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SUMMARY

In a general sense, this report represents an effort to clarify the relationship of
discrete and continuous wavelet transforms. More narrowly, it focuses on bringing
together two separately motivated implementations of the wavelet transform, the
algorithme 'a trous and Mallat's multiresolution decomposition. It is observed that
these algorithms are both special cases of a single filter bank structure, the discrete
wavelet transform, the behavior of which is governed by one's choice of filters. In
fact, the 'a trous algorithm, originally devised as a computationally efficient imple-
mentation, is more properly viewed as a nonorthogonal multiresolution algorithm for
which the discrete wavelet transform is exact. Moreover, it is shown that the com-
monly used Lagrange 'a trous filters are in one-to-one correspondence with the convo-
lutional squares of the Daubechies filters for orthonormal wavelets of compact sup-
port.

A systematic framework for the discrete wavelet transform is provided, and con-
ditions are derived under which it computes the continuous wavelet transform exactly.
Suitable filter contraints for finite energy and boundedness of the discrete transform
are also derived. Finally, relevant signal-processing parameters are examined, and it
is remarked that orthonormality is balanced by restrictions on resolution.
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1. INTRODUCTION

Wavelets are rapidly finding application as a tool for the analysis of nonstation-
ary signals. [1] - [51 However, with the notable exception of orthonormal wavelets
[61 - [91, very little literature has been devoted to linking discrete implementations to
the continuous transform. As in the case of the discrete Fourier transform, these
implementations (or filter banks) can, and should, stand on their own as abstract
decompositions of discrete time series. Their wide sweeping significance, however,
lies in their interpretation as wavelet transforms. In a general sense, this report
represents an effort to clarify the relationship of discrete and continuous wavelet
transforms. More narrowly, it focuses on bringing together two separately motivated
implementations of the wavelet transform. One of them, the algorithme 'a troust for
nonorthogonal wavelets, [4] - [5], was developed for music synthesis [2] and is partic-
ularly suitable for signal processing. The other, the multiresolution approach of S.
Mallat and Y. Meyer, originally used in image processing, employs orthonormal
wavelets. [61 - [10] The latter algorithm, apart from its wavelet interpretation, was
discovered previously in the form of quadrature mirror filter (QMF) filter banks with
perfect reconstruction where it finds application in speech transmission and split-band
coding. [11] - [13]

A glance at these two algorithms suffices to reveal closely related structures. In
fact, apart from the constraints on their filters, the decimated 'a trous [5] and Mallat
algorithms are identical. We are thus led to examine the expanded family of algo-
rithms encompassing both types of filters. In this vein, it is showr, that the Lagrange
interpolation filters commonly employed by the 'a trous algorithm are actually the
squares (in a convolutional sense) of the Daubechies filters for compact orthonormal
wavelets. We also derive conditions under which the discrete implementation com-
putes a continuous wavelet transform exactly and find that they bear an intimate rela-
tionship to the 'a trous constraints.

From a more general viewpoint the situation is as follows: The algorithms to be
discussed all are filter bank structures (see figure 1.1). Their only distinguishing
feature is the choice of two finite length filters, a lowpass filter f and a bandpass filter
g. The lowpass condition, expressed more precisely as E fk = V/2, is necessary to the
construction of a corresponding continuous wavelet function. The bandpass require-
ment, while apparently not essential to all applications, insures that finite energy sig-
nals lead to finite energy transforms (cf., section 6). Under these conditions the filter
bank output will be referred to as the Discrete Wavelet Transform (DWT), a termi-
nology which will become clear in the course of the report.

One class of DWT filter pairs are the Daubechies filters [81 which yield orthogo-
nal wavelet decompositions and constitute, in more conventional terms, a QMF filter
bank with perfect reconstruction. Another is that for which the lowpass filter satis-
fies the 'a trous condition f'k = 6(k) /\/2. Such filters, which simply serve to interpo-
late every other point, correspond to a nonorthogonal wavelet decomposition. As
mentioned above, if they are further restricted to be Lagrangian interpolators, they

1 Literally, "algorithm with holes", this terminology, taken from [5], refers to the fact that all

the even coefficients of the relevant filter (with the exception of the center) are zero.
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Figure 1.1 A wavelet filter bank structure. The down-arrow
indicates decimation. The output of the transform is the
family of signals w', forming the two parameter transform wn
in the scale-time plane. Following terminology to be intro-
duced, wi is the (decimated) discrete wavelet transform.

become the squares of the Daubechies filters, which is quite remarkable in considera-
tion of the totally different derivations. This also implies that a maximally flat filter
with the same number of vanishing derivatives at 0 and 7r is a Lagrangian interpolator;
a fact which may aid in the design of maximally flat filters. [14]

A fundamental question is when do these discrete implementations yield exact
(i.e., sampled) versions of a continuous wavelet transform? Aside from regularity
conditions relating to smoothness [81, we find that if f is 'a trous, then the DWT coin-
cides with a continuous wavelet transform by a wavelet g(t) whose samples g(n) form
the filter g. Even if f is not 'a trous, the algorithm is exact provided the signal lies in
an appropriate subspace; however, in that instance, the corresponding wavelet
depends on f as well as g. This is the situation in the orthonormal case where, more-
over, the filter g is almost completely determined from f through the constraints of
orthogonality.

In the remainder of this introduction we define, and briefly motivate, wavelet
transforms at various levels of discretization. Section 2 contains an abbreviated
derivation of the 'a trous algorithm followed by a description of the Mallat algorithm.
(The uninitiated reader is particularly referred to [1], [61, [8].) In section 3 we define
the undecimated DWT, relate it to the decimated transform, and provide algorithms
for its computation. Section 4 states and proves several theorems which delineate the
relationship between the DWT and the continuous wavelet transform. It may be read
independently of the algorithms of section 2 although the motivation for the construc-
tions may not be clear. Section 5 defines the Lagrange 'a trous filters and proves that
they are the squares of the Daubechies filters. In section 6, we formulate the inver-
sion problem and provide filter constraints which insure finite energy and bounded
operators. It concludes with a short examination of the tradeoffs involved in choosing
the bandpass filter, emphasizing the differences of the orthonormal and nonorthogo-
nal cases.

TRANSFORM DEFINITIONS

The continuous wavelet transform of a signal s(t) takes the form

2



'a~) f g( Iab ) s(t) dt(1)

where g is the analyzing wavelet, a represents a time dilation, b a time translation,
and the bar stands for complex conjugate. The normalization factor 1/Va is perhaps
most effectively visualized as endowing I W(a,b) 12 with units of power/Hz. Certain
weak "admissibility" conditions are usually required on g(t) for it to be a candidate for
an analyzing wavelet; namely, square integrability and

f IAW1 d w < co (1.2)

where A(w) is the Fourier transform of g(t). They insure that the transformation is a
bounded invertible operator in the appropriate spaces (cf.,,,[8], [16]). If A(w) is dif-
ferentiable, then it suffices that g be zero mean, i.e., that Jg(t)dt = 0, for equation
(1.2) to be satisfied.

