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ABSTRACT

There has been a growing and widespread interest in radar-absorbing

material technology. As the name implies, radar absorbing materials or

RAM's are coatings whose electric and magnetic properties have been

selected to allow the absorption of microwave energy at discrete or

broadband frequencies. In military applications low radar cross section

(RCS) of a vehicle may be required in order to escape detection while a

covert mission is being carried on. These requirements have led to the

very low-observable or stealth technology that reduces the probability of

detection of an aircraft. The design of radar absorbing materials is lim-

ited by constraints on the allowable volume and weight of the surface

coating. and it is difficult to design a broadband radar absorbing struc-

ture in limited volume. This thesis investigates the use of lossy dielectric

materials of high dielectric permittivity in multi- layer composites for the

rroduction of low radar cross section (RCS). The analysis is done by

computing the plane wave reflection coefficient at the exterior surface of

the composite coating by means of a computer program which selects

layer parameters which determine low reflection coefficients for

electromagnetic radiation under constraint of limited layer thickness as

well as maximum frequency bandwidth.
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1. INTRODUCTION

There are continuing requirements for the reduction of the radar cross

section (RCS) of military vehicles. Similarly there is a need to reduce the

signature of various E.W. systems and payloads attached to these vehicles.

The requirements of electronic warfare and electronic countermeasures

have been by far the principal motivation for the radar echo reduction

of military targets. Electronic countermeasures may take many forms,

including passive countermeasures such as target masking or tracker sys-

tem diversion by clouds of metal particles called chaff. [Ref. 1] The re-

duction of the intrinsic echo of the target is regarded as a passive

countermeasure because no signals are emitted. The purpose of radar

absorbing materials (RAM) is to absorb incident radar energy and,

thereby , reduce the energy scattered or reflected back to the radar.

[Ref. 2] T :dar absorbing materials (RAM) play a key role in stealth

technology, and their use is a major factor in radar cross section (RCS)

reduction. The concept of abscrbing incident electromagnetic radiation

by placing lossy material in the path of the waves is well established.

[Ref. 3]



Despite the recent interest in radar absorbing materials (RAM), initial

work on producing practical microwave absorbers dates back before

World War II. [Ref. 4] The Jauman absorbers, designed by J.Jauman,

were relatively thick (3 inches), being composed of resistive sheets and

low-dielectric-constant plastic spacers, and the well known Salisbury

screen are early examples. In the 1950s the British Navy compounded

ferrites and carbonyl iron to produce a range of absorbers operating at

1-18 CHZ. The 1950s also saw much development in the area of

broadband anecho;c materials. Serious interesi by the U.S. Air Force in

radar cross section reduction began in 1960s, with most of it being clas-

sified in nature. In the late 1970s, the United States began to develop a

stealth bomber with low RCS and in the 1990s employed it in an active

role.

The applications are numerous particulzrly at microwave frequencies

and include the uý,e of absorbent coatings on the exterior surface of all

types of military aircraft and vehicles to reduce radar cross section (RCS).

[Ref. 5] If it is assumed that unlimited space is available, the absorption

of electromagnetic energy over a wide bandwidth can be obtained by

sufficiently increasing the volume of the material and shaping its geom-

etry. But when space is limited, as is normally the case for military ap-
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plications, it is a difficult design problem to ensure that the optimal

bandwidth and reflectivity properties are achieved to fulfill the require-

ments for military applications. Constraints on the weight as well as the

volume of absorber may exist.

As the name implies, radar absorbing materials reduce the energy

reflected back to the radar by means of the absorption of incident

electromagnetic energy through ohmic loss in the medium, not unlike the

way a resistor dissipates heat when electrical current passes through it.

The ideal absorber would be one which allows the incident wave to enter

without reflection and then rapidly attenuates the wave to a neglible am-

plitude in its interior.

Magnetic absorbers involving ferrite compounds have been widely

used for operational systems. [Ref. 6] These magnetic absorbers are

heavy because of their iron content. [Ref. 7] Hence it is of theoretical

interest and practical importance to find a thin non-ferrous absorption

structure with low reflection coefficient for electromagnetic radiation.

This thesis focuses on the use of lossy dielectric materials to produce low

electromagnetic wave reflection at the exterior of a structure with total

coating thickness less than 1 cm.

3



II. THEORETICAL ANALYSIS

In order to minimize the radar signature of a military vehicle using

lossy dielectrics with specified scattering properties, which is the task of

radar absorbing materials (RAM), the deign problem may be considered

to be that of achieving a lossy distritLuted network which matches the

impedance of free space to that of the conducting body to the shie'ded.

Radar absorbing materials (RAM) utilize substances which absorb energy

from electromagnetic waves passing through them. Such materials have

a complex propagation constant in which the imaginary component ac-

counts for the loss in the material. The term loss refers to the dissipation

of electromagnetic energy into heat. For many practical electric

absorbers, in addition to the loss due to the finite conductivity of the

material, there may also be inherent molecular losses.

A plane wave provides a good representation for most of the different

forms of wave propagation. [Ref. 8] In a practical sense, electromagneti:

waves from any source become essentially plane waves as the distance

from the source becomes large. The simplest wave is the uniform plane

wave, which is characterized by uniformity of the fields in the plane

normal to the direction of propagation and by electric and magnetic fields

4



which are mutually perpendicular to each other and to the direction of

propagation. The present work considers absorption of waves incident

normal to the target surface, as a test measure for the electromagnetic

absorptivity of the surface structure.

