WL - TR - 91 - 3073

AD-A240 263

SUBSONIC WIND TUNNEL TESTING HANDBOOK

Captain Michael G. Alexander WL/FIMM Wright-Patterson AFB, Oh 45433-6553

May 1991 Interim Report for Period 1 May 1990 - 1 May 1991

Approved for public release; distribution unlimited

Flight Dynamic Directorate Wright Laboratory Air Force System Command Wright-Patterson AFB, Ohio 45433-6553

1

NOTICE

WHEN GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY GOVERNMENT-RELATED PROCUREMENT, THE UNITED STATES GOVERNMENT INCURS NO RESPONSIBILITY OR ANY OBLIGATION WHATSOEVER. THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED OR IN ANY WAY SUPPLIED THE SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA, IS NOT TO BE REGARDED BY IMPLICATION, OR OTHERWISE IN ANY MANNER CONSTRUED, AS LICENSING THE HOLDER, OR ANY OTHER PERSON OR CORPORATION; OR AS CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE, OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.

THIS REPORT HAS BEEN REVIEWED BY THE OFFICE OF PUBLIC AFFAIRS (ASD/PA) AND IS RELEASABLE TO THE NATIONAL TECHNICAL INFORMATION SERVICE (NTIS). AT NTIS IT WILL BE AVAILABLE TO THE GENERAL PUBLIC INCLUDING FOREIGN NATIONS.

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION.

mill & alfond

MICHAEL G. ALEXANDER, Captain USAF Aerospace Engineer Airframe Aerodynamics Group

is Spalal

DENNIS SEDLOCK, Chief Aerodynamics and Airframe Branch Aeromechanics Division

FOR THE COMMANDER

DAVID R. SELEGAN Acting Chief Aeromechanics Division

IF YOUR ADDRESS HAS CHANGED, IF YOU WISH TO BE REMOVED FROM OUR MAILING LIST, OR IF THE ADDRESSEE IS NO LONGER EMPLOYED BY YOUR ORGANIZATION PLEASE NOTIFY <u>wl/fimm</u>, wright-patterson AFB, oh 45433-<u>6553</u> TO HELP MAINTAIN A CURRENT MAILING LIST.

COPIES OF THIS REPORT SHOULD NOT BE RETURNED UNLESS RETURN IS REQUIRED BY SECURITY CONSIDERATIONS, CONTRACTUAL OBLIGATIONS, OR NOTICE ON A SPECIFIC DOCUMENT.

REPORT DOCUMENTATION PAGE			Form Approved OMB No 0704 0188
gathering and maintaining the data peeded, a collection of intermation, including suggestion	nd completing and received up to section of t	nformation Send comments regard ideuarthis Services Cirrectorate for i	ewing instructions, sear-tring existing data sources, ing this burden instimate or any litter aspect of this hormation Operations and Hepcitch, 1215 Jefferson t (3704-0188), Washington, UC 20503
1. AGENCY USE ONLY (Leave bla 4. TITLE AND SUBTITLE	nk) 2. REPORT DATE May 1991		DATES COVERED (T 1 MAY 90 - 1 MAY 91 5. FUNDING NUMBERS
Subsonic Wind Tunnel 6. AUTHOR(S)			WU 240410A2
Alexander, Michael G. 7. PERFORMING ORGANIZATION I			8. PERFORMING ORGANIZATION
WL/FIMM Wright-Patterson AFB			WL-TR-91-3073
9. SPONSORING / MONITORING AC WL/FIMM Wright-Patterson AFB	GENCY NAME(S) AND ADDRESS(ES)	10. SPONSORING/MONITORING AGENCY REPORT NUMBER
11. SUPPLEMENTARY NOTES			
12a DISTRIBUTION AVAILABILITY Approval for Public R	STATEMENT		126. DISTRIBUTION CODE
force and moment wind testing engineer equa aid him or her in win amalgamation of nume living document read	dominantly structured d tunnel testing. Its ations, concepts, illu and tunnel testing. Th rous sources and obser ily expandable to incl pook has not and canno	purpose is to pr strations, and de e information in vations. By desi ude personal note	ovide to the aerodynamic finitions that would this handbook is an gn, this handbook is a s and additional
14. SUBJECT TERMS		<u></u>	15. NUMBER OF PAGES 306
Wind Tunnel, Handbook	, Subsonic, Wind Tunne		16. PRICE CODE
OF REPORT Unclassified	OF THIS PAGE Unclassified	19. SECURITY CLASSIFIC OF ABSTRACT Unclassified	ATION 20. LIMITATION OF ABSTRACT Unlimited
NSN 7540-0° 280-5500	- ACTROOTITER	onclassified	Standard Form 298 (Rev. 2.89)

Foreword

This technical report was prepared by Captain Michael G. Alexander from Wright Laboratory, Flight Dynamics Directorate, Aeromechanics Division, Wright-Patterson AFB, Ohio, 45433-6553. This work was accomplished under work project 240410A2, Advanced Tactical Transport. This technical report provides the wind tunnel testing engineer a handbook with useful equations, definitions, and concepts to aid in wind tunnel testing.

The author wishes to thank the exceptional insights, observations, expertise and help from Mr. Tom Tighe, Mr. Jim Grove, Mr. Bob Guyton and Mr. Larry Rogers all from WL/FIMMC (Wright Laboratory, Airframe Aerodynamics Group).

This report has been reviewed and is approved.

	0-5-10 0-5-10
Accession For	
NTIN NAMI TURN AND NAME AND NAME AND AND NAME AND AND	
	140
XX 1 10 0191	

Table of Contents

Section	Description	Page
I	INTRODUCTION.	I-1
II	AERODYNAMIC DEFINITIONS	
	a) Symbols	II-1
	b) Aerodynamic Center (a.c.)	11-2
	c) Center of Pressure (cp)	II-2
	d) Mean Aerodynamic Chord (M.A.C.).	11-2
	e) Neutral Point (N _o or x_{np})	11-2
	f) Static Margin (SM)	11-2
	g) Longitudinal Static Stability	11-2
	h) Directional Static Stability	II-3
	i) Lateral Static Stability	11-3
	j) Dynamic Stability	11-3
	k) Trimmed Flight	11-3
	l) Critical Mach Number	11-3
III	FORCE AND MOMENT EQUATIONS	
	a) General Aerodynamic Symbols and Equations	III- 1
	b) Aerodynamic Equations	111-5
	1) Trim, Pitching Moments Equations	111-5
	Conventional Horizontal Tailed Aircraft	111-5
	Tailless	111-5
	Canard	111-5
	2) Stick Fixed Neutral Point	111-9
	3) Two Dimensional Lift	111-9
	Subsonic	111-9
	Supersonic	111-9
	4) Pressure Coefficient	III-9
		111-9
	Compressible	Ш-9
	5) Center of Pressure Location	111-10

Section	Description	Page
	6) Aerodynamic Center (a.c.) Determination	III-10
	7) Mass Flow	III-10
IV	AXIS_SYSTEM_DEFINITIONS	
	a) Axis System Definitions	IV-1
	1) Tunnel Axis (Inertial Axis)	IV-1
	2) Body Axis	IV-1
	3) Wind Axis	IV-1
	4) Stability Axis	IV-1
	b) Angle Definitions	IV-5
	1) Aerodynamic Angles	IV-5
	2) Orientation Angles	IV-5
	3) Angle Transformation from Tunnel Axis to Body Axis	IV-6
	4) Wing Reference Plane	IV-6
	5) Wind Reference Plane	IV-6
	6) Plane of Symmetry	IV-6
	c) Coordinate Transformation Equations	IV-8
	1) Balance Axis to Body Axis	IV-9
	2) Body Axis to Wind Axis.	IV-13
	3) Body Axis to Stability Axis	IV-14
	4) Wind Axis to Stability Axis	IV-15
V	TRIP_STRIPS	
	a) Boundary Layer Symbols	V-1
	b) Boundary Layer Discussion	V-2
	c) Boundary Layer Thickness	V-2
	1) Laminar	V-2
	2) Turbulent	V-2
	d) Trip Strips	V-3
	e) Trip Strip Types	V-3
	1) Grit	<u>V-3</u>

Section	Description	Page
	2) Two-Dimensional Tape	V-3
	3) Epoxy Dots	V-4
	4) Thread or String	V-4
	f) Location of Trip Strips	V-4
	1) Lifting Surfaces	V-4
	2) Fuselage	V-4
	3) Nacelles	V-4
	g) Determination of Trip Strip Height	V-5
	1) Method 1 (Atmospheric tunnels)	V-5
	2) Method 2 (Atm. and Pressure tunnels)	V-7
	h) Application of Grit types of Trip Strips	V-8
VI	PLANFORM CHARACTERISTICS	
	a) Planform Symbols	VI-1
	b) Wing Parameters Definitions	VI-3
	c) Planform Parameters	VI-5
	1) General Planforms	VI-5
	2) Conventional, Straight-Tapered	VI-6
	3) Double Delta and Cranked Wing	VI-8
	d) Planform Example	VI-1(
	1) Inboard Section	VI-1(
	2) Outboard Section	VI-1
	3) Total Wing	VI-1
	4) Total Aircraft Aerodynamic Center Location	VI-12
	Inboard Section	VI-12
	Outboard Section	VI-i2
	Total Aircraft	VI-12
VII	DRAG	
	a) Symbols	VII-1
	b) Drag	VII-2

Section	Description	Page
	c) Subsonic Drag	VII-2
	1) Minimum Drag	VII-2
	2) Profile Drag/Skin Friction Drag	VII-2
	Pressure Drag (Form Drag)	VII-3
	3) Interference Drag	VII-3
	4) Miscellaneous Drag	VII-3
	5) Drag Due to Lift	VII-3
	6) Zero Lift Drag	VII-3
	7) Base Drag	VII-4
	8) Internal Duct Drag	VII-4
	9) Wave Drag	VII-4
	d) Drag Polar (Subsonic)	VII-4
	1) (C_L vs C_D) Polar	VII-4
	Parabolic	VII-5
	Non-Parabolic	VII-5
	2) (C_D vs C_L^2) Polar	VII-5
	3) Polar Break	VII-:
	4) Camber Effects	VII-5
	5) Drag and Performance Equations	VII-6
	Non-Parabolic Polar	VII-6
	Parabolic Polar	VII-6
	6) Analytically Determined Drag Polar	VH-7
	Method of Determining a Drag Polar.	VII-T
	Example	
VIII	EXPERIMENTAL TESTING AND INTERPRETATION	
	a) Flaps	VIII-
	1) Trailing Edge Flaps	
	2) Leading Edge Flaps	
	b) Lift Curve (Flaps Up)	

Page Section Description VIII-2 VIII-3 d) Drag Curve (Flap Up and Down). VIII-3 V''I-3 f) Elevator Stabilizer Power Curve v (II-4 VIII-5 i) Determine Center of Pressure Shift (cp) VIII-5 VIII-5 i) C.G. Shift VIII-5 1) Determining Aircraft Parameters from Wind Tunnel Data. VIII-6 VIII-6 2) Aerodynamic Center Location. VIII-7 3) Aerodynamic Center Pitching Moment. VIII-7 4) Center of Gravity Pitching Moment. VIII-7 VIII-8 6) Longitudinal Static Stability VIII-9 VIII-9 7) Longitudinal Balance VIII-9 **VIII-10** VIII-11 VIII-11 o) Determining the Average Downwash Angle. p) Determining Induced Drag Factor (K) and Oswald's Wing **VIII-12** Efficiency Factor (e) q) Base Pressure VIII-12 r) Pressure Transducer Selection VIII-13 VIII-14 1) Surface Flow Visualization VIII-14 VIII-14 VIII-15 Mini-Tuft Installation VIII-15 Surface Freparation Steps **VIII-15**

Ł

Section	Description	Page
	Mini-Tuft Attachment Steps	VIII-16
	Oil Flow	VШ-17
	3) Off-Body Flow Visualization	VIII-17
	Laser Light Sheet (Vapor Screen)	NHI-17
	Smoke Seeded Flow.	VIII-18
	Tufts	VШ-18
	4) Determining Aerodynamic Angles from the Model Support	
	(sting) Angles	VIII-19
IX	STRESS ANALYSIS	
	a) Symbols	IX-1
	b) Definitions	IX-3
	c) Stress Formulas	IX-5
	d) Angle-of-Twist	IX-5
	e) Polar Moment of Inertia	IX-5
	f) Radius of Gyration	1X-6
	g) Bending Stress	IX-6
	h) Shear Stress	IX-6
	i) Torsional Formulas	IX-6
	j) Combined Stress	IX-7
	k) Principle Stress	IX-8
	1) Factor of Safety	1X-8
	m) Calculate Centroid of a Planform Area	IX-9
	n) Example: Stress Analysis	IX-10
Х	TRENDS	
	a) Flap Characteristics	X-1
	b) Effect of Vertical Location on C.G. Pitching Moments.	X-1
	c) Typical Longitudinal Stability Breakdown	X-2
	d) Mach Number Trends (Effect).	X-3
	e) Reynolds Number and Aspect Ratio Effect.	X-4

Description	Page
f) Effect of Wing Sweep on C ₁₂	X-5
8	X-6
	A-0
	X-9
·	X-i0
max	
	X-11
	X-12
1) Mach Effect on a Airfoil Pressure Distribution	X-13
INTERNAL STRAIN GAGE BALANCES	
a) Symbols	XI-1
b) Strain Gages	XI-2
1) Temperature Effects	XI-3
2) Deformation Theory and Calculation	XI-3
3) Measurement of $\Delta R/R$.	XI-4
c) Balance Calibration (interaction) Matrix	XI-5
1) Example	XI-6
d) Calibration Body	XI-7
e) Check Loading	XI-8
1) Checking Loading Procedure	XI-8
2) Dead-Weight Loading System.	XI-9
3) Axial Force Check Loading.	XI-9
f) Sensitivity Constants	XI-1
g) Obtaining Force and Moment Data from Raw Balance Data.	XI-1
h) Balance Calibration Equation Example	XI-1
i) Balance Placement in the Model	XI-1-
ر) Balance Calibration Equation Example	XI-1
k) Balance Placement in the Model	XI-1-
	 f) Effect of Wing Sweep on C_{Do} g) Aft and Forward Wing Sweep Comparison. h) Wing Pressure Distribution in the Presence of a Coupled Chine Forebody. i) Reynolds Number Effect on C_{1 max} j) Reynolds Number Effect on Drag. k) Drag Rise Characteristics (Wing alone) l) Mach Effect on a Airfoil Pressure Distribution l) Mach Effect on a Airfoil Pressure Distribution INTERNAL STRAIN GAGF BALANCES a) Symbols b) Strain Gages 1) Temperature Effects 2) Deformation Theory and Calculation 3) Measurement of ΔR/R. c) Balance Calibration (interaction) Matrix l) Example d) Calibration Body e) Check Loading f) Checking Loading Procedure g) Detaining Force and Moment Data from Raw Balance Data. h) Balance Placement in the Model.

Table of Contents (concluded)

Section	Description	Page
<u>APPENDI</u>	<u>X_A</u>	A-l
	Dynamic Pressure Determination.	A-1
	Reynolds Number Determination.	A-2
	Standard Atmosphere	A-3
	Compressible Flow Parameters.	A-4
	Conversion Factors	A-8
APPENDI	<u>X B</u>	B-1
	Tid Bits	B-1
	Wind Tunnel First Aid Kit.	B-2
	Geometric Equations	B-3
APPENDI	<u>X C</u>	C-1
	Powered Testing	C-1
	Symbols	C-1
	Power On Aerodynamic Equations.	C-3
	Incremental Coefficients	C-3
	Aerodynamic Coefficients	C-3
	Induced Force Coefficients	C-4

List of Figures

Figure	Description	Page
III-1	Form and Mamont Vestern Aft Tailad Aircreft	111-6
III-1 III-2	Force and Moment Vectors; Aft Tailed Aircraft	III-6
III-2 III-3	Force and Moment Vectors; Canard Aircraft	III-7
III-3 III-4	Positive Angle, Moment, and Body Axis Definition	HI-7 HI-8
IV-1	Body Axis System.	IV-2
IV-2	Wind Axis System.	IV-2
IV-3	Stability Axis System	IV-4
IV-4	Angle Definitions	IV-7
IV-5	Rotation Order	IV-11
IV-6	Balance Axis	IV-12
V-1	Boundary Layer Thickness	V-10
V-2	Streamwise Grit Location	V-11
V-3	Grit Height	V-12
V-4	Carborundum Grit Number	V-13
V-5	Minimum Grit Size (method 2)	V-14
VI-1	Airfoil Nomenclature	VI-4
VI-2	General Planform Parameters	VI-5
VI-3	Conventional, Straight-Tapered Planform	VI-6
VI-4	Double Delta and Cranked Wing Planform.	
VI-5	Planform Example	VI-10
VII-1	Drag Tree	VII-9
VII-2	$(C_{L} \text{ vs } C_{D})$ Drag Polar; subsonic	VII-10
VII-3	$(C_L vs C_D)$ Drag Polar; supersonic.	VII-10
VII-4	$(C_{L} \text{ vs } C_{D})$ Subsonic Drag Polar.	VII-11
VII-5	$(C_D vs C_L^2)$ Drag Polar	VII-11
VIII-1	Downwash Determination.	VIII-20
VIII-2	Trim Determination Plot	VIII-20
IX-1	Stress Analysis Example 1 (centroid determination)	IX-9
IX-2	Stress Analysis Example 2 (wing tip missile)	IX-15

1

List of Figures concluded

-

Figure	Description	Page
X-1	Flap Characteristics	X-1
X-1 X-2	Effect of Vertical Location of C.G. on Pitching Moments.	X-2
	C C	
X-3	Typical Component Longitudinal Stability Breakdown	X-2
X-4	Mach Number Trends (effects)	X-3
X-5	Reynolds Number and Aspect Ratio Trends (effects)	X-4
X-6	Effect of Wing Sweep on C _D	X-5
X-7	Aft and Forward Swept Wing-Fuselage Effects	X-6
X-8	Wing Pressure Distribution in the presence of a Coupled Chine	X-9
X-9	Reynolds Number Effect on C ₁ (Wing alone)	X-10
X- 10	Reynolds Number Effect on Drag (Wing alone)	X-11
X-11	Drag Rise Characteristics (Wing alone)	X-12
X-12	Mach Effect on Airfoil Pressure Distribution	X-13
X-13	Typical Weapon Separation Data	X-14
XI-1	Basic Wheatstone Bridge	XI-15
XI-2	Unbalanced Wheatstone Bridge	XI-15
XI-3	Example Balance Calibration Sheet	XI-16
XI-4	Raw Balance Data	XI-17
A-1	Dynamic Pressure Determination	A-1
A-2	Reynolds Number Determination.	A-2
A-3	Standard Atmosphere	A-3
A-4	Compressible Flow Parameters	A-4
A-5	Conversion Factors	A-8
B-1	Geometric Equations	B-3
C-1	Powered Effects	C-5

List_of_Tables

Table	Description	Page
III-1	Force and Moment Definitions	III-4
V-1	Nominal Grit Size	V-8
IX-1	Stress Constants	IX-7

Wind

Junnel

Uesting

Handbook

By Captain Michael G. Alexander, USAF

I INTRODUCTION

I Introduction

The aerodynamic engineer who participates in wind tunnel testing often has a need for reference material to aid him/her in his/her testing. It is nearly impossible for the engineer to recall every equation, concept, definition, and to carry reference material to the wind tunnel site. This handbook, Subsonic Wind Tunnel Testing Handbook, attempts to provide to the testing engineer in one reference some of those equations, concepts, and definitions that he or she might find helpful during testing. This handbook is a quick reference for the testing engineer and is an amalgamation of information from numerous reference materials and personal observations. It is designed to be a living document readily expandable and to fit in a briefcase to accompany the testing engineer to the test Also by design, this aid has not encompassed every wind tunnel technique or site. principle, but offers enough information to facilitate and help ease wind tunnel testing. This handbook is predominantly structured for subsonic (non-compressible flow), force and moment, wind tunnel testing. For compressible flow testing, an excellent reference aid is the NACA 1135 (ref. 1). However, it is no longer in print by the government, but, reprints of the NACA 1135 can be procured from reference 2.

II AERODYNAMIC DEFINITIONS

II Aerodynamic Definitions

<u>Symbols</u>

a.c.	Aerodynamic Center
cg	Center of Gravity
C _L	Lift Coefficient
C _n	Yawing Moment Coefficient
с _М	Pitching Moment Coefficient
с _{Мо}	Pitching Moment Coefficient at zero angle-of-attack
cp	Center of Pressure
MAC	Mean Aerodynamic Chord
N _o	Neutral Point
SM	Static Margin
X _{np}	Distance from the MAC leading edge to the aerodynamic center
x _{cg}	Distance from the MAC leading edge to the center of gravity
$\frac{\partial C_m}{\partial \alpha}$	Pitching Moment Coefficient slope
$\frac{\partial C_{mcg}}{\partial C_{L}}$	Slope of the cg pitching moment and lift curve
$\frac{\partial C_n}{\partial \phi}$	Slope of yawing moment coefficient and the yaw angle
$\frac{\partial C_n}{\partial \beta}$	Slope of yawing moment coefficient and the sideslip angle
$\frac{\partial C_{ }}{\partial \beta}$	Slope of rolling moment coefficient and the sideslip angle
O.	Angle-of-Attack
β	Sideslip Angle
φ	Yaw Angle

- <u>Aerodynamic Center</u> (a.c.) The point where the pitching moment does not vary with the angle of attack.
- <u>Center of Pressure</u> (cp)- A point where the pitching moment vanishes. The cp location varies with angle of attack and Mach number.
- Mean Aerodynamic Chord (MAC) The chord of an imaginary, untwisted, unswept, equal span non-tapered wing which would have force vectors throughout the flight range identical with those of the actual wing or wings.

!

- <u>Neutral Point</u> $(x_{np} \text{ or } N_0)$ As the cg is moved aft, the slope of $\partial C_{mcg} / \partial C_L$ becomes less negative. When there is no change of the pitching moment with lift coefficient $(\partial C_{mcg} / \partial C_L = 0)$, that x_{cg} position is the neutral point $(N_0 = x_{cg})$.
- <u>Static Margin</u> The distance from the center of gravity to the neutral point expressed as a fraction of the mean aerodynamic chord. The 'X' position of x_{np} is measured positive aft from the c.g..

$$SM = \frac{X_{np} - X_{cg}}{\dot{c}} = \frac{\partial C_{mcg}}{\partial C_{L}}$$

+SM = $\frac{\partial C_{mcg}}{\partial C_L} < 0$ (Stable; N_o is behind c.g.) -SM = $\frac{\partial C_{mcg}}{\partial C_L} > 0$ (Unstable; N_o is ahead of c.g.)

Longitudinal Static Stability - Is determined by the sign and the magnitude of the slope of C_m versus α curve. $\frac{\partial C_m}{\partial \alpha}$ must be < 0 and C_{m_0} must be positive for trimmed, positive longitudinal static stability. Also, C_m versus C_L can be used to determine positive longitudinal stability.

- Directional Static Stability Is determined by the sign and magnitude of the slope of C_n versus β curve, where β is the sideslip angle. $\frac{\partial C_n}{\partial \beta}$ must be positive (> 0) for directional stability. This is also known as weathercock stability. Also, C_n versus φ can be used where φ is the yaw angle. $\frac{\partial C_n}{\partial \varphi}$ must be negative (< 0) for directional stability.
- Lateral Static Stability It is determined by the sign and magnitude of the slope of the C_1 versus β curve. $\frac{\partial C_1}{\partial \beta}$ must be negative (< 0) for positive lateral stability. This is also known as the dihedral effect. An increase in lateral stability causes dutch roll; too little stability causes spiral instability.
- <u>Dynamic Stability</u> Is the time history of the movements of a body in response to its static stability tendencies following an initial disturbance from equilibrium.
- <u>Trimmed Flight</u> For balanced flight, the aircraft flies at a given elevator angle and angle of attack that produces $C_m = 0$.
- <u>Critical Mach Number</u> Is the Mach number where there is a sharp increase in drag (drag divergence, approximately Mach = 1.0).

This page was intentionally left blank

NOTES

· · · · · · · · · · · · · · · · · · ·	

NOTES

1	NOTES

II-7

NOTES				

III FORCE AND MOMENT EQUATIONS

III Force and Moment Equations

General Aerodynamic Symbols and Equations

Α	Axial Force (lbf) (A = $D\cos\alpha$ - $L\sin\alpha$)					
а	Speed of Sound (f/s) $-\sqrt{(\gamma R \mathcal{T})} = 49\sqrt{\mathcal{T}} = \sqrt{(\gamma P/\rho)}$; $\mathcal{T} = {}^{\circ}R$					
	Speed of Sound (mph) 33.42 $\sqrt{\mathcal{T}}$; \mathcal{T} = °R					
a	Lift Curve Slope $C_{L_{\alpha}}$					
C _A	Axial Force Coefficient ($C_A = -C_L \sin \alpha + C_D \cos \alpha$)					
C _D	Drag Coefficient ($C_D = C_N \sin \alpha + C_A \cos \alpha$)					
C _D i	Induced Drag					
с _D с _L	Zero Lift Drag; Parasite Drag (profile, friction, pressure)					
сĽ	Lift Coefficient ($C_L = C_N \cos \alpha - C_A \sin \alpha$)					
c_Ĺ	Lift at minimum drag (generally zero)					
C _l	Rolling Moment					
c _{Lα}	Lift Curve Slope $\frac{\delta C_L}{\delta \alpha}$					
C _m	Pitching Moment					
c _{mα}	Pitching moment curve slope $\frac{\delta C_m}{\delta \alpha}$					
C _N	Normal Force Coefficient ($C_N = C_L \cos \alpha + C_D \sin \alpha$)					
C _n	Yawing Moment δC					
c _n β	Yawing moment curve slope $\frac{\delta C_n}{\delta \beta}$					
с _т	Thrust Coefficient $\frac{\text{Thrus } t}{q S_w}$					
ср	Center of Pressure $\frac{x_{cp}}{\bar{c}} = -\frac{C_m}{C_N}$					

General_Aerodynamic_Symbols_and_Equations (continued)

C _Y	Side Force Coefficient			
D	Drag Force (lbf) (D = Nsin α + Acos α)			
	Drag Polar - $C_D = C_{D_0} + \frac{(C_L - C_L')^2}{\pi e A R}$			
e	Oswald's wing efficiency factor			
g	Gravity Constant			
К	Induced drag factor $\frac{1}{\pi e AR}$			
L	Lift Force (lbf) (L = $N\cos\alpha$ - $A\sin\alpha$)			
N	Normal Force ($L\cos\alpha + D\sin\alpha$) (lbf)			
N _o	Neutral point $\frac{\delta C_m}{\delta C_L} = \frac{x_{cg} - N_o}{\overline{c}}$			
n	Load Factor $-\frac{L + T \sin \alpha_T}{W} = \frac{L}{W}$ (for α_T small)			
М	Mach number			
PM	Pitching Moment (dimensional)			
Р	Pressure			
R	Gas Constant			
Т	Thrust			
T	Temperature; (^O Rankine)			
q	Dynamic Pressure $0.5\rho V^2$ or $0.7(P_s)M^2$			
RM	Rolling Moment (dimensional)			
S	Surface Area			
S	Side Force (lbf)			
$\overline{\mathbf{v}}$	Tail/Canard Volume Coefficient = $\begin{bmatrix} l & s \\ q_{\infty} S_{w} \tilde{c} \end{bmatrix}$			

III-2

General Aerodynamic Symbols and Equations (concluded)

Subscripts

np neutral point	w wing t	tail
s static pressure	T Thrust c -	- canard
cg center of gravity	ac aerodynamic cente	er
inc incompressible	∞ freestream condition	ons

Table 1					
Force	and	Moment	Definitions		

Forces

Body Axis		Wind Axis		Stability Axis	
Force	Coefficient	Force	Coefficient	Force	Coefficient
N	$C_N = N/qS_w$	L	$C_{L} = L/qS_{w}$	L	$C_{L} = L/qS_{w}$
Α	$C_A = A/qS_w$	D	$C_{D} = D/qS_{w}$	D	$C_{D} = D/qS_{W}$
S	$C_{S} = S/qS_{W}$	Y	$C_{Y} = Y/qS_{W}$	Y	$C_{Y} = Y/qS_{W}$

Moments

Body Axis Wind		nd Axis	Axis Stability Axis		
Moment	Coeff icient	Moment	Coeff icient	Moment	Coefficient
РМ	$C_{m} = PM/qS_{w}\bar{c}$	РМ	$C_{m} = PM/qS_{w}\overline{c}$	РМ	$C_{m} = PM/qS_{w}\bar{c}$
RM	$C_1 = RM/qS_wb$	RM	$C_1 = RM/qS_wb$	RM	$C_{l} = RM/qS_{w}b$
YM	$C_n = YM/qS_wb$	YM	$C_n = YM/qS_wb$	YM	$C_n = YM/qS_wb$

Parameter legend

q = Dynamic pressure
$$b = Span$$
 $S_w = Wing area$ $\overline{c} = MAC$

Aerodynamic Equations

Trim Pitching Moment Equations (ref. 3)

Conventional_Horizontal_Tailed_Aircraft (figure III-1)

$$C_{M_{cg}} = \begin{bmatrix} C_{M_{ac}} \end{bmatrix}_{w} + C_{L} \begin{bmatrix} \frac{X_{w}}{\tilde{c}} \end{bmatrix} + C_{D} \begin{bmatrix} \frac{z}{\tilde{c}} \end{bmatrix} + \begin{bmatrix} \frac{T Z_{T}}{q_{\infty} S_{w} \tilde{c}} \end{bmatrix} - C_{L_{t}} (\bar{V}) \eta_{t} - \begin{bmatrix} C_{M_{cg}} \end{bmatrix}_{inlet}$$

For an all flying tail....

$$C_{L_t} = a_t (\alpha_t + \Delta \alpha)$$

= $a_t [(1 - \frac{\delta \varepsilon}{\delta \alpha})\alpha + \Delta \alpha]$

 $\Delta \alpha = \alpha$ created by control column input

For fixed stabilizer and a movable elevator...

$$C_{L_{t}} = a_{t} [(1 - \frac{\delta \varepsilon}{\delta \alpha})\alpha - (\alpha_{ZL})_{t}]$$

Tailless Aircraft (figure III-2)

$$C_{M_{cg}} = \begin{bmatrix} C_{M_{ac}} \end{bmatrix}_{w} - C_{L} \begin{bmatrix} \frac{X_{w}}{\tilde{c}} \end{bmatrix} + C_{D} \begin{bmatrix} \frac{z}{\tilde{c}} \end{bmatrix} + \begin{bmatrix} \frac{T - Z_{T}}{q_{\infty} S_{w} \tilde{c}} \end{bmatrix} - \begin{bmatrix} C_{M_{cg}} \end{bmatrix}_{inlet}$$

Canard_Aircraft (figure III-3)

$$C_{M_{cg}} = \begin{bmatrix} C_{M_{ac}} \end{bmatrix}_{w} - C_{L} \begin{bmatrix} \frac{X_{w}}{\tilde{c}} \end{bmatrix} + C_{D} \begin{bmatrix} \frac{z}{\tilde{c}} \end{bmatrix} + \begin{bmatrix} \frac{T - Z_{T}}{q_{\infty} S_{w} \tilde{c}} \end{bmatrix} - C_{L_{c}} \begin{bmatrix} \bar{V}_{c} \end{bmatrix} - \begin{bmatrix} C_{M_{cg}} \end{bmatrix}_{inlet}$$

Tailless Aircraft

III - 6

Figure III-3 Force and Moment Vectors Canard Aircraft

III - 8
Stick-Fixed Neutral Point

$$N_{o} = X_{cg} \qquad ; \text{when } (\delta C_{M} / \delta C_{L}) = 0$$

$$N_{o} = X_{ac} - \left[\delta C_{M} / \delta C_{L} \right] + (a_{t} / a_{w}) \tilde{V} \eta_{t} [1 - (\delta \epsilon / \delta \alpha)]$$

$$\delta C_{M} / \delta C_{L} = \frac{x_{cg} - N_{o}}{\tilde{c}}$$

Two-Dimensional Lift

Subsonic

$$C_{L_{2D_{inc}}} = \frac{a_{inc} (\alpha_a)}{\sqrt{1 - M^2}} \quad (\alpha \text{ in rads})$$

<u>Supersonic</u>

$$C_{L_{2D}} = \frac{C_{L_{2D}_{inc}}}{\sqrt{M^2 - 1}} \qquad C_{L_{2D}} = \frac{4\alpha}{\sqrt{M^2 - 1}} \quad (flat plate)$$

$$(\alpha \text{ in rads})$$

Pressure Coefficient

Incompressible

$$C_{p_{inc}} = 1 - \left[\frac{V}{V_{\infty}}\right]^2$$
 $C_{p_{inc}} = \frac{P - P_{\infty}}{q_{\infty}}$ $C_{p} = \frac{C_{p_{inc}}}{\sqrt{(1 - M^2)^2}}$ (thin-airfoid theory)

Compressible

$$C_{\rm p} = \frac{2}{\gamma M_{\infty}^{2}} \left[\left[\frac{1 + .5(\gamma - 1)M_{\infty}^{2}}{1 + .5(\gamma - 1)M^{2}} \right] \frac{\gamma}{\gamma - 1} - 1 \right]$$

$$C_{p} = \frac{2\theta}{\sqrt{M^{2} - 1}} \qquad \begin{array}{l} \theta = >0 \quad \text{compression} \\ \theta = <0 \quad \text{expansion} \end{array} \quad (\theta \text{ in rads})$$

Center of Pressure Location

$$X_{cp} = -\frac{C_M}{C_N}$$
 (units of length)

Aerodynamic Center (a.c.) Determination

Assume the moment reference center is at a distance 'x' from the L.E. and then take moments about the a.c. \dots

$$C_{M_{ac}}\bar{qcS} = \left[C_{M_{x}}\bar{qcS}\right] + \left[C_{L}qS\right](x_{ac} - x)\cos\alpha + \left[C_{D}\bar{qcS}\right](x_{ac} - x)\sin\alpha$$

Solving for x_{ac} ...

$$\frac{x_{ac}}{\overline{c}} = \frac{x}{\overline{c}} - \frac{C_{M_x} - C_{M_{ac}}}{C_L \cos\alpha + C_D \sin\alpha}$$

for $\alpha \ll 1$

$$\frac{x_{ac}}{\overline{c}} = \frac{x}{\overline{c}} - \frac{C_{M_x} - C_{M_{ac}}}{C_L}$$

Mass_Flow (ref. 27)

$$M_0 = \rho A V$$

NOTES

NOTES	

NOTES	
	······································
	······································

NOTES	

NOTES	
	····

NOTES

III-16

IV AXIS SYSTEM DEFINITIONS

IV <u>Axis System Definitions</u> (Ref. 6)

- <u>Tunnel Axis</u> An orthogonal, right-handed axis system which remains fixed with respect to the tunnel in pitch, roll and yaw.
- <u>Body Axis</u> An orthogonal, right-handed axis system which remains fixed with respect to the model and rotates with it in pitch, roll, and yaw (figure IV-1). All forces, moments, and axis systems are referenced from the Body axis.
 - x_b Longitudinal body axis in the plane of symmetry of the aircraft; positive forward.
 - y_b Lateral body axis perpendicular to the plane of symmetry of the aircraft, usually taken in the plane of the wing; positive toward right wing tip.
 - z_b Vertical body axis in the plane of symmetry of aircraft, perpendicular to the longitudinal and lateral axes; positive down.
- <u>Wind Axis</u> An orthogonal, right-handed axis system which is obtained by rotating through pitch and yaw, but <u>not</u> roll with respect to the Body axis. This system defines lift as perpendicular to the relative wind, drag as parallel to the relative wind, and side force as perpendicular to the plane of lift and drag (figure IV-2).
- Stability Axis An orthogonal, right-handed axis system which remains fixed with respect to the relative wind in pitch, but rotates with the model in yaw and roll. Lift is defined as perpendicular to the relative wind with drag and side force yawing with the model (figure IV-3). The only difference between the Stability axis and the Body axis is α.
 - x_s Longitudinal stability axis, parallel to the <u>projection</u> of the total velocity vector (\overline{V}) on the plane of symmetry of the aircraft; positive forward
 - y_s Lateral stability axis, coincident as the lateral body axis; positive out the right wing tip.
 - z_s Vertical stability axis in the plane of symmetry of the aircraft, perpendicular to the longitudinal and lateral stability axes; positive down.