In the realm of signal processing, the significance of equation (1.1) is probably
(or, at least, traditionally) best grasped by comparing it to the short-time Fourier
transform:

F(w, b) = f h(t - b) eiwt s(t) dt (1.3)

Thus, to obtain F(w, b), one multiplies the signal by an appropriate window h (such
as a Gaussian) centered at time b and then takes the Fourier transform. In
mathematical terms, equation (1.3) is an expansion of the signal in terms of a family
of functions h(t - b)e')t, which are generated from a single function h(t) through
translations b in time and translations w in frequency. In contrast, the wavelett -b

transform (1.1) is an expansion in functions g( ... b) generated by translations b in
3 a

time and dilations a in time. Thus, the continuous wavelet transform resembles a
(continuous) bank of short-time Fourier transforms with a different window for each
frequency. The significance of this is that, while the basis functions in (1.3) have the
same time and frequency resolution (that of h(t) and 1(w)) at all points of the
transform plane, those of (1.1) have time resolution (that of g(t/a)) which decreases
with a and frequency resolution (that of A(a w)) which increases with a. This property
can be a great advantage in signal processing since high-frequency signal

2 The energy density is given by W da db
a2 , an expression which is intimately linked to

representations of the affine group (cf., [3], [15] - [161). Since a is proportional to
bandwidth, j W I is power/Iz. See section 6 for a discussion of the discrete case.

3 Alternatively, dilations in time may be considered contractions in frequency since the
Fourier transform of g(t/a) is ag(a4,).)
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characteristics are generally highly localized in time whereas slowly varying signals
require good low-frequency resolution.

As originally proposed by Morlet et al. [17], g was a modulated Gaussian

g(t) = eiv t e- tZ/2 , (1.4)

and this function is still the prototypical analyzing wavelet for signal-processing appli-
-tl- -O)2 a 2/2

cations. [1] The window function g(t/a) has Fourier transform A(a w) = ae
which has analysis frequency vola. We emphasize that v0 is simply a parameter
which determines the analyzing wavelet; its role should not be confused with that of a
even though the scale axis is often expressed in terms of frequency under the transfor-
mation a -. vo/a. Observe that, (1.4) only satisfies the admissibility condition (1.2)
approximately (cf., [16], [18]). As expected its bandwidth is proportional to l/a, thus
giving rise to a constant relative bandwidth; i.e., BW/(vo/a) = constant. This feature
is also reflected in the narrowing of the time window at higher frequencies; i.e., at
smaller a. In general, one's choice of the function g is dictated by its time and fre-
quency localization properties (see [3], [18]).

We shall be exclusively concerned with discrete values for a and b. In particu-
lar, we assume that a has the form a = 2' where i is termed the octave of the
transform. The integral (1.1) then yields a wavelet series

g(---, n-)A - t n) s(t) dt (1.5a)
\/g' 2'

We remark that finite energy for the wavelet transform is not at all equivalent to finite
energy for the wavelet series. It depends on the sampling grid as well as the function
g(t). [3] Thus, the admissibility condition (1.2) is not necessarily appropriate in the
discrete case and shall be replaced with conditions on the relevant filters in section 6.
In addition, we shall often take b to be a multiple of a4

W(2', 2in) A 1 f - (-- - n) s(t) dt (1.5b)
V2' 2'

A logical step in applying the theory to discrete signals is to discretize the
integial in (1.5)

4 Physically, this reflects a need for less frequent sampling of the transform output at lower
frequencies (i.e., larger scales a). Mathematically, b - 2'n has its roots in the orthonormal
wavelets where it suffices for invertibility of the transform. [6] The general case, however, is
much more complex. [31 Too sparse a sampling leads to incompleteness; oversampling results
iu a redundant set of functions.
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w(2', 2'n) 1 E g(-- - n) s(k) (1.6)
\/'k 2'

The sample rate has been set equal to one. As indicated by 2'n on the left hand side,
(1.6), as well as (1.5b), are decimated wavelet transforms. Octave i is only output
every 2' samples. In this form the resulting algorithms will not be translation invari-
ant. [7] This is easily seen by substituting s(k-r) for s(k) which produces
w(2', 2(n-r/2')), an integer translation of w(2', 2'n) only if r is a multiple of 2i.
However, the invariance, which is lost by decimation, is easily restored by separately
filtering the even and odd sequences (cf., section 3) or by using an equivalent algo-
rithm, also described in section 3. Our major reason for starting with (1.5b) rather
than (1.5a) is historical. It delineates the relationship of the DWT to the QMF filter
banks and (orthonormal) wavelet structures already found in the literature. [6] - [9]
It also simplifies our derivation of the 'a trous algorithm and readily lends itself to
physical interpretation (c;f., section 6). Note that the original Mallat algorithm [6] was
decimated; 'a trous [4] was not.

Proceeding from (1.6), we shall be able to to arrive at the DWT pictured in fig-
ure 1.1,

[si] = r? f 2n-i [si-']j (1.7)J
[Wiln = - gn-j [si-1]i

J

where [wi'n corresponds to w(2 i, 2'n) of equation (1.6) and so is the original signal s.
The mysterious appearance of the filter f in (1.7) will be unraveled in the derivation of
the 'a trous algorithm in section 2. Finally, we shall come full circle in section 4
where, under quite general conditions, we show the existence of a function g(t) with
g(n) = g' 6 -n and such that the DWT acting on the sampled signal is exactly the
sampled output of the continuous wavelet transform (i.e., of the wavelet series). In
other words, the DWT with filter g defined by gn = gA(n), which was originally con-
ceived as an approximation of the (continuous) WT for an arbitrary analyzing wavelet
gA(t), is exact for another wavelet function gB(t) where gB(n) = gt for all n. Of
course, if there is sufficient regularity, gA(t) and gB(t) will be close since they coincide
on the integers up to the length of g.

Before embarking on this voyage, we summarize, and hopefully clarify, the
plethora of transforms with a brief analogy to the Fourier transform, Fourier series,
the discretized z-transform, and the discrete Fourier transform (DFT). The Fourier
transform of a continuous signal s(t),

cc

S(w) f e- " 't s(t) d, (1.8)
-0

5 The adjoint filter g'- g-k is used to simplify future notation. It corresponds to the in-
tegrand j(-t) * s found in equations (1.1), (1.5), and (1.6).
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is a function of the continuous variable w. Restricting it to a discrete (one-

dimensional) grid results in the coefficixiits of a Fourier series

00

S(27rm) f e - 2, im t s(t) dt, (1.9)

which in turn may be computed approximately by

Sz(27rmAt) = i e2 'im k . s(kat)At, (1.10)
k

the z-transform of sn = s(nAt) output at discrete points e2 rimAt. If s(t) is band-limited
and sampled at an appropriate rate, at = 1/N, then the above may be computed
exactly using the DFT

N 21imkSm , 1 e N Sk (.Im N

These correspond precisely to W(a, b), W(2', n), w(2', n), and undecimated w n . With
wavelets, however, we have the additional difficulty of dealing with a whole class of
functions g(t) rather than simply ei"t. Also complicating things .are its two-
dimensional structure and the decimated versions, which, due to their 2'n dependency
on i, play a distinguished role without analogy in the one-dimensional case.
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2. TWO ALGORITHMS

NOTATION
Decimation, which appears as a down arrow in figure 1.1, plays a pivotal role in

all DWT algorithms. However, it leads to operators which are not time invariant and
present a potential source of confusion. It is thus worthwhile to first establish some
formal notation.

