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ABSTRACT

The Institute for Naval Oceanography (INO) has established the Experimental Center
for Mesoscale Ocean Prediction (ECMOP) to facilitate research and development of ocean
models. ECMOP aims to take advantage of existing infrastructures to provide support to Navy
and academic researchers in an end-to-end model evaluation effort. In addition, if and when
necessary, ECMOP performs internal research and development as an adjunct to this support.
ECMOP is composed of three functional subsystems, or modules: the Verification Module
(VERMOD), the Visualization Module (VISMOD), and the Data Sub-System (DASS). This
technical memorandum describes the current state of VERMOD, in particular, its statistical and
phvsical criteria for model verification, and the software structural characteristics of the module.

Finally, we discuss several of the verification concepts anticipated as future enhancements of

VERMOD.
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1. INTRODUCTION

The Institute for Naval Oceanography (INO) has established the Experimental Center for
Mesoscale Ocean Prediction (ECMOP) to provide capabilities that:

» permit development, demonstration, and evaluation of mesoscale ocean prediction models;

o furnish information pertinent to the transition of ocean modeling systems to Navy sponsors

(and "decision makers”) in an objective, orderly, and efficient manner; and
 are modular in nature and can be transitioned as appropriate to operational Navy.

While adhering to operational concepts developed by the Naval Oceanography Command,
these capabilities are being realized through a modular structure that emphasizes a standard-
ized interface among data, numerical models, and processing systems. ECMOP is comprised
of three functional sub-systems: the Verification Module (VERMOD) provides objective eval-
uation routines, the Visualization Module (VISMOD) defines user definable graphic routines,
and the Data Sub-System (DASS) provides data acquisition and management. In all areas of
ocean modeling, whether the effort is R&D or operational, there is a need for basic technical
support capabilities for common functions to acquire, manage and analyze data; in situ, re-
motely sensed, or model generated. All these functions incorporate some aspects of three basic
technical capabilities: (1) data base management; (2) graphical and/or visualization schemes;
and objective evaluation routines. The role of ECMOP is to focus on these three basic tech-
nical capabilities commensurate with the needs of the R&D community by way of building
them into a state-of-the-art facility using leading edge technology in software and hardware.
At the same time, ECMOP is to evaluate these state-of-the-art capabilities for applicability
to the operational community and when identified, make them available for transition. The
conceptual details of ECMOP were initially given by Leese (1988,a,b). The present ECMOP
configuration, in its modular form, is shown in Fig. 1, wherein the three modules communicate

externally using the network common data form (netCDF) jackets.

This technical memorandum documents the current status of VERMOD. VERMOD was
originally developed with a minimal number of statistical and physical tools for model verifi-
cation and evaluation in order to substantiate the software design characteristics. These tools
are accessed through an intuitive graphical user interface (GUI) that requires little user indoc-
trination or training. The GUI functions within the X-windows environment as implemented
under the UNIX operating system. Its features are accessible to heterogeneous environments
and across computer networks and platforms. Enhancements and modifications will be made

to VERMOD according to user requirements. Guidance for crucial enhancements has been
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derived from the INO Summer Colloquium on Model Evaluation (INO, 1989), as well as input
from the community of scientific users.

The statistical measures included in VERMOD 1.0 are the Root Mean Square (RMS)
error with both systematic and unsystematic decompositions (Wilmot et al., 1985), pattern
correlation, and two criteria for gauging the departure from normality, skewness and kurtosis.
These techniques are described in the text and illustrated with computer simulated examples.

Section 2 gives a brief description of the software architecture. Description of the statistical
measures is presented in Section 3, which is followed, in Section 4, by three examples that
tllustrate the concepts. Finally, Section 5 briefly examines possible future enhancements to

VERMOD.

2. VERMOD ARCHITECTURE

The VERMOD application embodies characteristics drawn from the other modules within
ECMOP. The software, its design and the supporting hardware are briefly discussed below.

2.1 Software

All ECMOP software, including VERMOD, is designed to execute under the UNIX oper-
ating system. To function properly, VERMOD must utilize services provided by the remaining
ECMOP modules. Therefore, an understanding of VERMOD requires a description of ECMOP,
both in its present configuration and that configuration to which it is evolving as a complete
software package.

