if the
value of Item has no integer part. (LRM 14.3.8:13, 14.3.8:15)

Item must be a Real value. The resulting string is without underlines or
trailing spaces.

Parameters

Item The item for which you want the image; it is passed to the
function. Required.

Fore The minimum number of characters for the integer part of
the de :imal representation in the return string. This
includes a minus sign if the value is negative and the base
with the '#' if based notation is specified. If the integer
part to be output has fewer characters than specified by
Fore, leading spaces are output first to make up the
difference. If no Fore is specified, the default value (2) is
assumed. Optional.

Aft The minimum number of decimal digits after the decimal
point to accommodate the precision desired. If the delta
of the type or subtype is greater than 0.1, then Aft is 1. If
no Aft is specified, the default (X'Digits-1) is assumed. If
based notation is specified, the trailing '#' is included in
Aft. Optional.

Exp The minimum number of digits in the exponent. The
exponent consists of a sign and the exponent, possibly with
leading zeros. If no Exp is specified, the default (3) is
assumed. If Exp is 0, no exponent is used. Optional.

Base The base that the image is to be displayed in. If no base is
specified, the default (10) is assumed. Optional.

Based An indication of whether you want the string returned to
be in based notation or not. If no preference is specified,
the default (false) is assumed. Optional.

74 NOTE-1715-VI.I(SUN4) 26OCT90

SUN-4 Validation Information

Examples
type X is digits 5 range -10.0 .. 16.0;

Values yielded for selected parameters:

X'Extended-Image(5.0) - " 5.0000E+0011
X'Extended_Image(5.0,1) - "5.OOOOE+0O"
X'ExtendedImage(-5.0,1) - "-5.OOOOE+00"
X'Extended_.mage(5.0,2,O) - 11 5.OE+00"
X'Extended_Image(5.0,2,0,0) - it 5.0"
X'Extended_Image(5.0,2,0,0,2) - "101.0"
X'E-xtendedImage(5.0,2,0,0,2,True) - 112#101.0#"
X'ExtendedImage(5.0,2,2,3,2,True) - "2#1.1#/E+02"

NOTE- I715-V1. I(SUN4) 26OCT90 75

SUN-4 Validation Information

'Extended Value

X'Extended Value(Item)

Returns the value associated with Item as defined in Text IO.Float_10.
The TextIO definition states that it skips any leading zeros, then reads a
plus or minus sign if present then reads the string according to the syntax of
a real literal. The return value is that which corresponds to the sequence
input. (LRM 14.3.8:9, 14.3.8:10)

For a prefix X that is a discrete type or subtype; this attribute is a function
with a single parameter. The actual parameter Item must h# of r?, rfined
type string. Any leading or trailing spaces in the string X are ignored. In
the case where an illegal string is passed, a Constraint-Error is raised.

Parameter

Item A parameter of the predefined type string; it is passed to
the function. The type of the returned value is the base
type of the input string. Required.

Examples

type X is digits 5 range -10.0 .. 16.0;

Values yielded for selected parameters:

X'ExtendedValue("5.0") = 5.0
X'ExtendedValue("0.5E1") = 5.0
X'Extended Value("2#1.01#E2") = 5.0

76 NOTE-1715-VI.ItSUN4) 26OCT90

SUN-4 Validation Information

'Extended-Digits
X'ExtendedDigits(Base)

Returns the number of digits using base in the mantissa of model numbers
of the subtype X

Parameter

Base The base that the subtype is defined in. If no base is
specified, the default (10) is assumed. Optional.

Examples
type X is digits 5 range -10.0 .. 16.0;

Values yielded:

X'Extended_Digits -5

NOTE- 1715-Vi. I(SUN4) 26OCT190 77

SUN-4 Validation Information

2.2.82.2.4. Fixed-point attributes

'Extended_Image

X'Extended_Image(Item,Fore,Aft,Exp,Base,Based)

Returns the image associated with Item as defined in Text IO.Fixed10.
The Text 10 definition states that it outputs the value of the parameter Item
as a decimal literal with the format defined by the other parameters. If the
value is negative, a minus sign is included in the integer part of the value of
Item. If Exp is 0, the integer part of the output has as many digits as are
needed to represent the integer part of the value of Item or is zero if the
value of Item has no integer part. (LRM 14.3.8:13, 14.3.8:15)

For a prefix X that is a discrete type or subtype; this attribute is a function
that may have more than one parameter. The parameter Item must be a
Real value. The resulting string is without underlines or trailing spaces.

Parameters

Item The item for which you want the image; it is passed to the
function. Required.