Signals and filters in boldface will be treated as vectors, in which case * indi-
cates discrete convolution and yields a vector. The symbol t will be used for adjoint
filter (ft)k = f-k- Note that this is the complex conjugate reversal and does not imply
a conversion of a column vector to a row vector. The above mentioned decimation
operator is represented by a matrix

Akj  6(2k -j)

-
6 2k,j (2.1)

where 6 ij is the Kroneker delta and 6(k) A 6,0. Also of significance is the dilation
operator

Dkj 6(k - 2j)

= 6 k,2j ) (2.2)

which dilates a vector by inserting zeros. Observe that A and D are transposes of
each other, and that although they are linear, they are not time invariant; i.e., they
are not functions of k -j.

Convolution followed by decimation becomes [A(f * s)]k - Akj [f * s~I =

[f. S*2k  E f2k-mSm. However, a particularly insidious pitfall remains, namely,

(-A), s 6 A (f *s) (2.3)

This associativity problem may be avoided by replacing convolution by f with a
matrix, F, defined by

F ij  fi-j, (2.4)

which shall occasionally be used in our proofs. A trivial calculation yields
AFs = A (f * s). The symbol t will also be used for the adjoint of matrices. This is
consistent with the above notation where (Ft)ij A Fji = fj-i A fit-j-

We define the Fourier transform of a function s(t) by

7



9(w) A f s(t) e -iwt dt , (2.5)

and the z-transform (on the unit circle) of a discrete signal s by

Sz(g )  E sn e-in (2.6)
n

In the subsequent interplay between continuous and discrete functions one must be
careful to distinguish the usage of these two transforms. Ignoring their differences
can easily lead to erroneous conclusions. In particular,

(Af~z() = E f2. e-inw = E fn e-i2nw # fz(2w) (2.7)
n n even

Some comment concerning filter definitions is also appropriate. Usage in the
literature is uniform only up to the adjoint. Also, the z-transform is sometimes
defined with a positive exponential which leads to similar differences in the frequency
domain. In keeping with signal-processing applications we have chosen (2.6) as
above, consistent with the Fourier transform, and we shall define our filters so that
adjoints do not appear in convolutions. This produces a minimum of adjoints and
greatly simplifies the notation. Unfortunately, it also results in the definition
gn= g(n) and the introduction of ft as an interpolation filter whereas g and f would
be more natural. Note, also, that our filters are the adjoints of the filters defined by
I. Daubechies [8], although their z-transforms coincide since [8] defines the z-
transform with a plus sign.

THE *A TROUS ALGORITHM

We take the discretized wavelet series (1.6) as our starting point. The difficulty
in implementing (1.6) is that, even for g(t) of finite support, as i increases, 9 must be
sampled at progressively more points, creating a large computational burden. The
solution posed in [41 is to approximate the values at nonintegral points through inter-
polation via a finite filter fT. The resulting recursion is highly efficient and may be
implemented with the filter bank structure of figure 1.1.

The interpolation is perhaps best introduced with an example. Let ft be the
filter (0.5, 1.0, 0.5). Then,

g(n n even

kfn -2k g(k) = n.1) + g( n+1 n odd (2.8)

approximates a sampling of g(t/2). With the help of the dilation operator D, this may

6Again, we use the adjoint in our definition to simplify subsequent notation.
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be formalized as a general procedure for dyadic interpolation. The steps are illus-
trated in figure 2.1. Let g be a filter defined by gt A g(n). First, we spread gt to
pro-

g(n): g(-1) g(O) g(1) g(2)

Dgt g(-1) 0 g(O) 0 g(1) 0 g(2)

Srt N2

z- g(n/2): g(-1) x g(0) x g(1) x g(2)

Figure 2.1 Diagram illustrating the dialation and interpolation of a
function g(t) : g(n/2) z V2fe * (Dgt).

vide space in which to put the interpolated values. The resulting filter is Dgt. Then,
we apply a filter ft which leaves the even points fixed and interpolates to get the odd
points. This condition, that f be the identity on even points, is sufficiently important
to warrant a separate definition:

Definition 2.1

The lowpass filter f is said to be an 'a trous filter if it satisfies

f2k = 6(k)/%/2 . (2.9)

The /2 is simply a convenient means of including the normalization factor of (1.6) in
the filter. The result of the entire interpolation operation, as pictured in figure 2.1, is
thus

f* (Dgt) ]n = [FtDgt in

- fn-2k g(k) (2.10)
k

,2 g(n/2)

Noting~~~~ -htg---n ~ 2n
Noting that g(- - n) = ) and inserting the approximation (2.10) into

(1.6), we obtain

9



w(2, n) = Zfk-2n-2m gK' Sk
k,ru

E , gn-m' f2m'-k Sk
k,m'

- [g* (A(f * s))]n (2.11)

which is simply w, of equation (1.7) with i = 1. Continuing inductively by replacing s
in (2.11) with si 1, we find that w(2',2'n) z wn1 for all i, where w' is given by (1.7),
which can be rewritten

si+1 = (f * s i) (2.12a)

wi = g *s' (2.12b)

Except for decimation of the output (the undecimated version will be derived in sec-
tion 3), this is the 'a trous algorithm described in [4]. Thus, we see that the 'a trous
algorithm is simply a DWT for which the filter f (an interpolator) satisfies condition
(2.9) and the filter g is obtained by sampling an a priori wavelet function g(t).

Remark 1

The definition (1.6) is not so transparent as it might seem. It is, of course,
intended to reflect an approximation to (1.5). From this viewpoint one might well
consider a change of variables t --. t/2 i before discretizing (1.5). Such a procedure
certainly alleviates the computational problem since it dilates s(t) (that is, samples s at
2', values which are known) rather than contracting g(t). However, unless the original
function s(t) was highly oversampled (which begs the computational question), the
approximation is poor. More precisely, to accurately approximate s(t), and therefore
also (1.5), we must sample at least at the Nyquist rate rnyq for s. Then the integral for
octave i requires g(t) to be sampled at a rate 2 irnyq.

Remark 2

The derivation above, as well as that in [4], of the 'a trous algorithm make no
statements regarding the accuracy of the approximation (2.11) or even of the discreti-
zation from (1.5) to (1.6). The former is iterated over i and, hence, to succeed must
be numerically stable in some sense. This, in turn depends principally on choice of
the filter f. A major step towards treating this question lies in the results of section 4,
as was outlined at the end of the introduction. Since the algorithm is exact for some
g(t), the question reduces to (a) the quality of the approximation g z A and (b) the
effect of this approximation on the wavelet integral (1.1). Inasmuch as g(n) = A(n)
for the finite set of integers n used to obtain g from g(t), it is sufficient that these
functions be smooth enough and decrease fast enough at infinity. Conditions on f
which achieve regularity of the constructed wavelet A are found in [8]. Quantifying
these statements remains a subject for future study.