A. IMPEDANCE TRANSFER RELATION FOR LOSSY LAYERS

1. MAXWELL'S EQUATIONS

The basis for the mathematical analysis of the wave phenomena

central to this work is the wave equation resulting from Maxwell's

equations. [Ref. 9] Maxwell's equations can be manipulated to produce

a second order partial differential equation involving only the electric or

only the magnetic field. [Ref. 10] The solutions of this equation have the

character of electromagnetic waves. Considering wave propagation in a

lossy dielectric region, Maxwell's equations become,

V x E-- ,-"B (2- la)

et
VxODJ (- Ib)

VE -_ (2 - 1c)

7.B=0 (2-Id)

Sý



where p and J are volume charge and current densities, and the field

vectors have their conventional definitions. Solutions for the field

equatons are characterized by their vector direction, magnitude and

phase. Phasors are, in general complex quantities. For the cases when

absorption also needs to be included, i.e. , when medium has a non-zero

conductivity or loss tangent, then the dielectric constant can take on

complex values. Therefore we consider the behavior of electromagnetic

waves in a lossy dielectric region where the conductivity is non-zero. In

other words, if the medium is conducting, a current will flow, then

equation (2 - lb) changes to,

V x H = (a + jwt)E =jw(t + )=jwcE (2- 2a)jC0

where the effectve complex permittivity E, is defined as,

EC = Z -j j (2 - 2b)

The other three equations (2 - la, c and d) are unchanged. Hence, all the

equations for non-conducting media will apply to conducting media if C

is replaced by the complex permittivity t. When an external time-varying

electric field is applied to material bodies, small displacements of bound

6



charges may result, giving rise to a volume density of polarization. This

polarization vector will vary with the same frequency as that of the ap-

plied field. As the frequencies increase , the inertia of the charged parti-

cles tends to prevent the particle displacement from keeping in phase with

the field changes, leading to a frictional damping mechanism that causes

power loss because work must be done to cver':-,ne the damping forces.

This phenomenon of out-of-phase polariza cGn L:ar be characterized by a

complex electric susceptibility and an applicable amount of free charge

carriers such as the free electrons in a conductor. In treating such media

it is customary to include the effects of both the damping and the ohmic

losses in the imaginary part of a complex permittivity cc

tc = t' -it" (2 - 2c)

here both t' and C may be functions of frequency. Because conductivity

a of electric absorbers is often the major loss mechanism, it is convenient

to include the effects of the conductivity in the term t . Alternatively,

r' and a may be related by an equivalent conductivity representing all

losses by writing,

a = ao" (2- 2d)



IV

where w is the radian frequency. The ratio "7 is called the dielectric loss

tangent because it is a measure of the power loss in the medium and it

is customary to write,

tan 6- (2- 2e)

This standard procedure leads to the wave equation

V2 E=j w2c 2 p(l + - )E (2 - 3a)Jwf

Where the complex time dependence e/l-I has been assumed for all field

variables. Then equation (2 -3a) can be reduced to include a complex

propagation constant,

V2E = y 2E (2 - 3b)

Where,

2 .2 2
Y =j CO Pa c

then the complex propagation constant becames,

v. =+ j// (2- 3c)

8



2. WAVE IMPEDANCE RATIO OF THE ABSORBER

STRUCTURE

x
Incident wave Trainsmitled

wave Transmitlqd
I- Wave

Flellecled -. wave

wave 4- - o

FieIlected
wave

Medium i Medium 2 Medium 3

(rAt, (.E2 P2)_ Q,.3 /,)

z=O z=d

Figure 1. NORMAL INCIDENCE OF PLANE WAVE ON A THREE MEDIA

STRUCTURE

Plane waves in tile medium are transverse with E and /1 perpen-

dicular to each other and to the direction of propagation. The specific

surface structure to be investigated is a planar nmultlayer structure com-

posed of materials ha',.ing different dielectric properties. As a represen-

tative example, consider the three layer structure of general composition

shown in Fig.l.

A uniform plane wave traveling in the + z - direction in medium

I with constants (t.ji1 ) impinges normally on a plane boundary with me-

dium 2 which has constants (2, 12) Medium 2 has a finite thickness and

9



an interface with medium 3 (C3, P3) at z=d. Reflection occurs at both

z= 0 and z = d. Assuming an x-polarized incident field, the total electric

field intensity in medium 1 can always be written as the sum of the inci-

dent component 5A,Eoe-" and a reflected component ",E,,el". Then the

electric field intensity is given by,

El (E1oe + Eaoe>1) (2 - 4a)

where 5, is a unit vector and y, is twe propagation constant in medium

1. However, due to the existence of a second discontinuity at z = d, the

reflected wave amplitude E,, is no longer related to E4, as in the case for

a boundary between itrntht4 mrneda,

Ero-Eio, l (2- 4b)

Ero '12 -l1
-= (2 - 4c)

Eo +

where r is the reflection coefficient for a single boundary, and the ki, are

the intrinsic impedances of the respective medium i. Within medium 2,

waves bounce back and forth between the two bounding surfaces, some

penetrating into regions I and 3. The reflected field in medium I is the

10



sum of the field reflected from the interface at z = 0 as the incident wave

impinges on it, the field transmitted back into medium I from medium

2 after a first reflection from the interface at z = d , the field transmitted

back into medium I from medium 2 after a second reflection at z- d,

and so on. The total reflected wave may regarded as the resultant of the

initial reflected component and an infinite sequence of multiply reflected

contributions within medium 2 that are transmitted back into medium

1. The wave impedance of the total field can be defined at any plane

parallel to the plane boundary as the ratio cf the total electric field in-

tensity to the total magnetic field intensity of the z - dependent uniform

plane wave, as was shown in Fig. l. This impedance can be written by,

totalE(z) u (Ele -z + E2enz )
-z) = Tota1H,(z) co" (Ele-)" - E2el z)

From the definition of propagation constant,

P~ _P =_jw- =F (2 - 4e)

where jj is the intrinsic, or wave impedance of the medium. Then, if we

place a load impedance at z = 0, in Equation (2 - 4d), the wave impedance

which results can be written by,

11



rlL-- + (1--) (2 - 5a)