The GUI, which controls all modules, is implemented within X-windows. The core of
DASS, the data support module, is "Empress”, a proprietary relational database application
that implements the structured query language (SQL) and features a capability to handle bulk
data. Access to the data is via the Navy Environmental Operational Nowcast System (NEONS),
an interface to "Empress” written in C to support high level access to the data stored within the
data base. NEONS is described by Computer Sciences Corporation (1991). The VISMOD is
currently built upon the National Center for Atmospheric Research (NCAR) application NCAR
Graphics. Model verification and evaluation within the VERMOD are performed using estab-
lished and widely accepted quantitative and qualitative evaluation techniques as implemented
through FORTRAN subroutines and C functions. As a complete package, ECMOP software is
written in "C” and "FORTRAN" with the support of SQL and C-shell scripts. The X-windows
GUI uses the Cpen Software Foundation's "Motif’ (" OSF/Motif’) widget set. These fea-
tures give the ECMOP software increased transparency across networks and portability across
a variety of platforms that support X-windows.




2.2 Hardware

The ECMOP software has been developed on Sun Microsystems hardware. It is easily
portable to other Unix-compatible platforms such as those manufactured by Hewlett-Packard,
Silicon Graphics and Cray. This portability is made possible because " Empress”, NCAR graphics

and X-windows are available on these and other platforms.

2.3 Conceptualization

The ECMOP design is evolving into a modular structure. Currently, ECMOP modules are
loosely linked; however, redesign efforts will require user control through the GUI, which oper-
ates as the front end to the ECMOP System Control Module (SCM). The rationale underlying
ECMOP redesign is the need to support interaction among the several modules. The ECMOP
SCM will integrate functional control of the modules while enabling communications among
them. All existing modules are to be enhanced. In addition, a User Help Module (UHM) will
provide context sensitive assistance to the user at any point within the application. The DASS
is being redesigned into a Data Management Module (DAMM) that will include such features
as on-line directories, conversion utilities and NEONS data ingestion. A Model Control Module
(MCM) is to be added which will allow ocean models to execute within the ECMOP envi-
ronment. The VISMOD will be upgraded to include capabilities that allow three-dimensional
visual analysis. Enhancements to VERMOD are discussed in this document.

3. STATISTICAL MEASURES

In this section we present the derivations of the statistical measures that are included in
VERMOD 1.0, viz, the decomposition of root mean square error (RMSE) into systematic and
unsystematic components, the pattern correlation and the two simple measures of departure

from normal distribution.

3.1 Preliminaries

We would like to compare two fields, m and y. To compare the model output with
observed data, we may denote the model output by the symbol m and the observational data
by the symbol y. For a proper comparison, the two fields must correspond to each other in
some respect. T his correspondence may be in terms of a time series for fixed spatial coordinates

so that one may compare over time to obtain a spatial comparison. Another simple example




would be to compare model output fields at two different points in time. In this case the two
symbols represent the same field, i.e., the model output, and the comparison yields a temporal
difference. The more common need will be to compare model output with observed data.
This requires that the two fields correspond in spatial distribution to provide a model-data
comparison at a given time. However, this required correspondence between model output and
data usually does not exist, since the data are not usually available at the model grid. Some
numerical manipulation may be necessary to achieve this correspondence. When the resolution
of observational data is finer than the model grid, as in the case of Multi-Channel Sea Surface
Temperature (MCSST), some (optimum) interpolation of the data may be performed to align
the two fields to the model grid. Otherwise, which is usually the case, the model output
data are interpolated to obseivation locations to enable a valid comparison. This realignment
introduces an error in addition to those present in either the model output or cne observational
data.

Note: VERMOD 1.0 provides capability of RMSE computations when the two fielded variables

(model output and observations) are already properly aligned to the same grid frame.

We use the following notation. The mean values of m and y are denoted by u,, and
py such that £(m) = pm and E(y) = py, where £ is the statistical expectation operator.