10



MULTIRESOLUTION ALGORITHM

Mallat's algorithm, illustrated in figure 2.2, has essentially the the same tree
structure as equations (2.12) (cf., [6] - [9]), namely,

si+l = A (h * S) (2.13a)

d i+ 1 = A (g * s i) (2.13b)

In keeping with the literature, we have replaced the filter f with the filter h, which
also serves to indicate that this class of filters is constrained, as detailed below. We

g g

Figure 2.2 The Mallat multiresolution algorithm. The down-
arrow indicates decimation.

remark that none of these filters are 'a trous filters. The constraints on h and g which
insure an orthonormal multiresolution analysis (cf., [6] - [9]) are

.h.2-n h2j-m + g2 -n g2j-m = 6nm (2.14a)

Zh 2n-jg 2mj = 0 (2.14b)

E gn = 0 (2.14c)
n

Ehn = %/2 (2.14d)
n

Recalling that Hij A hi- j and that A& = D, we may rewrite (2.14a) and (2.14b)
as

(HtD) (AH) + (GtD) (AG) = I (2.15)

(AH) (G t D) = 0 (2.16)

11



Furthermore, (2.15) and (2.16) imply (e.g., multiply (2.15) on the left by AH t )

(AH) (HID) = I

(AG) (G t D) = I (2.17)

Tbus, HtD and GtD are injections and (2.13) is an orthogonal decomposition of the
discrete signal s'. That is, s' - 1 = HtDsi + GtDwi with the scalar product
(HtDsi) (GtDw i) = 0. In fact, equation (2.15) is a paradigm for inverting the
transform. These concepts are illustrated in figure 2.3.

si-1 A .H i s-. .() - HtD s

AGI GtD

dG d

Figure 2.3 Illustration of a single stage and its inverse in the
multiresolution algorithm for orthonormal wavelets.

Furthermore, from (2.14) it follows that (2.13) represents a wavelet decomposi-
tion (see [6], [8], [9]) as follows: There exists a scaling function 0(t) whose Fourier
transform is given by

$( H ) jhH(h ) (2.18)
i-1

Expression (2.18) forms the basis of a recursion,

1-,7- (2 (2,19)

which in the time domain takes the form

0(t) = \/h-kV2 0(2t -k) (2.20)
k

With some additional computation (cf., section 4), one may demonstrate that the
translates and dilates of q,

12



1 tOnt) A 7, ( --- n (2.21)

have the property

0' +'(t) E [AH1.k Ok(t) (2.22)

Note that the above definitions differ in the sign of i from those of [8].

Finally, define

k(t) £ = E V2 g-k 0(2t - k) (2.23)k

Then, using (2.14) and the above properties of 0, one can show that the family of
wavelets,

~nV) __1 .- - n) (2.24)

are orthonormal ( 0" tin(t) a(t) dt = 6ij6 nk ), and that the d' are the coefficients of the
expansion of s(t) in terms of the ir.

More precisely, the integer translates O(t - k) of the scaling function form a
basis for L 2(R), and

d/= 7i-f s(t) 0(- - n) = f s(t) V'(t) (2.25)

provided

so = f s(t) 4(t-k) (2.26)

Then, if s(t) is in L2(R), the expansion of s(t) is

s(t) = dn bn,(t) (2.27)
in

This follows from (2.25) and orthonormality since completeness of the O(t - k)
implies completeness of the bin(t) .

It - g(--n) of (1.5) are not generally orthogonal. It is the filter

constraints (2.14a) and (2.14b) that insure orthonormality. Dropping these two constraints in
section 4, we develop a structure identical to (2,21) - (2.24); however, the constructed gi-(t)
need not be orthogonal.

13



Until recently, the only known wavelets with compact support (i.e., zero outside
a finite interval) were the Haar functions, generated by ik(t) - 1 for 0 < t < 1/2; -1
for -1/2 < t < 0; and 0 elsewhere. Ingrid Daubechies (cf., [8], [19]) has uncovered
an entire family of finite length filters satisfying (2.14), demonstrating that the
corresponding wavelets defined by (2.18), (2.23) and (2.24) are orthonormal as a
consequence of (2.15) - (2.16) and have compact support since they were generated by
finite length filters (cf., section 4, equation (4.10)) The first two of these filters are

ht - (1, 1), (2.28a)

and

h= 1 (1+V'3, 3+V3, 3-/3, 1-V/3) (2.28b)

where the first component of h is on the left. The wavelets corresponding to (2.28a)
are exactly the Harr function mentioned above.

Some additional remarks relating the two algorithms are in order. The condi-
tions (2.14c) and (2.14d) effectively make g a bandpass filter and h a lowpass filter
(e.g., an interpolation filter) with the sum on gk analogous to the condition
fg(t)dt = 0. Also, d'+ 1 and wi correspond; the additional decimation appearing in
(2.13b) would not appear in a translation invariant version of Mallat's algorithm (cf.,
section 3). On the other hand, although the discrete filters g play algorithmically
identical roles, the gl(t) of the 'a trous algorithm are not the wavelet vectors of a func-
tional expansion. Rather the gi(t) and n(t) are the duals of a set of vectors for

which coefficients of the signal expansion are w2n and di respectively (cf., [31, [15]).
That is, they are the coefficients of an expansion of the form s(t) =

<s, Obn> ?'T(t) where < > indicates the L 2 inner product, and i is the dual basis orin

frame (see [3]) of On. In Mallat's algorithm, since the a/4(t) are orthonormal, the
basis and its dual coincide. Thus, in many senses, the discrete filters g are more fun-
damental than the wavelets themselves. Even in the orthonormal case, it is usually
the coefficients which are of major interest; the actual wavelets 0,(t) or the duals of
the gn(t) are rarely computed.

Finally, in anticipation of section 5, let us form the squares of the two previous
examples

* h -- (1, 1)* 7(1, 1) - (1/2, 1, 1/2) (2.29a)

and

h* h - ( -,0,-, 1, -9- 1 O -- L) (2.29b)
16 16 16 16

where * indicates convolution, and h given by (2.28a) and (2.28b) respectively. Note
that the filters f = h* h /V2 are 'a trous filters and that the interpolation equation
(2.10) holds exactly if g(t) is a polynomial in t of degree one or three respectively.

14



3. WAVELET TRANSFORMS WITHOUT DECIMATION

As has often been pointed out [71, the recursions (2.12) and (2.13) are not, in
general, translation invariant. In contrast, the original undecimated 'a trous algorithm
(cf., [41, [51), which is pictured in figure 3.1 and consists entirely of convolutions, is
patently translation invariant. In this subsection we shall use that property to provide
a formal definition for an undecimated discrete wavelet transform w-, then demon-
strate that w = i and also show that is computed by the algorithm of

figure 3.1.

....... s i  31 a s + "' -- FD + fS
i +  .......

D+'

Figure 3.1 The (undecimated) discrete wavelet transform.

The filters D'f are obtained from f by inserting 2'-1 zeros

between each pair of filter coefficients. The operation of

filtering is understood to mean convolution.