Where F r Then, equation (2 - 5a) can be changed to,

r = (2 - 5c)
IlL + 17i

We may find 'i([) at distance z =-I ahead of the termination from the

equation (2 - 4d)

= (e 1 + f "')(2-S5d)
(e>' - Fe-')

with the use of equation (2 - 5c) then, the equation (2 - 5d) becomes,

(iL + le;1+ ('IL -- l~-'
L1[ il Iql + (' l L - 1 (2 - 5e)

(1iL + l' I)e' - (nL - nl)e-( S

combining equation (2 - 5e) witt, the relationships for hyperbolic func-

tions, this equation can be written as,

11L cosh(yi) + Ili sinh()',i/),1(/ = ,,. .(2 - 5./)
1IL sinh(-iJ1 ) + Ili cosh(yOil)

12



where subscript i refers to constants of the il' medium. Here, the complex

propagation constant of Pth medium is given by,

y1 =J j PilcO (2- 5g)

and the complex characteristic or wave impedance is,

Ili l (2 - 5h)

As a result, a larger of absorbing material may be analyzed as a section

of a transmission line having a characteristic impedance of the form,

(2- 5i)

Where j is permeability and t is the complex dielectric permittivity as,

Ec = E' -je" (2 - 5)

then, the loss tangent is also defined as,

tan 6= (2 - 5k)

The loss tangent should be high for rapid attenuation in the line length

(or material thickness in this case) and must be chosen to produce given

13



attenuation. The equivalent circuit for a broadband absorber can be

considered as tandem-connected line sections of constant characteristic

impedance, composed of lossy elements, or as a transmission line of ta-

pering characteristic impedance such that its input impedance is that of

the surface, transforming the impedance of free space, down to a perfect

conductor or short-circuit, at the metal backplane.

The radar absorbing structure which was selected for investigation

in this work is a planar surface coating composed of separate layers of

specified dielectric constants and loss tangents, on a planar substrate as-

sumed to be an ideal conductor. The determination of the radar cross

section then reduces to the calculation of the plane-wave reflection coef-

ficient at the exterior surface of the selected laminar coating. The com-

putation of the wave reflection coefficient may be effected on the basis

of the direct solution of the plane wave propagation problem in the layer

structures. Alternatively, advantage may be taken of the analogy to wave

propagation on a system of transmission line sections connu-•d in tan-

dem. In either case, it is useful to represent the successive layers or their

transmission-line-segment counterparts in terms of their NBCD matrix

characterization as shown in Fig.2. [Ref. 11]

14



112

+- Z0 A linear Z0 -I-

VgV, Two-port 2L

network

0

poot I port 2
(Input) (output)

Figure 2. A LINEAR TWO-POf, NETWORK AND ITS ABCD MATRIX

I'l = .4V2 + B! 2  (2- 6a)

1, = C1.2 +D12  (2- 6b)

Then the multilplicative property of tJe ABCD matrices of two-ports

connected in tandem may be used to siml)!ify the calculation of the wave

propagation in the overall layered structure. The ABCD matrix is a

transmission type matrix since in a cascade of two-port networks, the

output voltage and current of one network represents thc input voltage

and current of the following one. So, the expression of the input

impedance of a two port in terms of the ABCD inatrix is useful in sodving

impedance matching problems when the output port of the stage is ter-

I Is



minated by a load impedance ZL . For a terminated two - port with load

ZL, the input impedance is given by,

V, (AZL + B)
zi 1 = T = Z (2- 6b)

The definitions of the parameters are as follows, when the two- port is a

i-.e section of length I and propagation constant y and iAh layer impedance

A = cosh y1 (2 - 6c)

- sinh 1I (2- 6e)
Zi

D = cosh .1 (2 - 6j)

B. PATTERN SEARCH FOR MINIMUM REFLECTION AT FIXED

FREQUENCIES

This method relies on the sequential calculation of input reflection

coefficients, with a chosm list of material constants for the successive

16



layers, in which each solution is compared with the best available up to

that time. The parameters of the media of the successive layers are varied

in sequence by the program. A scan is made through the selected array

of material constants for each medium in turn.

S1 nd 3 rd 4
24

11111 •1• /2 12 3 1f/3 L4J /414

Figure 3. FOUR-LAYER ABSORBER STRUCTURE AND ITS PARAMETERS

Based on practical co.nsiderations, an arbitrary choice of a four layered

structure was made, each layer having its own value of. relative dielectric

constant, r,, its loss-tangent, tan 6 , and its thickness, 1. Due to practical

considerations, the decision was made to limit the calculation to 5 dif-

ferent values of t, , 5 different values of tan 6 and 4 different values of I

for the pattern search. Figure 3 shows the four-layer structure with its

layer parameters, relative dielectric constant t, and loss tangent tan 6

17



the selected number of component values, there are n = 5, x 5. x 4, ways

of composing each layer. Then, the total number of ways of composiag

the whole four layer structure is N = (5 x 5 x 4)r, that is, there are 10'

different possible compositions for the whole structure . Each of these

structures must be tested for its reflection coefficient at the exterior of

structure. In order to obtain the desired result we may define an error

test function F given by,

F = ABS(Zi, - 377.0) (2 - 8a)

because the impedance of free space is 377 ohm. In order to produce a

reflection-free structure the outer surface must be matched to free space.