Corresponding variances are defined by

o2 =E(m — pm)? and 02 = E(y — py)*. (3.1)

3.2 The RMS Criterion

The RMS error criterion is easily understood because its square, the mean square error
(MSE), is associated with the variance and the RMSE provides a direct measure of the difference
between the two fields being compared. We first define the MSE between two variables, m

and y, to be
MSE = S(m - y)2 = /(m — y)zf(ud)dw (3.2)
Q

where f(w) is the probability density function, or a weighting function defined on the space
{w € Q} over which m(w) and y(w) are defined. For discrete grid matched variables m and

y, we can approximate the mean square error as

N
MSE = Zw,(m,- - y,'): (33(1)

=1




where w; are the weights such that Z —1wi = 1. Weights can be varied to emphasize

subsets within regions of interest. For example, in the North Atlantic basin one may choose to
emphasize the Gulf Stream by specifying larger weights for that region. For equal weighting
1

w,'=‘,—v'1

N
MSE = (1/N))_(mi - y:)~. (3.3b)

=1
3.2.1 Systematic and unsystematic RMSE

Decomposition into systematic and unsystematic RMS errors, as discussed by Wilmot et al.
(1985), has been quite popular in oceanography, and was recommended for implementation in
VERMGCD by the Working Group on Statistical Procedures during the INO Summer Coiloquium
on Model Evaluation (1989). The systematic error component identifies any bias between the
two fields being compared, and the unsystematic component measures the goodness of fit.

The motivation for this decomposition derives from two common comparison scenarios:
(a) the model output and the data are comparable within some random error, and (b) the
model output is within a fixed bias plus random error. For the case (a) we will write

mi =Y + €
where e; is the random error. For the case (b) we can express the relationship
i = Bo + yi + e

where [y is a tixed bias. These two conditions can be generalized to the following linear
relationship:

m; = Bo + b1y + €. (3.4)

From this the RMSE decomposition is obtained as follows. Let /% be the ordinary least squares
estimate of m computed from the regression of m on y. Then, the coefficients 3;, j = 1.2
are estimated by minimizing the sum of squares Zfil(mi — B0 — B1y)?. Let by and b; be the
minimizing estimates of these coefficients. The predicted value is given by:

T‘h,‘ = b() -+ bly,'. (35)

The sum of squares of the differences between the two fields can then be written as:

Zwt(mt —yz Zw,[(m, ——m,)—}-(m, _y:)]

= Zw,(m, —m)? + Zw (P — y:)* + Zw (my — M) (hy — yi).




As shown in the Appendix, the cross-product term Ef\;lwi(mi — M)y —yi) = 0. Thus,
the above equation can be wrntten as a sum of two components, the systernatic and the
unsystematic components, given by:
N N
> wilmi —yi)t =Y wi(m — #u)? + (ha — v (3.6)
=1 =1
The unsystematic component is given by

1

N ¥
RMSE, = [Zwi(mi - mi)‘z} (3.7)

and the systematic component is given by

(XL

N
RMSES = [Zw,‘(ﬁl,‘ - yi)zJ . (3.8)

1=1

Note that
RMSE? = RMSE?l + RMSE;;’. (3.9)

Wilmot et al. define RMSE, as the linear bias and RMSE, as a precision criterion. The
above decomposition can be performed at any depth, Z. Suppose the model output data m is
available in the o coordinate system while the other field, y, is available at the Z level. Here,
the model data at each gridpoint are interpolated in the vertical at the Z level using a spline

function, thus leading to grid-to-grid RMSE evaluation using (3.6).

Note: In their formulation, Wilmot et al. assume there is no measurement error in y. Without
this assumption, the least squares estimation leads to a complicated statistical analysis, and

the final solution is not that clean.

3.2.2 Grid-to-observations (option currently not available)

In this case the observations y;,2 = 1,..., N at a particular Z level are not coincident
with the model grid. To compute RMSE the model output are first interpolated in the vertical
at the Z level. A further interpolation is then performed to derive model output values at the

observation points prior to RMSE calculations.




3.3 Pattern Correlation

Pattern correlation is used to estimate how closely the pattern of one field resembles
that of another. Again, if m; and y;,7 = 1,..., N are the values of the two fields, then the
coefficient of pattern correlation is given by

= 2211(7'”:' - m)yi — 7) 10
(ZX,(mi = mP T (v - 911 (3.10)

This concept tacitly identifies if there is a linear relationship between the two fields. A high

p

positive value of p indicates that the patterns of highs and lows of the two fields match and
that the two fields are almost linear transformations of each other. A high negative value, on
the other hand, indicates that the highs of the one field correspond to the lows of the other.