Let Tm be the operation of translation by m; i.e.,

(TmS)n Sn_m (3.1)

In order to include the dependency of wi on s° , we add it as an argument, writing
w'(s°). Equations (2.12a) and (2.12b) become

Wi(s 0 ) = G (AF)' so  (3.2)

(Recall that G i A gi-j.) Finally, we shall have need of the following important identi-
ties, which are proved in appendix A: For any F of the form Fij = fi-j,

Lemma 3.1

(F)imk (AF) 0 km (3.3)

and

15



Lemma 3.2
i-I

(AF)ink e i  -= e i2 n w HI f.(2Jw) (3.4)k j-0

As expected, wi is not translation invariant,

[W'(TmS°)]n = E [G(AF)'Ink Sk-m

k
- ~[G(ZAF)1nk+nS

E [G(AF)'n-m,k skk

For example, [AF]i j - f2i-j $ [AF]o,i-j. However, if we replace m by 2im in (3.5)
and use Lemma 3.1, the last step becomes an equality so that

[w'(T 2im s0 )]n = [wi(s 0)In-r m  (3.6)

Thus, translating so by 2im translates octave i by m.

Note that the zeroth element of a series is invariant under decimation so that wn
and i should coincide at n = 0. Using this fact, we obtain the nth output of the
undecimated discrete wavelet transform by translating the signal back by n samples
and taking the decimated transform at time zero. More precisely,

Definition 3.1
Define the undecimated discrete wavelet transform i in terms of the decimated

transform w by

Ain [=i~(s 0 )] n A [w'(T..s 0 )]o , (3.7)

We see that the desired invariance is achieved,

[wi'(Tm s O)]n = [w'(T-nTms°)Io

= [w'(Tm-nS°)IO

= [w(S)]n-m . (3.8)

It is also clear from (3.6) and (3.7) that sampling wv" every 2i points produces exactly
wi, that is,

wn  21n (3.9)
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Next, we show that v may be computed by the filter sequence pictured in
figure 3.1. The proof is obtained by taking z-transforms. From (3.2) and (3.7)

EVi e-inw Z [G(LfF)'iOm Sm+n e - inw
n mn

= E [G(LfF)'i 0 m eimw sz(w) . (3.10)
m

Applying Lemma 3.2 to (3.10), we have

(w) i e-inw
n

i-I

gz(2i w) 1 f.(2Jw) s,(w) (3.11)

where i = 0 is understood to mean there are no factors of f.. As described in the
next paragraph, this is exactly the z-transform of the algorithm pictured in figure 3.1.

It is easy to see that D'f is f with 2'-1 zeros inserted between every pair of filter
coefficients and that its z-transform is f,(2'w). That is,

D'] f./2i n =2im 3.2
[D'f]n = { othe (3.12)

and

(D'f) = f (2iw) (3.13)

Equation (3.11) is then equivalent to

si+ 1 = (D'f) * si  (3.14a)

i= (D'g), s' (3.14b)

where so . s. This is essentially the original (undecimated) 'a trous algorithm found
in [4] and [5]. However, we would like to emphasize that, since the development in
this subsection has not made use of any filter constraints, the general equivalence of
the decimated output of the algorithm pictured in figure 3.1 (equations (3.14)) and
that of figure 1.1 (equations (2.12)) follows for arbitrary filters.

An alternative implementation

A second possibility for the implementation of ii is to use the algorithm in figure
1.1 and proceed directly from equation (3.7). That is, to output wn, one simply
translates the signal by n and then computes w . As an algorithm, this takes the form
(a) compute wo; (b) translate the signal by one sample; (c) go to step (a). Moreover,
in view of (3.6), one need not reperform the entire recursion (i.e., equations (2.12))

17



for every time point n in order to obtain %,. Rather, at each octave, the decimation is
replaced by a split into even and odd sequences, each of which is a starting point for
the next octave (cf., figure 3.2). A few examples suffice to convince one that if, at
octave i, n mod 2' = 0, then one takes the upper branch; if n mod 2' = 1, then one
takes the lower branch. A rigorous derivation follows from the formula (cf., [20]).

T 2 S eve n  m even
ATm S = m-1 (3.15

T 2 Sodd m odd

(%1)2n
(%0)n

(Wi))

(s0(S

odd S 3

(w; )2n+l

Figure 3.2 Diagram of an implementation of the undecimated DWT.

We remark that figures 5 and 6 are computationally equivalent provided that the
algorithm in figure 3.1 is implemented efficiently. The code must bc written so as to
omit multiplication by the zero elements of filters D'f. (They are mostly zeros for i >
2.) Depending on the number of octaves, the computational burden still remains
much greater than that of the decimated algorithm (i.e., figure 1.1); however, there is
considerable parallelism which may be sufficiently exploited on suitable hardware to
produce a realtime implementation. [51

18



4. THE DWT AS AN EXACT WAVELET TRANSFORM

Regardless of the filters used, one can, of course, perform the recursions (2.12)
or (2.13) on the sampled signal s. Moreover, provided that f (respectively, h) is
lowpass and g bandpass, the procedure may be interpreted physically as a bank of
proportional bandwidth filters (cf., [211 - [24], also section 6). In the present section,
we examine the mathematical significance of relaxing the filter constraints (2.9) and
(2.14). Our goal will be to relate the more general filter bank to the continuous
wavelet transform, thus, in a sense, justifying the term DWT. In this endeavor, the
major questions we shall address are: for what functions g(t) is the recursion (2.12) an
exact implementation of (1.6) and for which g(t) and s(t) do (1.5) and (1.6) coincide?
The general answer is that we are able to construct such a g provided the discretized
signal lies in the appropriate subspace (cf., equation (2.26)). A somewhat surprising
result is that it is necessary and sufficient for f to be 'a trous for condition (2.26) to be
dropped. Our approach shall be to mimic the construction of orthonormal wavelets
outlined in section 2.

CONSTRUCTION OF THE SCALING FUNCTION
We begin with the stipulation of the existence of a scaling function 0(t) with

Fourier iransform

(w) 1-I~ ~jf ) (4.1)
j-l

where fz,(w) = (f) (w) is the z-transform of ft. To emphasize the nonorthogonality
of the corresponding wavelets, we retain the symbol f rather than h. Note that this
function 0 need not have (and in general does not have) all of the properties of the
orthonormal 0 outlined at the end of section 2.

For (4.1) to converge to a nonzero function, the factors must approach one.
Thus, f2(O) = 1, which implies

Efk = V2 (4.2)

k

Even though could be normalized differently by the inclusion of a factor in (4.1),
the filter f must necessarily obey the lowpass condition (4.2); i.e., (2.14d). Note also
that, under the chosen normalization, f 0(t)dt = (O) = 1. However, without some
additional conditions, the relationship of 0(t) to 0( c) remains somewhat tenuous.
Even under pointwise convergence, the limit may be a, highly discontinuous, fractal
function. 19] Suitable regularity conditions for the inverse Fourier transform of a pro-
duct of the form (4.1) to converge to a reasonably behaved (e.g, LI(R), L2(R), and/or
continuous) function may be found in [81 and [25]. The results are summarized in
appendix B.