Alternatively, the outer-surface reflection coefficient is given by,

F = n (2- 8b)
Z111 + 377

The reflection coefficient may be chosen as a test function which has an

ideal minimum value of zero. The problem of the calculation of the

test-function F of a structure can be separated into two parts, One is the

assignment of parameter values to each layer, and the other is the calcu-

lation of the ABCD matnix of each successive layer, followed by multi-

plication of layer matrices to get the final structure matrix. If we consider

18



that layer(l) is in contact with a metal backplate, then the ABCD matrix

parameters can be written as,

MJ = (2- 9a)
.C, Dj_

Consider the next layer matrix to be,

[A2 B21
Af 2 = (2- 9b)

C2 D2IJ

In order to get the combined matrix, the foregoing are multiplied to

produce the combined matrix,

AfitotaI = Af2 x Af (2 - 9c)

and sequentially,

Mfotal = M3 X Altotal (2- 9d)

finally,

Mtotat = M4 X itotaI (2 - 9e)

19



In order to find the lowest value of reflection coefficient at the exterior

of the structure, the computer program scanned the whole set of struc-

tures at a given frequency. The search for the lowest reflection coefficient

is performed by comparing each new reflection coefficient value with the

previous lowest one (a binary-search method). Then the structure which

has the lowest reflection coefficient at a given frequency can be found by

the trial.

C. PATTERN SEARCH FOR BROAD BANDWIDTH

In the previous section, the structure which has lowest reflection co-

efficient value was selected at a given frequency. The investigation

showed that the lowest reflection coefficient values were associated with

resonant layer structures. These structures typically have low minimum

reflection, but with a narrow resonant characteristic. That is, the ab-

sorbing range of frequency was excessively narrow. This result occurred

because we simply conducted a search to find only the lowest reflection

coefficient among structures scanned. In order to identify structures with

greater absorption bandwidth, a bandwidth parameter AF is defined as,

Ar = [(rFlo + AI) - rfo)) + (rf - Aj) - rfo))] (2- lO)
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Where f0 is a frequency of minimum absorption, and Af is a selected in-

terval. In order to obtain the structures having broad absorption band-

width, each structure was scanned with changing frequency, while the

bandwidth parameter AF was compared with the previous smaller one.

The bandwidth parameter Af was calculated in the neighborhood of a

local minimum reflection coefficient F . The lowest value of bandwidth

parameter AF indicates the smallest change of surface reflection for the

tested frequency interval, which corresponds to broad absorption band-

width in radar.
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III. RESULTS OF COMPUTATION

A. REFLECTION CHARACTERISTICS OF LOW-r STRUCTURES

DERIVED AT FIXED FREQUENCY

The objective of RAM design is to produce a material for which the

complex reflection coefficient remains as small as possible over a given

frequency range. Table I shows the initially selected set of parameter

values which were employed in the computation of minimum reflection

at fixed frequency. The choice of parameters was based on practical

considerations of material availability. [Ref. 12]

Table 1. INITIAL INPUT PARAMETER VALUES

Param- Values
eter

__ _ _ 1.0 3.0 6.0 8.5 10.0

C 0.001 0.008 0.05 0.1 0.5

l(nzm?) 1.0 2.0 2.5 3.0

Fre-
quency 8.0 9.0 10.0 11.0 12.0
(GHZ) ] 1 _ _ 1 _1

Using this selected set of parameter values, the work followed a pattern

search in order to determine the best structure. In other words, the
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problem is to dermine what set of layer parameters results in a minimum

reflection at the exterior of the coatings with fixed frequency. The fixed

frequency scan was performed using the 2-port ABCD matrix form for

its convenience as described in the previous chapter. Figure 3 shows the

four-layer structure and its layer parameters. The input impedance of the

layer in contact with the metal backplane can be taken as,

AZL + B B Ia)
r=lCZL, + D D "-

since the metal plane can be considered to be a short circuit, i.e. to have

zero load impedance ( ZL = 0 . The use of equations (2 - 6d) to (2 - 6g)

then leads to,

ZinI = Z, sinh(y1,l) = Z1 tanh(y1l1) (3 - lb)
cosh(y,1 )

B. WAVE-PROPAGATION MODEL FOR LAYER REFLECTION

Consider the four-layer structure in Fig. 3. The input wave -

impedance to the irh layer is given by,

S= Z ZL cosh(yP) + Zi sinh(y()
ZL sinh(-,) + Zi cosh(yl) (3 -
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where Z2 is the wave impedance of the il region and ZL is the terminating

load impedance. With the single-layer input wave impedance available,

the layers can be cascaded in succession, starting with layer 1 at the metal

back plane. Finally, the input impedance to the four-layer structure is,

AZn 3 +--B
Zin4 ffi= 3 + D (3- 2b)

Since the input impedance of the fourth layer appears at the exterior

surface of the structure, the fourth layer input impedance can be consid-

ered as the load to the ambient space. Therefore the reflection coefficient

under normal wave incidence to the structure can be expressed with the

relationship between free space impedance and its load as,

r =fi Zi,• + Zo (3- 2c)
Zin4 + zo

Where r is the wave reflection coefficient, and Z4 is the free space

impedance of 377 ohms. The reflection coefficient is a complex number

since the load impedance is complex. In addition, the reflection coeffi-

cient has a magnitude between zero and one from equation (3 - 2c). In

discussing the overall reflection coefficient for RCS, it is sufficient to ig-
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nore the phase angle and to refer to the amplitude of the reflection co-

efficient F, so the power reflection in decibels can be derived as,

Fpf= 20 loglo IF (3- 2d)

Thus from equation (3 - 2c), it is seen that zero reflection occurs when

the load impedance and the impedance of free space are equal. Finding

the lowest reflection coefficient is equivalent to eliminating the difference

between the fourth layer input impedance and the impedance of free

space. Initially the layer structure parameters were scanned at fixed fre-

quency in order to find the lowest reflection at the exterior of the total

structure. Then, the frequency response characteristic, F(/) , for the

structure from I to 50 GHZ was computed. These characteristics are

shown in Figs.5 to 9. For each Fr curve a polynomial fit of the relative

dielectric constant t,, and loss tangent tan 6, is shown. These plots of

parameter - distribution through those structures having favorable RCS

characteristics were constructed in order to provide insight into the char-

acteristics that lead to good RCS performance. Such knowledge will be

a useful aid to understanding the mechanism for low RCS. Table 2

summarizes in tabular form the distributions of material parameters, t,

and tan 6, which led to the lowest I values found at the selected fre-
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quencies. As mentioned earlier, the structures which were found to have

minimum reflection at fixed frequencies exhibited typically a resonant

reflection characteristic.