The pattern correlation measure is connected with the Wilmot type decomposition by the
following relationship:

N
RMSE% = Zwi(mi - ﬁl,‘)2
=1
= o2(1 - p?). (3.11)

Equation (3.11) says that the model prediction m can be described by 72 more precisely if the
pattern correlation is large.

3.4 Departure from Normality Measures

During the Trial Ocean Prediction Experiment (TROPE), Waters et al. (1990) recom-
mended to include in VERMOD measures of skewness and kurtosis that provide information
on how closely the differences between two fields resemble normality. Skewness is defined as

K3
1=
K2

and kurtosis is defined as
: Ha

=
where 4 is the jth central moment computed from the field differences. Skewness tells whether
the differences are asymmetrical; a positive/negative value indicates that the distribution is
skewed to the right/left. The Kurtosis measure indicates the flatness of the distribution. For
a normal distribution ; = 0 indicating symmetrical distribution, and v, = 1. A negative
value of v, shows that the distribution is more peaked than the normal distribution, i.e., the

distribution is concentrated more around the smaller differences.




4. EXAMPLES

To illustrate the use of the RMSE decomposition and pattern correlation we will use sea
surface height data from a nowcast for the Gulf of Mexico as the model output. The observation

data will be simulated using three sets of 3¢ and 3; by

yi = (m; — Bo)/ B

followed by generation of the model output by using (3.4). The noise added in (3.4) is Gaussian
with zero mean and standard deviation o,= 1 cm. The three sets of (5o, ;) will provide
interpretation for three different situations, one corresponding to zero systematic bias and two

situations corresponding to when it is non-zero.

4.1 The Three Cases

Case A: RMSE,=0

This situation arises when, in (3.4), 8o = 0 and 8; = 1. For the ideal estimation situation,

bo = 0 and b; = 1. Then the predicted model values are given by
'ﬁl,‘ ~ VY.

Thus:

N N
RMSE? = (7 — v:)? & > _wi(yi —y:)* = 0.
The unsystematic component in this case is given by:

N

N
RMSEZ = ) (i — mi)? & Y _wi(mi — w:)*.
1=1

=1

Simulations for this case were performed using 8o = 0 and 3; = 1. The estimated values
of these parameters (Table 1) are by = —0.008 and b; = 0.996, which are close to the actual
parameter values. The simulated model output and observations are presented in Figs. 2a and
2b. The sea surface height patterns in the two are almost identical but for the fact that, due

to the simulation effect, the model output appears ragged.




1 =1 '0 = 9% 'y 3se) !1ndino |apows pajejnwis 10} siNojuod JyBialy aoepng eag ez By

10




00T =1'¢ ‘010 = % 'v 9se)) 'suoijeasasqo paje|nwiis 4oy sinojuod yBiay depng eag :qz By

7~

11




Table 1: Results of Simulation Examples

(30.31) (bo.b1) (0u.05) Total RMSE p Skewness Kurtosis
A (0.00,1.00) (-0.001,1.000) (0.010,0.001) 0011 0997 -0.016 3457
Bl (0.10,1.00) (0.099,1.000) (0.010,0.099)  0.100 0997 -0.011  3.430
B2 (0.20,0.80) (0.199,0.800) (0.010,0.252) 0252 0997 2272  9.352

The computed values of RMSE, is 0.010, the same as o,,, while RMSE, is 0.001, which

is quite close to zero. The RMSE decomposition is in keeping with our expectation.

The computed value for pattern correlation in this case is fairly high, 0.997. The magnitude
of the correlation is a function of the noise level (standard deviation). Since the noise level is

the same for the three cases, the computed pattern correlation has a constant value.

Note that the RMSE, is 0 only if both conditions, 8y = 0 and 3; = 1, are satisfied. To
see this we note that if 3y = 0 but 8; # 1, then

mi ~ 1Y,

which leads to RMSE, = (8, ~ 125X 42 #£0.