A time domain representation of (t) in terms of f can be derived from (4.1).
Let X be the indicator function of [-1/2,1/2)

19



f1 for t E [-1/2, 1/2) (4.3)
X(t) a1 other

From (4.1) and Lemma 3.2, it is not difficult to see that

0,(t) = limn E ((AF))0 k V/2i X(2Jt - k) (4.4)
1.--,o k

In fact, the Fourier transform of (4.4) is8

-kW (# i f1 Wo sin(w/2i+l)

e E1 =-mn Ft 2i w/21+l (4.5)
i--oo k O e 2 i-...o j-1I

which is just (4.1). Note that the existence of the function (4.4) could have been
taken as the starting point for our analysis, since our proofs will not make use of
(4.1).

We continue our parallel with the development of Mallat's algorithm in section 2.
Define 0'(t) by

Definition 4.1

6i~)-1'V2..__ .1 tn) (4.6)

V' 2'

Then, substitution of 2't - n for t in (4.4) and the use of Lemma 3.1 yield

%/2' 0(2't - n) = lim E ((zAF)J)ok V2i+i'(2i+'t - 2in - k)
j.oo k

= lim E ((AF)-i)0k_2 -\/2vf V (2it - k)
j--*oo k

= lim E ((AF)'-')nk \/2ix(2it - k) (4.7)
j--+o k

On replacing i by -i, this becomes

0(t) = Jim E ((AF)j+')k \/2ix(2it - k) (4.8)
J--oo kt

This equality is immediate from Lemma 3.2 and j(w) - (2sin--)/.
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An immediate consequence of (4.8) is

n = [AFlnk (4.9)
k

paralleling (2.22). Thus, we see that, despite their lack of orthogonality, the 0'(t)
have retained most of their structure. Furthermore, if f is a finite filter, then 0(t) has
finite support. [8J More, precisely, suppose the coefficients of f are zero outside
[-N-, N+]. Let rIJ(t) =a ((,1F)i)0k V2J (2t - k). Then, rqi(t) converges to 0(t), and,
as in (4.7), we have

r/i+(t) - Z fI rJ(2t - k) (4.10)

k

We find, for example, that q1i is zero for t < ti where tj = (til - N)/2. With
to = -1/2, and with a similar calculation for the right half interval, it follows that
0(t) = lim 7ij(t) is zero outside [-N-, N+].

EXACTNESS

To avoid confusion and stress their differences, let us first recapitulate some
definitions. Four different transforms W(a, b), W(2', 2'n), w(2', 2'n), and w, have
been mentioned ((1.1), (1.5), (1.6) and (2.12)). We retain a terminoloy parallel to
Fourier transforms, namely, wavelet transform (WT), wavelet series , discretized
wavelet series, and discrete wavelet transform (DWT) respectively. The first two
transforms involve integrals of a continuous signal; the latter two contain sums of
sampled signals. The first three utilize a continuous wavelet function g(t), the last one
employs the discrete filters g and f. For consistency, we shall continue our develop-
ment using decimated transforms; however, the results hold without change for unde-
cimated transforms. This follows immediately, since they coincide for n = 0, and the
undecimated transforms may be obtained at time n = no, by translating the signal by
n0 samples and taking the transform at n = 0. (See section 3 where definition 3.1
remains valid for W(2', n) and w(2', n)).

Our starting point shall be a signal s(t) and discrete filters f and g with w' defined
by (2.12) or d' by (2.13), i.e.,

Si+ l  A F s

w= G s' (4.11)
di+l a i

Recall that the matrices Fij and Gij are given by fi-j and g.i respectively. Of course,
we must also specify an initialization of the recursion (4.11) for some i; for example,

9 At times, we shall prefer the term sampled WT rather than wavelet series in order to em-
phasize its role as a restriction of the continuous transform.
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for the zeroth octave so. The obvious choice is

s s(n) ; (4.12a)

however, we shall also consider

So 2 E 6(k - n) s(k) (4.12b)
k

which relates to the discretized wavelet sc-ies w(2', 2'n), and

0o A f (t - n) s(t) dt (4.12c)

which corresponds to the sampled WT (wavelet series). For a given g, we shall con-
struct a continuous function g(t) such that the DVT of equation (4.11) is an exact
implementation of the discretized wavelet series under (4.12b) and of the wavelet
transform under (4.12c).

Define g(t) by

g(t) Z (t +k)k = 6 (t-k)g , (4.13)

k kk

and g,(t) by

1 t
.= g(=" - n) (4.14)

Then, using (4.6), (4.9), (4.13), and (4.14), we have

tg' Wt 2- g(- - n)1

gt 1V2-" - -n --k)

= E n-
k

= S [G(AF)i]nk 6°(t) (4.15)k

If we take (4.12b) as the definition of so, the discretized wavelet series (equation
(1.6)) takes the form

w(2', 2n) A S (n) s(m)
mkc

- iE G (-F)'Inlk 6°(m) s(m)
m



= [G (AF)' so]. (4.16)

which, by (4.11) is exactly wn . Furthermore, under (4.12c) we have (again using
(4.15))

W(2 i, 2in) f ji(t) s(t) dt

= f E [G(AF)']lk 00(t) s(t) dt

= k[G (zAF)')nk f s(t) s(t) dt
kk

= [G (AF)' so]. , (4.17)

again wn

Finally, let us investigate the significance of the 'a trous condition; i.e., of the
constraint (2.9), f2k = 6kO/lV2. We prove the following theorem:

Theorem 4.1

f is an 'a trous fEter .*> O(n) = bno.

Proof
Letting i = -1, n = 0, and t = n in equation (4.9) gives

O(n) = E (AF)o k /2 0(2n - k) (4.18)

k

Then,

O(n) = 6nO =: V2 f2n = bn0 (4.19)

Conversely, suppose that f2n = bno/V/2. Then, since X(-k) = 6k, equation (4.8)
with i = 0 and t = 0 implies

6(-n) = lim (AF)ji 0 %/2j

= lim E (AF)jlfnk (AF)ko \2/2i-1
j--oo k

= lim (AF)J-ln0 V'2ij--*oo

.. nim (AF)ro%/2 = 6no (4.20)

The import of theorem 4.1 quickly follows. Equation (4.12b) implies (4.12a) for
arbitrary signals if and only if 0(n) = 6nO. Thus,
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Corollary 4.1

The algorithm (4.11) is an exact implementation of the DWT with so set equal to
the sampled signal if and only if f is an 'a trous filter.

Furthermore, g is also related to g(t) by sampling:

Corollary 4.2

If f is an 'a trous filter, then g(t) defined by (4.13) satisfies g(n) = gt.

It remains to investigate the role of d'. Define

VA(t) A V2 g(2t) = -/2 E gk 0(2t + k) (4.21)
k

which coincides with (2.23). Then, provided so satisfies (4.12c), (4.11), and (4.17)
imply

dn- (Awi-1)n

W~n 1

= f 2 gn1(t) s(t) dt

n f ( 9)i (t) s(t) dt (4.22)

Hence, although the (0.)(t) are not orthogonal, the Mallat algorithm still computes
the wavelet transform. Of course, under (4.12a) and 'a trous, or for (4.12b), we have
the counterpart of (4.16)

d()(k) s(k) (4.23)

k

It is interesting that, in a sense, the decimated wavelet transforms (1.5b) and (1.6)
contain superfluous information. That is, they are underdecimated by a factor of
two, and, thus, w' properly belongs to octave i + 1.