Table 2. RESULTS WITH THE INITIAL PARAMETER VALUES FOR
FIXED FREQUENCIES

Freq Er tan 6 x 102 l(mm)(GHZI------------------ " - fx×lQY(H)1 2 3 4 1 2 13 4 1 2 3 4 rx o

8.0 10 10 6 6 0.1 0.1 5 50 2 2.5 2.5 3 0.15056

9.0 8.5 10 6 6 0.1 0.6 10 50 2.5 2 2 2.5 0.09035

10.0 3 10 8.5 3 0.8 5 50 50 2.5 2 2.5 3 0.15689

11.0 10 10 10 10 0.1 0.8 0.8 50 2.5 2 1 1 0.02800

12.0 6 8.5 8.5 6 15 10 5 50 2 1 3 1 0.08145

- In I

Figs.5 to 9 show that the lowest r(/) appears at the minimum of a narrow

resonant dip in the reflection coefficient of the structure in all cases. The

curve of tan 6 vs. layer - number for these structures demonstrates a

characteristic rise in magnitude, in proceeding from the inner layer in

contact with the metal to the outer, air-dielectric interface. This means

that, with a maximum of conductivity of the medium near the outer sur-

face, there will be a tendency for waves to be trapped within the layer
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structure. With lossy media, a trapped standing wave would exhibit a

maximum loss at the frequency of resonance for the wave.

Based on the foregoing concept, an average dielectric constant for

each entire layer structure was calculated according to definition,

,4

Y, Eriii

rav" "(3 - 3a)

il-I

From the this average , , the number of wavelengths in the equivalent

medium was calculated for each of the resonant frequencies in Figs.5 to

9, according to the expression,

f' =rD f (3 3b)A';. ~ %-D-" \, rav'

4

Where D = 7.i is the total thickness, and c is the velocity of light in
I11

vaccum. The results of this calculation are shown in Table 3. It may be

seen that in all cases, the total layer structure thickness amounted to ap-

proximately (3,4) wavelengths. In a simple resonance picture, this would

correspond to a standing wave distribution with a zero of E field at the

metal surface, a node within the material, and a standing-wave maximum
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at thc air- dielectric intrrl'ace. This situation is shown schelantically in

Fig.44. Furthcr analysis has revealed that the narrowband behaviour ex-

hibited in Figs.5 to 9 is due to the gradual variation or the loss tangent

parametcr. We will see Inter that to get a broadband response, the loss

taictet must be more o" icss unil'orm through cut the laycrs.

"Tanble 3. WAVEILELNGTII IN STRUtICTURE, VS. FIIQJENCV

F req(G IlIZ) Wavelengths in stru'tu re

X1 0.745

9 0.744

10 0.801

II 0.754

12 0.763

I - I

.j , I *.

21 id %

\ I
. 6 I I

I oIl

I I

- ~I

riguie 4. STANDING WAVE IN 1-11e LOSSY STRUCTURE
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C. SEARCH FOR LAYER STRUCTURES HAVING MINIMUM

REFLECTION WITH BROAD BANDWITH

Although the narrow band absorber has a very low reflection coeffi-

cient at its fixed frequency, it is not desirable for military applications,

because its narrow absorption bandwidth is not effective where hostile

radar frequencies may have a range of values, or may be frequency-agile.

In order to extend the absorption bandwidth, the computation of re-

flection coefficient was carried out using the absorption bandwidth AE

(Eq.(2-10)) as a test parameter. Figures 10 and 14 to 19 show the ab-

sorption spectra of layer structures having low reflection over a broad

bandwidth in the frequency range I to 50 GHz. These show reflection

coefficients in dB units.

Standard radar detection theory [Ref. 13] shows that for a radar re-

ceiver operating at a signal to noise ratio (S/N) of 18 dB, the probability

of detection will be essentially 100 % at a false alarm probability (PFA)

of IE-12. If the S;N ratio is reduced by 10 dB, the probability of de-

tection falls to well below 1%, at the same level of PFA. Although these

are ideal values, a reflection coefficient of -12.5 dB may be taken in

Figs.10 to 18 as a criterion of low radar-cross section. Table 4 summa-
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performance of these structures under this criterion by definition of

bandwidth (%) as,

(/maxfmin)B. % ) 2 (fmax+fin) 100 (4-)

Table 4. RCS PERFORMANCE OF BROADBAND STRUCTURES

Fig Freq. range (GHZ) ECM B.Wband BW%

10 12.1-26.7, 35-50 J ,K 75.3

14 26.8-50 K L 60.4

15 26.8-50 K , L 60.4

16 24.7-50 K , L 67.7

17 13.3-26.7. 41-50 J , K 67.0

18 7.6-50 H.I,J.K,L 147.1

The material constant distributions of the broad-banded layered RCS

structures in Fig.10 above shows the characteristics of low relative

dielectric constant at the air/layer interface, with rising z, toward the

metal backplane. It is interesting to note that these broad-bandwidth

structures had the lowest value of loss tangent in the second layer from

the air interface, and a generally have a smaller percentage variation of

tan 6 among the layers than for the resonant structures of Figs.5 to 9.
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The structures shown in Figs.l 1, 12 and 13 were derived from Figs.5, 6