Figure IV-1 Body Axis System

IV-2

<u>Side View</u>

Figure IV-2 Wind Axis System

Figure IV-3 Stability Axis System

Aerodynamic Angles

- α Pitch angle-of-attack, angle between the x_b axis and the projection of (\overline{V}) on the plane of symmetry. A positive α is pitch up or rotates the z_b^+ axis into x_b^+ axis. $\alpha = \tan^{-1}(w/u)$
- φ Yaw angle, angle between the projected total velocity vector (\overline{V}) on the $x_b y_b$ plane and the $+x_b$ axis. A positive direction rotates the $+x_b$ axis into the $+y_b$ axis (positive nose right). $\varphi = \tan^{-1}(v/u)$.
- β Angle-of-sideslip, angle between the total velocity vector (\overline{V}) and <u>its projection</u> on the $x_b z_b$ plane. A positive rotation rotates the ^+y_b axis into ^+x_b axis (positive nose left). $\beta = \sin^{-1}(v/\overline{V})$.

Orientation Angles (looking from origin; figure IV-4)

- θ Pitch angle, positive clockwise about the ⁺y_i axis direction (+ nose up; ⁺z_i into ⁺x_i).
- φ Yaw angle, positive clockwise about the z_i^{\dagger} axis direction (+ nose right; x_i^{\dagger} into y_i^{\dagger}).
- ϕ Roll angle, positive clockwise about the x_i axis direction (+ rt wing down; y_i into z_i).

 φ , θ , and φ form a system of three angles which defines the orientations of the <u>Body axis</u> with the respect to the <u>Tunnel axis</u> system (inertial reference system). Any orientation of the Body axis system is obtained by rotationally displacing it from the Tunnel axis system through each of the three angles in turn. The order of rotation is important (figure IV-5) and is defined to be <u>yaw-pitch-roll</u>.

A long discussion ensued over the definition of yaw (φ) and sideslip (β). After many

arguments and three dimensional velocity box drawings, $\varphi = -\beta$ (after yawing and pitching the model. Roll = 0). When the model is yawed, pitched, and rolled, then yaw does not equal minus sideslip ($\varphi \neq -\beta$). The difference is obviously roll.

Angle Transformation form Tunnel Axis (Inertial Axis) to Body Axis (figure IV-4; +Z down, +X out nose, +Y out rt wing)

$$\begin{bmatrix} \mathbf{X}_{\mathbf{b}} \\ \mathbf{Y}_{\mathbf{b}} \\ \mathbf{Z}_{\mathbf{b}} \end{bmatrix} = \begin{bmatrix} \cos\theta\cos\varphi & \cos\theta\sin\varphi & -\sin\theta \\ \sin\phi\sin\theta\cos\varphi & \sin\phi\sin\theta\sin\varphi \\ -\cos\phi\sin\varphi & \sin\phi\sin\varphi \end{bmatrix} \begin{bmatrix} \sin\phi\sin\theta\sin\varphi & \sin\phi\cos\theta \\ +\cos\phi\cos\varphi & \sin\phi\sin\varphi \\ \end{bmatrix} \begin{bmatrix} \mathbf{X}_{\mathbf{i}} \\ \mathbf{Y}_{\mathbf{i}} \\ \mathbf{Z}_{\mathbf{b}} \end{bmatrix}$$

Wing Reference Plane (ref. 4)

It is the plane which passes through the wing tips and is parallel to the longitudinal axis.

Wind Reference Plane (ref. 4)

It is the plane that passes through the relative wind vector and intersects the wing reference plane along a line which is perpendicular to the plane of symmetry.

Plane of Symmetry (ref. 4)

It is the plane that passes through the fuselage axis and is perpendicular to both the wing and wind reference planes.

Figure IV-4 Angle Definitions

Coordinate Transformation Equations

Most external balances measure about the wind axis system and most internal balances measure about the body axis system. Thus it becomes necessary to transfer from one axis system to another. If the model and balance are fixed to the sting, with no relative motion between the model and the balance, and the sting is capable of movement in yaw, pitch, and roll then body axis coincides with the balance axis. Therefore, all forces and moments indicated by the balance are body forces and moments. The axis can pass through either the balance moment reference center or the desired model c.g.. However, if the model and balance axes do not coincide, additional transformations must be considered.

The coordinate transformations below assume data have been transferred to the desired c.g. location. Also, α is α_{body} and has not been corrected for the wind tunnel upflows and wall effects.

Balance Axis to Body Axis (Ref. 28)

Order of rotation: yaw, pitch, roll (See figure IV-6) Note: α and β are balance to body axis angles and not aerodynamic angles.

<u>Forces</u> (roll = 0)

$$C_{N_{b}} = C_{N_{bal}} \cos\alpha + C_{A_{bal}} \cos\beta\sin\alpha + C_{Y_{bal}} \sin\beta\sin\alpha$$

$$C_{A_{l}} = C_{A_{bal}} \cos\beta\cos\alpha + C_{Y_{bal}} \sin\beta\cos\alpha + C_{N_{bal}} \sin\alpha$$

$$C_{Y_{b}} = C_{Y_{bal}} \cos\beta + C_{A_{bal}} \sin\beta$$

Forces (roll =
$$0$$
)

$$\begin{bmatrix} C_{N_{b}} \\ C_{A_{b}} \\ C_{Y_{b}} \end{bmatrix} = \begin{bmatrix} \cos\alpha & \cos\beta\sin\alpha & \sin\beta\sin\alpha \\ -\sin\alpha & \cos\alpha\cos\beta & \cos\alpha\sin\beta \\ 0 & -\sin\beta & \cos\beta \end{bmatrix} \begin{bmatrix} C_{N_{bal}} \\ C_{A_{bal}} \\ C_{Y_{bal}} \end{bmatrix}$$

<u>Forces</u> (roll \neq 0)

$$\begin{bmatrix} C_{N_{b}} \\ C_{A_{b}} \\ C_{Y_{b}} \end{bmatrix} = \begin{bmatrix} \cos\alpha\cos\phi & \sin\alpha\cos\beta\cos\phi & \sin\alpha\sin\beta\cos\phi \\ -\sin\beta\sin\phi & +\cos\beta\sin\phi \\ -\sin\alpha & \cos\alpha\cos\beta & \cos\alpha\sin\beta \\ -\cos\alpha\sin\phi & -\sin\alpha\cos\beta\sin\phi & -\sin\alpha\sin\beta\sin\phi \\ -\sin\beta\cos\phi & +\cos\beta\cos\phi \end{bmatrix} \begin{bmatrix} C_{N_{bal}} \\ C_{A_{bal}} \\ C_{Y_{bal}} \end{bmatrix}$$

<u>Mioments</u> (roll \neq 0)

(Note: Body c.g. is located +X, +Y, +Z from balance c.g. See figure IV-6)

$$\begin{bmatrix} C_{1} \\ b \\ C_{m_{b}} \\ c_{n_{b}} \end{bmatrix} = \begin{bmatrix} c\alpha c \beta & (CB) c\alpha s \beta & -s\alpha & 0 & (ZB) & (YB) \\ -(BC) s \alpha c \beta s \phi & -s\alpha s \beta s \phi & -(BC) c\alpha s \phi & (ZC) & 0 & -(XC) \\ -(BC) s \beta c \phi & +c \beta c \phi & -(BC) c\alpha s \phi & -(YB) & -(XB) & 0 \\ s\alpha c \beta c \phi - s \beta s \phi & (CB) s \alpha s \beta c \phi & c\alpha c \phi & -(YB) & -(XB) & 0 \\ +(CB) c \beta s \phi & & & & & \\ \end{bmatrix} \begin{bmatrix} C_{1} \\ bal \\ C_{m_{bal}} \\ c_{n_{bal}} \\ C_{A_{b}} \\ C_{Y_{b}} \\ C_{N_{b}} \end{bmatrix}$$

Legend

$$(CB) = \frac{c}{b} \qquad (BC) = \frac{b}{c} \qquad (ZC) = \frac{Z}{c}$$

$$(ZB) = \frac{Z}{b} \qquad (YB) = \frac{Y}{b} \qquad (XC) = \frac{X}{c} \qquad (XB) = \frac{X}{b}$$

$$b = span \qquad s = sin \qquad c = cos$$

$$\bar{c} = M.A.C \qquad X, Y, Z = body \ transfer \ distances$$

Generally, roll (ϕ) is considered as zero in the balance to body transformation.

Figure IV-5 Rotation Order

Figure IV-6 Balance Axis

Note: α and ϕ are aerodynamic angles

 (\bar{c}/B) or (B/\bar{c}) is used to add moment coefficients together (apples to apples).

Forces

$$C_{L_{w}} = C_{N_{b}} \cos \alpha - C_{A_{b}} \sin \alpha$$

$$C_{D_{w}} = C_{A_{b}} \cos \alpha \cos \phi + C_{Y_{b}} \sin \phi + C_{N_{b}} \sin \alpha \cos \phi$$

$$C_{Y_{w}} = C_{Y_{b}} \cos \phi - C_{A_{b}} \cos \alpha \sin \phi - C_{N_{b}} \sin \alpha \sin \phi$$

Forces

$$\begin{bmatrix} C_{L_{w}} \\ C_{D_{w}} \\ C_{Y_{w}} \end{bmatrix} = \begin{bmatrix} \cos\alpha & -\sin\alpha & 0 \\ \sin\alpha\cos\phi & \cos\alpha\cos\phi & \sin\phi \\ -\sin\alpha\sin\phi & -\cos\alpha\sin\phi & \cos\phi \end{bmatrix} \begin{bmatrix} C_{N_{b}} \\ C_{A_{b}} \\ C_{S_{b}} \end{bmatrix}$$

Moments

$$C_{m_{w}} = C_{m_{b}} \cos\varphi + (B/\bar{c})C_{l_{b}} \cos\alpha \sin\varphi + (B/\bar{c})C_{n_{b}} \sin\alpha \sin\varphi$$

$$C_{l_{w}} = C_{l_{b}} \cos\alpha \cos\varphi - (\bar{c}/B)C_{m_{b}} \sin\varphi + C_{n_{b}} \sin\alpha \cos\varphi$$

$$C_{n_{w}} = C_{n_{b}} \cos\alpha - C_{l_{b}} \sin\alpha$$

Moment

$$\begin{bmatrix} C_{m_{w}} \\ C_{1_{w}} \\ C_{n_{w}} \end{bmatrix} = \begin{bmatrix} \cos\varphi & (B/\bar{c})\cos\alpha\sin\varphi & (B/\bar{c})\sin\alpha\sin\varphi \\ -(\bar{c}/B)\sin\varphi & \cos\alpha\cos\varphi & \sin\alpha\cos\varphi \\ 0 & -\sin\alpha & \cos\alpha \end{bmatrix} \begin{bmatrix} C_{m_{b}} \\ C_{1_{b}} \\ C_{n_{b}} \end{bmatrix}$$

Forces

$$C_{L_{s}} = C_{N_{b}} \cos \alpha - C_{A_{b}} \sin \alpha$$
$$C_{D_{s}} = C_{N_{b}} \sin \alpha + C_{A_{b}} \cos \alpha$$
$$C_{Y_{s}} = C_{Y_{b}}$$

Forces

$$\begin{bmatrix} C_{L_{s}} \\ C_{D_{s}} \\ C_{Y_{s}} \end{bmatrix} = \begin{bmatrix} \cos\alpha & -\sin\alpha & 0 \\ \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} C_{N_{b}} \\ C_{A_{b}} \\ C_{S_{b}} \end{bmatrix}$$

Moments

$$C_{m_{s}} = C_{m_{b}}$$

$$C_{l_{s}} = C_{l_{b}}\cos\alpha + C_{n_{b}}\sin\alpha$$

$$C_{n_{s}} = C_{n_{b}}\cos\alpha - C_{l_{b}}\sin\alpha$$

Moments

$$\begin{bmatrix} \mathbf{C}_{\mathbf{m}_{\mathbf{S}}} \\ \mathbf{C}_{\mathbf{1}_{\mathbf{S}}} \\ \mathbf{C}_{\mathbf{n}_{\mathbf{S}}} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & -\sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} \mathbf{C}_{\mathbf{m}_{\mathbf{b}}} \\ \mathbf{C}_{\mathbf{1}_{\mathbf{b}}} \\ \mathbf{C}_{\mathbf{n}_{\mathbf{b}}} \end{bmatrix}$$

Forces

$$C_{L_{s}} = C_{L_{w}}$$

$$C_{D_{s}} = C_{D_{w}} \cos\varphi - C_{Y_{w}} \sin\varphi$$

$$C_{Y_{s}} = C_{Y_{w}} \cos\varphi + C_{D_{w}} \sin\varphi$$

Force

$$\begin{bmatrix} \mathbf{C}_{\mathbf{L}_{\mathbf{S}}} \\ \mathbf{C}_{\mathbf{D}_{\mathbf{S}}} \\ \mathbf{C}_{\mathbf{Y}_{\mathbf{S}}} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\varphi & -\sin\varphi \\ 0 & \sin\varphi & \cos\varphi \end{bmatrix} \begin{bmatrix} \mathbf{C}_{\mathbf{L}} \\ \mathbf{C}_{\mathbf{D}_{\mathbf{W}}} \\ \mathbf{C}_{\mathbf{Y}_{\mathbf{W}}} \end{bmatrix}$$

Moments

$$C_{m_{s}} = C_{m_{w}} \cos \phi - (B/\bar{c})C_{1_{w}} \sin \phi$$
$$C_{1_{s}} = C_{1_{w}} \cos \phi + (\bar{c}/B)C_{m_{w}} \sin \phi$$
$$C_{n_{s}} = C_{n_{w}}$$

Moments

$$\begin{bmatrix} C_{m_s} \\ C_{1_s} \\ C_{n_s} \end{bmatrix} = \begin{bmatrix} \cos\varphi & -(B/\bar{c})\sin\varphi & 0 \\ (\bar{c}/B)\sin\varphi & \cos\varphi & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} C_{m_w} \\ C_{1_w} \\ C_{n_w} \end{bmatrix}$$
$$B = \text{wing span}$$
$$\bar{c} = M.A.C$$

IV-15

Since all of the fore mentioned coordinate transformation equations are orthogonal matrices (square matrices), one can obtain the 'other' axis transformation by simply transposing the matrix.

NOTES

NOTES		

NOTES

NOTES

IV-20

NC	DTES

NOTES

V TRIP STRIPS

V Trip Strips

Boundary Layer Symbols

- R_k Reynolds number based on roughness height, velocity, and kinematic viscosity at top of roughness $(V_k k / v_k)$
- R_x Reynolds number based on freestream conditions and distance of roughness from leading edge $(V_{\infty}x / v_{\infty})$
- k Roughness height
- x Distance of roughness from leading edge
- u Local streamwise velocity component outside the boundary layer
- uk Local streamwise velocity component inside the boundary layer at the top of the roughness particle
- V Freestream velocity
- x Distance from leading edge to roughness strip (trip strip)
- δ Boundary layer thickness
- v_k Kinematic viscosity at top of the roughness particle
- υ_{∞} Freestream kinematic viscosity
- T_t Total temperature (⁰F)

Boundary Layer Discussion (ref. 7)

Due to the effects of viscosity, the velocity near a surface is gradually slowed from the freestream velocity, V_{∞} , to zero velocity. The region where this velocity change occurs is called the boundary layer. A boundary layer in which the velocity varies approximately linearly from the surface is called laminar and a boundary layer whose velocity varies approximately exponentially from the surface is called turbulent. Generally speaking, the upper Reynolds number (Rn) limit for a laminar boundary layer is 1 X 10⁶ per ft. However, transition from a laminar to a turbulent boundary layer most often occurs at a much lower Reynolds number (5 x 10⁵ per ft).

Boundary Layer Thickness

The boundary layer thickness is defined as the distance from the surface to a point where the velocity in the boundary layer is 99% of the velocity of V_{∞} . The boundary layer thickness can be approximated by

<u>Laminar</u>

$$\delta = 5.2 (l^2/Rn)^{0.5}$$

<u>Turbulent</u>

$$\delta = 0.37 \, \text{l/(Rn)}^{0.2}$$

where

l = distance from body leading edge Rn = Reynolds number = $(\rho V_{\infty} l / \mu)$

 $\rho = \text{air density * 32.1741 (ft/sec}^{2})$ $V_{\infty} = \text{freestream velocity}$ I = some reference length $\mu = \text{absolute viscosity}$ $= (1.2024 \text{ X } 10^{-5} \text{ lbm/ft-sec})$ $= (3.7373 \text{ X } 10^{-7} \text{ slugs/ft})$

Trip Strips (ref. 8)

A trip strip is an artificial roughness added to the model to fix the location of transition from laminar to a turbulent boundary layer. The reason a trip strip is added to a wind tunnel model is to increase the local effective Reynolds number and to "duplicate" the boundary layer to that of a full scale test article. Some general guidelines that are applicable to all grit-type trips are listed below (ref. 25):

- 1) The roughness bands should be narrow (0.125 to 0.25 inches).
- 2) The roughness should be sparsely distributed. According to reference 8, approximately one grain per every 2mm (.080 in) along the trip strip is the closest desirable spacing; grains could possibly be spaced as far as 5mm (.200 in) apart and still cause transition. However, if the trip strip is either too high above the surface or is too densely packed with particles, it can affect the model drag, maximum lift and not fix transition.
- 3) Two-dimensional trips are unsatisfactory because reasonable heights do not fix transition at the trip location.
- 4) Care should be taken not to build up layers of adhesive which can form spanwise ridges at the edge of the trip. These ridges also tend to make the trip act as a two-dimensional step.

Trip Strip Types (ref. 8)

<u>Grit</u>

The traditional trip strip is a finite width strip of grit. Two commercially available grit materials that are used are Carborundum and Ballotine micro beads or balls. Trip strip width is usually 0.100 to 0.25 inches. Clear lacquer or double sided tape can be used as a gluing agent.

Two-Dimensional Tape

These consist of 0.125 inch height printed circuit drafting tape or chart tape. Also, cellophane type tape can be used. The trip strip is built up by multiple layers of tape.

Epoxy Dots

A vinyl tape of varying thicknesses that has holes of 0.05 inch diameter and 0.10 inch center to center displacement is used. This tape is applied to the model surface and an epoxy compound is forced into the holes. Once the epoxy has harden remove the tape.

Thread or String

Thread or string is glued to the model. This technique is not used much any more.

Location of Trip Strips

Lifting Surfaces

This includes wings, tails, and fins. The trip strip is applied to both sides of the lifting surface. For four and five digit airfoils and conventional wing constructions, the full scale transition will occur approximately 10% of the chord at cruise conditions.

Fuselage

The trip strip is often located where the local diameter is one-half of the maximum diameter. Care should be taken to ensure that the flow has not reattached or that laminar flow has been reestablished aft of the trip strip.

Nacelles

For flow through nacelles, the trip strip is placed inside the nacelle and is located approximately 5% aft of the inlet L.E. Also, additional trip strip is located on the outside at 5-10% aft of the inlet L.E.

From reference 8, testing of models through a range of Reynolds and Mach numbers, it is desirable to eliminate the need for changing grit sizes for each condition. This elimination is accomplished by using a grit (roughness) size determined for the
combination of test Reynolds number and Mach number which require the largest grit size usually at the smallest Reynolds number and largest Mach number condition. For tapered wings (ref. 10), apply grit at a constant percentage of the local chord (nominally 5%). In order to permit the use of a single grit size across the span, the grit size is calculated for the largest chord. For wings with a sharp supersonic leading edge, calculate the grit size using the Mach number and unit Reynolds number based on the flow outside the boundary layer on the upper surface at the maximum test angle of attack. Apply grit to both upper and lower wing surfaces. For sharp subsonic leading-edge wing or round leading-edge wing, whether or not swept behind the Mach line, the freestream Mach number and unit Reynolds number are used to determine the grit size. Using the above criteria, there will be test conditions when grit particles are larger than the minimum required to cause transition. However, careful application of a sparse distribution of grit particles on a narrow strip will minimize the drag contribution of the grit itself.

Determination of Trip Strip Height

Grit height determination is a black art. The testing engineer, having an understanding of boundary layer build-up/profile (at low q, the boundary layer height is larger than at high q), can make a determination of the grit height based on a proven method. Also, don't forget the helpful hints from the the "old guard" that has determined grit height many times previously. The correct method in determining the grit height for establishing boundary layer transition is to accomplish a drag study based on grit height. But reality (money and time) dictates the test and the use of reference 25 is generally adequate. If the test has variable dynamic pressure (q) runs, the proper method is to have a new grit height at each q. However, economics (\$) will dictate if a grit study will be accomplished.

Two methods of determining boundary layer and grit heights based on experimental data are presented. The first method is for <u>atmospheric tunnels only</u>. The second method can be used for either atmospheric or pressure tunnels.

<u>Method 1</u> (Atmospheric tunnels; ref. 11)

This method of determining boundary layer and grit height is for wind tunnels whose test section is roughly at one (1) atmosphere. In other words, there is no control over the total pressure or total temperature and consequently Reynolds number per foot is a

function of velocity or Mach number. This method is based upon reference 11 (flat plate) and each figure (figures V-1 thru V-3) is represented by two total temperature curves, $T_t = 40^{\circ}F$ and $T_t = 120^{\circ}F$.

The effect of increasing the temperature is to increase the boundary layer thickness at each Mach number. Also by increasing the Mach number (Reynolds number per foot), the boundary layer thickness decreases at any station (on a flat plate).

It is desirable to prevent the transition point from moving on the model during the test. By applying the correct grit at the correct distance, the boundary layer will transition from laminar to turbulent near the grit grains at a fixed position. The conditions which these grains cause transition and remain fixed at subsonic speed, are generally dependent upon the length Reynolds number, R_x , and the height Reynolds number, R_k .

Reference 25 (using ref. 11 as a reference) points out not to try to cause artificial transition below a length Reynolds number of approximately 100,000. The first restriction is line "A" on figure V-1. This restriction has the practical effect of moving the transition strip aft of the wing leading edge to a fixed dimension rather than a fixed percentage of the chord. Using the lowest Mach number on figure V-1, the minimum distance is approximately one (1) inch. Another restriction based upon the length Reynolds number, R_{y} , is the location on the surface where transition from laminar to turbulent first starts to occur naturally. Natural transition occurs on a flat plate at an approximate length Reynolds number of 680,000 and the corresponding distance is represented by line "B" on Since transition starts naturally at line "B", it's desirable to place the figure V-1. trip strip ahead of "B" at a given set of test conditions. This action precludes the possibility of the natural transition point moving ahead of the trip strip which could possibly be attributed to an adverse pressure gradient.

A curve of grit height verse Mach number is shown in figure V-3. Also shown is a curve of boundary layer height at a length Reynolds number $R_{\chi} = 100,000$. The critical grit height is shown to be well within the boundary layer at each Mach number. Reference 25 has shown that transition may be achieved by the range of grit size above the minimum. However, when the grit protrudes from the boundary layer, measurable drag is created. Satisfactory artificial transition of boundary layer from laminar to turbulent may be caused at a given Mach number by grit sizes which lie between the two curves in figure V-3.

Shown in figure V-4 is a curve of Grit height verses Carborundum Grit Number. This figure can be used to determine the use of nominal grit sizes that will provide enough grains to cause transition provided the spacing of the individual grains is correct.

V-6

In order to satisfy the condition for minimum influence of the particles, some consideration must be given to particle density and to the width of the grit strip. It has been demonstrated experimentally in reference 25 that approximately one grit per every 2mm (.080 in) along the transition line is the closest desirable spacing; grains could possibly be spaced as far as 5mm (.200 in) apart and still cause transition (sublimation chemicals can help determine the transition point). The width of the trip strip should be on the order of 1mm (0.04 in).

The maximum forward location of the trip strip required to cause transition is shown in figure V-2 at two (2) different total temperatures. Figures V-2 and V-3 are used to determine the trip strip grain size and trip location.

Method 2 (Atmospheric or Pressure tunnels)

This method for determining the height of the trip strip originated from reference 10. Figure V-5 is derived from reference 10 and is included in this report.

Below is an example using Method 2 to determine the grit height required to start transition and the corresponding carborundum grit number.

Example

Wing (2-D curves)

X = 0.5 inches (position of grit from LE)
M = 3.0
RN/FT = 4 x 10⁶
X *
$$\frac{R_{\infty}}{1 - x + 10^6} = X * \frac{4 - X - 10^6}{1 - x + 10^6} = 4X$$

X * $\frac{R_{\infty}}{1 - x + 10^6} = (.5)(4) = 2$ inches

From figure V-5 (2-D, Mach 3.0) at 2.0

$$K * \frac{R_{\infty} / ft}{1 \times 10^6} = 0.0264$$

$$K * \frac{4 X 10^{6}}{1 x 10^{6}} = 4K = 0.0264$$

K = 0.0066 inches

From figure V-3 or table V-1 at K = 0.0066 a grit of <u>90</u> is to be used.

<u>Table_V-1</u> Nominal Grit Size

Grit Number	Nominal	Grit Size (in)
10		0.0937 0.0787
14		0.0661 0.0555
16		0.0469
24		0.0331
30	· · · · · · · · ·	0.0280 0.0232
46		0.0165
54	• • • • • • • •	0.0138 0.0117
70		0.0098
80	· · · · · · · · ·	0.0083 0.0070
100	• • • • • • •	0.0059
120	• • • • • • • •	0.0049 0.0041
180	• • • • • • • •	0.0035
220 320	· <i></i>	0.0029 0.0017

Application of Grit types of Trip Strips (ref. 8)

Macking tape is typically used to lay out the trip strips (at a certain width apart). Then shellac, lacquer, artist's clear acrylic, or even superhold hair spray is painted or sprayed over the trip strip area. Once the adhesive material has covered the surface, the grit material is dusted or blown on the wet adhesive. Grit usually is difficult to apply

to vertical and lower surfaces. To aid in applying grit to those surfaces, a piece of paper or cardboard can be shaped into a 'V' and with skill can be blown onto the surface. If the grit is too densely packed, use a tooth-pick to pick off selected grit particles.

Figure V-1 Boundary Layer Thickness

Figure V-2 Streamwise Grit Location

Figure V-3 Grit Height

Carborundum Grit Number

Figure V-4 Carborundum Grit Number

 $\mathbf{X} = \frac{\langle \mathbf{R}_{i} / \mathbf{t} | \mathbf{t} \rangle}{10^{n}} \in \mathbf{INCHES}$

Figure 7-8 continued

V 16

V-17

Figure V-5 concluded

V 18

NOTES

NOTES
· · · · · · · · · · · · · · · · · · ·

	NOTES	
<u></u>		
<u> </u>		
	an an indiana shaharan kashirin	
<u> </u>	<u> </u>	
······································		
		 · · ··· · · · · · · · · · · · · · · ·

NOTES	
	-
	•••
	-
	_
	_
	- 84.
	-
	_
	_
	- 14

VI PLANFORM CHARACTERISTICS

VI Planform Characteristics

Planform Symbols

AR	Aspect ratio
а	Cutout factor
b	Full wing span
b/2	Half wing span
b/(21)	Wing-slenderness parameter
b _i	Span of inboard planform formed by two panels
bo	Span of outboard planform formed by two panels
c	Chord (parallel to axis of symmetry) at any given span station y
c	Mean Aerodynamic Chord (MAC)
с _В	Chord at span break station
$c_r \text{ or } C_r$	Root chord
$c_t \text{ or } C_t$	Tip chord
1	Over-all length from wing apex to most aft point on the trailing edge
m , n	Non-dimensional chordwise stations in terms of c
р	Planform-shape parameter
S	Wing area
s _i	Total area of inboard panels
s _o	Total area of outboard panels
s _w	Wing area affected by trailing edge deflection
ΔS	Incremental wing area
х	Chordwise location of leading edge at span station y
^x centroid	Chordwise location of centroid of area (chordwise distance from apex to c/2)
^x MAC or \overline{x}	Chordwise location of mean aerodynamic chord
^y MAC or y	Spanwise location of MAC (equivalent to spanwise location of centroid of area)
λ	Taper ratio
Δ _{LE}	Sweep angle of leading edge
Λ_{TE}	Sweep angle of trailing edge
Λ_n, Λ_m	Sweep angles of arbitrary non-dimensional chordwise locations
η	Non-dimensional span station

α η _i .η _o	Angle-of-attack Non-dimensional span stations at inboard and outboard edges of control, respectively
η _B	Non-dimensional spanwise location of leading edge break in wing
σ	Ratio of chordwise position of leading edge at tip to root chord length
ζ _B	Chordwise location of break in leading edge sweep(s) in terms of chordwise
<u>Subscripts</u>	distance to leading edge at tip = x_B/x_t

В	Refers to span station were leading/trailing edge change sweep angle
MAC	Mean aerodynamic chord
i,o	Inboard and outboard panels respectively
ZL	Zero lift

Wing Parameters Definitions (figure VI-1)

- <u>Chord Line</u> A straight line between the leading edge and the trailing edge of the airfoil in the streamwise direction
- <u>Mean Camber Line</u> A line described by the points which are equidistant from the upper and lower wing surfaces.
- <u>Camber</u> Is a measure of curvature of an airfoil and is measured as the maximum distance between the mean camber line and the chord line and is measured perpendicular to the chord line. Camber is typically measured in % chord. Positive camber is when the camber line is above the chord line and negative when the camber line is below the chord line.
- <u>Angle-of-Attack</u> Angle between the relative wind (V_{∞}) and the chord line.
- <u>Zero Lift Line</u> A line parallel to the relative wind (V_{∞}) and passing through the trailing edge of the airfoil when the airfoil is at zero lift.

Effective Angle

- of Attack The angle of attack of the zero lift line measured from the the relative relative wind.
- $\frac{\alpha_{ZL}}{\alpha_{ZL}}$ Approximately equal to the amount of camber in percent chord for airfoils and untwisted wings with constant section.

Figure VI-1 Airfoil Nomenclature

VI-4

Planform Parameters

Figure VI-2 General Planform Parameters

 $S = 2 \int_{0}^{b/2} c \, dy \qquad \overline{c} = \frac{2}{S} \int_{0}^{b/2} c^{2} dy$ $\overline{x} = \frac{2}{S} \int_{0}^{b/2} cx \, dx \qquad \overline{y} = \frac{2}{S} \int_{0}^{b/2} cy \, dy$ $\overline{x}_{LE} = \overline{x} - \frac{\overline{c}}{2} \qquad x_{centroid} = \frac{2}{S} \int_{0}^{b/2} c(x + \frac{c}{2}) \, dy$

$$\eta = \frac{(2y)}{B}; \ p = \frac{S}{(b1)}; \ \lambda = C_t / C_r \qquad \left[\frac{t}{c}\right]_{RMS} = \sqrt{\frac{1}{(b/2)} - \frac{C_r}{c_r}} \int_{c_r}^{b/2} \left[\frac{t}{c_r}\right]^2 dy$$

Figure VI-3 Conventional, Straight Tapered Planform

$$AR = \frac{b^2}{S} = \frac{2b}{C_r(1+\lambda)} = \frac{4(1-\lambda)}{(1-a)(1+\lambda)tan\Lambda_{LE}}$$

$$S = (b/2)C_r(1+\lambda) = \frac{b^2}{AR}$$

$$\Delta S = \frac{b}{2}C_r[2-(1-\lambda)(\eta_1+\eta_2)]$$

$$\overline{c} = \frac{2}{3}C_r\frac{1+\lambda+\lambda^2}{1+\lambda}$$

$$\overline{y} = \frac{b}{2}\left[\frac{1}{3}\left[\frac{1+2\lambda}{1+\lambda}\right]\right]$$

$$\begin{split} \overline{x}_{LE} &= \left[\frac{b}{2C_{r}}\right] \eta \tan \Lambda_{LE} = \overline{y} \tan \Lambda_{LE} \\ \overline{\eta} &= (2\overline{y})/b = \frac{1}{3} \left[\frac{1}{1+\frac{2\lambda}{\lambda}}\right] \\ x_{centroid} &= \frac{C_{r}}{3} \left[\lambda + \sigma + \left[\frac{1+\lambda\sigma}{1+\lambda}\right]\right] \\ c &= C_{r} \left[1 - \eta (1-\lambda)\right] = C_{r} - y \left[\frac{C_{r} - C_{1}}{(b/2)}\right] \\ C_{r} &= \frac{S}{(b/2)(1+\lambda)} = \frac{4(b/2)}{AR(1+\lambda)} \\ S_{W_{f}} &= b \frac{\left[\eta_{0} - \eta_{1}\right]}{2} C_{r} \left[2 - (1-\lambda)(\eta_{0} + \eta_{1})\right] \\ a &= \frac{\tan\Lambda_{TE}}{\tan\Lambda_{LE}} = 1 - \frac{C_{r}(1-\lambda)}{(b/2)\tan\Lambda_{LE}} = 1 - \frac{4(1-\lambda)}{AR(1+\lambda)\tan\Lambda_{LE}} \\ \eta &= (2y)/b \\ \tan\Lambda_{n} &= \tan\Lambda_{m} - \frac{4}{AR} \left[(n-m)\left[\frac{1-\lambda}{1+\lambda}\right]\right] \quad n > m \\ \tan\Lambda_{m} &= \tan\Lambda_{LE} \left[1 - (1-a)m\right] \\ \tan\Lambda_{LE} &= \frac{1}{a} \tan\Lambda_{TE} = \frac{4tan\Lambda_{C}/4}{3+a} \\ \tan\Lambda_{TE} &= \frac{4}{AR} - \tan\Lambda_{TE} \quad (\lambda = 0) \\ \sigma &= \frac{AR}{4} (1+\lambda) \tan\Lambda_{LE} = \left[\frac{b}{2C_{r}}\right] \tan\Lambda_{LE} \end{split}$$

.

Figure VI-4 Double Delta and Cranked Wing Planform

$$AR = \frac{b^2}{S} = \frac{2b}{C_r[(1 - \lambda)\eta_B + \lambda_i + \lambda]}$$
$$S = S_i + S_o = \frac{b^2}{AR} = (b/2)C_r[(1 - \lambda)\eta_B + \lambda_i + \lambda]$$
$$\overline{c} = \frac{\overline{c}_i S_i + \overline{c}_o S_o}{S_i + S_o}$$

$$\begin{split} \overline{x} &= \overline{x}_{LE} + \overline{c}/2 \\ \overline{y} &= \frac{\overline{y}_i S_i + [y_B + \overline{y}_o] S_o}{S_i + S_o} \\ \overline{x}_{LE} &= \frac{\left[\begin{array}{c} \overline{y}_i \tan \Lambda_{LE_i} \right] S_i + [y_B \tan \Lambda_{LE_i} + \overline{y}_o \tan \Lambda_{LE_o}] S_o}{S_i + S_o} \\ \overline{\eta} &= \frac{\overline{y}}{b/2} = \frac{b_i \overline{\eta}_i S_i + [b_i + b_o \overline{\eta}_o] S_o}{b(S_i + S_o)} \\ \eta_B &= \frac{b_i}{b} = \left[\frac{1}{1 - \lambda} \right] \left[\frac{2S}{bC_r} - \lambda_i - \lambda \right] \\ \zeta_B &= \frac{1}{1 + \lambda} \frac{b_o \tan \Lambda_{LE_o}}{b_i \tan \Lambda_{LE_i}} \\ \lambda &= C_t / C_r = \lambda_i \lambda_o \\ \lambda_i &= c_B / C_r \\ \lambda_o &= C_t / c_B \end{split}$$

Planform Example

This is an example using the equations for a cranked wing to determine the MAC, c/4, and other items of interest.