Fore The minimum number of characters for the integer part of
the decimal representation in the return string. This
includes a minus sign if the value is negative and the base
with the '#' if based notation is specified. If the integer
part to be output has fewer characters than specified by
Fo'e, leading spaces are output first to make up the
difference. If no Fore is specified, the default value (2) is
assumed. Optional.

Aft The minimum number of decimal digits after the decimal
point to accommodate the precision desired. If the delta
of the type or subtype is greater than 0.1, then Aft is 1. If
no Aft is specified, the default (X'Digits-1) is assumed. If
based notation is specified, the trailing '#' is included in
Aft. Optional.

Exp The minimum number of digits in the exponent; the
exponent consists of a sign and the exponent, possibly with
leading zeros. If no Exp is specified, the default (3) is
assumed. If Exp is 0, no exponent is used. Optional.

Base The base in which the image is to be displayed. If no base
is specified, the default (10) is assumed. Optional.

Based An indication of whether you want the string returned to
be in based notation or not. If no preference is specified,

78 NOTE-1715-VI.1(SUN4) 26OCT90

SUN-4 Validation Information

the default (false) is assumed. Optional.

Examples
type X is delta 0.1 range -10.0 . 17.0;

Values yielded for selected parameters:

X'ExtendedlImageC5.0) - "5.OOE+00"'
X'ExtendedlImage(5.0,l) - "5.00E+00O1
X'ExtendedImag(50l- 5.O0"
X'ExtendedImge(5.0,1,) - " 5.OE+O0"

X'xeddImage(5.0,2,0,) - "5.O0
X'ExtendedImage(5.0,2,0,0,) - "105.0"
X'ExtendedImage(5.0,2,0,0,2,T) - "2101.0#

X'Extended_Image(5 .0,2,2,3 ,2,True) - "2#1. 1#E+02"

NOTE- I715-V1.1 SUN4) 26OCT90 79

SUN-4 Validation Information

'ExtendedValue
X' ExtendedValue (Image)

Returns the value associated with Item as defined in Text IO.Fixed 10. The
Text_10 definition states that it skips any leading zeros, reads a plus or
minus sign if present, then reads the string according to the syntax of a real
literal. The return value is that which corresponds to the sequence input.
(LRM 14.3.8:9, 14.3.8:10)

For a prefix X that is a discrete type or subtype; this attribute is a function
with a single parameter. The actual parameter Item must be of predefined
type string. Any leading or trailing spaces in the string X are ignored. In
the case where an illegal string is passed, a Constraint Error is raised.

Parameter

Image Parameter of the predefined type string. The type of the
returned value is the base type of the input string.
Required.

Examples

type X is delta 0.1 range -10.0 .. 17.0;

'values yielded for selected parameters:

X'ExtendedValue("5.0") = 5.0
X'ExtendedValue("0.5El") = 5.0
X'ExtendedValue(" 2#l.0l#E2") = 5.0

80 NOTE-1715-VI.I (SUN4) 26OCT90

SUN-4 Validation Information

'ExtendedFore

X'Extended Fore(BaseBased)

Returns the minimum number of characters required for the integer part of
the based representation of X.

Parameters

Base The base in which the subtype is to be displayed. If no
base is specified, the default (10) is assumed. Optional.

Based An indication of whether you want the string returned to
be in based notation or not. If no preference is specified,
the default (false) is assumed. Optional.

Examples

type X is delta 0.1 range -10.0 .. 17.1;

Values yielded for selected parameters:

X'ExtendedFore = 3 -- "-10"
X'ExtendedFore(2) - 6 -- " 10001"

NOTE-1715-- ''SUN4) 26OCT90 XI

SUN-4 Validation Information

'ExtendedAft

X'ExtendedAft(Base,Based)

Returns the minimum number of characters required for the fractional part
of the based representation of X.

Parameters

Base The base in which the subtype is to be displayed. If no
base is specified, the default (10) is assumed. Optional.

Based An indication of whether you want the string returned to
be in based notation or not. If no preference is specified,
the default (false) is assumed. Optional.