and 9 by a changing only the relative dielectric constant but maintaining

the same loss tangent profile as in Fig.10. It may be noted that the curves

of Figs. 11,12 and 13 are qualitatively similar in form to the narrow-band

cases shown Figs. 5, 6 and 12 except for the reflection coefficient mag-

nitude. Figures 14, 15 and 16 have the same dielectric profile as the

narrowband profile of Figs.5, 6 and 9 respectively, except that the

dielectric constant of the outermost layer is made unity in Figs.14,15 and

16. This structure leads to absorption of energy over a wide frequency

range beyond 25GHz as shown in Figs.14, 15 and 16. In addition, placing

the lowest value of relative dielectric constant at the second layer from

the air interface, leads to a low reflection coefficient which extends from

13.3 GHz to 26.7 GHz and from 45 GHz to up, as shown in Fig.17.

Although the lossy layer having unit value of relative dielectric

permittivity which was cited above for the air-interface layer is an

idealization, it is assumed that it could be approximated by a suitable

porous compound containing lossy material, or in similar fashion. Fig-

ures 10 and 14 to 16 show that it is relatively easy to obtain low reflection

ove, broad bandwidths at frequencies beyond 25 GHz. It is felt that fu-

ture experimentation with layer parameter values can produce broader-
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banded structures in the X-band and Ku-band regions. For example,

placing the lower value of relative dielectric constant at the second layer

from metal interface for the structure shown in Fig.18, led to a structure

with a low reflection coefficient which extends from 7.6 GHZ to 50 GHZ

as shown in Fig.1S. This structure has the broadest absorption bandwidth

which was found after only limited experimentation with the adjustment

of layer parameter values. From these results it may be concluded that

the broad-bandwidth structures have the common characteristics of low

relative dielectric constant, (unit value), at the air/layer interface with in-

creasing value to the metal ,layer interface and having a lowest value of

loss tangent in the second layer from air surface with smaller variation

of its value among the layers than the resonant layers described in pre-

ceding section. In further research, additional trials should be made to

produce broad-banded low- RCS structures by further adjustment of layer

parameters as described above. It is assurmed that there is potential for

the production of additional high performance RAM structures, by the

methods outlined.
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IV. CONCLUSION

Radar absorbing materials can make it possible to hide an incoming

military vehicle by reducing the radar echo to a very low level. The radar

cross section of an object may be reduced over a specific range of fre-

quencies by applying to the surface of the object a material which absorbs

the incident energy. Satisfactory broadband absorbing material per-

formance depends on getting the RF energy into the RAM and then

providing sufficient loss to absorb the necessary energy within the allowed

RAM thickness. These two requirements often conflict, because high-loss

materials often have intrinsic impedance much different from that of free

space, and thus suffer high front face reflections. A simple solution of

this for a single 'ayer structure is to employ materials with both a high-

loss and an intrinsic impedance near to that of fiee space. The present

work was done under the constraint of using multilayered lossy dielectric

materials to find best structure for both the fixed-frequency case and

broadband case. Structures having a wide range of material parameters

were scanned while retaining a maximum thickness of I cm.

The research found that broad absorption bandwidth structure calls

for a typical distribution of the layer parameters: a variation with a high
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value of dielectric constant near the metal backplane changing to a nearly

unit value at the air/dielectric interface layer. In addition, the distribution

of loss tangent should have its lowest value in the second layer from the

air/layer interface. The use of multilayered dielectric materials i.e. non-

ferrite based materials is capable of reducing the radio wave reflection

over significant frequency ranges by suitable control of the distribution

of the layer parameters of the structure.
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APPENDIX A. COMPUTER PROGRAM '4'O

MINIMUM REFLECTION COE-Ff

THIS PROGRAMI PROVIDES THE SCAN OF LAYER PARAMETER:, AT FIXED
FREQUENCY

DOUBLE PRECISION IIINGA?1,GAIIA4
INTEGER N ,COUNT,I1,12,13,14,Jl,J2,-3,J4,Kl,K2,K3,K4
REAL PI,EO,MUO,Fl,OMG,ERC10),D(15),L(1O),Z,V
COMPLEX JAY ,EFF1 ,EFF2 ,E~rF3 ,EFF4
COMPLEX THETA 1,THETA2 ,THETA3 ,THETA4
COMPLEX ETA1,ETA2,ETA3,ETA4,D1,B1
COMPLEX A2,B2,C2,D2, A3,B3,C3,D3
COMPLEX SSH1,SSH2,CSH1 ,CSH2,SSH3,CSH3
COMPLEX SSH4,CSH4,A4,B4,C4 ,D4
COMPLEX GMI'MA4,ZIN1,ZIN2,ZIN3,ZIN4
PI=4*ATAN( 1.)
F 1=9.
N=4
E=( 1E-9)I(36*PI)
OMG=2*PI*F W 1E9
MUO=Pl*N4E-7)
JAY=CMPLX(O. ,4.)
ER( 1)=1. 0
ER( 2)=3. 0
ER( 3)=6. 0
ER(4)=8. S
ER(S)=10. 0
D(1)=0. 001
D(2)=0. 008
D(3)=0.05
D(4)0. 1
D(5)=0. 5
L( 1)=0. 001
L(2)=0. 002
L(3)-0. 0025
L(4)=0. 003
MINGAM=1. 0
C OUN\7 1
INRITE(5,12)
IJRITE(5,13)

12 FORMAT(1X,'MINGAIIA' ,16X,'COUN'T')

+ l1X,'LI(2)',2X, ER(3) I 2X , Q(3)',lX,'LI(3)',2X,
+ 'ER(4)',2X,'Q(4)',1X, LI(4)')
DO 99 I1=1,5
DO 98 J1=1,5

* ~DO 97 1(1=1,4
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DO 96 12=1,5
DO 95 J2-1,5
DO 94 K2=1,4
DO 93 13=1,5
DO 92 J3=1,5
DO 91 K3=1,4
DO 90 14=1,5
DO 89 J4=1,5
DO 88 K4=1,4