Figure VI-5 Planform Example

Inboard Section (i)

$$C_{r_{i}} = 50.45 \text{ in}$$

$$C_{t_{i}} = 36.51 \text{ in}$$

$$\lambda_{i} = C_{t_{i}} / C_{r_{i}} = 36.51/50.45 = 0.724$$

$$b /2 = 26.96 \text{ in}$$

$$S_{i}/2 = \frac{(50.45 + 36.51)}{2}(26.96) = 1172.2 \text{ in}^{2} = 8.14 \text{ ft}^{2}$$

$$\overline{c}_{i} = \frac{2}{2} (50.45)(1.30) = 43.86 \text{ in}$$

$$\overline{\mathbf{y}}_{i} = \left[\frac{\mathbf{b}_{i}}{2}\right] \left[\frac{1}{3}\right] \left[\frac{1+2\lambda_{i}}{1+\lambda_{i}}\right] = (26.96)(0.473) = 12.76 \text{ in}$$

$$\overline{\mathbf{x}}_{i} = \left[\frac{\mathbf{b}_{i}}{2}\right] \left[\frac{1}{3}\right] \left[\frac{1+2\lambda_{i}}{1+\lambda_{i}}\right] \tan \Lambda_{\text{LE}} = (12.76)\tan 35$$

$$= 8.93 \text{ in (from LE of } C_{r_{i}})$$

Outboard Section (0)

$$C_{r_0} = 24.58 \text{ in}$$

 $C_{t_0} = 7.51 \text{ in}$
 $\lambda_0 = 7.51 / 24.58 = 0.306$
 $b_0/2 = 33.15 \text{ in}$
 $S_0 = \frac{24.58 + 7.51}{2}(33.15) = 531.89 \text{ in}^2 = 3.69 \text{ ft}^2$
 $\overline{c}_0 = \frac{2}{3}(24.58)(1.072) = 17.56 \text{ in}$

<u>Measured_from_LE_of</u> C_{ro}

$$\overline{y}_{o} = \left[\frac{b_{o}}{2}\right] \left[\frac{1}{3}\right] \left[\frac{1+2\lambda_{o}}{1+\lambda_{o}}\right] = (33.15)(.4114) = 13.64 \text{ in}$$

$$\overline{x}_{o} = \overline{y}_{o} \tan 35 = (13.64)(0.7) = 9.55 \text{ in}$$

Measured from LE of C_{ri}

$$\overline{y}_{0} = 13.64 + 26.96 = 40.6$$
 in
 $\overline{x}_{0} = \overline{y}_{0} \tan 35 = (40.6)(0.7) = 28.42$ in

Total_Wing

$$S = 8.14 + 3.69 = 11.83 \text{ ft}^2$$

 $S_i/S = 0.688$ $S_o/S = 0.312$

$$\overline{y} = 12.76(0.688) + 40.6(0.312) = 21.45$$
 m (1.79 ft)
 $\overline{c} = 43.86(0.688) + 17.56(0.312) = 35.65$ in (2.97 ft)

Total Aircraft Aerodynamic Center Location

Inboard Section

$$\bar{x}_{c/4} = \bar{x}_i + \bar{c}_{c/4} = 8.93 + (43.86)/4 = 19.9$$
 in
 $\bar{y}_{c/4} = 12.76$ in (measured from C_{r_i})

Outboard Section

$$\bar{x}_{\overline{c}/4} = \bar{x}_0 + b_i \tan \Lambda_{LE} + \bar{c}_0$$

= 26.96 tan 35 + 9.55 + (17.56)/4 = 32.82 in
 $\bar{y}_{\overline{c}/4} = 13.64 + 26.96 = 40.6$ in

Total Aircraft

.....

Measured from LE of
$$C_{r_i}$$

 $x_{c/4}^{-} = 19.9(0.688) + 32.82(0.312) = 23.93$ in

<u>Measured from</u> C_{r_i}

$$\bar{y}_{c/4} = 21.446$$
 in

NOTES
· · · · · · · · · · · · · · · · · · ·

NOTES

-

NOTES

NOTES

			n	
			······································	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	****			
-				
	······································			
			· · · · · · · · · · · · · · · · · · ·	
		·····		
and the second		· · · · · · · · · · · · · · · · · · ·		
				<u>_</u>

......
VII DRAG

VII <u>Drag</u>

List of Symbols

AR	Aspect Ratio
C _D	Total Drag Coefficient
C _{Do}	Zero Lift Drag Coefficient (parasite drag)
C _{Dmin}	Minimum Drag Coefficient
ΔC_{D}	Minimum Drag Coefficient change due to camber
c _D *	Drag Coefficient at (L/D) _{max}
C _L	Total Lift Coefficient
c_Ĺ	Lift Coefficient at minimum drag
C _L C _{Lpb} C _L *	Lift Coefficient at the Polar Break
c _L *	Lift Coefficient at (L/D) _{max}
e	Span efficiency of actual aircraft drag polar
^e p	Span efficiency of a parabolic drag polar
g	Gravitational constant
К	Induced Drag factor
(L/D) _{max}	Maximum lift-to-drag ratio
Rn	Reynolds number
V _∞	Freestream velocity

Drag (ref. 13)

Drag is a part of a resultant aerodynamic force produced by the tangential (skin friction) and normal (pressure) forces acting along the vehicle's surface due to the relative fluid motion. This resultant force is resolved into the lift and drag components in the vehicle's plane of symmetry. Drag, the component of the total force that opposes motion in the equilibrium flight path direction, approximately follows a parabolic variation with lift and the angle of attack. Total drag can be resolved into various components (figure VII-1).

Subsonic Drag

The aircraft drag, when taken below the divergent Mach number, is traditionally decomposed into lift-induced and minimum drag.

Minimum Drag

Minimum drag can be divided into profile (skin friction, pressure, and base drag) and interference drag (figure VII-1). In general, about two-thirds of subsonic minimum drag may be attributed to profile (skin friction) drag (figure VII-2).

Profile Drag/Skin Friction Drag (ref. 7)

The skin friction drag is due to the momentum transfer between the fluid particles adjacent to the vehicle surface and the vehicle. It (in incompressible flow) can be established for a laminar and turbulent boundary layer. This drag is based upon the "wetted" surface area of a flat plate, on <u>ONE</u> surface.

<u>Laminar</u>

$$C_{D_{lam}} = D_{lam} / (q S_{wet}) = 1.328 / (Rn)^{0.5}$$

1 X 10³ > Rn < 1 X 10⁶

Turbulent

$$C_{D_{turb}} = D_{turb} / (q S_{wet}) = 0.455 / (log Rn)^{2.58}$$

1 X 10⁶ > Rn < 1 X 10⁹

Turbulent

$$C_{D_{\text{cone}}} = \frac{2}{\sqrt{3}} * C_{D_{\text{flat plate}}}$$

Pressure Drag (Form Drag)

Pressure Drag at subsonic speeds is due to boundary layer displacement effects and separation effects on aft-facing slopes.

Interference Drag

This drag is the result of mutual interaction of the flow fields developed by the major configuration components (ie...wing-body).

Miscellaneous Drag

Miscellaneous drag is caused by aircraft protuberances and surface irregularities (ie... gaps, fasteners).

Drag Due to Lift

Drag due to lift is almost entirely the result of the lift-produced circulation as well as the vortex shedding from the wing tip.

Zero Lift Drag

Zero lift drag, C_{D_0} , is the drag at $C_L = 0$ and can be easily found on a drag polar curve. The primary contributor to this drag is from skin friction. From figure X-6, the effect of wing sweep and Mach number on zero lift drag (C_{D_0}) can be seen.

VII-3

Base Drag

Base drag contribution to minimum drag is caused by a rapid expansion of the flow into a base region which causes significantly reduced pressures to act upon a finite base (area).

Internal Duct Drag

This drag is associated with a momentum loss in a flow through nacelle. This drag is measured by having a nozzle pitot static pressure rake (assume inlet conditions are at freestream conditions) measuring the momentum loss within the nacelle (duct). Once a $\Delta C_{D_{duct}}$ is obtained, subtract it out of the total aircraft C_{D} .

Wave Drag

Wave drag is primarily due to the lack of pressure recovery on the surface due to a total pressure loss through the shock wave.

Drag Polar (Subsonic)

A drag polar can be represented by two curve types, $C_L vs C_D or C_D vs C_L^2$. Both types reveal aerodynamic parameters that are important to the performance of an aircraft configuration. These two drag polars can be seen in figures VII-2 through VII-5. Figures VII-2 & VII-3 display some of the major contributors to the overall total drag.

$$(C_L vs C_D)$$
 Polar

This drag polar, as seen in figures VII-2, VII-3, VII-4, is parabolic (a quadratic function) by nature. The eccentricity of the parabola and its origin is affected mainly by wing camber, twist, and flow separation. A few performance parameters that can be established by this curve are C_{D_n} , C_{D_0} , $(L/D)_{max}$, C_L , $C_{L_{pb}}$. A drag polar has the characteristic equations listed below.

Parabolic

$$C_{\rm D} = C_{\rm D_{min}} + \frac{C_{\rm L}^2}{\pi A R e_{\rm p}}$$

NON-Parabolic (camber, twist, etc.. effects)

$$C_{D} = C_{D_{min}} + \frac{(C_{L} - C_{L})^{2}}{\pi A R e}$$

 $\frac{(C_D vs C_L^2) Polar}{2}$

From figure VII-5, the slope of this line is K, the induced drag factor. And from K, Oswald's wing efficiency factor, e, can be obtained. Also, from figure VII-5's cutout, the intersection of the C_D axis and the curve reveals C_{D_A} .

<u>Polar_Break</u> (ref. 14) (Subsonic)

When the wing leading edge suction has lost its force (separation has occurred), the polar shape departs drastically from the typical parabolic shape. The drag polar is said to "break" at this point (figure VII-2). The break point is sensitive to Mach number, Reynolds number, leading edge radius, and wing geometry.

Camber Effects (ref. 14)

Camber (and twist) essentially shifts the drag polar. The effect of camber (and twist) can be seen in $\Delta C_{D_{min}}$ resulting in a higher C_{D_0} and $C_{D_{min}}$. The parabolic extent of the polar is increased and its shape is improved through the use of camber (and twist).

Drag and Performance Equations (ref. 14)

$$C_{D} = C_{D_{min}} + K(C_{L} - C_{L}')^{2}$$

$$C_{D_{min}} = C_{D_{min}} + \Delta C_{D_{min}}$$

$$C_{L}' = (1 - \frac{e}{e_{p}}) * C_{L_{pb}}$$

$$\Delta C_{D_{min}} = \left[\frac{e_{p} - e}{\pi A R e_{p}^{2}}\right] * C_{L_{pb}}^{2} = \frac{C_{L}'^{2}}{\pi A R (e_{p} - e)}$$

$$e = \frac{(C_{L} - C_{L}')^{2}}{\pi A R (C_{D} - C_{D})}$$

NON-Parabolic Polar

$$C_{L}^{*} = \sqrt{\frac{C_{D_{o}}}{K}}$$

$$C_{D}^{*} = 2(C_{D_{o}} - C_{L}^{'} + KC_{D_{o}})$$

$$(L/D)_{max} = \frac{1}{2(C_{D_{o}} - C_{L}^{'} + KC_{D_{o}})}$$

Parabolic Polar

$$C_{L}^{*} = \sqrt{\frac{C_{D_{o}}}{K}} \qquad (L/D)_{max} = \frac{1}{2\sqrt{KC_{D_{o}}}}$$
$$C_{D}^{*} = 2C_{D_{o}}$$

VII-6

Analytically Determined Drag Polar (ref. 15)

Aerodynamic wind tunnel data (drag) is never exactly parabolic. But, the data can be approximated by a parabolic relationship. The approach is as follows.

$$C_{D} = C_{D_{min}} + K(C_{L} - C_{L}')^{2}$$
(1)
$$C_{D_{0}} = C_{D_{min}} + K(C_{L}')^{2}$$

where $C_{D_{min}}$, K and C_{L} are unknown; expanding equation 1

$$C_{D} = C_{D_{0}} - 2KC_{L}C_{L} + KC_{L}^{2}$$
$$C_{D} = a + bC_{L} + cC_{L}^{2}$$

Method of Determining a Drag Polar

Assume "N" matched points of [CL(i), CD(i)]

$$aN + b\sum_{i=1}^{N} C_{L}(i) + c\sum_{i=1}^{N} C_{L}(i)^{2} = \sum_{i=1}^{N} C_{D}(i)$$

$$a\sum_{i=1}^{N} C_{L}(i) + b\sum_{i=1}^{N} C_{L}(i)^{2} + c\sum_{i=1}^{N} C_{L}(i)^{3} = \sum_{i=1}^{N} C_{L}(i)^{*} C_{D}(i)$$

$$a\sum_{i=1}^{N} C_{L}(i)^{2} + b\sum_{i=1}^{N} C_{L}(i)^{3} + c\sum_{i=1}^{N} C_{L}(i)^{4} = \sum_{i=1}^{N} C_{L}(i)^{*} C_{D}(i)^{2}$$

Once $\sum_{i=1}^{N} C_{L}(i)$'s & $\sum_{i=1}^{N} C_{D}(i)$'s are determined, use a Gaussian Elimination technique to solve for the coefficients a, b, c where $a = C_{D_0}$, b = -2KC', c = K

Example

N = 5					
i	C _L		C _D		
	1	0.0	0.0190		
	2	0.1	0.0202		
	3	0.2	0.0234		
	4	0.3	0.0313		
	5	0.4	0.0456		

Resulting augmented matrix

3	1	3]	[0.1395]
1	.3	.1	0.03433
.3	. 1	.0354	0.11251

$$C_{D_0} = 0.0194$$

 $K = 0.2207$
 $C_L = 0.0543$

Figure VII-1 Drag Tree

9-11V

<u>Subsonic</u>

Figure VII-2 (C $_{\rm L}$ vs C $_{\rm D}$) Drag Polar

Supersonic

Figure VII-3 (C_L vs C_D) Drag Polar

Figure VII-4 ($C_L vs C_D$) Subsonic Drag Polar

Figure VII-5 (C_D vs C_L²) Drag Polar

This page was intentionally left blank

NOTES		

NOTES		

NOTES		

NOTES

VIII EXPERIMENTAL TESTING AND INTERPRETATION

VIII <u>Experimental Testing and Interpretation</u> (Ref. 8)

For each wind tunnel test accomplished, the items of interest for the engineer will vary. Below is a list of items and facts that are usually of interest to the engineer. Reference \mathcal{E} is an excellent aid for finding those items and for subsonic wind tunnel testing. This handbook and reference 8 should be the two reference materials that accompany the testing engineer to the wind tunnel site.

Aircraft (wing-body-tail)

C _L max	^C L _α	^C _{Mα}	с _{Мо}
C _D	C _{Dmin}	CDo	α
(L/D) _{max}	CL	C _{Mac}	с _{пв}
C _l β	CΥβ		٣

<u>Flaps</u>

The purpose of flaps is to reduce the wing area through increasing $C_{L_{max}}$ and thus reduce the parasite (skin friction) drag in cruise. Flap systems usually generate large negative pitching moments and require a large horizontal tail to develop adequate down loads for trim, which reduce the total (wing-body-tail) $C_{L_{max}}$.

Trailing Edge Flaps (figure VII-9)

- Reduce α for α_0 (α zero lift)
- Increase C_Lmax
- Increases α for stall

Leading Edge Flaps

- Extend lift curve to increase α_{stall}
- Extend C_Lmax

- Used to determine flap-up stalling velocity
- C_L range from 0.6 to 1.7 (unpowered)
- Wing C_L runs 85% to 90% of airfoil values (with no high lift devices)
- $C_{L_{nor}}$ usually increases with Reynolds number (Rn)
- L.E. slats are insensitive to Rn, but slats reduce the effect of Rn on $C_{L_{max}}$
- $C_{L_{max}}$ for flaps retracted is less than $C_{L_{max}}$ flaps extended
- Substantial variations of C_M often occur at $C_{L_{max}}$ or (α_{stall})
- Model should be as close to trim as possible
- Nacelles usually reduce C_Lmax
- To be usable, C_L must be for trimmed flight
- α at 0.9 C_L is of interest for landing gear length consideration
- Stall α should be taken in very small steps so that its shape (non-linear portion of C_L curve) and $C_{L_{max}}$ and α_{stall} can be determined accurately
- To increase the span of the wing affected by the flaps (increasing $C_{L_{max}}$) the ailerons can be drooped

Lift Curve (Flaps Down)

- C_L flaps down range generally from 1.2 to 3.5 (unpowered) max
- Should have approximately same slope $(C_{L_{\alpha}})$ as flaps up
- Should have same location for the aerodynamic center as flaps up
- Used to find $\Delta C_{L_{max}}$ due to flap deflection

• There is usually little need to take the flap- down lift curve as low as α_0

Drag Curve (Flaps Up and Down)

- Near $C_{D_{\min}}$, step α in one degree increments
- $C_{D_{min}}$ (clean fighter) \cong O 0.0120 (120 counts of drag)
- The shape of the drag curve is important for climb and cruise with small changes in drag due to lift being desired during these portions of the missions.
- The value of C_D at $C_{L_{max}}$ is needed for takeoff and landing calculations.

Pitching Moment

- $C_{m_{\alpha}}$ must be negative for longitudinal stability.
- Generally, the pitching moment curves are used to determine if the aircraft has static stability through the desired C.G. range at all flight conditions (trimmed flight).

Elevator or Stabilizer Power Curve

- Plotting ΔC_M versus δ_e , elevator deflection, (stab. incidence) is made at several C_L 's. This plot indicates the amount of elevator or stabilizer deflection is needed to produce a certain moment coefficient.
- Stabilizer (elevator) effectiveness $(dC_M/d\delta_e)$ is obtained by holding α_{wing} constant and varying the tail incidence.
- Plot $C_{M_{cg}}$ versus C_{L} for several elevator angles. The intersections of the curves with the axis indicate trim conditions (figure VII-7). By holding α_{wing} constant and varying stabilizer incidence, the pitching moment about the tail is $M_t = -l_t q_t S_t C_{L_t}$. When l_t , S_t are known, then C_{L_t} can be found. Use $q_t = 0.85q_{\infty}$. From C_{L_t} and known stabilizer angles,

the slope of the tail lift curve $(dC_{L_{1}}/d\alpha_{t})$ can be established.

- Elevator power must be sufficient to balance ($C_{M_{cg}} = 0.0$) the airplane at maximum lift. The critical condition is gear and landing tlaps down and in ground effects.
- On low aspect ratio configurations, with short tails, tail effectiveness varies with α as the local dynamic pressure changes.
- On swept wing configurations, attention must be paid to pitch-up (reversal of C_M curve) in the C_L vs C_M curve as it can limit usable C_L .

Aileron Power Curves

- Aileron criteria are usually determined at $\varphi = 0^{\circ}$ and plots of $C_1 vs C_n$, $C_1 vs \delta_a$, and $C_1 vs \delta_a$ are used.
- Good qualities of ailerons are high rolling moments and low hinge moments.

Maximum roll rate and maximum helix angles are determined from C_{l} max Generally, C_{l} of 0.03 is adequate for one aileron.

 When yaw (φ) equals 0, and there is a slight rolling or yawing moment or side force when controls are neutral, be sure to subtract them out before reporting the data. This delta can be attributed to asymmetrical tunnel flow or model asymmetry.

•
$$\partial C_1 / \partial_{\varphi} = 0.0002$$
 is equivalent to 1° of effective dihedral.

If there is enough time and money (which usually there is not), do the aileron effectiveness test with tail off (ref. 8). The first reason to do this is when the ailerons are deflected in flight, the aircraft normally rolls and the inboard aileron trailing vortices are swept away from the horizontal tail by the helix angle. In the wind tunnel, these vortices stream back close to the horizontal tail and induce a load on the tail that does not occur in flight. Secondly, it saves effort in data reduction since tunnel wall effects on a horizontal tail is then non-existent.

Rudder Power_Curves

- Rudder power on high-performance multi-engine aircraft must possess sufficient directional stability to prevent excessive yaw angles (φ).
- Rudder power must be able to be balanced directionally at best climb speeds with asymmetric power (engine out).
- Rudder equilibrium is a plot of rudder deflection, δ_r , versus yaw angle φ .
- When doing a rudder study, deflect the rudder and yaw the model only in one direction. You are allowed to do this due to model symmetry.
- Rudder Equilibrium: $\partial \phi / \partial \delta_r$ ranges from -1.2 to -0.5 (maneuverable to stable)
- Rudder Power: $\partial C_n / \partial \delta_r = -0.001$ is reasonable.

Determine Center of Pressure Shift (C.P.)

To determine the C.P. shift the derivative $\partial C_M / \partial Mach$ is used. The main factor that contributes to this derivative is the backward shift of the wing center of pressure (C.P.) which occurs in the transonic range. On two-dimensional symmetrical wings, for example, the C.P. moves from approximately 0.25c to approximately 0.5c as the Mach number increases from subsonic to supersonic values.

C.G. Shift

Moving the C.G. forward reduces α_{trim} or C_L resulting in an increase in trim speed.

Lift_Curve_Slope_CL

 $C_{L_{\alpha}}$ ranges approximately

0.110 per degree for thin airfoils 0.115 per degree for thick airfoils $Rn > 10^6$

- As a rule of thumb; $C_{L_{\alpha_t}}$ is usually < 90% of $C_{L_{\alpha}}$.
- $C_{L_{\alpha}}$ makes an important contribution to the dampening of the longitudinal short period mode.

Determining Aircraft Parameters from Wind Tunnel Data (ref. 29)

Wing-Body wind tunnel data:

$$\begin{array}{|c|c|c|c|c|} \hline \alpha & -1.5 & 5.0 \\ \hline C_L & 0.0 & 0.52 \\ \hline \end{array} \quad \alpha = \text{geometric angle-of-attack} \end{array}$$

$$\begin{array}{c|ccc} \alpha & 1.0 & 7.88 \\ \hline C_{M} & -0.01 & 0.05 \\ \end{array} \quad C_{M} = C_{Mcg_{wb}}$$

Static Margin

Lift curve slope

$$a_{wb} \equiv \frac{\partial C_L}{\partial \alpha} = \frac{0.52 \cdot 0}{5 \cdot (-1.5)} = 0.08$$
 per degree

$$C_{Mcg_{wb}} = C_{Mac_{wb}} + a_{wb} \alpha_{wb} (h - h_{ac_{wb}})$$
(1)

 α_{wb} = absolute angle-of-attack

at $\alpha = 1.0^{\circ}$

$$-0.01 = C_{Mac_{wb}} + 0.08 (1 + 1.5)(h - h_{ac_{wb}})$$
(2)

at $\alpha = 7.88^{\circ}$

$$0.05 = C_{\text{Mac}_{wb}} + 0.08(7.88 + 1.5)(h - h_{ac_{wb}})$$
(3)

Equations 2 & 3 can be solved simultaneously. Subtracting equation 3 from equation 2...

$$-0.06 = 0 - 0.55(h - h_{ac_{wb}})$$

$$(h - h_{ac}) = \frac{-0.06}{-0.55}$$

 $(h - h_{ac}) = 0.11$ (static margin)

Aerodynamic Center Location

$$h = 0.35c$$

$$(h - h_{ac}) = 0.11$$

$$h_{ac} = 0.35 - 0.11$$

$$h_{ac} = 0.24$$
(a.c. location % c)

Aerodynamic Center Pitching Moment

Using equation 1 ...

$$0.01 = C_{Mac_{wb}} + 0.08(1 - 1.5)(0.11)$$

$$C_{Mac_{wb}} = -0.032$$

Center-of-Gravity Pitching Moment

For a given wing-body combination, the aerodynamic center lies 0.05 (5%) of a chord length ahead of the c.g.. The moment coefficient about the aerodynamic center is -0.016. If the lift coefficient is 0.45, calculate the moment coefficient about the c.g..

$$C_{Mcg_{wb}} = C_{Mac_{wb}} + C_{L_{wb}}(h - h_{ac_{wb}})$$
(4)
(h - h_{ac_{wb}}) = 0.05 C_{L_{wb}} = 0.45 C_{Mac_{wb}} = -0.016 C_{Mcg_{wb}} = -0.016 + 0.45(0.05)

$$C_{Mcg_{wb}} = 0.0065$$

Wing-Body-Tail

Consider the wing-body data above, the area and the M.A.C. of the wing are 1.076 ft² and 0.328 ft respectively. The distance from the airplane c.g. to the tail a.c. is 0.557 ft, the tail area is 0.215 ft², the tail setting angle is 2.7° , the tail lift-slope is 0.1 per degree, and from experimental measurement, $\varepsilon_{0} = 0.0$ and $\partial \varepsilon / \partial \alpha = -.35$. If $\alpha = 7.88^{\circ}$, calculate $C_{M_{co}}$.

From the information above ..

$$C_{Mcg} = C_{Mac_{wb}} + a\alpha_{a} \left[(h - h_{ac_{wb}}) - V_{H} \frac{a}{a} \left[1 - \frac{\partial \epsilon}{\partial \alpha} \right] \right] + V_{H} a_{t} (i_{t} + \epsilon_{o})$$
(5)

$$C_{Mac_{wb}} = -0.032 \qquad \alpha_{a} = 7.88 + 1.5 = 9.38^{O}$$

$$a_{wb} = 0.08 \qquad (h - h_{ac_{wb}}) = 0.11$$

$$V_{H} = \frac{i_{t} S_{t}}{c S_{w}} = \frac{(.557)(.215)}{(.328)(1.076)} = 0.34$$

$$a_{t} = 0.1/deg \qquad \partial \epsilon/\partial \alpha = 0.35$$

$$i_{t} = 2.7^{O} \qquad \epsilon_{o} = 0.0$$

2 -

Using Equation 5

$$C_{M_{cg}} = -0.032 + (.08)(9.38)[0.11 - .34\left[\frac{.1}{.08}\right](1 - .35)] + .34(.1)(2.7 + 0.0)$$
$$C_{M_{cg}} = -0.032 - 0.125 + 0.092$$
$$C_{M_{cg}} = \boxed{-0.065}$$

Longitudinal Static Stability

Does the aircraft (wing-body-tail) above have longitudinal static stability and balance ?

$$\frac{\partial C_{M_{cg}}}{\partial \alpha} = a \left[(h - h_{ac_{wb}}) - V_{H} \left[\frac{a_{t}}{a} \right] \left[1 - \frac{\partial \varepsilon}{\partial \alpha} \right] \right]$$
(6)
$$a_{wb} = 0.08 \qquad (h - hac_{wb}) = 0.11$$
$$V_{H} = 0.34 \qquad a_{t} = 0.1 \text{ per degree}$$
$$\partial \varepsilon / \partial \alpha = 0.35$$
$$\frac{\partial C_{M_{cg}}}{\partial \alpha} = 0.08 \left[(0.11) - 90.34 \right] \left[\frac{.1}{0.08} \right] (1 - 0.35) \right]$$
$$\frac{\partial C_{M_{cg}}}{\partial \alpha} = \left[-0.0133 \right]$$

Since the slope is negative, thus the aircraft is statically stable.

Longitudinal Balance

$$C_{M_{0}} = C_{Mac_{wb}} + V_{H}a_{t}(i_{t} + \varepsilon_{0})$$
(7)

$$C_{Mac_{wb}} = -0.032 \qquad i_{t} = 2.7^{0}$$

$$C_{M_{0}} = -0.032 + (0.34)(0.1)(2.7)$$

$$C_{M_{0}} = \boxed{0.06}$$

Trim angle-of-attack

Remember that $\frac{\partial C_{M_{cg}}}{\partial \alpha_{wb}}$ is the slope of a straight line. Therefore by setting $C_{M_{cg}}$ to zero,

and writing the equation of a straight line

$$y = mx + b$$
(8)
$$y = C_{M_{cg}} \qquad m = \frac{\partial C_{M_{cg}}}{\partial \alpha_a}$$

$$x = \alpha_{trim} \qquad b = C_{M_{cg}}$$

 α_{trim} can be found. From the above example...

$$0.0 = 0.06 - 0.0133 \alpha_{\text{trim}}$$

 $\alpha_{\text{trim}} = 4.5^{\circ}$

Clearly, this angle-of-attack falls within the reasonable flight range. Therefore, the aircraft is longitudinally balanced and statically stable.

<u>Finding Trimmed Flight Parameters</u> (ref. 16) (Unpowered, No thrust components)

Trimmed flight parameters can be easily found from a C_M vs C_L and C_L vs α plot. One of the model test parameters an engineer should always consider testing is the elevator. From this data, trim conditions can be found. When testing the elevator for its effectiveness, the angle-of-attack for the model configuration should be held constant while only a change of the elevator deflection angle (δ_{ρ}) is accomplished. Holding the configuration at a constant angle-cf-attack is not necessary, but it helps when manipulating the data for presentation. Make as many runs as necessary at different δ_{μ} 's while the horizontal tail incident angle is held constant. The resultant plot can be see In figure VII-7. On the C_M vs C_L plot, where each δ_e curve crosses $C_M = 0$, that point is considered a trim point and the corresponding C_L is the trim C_L . To find α_{trim} , a line (this line equates to a constant C_L) is drawn from the C_M vs C_L plot to the corresponding δ_e on the C_L vs α plot. That intersection on the C_L vs α plot α_{trim} can be found. If a series of trim points are found on the C_L vs α plot a C_L can also be found. α_{trim}

Determining any C.G. Location (unpowered, gliding flight)

To find the trim envelope (where $C_M = 0$) for any c.g. location, a line of any slope is drawn by rotating that line from $C_M = C_L = 0$ on the C_M vs C_L curve to any position on the C_M vs C_L curve. The slope of the newly drawn line is equal to the c.g. shift (refs. 16 and 8).

$$\frac{\partial C_{\mathbf{M}}}{\partial C_{\mathbf{L}}}\Big|_{\text{new c.g. position}} = \frac{\partial C_{\mathbf{M}}}{\partial C_{\mathbf{L}}}\Big|_{\text{old c.g. position}} - \Delta$$

where

$$\Delta = [old c.g. position (%MAC) - new c.g. position (%MAC)]$$

or

$$\Delta = \left[(x_{cg} - x_{ac})_{old} - (x_{cg} - x_{ac})_{new} \right]$$

Example:

Move c.g. from 0.35 to 0.2;

$$\frac{\partial C_{M}}{\partial C_{L}}\Big|_{0.35} = 0.2$$

$$\frac{\partial C_{M}}{\partial C_{L}}\Big|_{0.2} = 0.2 - (0.35 - 0.2)$$

$$\frac{\partial C_{M}}{\partial C_{L}}\Big|_{0.2} = 0.2 - 0.15$$

$$\frac{\partial C_{M}}{\partial C_{L}}\Big|_{0.2} = 0.05$$

It appears that to acquire this transfer a subtraction of moment arms (Δ) was accomplished. However, in reference 16, a thorough explanation is discussed and it shows that it is not just subtraction of moment arms but rather a subtraction of moments.

Determining the Average Downwash Angle (ref. 8)

To determine the average downwash behind the wing lest the model configuration with the

tail-off. Then test the configuration with the tail-on at different tail incident angles. The tail incident angle (i_t) is the angle between the wing-body zero-lift line (generally the longitudinal axis) and the tail zero-lift line. If the tail is a symmetric airfoil, the tail zero lift line and the tail chord line are the same. Also, if the tail is an all movable tail, the tail incident angle would generally be the same as δ_e . Once the tail-on and tail-off data are acquired, plot the data similar to figure VIII-1 (α_w vs C_M) at different i_t 's and then plot the tail-off data. The intersection of the tail-on curve with the tail-off curve are points where, at a given α_w , the tail-on C_M equals the tail-off C_M . Also, at those intersections, the tail is at zero lift.

(For a symmetrical airfoil section)

 $\alpha_{t} = \alpha_{w} + i_{t} - \varepsilon_{w} = 0$ $\varepsilon_{w} = \text{wing downwash angle}$ $\alpha_{t} = \text{Tail angle-of-attack}$ $\boxed{\varepsilon_{w} = \alpha_{w} + i_{t}}$

Once ε_{w} is found then the parameter $\frac{\partial \varepsilon}{\partial \alpha}$ can easily be obtained by plotting ε_{w} vs α .

Determining Induced Drag Factor (K) and Oswald's Wing Efficiency Factor (e)

Draw a plot of C_D vs C_L^2 . The slope of this line is K, the induced drag factor (see figure VII-5). The intercept is C_d .

Since
$$K = \frac{1}{\pi A R e}$$

Oswald's wing efficiency factor (e) is... $e = \frac{1}{\pi ARK}$

Base_Pressure (ref. 4)

A base pressure correction is applied to remove the base pressure drag from the total drag in order to correct the force drag. Such a correction is required because of the base drag is unknown without the interference or interactions of the sting or a jet. The measured base pressure is corrected to the reference ambient static pressure which is

considered to act over the entire base of the model. Occasionally more than one static pressure is measured on the base of the model and averaged to arrive at the base pressure. This average is multiplied by the area of the base to obtain the base-pressure axial force correction. In equation form:

$$F_A = (C_{P_{ave}}) (A_B)(q_{\infty})$$

Where

Pressure Transducer Selection

To determine the appropriate differential pressure transducer, three items are needed. The first being the <u>maximum</u> expected pressure coefficient (CP), the second being the <u>minimum</u> expected CP and finally the dynamic pressure (q). If obtaining the maximum and minimum CP's are difficult, then use +0.5 and -2.0 for the first iteration (these suggested CP's are good numbers for wing pressures). Then just "plug and chug" the equation below.

$$CP = \frac{p - p_{\infty}}{\frac{1}{2}\rho V^{2}}$$
$$\Delta p = (p - p_{\infty}) = CP(q^{*})$$

Differential pressure transducers are usually rated in psi $(\frac{lbf}{in^2})$. Conversion of 'q' to psf $(\frac{lbf}{ft^2})$ may be required.

From the maximum or minimum CP determine the greatest magnitude of Δp and then acquire the appropriate pressure transducer.

Example:

CP1 = +0.5 CP2 = -2.0 q = 2.11 psi

$$\Delta p1 = 1.055 psi$$
 $\Delta p2 = -4.22 psi$

Based upon $\Delta p2$, a differential pressure transducer of 5 psi will be adequate.

Flow Visualization

Flow visualization offers the testing engineer a unique way to observe the local flow fields. Flow visualization can be separated into two categories, surface flow visualization and off-body flow field visualization. Techniques to observe surface flow fields are tufts and oil flows. Laser light sheet, smoke, and tufts are used for off-body flow fields.

Surface Flow Visualization

<u>Yam</u>

Tufts do affect the aerodynamic forces.

Yarn should be used when the testing engineer is not concerned with the model forces and moments. Yarn has the greatest adverse effect on lift and drag compared to other surface For varn tufts, use 0.75 inch length of No. 6 floss flow visualization techniques. crochet yarn (any color). Have plenty of yarn available since it does not last a long time in the wind tunnel. Before applying tufts on the model, clean the model with naphtha or other solvents to remove any oils. There are two methods used to apply the yarn tufts to the model. The first method is to use a tuft board. A tuft board is a piece of scrapwood with two nails in it. The distance between the two nails is the length of the tuft (generally 0.75 to 1.0 inch). Wrap the tufts around the nails and then cut the tufts on the backside of the nail to give you the correct length that is needed. To attach the yarn to the model use cellophane tape or "super glue" and apply the yarn to the model in a symmetric pattern (0.75 inch x 0.75 inch). Ensure that at least 0.75 inch of the tuft material is available for the flow to manipulate freely. The second method in applying tufts to the model is to tape the yarn at two opposite ends of the item of interest on the model (ie... leading to the trailing edge) and glue/tape the tuft at the desired interval lengths (0.75 in) then cut the yarn.

Fluorescent Mini-tufts (ref. 26)

Fluorescent mini-tufts allow a large number of tufts to be applied to a model surface in a manner that produces negligible interference with model forces and pressures. Comparisons of tufts-on and tufts-off from Mach 0.5 to 2.4 showed differences of two to three drag counts. Mini-tufts are an extremely fine nylon mono-filament fiber that has been treated with a fluorescent dye that renders it visible during fluorescence (ultraviolet) photography. There are two sizes of mini-tufts generally used during wind tunnel testing. Those sizes are 3 denier (0.02mm, 0.0007 inch diameter) and 15 denier (0.04mm, 0.0017 inch diameter). Free moving length (measured from the gluing point) of the mini-tufts should range from 0.5 to 0.75 inches.

Mini-Tuft Installation

The procedures listed below have proven to be adequate for most applications. Tuft application utilizing these procedures are able to withstand many hours of testing at transonic and supersonic Mach numbers without appreciable adhesion failure.

Surface Preparation Steps

- 1. Wipe model surface with a solvent to remove grease and oil. Use clean paper towels or tissues rather than shop rags. Preferred solvents are naphtha or any chlorinated hydrocarbons such as trichloroethylene or trichloroethane. Methyl ethyl ketone or Freon are less suitable because of rapid evaporation rates. Do not use alcohols.
- 2. If possible, lightly abrade the surface with a fine grit carborundum pad or aluminum oxide paper. Do not use silicon carbide paper on aluminum. Care should be taken not to compromise the aerodynamic smoothness requirements for the model.
- 3. After abrading the surface, thoroughly clean the surface with a solvent using clean tissues. Then wipe that area with another clean tissue using that tissue only once. Wiping more than once with the same tissue redeposits the contaminants. Continue to wipe the surface with solvent until the tissue shows no stains. Avoid letting the solvent evaporate completely before it is wiped.
- 4. Apply an Alodine solution to the surface with a swab or a brush. Allow it to remain wet on the surface for three to five minutes. Any areas that resist wetting should be scrubbed with carborundum pad wet with the Alodine solution (Alodine is a chromate conversion solution that promotes adhesion of the gluing material to the surface. It

is available from aircraft paint suppliers. In this application, add a wetting agent such as Kodak Photo-Flo[®] to Alodine to make it a one percent concentration.).

- 5. Rinse the Alodine from the surface with clean water and then dry the surface with clean tissues. Be careful to limit skin contact with the Alodine and to wash thoroughly after use.
- 6. Cover the cleansed area with paper to avoid recontamination until after the tuft adhesive is applied. Realize that the above procedures are involved and can be reduced in scope. Steps one through six are the correct way to prepare the model surface. However, there is a correct way of doing things and the getting it done way of doing things. Be flexible in this area.