On the other hand, if 8o # 0 and 8; = 1, then h; = By + y; which yields
N N N
RMSEZ = ) “wi(Bo +yi — 4:)? = D _wils = B3 Y wi = B #0.
i=1 i=1 1=1

Case B: RMSE, £ 0

The non-zero systematic RMSE component is marked with either 3¢ # 0 or 3, # 1.
When 3, # 0, the case of interest is 3; = 1. All other cases of RMSE, # 0 are covered under

51 # 1. These two situations are described below.

Case B1: RMSE, £ 0with 3, =1

This requires 3 # 0. This is the pure bias situation wherein the model output has a fixed

bias, 3y, and a random error, ¢,. In this case (3.4) is written as:

m; = 3y + vy + €. (3.14)

12




,

This case was discussed above and yields RMSE? = Z;‘zlw,-,u‘g = B¢. Thus, RMSE, = 5y,
as one would expect. The simulations for this cas2 were performed using 3, = 0.10 and
31 = 1. The computed values for their estimates are by = 0.099 and b; = 1.00. As indicated
earlier, the computed value of the pattern correlation is 0.997, showing a very good fit between
the simulated model output and the observations; again, as expected. The simulated model
output and data are shown in Figuies 3a and 3b. The two show similar patterns. However,

a close examination reveals that the contour values are displaced by =~ 35 = 0.10. Note that
RMSE, = o,,, while RMSE, = 0.099 ~ 4, = 1.

Case B2: RMSE, #£ 0 with .4, #£1

In this case Jy may or may not be zero. We simulated this case with 3, = 0.20 and
31 = 0.80. The computed estimates come out to be by = 0.199 and b; = 0.80. Again,
we expect the RMSE, to be close to o,. In this case the computed value matches exactly.

However, since

N N
RMSEE = ZZ[‘,(!?M — y,)2 = le‘,’[bo + (b — 1)y,-]2.
1=1 =1
depends on both b, and by, unlike the previous two cases, it is difficult to accurately predict
the computed value of RMSE,; when 3; # 1. In our simulations, its computed value is found
to be 0.252.

Sea surface height patterns for the simulated model output and observations are presented
in Figs. 4a and 4b. Even though the two patterns are linearly related, it is difficult to discern
the relationship from such a graphical presentation. The RMSE decomposition into systematic
and unsystematic components, along with analysis of the regression coefficients, bg and b, is

requited to obtain the necessary insight.

4.2 Skewness and Kurtosis

Skewness and kurtosis measures are computed for the differences d; = m, — y;. Whereas
the kurtosis measu e is difficult to interpret, the skewness can be quite revealing. Skewness
provides a measure of symmetry of the differences in the distribution, d;. Note that this

distribution is symmetrical only if 3; = 1, as in the case

m, = By + yi + ci.

13
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This covers the two scenarios of interest: (1) when there is no bias, i.e., o = 0, and (2) when
there is a fixed bias, 3. This is evident from Figures 5a and 5b which present the histograms
for the simulation cases A and B1. When 31 # 1, we have

di = By + (51 — )y + e

Here, the distribution of d; is centered at §;; however, its symmetry is determined by the sign
of (81 — 1). The distribution is skewed to the left if the sign is negative and to the right
when positive. In Case B2, the sign is negative leading to a distribution skewed to the left as
confirmed by the histogram in Figure 5¢c. This is also apparent from the computed values of

skewness in Table 1.

5. SOME FUTURE ENHANCEMENTS

The next version of VERMOD will incorporate several enhancements, including a test
of hypothesis setup for the RMSE decomposition, space-time spectral decomposition, and

empirical orthogonal functions (EOF’s).

We will provide the capability to assign confidence bars to the linear coefficients 3¢ and
31 of RMSE decomposition. This will lead to an objective procedure of judging the systematic

and unsystematic components.

We will also develop/assemble a methodology for space-time spectral decomposition of
gridded fields. This will assist in determining a model's agreement with observed ocean fea-
tures, component wise. Although spectral decomposition does not provide a direct model to
data comparison like the RMSE measure, the component-wise verification can increase the
validity of the model. Such applications require identification of well-established phenomeno-
logical features of ocean dynamics that a model incorporating proper physics and forcings must
produce. Examples of such phenomenon often occur in the literature, e.g., (1) 26-day oscilla-
tions observed in the Western Indian Ocean which were reproduced by Kindle and Thompson
(1989) using monthly averaged wind fields to drive the ocean, and (2) the eddy kinetic energy
in certain frequency bands in the North Atlantic Gulf Stream region (Schmitz and Holland,
1982).