SUMMARY

Let us summarize the results of this section. We are given discrete filters f and g
such that (4.4) is well defined. Define g(t) by

g(t) E 0~(t -k) gt (4.24)
k
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with corresponding transforms sampled WT (wavelet series)

W(2', 2'n) A f i(t) s(t) dt (4.25)

and discretized wavelet series

w(2 i, 2'n) A gi(k) s(k) (4.26)
k

Let On - s stand for the scalar product E 0n(k)sk, and On(t) s(t) for the L2 scalar pro-
k

duct f On(t) s(t). Then:

f is 'a trous g(n) = gn (4.27)

For s discrete:

Sn = On" S =- w(2', 2 in) =w (4.28a)

s= sand f is 'a trous => w(2', 2'n) = Wn (4.28b)

For s(t) continuous:

Sn = n(t) (t)S W(2', 2'n) = wni (4.29)

Define $(t) A V2 g(2t). Then the corresponding properties hold for d' with g(t)
replaced by $(t); i.e.,

n = n(t)'s(t) - dn = f (9-)ni (t) s(t) (4.30)

Sn = On" S or
= sand fis'a trous - dn = k ($)i(k) s(k) (4.31)

k

The above results extend immediately to thc undecimated transforms, W(2', n),
w(2i , n), and w'n by translation invariance and Definition 3.1.
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5. LAGRANGE INTERPOLATION FILTERS

A reasonable class of 'a trous interpolators to consider for equation (2.10) are
those that are exact for polynomials P(t) of degree < M for some M, i.e., for which

1 n( -
V2P(-) = k fn-2k P(k) (5.1)

For reasons that will become clear very shortly, we shall call these filters Lagrange 'a
trous filters. Since the 'a trous filter f satisfies f2k = 6ok/V'2, equation (5.1) is an
identity for n even. Let a contain the odd components of ft,

V2 f2k-1 for k > 0

ak %/2 f~k+ 1  fork <0 (5.2)

11 for k = 0

Then (5.1) is equivalent to

P(2') = E 0ak P(n -k)+ Z ak P( n_1 -k) nodd (5.3)
k>O 2 k<0

for all polynomials P of degree < M. We proceed to express the ak in terms of
Lagrange polynomials, and to show that the above conditions are cs3entially
equivalent to f = h * ht where h is an appropriate Daubechies filter.

CONSTRUCTION OF THE FILTER a

First, we parameterize the family of filters a satisfying (5.3) by M+1, the dimen-
sion of the space of polynomials for which it must hold. For such a relationship to
exist, one must relate the length of the filter (the number of unknowns) to M. To
accomplish this, we shall assume that a has exactly the minimum number of coeffi-
cients needed to satisfy equation (5.3) . We further assume that a has symmetric sup-
port; i.e., there is an N such that ak = 0 for IkI > N and ak $0 for IkI = N. This
assumption is not unreasonable, at least for symmetric wavelets g(t), since there is no
a priori reason to distinguish between t and -t, and one would even expect a to be
symmetric. We shall see, in fact, that the weaker condition of symmetric support
joined with the previous constraints implies that a actually is symmetric.

The minimum number of coefficients (unknowns) equals the dimension of the
space, i.e., satisfies 2N = M+1. Thus, the sums in (5.3) go from 1 to N. More-
over, since for any n, the polynomials Q(x) A P(x - (n-l)/2) also form a basis,
equation (5.3) is equivalent to

N -N
P(-) = E ak P(l-k) + E ak P(-k) n odd , (5.4)

2 k= k--1
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which must hold for all P(x) of degree < 2N-1.

We pick out the kth coefficient by letting P be the Lagrange polynomial

f (x - i)
L NI(x) a 30, i, j in [-N+1, N] (5.5).n j -i

rl i

Then, L 1 (k) 6jk , so that replacing P in equation (5.4) with L 2 N,  we get

aj = L- ( 1 forj = 1, N (5.6a)

a = L N1(-) for j = 1, ... ,N (5.6b)

Inasmuch as the Lagrange polynomials L 2N- 1 form a basis for polynomials of degree
less than or equal to 2N - 1, these ak are in fact the unique solution to (5.4).

It is also straightforward to see from (5.5) and (5.6) that a is symmetric, i.e., for
j>0

j ~l- >$ 0$rI (1/2 - i) .I.(-1/2 + i) .1.(1/2 - i)

i= H (-j + 1 - i) (-J + i) .H - i) - (5.7)
iol-j )0j

In summary, we have

Theorem 5.1

Let f be an a trous filter, i.e.,

f2k - 1 60k (5.8)

Assume, furthermore, that f is real with symmetric support described by
k ( 1-2N+1, 2N-11. Then, f is a Lagrange 'a trous filter, that is, (5.1) holds for all
polynomials P of degree < 2N-1, if and only if the odd components of f are deter-
mined by equations (5.6). Furthermore f is necessarily symmetric.

RELATIONSHIP TO DAUBECHIES (QMF) FILTERS

In [8], Ingrid Daubechies constructs essentially the entire class of finite length
filters h which satisfy (2.14) and fulfill suitable regularity conditions on (2.18). Expli-
citly, they take the form

t(z) = + ( z))N Q(z) (5.9)

where (z) a h _z - ' is the z transform of h, and Q is an appropriately constrained

27



polynomial. (In this section it is convenient to express the z transform as a polyno-
mial which we denote i(z) where hz(w) = fi(eiw).) The derivation uses a specific g,
which up to a phase factor is given by

gn = (-1)n h(1 - n) , (5.10)

and, as a consequence, (2.14a) reduces to

AhhtD=I (5.11)

In other words, [hht]2n = 60n, which is the 'a trous condition for hht/V2. Finally, if
Q is taken to be of minimal degree (which turns out to be N - 1), IQI2 is unique. [8]
In other words, the squares of these filters are characterized completely by satisfying
(2.14d) and (5.11),tand being of the form (5.9) with degree 2N -1. We proceed to
show that the h * h equal the Lagrange 'a trous filters.

Let h be the Daubechies filter of order 2N. Since h * ht is symmetric, the above
conditions are equivalent to

N N
1(z) 2A h * ht = 1 + Z bk Z2k - 1 + bk Z- 2k+l (5.12a)

1 1

and

A(Z) + z)11 (1(1 + z-1))N 0(z) Q(z- 1) (5.12b)

That is, V2 f = h * h* if and only if f(z) is of the form (5.12a) - (5.12b) and is of
degree 2N - 1 in z (respectively, in z-1).