Mini-Tuft Attachment Steps

- 1. Lay out alignment marks with a soft pencil (roughly 0.75 inch grid) so that the tufts can be applied in a symmetrical pattern.
- 2. Place oversized lengths of tuft material over the extreme ends of the model (i.e... L.E. to T.E. if a wing) surface by wrapping the tuft around the model and then taping it to the lower surface.
- 3. Be careful to use only slight tension to avoid stretching the filament.
- 4. Use a "super glue" type of gluing agent to apply the tufts to the surface. Apply a small drop of glue to the strand of tufting material in intervals of approximately 0.5 to 0.75 inches.
- 5. Be sure glue drops are dried before cutting the tuft material. Cut tufts just ahead of each adhesive drop with a new razor blade.

Experience has shown that the visual appearance of these tuft results are greatly enhanced by carefully keeping the tuft spacing uniform. If the tuft pattern is asymmetrical, it is still possible to describe the flow, but it is difficult to interpret. To illuminate the mini-tufts, an ultraviolet light source is required. The ultraviolet illumination excites the fluorescent material to radiate in the visible spectrum (i.e., 400-600 nanometers). Video tape or black and white still photographs are the normal surface flow visualization data medium. It also helps if a fluorescent felt tip marker is used to hi-lite/outline the model. This will allow the model lines to be seen in the photograph or video tape.

Oil Flow

Oil flow visualization shows flow separation lines, vortex reattachment lines, shock lines, and complete boundary layer activity on the surface. The oil flow runs should be held for the last runs of the test since the oil will clog static pressure taps and is generally a messy procedure. The model is painted a flat color with the oil a color that will contrast the model color (generally a black model and white oil). The oil viscosity is an important parameter to be considered. If the oil is too viscous it will not display the true surface flow. If the oil is not viscous enough, it will run off the model and not display the flow on the surface. There are several formulas that can be used for the oil. The formulas will differ from tunnel-to-tunnel and from test engineer-to-test engineer based on his or her experience. One formula that is used and works well is one teaspoon of titanium dioxide (a white color), one teaspoon of STP Oil Treatment[®], and five drops of Oleic acid. Mix this amalgamation thoroughly and apply it on the model using a syringe with a 18 or 20 gauge needle. When applying the oil to the model it should have a logical and somewhat symmetrical pattern.

Off_Body_Flow_Visualization

Laser Light Sheet (Vapor Screen)

The vapor screen technique is a simple, yet effective, flow visualization tool to study the off-body flows about aerodynamic shapes at subsonic, transonic, and supersonic speeds. In recent years, this technique has frequently been employed in wind tunnel experiments to improve the understanding and control of the vortices shed from slender bodies of missiles, fuselage forebodies, and wings of fighter aircraft at high angles-of-attack. The technique features the injection of sufficient water into the tunnel circuit to create a condensation in the test section. An intense sheet of light is generated, usually with a laser (18-watt Argon-ion laser is sufficient), that can be oriented in any selected plane relative to the test model. The light is scattered as the water particles pass through the sheet, which enable the off-body flow to be visualized. However, the tunnel operator/owner might become perturbed at putting water in the tunnel. To alleviate his/her fear and to remove the water from the tunnel after the vapor screen runs, pump the tunnel down to a P_{total} of 500 psf, start the tunnel(subsonic) and turn the driers on. Do this approximately twice for 15 minutes each time. This will evaporate a majority of the water. After doing this have the tunnel technicians enter the tunnel and wipe up what little water is remaining.

Smoke Seeded Flow

Flow visualization using smoke is an excellent tool for observing off-body (external) flow fields that are dominated by vortical flows. If done correctly, superb qualitative data will result at a Reynolds number that might make it feasible to extrapolate the flow field to flight conditions.

Typically, smoke is generated by several methods. Such methods include pyrotechnic smoke devices, chemical (titanium tetrachloride and tin tetrachloride), petroleum products (kerosene, Type 1962 Fog Juice) and Rosco smoke generating fluid. The technique of producing smoke will be determined at the wind tunnel site.

A low turbulence wind tunnel is extremely helpful when trying to accomplish a flow visualization study using smoke. The surrounding air in the test section needs to be as undisturbed as possible in order that an accurate analysis of the model's flow field can be made.

Generally, the smoke enters the wind tunnel via a smoke wand that is typically located in the stilling chamber of the wind tunnel. The density of the smoke emitting from the wand should range from a mild to moderate fog (qualitatively speaking). The smoke should then traverse down to the test section and enter as a <u>filament sheet</u> that spans most of the section. The smoke filament sheet should be set (vertically) in such a manner that the smoke is "caught up" in the <u>upwash</u> of the wing, chine, or item of interest. It might be necessary to change the position of the the smoke wand to achieve an optimum smoke filament sheet position. Once the smoke filament sheet is caught in the upwash, the external flow field can be observed using a laser light sheet to expose the vortical systems.

<u>Tufts</u>

To use tufts for off-body flow visualization, a tuft wand or a tufted, framed, wire grid is used. A tuft wand is a pole with a long tuft on the end of it. The wand is hand held in the tunnel near the model to observe off-body flow fields. This technique is a qualitative procedure since the person and the pole create a flow disturbance in the tunnel. A tufted, framed, wire grid gives the testing engineer a planar view of the off-body flow field. The wire grid contains symmetrical, square (1 inch by 1 inch) wire mesh with tufts (usually yarn) glued at the corners of each mesh. The wire grid is placed

VIII-18
downstream of the model and is useful in examining wing tip vortices.

Determining Aerodynamic Angles from the Model Support (sting) Angles

Aerodynamic angles α and β are calculated using the model support (sting) angles γ , ψ , θ , and ϕ .

Where

 γ = prebend angle of sting (only in pitch) ϕ = yaw angle of the support θ = pitch angle of the support ϕ = roll angle of the support

Knowing

$$\alpha = \tan^{-1} \left(\frac{w}{u} \right) \qquad \beta = \sin^{-1} \left(\frac{v}{\overline{v}} \right)$$

Where

u = longitudinal velocity component
v = lateral velocity component
w = vertical velocity component
\$\overline{V}\$ = total freestream velocity

from reference 28 and 38

$$u = \left[\cos\varphi \left(\cos\gamma\cos\theta - \sin\gamma\sin\theta\cos\phi \right) - \sin\gamma\sin\phi\sin\phi \right] V_{\infty}$$
$$v = \left[\sin\phi\sin\theta\cos\phi - \cos\phi\sin\phi \right] V_{\infty}$$
$$w = \left[\cos\varphi \left(\sin\gamma\cos\theta + \cos\gamma\cos\phi\sin\theta \right) + \cos\gamma\sin\phi\sin\phi \right] V_{\infty}$$

Solving for the model angles α and β

$$\tan \alpha = \frac{\left[\cos\varphi\left(\sin\gamma\cos\theta + \cos\gamma\cos\phi\sin\theta\right) + \cos\gamma\sin\phi\sin\phi\right]}{\left[\cos\varphi\left(\cos\gamma\cos\theta - \sin\gamma\sin\theta\cos\phi\right) - \sin\gamma\sin\phi\sin\phi\right]}$$

$$\sin\beta = \left[\sin\phi\sin\theta\cos\phi - \cos\phi\sin\phi\right]$$
$$\phi = 0$$

Figure VIII-1 Downwash Determination

Figure VIII-2 Trim Determination Plot

VIII-20

NOTES		
·····		

NOTES	
	-
	-
	-
	~
	-
	_
	-
	_
	-
	-
	-
	_
	_
	-
	_

•	
	<u> </u>
	<u> </u>

NOTES

NOTES	

NOTES		

VIII-25

NOTES		
	-	
	—	
	_	
	_	
	_	

NOTES		
1		

NOTES

IX STRESS ANALYSIS

IX Stress Analysis

List of Symbols

Α	Area
d	Diameter
c	Distance from Neutral Axis
Ε	Modulus of Elasticity
f _{tu}	Ultimate (allowable) Tensile Stress
f _{su}	Ultimate (allowable) Stress in pure shear
f _{ty}	Tensile Yield Stress (point)
f _{tp}	Tensile Proportional limit
G	Modulus of Rigidity (Shear Modulus of Elasticity)
I	Moment of Inertia
J	Polar Moment of Inertia
L	Total length of element (shaft length etc)
1	Length of element (not shaft length)
ΔL	Change in length after deformation
Μ	Moment
NF	Normal Force
Р	Load
R	Average radius
r	Distance to point of interest for torsion
r _o	Shaft radius
Δs	Change in arc length after deformation
Т	Torque
t	Thickness
У	Distance to point of interest for stress
α	Constant based on l/t (non dimensional)
β	Constant based on l/t (non dimensional)
ε	Strain
σ	Stress
τ	Shear

List of Symbols continued

μ	Poisson's ratio
γ	Angle of shear strain

Subscripts

i inside	b bending	n normal
o outside	s shear	

Definitions

- <u>Stress</u> Stress implies a force per unit area and is a measure of the intensity of the force acting on a definite plane passing through a given point. The stress distribution may or may not be uniform, depending on the nature of the loading conditions. Tensile load is considered (+) and a compressive load is considered (-).
- <u>Strain</u> It is the change in length per unit length. The strain distribution may or may not be uniformed depending on the member and loading conditions.
- <u>Normal Stress</u> A unit stress which acts normal to the cross section of the structural element. These stresses are created by bending moments and axial forces.
- <u>Shear Stress</u> A unit stress which acts parallel and in the plane of the cross section. These stresses are caused by torsional moments and shear forces.
- <u>Normal_Strain</u> Strain essociated with a normal stress; it takes place in the direction in which its associated normal stress acts. Increase in length are (+) strains, decrease in lengths are (-) strains.

Shearing Strains Those strains related to relative changes in angles.

- <u>Yield Point</u> Where elongation increases with no increase in load. The stress at this point is known as Tensile Yield Stress.
- <u>Proportional Limit</u> Where the stress-strain curve first becomes non-linear. That point is the maximum stress where the strain remains directly proportional to stress.
- <u>Elastic Limit</u> The maximum stress to which a material maybe subjected and still upon the removal of the load, return to its original dimensions.
- <u>Neutral Axis</u> When a beam is deflected, one surface is in compression while the other surface is under tensile stress. There is a plane (neutral) where the stress will be zero. Where this neutral

Neutral Axisplane intersects any perpendicular cross section (or plane of
loading) this location is the neutral axis for that cross
section.

- <u>Ultimate_Tensile_Stress</u> This is the maximum allowable stress of the material.
- Factor of Safety Ultimate load / limit load
- Modulus_of_Elasticity Ratio of stress to strain; slope of the straight portion of the stress-strain diagram.
- Shear Modulus ofRatio of shear stress to shear strain at low loads. TheElasticityinitial slope of the stress-strain diagram for shear.

Radius of GyrationThe distance from the inertia axis that the entire massof an Bodywould be concentrated in order to give the same moment of
inertia.

- Radius of GyrationThe distance from the inertia axis to the point where theof an Areaarea would be concentrated in order to produce the same
moment of inertia.
- <u>Shear Center</u> A point where a load produces no torsion on a asymmetric beam cross section.

$$\sigma_n = \frac{P}{A}$$

Modulus of Elasticity

$$E = \frac{\sigma_n}{\varepsilon_n}$$

<u>Shear Strain</u> (thin wall, circular cylinder: twcc)

$$\epsilon_{\rm s} = \frac{\Delta \rm s}{\rm L}$$

Normal Strain

$$\epsilon_n = \frac{\Delta L}{L}$$

Poisson's Ratio

 $\mu = \frac{\text{lateral deformation}}{\text{axial deformation}}$

<u>Shear Modulus of Elasticity</u> (twcc)

$$G = \frac{\tau_s}{\gamma} = \frac{\sigma_s}{\varepsilon_s}$$

ANGLE_OF_TWIST

$\frac{\text{Rectangular shaft}}{\phi} = \frac{\text{TL}}{\beta \ \text{I} \ \text{G} \ \text{t}^3}$

Circular shaft

 $\phi = \frac{TL}{JG}$

Split tube

$$\phi = \frac{3TL}{2\pi R t^3 G}$$

POLAR MOMENT OF INERTIA

Solid, Circular Shaft

Tubular, Circular cross-section

 $J = \frac{\pi d^4}{32} \qquad \qquad J = \frac{\pi}{32} (d_0^4 - d_1^4)$

Solid, Circular Shaft	Tubular, Circular cross-section
$J = \frac{\pi}{2} r^4$	$J = \frac{\pi}{2}(r_0^4 - r_i^4)$

RADIUS OF GYRATION

$$\frac{\text{Body}}{\rho = \int_{M}^{\underline{\Gamma}} \qquad \rho = \int_{A}^{\underline{\Gamma}}$$

BENDING STRESS

$$f_b = \sigma_x = \frac{Mc}{I}$$
 $f_b = \frac{-6M}{bh^2}$ (rectangular)

SHEAR STRESS

Rectangular cross section (beam)

 $f_s = \tau_{max} = \frac{3P}{2A}$

 $f_s = \tau_{max} = \frac{4P}{3A}$

TORSIONAL FORMULAS

Solid, circular shaft

Tubular, circular cross section

$$f_s = \tau_{max} = \frac{16T}{\pi d^3} = \frac{Tr}{J}$$
 $f_s = \tau_{max} = \frac{16\pi d_o}{\pi (d_o^4 - d_i^4)}$

$$=\frac{2\pi r_{o}}{\pi (r_{o}^{4}-r_{i}^{4})}$$

Split_tube

$$f_s = \tau_s = \frac{3T}{2\pi Rt^2}$$

Rectangular) cross section

(flat plate)

$$f_{s} = \tau_{s} = \frac{3T}{1t^{2}}; \quad l \gg t \qquad \qquad f_{s} = \tau_{s} = \frac{T}{\alpha \ 1 \ t^{2}}; \quad l = t$$

1/t	1.0	1.5	1.75	2.0	2.5	3.0	4.0	6.0	8.0	10.0	~
α	.208	.231	.239	.246	.258	.267	.282	.299	.307	.313	.333
β	.141	. 196	.214	.229	.249	.263	.281	.299	.307	.313	.333

COMBINED_STRESS

Shafts under bending and torsional loads (ref. 33)

$$f_{T} = \frac{f_{b}}{2} + \sqrt{\left(\frac{f_{b}}{4}\right)^{2} + f_{s}^{2}}$$

Stresses on an incline plane (ref. 34)

$$\sigma = \frac{\sigma_x + \sigma_y}{2} - \frac{\sigma_x - \sigma_y}{2} \cos\theta + \tau_{xy} \sin 2\theta$$
$$\tau = \frac{\sigma_x - \sigma_y}{2} \sin 2\theta + \tau_{xy} \cos 2\theta$$

Principle Stress

$$\sigma_{\max} = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + (\tau_{xy})^2}$$

Angle on which principle stresses occurs (measured from x axis)

$$\tan 2\theta = \frac{-\tau_{xy}}{\frac{\sigma_x - \sigma_y}{2}}$$

Maximum and Minimum Shear stresses

$$\tau_{\max} = \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + (\tau_{xy})^2}$$

Angle on which max and min Shear stress occurs (measured from x axis)

$$\tan 2\theta = \frac{\frac{\sigma_x + \sigma_y}{2}}{\tau_{xy}}$$

FACTOR OF SAFETY

$$SF = \frac{f_{tu}}{stress}$$
 $SF = \frac{f_{tu}}{f_T}$

$$SF = \frac{1}{\sqrt{\left(\frac{f_b}{f_{tu}}\right)^2 + \left(\frac{f_s}{f_{tu}}\right)^2}}$$

Calculate Centroid of a Planform Area

		Area	ÿ	Ay	Ay^2
Elem.	Dim (in)	(in ²)	(in)	(in ³)	(in ⁴)
1	1.45 X 4.20	6.1	10.3+2.1= 12.4	75.5	937.9
2	2.3 X 10.3	23.7	10.3/2 = 5.14	122.0	628.6
3	8.98 X 2.0 X 0.5	8.98	8.98/3= 3.0	26.9	80.82
4	8.98 X 2.0 X 0.5	8.98	8.98/3= 3.0	26.9	80.82
5	0.83 X 2.0	1.66	0.83/2= .42	0.7	0.29
6	0.83 X 2.0	1.66	0.83/2= .42	0.7	0.29
7	0.85 X 4.22/2	1.8	4.22/3+10.3= 11.7	21.1	246.4
8	0.85 X 4.22/2	1.8	4.22/3+10.3= 11.7	21.1	246.4
		Σ 54.7 in ²		Σ 294.9	Σ 2221.5

 $\bar{y} = \frac{\Sigma A \bar{y}}{A} = \frac{294.9}{54.7} = 5.4$ in

 $I_{\rm X} = 2221.5 \ {\rm in}^4$

Figure IX-1 Stress Analysis Example 1 (centr id determination)

Example: Stress Analysis

Shear and bending at section F-F (figure IX-2)

Assuming a rectangular section of average thickness...

$$f_{b} = \frac{6M}{1 t^{2}}; \quad \begin{array}{c} 1 = base\\ t = height \quad (thickness) \end{array}$$

$$(f_{b} = \frac{Mc}{I}; \quad I = \frac{1t^{3}}{12}; \quad c = \frac{t}{2})$$

$$f_{s} = \frac{T}{\alpha 1 t^{2}}$$

T = torsion in beam $\alpha = constant$ dependent upon l/t

1 = 0.84 in

$$t_{ave} = \frac{0.044 + 0.030}{2} = 0.037 \text{ in}$$
$$l/t = 22.7 \text{ ; } \alpha = 0.333$$
$$M = 6.0(0.380) = 2.28 \text{ in-lb}$$
$$\Gamma = 6 \left[0.473 + \frac{0.84}{2} \right] = 5.358 \text{ in-lb}$$

Bending

$$f_b = \frac{6(2.28)}{(0.840)(0.037)^2} = 11,896 \text{ psi}$$

$$\text{S.F.} = \frac{89100}{11896} = 7.48$$

<u>Shear</u>

$$f_s = \frac{5.358}{(0.333)(0.840)(0.037)^2} = 13,992 \text{ psi}$$

S.F.=
$$\frac{1}{\sqrt{\left[\frac{11896}{89100}\right]^2 + \left[\frac{13992}{57000}\right]^2}} = 3.57$$

Shear and bending at first set of attachment holes at section E-E (figure IX-2)

Assuming a rectangular section of average thickness...

$$f_{b} = \frac{6M}{1 t^{2}};$$

$$(f_{b} = \frac{Mc}{I}; I = \frac{1t^{3}}{12}; c = \frac{t}{2})$$

$$f_{s} = \frac{T}{\alpha 1 t^{2}}$$

$$T = \text{ torsions in beam}$$

$$\alpha = \text{ constant dependent upon } 1/t$$

$$I = 0.840 - 2(0.138) = 0.564 \text{ in}$$

$$t_{ave} = \frac{0.062 + 0.030}{2} = 0.046 \text{ in}$$

$$1/t = 12.3; \alpha = 0.333$$

$$M = 6.0(0.380 + 0.210) = 3.54 \text{ in-lb}$$

$$T = 6 \left[0.473 + \frac{0.84}{2} \right] = 5.358 \text{ in-lb}$$

Bending

$$f_b = \frac{6(3.54)}{(0.564)(0.046)^2} = 17,798 \text{ psi}$$

S.F. =
$$\frac{89100}{17798}$$
 = 5.01

<u>Shear</u>

$$f_s = \frac{5.358}{(0.333)(0.564)(0.046)^2} = 13,482 \text{ psi}$$

S.F.=
$$\frac{1}{\sqrt{\left[\frac{17798}{89100}\right]^2 + \left[\frac{13482}{57000}\right]^2}} = 3.23$$

Tension in screws at wing tip missile attachment...

Summing moments about A-A

$$\Sigma M_{A-A} = 0 = 1.57 \text{NF} - 0.706 \text{R}_1 - 0.558 \text{R}_2 - 0.154 \text{R}_3 - 0.302 \text{R}_4$$

Solving screw loads in terms of R_1

$$R_2 = \frac{0.558}{0.706}R_1$$
 $R_3 = \frac{0.154}{0.706}R_1$ $R_4 = \frac{0.302}{0.706}R_1$

Substitute into the M_{A-A} equation above...

$$1.57\text{NF} = \text{R}_{1} \left[0.706 + \frac{0.558^{2} + 0.154^{2} + 0.302^{2}}{0.706} \right]$$

$$1.57NF \approx 1.31R_1$$

 $R_1 = 1.199NF$

From above...

$$R_2 = 0.948NF$$
 $R_3 = 0.262NF$ $R_4 = 0.308NF$

From figure IX-2, NF = 6.0 lbs...

$$R_1 = 7.2 \text{ lbs}$$
 $R_2 = 5.69 \text{ lbs}$ $R_3 = 1.57 \text{ lbs}$ $R_4 = 3.08 \text{ lbs}$

 f_{tu} for 0-80 flat-head socket screws is 265 lbs

S.F. =
$$\frac{265}{7.2}$$
 = 36.8

Thread pullout in wing tip missile attachment screws...

For screw R₁ (0-80 flat-head screws)...

Shear Area = π (screw pitch dia.)(screw length)(0.5)

(0.5) is and arbitrary fudge factor for conservatism

 $= \pi(0.519)(0.58)(0.5)$

Shear Area = $0.0094(0.5) = 0.0047 \text{ in}^2$

Shear

 $f_s = load / shear area$ $f_s = 7.2 / 0.0047$ $f_s = 1532 psi$

For flat-head screw 0-80

f_{su} = 96000 psi

$$\text{S.F.} = \frac{96000}{1532} = 62.7$$

For the wing; 17-4PH stainless steel screws...

$$f_{su} = 120000 \text{ psi}$$

S.F. $= \frac{120000}{1532} = 78.4$

Screw head pullout in wing tip missile attachment ...

shear area =
$$\pi$$
(screw head dia.)($\frac{t}{2}$ - head depth)
= π (0.117)(0.058 - 0.045) = 0.00478 in²

Shear force...(for 4130 steel)

$$f_s = \frac{7.2}{0.00478} = 1506.3 \text{ psi}$$

$$S.F. = \frac{89100}{1506.3} = 59.2$$

Figure IX-2 Stress Analysis Example 2 (wing tip missile)

IX-15

This page was intentionally left blank

NOTES
IX-17

NOTES	
	<u></u>
IX-18	

NOTES
IX-19

NOTES

X TRENDS

Figure X-1 Flap Characteristics

Figure X-2 Effect of Vertical Location of C.G. on Pitching Moments

Figure X-3 Typical Component Longitudinal Stability Breakdown

Figure X-4 Mach Number Trends (Effects)

Figure X-5 Reynolds Number and Aspect Ratio Trends (Effects)

Figure X-6 Effect of Wing Sweep on C_Do

Figure X-7 Aft and Forward Swept Wing-Fuselage Effects (Ref. 18)

Figure X-7 continued

į

Figure X-7 concluded

X-8

(c) x/c=0.62

Figure X-8 Wing Pressure Distribution in the presence of a Coupled Chine (ref. 19)

(e) x/c≠0.75

Figure X-8 concluded

Figure X-9 Reynolds Number Effect on cl max (wing alone)

Figure X-10 Reynolds Number Effect on Drag (wing alone)

Figure X-11 Drag Rise Characteristics (wing alone)

X-13

Figure X-12 Mach Effect on Airfoil Pressure Distribution

NOTES

NOTES

N	OTES
<u></u>	

NOTES

XI INTERNAL STRAIN GAGE BALANCES

XI <u>Internal Strain Gage Balances</u> (Ref. 36)

List of Symbols

Α	Cross-sectional area
Е	Voltage
F	Gage Factor
$\{F_A^{}\}$	Applied load to balance matrix
{F _o }	Output (mv) force matrix
[K _{ij}] ⁻¹	Inverted balance calibration matrix
L	Length
1	Rolling moment
m	Pitching moment
mv	Milli-volts
n	Yawing moment
R	Resistance
(SC)	Sensitivity constant matrix
wt	Weight
Х	Axial force
Y	Side force
Z	Normal force
ε	Axial (local) strain
Δ	Incremental
μ	Poisson's ratio
ρ	Resistivity of the gage material

Subscripts

A - Applied load	AF - Axial force	NF - Normal force
O - Output (mv)	PM - Pitching moment	SF - Side Force
RM - Rolling moment	YM - Yawing moment	

Strain Gages

In strain measurement, the simplest device to use is the resistance type strain gage. Its construction and operation are simple, but it is so precise that strains on the order of 0.1% may be measured. The gage is about the size of a postage stamp but only slightly heavier. It consists of a metallic wire or strip of foil whose electrical resistance varies linearly with strain. The gage is securely bonded to the member to be strained so that any strain in the member due to a load is transmitted to the wire. There are literally hundreds of types of strain gages available commercially; each gage having been developed in response to a demand for a gage to meet a specific condition.

The most fundamental part of the gage is the wire itself. The resistance increase of a wire, when it is stretched, is due to an increase in the length and a decrease in its cross section, than to actual change in specific resistance. Typically, an electrical conductor (wire) is bonded to the specimen (balance) with an insulating cement under a no-load condition. A load is then applied, which produces a deformation in both the specimen and resistance element (wire). This deformation is indicated through a measurement of the change in resistance of the element (wires).

Three common types of resistance strain gages used in internal balances are wire, foil, and semi-conductor. The bonded wire is most commonly used with the wire diameter varying between 0.005 and 0.001 inches. The foil gage usually employs a foil less than 0.001 inches thick. The semi-conductor gage employs a silicon base material that is strain sensitive and has the advantage of a very large gage factor (F~100). (The gage factor relates the electrical resistance to the physical properties of the gage.) The material is usually produced in brittle wafers having a thickness of 0.01 inches.

Wire and foil gages may be manufactured in various ways, but the important point is that the resistance element (wire/foil) be <u>securely</u> bonded to its mounting. Most wire strain gages employ either a nitrocellulose cement or a phenolic resin for the bonding agent with a thin paper backing to maintain the wire's configuration. Such gages may be used up to 300° F. A Bakelite mounting is usually employed for temperatures up to 500° F. Foil gages are manufactured by an etching process and use base material of paper, Bakelite, and epoxy film. Epoxy cement is also used on wire and foil gages.

XI-2

Temperature Effects

The major source of strain gage error is the fact that the resistance of most wires changes with temperature. This variation is not only a function of the change in temperature but, may also be a function of the number of heating cycles to which the gages has been subjected and of the time elapsed between cycles. Temperature compensation may easily be accomplished by installing a second strain gage, often known as a dummy gage, on an unstrained piece of the same metal that the active gage is bonded to. There are two changes in gage resistance which are caused by temperature changes. The first effect is the temperature coefficient of resistivity which is a random effect that may be considered as independent of the gage and the member (material) on which it is mounted. The latter effect is one in which the error in the strain gage output is significant. Semi-conductor gages offer the advantage that they have a lower expansion coefficient then either wire or foil gages. It's best to mak is sure the strain gages are temperature compensated.

Deformation Theory and Calculation

Basic relations for the resistance strain gage are

$$R = \rho(\frac{L}{A}) \tag{1}$$

L = lengthA = cross-sectional area ρ = resistivity of the material

Differentiating (1)

$$\frac{\mathrm{dR}}{\mathrm{R}} = \frac{\mathrm{d\rho}}{\mathrm{\rho}} + \frac{\mathrm{dL}}{\mathrm{L}} - \frac{\mathrm{dA}}{\mathrm{A}} \tag{2}$$

The area may be related to the square of some transverse dimension, such as the diameter (D) of the resistance wire.

$$\frac{\mathrm{d}\,\mathrm{A}}{\mathrm{A}} = 2(\frac{\mathrm{d}\,\mathrm{D}}{\mathrm{D}})\tag{3}$$

The unit axial strain ε is defined as

$$\varepsilon = \frac{dL}{L} \tag{4}$$

Poisson's ratio is defined as

$$\mu = \frac{\mathrm{d}D/\mathrm{D}}{\mathrm{d}L/\mathrm{L}} \tag{5}$$

Substituting equations (3), (4) and (5) into (2)...

$$\frac{dR}{R} = \varepsilon(1+2\mu) + \frac{d\rho}{\rho}$$
(6)

The gage factor 'F' is defined as

$$\mathbf{F} = \frac{\mathrm{d}\mathbf{R}/\mathbf{R}}{\varepsilon} \tag{7}$$

Substituting (7) into (6)

$$\mathbf{F} = 1 + 2\mu + \left(\frac{1}{\varepsilon}\right)\left(\frac{\mathrm{d}\rho}{\rho}\right) \tag{8}$$

Rearranging (7)

Local Strain

$$\varepsilon = \frac{1}{F} \left(\frac{\Delta R}{R} \right)$$
(9)

The value of the gage factor 'F' and the resistance (R) are usually specified by the manufacturer so that the user need only measure the change of resistance (ΔR) in order to determine the local strain due to a load.

Measurement of $\Delta R/R$

Consider the basic Wheatstone bridge in figure XI-1. The voltage at the detector is given by

$$E_{D} = E \left[\frac{R_{1}}{R_{1} + R_{4}} - \frac{R_{2}}{R_{2} + R_{3}} \right]$$
(10)

If the bridge is balanced then $E_p = 0.0$ volts.

Let the strain gage represent R_1 in the circuit in figure XI-2 and a voltage readout is used such that the bridge operates as a voltage sensitive circuit. We assume that the bridge is balanced at zero strain conditions and that a strain, ε , on the gage results in the change in the resistance ΔR_1 and a change of voltage ΔE on the bridge. R_1 will be used to represent the resistance of the gage at zero strain conditions.

The voltage due to strain is...

$$\frac{\Delta \Xi_{\rm D}}{\rm E} = \frac{R_{\rm 1} + \Delta R_{\rm 1}}{R_{\rm 1} + \Delta R_{\rm 1} + R_{\rm 4}} - \frac{R_{\rm 2}}{R_{\rm 2} + R_{\rm 3}}$$
(11)

Solving for the resistance change...

$$\frac{\Delta R_1}{R_1} = \frac{(R_4/R_1)[\Delta E_D/E + R_2/(R_2 + R_3)]}{1 - \Delta E_D/E - R_2/(R_2 + R_3)} - 1$$
(13)

Balance Calibration (interaction) Matrix (ref. 8 and 37)

No internal balance is able to measure the pure loads that it was intended to measure. This is due to errors within the balance. There are generally two types of errors. The first type of 'balance' errors are the linear (first degree) errors. This type of errors are primarily due to construction errors, improperly positioned gages, variation in gage factors, and electrical circuits. The second type of error is the non-linear (2nd degree) error. This error is primarily attributed to elastic deformation (deflections) of various balance parts. Both types of errors create interaction of forces and moments.

To account for these interactions (errors) in the balance, the balance is calibrated. The purpose of this calibration is to acquire a set of interaction equations that can be used to determine the loads applied by the model through the balance output (voltage) signals. This type of calibration will not (generally) be accomplished by the testing engineer. All the testing engineer will receive will be a sheet(s) of paper with the linear and non-linear interaction coefficients on it (figure XI-3). For a six component (3 forces and 3 moments) balance, the linear coefficients will be used as a 6x6 matrix with near unity (1) on the diagonal. The non-linear coefficients will be used as a 6x21. For a six component balance, there is a total of 27 interaction terms. Generally speaking, the 6x6 matrix will need to be inverted to be used in the data acquisition computer. This can be seen below in the theory of how the computer acquires force/moment data from a balance.

$$\{F_{o}\} = [K_{ij}]\{F_{A}\}$$

$$\{F_{A}\} = [K_{ij}]^{-1}\{SC\}\{F_{o}\}$$
 (14)

Example:

Original Balance Calibration Matrix (non-dimensional)

	1.0000	.0336	1764	0549	.00590004	
X	0169	1.0000	0.0000	.0131	0000. 0000.	$ X_{\Delta} $
m	0059	0022	1.0000	0032	.0000 .0002	m
	0004	0006	.0078	1.0000	.10120044	1
n	0000	.0002	.0000	0412	1.00000064	n _
Y	.0012	.0049	.0294	1555	03841.0000	Y

Inverted Original Balance Calibration Matrix

$\begin{bmatrix} Z_{\mathbf{A}} \\ \mathbf{X}_{\mathbf{A}} \end{bmatrix}$	1.0000	0332	176	.0555	0115	.0005	$\begin{bmatrix} Z \end{bmatrix}$
	.0169	.9994	.0031	0121	.0011	0000	
m	.006	.002	1.001	. 0034	0004	0002	m
	.0004	.0006	0078	. 9964	1007	.0037	1
n	.0000	0002	0005	. 0421	.9959	.0065	n
Y	0013	0048	0309	. 1564	.0225	1.0008	Y

The interactions of the forces and moments can be seen in the inverted matrix. For an example, there is a -17.6% interaction on the normal force due to the the pitching moment and a 3.7% interaction on the rolling moment due to the side force.

The testing engineer needs to know if the balance coefficients are indeed non-dimensional or dimensional (ie... $(\frac{load}{volts})$). If the interaction matrix is non-dimensional, then the testing engineer will have to acquire a sensitivity constant $(\frac{load}{volts})$ for each force and moment. The acquisition of the sensitivity constants is acquired during the check loading of the balance (see page XI-10).

Calibration Body

In order to load a balance accurately, it is first necessary to construct a fixture. This fixture is generally called a calibration body (cal. body). The cal. body simulates the model to be tested which will allow loads to be accurately transmitted to the balance in the same manner as the model will during testing. It should be attached in the same manner as the model is attached to the balance (generally a single pin) and should have reference surfaces which will remain fixed with respect to the balance reference center (usually the balance electrical moment center)

The cal. body is an accurately machined 'rectangle box' with precisely located V-shaped grooves in which the loads are applied during calibration or check loadings. It is important that both the cal. body and the model be aligned with the balance in <u>exactly</u> the same manner. Also, the balance should fit tightly (no relative motion between the two items) in the cal. body and in the model. All fixtures (moment arms, weight pans etc...)

XI-7

should be manufactured as light as possible and as stiff as possible.

Loads applied to the balance (via the cal. body) components are considered absolute loads. Therefore, the weight of the cal. body and fixtures and even parts of the balance must be considered as applied loads. However, the weight of the cal. body and fixtures are taken out in the 'zero' reading. The zero reading is the reference voltage to be subtracted out from the load reading to acquire a 'true' reading.

Check Loading

The purpose of check loading a balance serves several purposes.

- 1) Acquire sensitivity constants (if needed)
- 2) Proof (check) load the balance
- 3) Check gaging and wiring
- 4) Determine hysteresis and repeatability
- 5) Determine component sensitivity
- 6) Determine deflections when a load is applied
- 7) Determine accuracy

It is important to check load the balance over the entire anticipated load and center-of-pressure range and that sufficient points are taken to assure accurate and repeatable loadings. The minimum_check_load to hang would be 10% of the balance limit.

Check Loading Procedure

This procedure will assume that a dead weight (ie... disks) will be used to acquire the loadings required. However, a load is a load whether it is generated by a disk or hydraulic actuator or some other source. Just make sure it's a <u>point load</u> and not a distributed load on the calibration body.

Hang the weights on the calibration body at <u>CONSTANT_INCREMENTS</u>, as an example, $\Delta 50$ lbf or $\Delta 100$ lbf or whatever weight increment you choose to use. Be sure to maintain that increment at all times. Don't forget to take a 'zero' voltage reading prior to hanging weights. A zero reading includes the weights of the cal. body, weight pan or any other weight that's considered a 'zero' weight. After loading a weight on the weight pan, stop the weight pan from swaying. Place an inclinometer on the cal. body and raise or lower the cal. body (via the sting) until it is level (or < ± 3 mins of 3 degree). This takes out the weight component due to the deflection of the sting. Also, sting deflection measurements can be taken at this time. After the weight has been added and the swaying has been stopped, have the control room take a data point and record the output (normally in milli-volts [mv], and then add the next incremental weight and repeat the above procedure. Do this until the maximum load is achieved. Once the maximum load is applied and voltage taken, remove the weights at the same increment as when you added the weights and take a data point at each weight going down. Do this until all the weights have been removed and then take another zero. This up and down procedure of check loading will show accuracy, repeatability and a zero shift of the balance. Do this for all force and moment check loadings.

Dead-Weight Loading System

When the dead-weight system is employed, the weights are generally in the form of cast iron disks (accurate to 0.1%) hanging on a weight pan supported by the cal. body or moment arm fixture. For a highly accurate check loading, one can weigh the cast iron disks prior to check loading.

When hanging weights for the normal force and side force, at a minimum, hang the weights at the balance electrical moment center and use this check loading to determine the normal and side forces sensitivity constant. Taking the sensitivity constant for the forces at the balance electrical moment center, allows the contribution (interactions) of the principle moments (pitching and yawing) to become negligible.