Empirical orthogonal function (EOF) representation of the time series of various oceano-
graphic parameter fields is another useful procedure of reducing the dimensionality and ex-
tracting information. EOF representation has been used extensively in meteorological and
oceanographic analyses. Recent examples from the literature include Hurlburt et al. (1990)

and Carnes et al. (1991) that give useful applications to oceanography.
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5.1 Confidence Intervals for RMSE Decomposition

Having decomposed the RMSE decomposition into systematic and unsystematic compo-
nents, it is now necessary to anchor the methodology in an objective sense by specifying the
p—values along with the estimated coefficients by and b;. Equivalently, we must provide confi-
dence intervals (error bars). In this way, it is possible to determine the degree of conformation
to one of the four classes: (1) no bias Case A, (2) simple linear bias as in Case B1, (3) a simple
linear relationship in which 81 # 0, and finally, (4) wherein the situation is not described by a

linear relationship.

5.2 Spatial and Temporal Spectral Analysis

Spectral decomposition of a space-time series is an important analytical tool often used
in analyzing statistical/dynamical behavior of the ocean. A few examples of the phenomena
that can be studied using space-time spectral analysis are (William Johns, 1989 - personal
communication): meander scales of the Guif Stream, their propagation speeds and their growth
rates. However, we must be cautious in applying it because a space-time series is defined in a
two-dimensional space. It poses greater difficulties than if it were defined on a one-dimensional
space. Space-time series data can be analyzed in three different ways: (1) analyze the data at
a fixed point in space as a simple time series; (2) analyze the data at a single time point as a
series in space, being cautious in this case to define the spatial axis; and (3) consider the data
as a joint space-time series whose analysis provides wavenumber-frequency spectra from which

we can analyze traveling and standing waves.

A spectral decomposition of a space-time series a(z,t), with z as space index and ¢ as
the time index, is described following Pratt (1976) and Halliwell and Mooers (1979, 1983).
Let a(z;,t;) be discrete samples at points z; at times t; where z; and ¢; are equally spaced,
such that z; = :Az and t; = jAt,: = 1,...,M; j = 1,...,N. These series represent the
amplitudes of the process being observed. We can then define three autocorrelation functions.

Two of these corresponding to time and space, respectively, are:

N

Rom(zi,™m) = C(x.',O)zN — m)z —ma(zi, tj)a(zi, t; + Tm), (5.1)
1 M

Rlo(&,tj) = C(0.2 ')(ﬂl — I)Z —la(xi,tj)a(x,' + &,tj). (5.2)
v 1=0
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These autocorrelation functions are normalized respectively by the variances C(x;,0) and

C(0,¢;). The third is the space-time autocorrelation function, defined by

1 M 1 N
Run(€1,7m) = T = m); —zc(xi’o); —ma(zi,t;)a(zi + €t + ). (5.3)

Frequency autospectra can be computed by Fourier transformation of the temporal autoco-
variance function (5.1). Assuming the spectrum is space-invariant, we can average it over
its spatial coordinates. Similarly, the wavenumber autospectra can be computed by Fourier
transforming the spatial autocovariance function (5.2). Averaging over the time domain can

be performed using the assumption that the wavenumber spectra are time invariant.

To compute the wavenumber-frequency spectra, the space-time series a(z;.t;) is first

expanded into temporal Fourier harmonics as

N
a(zi,t;) = Y _[Ca(z;)cos(ant;) + Sn(zi)sin(7nt;)]. (5.4)

The wavenumber autospectra and cross spectra of the functions Cp(z;) and S,(z:), for the
frequency o, and the wavenumber k,,, are given by Wp,,(C,), Win(Sr), Km(Cn,Sr) and
Qm(CnN,SN), where Wy, is the the wavenumber autospectrum for Cp, and Sy, and K,
and Q,, are the wavenumber cospectrum and quadrature for C,, and S,,. The ordinary wave

number-frequency spectrum is:
1 1
E(i'-kma Un) = Z[Wm(cn) + Wm(sn)] + EQA/I(Cna Sn)’ (5-5)
and the total wavenumber-frequency autospectrum, without regard to the sign of k, is
1
T(km,on) = —2-[Wm(C,,) + Wn(S»n)] (5.6)