Z=L(K1)+L(K2)+L(K3)4-LCK4)
IF ((N.EQ.4).AND.(Z.LE.O.O1)) THEN
EFFl-ER( I1)*EO*( 1.JAY*DCJ1))
THETA JAY*CSQRT(t4UO*EFF1)*ONG*L(Kl)
SSH1=(CEXP(THETAl)-l/CEXP(THETA1) )12
CSI(1=(CEXP(THETA1)4-1/CEXP(THETAl) )/2
ETAI1CSQRT( KUO/EFFI)
Dl1CSH1~
B 1=ETA1*SSH1
ZIN1=bl/Dl
EFF2=ER( 12)*EO*( 1-3AY*D( 32))
THETA2=JAY*CSQRT( MUO*EFF2 )*OMG*L( K2)
SSH2=(CEXP(THETA2)-1/CEXP(THiETA2) )/2
CSH2=(CEXP(THETA2)+1/CEXP(THETA2) )/2
ET'A2=CSQRT(MU0/EFF2)
A2=CSH2
D2=rSH2
B2=ETA2*SSH2
C 2SSH2 /ETA2
ZIK2zC A21*ZIN1+82)/i (C2*ZIN1+D2)
EFF3=ER( 13)*EO*( 1-JAY*D(J3))
THETA3 JAY*CSQRT(Ht4O*EFF3)*OMG*L( K3)
ETA3=CSQRT(tNUO/EFF3)
SSH3=(CEXP(THETA3)-1/CEXP(THETA3) )/2
CSHZO=(CEXP(THETA3)+1/CEXP(THETA3) )/2
A3=CSH3
B 34TA3WcSSH3
C3=SSH3/ETA3
D3=CSH3
Z1IN3C(A3*Z1N2+B3)/( C3*Z1N2+D3)
EFF4=ER( I4)*rEO*( 1-JAY*D( 34))
THETA4=JAY*~CSQRT( fltO*EFF4 )*OMG*L( K4)
ETA4=CSQlRT( KUO/EFF4)
SSH4?:(CEXP(THETA4)-l/CEXPCTHETA4) )/2
CSH4-(CEXP(THETA4)+l/CEXP(THiETA4) )f2
A4=CSH4
B4=ETA4*SSH4
C4=SSH4/ETA4
D4=C SH4
ZIN4=(A4*ZIN3+B4)/(CC4*ZIN3+D4)
GAMNhA4=((ZIN4-377. )/(ZIN4+377. ))
GAMA4=CABS( GAMflA4)
IF (IINGAM1.GT.GAMA4) THEN

NIINGA1IGAIIA4
WRITE(5,43) MINGAM,COUNT
WRITE(5,44) ER(I1),D(Jl),L(Kl),ER(I2),

+ D(J&-),L(K2),ER(I3),D(J3).,LCK3)
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+ ER(14) ,D(J4),L(K4)
43 FORMAT(IX,F18.16,2X,16)
44 FORNAT(lX,4(F6.3,IX,F5.4,lX,FS.4,1X))

COUNT=COUNT+ 1
ELSE

V-GAMA4-MINGAM
IF((V. NE. 0. ). AND. (V. LE. 1E-3)) "HEN
WRITE(5,73) GAMA4WRITE(5,74) ER(Il) ,D(Jl) ,L(Kl) ,*ERI2)

+ ,D(J2),L(K2) ,ER(I3) ,D(J3)
+ ,L(K3) ,ER( 14),D(J4).,L(K4)

73 FORMAT(1X,F18. 16)
74 FORMAT(1X,4(F6.3,1XF5.3,1X,F5.4,lX))

ENDIF
Eh'DIF

ENDIF
88 CONTINUE
89 CON'TINLE
90 CONTINUE
91 CONTINUE
92 CONTINUE
93 CONTINUE
94 CONT'INUE
95 CONTINUE
96 CONTINUE
97 CONTINUE
98 CONTINUE
99 CONTINUE

STOP
END
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APPENDIX B. COMPUTER PROGRAM TO SEARCH FOR BROAD

ABSORPTION BANDWIDTHS

THIS PROGRAM IS DESIGNED, TO FIND BROAD ABSORPTION BANDWIDTHS BY
USING BANDWIDTH PARAMETER.

DOUBLE PRECISION MINGAI ,GAM(500),F(500)
DOUBLE PRECISION FREQ ,FIG,DELGAM
INT'EGER N,M,O,V,JMIN,COUN'T
REAL PI,EO,MUO,OMG,ER(5),D(S),L(4),Z
COMPLEX JAY ,EFF1 ,EFF2 ,EFF3 ,EFF4
COMPLEX THETA 1,THETA2 ,THETA3 ,THETA4
COMPLEX ETAI,ETA2,ETA3,ETA4,Dl,B1
COMPLEX A2,B2,C2,D2, A3,B3,C3,D3
COMPLEX SSH1,SSH2,CSH1,CSH2,SSH3,CSH3
COMPLEX SSH4,CSH4,A4,B4,C4,D4
COMPLEX GA!MA4, ZIN1,ZIN2,ZIN3,ZIN4

C OPEN(UNIT-6,FILE='THEl')
PI 4*ATAN(I.)
N =4
EO = (IE-9)/(36*PI)
MUO PI*(4E-7)
JAY = CMPLX(O. ,1. )
MINFIG = 1.0
COUN.r = 1
WRITE(6,12)
WRITE(6,13)

12 FORMAT(lX,'GAMMIN',6X,'DELGAM',17X,'FREQ',16X,'FIG',IOX,'V')
13 FORXAT(3X,'ER(1)',2X, Q(1)'tlX,'LI(1)',2X,'ER(2)',1X,'Q(2)'