Hanging the weights for the pitching and yawing moments, at a minimum, at one moment arm ahead and behind the electrical moment center but at different moment arms. This will result in a positive and a negative moment. When check loading for the rolling moment, place the rolling moment fixture at the balance electrical moment center and at a minimum, apply loads at two different moment arms on the rolling moment fixture (expect to see a normal force reading).

Axial Force Check Loading

Axial force check loading is generally accomplished with a pulley rig. A pulley rig has two wires that are connected to the cal. body that run down the side of the sting and over the pulleys down to a 'T' weight pan where the weights are placed. The 'T' weight pan <u>must be absolutely level</u>. Any angle in the 'T' weight pan will produce undesirable interactions and an erroneous axial force will be acquired. Also, it might be desirable to check load in the negative axial force direction. If this is desirable, set the pulley rig in front of the cal. body and hang weights. Be sure to check the balance limits to see if a negative axial force limit exists. Normally, a negative axial force calibration is not done.

Sensitivity Constants

Sensitivity constants are required when the balance calibration matrices are <u>non-dimensional</u>. They are acquired during check loading and are nothing but slopes of a line $\left(\frac{\Delta \log d}{\Delta \operatorname{volts}}\right)$ and are required for each force and moment. The sensitivity matrix is a diagonal matrix.

To acquire sensitivity constants...

- 1) Put balance calibration matrix in the data acquisition computer.
- 2) Initially set sensitivity constants to unity (1).
- 3) Accomplish the check loading in all planes and at multiple positions within that plane.
- 4) When the check loadings are complete, obtain the 'Raw Balance Data' (figure XI-4). Be sure and account for the zero reading. Usually it needs to be subtracted out of the output readings. There should be 'n' forces and moments usually titled X, Y, Z, l, m, n. Where X = axial force, Y = side force, Z = normal force, l = rolling moment, m = pitching moment, and n = yawing moment.
- 5) At this point use a linear regression program to acquire the slope of the line with the x-axis as the voltage and the y-axis as the load. The slope of this line is the sensitivity constant for that force or moment. Do this for each position and for each force and moment. The force and moment sensitivity constants should not vary much from one another when taken at different positions on that plane. For the force sensitivity constants, use the sensitivity constants at the <u>balance electrical moment</u> <u>center</u>. This eliminates, theoretically, the influence of the moment of that plane.
- 6) If a linear regression program is not available at the test site, take the first weight reading (mv) and subtract it from second weight reading (mv). Then take the second weight reading and subtract it from the third weight reading and so on. The

 Δ milli-volts (Δ mv) should be close to one another since the weight increment (Δ wt) is held constant.

- 7) Obtain an average Δmv .
- 8) Divide the Δwt by the average Δmv . This is the sensitivity constant for that position on the plane.
- 9) Repeat steps 6 3 for each position on the plane.
- 10) Steps 6-8 are not as accurate as using a linear regression program on the computer.
- 11) For the moments, add your sensitivities together and divide by the number of sensitivities to obtain and average. This average sensitivity constant for the moment is the one given to the software/tunnel personnel.
- 12) After the sensitivity constants have been acquired, re-hang selected loads on the cal. body once again to verify the validity of the constants. The applied load to the output load should be within 0.5% of one another.

Example Sensitivity Constant Matrix

		2.3184	0	0	0	0	0]	$\begin{bmatrix} z \end{bmatrix}$
X		0	7844	0	0	0	0	X
m		0	0	1867	0	0	0	m
1	=	0	0	0	.1324	0	0	
n A		0	0	0	0	07	780	n
Y		0	0	0	0	0	-1.188	Y

Obtaining Force and Moments from Raw Balance Data

- 1) Take the balance output (mv) and subtract out the zero reading (mv).
- 2) Take that increment (Δmv) and multiply it by that position on the balance calibration coefficient (ie... if you are checking the normal force, on the nxn matrix (which is usually inverted) go to the Z,Z position), and multiply it by the its sensitivity constant. However, don't forget the interaction terms. They'll need to be added or subtracted to the force or moment you are looking at for an accurate reading.

F or $M = \Delta mv(balance calibration)(sensitivity constant) + interaction terms$ F = force; M = moment

Don't forget that each interaction term also has a sensitivity factor associated with it. Keep a close eye on the units. Don't mix apples and oranges.

Balance Calibration Equation Example (ref. 8)

The example below uses a 6 component balance calibration matrix. The calibration matrix below is considered non-dimensional. If the calibration matrix was dimensional, then consider the sensitivity constants on the diagonal of the sensitivity constant matrix as unity (1).

From equation 14

$$\{F_{O}\}\{SC\} = [K_{ij}]\{F_{A}\}$$
$$\{F_{A}\} = [K_{ij}]^{-1}\{SC\}\{F_{O}\}$$

Example Original Balance Calibration Matrix (non-dimensional)

$\begin{bmatrix} z \end{bmatrix}$	ſ	1.0000	.0336	1764	0549	.0059	0004	$\begin{bmatrix} z \end{bmatrix}$
Z ° X		0169	1.0000	.0000	.0131	.0000	.0000	$ \mathbf{X}_{A}^{\uparrow} $
		0059	0022	1.0000	0032	.0000	.0002	m
	=	0004	0006	.0078	1.0000	. 10 1 2	0044	1
n°		.0000	.0002	.0000	0412	1.0000	0064	n
Y	L	.0012	.0049	.0294	1555	03 8 4	1.0000	Y

Example Inverted Balance Calibration Matrix

	1.0000	0332	176	.0555	0115	.0005
A	.0169	.9994	.0031	0121	.0011	0000
	.006	.002	1.001	.0034	0004	0002
	.0004	.0006	0078	.9964	1007	.0037
A	.0000	0002	0005	.0421	. 99 5 9	.0065
A	0013	0048	0309	.1564	.0225	1.0008]

Example Sensitivity Constant Matrix

	ſ	2.3184	0	0	0	0	0	
X		0	.7844	0	0	0	0	X
m _A		0	0	1867	0	0	0	m
l _A	=	0	0	0	.1324	0	0	
n A		0	0	0	0	0778	0	n
Y	Į	0	0	0	0	0	-1.188	Y

A typical load (normal force) equation can be seen below.

$$Z_{A} = Z_{O}K_{11}SC_{NF} + X_{O}K_{12}SC_{AF} + Y_{O}K_{13}SC_{SF} + I_{O}K_{14}SC_{LM} + m_{O}K_{15}SC_{PM} + \dots$$

$$\dots + n_{O}K_{15}SC_{YM}$$
(15)

Using the inverted and sensitive constant matrix above, the total normal force (Z) and pitching moment (m) equations are listed below.

$$Z = Z(1)(2.3184) + X(-.0332)(-.7844) + m(-.176)(-.1867) + ...$$

... + 1(.0555)(.1324) + n(-.0115)(-.0778) + Y(.0005)(-1.188)
m = Z(.006)(2.3184) + X(.002)(-.7844) + m(1.001)(-.1867) + ...

$$\dots + 1(.0034)(.1324) + n(-.0004)(-.0778) + Y(-.002)(-1.188)$$

۰ ۱

The rest of the forces and moments equations are derived in the same manner.

Balance Placement in the Model

The physical placement of the balance in a wind tunnel model can vary. Usually, the balance electrical moment center is placed at the center of pressure of the configuration at the maximum aerodynamic load. Since the center of pressure position varies with angle-of-attack, make re the aerodynamic load is not outside the load of the balance.

Figure XI-1 Basic Wheatstone Bridge

Figure XI-2 Unbalanced Wheatstone Bridge

Non	
nal	
Force	

20 2	24	23	22	21	20	0	16	17	16	15	14	13	12	11	10	٥	58 ·	7			đ	5	*	ų	~				SEQUENCE	CARU
K(25) K(26)		K(23)	K (22)	K(21)	K(20)	K(19)	天(18)	K(17)	ス(1))	K(15)		K(13)	K(12)		K(10)	X (9)	X (0)	K(7)	COEFFICIENTS	NONLINEAR	X(5)	X(5)	スーチン	K(3)	K(2)	X(1)	LINEAR INTERACTION COEFFICIENTS			COFFFICIENT SY INDL
2.0256F -07	-9.63408-07	-9.7235E-08	-3.04646-03				4 . 02 64 E-0P				-5.1202E-07		-5.7771F-07								1.1570F-03		-1-12726-03	-1.4982F-02	-1.6926F-02	3855331533		ENGL 15H		< >
1.79295-08	-7.6420E-08	-3.3866F-09	-1.0617E-09				1.4032E-09				-4.5319E-08		-1.2987F-07								1.1570E-03	- 	-4.43778-04	-5.7995-03	-1.6926E-02			5.1.0.		VALUE
SOUAT	AVE SUVEL	×	20 S	×	PTTCH X YAW	-	ŝ	-	-	×	AXIAL X PITCH					X PITC	NORMAL X AXIAL	SQUARE			STUE	Y A V	RULL	PITCH	AXIAL	NUPRAC		CUEFFICIENTS	9	CJHPONENT(S)

Figu**re** XI-3 Example Balance Calibration Sheet

Wt Inc.	Data Pt	X	Y	Z	1	m	n
U	1	-1329.8	960.6	0.0	-1112.7	705.4	536.3
100	2	-1308.8	962.6	191.1	-1110.7	710.4	536.3
200	3	-1289.8	964.6	384.2	-1108.7	714.4	537.3
300	4	-1268.8	965.6	575.3	-1105.7	718.4	536.3
400	5	-1250.8	966.6	766.5	-1104.7	722.4	539.3
500	6	-1230.7	966.6	958.6	-1103.7	726.4	536.3
600	7	-1208.0	966.8	1150.9	-1101.9	731.6	534.4
700	8	-1186.7	967.6	1342.8	-1100.7	735.4	534.3
600	9	-1211.0	967.8	1149.9	-1102.9	730.6	536.4
500	10	-1227.7	964.6	957.6	-1103.7	725.4	536.3
400	11	-1250.8	966.6	765.5	-1106.7	721.4	536.3
300	12	-1268.8	965.6	573.3	-1107.7	727.4	536.3
200	13	-1287.8	965.6	381.2	-1110.7	713.4	538.3
100	14	-1306.8	964.6	189.1	-1112.7	709.4	540.3
0	15	-1326.8	962.6	0.0	-1113.7	704.4	541.3

Normal Force (Z) Calibration (Balance Electrical Moment Center)

Pitching Moment (m) Calibration (2 inch moment arm)

Wt Inc.	Data Pt	X	Y	Z	1	m	n
0	16	-1324.8	962.6	-2.0	-1113.7	688.4	543.3
100	17	-1310.8	963.6	182.1	-1110.7	567.3	544.3
200	18	-1298.8	964.6	369.2	-1108.7	446.3	545.3
300	19	-1286.8	964.6	555.3	-1105.7	326.2	545.3
400	20	-1271.8	965.6	742.4	-1102.7	206.1	545.3
500	21	-1260.8	965.6	928.6	-1100.7	85.1	546.3
600	22	-1248.7	966.6	1114.7	-1099.7	-36.0	545.3
700	23	-1233.7	966.6	1301.8	-1097.7	-157.1	545.3
600	24	-1247.7	965.6	1114.7	-1098.7	-35.0	547.3
500	25	-1256.8	966.6	928.6	-1100.7	86.1	545.3
400	26	-1273.8	965.6	742.4	-1102.7	208.1	545.3
300	27	-1287.0	965.8	556.4	-1103.9	329.3	545.4
200	28	-1298.0	964.8	370.3	-1106.9	450.4	545.4
100	29	-1309.8	964.6	183.1	-1108.7	571.3	547.3
0	30	-1322.8	963.6	0.0	-1110.7	692.4	547.3

All readings are in milli-volts (mv) Wt Inc. is in lbf

Figure XI-4 Raw Balance Data

X I – 1 7

This page was intentionally left blank

NOTES

NOTES

NOTES
NOTES

LIST OF REFERENCES

R List of References

- 1) Equations, Tables, and Charts for Compressible Flow, NACA 1135, 1953.
- Ametec Engineering, Inc., 11820 Nor hup Way Suite 200, Bellevue, Wa 98005, (206)827-3304.
- Nicolai, L., <u>Design of Aircraft Vehicles</u>, United States Air Force Academy, Colorado Springs, Co, July 1972.
- Lesko, James S., <u>Reduction of Forces and Moments Taken on Internal Balances and</u> <u>the Effect of Axes Orientation</u>, Wright Air Development Center, Wright-Patterson AFB, Ohio, Technical Note 9, April 1952.
- 5) Stewert, V.R., Low Speed Wind Tunnel Test of Ground Proximity and Deck Edge Effects on a Lift Cruise Fan V/STOL Configuration, NASA-CR-152247, May 1979.
- Henderson, C., Clark, J., Walters, M., <u>V/STOL Aerodynamics, Stability &</u> <u>Control Manual</u>, Naval Air Development Center, Warminster, Pa., NADC-80017-60, January 1983.
- 7) Hoerner, Sighard, F., Fluid Dynamic Drag, Published by Author, 1965.
- 8) Rae, William, H., and Pope, Alan, <u>Low Speed Wind Tunnel Testing</u>; Wiley Interscience Publication, New York, New York, 1984.
- 9) Lan, Edward, C. and Roskam, J., <u>Airplane Aerodynamics and Performance</u>; Roskam Avaition and Engineering Corporation, Ottawa Kansas, 1981.
- Braslow, A.L., Knox, E.C., <u>Simplified Method Determination of Critical Height of</u> <u>Distributed Roughness Particles for Boundary Layer Transition at Mach Number 0</u> to <u>5</u>, NACA-TN-4363, Sept 1958.
- Taylor, Robert, <u>Boundary Layer Transition Strips in Atmospheric Tunnels</u>, Memo, March 7, 1967, NASA-Langley Research Center.
- 12) Hoak, P.E. et al., <u>USAF Stability and Control Datcom</u>, Air Force Flight Dynamics Laboratory, Wright-Patterson Air Force Base, Ohio, 1978.
- 13) Jobe, Charles E., <u>Prediction of Aerodynamic Drag</u>, AFWAL-TM-84-203, Flight Dynamics Laboratory, Wright -Patterson AFB, Ohio, July 1984.

List of References continued

- 14) Smith, C.W., <u>Aerospace Handbook</u>, General Dynamics, Convar Aerospace Division, Fort Worth, Tx, Rev B, March 1976.
- 15) Alexander, Michael G., Personal class notes, AEE 502 Aircraft Performance, 1988.
- 16) Roskam, Jan, <u>Airplane Flight Dynamics & Automatic Flight Controls</u>, Roskam Aviation & Engineering Corporation, Ottawa, Kansas, 1982.
- 17) Perkins & Hage, <u>Airplane Performance Stability and Control</u>, John Wiley & Sons Inc., Jan 1967.
- Simms, Kenneth L., <u>An Aerodynamic Investigation of a Forward Swept Wing</u>, Thesis, AFIT/GAE/AA/77D-14, Air Force Institute of Technology, Wright-Patterson AFB, Ohio.
- Erickson, G.E., Rogers, L.W., Schreiner, J.A., Lee, D.G., "Further Studies of Subsonic and Transonic Vortex Flow Aerodynamics of a Close-Coupled Forebody Slender Wing Fighter", AIAA paper AIAA-88-4369, Aug 1988.
- Alexander, Michael G., <u>Cavity/Separation Characteristics of an Axisymmetric Air</u> <u>-to-Air Missile from Mach 2.0 to Mach 5.0</u>, Wright Research and Development Center, Wright-Patterson AFB, Ohio, WRDC-TR-89-3041, April 1989.
- 21) Gieck, K., Engineering Formulas 5th Edition, McGraw- Hill Inc., 1986.
- 22) Bartel, H.W., McAvoy, J.M., <u>Cavity Oscillation in Cruise Missile Carrier</u> <u>Aircraft</u>, AFWAL-TR-81-3036, June 1981.
- Whitford, Ray, <u>Design for Air Combat</u>, Janes Publishing Company Inc., New York, New York, 1987.
- 24) Abbot and Doenhoff, <u>Theory of Wing Sections</u>, Dover Publications, Inc., NY, NY, 1958.
- 25) Braslow, A.L., Hicks, R.M., and Harris, R.V., <u>Use of Grit Type Boundary-Layer</u> <u>-Transition_Trips on Wind_Tunnel Models</u>, NASA-TN-D3579, Sept 1966.
- Crowder, J.P., <u>Fluorescent Mini-Tufts for Non-Intrusive Flow Visualization</u>, Douglas Aircraft Company, McDonnell Douglas Corporation, MDC J7374, 1980.

List_of_References concluded

- Shapiro, Ascher H., <u>The Dynamics and Thermodynamics of Compressible Fluid Flow</u>, volume 1, The Ronald Press Company, 1953.
- 28) Tighe, Thomas, Personal notes, 1989.
- 29) Anderson, J.D., Introduction to Flight, McGraw-Hill Book Company, 1978
- Strength Analysis 4 Percent Scale Model Aero/RCS Wind Tunnel Model", McDonnell Aircraft Company, Report # SA-151, 4 Aug 1981.
- 31) Peery, David J., Aircraft Structures, McGraw Hill Book Co, 1950.
- 32) MIL-Handbook 5
- 33) Cerrnica, John N., Strengths of Materials, Holt, Rinehart, & Winston. 1977
- 34) Nash, William A., <u>Strength of Materials</u> Schaums's Outline Series in Engineering, McGraw-Hill Book Company, 1972
- 35) Unknown; "Definition & Measurement of Net Lift and Drag", 707/CFM56 Aerodynamic Staff, June 1978
- Holman, J.P., <u>Experimental Methods for Engineers</u>, Second Edition, McGraw-Hill Book Company, 1966, 1971.
- 37) Volluz, R.J., <u>Handbook of Supersonic Aerodyanmics</u>, Section 20, Wind Tunnel Instrumentation and Operation, John Hopkins University Applied Physics Laboratory, Silver Springs, Maryland, NAVORD Report 1488 (Vol. 6), DTIC AD261682, January 1962.
- 38) Thelander, J.A.; <u>Aircraft Motion Analysis</u>, FDL-TDR-64-70, March 1965, DTIC AD617354, Air Force Flight Dynamics Laboratory, Wright-Patterson AFB, Ohio.

APPENDIX A

APPENDIX A

Figure A-1

Dynamic Pressure Determination (Standard Atmosphere)

				 		<u> </u>	Spee	d of	Absolute	Kinematic
Altitude	Temp	erature	Pres	sure	Den	sity	Sou	Ind	Viscosity	Viscosity
ft	F	R	psf	psi	lbm/ft^3	ro/roØ	ft/sec	mi/hr	lbm/ft-s	ft^2/sec
0	58.7	518.4	2116.0	14.700	0.002378	1.0000	1107.64	760.9	3.725x10^-7	1.566x10^-4
2000	51.5	511.2	1968.0	13.672	0.002242	0.9428	1100.07	755.7	3.685	1.644
4000	44.4	504.1	1828.0	12.699	0.002112	0.8881	1092.36	750.4	3.644	1.725
6000	37.3	497.0	1696.0	11.782	0.001988	0.8358	1084.64	745.1	3.602	1.812
8000	30.2	489.9	1572.0	10.921	0.001869	0.7859	1076.78	739.7	3.561x10^-7	1.905x10^-4
10000	23.0	482.7	1455.0	10.108	0.001756	0.7384	1068.92	734.3	3.519	2.004
12000	15.9	475.6	1346.0	9.351	0.001648	0.6931	1060.91		3.476	2.109
14000	8.8	468.5	1243.0	8.635	0.001545	0.6499	1053.05	723.4	3.434	2.223
16000	1.6	461.3	1146.0	7.961	0.001448	0.6088	1046.21	718.7	3.391x10^-7	2.342x10^-4
18000	-5.5	454.2	1056.0	7.336	0.001355	0.5698	1036.75	712.2	3.348	2.471
20000	-12.6	447.1	972.1	6.753	0.001267	0.5327	1028.60	706.6	3.305	2.608
22000	-19.8	439.9	893.3	6.206	0.001183	0.4974	1020.59	701.1	3.261	2.756
24000	-26.9	432.8	819.8	5.695	0.001103	0.4640	1012.15	695.3	3.217x10^-7	2.916x10^-4
26000	-34.0	425.7	751.2	5.219	0.001028	0.4323	1003.71	689.5	3.173	3.086
28000	-41.2	418.5	687.4	4.775	0.000957	0.4023	995.26	683.7	3.128	3.268
30000	-48.3	411.4	628.0	4.363	0.000889	0.3740	986.82	677.9	3.083	3.468
32000	-55.4	404.0	570.0	2 0 00	0.000000	0.0470	070.00	670.0	0.000+10^ 7	0.679v401.4
32000	-55.4 -62.5	404.3 397.2	572.9	3.980	0.000826	0.3472	978.23	672.0	3.038x10^-7	3.678x10^-4
36000	-62.5 -67.3	397.2 392.4	521.7 474.4	3.624 3.296	0.000765 0.000705	0.3218 0.2963	969.50 963.67	666.0 662.0	2.992	3.911 4.204
38000	-67.3	392.4 392.4	474.4	3.290 2.995	0.000705	0.2963	963.67 963.67	662.0	2.962	4.204
00000	07.0	002.4		2.330	0.000040	0.2032	300.07	002.0	2.502	4.020
40000	-67.3	392.4	391.9	2.723	0.000582	0.2448	963.67	662.0	2.962x10^-7	5.089x10^-4
42000	-67.3	392.4	356.2	2.475	0.000529	0.2225	963.67	662.0	2.962	5.599
44000	-67.3	392.4	323.7	2.249	0.000480	0.2021	963.67	662.0	2.962	6.161
46000	-67.3	392.4	294.2	2.044	0.000437	0.1838	963.67	662.0	2.962	6.778
48000	-67.3	392.4	267.4	1.858	0.000397	0.1670	963.67	662.0	2.962x10^-7	7.459x10^-4
50000	-67.3	392.4	243.1	1.689	0.000361	0.1518	963.67		2.962	8.206
52000	-67.3	392.4	220.9	1.535	0.000328	0.1379	963.67	662.0	2.952	9.028
54000	-67.3	392.4	200.8	1.395	0.000298	0.1254	963.67	662.0	2.962	9.933
50000	070	000 4	400.5	4 6 6 6			000.0-			
56000	-67.3	392.4	182.5	1.268	0.000271	0.1140	963.67		2.962x10^-7	10.93x10^-4
58000	-67.3	392.4	165.9	1.153	0.000246	0.1036	963.67	662.0	2.962	12.02
60000 62000	-67.3	392.4	150.8	1.048	0.000224	0.09415		662.0	2.962	13.23
62000	-67.3	392.4	137.1	0.952	0.000203	0.08557	963.67	662.0	2.962	14.56
64000	-67.3	392.4	124.6	0.866	0.000185	0.07777	963.67	662.0	2.962x10^-7	16.02x10^-4
65000	-67.3	392.4	118.7	0.825	0.000176	0.07414			2.962	16.8
70000	-67.3	392.4	93.53	0.650	0.000139	0.05839	963.67	662.0	2.962	21.33
75000	-67.3	392.4	73.66	0.512	0.000109	0.04599	963.67	662.0	2.962	27.09

Figure A-3 Standard Atmosphere

EQUATIONS, TABLES, AND CHARTS FOR COMPRESSIBLE FLOW

SUBSONIC FLOW

M <u>P</u>	-	$\frac{T}{T_1}$	ß	Pr.	$\frac{A}{A_{\bullet}}$	<u>v</u> a.	м	P P 1	1	T.	ß	<u>₹</u> ₽,	A.	<u>v</u> .
1.0000 01 9999 02 9997 03 9994 04 9999	1.0000 1.0000 .9996 .9996 .9992	1.0000 1.0000 .9999 .9998 .9998	1.0000 1.0000 .9998 .9995 .9992	0 .7000 -4 .2799 -4 .6296 -1 .1119 -1	57 8738 28 9121 19 3005 14.4815	0 .01095 .02191 .03286 .04381	0.50 .51 .52 .53 .54	0. 8430 . 8374 . 8317 . 8259 . 8201	0. 89.52 6809 8766 8723 8679	0 9524 9506 9187 9468 9449	0.8660 .8602 .5342 .8480 	0. 1475 1525 1574 1674	1 3399 1 3212 1 3034 1 2265 1 2703	0 534 544 554 564 575
.05 .9973 .06 .9975 .07 .9046 .05 .9055 .09 .9044	. 9958 . 9962 . 9976 . 9968 . 9968	- 9995 - 6993 - 9990 - 9987 - 9984	. 9987 . 9992 . 9975 . 9968 . 9959	. 1747 -1 . 2514 -1 . 3418 -1 . 4460 -7 . 5638 -7	11. 5914 9 4659 8. 2915 7. 2616 6 46??	.05476 06570 07664 08758 09851	55 56 57 58 59	8142 8062 8022 7962 7901	. 8634 . 6589 . 8544 . 8496 . 8451	. 9430 . 9410 . 9390 . 9370 . 9349	8352 8285 8216 8146 8074	1724 1774 1825 1875 1925	1 2550 1 2403 1 2961 1 2130 1 2003	. 585 . 595 . 605 . 613 . 624
10 9000 11 9016 12 9000 13 9883 14 9864	. 9950 . 9940 . 9928 . 9916 . 9903	. 9980 . 9976 . 9971 . 9966 . 9961	. 9950 . 9919 . 9928 . 9915 . 9902	. 6651 -1 . 83149 -1 . 9979 -1 . 1169 -1 . 1353 -1	5 R218 5 2992 4 8643 4 4969 4 1824	10944 12035 13126 14217 15306	. 60 . 61 . 62 . 63 . 64	. 7840 . 7778 . 7716 . 7654 . 7591	_ 8405 _ 8357 _ 8310 _ 8262 _ 8213	- 9328 - 9307 - 9286 - 9265 - 9243	- 8000 - 7924 - 7846 - 7766 - 7664	. 1976 2026 . 2076 . 2127 2177	1. 1 642 1 1767 1 1647 1 1552 1 1452	634 644 654 654 674
15 9444 16 9423 17 9400 18 9776 19 9751	9686 - 9673 - 9657 - 9640 - 9622	9955 9949 9943 9916 9928	- 9687 - 9671 - 9654 - 9637 - 9618	. 1550 -1 . 1760 -1 . 1953 -1 . 2217 -1 . 2464 -1	3.9103 3.6727 3.4635 3.2779 3.1123	16395 17482 18569 19654 20739	65 66 67 68 69	. 7528 . 7465 . 7401 . 7338 . 7274	.8164 .8115 .8066 .9016 .7966	9221 9199 9176 9153 9131	. 7599 . 7513 . 7424 . 7132 . 7238	2227 2276 2326 2375 2424	1. 1356 1. 1265 1. 1179 1. 1097 3. 1018	663 693 701 712
20 9725 21 9407 22 9668 23 9618 24 9407	. 9903 . 9793 . 9762 . 9740 . 9718	. 9921 . 9913 . 9904 . 9895 . 9886	9798 9777 9755 9752 9708	2723 -1 2994 -1 3276 -1 3569 -1 3874 -1	2 9575 2 8293 2 7076 2 5968 2 4956	21822 22904 23964 25063 26141	.70 .71 .72 .73 .74	. 7209 . 7145 . 7060 . 7016 . 6951	. 7916 . 7865 . 7814 . 7763 . 7712	. 9107 9084 . 9061 . 9037 . 9013	. 7141 7042 . 6910 . 6834 . 6726	24.73 2521 2569 2617 2664	1 0944 1 0873 1 0806 1 0742 1 0681	731 741 750 760
25 9575 26 9541 27 9506 28 9470 29 9433	9694 9670 9645 9619 9592	. 9477 9967 9856 . 9846 . 9535	. 9682 9656 . 9629 . 960. . 9570	4189	2 4027 2 3173 2 2385 2 1656 2 0979	27217 28291 29364 .30135 31564	.75 .76 .77 .78 .79	6886 6821 6756 6791 6625	. 7660 . 7609 . 7557 . 7505 . 7452	. 8964 . 8964 . 8910 . 8915 . 8490	6614 6199 63241 6254 6131	2711 2758 2804 2549 2894	1 0624 1 0570 1 0519 1 0471 1 0425	. 77H . 7H . 7H . 7H . 7H . 7H . 7H . 7H
30 9195 31 9455 32 9715 33 9274 14 9211	9564 9535 9506 9476 9445	.9823 .9811 .9799 .9787 .9774	. 9519 9507 . 9674 . 9640 . 9604	5919	2 0351 1 9765 1 9219 1 8707 1 8229	32572 33637 34701 35762 36822	. 80 . 81 . 82 . 83 . 54	. 6560 . 6495 . 6430 . 6365 . 6300	. 7400 . 7347 . 7295 . 7242 . 7189	8940 8940 8815 8789 8763	6000 5864 5724 5574 5426	2939 2943 3027 3069 3112	1.0382 1.0342 1.0305 1.0270 1.0237	825 834 843 852 852
35 9148 36 9141 17 9046 38 9052 39 904	9413 9440 9347 9313 9278	9761 9747 9731 9719 9705	. 9367 . 9530 . 9290 . 9250 . 9208	. 7879 -1 .8295 1 .8719 -1 .9149 -1 .9587 -1	1 7780 1 7358 1 6961 1 6587 1 6234	37879 38915 39958 41039 42067	. 85 . 86 . 87 . 88	. 6235 . 6170 . 6106 . 6041 . 5977	. 7136 . 7083 . 7030 . 6977 . 6924	8717 8711 9659 8632	5269 5103 4911 .4750 4560	3153 3195 3215 3275 3314	1 0207 1 0179 1 0153 1 0129 1 0108	. 870 . 671 . 891 . 897 . 903
40 .8956 41 .6907 42 .8857 43 .8907 44 .8755	9243 9207 9170 9132 9094	9690 .9675 .9659 .9643 .9527	9165 9121 9075 9028 8960	1003 - 1046 - 1094 - 1140 - 1187	1 5901 1 5587 1 5289 1 5007 1 4740	43177 44177 45218 46257 47293	90 91 91 92 93 94	. 591.) . 584.9 . 5785 . 5721 . 5658	. 0510 6817 6764 6711 . 6658	5906 5579 6552 8525 8498	4359 4146 3919 3676 3412	3352 3390 3427 3464 3500	1 0089 1 0071 1 0056 1 0043 1 0031	91 92 93 94
45 9703 46 8650 47 8596 48 8541 49 9486	. 9055 9016 8976 8935 8935	9611 9594 9597 9590 9512	. 8930 . 8879 . 8827 . 8773 . 8717	. 1234 1281 1329 . 1378 1426	1.4487 1.4246 1.4018 1.3801 1.3595	48326 49357 50385 51410 52433	. 95 . 96 . 97 . 98 . 99	. 5595 . 5532 . 5169 . 5407 . 5345	6604 6551 6496 6445 5392	. 8471 . 8444 . 8416 . 8389 . 8361	3122 2800 2131 1990 1411	.3534 .3569 .3602 .3635 .3667	1.0022 1.0014 1.0008 1.0003 1.0001	. 95 . 96 . 97 . 98

TABLE IL-SUPERSONIC FLOW

						<u> </u>	γ = 7/5								
M or Mi	p p	-	$\frac{T}{T_{i}}$	ß	9 P.	<u>A</u> <u>A</u>	<u>V</u> ••	ν	μ	Mı	pı Pi	2	Tı Ti	Р. Р.	р р.,
1 00	0 5283	6139	0 8333	0	0 3696	1 000	1 00000	0	90 01	1 000	1 000	1 000	1 000	1 000	10 520
1 01	5221	. 6267	. 6306	1418	3728	1 000	1 00831	04473	81 93	1 9901	1 023	1 017	1 007	1 000	5221
1.02	5160	6234	8278	2010	3756	1 000	1 01658	1257	78.64	9:05	1 047	1 033	1 013	1.000	5160
1 03	5099	6141	N250	2464	3787	1 001	1 024*1	2294	76.14	.9712	1 071	1 050	ι 020	1 000	. 5100
1.04	30.19	6129	. 8222	2857	3815	1 001	1 03300	. 3510	74 06	9620	1 095	1 067	1 026	9999	. 50.19
1.06	4979	8077	8193	. 3202	3842	1 002	1 04114	. 4874	72.25	.9531	1 120	1 044	1 033	99999	4900
1 06	4919	. 6024	8165	3316	3859	1 1 003	1 04925	6367	70 63	.9144	1.144	1, 101	່ເພື່ອ	9997	4930
1 07	4860	5972	8137	3807	3895	1 004	1 05731	7973	69 15	9360	1.169	1 118	1 046	9446	4861
1 08	4800	5920	8106	+079	3919	1 005	1.06533	9650	67 83	9277	1 194	1 135	1 052	9994	480.1
109	4742	5809	. 8080	43.37	3944	1 006	1 07331	1.148	66. 55	. 9196	1.219	1.152	1, 0.59	9992	4746
1, 10	. 4684	. 5617	. 9052	4383	3957	1 006	1 06124	1.336	65 38	.9118	1 245	1 169	1 065	. 9989	4689
1 11	. 4626	5766	8023	4818	3990	1 010	1 09913	1 532	64 28	9041	1 271	1 156	1 071	9986	4632
1 12	4568	5714	7994	. 5044	211	1 1 011	1 09699	1 735	63 23	8966	i 297	1 203	1 078	9942	4576
1, 13	4511	. 5663	7966	5262	+032	1 013	1 10479	1 944	62 25	NRV2	1 323	1 221	1 064	9978	4521
1.74	. 4455	5612	. 7937	5 74	4052	015	1 11256	2 160	61 31	8820	1 350	1 238	1 090	9973	4467
F 15	4398	. 5562	7904	5679	4072	1 017	1 12029	2, 381	60 41	8750	1 376	1 255	1 097	9967	. 4413
1 16	4343	\$511	7879	5879	4096	1 026	1 12797	2 60	59 55	8542	1 403	1. 272	1 103	9961	4360
1 17	4287	5461	7851	6074	4105	1 022	1 13561	2 139	58 73	6615	1 430	1 290	1 109	9453	4307
1 18	. 4232	. 5411	7822	6264	4125	1 025	1 14321	3 074	57 94	8549	1 458	1 307	1.115	9946	4255
1 19	. 4178	5361	7781	6451	4141	1 026	1.156.7	3 314	57 18	. 9485	1 485	1 324	1.122	9937	4204
1 20	4124	5311	. 7764	. 663.3	4157	1 010	1 15826	3 558	56 44	8422	1 513	1.342	1, 126	. 9928	. 4154
1 21	4070	5262	7735	6812	4171	1 033	1 16575	3,800	55.74	8360	1 541	1 359	1 134	9918	4104
1 22	. 4017	. 5213	. 7706	4989	4185	1.037	1 17319	4.067	55 05	8300	1 570	1 376	1 141	9907	4055
1 23	. 3954	5164	7677	7162	4198	1 040	1 18057	4 312	54.39	6241	1, 596	1.394	1 147	9895	4005
i. 24	. 3012	5115	7948	7332	4211	1 043	1.18792	4,569	53 75	81#3		1 411	1.153	1004	3045

 ν = Prandtl-Mayer angle μ = Mach angle

 $\beta = |\mathbf{M}^2 - 1|$

Figure A-4 Compressible Flow

Parameters (ref. 1)