The contribution from propagating waves is defined to be the difference between E(+k,,0n)

and E(—km,0,) given by
P(kmvan) = Qm(cn, Sn)
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5.3 Empirical Orthogonal Functions

Empirical orthogonal functions (EOFs) are often used to reduce the dimensionality of the
variables under consideration. For instance, consider the ocean model output field {a(¢,z) :
t=1,...,n;z = 1,...,p} such that ¢ is the time index, x is the space (grid point) index, and p
is large. In the Chervin-Schneider (1976) framework, we want to test the hypothesis for change
in the mean sea surface temperature for the grid under consideration. Thus, the hypothesis
pertains to the entire grid and not individual gridpoints. It is well known that testing point by
point does not yield the proper significance at which we are testing; a few individual significance
cases is not equivalent to the significance testing of the entire grid under consideration, and
vice versa. In such situations we can take advantage of the unique decomposition of space-time
data as follows. Let a(t) = [a(1,t),...,a(p,t)]', where prime indicates matrix transposition,

and

A=) a(t)a(t). (5.7)

Let &;,k =1,...,p be the p eigenvectors corresponding to the eigenvalues A;. Then a(t,z)

can be expanded into a modal time series
P
bi(t) = Bra(t) = ) _ow(z)a(z,1), (5.8)
z=1

where ¢, () are the elements of the eigenvector Pi, and Ay are the variances of b(t). Usually,
a few Ax account for a large fraction of the variance and the remaining A, are negligible. Modal
components, bg(t), for only nonnegligible A\ are retained and the remaining are ignored, thus
reducing the dimensionality. Preisendorfer et al. (1981) provide objective rules for selecting
the number of EOFs. Relation (5.8) can be inverted to obtain the space-time decomposition

of the field a(t, z) as:

a(t,z) =) be(t)dx(z). (5.9)
k=1

With this reduced dimensionality we can now perform all statistical tests of hypotheses that

were possible with the original space-time series a(¢, z).
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6. CONCLUDING REMARKS

The current capabilities of the Verification module VERMOD being developed in
ECMOP/INO have been described. Included in VERMOD are several of the capabilities of
VISMOD, the visualization module. The two modules combined together provide an effective
tool to the scientific community for some aspects of model evaluation. Version 1.0 includes
only rudimentary statistical measures to quantify model-data differences. The interpretation
and use of these tools are illustrated by examples in which model output and observational
data are simulated using computer simulations. This current version is being transitioned to
the Naval Oceanographic Office.

The modules, VERMOD and VISMOD, by their nature, will be in a perpetual state
of enhancement. As indicated in Section 5, several enhancement, e.g, space-time spectral
decomposition and empirical orthogonal functions software, will be incorporated. The future
versions will be developed as newer and more sophisticated softwares are included according
to the scientists’ requirements and availability/development of the advanced techniques. It
is anticipated that the majority of future evaluation techniques will be developed within the
modeling groups themselves, and integrated into VERMOD where applicable.

APPENDIX

We show that the cross-product term

N
Zw;(mg —m;) (i —yi) = 0. (A1)
=1
Note that this cross-product term is a sum of two terms:
N N
T+ T = Zwi(mi — my )y, — Zwi(mi — ;)Y
=1 =1

We will show that each of these two terms is zero. We start by obtaining the estimates by and
b; of 3y and 3, by minimizing the sum of the squares Zfil(mi — B0 — B1y:)?. Then

m; = by + b1 yi- (AZ)

The minimization yields the following normal equations:

N
Zwi(mi —bo — bryi) =0,
=1
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N
Zwi(mi — by — biyi)yi = 0.

=1

Using (A2) we can rewrite the normal equations as:

N
Y wi(mi — i) =0, (43)

=1

N

Zwi(mi — )y = 0. (A44)

=1

Note that (A4) is the same as

T; = 0. (A5)

Muitiply (A3) by b and (A4) by b, and add to obtain:
N N
0= wi(mi —i)bo + Y _wi(mi — Mi)bry,
=1 =1

N
= Zw,-(m.' — 17 (b0 + brys)

i
M=

wi(mi — M),
1

i
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