Examples

type X is delta 0.1 range -10.0 .. 17.1;

Values yielded for selected parameters:

X'Extended Aft - 1 "'from 0.1
X'ExtendedAft(2) - 4 - "O001"from 2#0.0001#

82 NOTE.1715-VI.I (SUN4) 26OCT90

SUN-4 Validation Information

2.2.8.3. Package System

with UncheckedConversion;

package System is

-- CUSTOMIZABLE VALUES

type Name is (TeleGen2);

System-Name constant name :- TeleGen2;

Memory_Size constant :- (2 ** 31) -1; --Available memory, in storage units
Tick constant :- 1.0 / 50.0; --Basic clock rate, in seconds

type Task_Data is --

record -- Adaptation-specific customization information
null; -- for task objects.

end record; --

-- NON-CUSTOMIZABLE, IMPLEMENTATION-DEPENDENT VALUES

StorageUnit constant :- 8;
Min Int constant :- -(2 ** 31);
Max Int : constant :- (2 ** 31) - 1;
Max_Digits : constant :- 15;
Max Mantissa constant := 31;
Fine Delta constant :- 1.0 / (2 ** Max-Mantissa);

subtype Priority is Integer Range 0 .. 63;

-- ADDRESS TYPE SUPPORT

type Memory is private;
type Address is access Memory;

-- Ensures compatibility between addresses and access types.

-- Also provides implicit NULL initial value.

NullAddress: constant Address :- null;

-- Initial value for any Address object

type AddressValue is range -(2**31). (2**31)-l:

-- A numeric representation of logical addresses for use in address clauses

NOTE-171S-VI.ISUN4) 26OCT90 83

SUN-4 Validation Information

Hex 80000000 constant Address Value : L6#80000000#;

Hex 90000000 : constant Address Value : 16#70000000#;

Hex A0000000 constant Address Value : 16#60000000#;

Hex BOOOOOOO constant Address Value : 16#50000000#;
Hex COOOOOOO constant Address Value : 16#40000000#;

Hex D0000000 : constant Address Value : 16#30000000#;

Hex EOOOOOOO constant Address Value : 16#20000000#;

Hex F0000000 constant AddressValue : 16#10000000#;

-- Define numeric offsets to aid in Address calculations

-- Example:
-- for Hardware use at Location (HexFOOOOOOO + 16#2345678#);

function Location is new UncheckedConversion (Address-Value, Address);

-- May be used in address clauses:

-- Object: Some Type;
-- for Object use at Location (16#4000#);

function Label (Name: String) return Address;

pragma Interface (META, Label);

-- The LABEL meta-function allows a link name to be specified as address
-- for an imported object in an address clause:

-- Object: Some_Type;

-- for Object use at Label("OBJECT$$LINKNAME");

-- System.Label returns NullAddress for n-literal parameters.

-- ERROR REPORTING SUPPORT

procedure Report_Error;

pragma Interface (Assembly, ReportError);

pragma InterfaceInformation (ReportError, "_REPORTERROR");

-- Report Error can only be called as the very first thing in an exception

- - handler (all other uses are erroneous) and provides

- - an exception traceback like tracebacks provided for unhandled

- - exceptions

-- CALL SUPPORT

type SubprogramValue IS

record

Proc addr : Address;

84 NOTE-1715-VI.I(SUN4) 26OCT90

SUN-4 Validation Information

Parent frame : Address;
end record;

-- Value returned by the implementation-defined 'Subprogram Value
-- attribute. The attribute is not defined for subprograms with
-- parameters, or functions.

MaxObject_Size CONSTANT :- Max_Int;
Max Record Count CONSTANT :- Max Int;
Max Text Io Count CONSTANT :- Max Int-l;
MaxTextIoField CONSTANT :- 1000;

private
type Memory is
record
null;

end record;

end System;

NOTE.1715-VI.ISUN4) 26OCT9)

SUN-4 Validation Information

2.2.8.3.1. System.Label

The System.Label meta-function is provided to allow users to address objects by a
linker-recognized label name. This function takes a single string literal as a
parameter and returns a value of SystemAddress. The function simply returns
the run-time address of the appropriate resolved link name, the primary purpose
being to address objects created and referenced from other languages.

When used in an address clause, System.Label indicates that the Ada
object or subprogram is to be referenced by a label name. The actual
object must be created in some other unit (normally by another
language), and this capability simply allows the user to import that
object and reference it in Ada.

" When used in an expression, System.Label provides the link time
address of any name; a name that might be for an object, a subprogram,
etc.

2.2.8.3.2. System.ReportError

Report Error must only be called from within an exception handler, and must be
the first thing done within it. This routine displays the normal exception traceback
information to standard output. It is essentially the same traceback that could be
obtained if the exception were unhandled and propagated out of the program, but
the user may want to handle the exception and still display this information. The
user may also want to use this capability in a user handler at the end of a task
(since those exceptions will not be propagated to the main program). Note that
the user can also get this capability for all tasks using the - X binder switch.

For details on the output, refer to Section 2.1.2, "Exceptions."

86 NOTE-1715-VI.I(SUN4) 26OCT90