A – 4

REPORT 1135---NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

SUPERSONIC FLOW-Continued

γ=7/5

N BJ	P Pi	<u>e</u> #1	T.	β	<u>4</u> Pi	<u>A</u> .	<u>V</u> ••	ν	μ	М1	P1 P1	<u>.</u>	$\frac{T_1}{T_2}$	<u>ף.</u> ףין	<u>рі</u> Ру
1.26 1.25 1.27 1.20 1.29	. 3861 . 3809 . 3759 . 3708 . 3656	. 5067 . 5019 . 4971 . 4923 . 4876	. 7619 . 7590 . 7561 . 7532 . 7503	. 7500 . 7866 . 7829 . 7990 . 8149	. 4221 4233 . 4244 . 4253 . 4262	1.047 1.050 1.054 1.058 1.058	1. 19523 1. 20249 1. 20972 1. 21690 1. 22404	4. 830 5. 093 5. 359 5. 627 5. 894	53.13 52.53 51.94 51.38 50.82	. 8126 . 6071 . 8016 . 7963 . 7911	1.656 1.686 1.715 1.745 1.775	1. 429 1. 446 1. 463 1. 481 1. 495	1. 159 1. 165 1. 172 1. 178 1. 185	. 9871 9857 9842 . 9842 . 9827 . 9811	. 3911 3865 3819 3774 3729
1.30 1.31 1.33 1.33 1.33	. 3609 . 3560 . 3512 . 3464 . 3417	. 4829 . 4762 . 4736 . 4690 . 4644	.7474 .7445 .7416 .7587 . 358	. 8307 . 8462 . 8516 . 8769 . 8920	. 4270 . 4277 . 4293 . 4299 . 4294	1.066 1.071 1.075 1.090 1.084	1. 23114 1. 23819 1. 24521 1. 25218 1. 25912	6. 170 6. 445 6. 721 7. 000 7. 240	50, 28 49, 76 49, 25 48, 75 48, 75	. 79/10 . 7909 . 7760 . 7712 . 7664	1 805 1, 835 1, 866 1, 897 1, 928	1. 516 1. 533 1. 551 1. 569 1. 565	1. 191 1 197 1. 204 1. 210 1. 216	. 9794 . 9776 . 9756 . 9758 . 9738 . 9718	. 3685 . 3642 . 3599 . 3557 . 3516
1.34 1.36 1.37 1.38 1.39	. 3370 . 3323 . 3277 . 3232 . 3187	. 4396 . 4553 . 4508 . 4463 . 4418	.7329 .7300 .7271 .7242 .7213	- 9069 - 9217 - 9064 - 9510 - 9655	. 4299 . 43 03 . 43 06 . 43 08 . 43 10	1.099 1.094 1.099 1.104 1.109	1. 26601 1. 27296 1. 27968 1. 29645 1. 29615 1. 29318	7.561 7.844 8.128 9.413 8.699	47. 79 47. 33 46. 88 45. 44 46. 01	.7618 .7572 .7527 .7483 .7440	1, 997 1, 991 2, 023 2, 055 2, 057	1.603 1.620 1.638 1.655 1.672	1, 223 1, 229 1, 235 1, 242 1, 248	. 9697 . 9653 . 9653 . 9630 . 9630	. 3475 . 3435 . 3395 . 3356 . 3317
1, 46 1, 61 1, 62 1, 63 1, 64	. 3142 . 3098 . 3055 . 3012 . 2999	. 4374 . 4330 . 4287 . 4244 . 4201	. 7184 . 7155 . 7135 . 7138 . 7097 . 7969	. 9798 . 9940 1.008 1.022 1.036	. 4311 . 4312 . 4312 . 4311 . 4311	1, 115 3, 120 1, 126 1, 132 1, 138	1. 29947 1. 30652 1. 31313 1. 31970 1. 32623	8, 987 9, 276 9, 565 9, 855 10, 146	45.58 45.17 44.77 44.37 43.98	. 7397 . 7355 . 7314 . 7274 . 7235	2 120 2 153 2 186 2 219 2 253	1 A9 0 1.707 1 724 1.742 1.759	1 255 1 261 1 268 1 274 1 274	. 9582 . 9557 . 9531 . 9504 . 9476	.3240 .3242 .3205 .3169 .3131
1, 45 3, 46 1, 47 1, 48 1, 49	2827 2886 2845 2804 2804 2764	. 4158 . 4116 . 4074 . 4032 . 3991	. 7040 . 7011 . 6982 . 6954 . 6925	1 050 1.064 1.077 1.091 1.105	. 4308 . 4306 . 4303 . 4299 . 4295	1, 144 1, 150 1, 156 1, 163 1, 169	1.33272 1.33917 1.34558 1.35195 1.35828	10 4.58 10 731 11 023 11 317 11 611	43 60 43 23 42 86 42 51 42 16	.7196 .7157 .7120 .7083 .7047	2 294 2 320 2 354 2 389 2 423	1 776 1 793 1 811 1 825 1 845	1, 287 1, 294 1, 306 1, 307 1, 314	9448 9420 9350 9360 9329	. 3096 . 3063 . 3029 . 2996 . 2962
1, 50 1, 31 1, 62 1, 53 1, 54	. 2724 2685 . 2646 . 2608 . 2570	. 3950 . 3909 . 3869 . 3829 . 3789	. 6897 . 6868 . 6840 . 6811 . 6783	1, 118 1, 131 1, 145 1, 156 1, 156 1, 171	. 4290 . 4265 . 4279 . 4273 . 4266	1.176 1.183 1.190 1.197 1.204	1, 36458 1, 37063 1, 37705 1, 38322 1, 38936	11.905 12.200 12.495 12.790 13.086	41. 81 41 47 41. 14 40. 81 40. 49	. 7011 . 6976 . 6941 . 6907 . 6874	2 458 2 493 2 529 2 564 2 600	1 862 1.879 1.896 1.913 1.930	1 320 1 327 1 334 1 340 1 347	929N 9266 9233 9200 9166	2930 2894 2866 2835 2835
1, 55 3 56 3, 57 3, 56 1, 30	. 2533 . 2496 . 2459 . 2459 . 2423 . 2388	. 3750 . 3710 . 3672 . 3633 . 3595	. 0754 . 6726 . 6898 . 6870 . 6642	1 184 1 197 1 210 1 223 1 236	4259 4252 4243 4215 4225	1. 212 1. 219 1. 227 1. 234 1. 242	1. 39546 1. 40152 1. 40755 1. 41353 1. 41945	13 381 13.677 13.913 14.269 14.564	40 18 39.87 39 56 39.27 38.97	. 6841 . 6809 . 6777 . 6746 . 6715	2 636 2 673 2 709 2 746 2 783	1,947 1,961 1,961 1,966 1,966 2,015	1, 354 1, 361 1, 367 1, 374 1, 381	9132 9097 9061 9026 8989	. 2773 2744 2714 2685 . 2656
1.60 1.61 1.62 1.63 1.64	. 2253 . 2318 . 2284 . 2250 . 2217	. 3657 . 3620 . 3483 . 3446 . 3409	. 6614 . 6586 . 6556 . 6530 . 6502	1 249 1 252 1 275 1 257 1 267 1 300	4216 4205 4196 4185 4174	1.250 1.258 1.267 1.267 1.275 1.275	1. 42539 1. 43127 1. 43710 1. 44290 1. 44866	14 861 15 156 15 452 15 747 16 013	38.68 38.40 38.12 37.84 37.57	. 6684 . 6635 . 6625 . 6396 . 6368	2.820 2.857 2.995 2.933 2.971	2 032 2 049 2 055 2 055 2 052 2 059	1, 388 3, 395 3, 402 5, 409 1, 416	. 8952 8915 8817 8838 8799	2628 2600 2511 2546 2519
1,65 1,65 3,67 3,66 1,69	2184 2151 2119 2067	. 8373 . 8337 . 3302 . 3296 . 3232	. 6475 . 6447 . 6419 . 6392 . 6364	1.312 1325 1337 1.350 1.362	. 4162 . 4150 . 4138 . 4125 . 4112	3 292 1,303 1,310 1,319 1,329	1 45439 1 46005 1 46573 1 47135 1 47668	16, 3398 16, 623 16, 925 17, 222 17, 516	37 31 37 04 36 78 36 53 36 28	. 6540 . 6512 . 6485 . 6458 . 6431	3.010 3.045 3.045 3.087 3.126 3.165	2 145 2 132 2 148 2 165 2 181	1 423 1 430 1 437 1 444 1 451	8760 8720 8680 8640 8595	2493 2467 2442 2417 2792
1.70 1.71 1.72 1.73 1.74	2026 1996 1964 1964 1967	. 3197 . 3163 . 3129 . 3095 . 3062	. 6317 . 6310 . 6283 . 6256 . 6229	1.375 1.387 1.399 1.412 1.424	. 4098 . 4045 . 4071 . 4056 . 4041	1 358 1 347 1 357 1 367 1 376	E 48247 1.48798 1.49345 1.49999 1.50429	17,810 18,103 18,307 18,649 18,948	36 03 35 79 35 55 35 31 35 08	. 6405 . 6380 . 6355 . 6330 . 6305	3 205 3 245 3 285 3 325 3 366	2.19 2.214 2.230 2.247 2.247 2.263	1, 458 1, 466 1, 473 1, 480 1, 487	. 8557 . 8516 . 6474 . 8431 . 8389	. 2364 . 2344 . 2320 . 2206 . 2773
3.75 2.76 1.77 1.78 1.79	1878 1850 1822 1794 1767	. 3029 2996 2964 2831 3900	. 6202 . 6175 . 6146 . 6121 . 6095	1, 436 1, 448 1, 460 1, 473 1, 485	4026 4011 3996 3990 3990 3990	F 3NG 1,397 1,407 1,418 1,428	1 50956 1 51499 1 52029 1 52555 1 53078	10 273 19 565 19 855 20 146 20 436	34 83 34 62 34,40 34,18 33,96	. 6281 . 6257 . 6234 . 6210 . 6148	3 406 3 447 3 488 3 530 3 571	2 279 2 295 2 311 2 327 2 343	1 495 1 502 1 509 1 517 1 524	. 8346 8302 . 8259 . 8215 . 8171	2251 2725 2714 2154 2154
1.80 1.81 1.82 1.83 1.84	. 1740 . 1714 . 1688 1442 . 1637	2868 2837 2806 2776 27745	6058 6041 6015 .5989 .5963	1 497 1 509 1 521 1 833 1 845	. 3947 . 3931 . 3914 . 3897 . 3879	1, 439 1, 450 3, 461 3, 472 1, 484	1.53598 1.54114 1.54628 1.55636 1.55642	20 725 21 014 21 302 21 590 21 877	33 75 33 54 33 33 33 12 32 92	.6165 .6143 .6121 .6099 .6078	3 613 3 655 3 698 3 740 3 783	2 3.59 2 375 2 391 2 407 2 422	1 532 1 539 1 547 1 554 1 554 1 562	.8127 NON2 .803H .7993 .7948	2142 2121 2100 2000 2000
1.85 1.95 1.87 1.87 1.99	. 1612 . 1587 . 1563 . 1539 . 1516	. 2715 . 2664 . 2656 . 2627 . 2598	. 5936 . 8910 . 5854 . 6859 . 6633	1. 556 1. 568 1. 580 1. 592 1. 604	. 3862 . 3844 . 3826 . 3808 . 8790	1, 495 1, 507 1, 619 1, 631 1, 543	1.56145 1.56644 1.57140 1.57633 1.58123	22 163 22 449 22 735 23 019 23 363	32 72 32 52 32 33 32 13 31 94	.6057 .6036 .6016 .5996 .5976	3 826 3 870 3 913 3 957 4 001	2 438 2 454 2 469 2 485 2 500	1 569 3 577 1 585 1 592 1 600	7902 .7857 .7811 .7765 .7720	. 2040 . 2020 . 2001 . 1982 . 1963
), 90 1, 91 1, 92 1, 93 1, 94	. 1492 . 1470 . 1447 . 3425 . 1403	. 2570 . 2542 . 2514 . 2496 . 2459	. 8807 . 8782 . 5756 . 5731 . 8705	1.616 1.627 1.639 1.651 1.662	. 3771 . 3753 . 3734 . 3715 . 3696	1 555 1 556 1 560 1 590 1 605	1.58609 1.59092 1.59572 1.60549 1.60523	23, 546 23, 149 24, 151 24, 432 24, 712	31 76 31 57 31 39 31 21 31 03	. 5956 . 5937 . 5918 . 5899 . 5890 . 5880	4 045 4 049 4 134 4 179 4 224	2 516 2 531 2 546 2 552 2 577	* *96 1 616 1 624 1 631 1 639	7674 7627 7581 7535 7488	. 1943 1927 . 1909 . 1991 . 1871
1.95 1.95 1.97 1.97 1.98	. 1381 . 1360 . 1339 . 1318 . 1296	. 9432 . 2405 . 2378 . 2352 . 2352 . 2326	- 3690 - 5655 - 8630 - 8630 - 8605 - 8680	1 674 1 696 1 697 1 709 1 720	. 3677 . 3657 . 3638 . 3618 . 3598	1 619 1 633 1 646 1 640 1 674	1. 60990 1. 61460 1. 61925 1. 62344 1. 62844	24.992 25.771 25.549 25.827 26.104	30 K5 30 6K 30 51 30.33 30.17	. 5862 . 5844 . 5826 . 5808 . 5791	6, 270 6, 315 6, 361 6, 407 6, 453	2.592 2.607 2.622 2.637 2.652	1.647 1.655 1.663 1.671 1.679	7442 7395 7349 7362 7255	1856 1839 1872 1872 1809 1789
100 101 102 103 104	. 1278 . 1258 . 1209 . 1220 . 1220	. 2300 . 2275 . 2250 . 2225 . 2200	. 5556 . 5531 . 8605 . 8482 . 8458	1.732 1.744 1.755 1.767 1.778	. 3579 . 3559 . 3539 . 3539 . 3518 . 3498	1 688 1.702 1.716 1.730 1.745	1 63299 1.63751 1.64201 1.64447 1.65080	26, 380 26, 655 26, 929 27, 203 27, 476	30.00 29.64 29.67 29.51 29.35	. 5774 . 6757 . 5740 . 6723 . 5707	4 500 4 547 4 594 4 641 4 689	2 667 2 667 2 696 2 711 2 725	1 68H 1 89G 1 704 1 712 1 720	. 7209 . 7162 . 7115 . 7089 . 7022	1773 1757 1757 1726 1726
2.05 1.05 1.07 1.08 1.09	. 11 82 . 1164 . 1146 . 11 38 . 11 38 . 111	. 2176 . 2152 . 2128 . 2104 . 2081	. 8433 . 8409 . 8385 . 6361 . 4337	1 790 1.801 1.812 1.824 1.835	. 3478 . 3458 . 3437 . 3417 . 3396	1.780 1.775 1.790 1.80% 1.821	1. 65530 1. 65967 1. 66402 1. 66833 1. 67262	27. 748 28. 020 38. 290 28. 640 28. 829	29, 20 29, 04 28, 89 28, 74 28, 59	. 5691 . 5675 . 5659 . 5643 . 5628	4 736 4 784 4 832 4 881 4 929	2.740 2.755 2.769 2.783 2.795	1, 729 1, 737 1, 745 1, 754 1, 762	. 6975 . 6928 . 6822 . 6835 . 6789	. 1695 . 1890 . 1665 . 1651 . 1636
2 10 2 11 2 12 1 13 2 14	1094 1077 1080 1963 1987	. 2066 . 2035 . 2013 . 1990 . 1998	. 4313 . 5290 . 5206 . 4943 . 8219	1.847 1.654 1.859 1.861 1.861 1.862	. 2376 . 3955 . 2334 . 2314 . 2314	1.837 1.863 1.809 1.809 1.805 1.805	1.67687 1.66110 1.66530 1.66947 1.66947	29 097 29 364 29 631 29 697 30 161	28.44 28.29 28.14 28.00 37.86	. 5613 . 5598 . 5563 . 4465 . 5584	4.978 5.027 5.077 5.126 5.126 5.126	2. 812 2. 825 2. 840 2. 840 2. 854 2. 854	1, 779 1, 779 1, 787 1, 795 1, 795	. 6742 . 0096 . 0649 . 0803 . 6867	.1622 .1604 .1594 .1380 .1387

Figure A-4 continued

EQUATIONS, TABLES, AND CHARTS FOR COMPRESSIBLE FLOW

BUPERSONIC FLOW

7=7/5

X R X	<u>p</u> Pi	<u>+</u>	$\frac{T}{T_1}$	β	<u>4</u> p:	$\frac{A}{A_1}$	<u>v</u> .	ν	μ	м,	P 1 P 1	<u>.</u>	<u>Τι</u> Τι	P's P'i	$\frac{\mathbf{p}_1}{\mathbf{p}_{i_1}}$
2 15 2 16 2 17 2 18 2 19	. 1011 . 9956 -1 . 9852 -1 . 9549 -1 . 9549 -1	. 1946 . 1925 . 1903 . 1852 . 1861	. 5195 . 5173 . 5150 . 5127 . 5104	1.903 1.915 1.926 1.937 1.948	.3272 .3252 .3231 .3210 .3189	1 919 1 935 1 953 1 953 1 970 1 987	1 69774 1 70183 1 70589 1 70992 1 71393	30. 425 30. 689 30. 951 31. 212 31. 473	27 72 27 58 27 44 27 30 27, 17	. 5540 . 5525 . 5511 . 5498 . 5484	5. 226 5. 277 5. 327 5. 378 5. 429	2.882 2.896 2.910 2.924 2.936	1 813 1 822 1 831 1 839 1 848	. 6511 . 6464 . 6419 . 6373 . 6377	1553 1540 1527 1514 1592
2 20 2 21 2 22 2 23 2 23	. 93.52 -6 . 9207 -6 . 9054 -6 . 8923 -1 . 8785 -1	. 1841 . 1820 . 1800 . 1780 . 1780	. 5081 . 5059 . 5036 . 5014 . 4991	1.960 1.971 1.982 1.993 2.004	. 3169 . 3148 . 3127 . 3105 . 3065	2.005 3.023 2.041 2.059 2.078	1. 71791 1. 74187 1. 72579 1. 72970 1. 73357	31 732 31 991 32 250 32 507 32 763	27 04 28.90 28.77 26.64 26.51	. 5471 5467 5444 5431 5418	5.480 5.531 5.553 5.636 5.687	2 951 2 965 2 978 2 992 3 005	1.857 1.806 1.875 1.883 1.892	. 6281 . 6235 . 6191 . 6145 . 6100	1489 1476 1464 1452 1440
1 25 1 28 1 77 1 26 1 29	. 8548	. 1740 . 1721 . 1702 . 1663 . 1664	. 4959 . 6947 . 4925 . 4923 . 4881	2.016 2.027 2.038 2.049 2.060	. 2065 3044 3023 2003 2582	2.096 2.115 2.134 2.154 2.154	1. 73742 1. 74125 1. 74504 1. 74882 1. 75257	33.018 33.273 33.527 33.780 34.032	26.39 26 26 26.14 26 01 25 89	. 6406 . 5393 . 5381 . 5368 . 5356	5.740 5.792 5.845 6.998 5.951	3.019 3.032 3.045 3.056 3.056 3.071	1 901 1 910 1 919 1 929 1 938	. 6055 . 6011 . 5966 . 5921 . 5877	. 1428 . 1417 . 1405 . 1391 . 1392
2 30 2 31 2 32 7 33 2 34	. 7997 -1 . 7873 -1 . 7751 -1 . 7631 -1 . 7512 -1	. 1646 . 1628 . 1609 . 1592 . 1574	. 4859 . 4837 . 4816 . 4794 . 4773	2.071 2.062 2.093 2.104 2.116	. 2961 . 2941 . 2920 . 2900 . 2979	2 193 2 213 2 233 2 254 2 274	1.75629 1.75699 1.76366 1.76731 1.77093	34.283 34.533 34.783 35.031 35.279	25. 77 25. 65 25. 53 25. 42 25. 42 25. 30	. 5344 . 5332 . 5321 . 5309 . 5297	6.005 6.059 6.113 6.167 6.222	3 065 3 098 3 110 3 123 3 116	1 947 1 956 1 965 1 974 1 994	5833 5789 5765 5702 5656	1371 1340 149 149 1325
2, 35 2, 36 2, 37 2, 38 2, 39	.7396 -1 .7281 -1 .7164 -1 .7067 -1 .6948 -1	. 1556 . 1539 . 1522 . 1505 . 1488	. 47.52 . 4731 . 4704 . 4688 . 4668	2, 127 2, 138 2, 149 2, 160 2, 171	. 2859 . 2839 . 2818 	2 295 2 316 2 338 2 359 2 381	1. 77453 1. 77611 1. 78166 1. 75519 1. 78969	35 526 35.771 36 017 36.261 36.504	25. 18 25 07 24. 96 24. 85 24. 73	. 5286 . 5275 . 5264 . 5253 . 5242	6, 276 6, 331 6, 386 6, 442 6, 497	3 149 3 142 3 174 3 187 3 199	1.9903 2.002 2.012 2.021 2.021 2.031	5615 5572 5529 5486 5444	. 1317 . 1307 . 1297 . 1296 . 1276
2 40 2 41 2 42 2 43 2 43	.6840 -4 .6734 -1 .6530 -1 .6527 -4 .6426 -1	. 1472 . 1456 . 1439 . 1424 . 1408	. 4647 . 4628 . 4608 . 4585 . 4565	2 182 2 193 2 204 2 215 2 226	. 2758 . 2738 . 2718 . 2606 . 2678	2 403 2 425 2 448 2 471 2 494	1. 79218 1. 79563 1. 79907 1. 80248 1. 80587	36.746 36.988 37.229 37.469 37.708	24 62 24 52 24 41 24 30 24 19	. 5231 . 5221 . 5210 . 5200 . 5189	6.553 6.609 6.666 6.722 6.779	3. 212 3. 224 3. 237 3. 249 3. 261	2 040 2 050 2 059 2 069 2 079	. 5401 . 5359 . 5317 . 5276 . 5234	. 1256 1257 . 1247 1217 1225
2 45 2 46 2 47 2 48 2 49	.6327 -1 .6229 -1 .6133 -4 .6038 -4 .5945 -3	1392 1377 1362 1346 1332	. 4544 . 4524 . 4504 . 4484 . 4464	2, 237 2, 248 2, 259 2, 259 2, 259 2, 259	. 2658 . 2639 . 2619 . 2599 . 2580	2 540 2 564 2 564 2 588 2 612	1 80924 3 81258 1 61591 1 81921 1 82249	37 946 38 183 38 420 34 655 38 890	24.09 23.99 23.88 23.78 23.68	.5179 .5169 .5159 .5149 .5140	6, 835 6, 894 6, 951 7, 009 7, 067	3. 273 3. 285 3. 296 3. 310 3. 321	2 098 2 098 2 106 2 118 2 128	. 5193 . 5152 . 5111 . 8071 . 5030	. 1218 1209 . 1280 . 1191 . 1191 . 1191 . 1191
2.50 2.51 2.52 2.53 2.54	. 5853 -1 . 5762 -1 . 5674 -1 . 5596 -1 . 5596 -1	. 1317 . 1302 . 1298 . 1274 . 1280	. 4444 . 4425 . 4405 4386 4366	2 291 2 302 2 313 2 324 2 335	. 2561 . 2541 . 2522 . 2503 . 2484	2. 637 2. 661 2. 686 2. 712 2. 737	1, 82574 1, 82598 1, 83219 1, 83538 1, 83855	39 124 39 357 39 589 39 820 40 050	23, 58 23, 48 23, 38 23, 28 23, 28 23, 18	.5130 .5120 .5111 .5102 .5092	7, 125 7, 183 7, 242 7, 301 7, 360	3 333 3 345 3 357 3 369 3 369 3 380	2 138 2 147 2 157 2 167 2 177	. 4990 . 4950 . 4911 . 4871 . 4832	. 1173 . 1164 . 1155 . 1147 . 1138
2 55 2 55 2 57 2 58 2 59	5415 -+ 5132 -+ 5250 -1 5169 -1 5090 -1	1246 1232 1218 1205 1192	. 4347 . 4325 . 4309 . 4299 . 4271	2 346 2 357 2 367 2 379 2 389	2463 2446 2427 2409 2390	2 76: 2 799 2 815 2 842 2 869	1 84170 1.84483 1 84794 1 85103 1 85410	40 290 40 509 40 736 40 963 41 189	23 09 22 99 22 91 22 81 22 71	. 5063 . 5074 . 5065 . 5036 . 5047	7. 420 7. 679 7. 539 7. 599 7. 659	3.392 3.403 3.415 3.426 3.438	2 187 2 198 2 208 2 218 2 228	. 4793 . 4754 . 4715 . 4677 . 4639	1130 1122 1113 1105 1097
1 60 2 61 2 63 2 63 2 64	5012	1179 1166 1153 1140 1125	. 4252 . 4233 . 4214 . 4196 . 4177	2 400 2.411 2.422 2.432 2.432 2.432	. 2171 2353 2335 2317 2295	2, 896 2, 923 2, 951 2, 979 3, 007	1 85714 1 86017 1 86318 1 86616 1 86616	41, 415 41, 639 41, 863 42, 096 42, 307	22 62 22 53 22 44 22 35 77 25	. 5039 . 5030 . 5022 . 5013 . 5005	7 720 7 781 7 903 7 965	3 449 3.460 3 471 3 483 3 494	2. 238 2. 249 2. 259 2. 269 2. 269 2. 280	. 4601 . 4564 . 4526 . 4489 . 4472	. 1040 - 1061 - 1074 - 1046 - 1058
2.66 1.66 2.67 2.65 2.69	4639 -4 4566 -1 4498 -4 4429 -1 4362 -1	1115 1103 1091 1079 1067	4159 4141 4122 4104 40N5	2 454 2 465 2 476 2 486 2 497	2280 2262 2245 2227 2209	3 036 3 065 3 094 3 123 3 133	1 87295 1 87501 3 8775/2 1 880%1 1 88356	42.529 42.749 42.968 43.187 43.405	22. 17 22. 08 22. 00 21. 91 21. 82	. 4995 . 4988 . 4980 . 4972 4954	5.036 8.068 8.150 8.213 8.275	3, 505 3, 516 3, 527 3, 537 3, 548	2 290 2 301 2 311 2 322 2 332	. 4416 . 4379 . 4343 . 4307 . 4307	. 1051 . 1063 . 1036 . 1026 . 1021
1 70 1 71 2 73 1 73 2 74	4295 -1 4229 -1 4165 -1 4102 -1 4039 -1	1046 1044 1033 1022 1010	4068 . 4051 . 4033 . 4015 . 3996	2, 508 2, 519 2, 530 2, 540 2, 551	2192 2174 2157 2140 2123	3 183 3 213 3. 244 3. 275 3. 306	1 88653 1 88936 1 89218 1 89497 1 89497	43 621 43 838 44 053 44 267 44 481	21 74 21.65 21 57 21.49 21.41	4956 4949 4941 4933 4925	8, 338 8, 401 8, 465 8, 528 5, 592	3.559 3.570 3.590 3.591 3.601	2, 343 2, 354 2, 364 2, 375 2, 386	. 4236 . 4201 . 4166 . 4131 . 4097	- 1014 1007 9005 -1 9429 -1 9450 -1
2.75 2.76 2.77 1.78 2.79	. 3978 -1 . 3917 -1 . 3854 -1 . 3799 -1 . 3742 -1	9994 -1 9885 -1 9778 -1 9671 -1 9566 -1	. 3989 . 3963 . 3945 . 3928 . 3928 . 3971	2, 562 2, 572 2, 583 2, 594 2, 605	. 2106 . 2089 2072 2055 . 2039	3.338 3.370 3.402 3.434 3.467	1 90051 1 90725 1 90598 1 90568 1 91137	44 694 44 906 45 117 45 327 45 537	21 32 21 24 21 16 21 08 21 00	. 4918 . 4911 . 4903 . 4896 . 4889	8. 656 9. 721 8. 755 8. 850 8. 915	3 612 3 622 3 633 3 643 3 653	2 397 2 407 2 418 2 429 2 440	4062 4028 3994 3961 3925	. 0792 -1 . 9724 -1 . 9454 9591 -1 . 9526 -1
2 80 2 81 2 82 2 83 2 84	. 369.5 -4 3629 -4 . 3574 -1 . 3520 -1 . 3407 -1	9443 -1 9340 -1 9259 -1 9154 -1 9059 -1	3814 3877 3860 3844 3827	2 615 2 626 2 637 2 647 2 658	2//22 _ 2006 _ 1940 1973 1957	3 500 3 534 3 567 3 601 3 636	1 91404 1 91609 1 91631 1 92195 1 92455	45 746 45 954 46 161 46 368 46 573	20 92 20 85 20 77 20 69 20 62	488.2 487.5 4868 4861 4854	5 980 9 945 9 111 9 177 9 263	3 664 3 674 3 684 3 694 3 704	2 451 2 462 2 473 2 454 2 496	38995 3862 3829 3797 3765	946.) -1 9397 -1 9334 -1 9271 -1 9209 -1
1 85 2 86 3 87 2 88 2 89	3415 -1 3363 -1 3312 -1 2263 -1 3213 -1	8462 -1 8865 -1 8764 -1 8675 -1 8581 -1	. 3810 . 3794 . 3777 3761 3761 3745	2 669 2 679 2 640 2 701 2 711	1941 1926 1910 1854 1879	3 671 3 706 3 741 3 717 3 813	1 92714 1 92970 1 93225 1 93479 1 93731	46 778 46 982 47 185 47 388 47 388 47 589	20 54 20 47 20 39 20 32 20 24	4847 4840 4833 4827 4820	9 310 9 376 9 443 9 510 9 577	3 714 3 724 3 734 3 743 3 743 3 753	2 507 2 518 2 529 2 540 2 552	\$733 3701 3670 \$639 3608	9147 -1 VG90 -2 . 9026 -3 . N906 -1 . 8906 -1
2 80 2 91 2 92 2 98 2 94	3165 -1 3118 -7 3071 -1 3025 -1 2080 -1	.8489 -1 .8398 -1 .8307 -1 .8218 -1 .8218 -1 .8130 -1	. 3729 . 3712 . 3696 . 3691 . 365	2 722 2 733 2 743 2 754 2 765	1863 1868 1833 1818 1803	3 850 3 987 3 924 3 966 3 999	1 93541 1 94230 1 94477 1 94722 1 94555	47 790 47 990 45 190 48 388 48 584	20 17 20 10 20 03 19 96 19 89	4914 4807 4801 4795 4798	2 78:	3 763 5 773 3 782 3 792 3 801	2 563 2 575 2 596 2 598 2 609	3577 3547 3517 3487 3457	RF48 -1 . 8790 -1 . 8732 -1 . 8675 -1 . 8519 -1
2 96 2 96 2 97 1 98 1 99	2935 -+ 2891 -+ 2846 +1 2805 -1 2764 -+	8043 -1 7957 -1 7872 -1 7784 -1 7705 -1	. 3649 . 3633 . 3618 . 3602 . 3687	2 175 2 786 2 797 2 807 2 818	1788 1773 1758 1744 1729	4 038 4 076 4 115 4 155 4 194	1 95208 1 95449 1 95668 1 95658 1 95625 1 96162	48 783 48 980 49 175 49 370 49 564	19 81 19 75 19 68 19 61 19 54	4752 4776 4770 4764 4758	9 986 10 06 10 12 10 19 10 25	3 811 3 820 3 829 3 839 3 839 3 845	2 621 2 632 2 644 2 656 2 667	3428 3394 3369 3340 3312	. 8563 -1 . 8507 -1 . 8453 -1 . 8309 -1 . 5345 -1
1.00 1.01 1.02 1.00 1.00	3772 -1 38872 -1 3842 -1 3808 -1 3808 -1	7633	- 3471 - 3446 - 3446 - 3441 - 3426 - 3411	2 838 2 859 2 850 2 860 2 871	1715 1701 1687 1673 1639	4 225 4 275 4 316 4 357 4 309	1 96396 3 96629 3 96661 1 970v1 1 97219	49 757 99 950 50 142 50 333 40 823	19 47 19 40 19 34 19 27 19 20	47.52 4746 4740 4734 4739	10 33 10 40 10 47 10 54 10 62	3 857 3 866 3 875 3 884 3 893	2.679 2.691 2.708 2.714 2.736	2383 2365 2277 2300 3177	. 8201 -4 . 8226 -1 . 81N6 -1 . 8134 -1 N053 -1