+ ,lX,'LI(2)',2X,'ER(3) '2X, 'Q(3)',IX,'LI(3)',2X,
+ 'ER(4)',2X,'Q(4)',1X, LI(4)')

ER(1) = 10.
ER(2) = 8.5
ER(3) 6.
ER(4) = 3.0
ER(5) = 1.0
D() a .001
D(2) = 0.008
D(3) - 0.5
D(4) = 0.001
D(5) = 0.5
L(1) - 0.001
L(2) = 0.002
L(3) - 0.0025
L(4) - 0.003
DO 99 I1 = 1,1

DO 98 Jl = 3,3
DO 97 K1 - 1,4

DO 96 12 a 1,5
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DO 95 32 a 1,5
DO 94 K2 a 1,4

DO 93 13 -1,5
DO 92 J3 - 1,5

DO 91 K3 =1,4
DO 90 14 a 1,5

DO 89 A4 - 2,5
DO 88 K4 - 1,4

Z - L(Kl)+L(K2)+L(K3)+L(K4)
IF ((N.EQ.4).AND.(Z.LE.O.O1)) THEN
DO 87 FREQ=8.ODO,1.3D1,1.ODO

0KG - 2*PI*FREQ*1E9
0 -COUNT
F(O) - FREQ
EFFi - ER(11)*EO*(1-JAY*D(Jl))
THEM~ a JAY*CSQRT(IIUO*EFF1 )*OMG*L(K1)
SSH1 - (CEXP(THETA1)-1/CEKP(THETA1))/2
CSH1 - (CEXP(THETA1)+l/CEXP(THETAl))/2
ETAl - CSQRT(KIJO/EFT1)
Dl CSH1
Bl = ETA1*SSH1
ZINi - Bi/Di
EFF2 = ERCI2)*EO*(l-JAY*D(J2))
THETA2= JAY*CSQRT( MUO*EFF2 )*OMG*L( K2)
SSH2 = (CEXP(THETA2)-1/CEXP(THETA2))/2
CSH2 = (CEXP(TH~ETA2)+l/CEXP(THETA2))f 2
ETA2 = CSQRT(HUO/EFF2)
A2 -CSH2
D2 = CSH2
B2 =ETA2*SSH2
C2 = SSH2/ETA2
ZIN2 - CA2*ZIN1+B2)/(C2*ZIN1+D2)
EFF3 = ER(13)*EO*(l-JAY*D(J3))
THEMA = JAY*CSQRT( MUO*rEFF3 )*OMG*LC K3)
ETA3 = CSQRT(HUO/EFF3)
SSH3 - (CEXP(THETA3)-1/CEXP(THETA3))/2
CSH3 = (CEXP(TI{ETA3)+1fCEXP(THETA3))/2
A3 =CSH3

B3 *ETA3*SSH3
C3 SSH3/ETA3
D3 =CSH3

ZIN3 = (A3*ZIN2+B3)/(C3*ZIN2+D3)
EFF4 - ER(14)*EO*Cl-JAY*D(J4))
THETA4 - JAY*CSQR.T( KUO*EFF4 )*OMG*L( K4)
ETA4 - CSQRTCKUO/EFF4)
SSH4 c (CEXP(THETA4)-1ICEXPCTHETA4))/2
CSH4 -(CEXP(THETA4)+l/CEXP(THETA4))/2
A4 - CSH4
B4 =ETA4*SSH4

C4 SSH4/ETA4
D4 -CSH4

ZIN4 -(A4*Z1N34D4)/(C4*ZIN3+D4)
GAMMA4 - ((ZIN4-377. )/(ZIN4+377.))
GAJICO) - CABS(GANMIA4)
COUNT - COUNT+l

87 CONTINUE
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45 DO 100 M 2 , (0-1)
IF ((GAII(M).LT.GAM(M-1)).AND.

+ (GAM(M). LT. GAH(M+1)))THEN
JHIN =H
HINGAJI = GAM(J1IIN)

DELGAM=((fr. ..Ž±ýN-1)-GAM(JMIN))+(GAH(JHIN+1)-GAM(JMiIN)))/2
IF ((OG1O(HINGhN). IE.-1. 0).AND.

+ (LOG1O(DELGAM).LE.-1.3)) THEN
FIG LO W1O(MINGAM)+WAGIO(%DELGM1)

IF (FIG.LE.MINFIG) THEN
HINFIG-FIG
vui

ELSE
v-0

ENDIF
WRITEC6,43) MINGAH,DELGAfl,F(JMIN) ,FIG,V
WRITEC6,44) ERCIl),D(J1),L(Kl),ER(12),D(J2),L(K2)

+ ,ER(13),D(J3),L(K3),ER(I4),D(J4),L(K4)
43 FORMAT(lX,F10.8,2X,F20.1S,2X,F13.8,6X,F1S.8,4X,12)
44 FORM1AT(lX,4CF6.3,lX,F5.4,lX,F5.4,1X))

END IF
ENDIF

100 CONTINUE
COUNT-i

ENDIF
88 CONTINUE
89 CONTINUE
90 CONTINUE
91 CON4TINIJE
92 CON'TINUE
93 CONTINUE
94 CONTINUE
95 CO0NT INU E
96 CONTINUE
97 CONTINUE
98 CONTINUE
99 CONTINUE
C PR I Nl, ''LOG1OCNINGA~I)-' ,LOG1OCMINGAM?,'DLOD-',L0GIO(DELOA11)
C PRIN`T*, 1LOG4I=' I LOG 1O(MINGAM) ,'LDEL- ,LOG10(DELGAM)
C PRINT*, 'MINGAM- , MINGAM,'DEL-GAMS' ,DELGAII

STOP
END
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