Figure A-4 continued

REPORT 1135-NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

SUPERSONIC FLOW

М 5 М	P Pi	<u>+</u> #1	† Ť .	ß	4 9,	<u>A</u> .	<u>V</u> ••	ν	μ	М,	Pi Pi	<u> </u>	$\frac{T_1}{T_1}$	<u>Ріт</u> Рі	<u>p</u> Py
3 05 3 05 3 07 3 08 3 09	2526 2489 -1 2452 -1 2416 -1 2380 -1	. 7226 -1 7149 -1 7074 -1 6999 -1 . 6925 -1	2498 3481 3466 3452 3437	2 181 2 192 2 903 2 913 2 913 2 924	1645 1631 1618 1604 1591	4 441 4 483 4 526 4 570 4 613	1 97547 1 97772 1 97997 1 98219 1 9841	50 713 50 902 51 000 51 277 51 464	19 14 19 07 19 01 18 95 18 88	4723 4717 4712 4706 4701	10 49 10 76 10 81 10 90 10 97	3 902 3 911 3 920 3 929 3 938	2 738 2 750 2 762 2 774 2 786	3145 3118 3091 3065 3038	8/172 7082 7932 7942 7943
3 10 3 11 3 12 3 13 3 14	Z345 -4 Z310 -4 Z276 -1 Z243 -1 Z243 -1 Z210 -1	8852 -1 6779 -1 6708 -1 8637 -1 6869 -1	3472 3405 2393 3379 2365	2 954 2 945 2 955 2 965 2 966 2 977	1577 - 1564 - 1551 - 1538 - 1525	4 657 4 702 4 747 4 792 4 838	1 98461 1 98879 1 99879 1 99313 1 99527	51 650 51 835 52 020 52 203 52 386	18 82 18 76 18 69 18 63 18 57	4695 4690 - 4685 4679 4674	11 05 11 12 11 19 11 26 11 34	3 947 3 955 3 964 3 973 3 961	2 799 2 811 2 823 2 835 2 848	3012 2986 2960 2915 2910	7785 7737 7640 7642 7595
3 15 3 16 3 17 3 18 3 19	2177 -1 2146 -1 2114 -4 2083 -1 2083 -1	. 6499 -1 6430 -1 6163 -7 6296 -7 . 6231 -1	3351 3137 3323 3309 3295	2 987 2 998 3 008 3 019 3.029	. 1512 . 1500 . 1487 . 1487 . 1475 . 1462	4 884 4 930 4 977 5 025 5 073	1 99740 1 99952 2 00162 2 00372 2 00379	52 569 52 751 52 931 51 112 53 292	18 51 18 45 18 39 18 33 18 27	4664 4664 4659 4654 4648	11 41 17 45 11 55 11 63 11 71	3 990 3 998 4 006 4 015 4 023	2 680 2 872 2 885 2 897 2 909	2885 2860 2835 2841 2796	7549 7503 7457 7412 7347
3 20 3 21 3 22 3 25 3 24	2023 -1 1993 -1 1964 -4 1936 -4 1936 -1	6165 -1 6101 -1 6037 -1 5975 -1 5912 -1	328) 3267 3253 3240 3226	3 040 3 050 3 051 3 071 3 082	1450 1436 1426 1426 1414 1402	5 121 5 170 5 219 5 268 5 319	2 00786 2 00991 2 01195 2 01398 2 01398 2 01599	53 470 53 649 53 826 54 003 54 179	18 21 18 15 18 09 18 03 17 98	4643 4639 4634 4629 4624	11 78 11 85 13 93 12 01 12 08	4 031 4 040 6 048 4 056 4 056	2 922 2 935 2 947 2 960 2 972	2762 2738 2715 2691 2668	7323 1279 7235 192 192 192
1.25 3.25 3.27 3.28 1.28	18901 18511 19261 17991 17731	. 5851 -1 . 6790 -1 . 5730 -1 . 5671 -1 . 5612 -1	3213 3199 3186 3173 3160	3.092 3.103 3.113 3.124 3.134	1390 1378 1367 1355 1344	5 309 5 420 5 472 5 523 5 576	2 01799 2 01995 2 02196 2 02392 2 02392 2 02587	54 335 54 529 54 703 54 877 55 050	17 92 17 86 17 81 17 75 17 70	. 4619 . 4614 . 4614 . 4605 . 4605 . 4600	12 16 12 23 12 31 12 36 12 46	4 072 4 060 4 066 4 096 4 104	2 985 2 998 3 011 3 023 3.036	2545 2622 2577 2555	7102 7005 7023 6952 6741
3.30 3.31 3.32 3.33 3.34	1748	6554 -1 ,5497 -1 ,5440 -1 ,5384 -1 ,5329 -1	3147 3134 3121 3109 3095	3, 145 3, 155 3, 166 3, 166 3, 176 3, 187	1332 1321 1310 1299 1288	5, 629 5, 682 5, 736 5, 790 5, 845	2.02781 2.02974 2.03165 2.0356 2.03545	55 222 55 393 55 554 55 734 55 904	17 64 17 58 17 53 17 48 17 42	. 4596 . 4591 . 4587 . 4582 . 4578	12 54 12 62 12 64 12 77 12 85	4.112 4.120 4.128 4.135 4.143	3 049 3 062 3 075 3 0KR 3 101	2533 2511 2489 2464 2464	6000 6990 6781 6781 6741
3 35 3 36 3 36 3 37 3 28 3 29	1625 -4 1602 -1 1579 -1 1557 -1 1534 -1	. 5274 -1 . 5220 -1 . 5166 -1 . 5113 -1 . 5061 -1	3062 3069 3057 3044 3032	3 197 3 204 3.218 3.229 3.229 3.219	1277 1266 1255 1245 1234	5 900 5 956 6 012 6 059 6 126	2 (03733 2 (04920 2 (04106 2 (04290 2 (04290 2 (04474	56 073 56 241 56 409 56 576 56 742	17 37 17 31 17 26 17 21 17 16	4573 4569 4565 4565 4560 4556	12 93 83 00 13 08 13 16 83 24	4 151 4 155 4 166 4 173 4 181	3 114 3 127 3 141 3 154 3 167	2425 2104 2181 2161 2142	6702 1464 6436 1588
1.40 3.41 3.42 3.43 3.43	15121 .14911 14701 .14491 .14281	. 5009 -1 6954 -1 . 4908 -1 4854 -1 . 4808 -1	. 3019 3007 2995 2942 . 2970	3. 250 3. 260 3. 271 3. 291 3. 291	1224 1214 1203 1193 1193	6 184 6 242 6 301 6 360 6 420	2.04656 2.04837 2.05017 2.05196 2.05374	56 907 57 073 57 217 57 401 57, 564	17 10 17 05 17 00 16 95 16 90	. 4552 . 4548 . 4544 . 4540 . 4535	13 32 13 40 13 48 13 56 13 64	4 188 4 196 4 203 4 211 4 211 4 218	3 180 3 194 3 207 3 220 3 234	2122 2402 2242 2243	6513 6478 6439 6439 6403 6403
1.45 1.46 1.47 1.48 1.48	, 1408 -1 . 1386 -1 . 1368 -1 . 1349 -1 . 1330 -1	.4759 -1 .4711 -1 .4663 -1 .4616 -1 .4569 -1	2958 2946 2934 2922 2921	3.302 3.312 3.323 3.333 3.344	. 1173 . 1163 . 1153 . 1144 . 1134	6 440 6 541 6 602 6 664 6 727	2 05551 2 05727 2 05901 2 06075 2 06247	57 726 57 NAN 54 050 54 210 54 370	16 85 16 80 16 75 16 70 16 65	4531 4527 4523 4519 4515	13.72 14.50 14.58 13.96 14.04	4 225 4 212 4 240 4 247 4 247 4 254	3 247 3 261 3 274 3 288 3 301	2724 220 215 216 216	(-331 6290 261 6226 6191
1.00 3.51 3.02 3.03 3.04	.1311 -1 .1293 -1 .1274 -1 .1256 -1 .1239 -1	.4523 -1 .4478 -1 .4433 -1 .4388 -1 .4388 -1	28909 - 26877 - 2875 - 2854 - 2852	3.354 3.365 3.375 3.385 3.396	. 1124 . 1115 . 1105 . 1096 . 1047	6 790 6 453 6 917 8 942 7 017	2 06419 2 06549 2 06759 2 06927 2 06927 2 07091	53 530 53 689 54 847 59 004 59 102	16 60 16 55 16 51 16 46 16 41	4512 4504 4504 4500 4496	14 13 14 21 14 29 14 37 14 45	4. 261 4. 264 4. 275 4. 292 4. 292 4. 299	3 315 3 329 3 343 3 355 3 370	. 2129 . 2111 . 2011 . 2011 . 2015 . 2017	6357 6123 6489 6056 64723
3 55 3.56 3.57 3.68 3.69	. 1221 -1 . 1204 -1 . 1188 -7 . 1171 -1 . 1155 -1	.4300 -> .4257 -> .4214 -1 .4172 -1 .4131 -1	2541 2529 2515 2406 	3 406 3 417 3 425 3 447 3 448	. 1078 . 1044 . 1059 . 1051 . 1051	7, 113 7, 179 7, 216 7, 313 7, 312	2 07261 2 07426 2 07590 2 07590 2 07754 2 07916	59 31R 59 474 59 629 59 754 59 938	16 36 16 31 16 27 16 22 16 17	4492 44×9 44×5 44×1 44×1	14 54 14 62 14 70 14 79 14 67	4 296 4 301 4 309 4 310 4 323	3 3H4 3 3M 3 412 3 426 3 440	2039 (2122 (2004 (1947 (1970	5990 5957 5125 5492 5492
1.00 3.61 3.62 3.63 3.63	. 1138 -1 . 1123 -3 1107 -1 . 1092 -1 . 1076 -1	4089 -+ 4049 -1 4008 -1 3966 -1 3929 -1	2784 2773 2762 2751 7740	3 458 3 469 3 479 3 490 3 500	- 1333 - 1924 - 1916 - 1997 - 9944 - 1	7 450 7 519 7 549 7 659 7 730	2 08077 2 08238 2 08397 2 08556 2 08556	60 091 65 244 60 397 60 549 60 700	16 13 16 QH 16 QH 15 99 15 99	4474 4471 4467 4463 4460	14 95 15 04 15 12 15 21 15 29	4.330 4.336 4.347 4.356 4.356	3 454 3 468 3 48° 3 496 3 510	1953 1936 1920 4904 1897	5429 5796 5767 5786 5786 5785
1.66 1.65 1.67 3.65 1.69	. 10#21 . 10471 . 10321 . 10181 . 10041	- 3840 -1 .3852 -1 .3813 -1 .3776 -1 .3739 -1	27:29 27:18 2707 2697 2699	3 510 3 521 3 531 3 542 3 552	.94410 -1 .9817 -1 .9714 - 9652 -1 .9570 -1	7 802 7 874 7 147 8 020 8 094	2 08N70 2 09025 2 09180 2 09180 2 09134 2 09487	60 851 61 000 61 150 61 299 61 447	15 90 15 86 15 81 15 77 15 72	4455 4453 4450 4446 4443	13 38 15 46 15 55 15 63 15 72	4 3(3 4 360 4 376 4 376 4 382 4 388	3 525 3 539 3 551 3 56× 3 56×	1871 1835 1839 1823 1807	5675 5645 5613 5565 5565
8 70 3 71 8 72 8 73 8 74	990211 97671 96331 95001 973701	3702 -1 3465 -1 3429 -4 3594 -1 3554 -1	. 2675 2555 2654 2644 2644	3 562 3 573 3 543 3 543 3 543 3 604	.9490 -1 .9110 -1 .9311 -1 .9253 -1 .9175 -1	8 169 8 244 8 320 8 397 8 474	2 09639 2 09790 2 09941 2 10090 2 10238	61 595 61 743 61 889 62.036 62.181	15 64 15 64 15 59 15 55 15 51	. 4439 . 4436 . 4433 . 4430 . 4426	15 81 15 89 15 94 16 07 16 15	4 396 4 401 4 408 4 414 4 420	3 596 3 611 3 625 3 640 3 654	. 1792 . 1777 . 1761 . 1766 . 1731	552% 5497 5449 5410 5417
1.75 1.76 1.77 1.78 1.79	9242 -4 9116 -1 8991 -4 8869 -1 8748 -4	1524 -1 3489 -1 3455 -1 3421 -1 3368 -1	2621 2513 2802 2592 2592	3. 614 3. 625 3. 635 3. 645 3. 645 3. 656	.909H -+ .9021 -+ .8945 -1 .8870 -+ .8796 -1	8. 552 8. 410 8. 709 8. 799 8. 799 8. 870	2 10346 2 10513 2 10679 2 10824 2 10968	62 326 62 471 62 615 62 758 62 901	15 47 15 42 15 38 15 34 15 30	. 4423 . 4420 . 4417 . 4414 . 4410	16.24 16.33 16.42 16.50	4 426 4 432 4 439 4 445 4 451	3.669 3.644 3.695 3.713 3.725	.1717 .1702 .1667 .1673 .1659	5384 5336 5328 5301 5274
1.00 1.81 3.82 1.00 1.04	8512 - 8512 - 8396 - 8283 - 8171 -	, 33,55 -1 , 83,22 -1 , 3290 -1 , 3258 -1 , 3258 -1	2572 2562 2552 2542 2532	3 666 3 676 3 667 3 667 3 697 3 708	.8722	6 941 9.032 9.115 9.198 9.282	2 11111 2 11254 2 11395 2 11536 2 11536 2 11676	63 044 63 185 63 327 61 465 63 608	15 26 15 22 15 18 15 14 15 10	. 4407 . 4406 . 4401 . 4401 . 4398 . 4398	16 GH 16 77 16 HG 16 95 17 04	4 457 4 463 4 469 4 475 4 481	3. 743 3. 758 3. 772 3. 787 3. 802	. 1645 . 1631 . 1617 . 1603 . 1589	5247 5220 5193 5167 5140
1.86 1.86 1.87 1.87 1.88	8080 -3 7961 -3 7944 -4 7739 -4 7635 -4	3195 -1 3165 -1 3134 -1 3104 -1 3074 -1	2522 2513 2503 2693 2693	3. 118 3. 728 3. 739 3. 749 3. 759	. 8363 -1 . 8293 -1 . 8224 -1 . 8155 -4 . 8067 -1	9 3/6 9 451 9 537 9 624 9 711	2 11815 2 11954 2 12091 2 12228 2 12264	63.748 63.887 64.026 64.164 64.302	15.06 15.02 14.98 14.94 14.90	. 4392 . 4389 . 4386 . 4383 . 4380	17 13 17 22 17 31 17 40 17 49	4. 487 4. 492 4. 498 4. 504 4. 510	3. 817 3. 832 3. 847 3. 863 3. 876	. 1376 . 1363 . 1549 . 1536 . 1623	5114 5080 5083 5083 5085 5085
3 10 3 91 3 10 3 10 3 10 3 10 3 10	7433 -1 7431 -4 7703 -4 7703 -4 7703 -4 7137 -4	3044 -1 3015 -1 3006 -1 5009 -1	2474 2455 2455 2455 2446	3.770 3.780 3.780 3.780 3.801 3.801 3.811	8019 -1 7982 -1 7886 -1 7830 -1 7734 -1	9.700 9.806 9.977 14.07 16.16	2 12490 2 12634 2 12767 2 12900 2 12900 2 13032	64. 440 64. 576 64. 713 64. 848 64. 883	14 86 14 82 14 78 14 78 14 78	- 4377 - 4375 - 4373 - 4373 - 4360 - 4366	17.58 17.67 17.76 17.85 17.94	4. 616 4. 621 4. 627 4. 627 4. 623 4. 623	3. 893 3. 905 3. 923 3. 999 3. 964	.1510 .1497 .1485 .1473 .1460	4117 612 6013 6013

Figure A-4 concluded

				8-7	1		N/m^2	6 894757x10°3	2 99608x10 ⁻ 3	1 01325×10 5	9.80665x10~4	133.3224	10.5	-
							bar	0.06894757	0.0290608	1.01325	0.980665	1.333224x10~3	F	10`5
Newton 4.448222 0.138255 10^5	9,80665×10~3						torr	51.71495	22.3974	760	736.5596	-	750.0617	7.500617x10°-3
9 453.59237 14 0981 1.01972x10-3	1 101.972 meter	0.0254 0.3048 0.01	-	kg/m [~] 3 16.01847	119.82646 10°-3	-	kg/cm^2	0:0703066	0.0304495	1.033227	F	1.359509x10 3	1.019716	1 019716x10°-5
dyne 4.44822×10°5 1.38255×10°4 1	980.665 10^-5 Centimeter	2.54 30.48	- <u>8</u>	g/cm[*]3 0.01601847	0.11982646 1	10 - 3	atm	0.06804596	0.0294703	-	0 9678411	1.315789x10~3	0.9869233	9.869233x10°-6
pdl 32.174 1 7.23301x10~5	0.070831 7.23298 feet	0.0833333 1 0.0328084	3 28084	lbm/gal 0.12.768056	1 8.3 154 02	8 345 02×10`-3 + -120	at 50 F	20897	-	33 9325	32 8413	0.044648	33.4887	3.34887×10°-4
1 1 0.0310809 2.24809×10°-6	2.20462x10~-3 0.224809 inch	1 12 0.3637008	80075.95	1 1	7.480519 62.42793	0.06242793	lbf/in^2	~	0.43309	14.69595	14 22335	0.0193368	14.503775	1.450378×10 ⁻⁴
Units 1 lbf = 1 dyne =	1 g = 1 Newton = Units		-	Units 1 lbm/ft^3 =	1 lbm/gal = 1 g/cm ⁻ 3 =	1 kg/m^3 =	Units	1 lbf/in^2 =	1 ft H20, 60 F 🗕	1 atm =	1 kg/cm^2 =	1 torr -	1 bar =	1 N/m -
Force	Length	I	:	Density			Pressure							

Figure A-5 Conversion Factors

Volume	Units	inch^3	ft^3	gal	liter	cm^3	m^3
	1 in 3 =	-	5.787037x10 ⁴	4.329004x10 3	0.01638706	16.38706	1.638706x10°-5
	1 ft^3 =	1728	-	7.480519	28.31684	28316.84	0.02831684
	1 gal =	231	0.1336806	÷	3.785411	3785.411	3.785411×10°-3
	1 liter =	61.02374	0.03531467	0.2641721	-	1000	10"-3
	1 cm ³ =	0.06102374	3.531467x10°-5	2.641721×10 4	10`3	÷	10°-6
	1 m ³ =	61023.74	35.31467	264.1721	10.3	10`6	-
Mass	Units	lbm	gram (g)	Ş	ton	metric ton	н
	1 lbm =	~	453.59237	0.045359237	0.0005	4.5359237x10°-4	
	19-	2.204623x10 -3	F	101.3	1.1023115x10°-6	10`-6	
	1 kg =	2.204623	1000	-	1,1023115x10°-3	10°-3	
	1 ton =	2000	907184.74	907.18474	۲	0.9071846	
A	1 metric ton =	2204 623	10.6	1000	1.1023115	-	

۹-9

To Convert	Into	Multiply By
	A	
Atmospheres	Ton/sq inch	0.007348
Atmospheres	cm of mercury	76
Itmospheres	dynes/cm ²	1.013x10^6
\tmospheres	Ft of water (@ 4 degs C)	33.9
Imospheres	In. of Mercury @ 0 degs C	29.92
Atmospheres	kgs/ sq cm	1.0333
Imospheres	kgs/sq meter	10332
Imospheres	lbf/sq ft (psf)	2116.4
tmospheres	lbf/sq inch (psi)	14.7
Atmospheres	tons/ sq ft	1.058
	В	
Bars	atmospheres	0.9869
Bars	dynes/ sq cm	10^6
Bars	kgs/sq meter	1.020x10^4
lars	lbf/sg ft (psf)	2089
ars	lbf/sq in (psi)	14.5
	С	
entigrade	fahrenheit	(C * 9/5) - 32
entimeters (cms)	feet	3.281x10^-2
entimeters	inches	0.3937
entimeters	kilometers	10^-6
entimeters	meters	0.01
entimeters	miles	6.214x10 ⁻ -6
Centimeters	millimeters	10
entimeters	mils	393.7
entimeters	yards	1.0 94 x10^-2
entimeters of Mercury	atmospheres	0.01316
entimeters of Mercury	feet of water	0.4461
entimeters of Mercury	kgs/sq meter	136
entimeters of Mercuiry	lbf/sq ft (psf)	27.85
entimeters of Mercury	lbf/sq inch (psi)	0.1934
Centimeters /sec	f oo t/min	1.9685
Centimeters /sec	feet/sec	0.03281
Centimeters /sec	kilometers/hr	0.036
Centimeters /sec	knots	0.1943

Into

Centimeters /sec Centimeters /sec Centimeters /sec Centimeters/sec/sec Centimeters/sec/sec Centimeters/sec/sec Centimeters/sec/sec **Cubic centimeters** Cubic centimeters Cubic centimeters Cubic centimeters Cubic centimeters Cubic centimeters Cubic centimeters **Cubic centimeters** Cubic feet Cubic feet **Cubic feet Cubic feet** Cubic feet Cubic feet Cubic feet Cubic feet Cubic inches **Cubic inches** Cubic inches Cubic inches Cubic inches Cubic inches Cubic inches Cubic inches Cubic meters Cubic meters

0.6 meter/min miles/hr 0.02237 miles/min 3.728x10^-4 0.03281 feet/sec/sec kms/sec/sec 0.036 meters/sec/sec 0.01 miles/hr/sec 0.02237 3.531x10^-5 cubic feet (ft^3) cubic inches (in³) 0.06102 cubic meters (m³) 10^-6 1.308x10^-6 cubic yards (yd^3) gallons (gal; US liq.) 2.6242x10^-4 liters 0.001 2.113x10^-3 pints (US liq.) quarts (US liq.) 1.057x10^-3 cubic centimeters 2832 1.728 cubic inches cubic meters 0.02832 cubic yards 0.03704 gallon (US liq.) 7.48052 28.32 liters 59.84 pints (US liq.) 29.92 quarts (US lig.) 16.39 cubic centimeters cubic feet 5.787x10^-4 cubic meters 1.639x10^-5 cubic yards 2.143x10^-5 4.329x10^-6 gallons liters 0.01639 pints (US lig.) 0.03463 0.01732 quarts (US liq.) cubic centimeter 10^6 cubic feet 35.31 cubic inches 61023 cubic yards 1.308 gallons (US liq.) 264.2 liters 1000 pints (US liq.) 2113 quarts (US liq.) 1057

Figure A-5 Continued

To Convert	Into	Multiply By
Centimeters /sec	meter/min	0.6
Centimeters /sec	miles/hr	0.02237
Centimeters /sec	miles/min	3.728x10^-4
Centimeters/sec/sec	feet/scc/sec	0.03281
Centimeters/sec/sec	kms/sec/sec	0.036
Centimeters/sec/sec	meters/sec/sec	0.01
Centimeters/sec/sec	miles/hr/sec	0.02237
Cubic centimeters	cubic feet (ft^3)	3.531x10^-5
Cubic centimeters	cubic inches (in^3)	0.06102
Cubic centimeters	cubic meters (m^3)	10^-6
Cubic centimeters	cubic yards (yd^3)	1.308x10^-6
Cubic centimeters	gallons (gal; US liq.)	2.6242x10^-4
Cubic centimeters	liters	0.001
Cubic centimeters	pints (US liq.)	2.113x10^-3
Cubic centimeters	quarts (US liq.)	1.057x10^-3
Cubic feet	cubic centimeters	2832
Cubic feet	cubic inches	1.728
Cubic feet	cubic meters	0.02832
Cubic feet	cubic yards	0.03704
Cubic feet	gallon (US liq.)	7.48052
Cubic feet	liters	28.32
Cubic feat	pints (US liq.)	59.84
Cubic feet	quarts (US liq.)	29.92
Cubic inches	cubic centimeters	16.39
Cubic inches	cubic feet	5.787x10^-4
Cubic inches	cubic meters	1.639x10^-5
Cubic inches	cubic yards	2.143x10^-5
Cubic inches	gallons	4.329x10^-6
Cubic inches	liters	0.01639
Cubic inches	pints (US liq.)	0.03463
Cubic inches	quarts (US lig.)	0.01732
Cubic meters	cubic centimeter	10^6
Cubic meters	cubic feet	35.31
Cubic meters	cubic inches	61023
Cubic meters	cubic yards	1.308
Cubic meters	gallons (US liq.)	264.2
Cubic meters	liters	1000
Cubic meters	pints (US liq.)	2113
Cubic meters	quarts (US lig.)	1057

.

Figure A-5 Continued

To Convert	Into	Multiply By
Cubic yard	cubic centimeters	7.646x10^5
Cubic yard	cubic feet	27
Cubic yard	cubic inches	46656
Cubic yard	cubic meters	0.7646
Cubic yard	gallons (US liq.)	202
Cubic yard	liters	764.6
Cubic yard	pints (US liq.)	1615.9
Cubic yard	quart (US liq.)	807.9
	D	
Days	seconds	86400
Degree (angle)	quadrants	0.01111
Degree (angle)	radian	0.01745
Degree (angle)	revolutions	2.7778x10^-3
Degree (angle)	seconds	3600
Degree/sec	radian/sec	0.01745
Degree/sec	revolutions/min	0.1667
Degree/sec	revolutions/sec	2.778x10^3
Dyne sq cm	atmosphere	9.869x10^-7
Dyne sq cm	inches of Mercury at 0 degs C	2.953x10^-5
Dyne sq cm	inches of water at 4 degs C	4.015x10^-4
Dynes	grams	1.02x10^-3
Dynes	joules centimenter	·· 10^-7
Dynes	joules meter (newton)	10^-5
Dynes	kilogram	1.02x10^-6
Dynes	poundais	7.233x10^-5
Dynes	, pounds	2.248x10-6
)ynes	bar	10^-6
	E	
Ergs	Btu	9.84x10^-11
Ergs	dyne-centimeters	1
Ergs	foot-pounds	7.367x10^-8
Ergs	gram-calories	0.2389x10^-7
Ergs	gram-centimeters	1.020x10^-3
Ergs	horsepower-hrs	3.725x10^-14
Ergs	joules	10^-7

To Convert	Into	Multiply By
Ergs	kg-calories	2.389x10^-11
Ergs	kg-meter	1.02x10^-8
Ergs	kilowatt-hrs	0.2778x10^-13
Ergs	watt-hrs	0.2778x10^-10
Ergs/sec	Btu/min	5.688x10^-9
Ergs/sec	ft-lbf/min	4.427x10^-6
Ergs/sec	ft-lbf/sec	7.3756x10^-8
Ergs/sec	horsepower	1.341x10^-10
Ergs/sec	kg-calories/min	1.433x10^-9
Ergs/sec	kilowatts	10^-10
	F	
Feet	centimeters	30.48
Feet	kilometers	3.048x10^-4
Feet	meters	0.3048
Feet	miles (nautical)	1.645x10^-4
Feet	miles (statute)	1.894x10^-4
Feet	millimeters	304.8
=eet	mils	1.2x10^4
Feet of water	atmosphere	0.0295
Feet of water	inches of Mercury	0.8826
Feet of water	kgs/sq centimeters	0.03048
Feet of water	kgs/ sq meter	304.8
Feet of water	lbf/sq feet (psf)	62.43
Feet of water	lbf/sq inch (psi)	0.4335
Feet/min	centimeters/sec	0.508
Feet/min	feet/sec	0.01667
Feet/min	kilometer/hr	0.01829
Feet/min	meters/min	0.3048
F eet/ min	miles/hr	0.01136
Feet/sec	centimeters/sec	30.48
Feet/sec	kilometers/hr	1.097
=eet/sec	knots	0.5921
Feet/sec	meters/min	18.29
Feet/sec	miles/hr	0.6818
Feet/sec	miles/min	0.01136
Feet/sec/sec	cms/sec/sec	30.48
F eet/se c/sec	kms/hr/sec	1.097

To Convert	Into	Multiply By
Feet/sec/sec	meters/sec/sec	0.3048
Feet/sec/sec	miles/hr/sec	0.6818
Foot-pounds	Btu	1.286x10^-3
Foot-pounds	ergs	1.356x10^7
Foot-pounds	gram-calories	0.3238
Foot-pounds	hp-hrs	5.05x10^-7
Foot-pounds	joules	1.356
Foot-pounds	kg-calories	3.24x10^-4
Foot-pounds	kg-meters	0.1383
Foot-pounds	kilowatt-hrs	3.766x10^-7
Foot-pounds	newton-meters	1.35582
Foot-pounds/min	foot-pound sec	0.01667
Foot-pounds/min	horsepower	3.03x10^-5
Foot-pounds/min	kg-calories/min	3.24x10^-4
Foot-pounds/min	kilowatts	2.26x10^-5
Foot-pounds/sec	Btu/hr	4.6263
Foot-pounds/sec	Btu/min	0.07717
Foot-pounds/sec	horsepower	1.818x10^-3
Foot-pounds/sec	kg-calories/min	0.01945
Foot-pounds/sec	kilowatts	1.356x10^-3
	G	
Gallons	cubic centimeters	3785
Gallons	cubic feet	0.1337
Gallons	cubic inches	231
Gallons	cubic meters	3.785x10^-3
Gallons	cubic yards	4.951x10^-3
Gallons	liters	3.785
Gallons (liq. Br Imp)	gallons (US liq)	1.20095
Gallons (US)	gallons (imp)	0.83267
Gallons of water	pounds of water	8.3453
Grams	dynes	980.7
Grams	joules centimeter	9.807x10^-5
Grams	joules meter (newtons)	9.807x10^-3
Grams	kilogram	0.001
Grams	milligrams	1000
Grams	ounces ounce (troy)	0.03215
Grams	poundals	0.07093

To Convert	Into	Multiply By
Grams	pounds	2.205x10^-3
Grams/cm	pounds/inch	5.6x10^-3
Granispan	pounds/inch	5.0010 -3
	н	
Horsepower	Btu/min	42.44
Horsepower	foot-lbf/min	33000
Horsepower	foot-ibf/sec	550
Horsepower (metric)	hp (550 ft /lbf/sec)	0.9863
Horsepower	hp metric (542.5 ft lbf/sec)	1.014
Horsepower	kg-calories/min	10.68
Horsepower	kilowatts	0.7457
Horsepower	watts	745.7
Horsepower (boiler)	Btu/hr	33.479
Horsepower (boiler)	kilowatts	9.803
	I	
Inches	centimeters	2.45
Inches	meters	2.45 2.54x10^-2
Inches		
Inches	miles	1.578x10^-5
Inches	millimeters	25.4
Inches	mils	1000
	yards	2.778x10^-2
Inches of Mercury	atmospheres	0.033422
Inches of Mercury	feet of water	1.133
Inches of Mercury	kgs/sq cm	0.03453
Inches of Mercury	kgs/sq meter	345.3
Inches of Mercury Inches of Mercury	pounds/sq ft (psf)	70.73
Inches of Water @ 4 degs C	pounds /sq in (psi)	0.4912
•	atmospheres	2.458x10^-3
Inches of Water @ 4 degs C	inches of Mercury	0.07355
Inches of Water @ 4 degs C	kgs/sq centimeter	2.54x10^-3
Inches of Water @ 4 degs C	ounces /sq inches	0.5781
Inches of Water @ 4 degs C	lbf/sq ft (psf)	5.204
Inches of Water @ 4 degs C	lbf/sq in (psi)	0.03613

A-16

i

To Convert	Into	Mulitiply By
	J	
Joules	Btu	9.840x10^-4
Joules	ergs	10^7
Joules	foot-pounds	0.7376
Joules	kg-calories	2.389x10^-4
Joules	kg-meters	0.102
Joules	watts-hrs	2.778x10^-4
Joules/cm	grams	1.02x10^4
Joules/cm	dynes	10^7
Joules/cm	joules/meter (newtons)	100
Joules/cm	poundals	723.3
Joules/cm	pounds	22.48
	к	
Kilograms (kgs)	dynes	980665
Kilograms	grams	1000
Kilograms	joules/cm	0.09807
Kilograms	joules/meter (newtons)	9.807
Kilograms	poundals	70.93
Kilograms	pounds	2.205
Kilograms	ton (long)	9.842x10^-4
Kilograms	ton (short)	1.102x10^-3
Kilogram/cubic meter	grams/cu cm	0.001
Kilogram/cubic meter	pounds/cu ft	0.06243
Kilogram/cubic meter	pounds/cu inch	3.613x10^5
Kilograms/meter	pounds/ft	0.672
Kilogram/sq cm	dynes	980665
Kilogram/sq cm	atmosphere	0.9678
Kilogram/sq cm	feet of water	32.81
Kilogram/sq cm	inches of Mercury	28.96
Kilogram/sq cm	lbf/sq feet (psf)	2048
Kilogram/sq cm	lbf/sq inch (psi)	14.22
Kilogram/sq meter	atmospheres	9.678x10^-5
Kilogram/sq meter	bars	98.07x10^-6
Kilogram/sq meter	feet of water	3.281x10^-3
Kilogram/sq meter	inches of Mercury	2.896x10^-3
Kilogram/sq meter	lbf/sq feet (psf)	0.2048
Kilogram/sq meter	lbf/sq inch (psi)	1.422x10^-3
Kilometers (kms)	centimeters	10^-6

To Convert	Into	Multiply By
Kilometers	feet	3281.0
<i>(ilometers</i>	inches	3.937x10^4
(ilometers	meters	1000.0
<i>(ilometers</i>	miles	0.6214
likometers	millimeters	10^6
(ilometers	yards	1094.0
ilometers/hr	centimeters/sec	27.78
(ilometers/hr	feet/min	54.68
(ilometers/hr	feet/sec	0.9113
(ilometers/hr	knots	0.5396
(ilometers/hr	meters/min	16.67
(ilometers/hr	miles/hr	0.6214
ilometers/hr/sec	cms/sec/sec	27.78
(ilometers/hr/sec	ft/sec/sec	0.9113
(ilometers/hr/sec	meters/sec/sec	0.2778
(ilometers/hr/sec	miles/hr/sec	0.6214
(ilowatts	Btu/min	56.92
liowatts	horsepower	1.341
nots	feet/hr	6080
inots	kilometers/hr	1.08532
nots	mautical miles/hr	1.0
ínots	statute miles/hr	1.151
inots	yards/hr	2027.0
	f oe t/sec	1.689
	L	
iters	bushels (US dry)	0.02838
iters	cubic cm	1000
iters	cubic feet	0.03531
iters	cubic inches	61.02
ters	cubic meters	0.001
ters	cubic yards	1.308x10^-3
iters	gallons (US liq)	0.2642
iters	pints (US liq)	2.113
iters	quarts (US lig)	1.057
umen	spherical candle power	0.07958
umen	watt	0.001496

To Convert	Into	Multiply By
	Μ	
Meters	centimeters	100
Neters	feet	3.281
lete rs	inches	39.37
Neters	kilometers	0.001
lete rs	miles (nautical)	5.396x10^-4
leters	miles (statute)	6.214x10^-4
leters	millimeters	1000
Aeters	yards	1.094
/leters/min	cms/sec	1.667
/leters/ min	feet/min	3.281
feters/min	feet/sec	0.05468
/leters/min	kms/hr	0.06
/leters/ min	knots	0.03238
/leters/min	miles/hr	0.03728
Neters/sec	feet/min	196.8
leters/sec	feet/sec	3.281
leters/sec	kilometers/hr	3.6
Meters/sec	kilometers/min	0.06
vleters/sec	miles/hr	2.237
Aeters/sec	miles/min	0.03728
leters/sec/sec	cms/sec/sec	100
vleters/sec/sec	ft/sec/sec	3.281
vleters/sec/sec	kms/hr/sec	3.6
leters/sec/sec	miles/hr/sec	2.237
Vicrons	meters	1.0x10^-6
villes (nautical)	feet	6080.27
villes (nautical)	kilometers	1.852
villes (nautical)	meters	1853
Viles (nautical)	miles (statute)	1.1516
Viles (nautical)	yards	2027
Viles (statute)	centimeters	1.609x10^5
Viles (statute)	feet	5280
villes (statute)	inches	6.336x10^4
viles (statute)	kilometers	1.609
viles (statute)	meters	1609
viles (statute)	miles (nautical)	0.8684
viles (statute)	yards	1760
/liles/hr	cms/sec	44.7
Ailes/hr	feet/min	88

Miles/hrknots0.8684Miles/hrmeters/min26.82Miles/hrmiles/min0.1667Miles/hr/seccrms/sec/sec44.7Miles/hr/secfeet/sec/sec1.467Miles/hr/secfeet/sec/sec1.609Miles/hr/secmeters/sec/sec0.447Miles/hr/secmeters/sec/sec0.447Miles/hr/secmeters/sec/sec0.447Miles/mincms/sec2682Miles/minfeet/sec88Miles/minfeet/sec88Miles/minkms/min1.609Miles/minknots/min0.8684Miles/minmiles/hr60Millimeterscentimeters0.1Millimetersfeet3.281x10^Millimetersinches0.03937Millimetersmeters10°-6Millimetersmeters0.001Millimetersmeters2.54x10°Millimetersyards1.094x10°Millsinches0.001Milskilometers2.54x10°Milskilometers2.54x10°Milskilometers2.54x10°Milskilometers2.54x10°Milskilometers2.54x10°Milskilometers2.54x10°Milskilometers2.54x10°Milskilometers2.54x10°Milskilometers2.54x10°Milskilometers2.54x10°Milskilometers2.54x10°Milski	To Convert	Into	Multiply By
Miles/hrkms/hr1.609Miles/hrkms/min0.02682Miles/hrknots0.8684Miles/hrmeters/min26.82Miles/hrmiles/min0.1667Miles/hr/seccms/sec/sec44.7Miles/hr/secfeet/sec/sec1.467Miles/hr/seckms/hr/sec1.609Miles/mincms/sec/sec0.447Miles/mincms/sec2682Miles/mincms/sec2682Miles/minfeet/sec88Miles/minfeet/sec88Miles/minkms/min1.609Miles/minkms/min0.8684Miles/minfeet/sec88Miles/minkms/min0.8684Miles/minkms/smin0.8684Miles/minkms/smin0.8684Miles/minkms/smin1.609Millimeterscentimeters0.110Millimetersfeet3.281x10Millimetersmiles/hr60Millimetersmiles6.214x10Millimetersmiles6.214x10Millimetersmiles6.214x10Millimetersmiles2.54x10Millisfeet8.33x10Milskilometers2.54x10Milskilometers2.54x10Milsyards2.778x10Millinet (angles)degrees0.01667Minutes (angles)radians2.909x10Minutes (angles)seconds60			
Miles/hrkms/min0.02682Miles/hrknots0.8684Miles/hrmeters/min26.82Miles/hrmiles/min0.1667Miles/hr/seccms/sec/sec44.7Miles/hr/secfeet/sec/sec1.467Miles/hr/secfeet/sec/sec1.467Miles/hr/secmeters/sec/sec0.447Miles/hr/secmeters/sec/sec0.447Miles/mincms/sec2682Miles/minfeet/sec88Miles/minfeet/sec88Miles/minknots/min0.8684Miles/minknots/min0.8684Miles/minknots/min0.8684Miles/minknots/min0.8684Miles/minmiles/hr60Millimeterscentimeters0.1Millimetersfeet3.281x10°Millimetersinches0.001Millimetersmeters0.001Millimetersmiles6.214x10°Millimetersmiles6.214x10°Millimetersmiles5.24x10°Millimetersmiles2.54x10°Millisfeet8.333x10°Milskilometers2.54x10°Milskilometers2.54x10°Milskilometers2.54x10°Milskilometers2.54x10°Milskilometers2.54x10°Milskilometers2.54x10°Milskilometers2.54x10°Milskilometers2.54x10°Mils	Uiles/hr	feet/sec	1.467
Miles/hrknots0.8684Miles/hrmeters/min26.82Miles/hrmiles/min0.1667Miles/hr/seccms/sec/sec44.7Miles/hr/secfeet/sec/sec1.467Miles/hr/secfeet/sec/sec1.609Miles/hr/secmeters/sec/sec0.447Miles/mincms/sec/sec0.447Miles/minfeet/sec88Miles/minfeet/sec88Miles/minkms/min1.609Miles/minkms/min0.8684Miles/minkms/min0.8684Miles/minkms/min0.8684Miles/minkms/min0.8684Miles/minmiles/hr60Millimeterscentimeters0.1Millimetersfeet3.281x10°Millimetersinches0.03937Millimetersmiles6.214x10°Millimetersmiles39.37Millimetersmiles3.937Millimetersmiles2.54x10°Milsfeet8.33x10°Milsinches0.001Milskilometers2.54x10°Milsgeres0.01667Minutes (angles)quadrants1.852x10°Minutes (angles)radians2.909x10°Minutes (angles)radians2.909x10°Minutes (angles)seconds60	Miles/hr	kms/hr	1.609
Miles/hrmeters/min26.82Miles/hrmiles/min0.1667Miles/hr/seccms/sec/sec44.7Miles/hr/secfeet/sec/sec1.467Miles/hr/secfeet/sec/sec1.609Miles/hr/secmeters/sec/sec0.447Miles/mincms/sec2682Miles/minfeet/sec88Miles/minfeet/sec88Miles/minkms/min1.609Miles/minkms/min0.8684Miles/minkmots/min0.8684Miles/minmiles/hr60Millimeterscentimeters0.1Millimetersfeet3.281x10°Millimetersinches0.03937Millimetersmiles6.214x10°Millimetersmiles3.937Millimetersmiles3.937Millimetersmiles2.54x10°Millisfeet8.33x10°Millimetersyards2.74x10°Milsinches0.001Milsyards2.74x10°Milsjards2.54x10°Milsjards2.54x10°Milsjards2.54x10°Minutes (angles)quadrants1.852x10°Minutes (angles)radians2.909x10°Minutes (angles)radians2.909x10°Minutes (angles)seconds60	Miles/hr	kms/min	0.02682
Miles/hrmiles/min0.1667Miles/hr/seccms/sec/sec44.7Miles/hr/secfeet/sec/sec1.467Miles/hr/secfeet/sec/sec1.609Miles/hr/secmeters/sec/sec0.447Miles/mincms/sec2682Miles/minfeet/sec88Miles/minfeet/sec88Miles/minkms/min1.609Miles/minkms/min0.8684Miles/minkms/min0.8684Miles/minmiles/hr60Millimeterscentimeters0.1Millimetersfeet3.281x10°Millimetersinches0.03937Millimetersinches0.03937Millimetersmeters0.001Millimetersmeters0.001Millimetersmiles6.214x10°Millimetersmiles6.214x10°Millimetersyards1.094x10°Millimetersyards2.54x10°Milisfeet8.33x10°Milisinches0.001Milsjeet8.33x10°Milsjeet8.33x10°Milsjeet8.33x10°Milsjeet8.33x10°Milsjeet8.33x10°Milsjeet8.33x10°Milsjeet8.33x10°Milsjeet8.33x10°Milsjeet8.33x10°Milsjeet8.33x10°Milsjeet8.33x10°Milsjeet8.33x10°<	Miles/hr	knots	0.8684
Miles/hr/seccms/sec/sec44.7Miles/hr/secfeet/sec/sec1.467Miles/hr/seckms/hr/sec1.609Miles/hr/secmeters/sec/sec0.447Miles/mincms/sec2682Miles/minfeet/sec88Miles/minfeet/sec88Miles/minkms/min1.609Miles/minkms/min0.8684Miles/minkmots/min0.8684Miles/minmiles/hr60Millimeterscentimeters0.1Millimetersfeet3.281x10°Millimetersinches0.03937Millimetersinches0.03937Millimetersmeters0.001Millimetersmeters0.001Millimetersmiles6.214x10°Millimetersmiles6.214x10°Millimetersmiles39.37Millimetersyards1.094x10°Milisfeet8.33x10°Milisinches0.001Milskilometers2.54x10°Milsgrees0.01667Milsyards2.778x10°Milutes (angles)quadrants1.852x10°Minutes (angles)radians2.909x10°Minutes (angles)radians2.909x10°Minutes (angles)seconds60	Miles/hr	meters/min	26.82
Miles/hr/secfeet/sec/sec1.467Miles/hr/seckms/hr/sec1.609Miles/hr/secmeters/sec/sec0.447Miles/mincms/sec2682Miles/minfeet/sec88Miles/minkms/min1.609Miles/minkms/min0.8684Miles/minknots/min0.8684Miles/minmiles/hr60Milimeterscentimeters0.1Milimetersfeet3.281x10°Milimetersfeet3.281x10°Milimetersinches0.03937Milimetersmeters0.001Milimetersmiles6.214x10°Milimetersmiles6.214x10°Milimetersmiles3.937Milimetersmiles3.937Milimetersyards1.094x10°Milsfeet8.333x10°Milsinches0.001Milsgrees0.01667Milsyards2.778x10°Minutes (angles)quadrants1.852x10°Minutes (angles)radians2.909x10°Minutes (angles)seconds60	Miles/hr	miles/min	0.1667
Miles/hr/seckms/hr/sec1.609Miles/hr/secmeters/sec/sec0.447Miles/mincms/sec2682Miles/minfeet/sec88Miles/minkms/min1.609Miles/minkms/min0.8684Miles/minmiles/hr60Milies/minmiles/hr60Milimeterscentimeters0.1Milimetersfeet3.281x10°Milimetersfeet3.281x10°Milimetersinches0.03937Milimetersmeters0.001Milimetersmeters0.001Milimetersmiles6.214x10°Milimetersmiles6.214x10°Milimetersmiles39.37Milimetersmiles0.001Milisfeet8.333x10°Milsinches0.001Milsgrees0.0167Milsyards2.778x10°Milsyards2.778x10°Minutes (angles)quadrants1.852x10°Minutes (angles)radians2.909x10°Minutes (angles)seconds60	Miles/hr/sec	cms/sec/sec	44.7
Miles/hr/secmeters/sec/sec0./47Miles/mincms/sec2682Miles/minfeet/sec88Miles/minkms/min1.609Miles/minkmst/min0.8684Miles/minmiles/hr60Miles/minmiles/hr60Miles/minmiles/hr60Milimeterscentimeters0.1Milimetersfeet3.281x10°Milimetersinches0.03937Milimetersmeters0.001Milimetersmeters0.001Milimetersmiles6.214x10°Milimetersmiles6.214x10°Milimetersmiles2.54x10°Milimetersyards2.54x10°Milisfeet8.33x10°Milisinches0.001Milskilometers2.54x10°Milsgerees0.01667Minutes (angles)quadrants1.852x10°Minutes (angles)radians2.90yx10°Minutes (angles)seconds60	Miles/hr/sec	feet/sec/sec	1.467
Miles/mincms/sec2682Miles/minfeet/sec88Miles/minkms/min1.609Miles/minkms/min0.8684Miles/minkms/min0.8684Miles/minkms/min0.8684Miles/minmiles/hr60Milimeterscentimeters0.1Milimetersfeet3.281x10°Milimetersinches0.03937Milimetersinches0.03937Milimetersmeters0.001Milimetersmiles6.214x10°Milimetersmiles6.214x10°Milimetersmiles2.54x10°Milimetersyards2.54x10°Milsfeet8.333x10°Milskilometers2.54x10°Milsgerees0.001Milsyards2.778x10°Milsgerees0.01667Minutes (angles)quadrants1.852x10°Minutes (angles)radians2.909x10°Minutes (angles)seconds60	Miles/hr/sec	kms/hr/sec	1.609
Miles/mincms/sec2682Miles/minfeet/sec88Miles/minkms/min1.609Miles/minkms/min0.8684Miles/minmiles/hr60Milimeterscentimeters0.1Milimetersfeet3.281x10°Milimetersinches0.03937Milimetersmiles/10°-6Milimetersmeters0.001Milimetersmiles6.214x10°Milimetersmiles6.214x10°Milimetersmiles2.54x10°Milimetersyards2.54x10°Milisfeet8.333x10°Milisinches0.001Milsgrees0.01Milsjeets2.54x10°Milsjeets2.54x10°Milsjeets2.54x10°Milsjeets2.54x10°Milsjeets2.001Milsjeets2.001Milsjeets2.54x10°Milsjeets2.54x10°Milsjeets2.54x10°Milsjeets2.54x10°Milsjeets2.001667Minutes (angles)quadrants1.852x10°Minutes (angles)seconds60Minutes (angles)seconds60	Miles/hr/sec	meters/sec/sec	0.447
Miles/minkms/min1.609Miles/minknots/min0.8684Miles/minmiles/hr60Milimeterscentimeters0.1Millimetersfeet3.281x10^Millimetersinches0.03937Millimetersinches0.03937Millimetersmeters10°-6Millimetersmeters0.001Millimetersmiles6.214x10^Millimetersmiles6.214x10^Millimetersmiles5.24x10^Millimetersyards1.094x10^Milsfeet8.333x10Milsinches0.001Milsinches0.001Milsgerees0.01667Milsyards2.778x10^Minutes (angles)quadrants1.852x10^Minutes (angles)radians2.909x10Minutes (angles)seconds60			2682
Miles/minknots/min0.8684Miles/minmiles/hr60Millimeterscentimeters0.1Millimetersfeet3.281x10^Millimetersinches0.03937Millimetersinches0.03937Millimetersmiles10°-6Millimetersmeters0.001Millimetersmiles6.214x10^Millimetersmiles6.214x10^Millimetersmiles39.37Millimetersyards1.094x10^Milscentimeters2.54x10^Milsfeet8.333x10^Milsinches0.001Milsyards2.778x10^Milskilometers2.54x10^Milsyards2.778x10^Minutes (angles)degrees0.01667Minutes (angles)radians2.909x10^Minutes (angles)seconds60	Miles/min	feet/sec	88
Miles/minmiles/hr60Millimeterscentimeters0.1Millimetersfeet3.281x10°Millimetersinches0.03937Millimetersinches0.03937Millimeterskilometers10°-6Millimetersmeters0.001Millimetersmiles6.214x10°Millimetersmiles6.214x10°Millimetersmils39.37Millimetersmils39.37Millimetersyards1.094x10°Milsfeet8.333x10°Milsinches0.001Milskilometers2.54x10°Milsgerees0.01667Minutes (angles)quadrants1.852x10°Minutes (angles)radians2.909x10°Minutes (angles)seconds60	Miles/min	kms/min	1.609
Millimeterscentimeters0.1Millimetersfeet3.281x10°Millimetersinches0.03937Millimeterskilometers10°-6Millimetersmeters0.001Millimetersmiles6.214x10°Millimetersmiles6.214x10°Millimetersmils39.37Millimetersmils39.37Millimetersyards1.094x10°Milscentimeters2.54x10°Milsfeet8.333x10°Milsinches0.001Milsyards2.54x10°Milsyards2.54x10°Milsgegrees0.01667Minutes (angles)quadrants1.852x10°Minutes (angles)radians2.909x10°Minutes (angles)seconds60	Miles/min	knots/min	0.8684
Millimetersfeet3.281x10^{-1}Millimetersinches0.03937Millimeterskilometers10^{-6}Millimetersmeters0.001Millimetersmiles6.214x10^{-1}Millimetersmiles6.214x10^{-1}Millimetersmiles39.37Millimetersyards1.094x10^{-1}Millimetersyards1.094x10^{-1}Millimetersyards2.54x10^{-1}Millifeet8.333x10^{-1}Millisinches0.001Millisyards2.54x10^{-1}Millisyards2.778x10^{-1}Millisyards2.778x10^{-1}Minutes (angles)quadrants1.852x10^{-1}Minutes (angles)radians2.909x10^{-1}Minutes (angles)seconds60	Miles/min	miles/hr	60
Millimetersinches0.03937Millimeterskilometers10°-6Millimetersmeters0.001Millimetersmiles6.214x10°Millimetersmils39.37Millimetersyards1.094x10°Millifeet8.333x10°Millisfeet8.333x10°Millisinches0.001Millisgrees0.001Millisgrees0.001Millisgrees0.001Millisgrees0.001Millisyards2.54x10°Millisgrees0.01667Minutes (angles)quadrants1.852x10°Minutes (angles)radians2.909x10°Minutes (angles)seconds60	Millimeters	centimeters	0.1
Millimeterskilometers10°-6Millimetersmeters0.001Millimetersmiles6.214x10°Millimetersmils39.37Millimetersyards1.094x10°Milscentimeters2.54x10°Milsfeet8.333x10°Milsinches0.001Milskilometers2.54x10°Milsgerees0.001Milsyards2.778x10°Milsyards2.778x10°Minutes (angles)quadrants1.852x10°Minutes (angles)radians2.909x10°Minutes (angles)seconds60	Millimeters	feet	3.281x10^-3
Millimetersmeters0.001Millimetersmiles6.214x10^{-1}Millimetersmils39.37Millimetersyards1.094x10^{-1}Milscentimeters2.54x10^{-1}Milsfeet8.333x10^{-1}Milsinches0.001Milskilometers2.54x10^{-1}Milsyards2.778x10^{-1}Milsyards2.778x10^{-1}Minutes (angles)quadrants1.852x10^{-1}Minutes (angles)radians2.909x10^{-1}Minutes (angles)seconds60	Millimeters	inches	0.03937
Millimetersmiles6.214x10^Millimetersmils39.37Millimetersyards1.094x10^Milscentimeters2.54x10^Milsfeet8.333x10^Milsinches0.001Milskilometers2.54x10^Milsyards2.778x10^Milsyards2.778x10^Minutes (angles)quadrants1.852x10^Minutes (angles)radians2.909x10^Minutes (angles)seconds60	Millimeters	kilometers	10^-6
Millimetersmils39.37Millimetersyards1.094x10^Milscentimeters2.54x10^Milsfeet8.333x10^Milsinches0.001Milskilometers2.54x10^Milsyards2.778x10^Minutes (angles)degrees0.01667Minutes (angles)radians2.909x10^Minutes (angles)seconds60	Millimeters	meters	0.001
Millimetersyards1.094x10^Milscentimeters2.54x10^Milsfeet8.333x10^Milsinches0.001Milskilometers2.54x10^Milsyards2.778x10^Milsyards2.778x10^Minutes (angles)degrees0.01667Minutes (angles)radians2.909x10^Minutes (angles)seconds60	Millimeters	miles	6.214x10^-7
Milscentimeters2.54x10^-Milsfeet8.333x10^-Milsinches0.001Milskilometers2.54x10^-Milsyards2.778x10^-Minutes (angles)degrees0.01667Minutes (angles)quadrants1.852x10^-Minutes (angles)radians2.909x10^-Minutes (angles)seconds60	Millimeters	mils	39.37
Milscentimeters2.54x10^-Milsfeet8.333x10^-Milsinches0.001Milskilometers2.54x10^-Milsyards2.778x10^-Minutes (angles)degrees0.01667Minutes (angles)quadrants1.852x10^-Minutes (angles)radians2.909x10^-Minutes (angles)seconds60	Millimeters	yards	1.094x10^-3
Milsinches0.001Milskilometers2.54x10^-Milsyards2.778x10^-Minutes (angles)degrees0.01667Minutes (angles)quadrants1.852x10^-Minutes (angles)radians2.909x10^-Minutes (angles)seconds60	Mils	-	2.54x10^-3
Milskilometers2.54x10^Milsyards2.778x10^Minutes (angles)degrees0.01667Minutes (angles)quadrants1.852x10^Minutes (angles)radians2.909x10^Minutes (angles)seconds60	Mils	feet	8.333x10^-5
Milsyards2.778x10^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{*}}}}}}}}	Mils	inches	0.001
Minutes (angles)degrees0.01667Minutes (angles)quadrants1.852x10°Minutes (angles)radians2.909x10°Minutes (angles)seconds60	Mils	kilometers	2.54x10^-8
Minutes (angles)degrees0.01667Minutes (angles)quadrants1.852x10^2Minutes (angles)radians2.909x10^2Minutes (angles)seconds60	Mils	vards	2.778x10^-5
Minutes (angles)quadrants1.852x10^Minutes (angles)radians2.909x10^Minutes (angles)seconds60		-	0.01667
Minutes (angles)radians2.909x10^Minutes (angles)seconds60		•	1.852x10^-4
Minutes (angles) seconds 60		•	2.909x10^-4
N			60
		N	
Newtons Dynes 1.0x10^5	Newtons	Dynes	1.0x10^5
Newtons pounds (lbf) 0.2248	Newtons	pounds (lbf)	0.2248

To Convert	Into	Multiply By
	0	
Dunce	drams	16
Dunce	grains	437.5
Dunce	grams	28.349527
Ounce	pounds	0.0625
Ounce	ounces (troy)	0.9115
Ounce	tons (long)	2.79x10^-5
Ounce	tons (metric)	2.835x10^-5
Ounce (fluid)	cubic inches	1.805
Ounce (fluid)	liters	0.02957
Ounces (troy)	grains	480
Ounces (troy)	grams	31.103481
Ounces (troy)	ounce (avdp.)	1.09714
Ounces (troy)	pennyweights (troy)	20
Ounces (troy)	pounds (troy)	0.08333
Ounce/sq inch	Dynes/sq cm	4309
Ounce/sg inch	lbf/sq in (psi)	0.0625
	Р	
Parsec	miles	19 x10^12
Parsec	kilometers	3.084x10^13
Pennyweight (troy)	grams	1.55517
Pennyweight (troy)	pounds (troy)	4.1667x10^-3
Pints (dry)	cubic inches	33.6
Pints (liq)	cubic centimeters	473.2
Pints (liq)	cubic feet	0.01671
Pints (liq)	cubic inches	28.87
Pints (liq)	cubic meters	4.732x10^-4
Pints (liq)	cubic yards	6.189x10^-4
Pints (liq)	gallons	0.125
Pints (liq)	liters	0.4732
Pints (liq)	quarts (liq.)	0.5
Pounds (avoirdupois)	ounces (troy)	14.5833
Poundals	dynes	13826
Poundals	grams	14.1
Poundais	joules/cm	1.383x10^-3
Poundals	joules/meter (newtons)	0.1383
Poundals	kilograms	0.0141
Poundals	pounds	0.03108

Pounds	drams	256
Pounds	dynes	44.4823x10^4
Pounds	grains	7000
Pounds	grams	453.5924
Pounds	joules/cm	0.04448
Pounds	joules/meter (newtons)	4.448
Pounds	kilograms	0.4536
Pounds	ounces	16
Pounds	ounces (troy)	14.5833
Pounds	poundals	32.17
Pounds	pounds (troy)	1.21528
Pounds (lbf)	slugs	3.1081x10^-2
Pounds	tons (short)	0.0005
Pounds (troy)	grains	5760
Pounds (troy)	grams	373.24177
Pounds (troy)	ounces (avdp.)	13.1657
Pounds (troy)	ounces (troy)	12
Pounds (troy)	pennyweights (troy)	240
Pounds (troy)	pounds (avdp)	0.822857
Pounds (troy)	tons (long)	3.6735 x 10^-4
Pounds (troy)	tons (metric)	3.7324x10^-4
Pounds (troy)	tons (short)	4.1143x10^-4
Pounds of water	cubic feet	0.01602
Pounds of water	cubic inches	27.68
Pounds of water	gallons	0.1198
Pounds of water/min	cubic feet/sec	2.670x10^-4
Pounds-feet	cm-dynes	1.356x10^7
Pounds-feet	cm-grams	13825
Pounds-feet	meter-kgs	0.1383
Pounds/cubic feet	grams/cubic cm	0.01602
Pounds/cubic feet	kgs/cubic meter	16.01847
Pounds/cubic feet	pounds/cubic inch	5.787x10^-4
Pounds/cubic inch	grams/cubic centimeter	27.68
Pounds/cubic inch	kgs/cubic meter	2.768x10^4
Pounds/cubic inch	pounds/cubic feet	1728
Pounds/sq foot (psf)	atmospheres	4.725x10 ⁴
Pounds/sq foot (psf)	bars	4.788x10^4
Pounds/sq foot (psf)	dyne/sq cm	4.788x10^2
Pounds/sq foot (psf)	feet of water (4 degs C)	0.01602

To Convert	Into	Multiply By
Pounds/sq foot (psf)	inches of Mercury @ C degs C	0.01414
Pounds/sq foot (psf)	kgs/sq meter	4.882
Pounds/sq foot (psf)	lbf/sq inch (psi)	6.944x10^-3
Pounds/sq foot (psf)	newton sq. meter	47.88
^D ounds/sq inch (psi)	atmospheres	0.06804
Pounds/sq inch (psi)	dynes/sq cm	6.8948x10^4
Pounds/sq inch (psi)	feet of water @ 4 degs C	2.307
Pounds/sq inch (psi)	inches of water @ 4 degs C	27.681
Pounds/sq inch (psi)	inches of Mercury @ 0 degs C	2.036
Pounds/sq inch (psi)	newton sq meter	6.8948x10^3
Pounds/sq inch (psi)	kgs/sq meter	703.1
ounds/sq inch (psi)	pounds/sq inch (psf)	144
	Q	
Quadrants (angle)	degree	90
Quadrants (angle)	minutes	5400
Quadrants (angle)	radians	1.571
Juadrants (angle)	seconds	3.24x10^5
luarts (dry)	cubic inches	67.2
Quarts (liq.)	cubic centimeters	946 .4
Quarts (liq.)	cubic feet	0.03342
Quarts (liq.)	cubic inches	57.75
Quarts (liq.)	cubic meters	9.464x10^-4
Quarts (liq.)	cubic yards	1.238x10^-3
Quarts (liq.)	gallons	0.25
Quarts (liq.)	liters	0.9463
	R	
Radians	degrees	57.3
Radians	minutes	3438
Radians	quadrants	0.6366
ladians	seconds	2.063x10^5
ladians/sec	degrees/sec	57.3
Radians/sec	revolutions/min	9.549
Radians/sec	revolutions/sec	0.1592
Radians/sec/sec	rəvs/min/min	573
Radians/sec/sec	revs/min/sec	9.549

To Convert	Into	Multiply By
Radians/sec/sec	revs/sec/sec	0.1592
Revolutions	degrees	360
Revolutions	quadrants	4
Revolutions	radians	6.283
Revolutions/min	degree/sec	6
Revolutions/min	radians/sec	0.1047
Revolutions/min	revs/sec	0.01667
Revolutions/min/min	radians/sec/sec	1.745x10^-3
Revolutions/min/min	revs/min/sec	0.01667
Revolutions/min/min	revs/sac/sac	2.778x10^-4
	S	
Seconds (angle)	degress	2.778x10^-4
Seconds (angle)	minutes	0.01667
Seconds (angle)	guadrants	3.087x10^-6
Seconds (angle)	radians	4.848x10^-6
Slug	ibm	32.2
Slug	kgs	14.594
Square centimeters	circular mils	1.973x10^5
Square centimeters	square feet	1.076x10^-2
Square centimeters	square inches	0.155
Square centimeters	square meters	0.0001
Square centimeters	square miles	3.861x10^-11
Square centimeters	square millimeters	100
Square centimeters	square yards	1.196x10^-4
Square feet	acres	2.296x10^-5
Square feet	circular mils	1.833x10^8
Square feet	square centimeters	929
Square feet	square inches	144
Square feet	square meters	0.0929
Square feet	square miles	3.587x10^-8
Square feet	square millimeters	9.29x10^4
Square feet	square yards	0.1111
Square inches	circular mils	1.273x10^6
Square inches	square centimeters	6.452
Square inches	square feet	6.944x10^-3
Square inches	square millimeters	645.2
Square inches	square mils	10^6

To Convert

Into

Multiply By

Square inches	square yards	7.716x10^-4
Square kilometers		247.1
Square kilometers	acres	10^10
Square kilometers	square centimeters	10.76x10^6
Square kilometers	square feet	
Square kilometers	square inches	1.55x10^9 10^4
Square kilometers	square meters	
•	square miles	0.3861
Square kilometers	square yards	1.196x10^6
Square meters	acres	2.471x10^-4
Square meters	square centimeters	10^4
Square meters	square feet	10.76
Square meters	square inches	1550
Square meters	square miles	3.861x10^-7
Square meters	square millimeters	10^6
Square meters	square yards	1.196
Square miles	acres	640
Square miles	square feet	27.88x10^6
Square miles	square kilometers	2.59
Square miles	square meters	2.59x10^6
Square miles	square yards	3.098x10^6
Square milimeters	circular mils	1973
Square milimeters	square centimeters	0.01
Square milimeters	square feet	1.076x10^-5
Square milimeters	square inches	1.55x10^-3
Square yards	acres	2.066x10^-4
Square yards	square centimeters	8361
Square yards	square feet	9
Square yards	square inches	1296
Square yards	square meters	0.8361
Square yards	square miles	3.288x10^-7
Square yards	square millimeters	8.361x10^5
	т	
Tons (long)	kilograms	1016
Tons (long	lbf	2240
Tons (long)	tons (short)	1.12
Tons (metric)	kilogram	1000
Tons (metric)	lbf	2205
, .		

Figure A-5 Continued

To Convert	Into	Multiply By
Tons (short)	kilogram	907.1848
Fons (short)	ounce	32000
Fons (short)	ounce (troy)	29166.66
Fons (short)	lbf	2000
Fons (short)	pounds (troy)	2430.56
Fons (short)	tons(long)	0.89287
Fons (short)	tons (metric)	0.9078
	w	
Watts	Btu/hr	3.4129
Watts	Btu/min	0.05688
Watts	ergs/sec	107
Watts	foot-lbf/min	44.27
Watts	foot-lbf/sec	0.7378
Watts	horsepower	1.341x10^-3
Watts	horsepower (metric)	1.36x10^-3
Watts	kg-calories/min	0.01433
Watts	kilowatts	0.001
	Υ	
Yards	centimeters	91.44
Yards	kilometers	9.144×10^-4
Yards	meters	0.9144
Yards	miles (nautical)	4.934x10^-4
Yards	miles (statute)	5.682x10^-4
Yards	millimeters	914.4

Figure A-5 Concluded

NOTES		

NOTES		

APPENDIX B

APPENDIX B

Tid Bits

This section offers tid bits of information that can be useful. The information listed below is not in any particular order.

- 1) One count of drag is 0.0001.
- 2) A Δ drag count of 30 counts is a significant increase.
- 3) Wing sweep decreases $C_{L_{\alpha}}$ and $C_{L_{max}}$.
- 4) Critical Mach is increased by wing sweep.
- 5) In a powered test (V/STOL), vary q, dynamic pressure, to obtain the appropriate thrust coefficient.
- 6) α_{71} does not vary with aspect ratio.
- 7) Principal contributor to $C_{1\beta}$ (dihedral effect) is wing geometric dihedral, 'Z' position of wings and sweep angle.
- 8) Supercritical airfoils (wings) delay the drag rise due to shock formation.
- 9) When the Mach number is > 0.3, be sure to correct the dynamic pressure (density) for compressibility effects.
Wind Tunnel First Aid Kit

This section is a collection of suggested items that would be helpful to the testing engineer if they accompanied him/her to the testing site. It keeps the testing engineer from loosing an 'atta boy'.

- 1) Extra money for testing
- 2) Aspirin
- 3) Coffee mug
- 4) Triangle, ruler, symbol template, and other graphing equipment
- 6) Pencils with extra lead and erasers
- 7) Binders and dividers to put plots in
- 8) Labels & gummed tabs for binders and dividers
- 9) Paper clips
- 10) Calculator
- 11) Notebook for personal notes
- 12) Notebook for wind tunnel log. It is most important that the testing engineer write down everything that happens during the test. By the time the reduced data arrives back 'home', you will have forgotten what happened during the test.
- 13) Test Plan
- 14) Run Schedule
- 15) Stress report
- 16) Previous data for comparison
- 17) Model drawings
- 18) Reference material
- 19) Raucous reading material for the wee hours in the morning
- 20) Telephone numbers from back home and at the test site
- 21) Don't forget extra money for a post test party.

Square

Reotangle

 $\overline{y} = \frac{h}{3} \frac{2a+b}{a+b}$

 $\mathbf{A} = \begin{bmatrix} \mathbf{a} + \mathbf{b} \\ 2 \end{bmatrix} \mathbf{h} = \mathbf{n}\mathbf{h}$

 $n = \begin{bmatrix} a + b \\ 2 \end{bmatrix}$

 $= \frac{\pi r^2}{2}$ $= \overline{y} = \frac{4r}{3\pi}$

Semi-Circle

$$A = \frac{\pi r^2}{2}$$

 $\overline{x} = \overline{y} = \frac{4r}{3\pi}$
 $I_x = I_y = 0.1098 r^4$

Semi-Parabolio

Parabolio

Rectangle Parallelpiped

 $v = a^3$ $A = 6a^2$ a /5

 $V = hA_{surf} = abcsino$

 $V=\frac{4}{3}\,\sigma\,r^3=\frac{\sigma}{6}\,h^3$ $A_{uurf} = 4\pi r^2$

Figure B-1 Geometric Equations

B--3

NOTES	

NOTES	5	
 	······································	

NOTES

APPENDIX C

APPENDIX C

Power On Symbols

Moment Arms

 l_1 = Horizontal Ram Drag Arm l_2 = Vertical Thrust Arm l_3 = Vertical Ram Drag Arm l_4 = Horizontal Thrust Arm l_5 = Lateral Thrust Arm

Thrust_Induced_Aerodynamic_Forces (Pwr ON - Pwr OFF)

ΔL	Lift
ΔD	Drag
ΔΜ	Pitching moment
ΔRM	Rolling moment

Total Coefficients

с _L	Lift coefficient, L/qS
C _D	Drag coefficient, D/qS
с _м	Pitching moment, M/qSc
C _{RM}	Rolling moment, RM/qS

Incremental Thrust Coefficients

 Symbols continued

 $\Delta C_{RM_{T}} \text{ Rolling moment coefficient due to Thrust}$ $\Delta C_{YM_{T}} \text{ Yawing moment coefficient due to Thrust}$ $\Delta C_{M_{D}} \text{ Pitching moment due to Ram drag}$ $C_{D_{R}} \text{ Ram drag coefficient, } \frac{M_{i} V}{qS}$

Aerodynamic_Coefficients (direct thrust effect removed)

$$\begin{array}{c} C_{L_{Aero}} & \text{or } C_{L_{A}} & \text{Lift coefficient} \\ \\ C_{D_{Aero}} & \text{or } C_{D_{A}} & \text{Drag coefficient} \\ \\ C_{M_{Aero}} & \text{or } C_{M_{A}} & \text{Pitching moment coefficient} \\ \\ C_{RM_{Aero}} & \text{or } C_{RM_{A}} & \text{Rolling moment coefficient} \end{array}$$

Miscellaneous

x = Fan Number

 θ_{T} = Total Thrust Vector (measured from longitudinal axis)

- θ_{x} = Fan Thrust Vector
- $\overline{c} = M.A.C.$
- b = Wing Span
- h/D Non-dimensional height with respect to the nozzle diameter

Power On Aerodynamic Equations (ref. 5)

Incremental Aerodynamic Coefficient ($x \approx fan$ number)

$$\theta_{T} = \sin^{-1}\Sigma T_{x} \sin \theta_{x} / \sqrt{(\Sigma T_{x} \cos \theta_{x})^{2} + (\Sigma T_{x} \sin \theta_{x})^{2}}$$

$$\Delta C_{L_{T}} = C_{T} \sin(\theta_{T} + \alpha)$$

$$\Delta C_{D_{T}} = -C_{T} \cos(\theta_{T} + \alpha)$$

$$\Delta C_{M_{T_{x}}} = T_{x}(l_{4_{x}} \sin \theta_{T_{x}} + l_{2_{x}} \cos \theta_{T_{x}}) / qS\overline{c}$$

$$\Delta C_{M_{T}} = \Sigma \Delta C_{M_{T_{x}}} (Fan 1,2,3,...x)$$

$$\Delta C_{M_{D_{x}}} = D_{R}(l_{3_{x}} \cos \alpha + l_{1_{x}} \sin \alpha) / qS\overline{c}$$

$$\Delta C_{M_{D}} = \Sigma \Delta C_{M_{x}} (Fan 1,2,3,...x)$$

$$\Delta C_{RM_{x}} = T_{x}l_{5_{x}} [\sin \theta_{x} \cos \alpha + \cos \theta \sin \alpha] / qS\overline{c}$$

$$\Delta C_{YM_{x}} = T_{x}l_{5_{x}} [\cos \theta_{x} \cos \alpha - \sin \theta_{x} \sin \alpha] / qS\overline{c}$$

<u>Aerodynamic Coefficients</u> (total - thrust effects) (figure III-5)

$$C_{L_{Aero}} = C_{L} - \Delta C_{L_{T}}$$

$$C_{D_{Aero}} = C_{D} - \Delta C_{D_{T}} - C_{D_{R}}$$

$$C_{M_{Aero}} = C_{M} - \Delta C_{D_{T}} - \Delta C_{M_{D}}$$

$$C_{RM_{Aero}} = C_{RM} - \Sigma \Delta C_{RM_{x}}$$

$$C_{YM_{Aero}} = C_{YM} - \Sigma \Delta C_{YM_{x}}$$

$$C_{-3}$$

$$D_{R} = M_{i}V$$
$$C_{D_{R}} = \frac{D_{R}}{qS}$$

Induced_Force_Coefficients

Figure C-1 Powered Effects

C-5

This page was intentionally left blank

NOTES

NOTES	
	
	<u></u>
	<u> </u>
	<u></u>

NOTES

NOTES

NOTES

NOTES	

NOTES

NOTES		
	_	
	-	
	_	
	-	
	_	
	_	
	_	
	_	
	<u> </u>	

NOTES		

NOTES		
·····		

NOTES		

NOTES		

NOTES
C-19

NOTES		

NOT	TES
	A
·····	
	_

NOTES ------____ -_____ _ ____ _ - -_____ _____ _ ___ -----_____ _____ --------_____ -----_____

NOTES		
	·	
	· · _	

NOTES

NOTES		

NOTES		
	· · · · · · · · · · · · · · · · · · ·	

NOTES

NOTES				

NOTES				
	_			
	-			
	-			
	-			
	-			
	_			
	-			
	-			
	-			
	_			
	-			
	-			
	-			
	_			

NOTES				
N MAR				
U.S. Government Printing Office 1991 - 148-026/44406 C-30				

INFORMATION

DEPARTMENT OF THE AIR FORCE

WRIGHT LABORATORY (AFMC) WRIGHT-PATTERSON AIR FORCE BASE, OHIO

- FROM: WL/DOA Wright-Patterson AFB OH 45433-6523
- SUBJ: Notice of Changes in Technical Report(s) #WL-TR-91-3073/ADA240263
 - TO: Defense Technical Information Center Attn: DTIC-OCC Cameron Station Alexandria VA 22304-6145

Please change subject report as follows:

Include the attached 2 corrected pages in subject Tech Report as an ERRATA SHEET.

7.Whale

WM F. WHALEN Chief, STINFO and Technical Editing Branch Operations and Support Directorate

Cy to: WL/DOL (M. Kline)

7 January 1994

CARAFA ANA 240963

Corrections to version 1.0 of <u>Subsonic Wind Tunnel Testing Handbook</u> WL-TR-91-3073; DTIC AD A240263

°⊶ **a**

1) Page II-2; Mean Aerodynamic Chord (MAC); Add a comma after 'span'.

2) Page IV-7; Figure IV-4, Top figure 'Aerodynamic Angles'; $-\beta$ is on the wrong plane. It should be on the $+\psi$ plane.

- 3) Page IV-9; Balance to Body Axis, force equations (roll=0) [not matrix]; on C_{N_b} term ... $-C_{Y_{bal}} \sin\beta\sin\alpha$ should be positive $+C_{Y_{bal}} \sin\beta\sin\alpha$.
- 4) Page IV-9; Balance to Body Axis, force equations (roll=0) [not matrix]; on C_{A_b} term ... $-C_{Y_{bal}} \sin\beta\cos\alpha$ should be positive $+C_{Y_{bal}} \sin\beta\cos\alpha$.

5) Page IV-9; Balance to Body Axis, force equations (roll=0) [not matrix]; on C_{Y_b} term ... + $C_{A_{bal}} \sin\beta$ should be negative - $C_{A_{bal}} \sin\beta$.

6) Page IV-13; Body Axis to Wind Axis, Force matrix; Change $C_{S_{h}}$ to $C_{Y_{h}}$.

7) Page IV-14; Body Axis to Stability Axis, Force matrix; Change $C_{S_{b}}$ to $C_{Y_{b}}$.

8) Page IV-15; Wind Axis to Stability Axis, Add a 'w' sub-subscript to C_L in the vector column of the force matrix.

9) Page V-2; change the units on 32.1741 to (lbm-ft/lbf-s^2) from (ft/sec^2).

10) Page VI-6; Figure VI-3; η_i is measured on this figure from the centerline to the inboard trailing edge flap chord.

11) Page VI-10; Inboard Section, b /2=26.96in; Change to $b_i/2=26.96$ in.

12) Page VII-7, Method of Determining a Drag Polar; Change
$$\sum_{i=1}^{N} C_{L}(i) C_{D}(i)^{2}$$
 to
 $\sum_{i=1}^{N} C_{L}(i)^{2} C_{D}(i)$.

13) Page VII-7, Last line; change b=-2kC to $b=-2KC_{I}$

14) Page VII-8; Resulting augmented matrix; Change first line from '3 1 3' to
'5 1 0.3'; Change 0.11251 to 0.011251

15) Page XI-9; 4th line; Change 'in milli-volts [mv]' to 'in milli-volts [mv])'

16) Page XI-12; Example Original Balance Calibration Matrix, <u>no action is required</u>. This is a <u>point of clarification</u>. Part of this matrix came from Figure XI-3. The original matrix was inadvertently entered and subsequently inverted in COLUMN order when in fact it should have been entered in ROW order. All the preceding calculations use the column order inverted matrix, but their ORDER of calculations and calculations is correct. If you "pretend" they were entered in row order everything works out fine. This was <u>not</u> corrected in this report.

17) Page A-3; Standard Atmosphere; The values used in this figure were obtained from a dated U.S. Standard Atmosphere source ie., speed of sound @ S.L. = 1107.64 when it should be 1116.1.

- 18) Delete Page A-12.
- 19) Page A-10...; Conversion Factors;

To Convert	Into	Multiply By	Change to
Centigrade	fahrenheit	(C*9/5)-32	(C*9/5)+32
Centimeters	kilometers	10^-6	10^-5
Cubic feet	cubic centimeters	2832	28,320.0
Cubic feet	Cubic inches	1.728	1728.0
Cubic inches	gallons	4.329x10^-6	4.329x10^-3
Degree/sec	revolutions/sec	2.778x10^3	2.778x10^-3
Ergs/sec	BTU/min	5.688x10^-9	5,688x10^-9
Hp (boiler)	BTU/hr	33.479	33,479.0
Knots	kilometers/hr	1.08532	1.8532
Knots	mautical mi/hr	1.0	nautical mi/hr

20) Page B-3; Figure B-1 Geometric Equations, Parallelogram; the length of 'a' is the base of the parallelogram.