Next, we show that the bk coincide with the ak of equation (5.3). We multiply
(5.12a) by zn for an arbitrary integer n,

N N
Zn 1(z) = z n + E b k Zn - l + 2 k + Z bk zn+ 1 - 2 k (5.13)

1 1

The 2N zeros at z = -1 in (5.12b) imply that

di(znfg(z)) = 0 i = 1, ... , 2N-1 (5.14a)

and since B(-l) 0, we also have
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N

2 bk = 1 . (5.14b)
1

Next, we note that

= m n(m-1)- (r-im +l) (1)m- fori >0. (5.15)
0z)-1

Define a set of polynomials Pi by

Pi(x) A 2x(2x- 1) ... (2x-i+l) (5.16)

Finally, setting the ih derivative of the right hand side of equation (5.13) at z = -1 to
zero, using (5.15) and definition (5.16), we obtain

Pi('E') = E>bk Pi(-n- +k) + E bk Pi(--' - - - k) (5.17)
2 k>o k>O 2

where i = 1, ... , 2N-1. The signs work out since n-1+2k-i and n+l+2k-i have
the same parity while n-i differs. Define P0(x) - 1. Then, since the polynomials
P0(x) and Pi(x) for i = 1,..., 2N-1 form a basis for polynomials of degree < 2N-1,
and since equation (5.14b) implies (5.17) for i = 0, equation (5.17) must hold for arbi-
trary polynomials P(x) of degree < 2N - 1. Replacing Pi by P in equation (5.17) and
setting ak = blkI yields equation (5.3).

Conversely, Theorem 5.1 implies that if a satisfies equation (5.3) for all polyno-
mials of degree < 2N-1 and has symmetric support, then it must be symmetric.
Clearly (5.17) must be also be satisfied. From (5.2), this is equivalent to (5.12a) and
(5.14) with N/2 f(z) replacing A (z) where f(z) is of degree 2N - 1 in z and the also in
z- 1. Letting n = 1 (or 0) in (5.14a), we see that f(z) has 2N roots at z = -1. Since f
is symmetric, f(z) must also have the form (5.12b). We conclude that N/2 f = h * h*
where h is a Daubecbies filter. Thus,

Theorem 5.2

There is a one-to-one correspondence between the squares of the Daubechies
orthonormal wavelet filters h of length 2N and the Lagrange 'a trous filters f of length
4N - 1 given by f = h * ht/V/2.

Note that one can compute the h of length 2N by taking all possible square roots
of the Lagrange 'a trous filters f.10 f is easily computed from (5.6) where its even

10 During the revision of this report, it was brought to the author's attention that an implicit

relationship between the squared filters and Lagrange interpolation had been independently
noted in private conversations between 1. Daubechies and Ph. Tchamitchian.
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components are given by f2k - 6ko//2, its odd positive components by f2k-1 = bk for k
= 0 to N, and for odd negative k by symmetry. Also, the spectrum of f,
!(eiw) = I fi(eiw) 12, presents a convenient method of computing the power spectra of
the h's. In another vein, since the h are maximally flat filters (i.e., have the same
number of vanishing derivatives at z = 1 and z = -1), Theorem 5.2 shows that a maxi-
mally flat filter is a Lagrangian interpolator, a fact which may aid in the design of
such filters. [14]
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6. WAVELET FILTERS IN SIGNAL PROCESSING

This section has its roots in a question which originally motivated the author to
undertake this study: Inasmuch as the 'a trous and Mallat algorithms share the same
recursions, why not choose the Daubechies filters since they enjoy the additional
advantage of orthonormality? The strongest arguments in favor of orthonormality
seem to be mathematical elegance, ease of inversion, and, more subtly, good numeri-
cal properties. The major drawback is a lack of flexibility in filter design, in particu-
lar, an essentially fixed relative bandwidth. On the other hand, we have seen that the
DWT has a firm analytical basis independent of the 'a trous approximation, even in
the nonorthogonal case. In the present section, we shall briefly examine the issues of
inversion, boundedness, and adjustable relative bandwidth. (Another fundamental
issue, regularity of the associated wavelet functions, appears in appendix B.) In par-
ticular, we wish to establish conditions under which these properties obtain,
expressed directly in terms of the filters f and g rather than in terms, for example, of
the scale function 0(t) or wavclet Vb(t). This view is in the spirit of the DWT as an
entity in its own right, and it is certainly a necessary element in deciding which filters
to use in practice.

Any software realization of the wavelet transform only implements a finite
number of octaves. Mathematically, this reduces inversion to an algebraic question,
one of finding filters which satisfy certain (not overly restrictive) equations. How-
ever, other considerations begin to come into play. Exact inversion requires finite
filters, and, even then, exceedingly long filters may not be useful. Moreover, the con-
strained problem is considerably more difficult to solve. An alternative approach,
approximation by truncated infinite filters, might be acceptable, but, once again, prac-
tical considerations dictate that the filters decay quickly. Similarly, the behavior of
the DWT at infinity (i.e., wi as i goes to infinity) becomes relevant. For example, the
condition E g. = 0, the discrete counterpart of (1.2), is not necessary for inversion

of a finite number of stages. However, it is necessary for finite energy and bounded-
ness, which are desirable properties inasmuch as they reflect directly on the numeri-
cal stability of the algorithm and/or its inverse (see, for example, [3]).

INVERSION

To invert either the decimated or undecimated discrete wavelet transform 1 it
suffices to invert a single stage (octave); that is, to find si, given si+1 and wi+ l or V+1.
The equations for inverting the decimated algorithm are exactly analogous to those for
the Mallat algorithm pictured in figure 2.3. One seeks two filters p and q which invert
a single stage of the decimated DWT in figure 1.1; i.e., such that

si = PDs'+' + QDsI+l

= (PD) (IF) si + (QD)(AG) s' (6.1)

More properly to invert a finite number of stages; see next subsection.
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Equivalently,

(PD)(AF) + (QD)(AG) = I , (6.2)

where I is the identity matrix. This type of equation, which in the frequency domain
may be separated into two equations comparable to (2.14a) and (2.14b), has been
treated extensively (but not exhaustively) in the subband coding literature (cf., [12],
[13], or even [8]). The QMF filters of the Mallat algorithm satisfy (6.2) with
gz(wV) = fz(w-+r), p = f t , and q = gt (i.e, equations (5.10) and (5.11)). A less res-
tricted class is of the form p = ft and q = gt. The general class of filters satisfying
(6.2), so-called biorthogonal filters, are examined in [26] and [271. It should be
emphasized that for perfect reconstruction in applications all filters must be of finite
length. This does not imply that infinite filters implemented by their truncations are
not worthy of consideration. [26]

For the undecimated algorithm the requirements for inversion are much less
stringent. In order to invert a stage of the algorithm of figure 3.2, the filters p and q
need only satisfy (cf., figure 6.1)

Si ,si+ + q * j-i+1

= (p*f + q*g),* s (6.3)

That is,

p*f + q*g = 6 (6.4)

where the Kronecker delta, 6 A 60,m., is the identity for convolution. This is a single
equation, and much more tractable than (6.2). If the polynomials formed by the z-
transforms t(z) and J(z) are relatively prime, one may apply the Euclidean algorithm
for the greatest common divisor (in this case, one) to find p and q. It has the advan-
tage that finite f and g lead to finite p and q. Another method is simply to solve the
equation in frequency space,

pi(w) f,'(w) + q(w) gz(w) = 1 (6.5)

There is almost too much flexibility in solving this equation, although it becomes
much more restrictive if one demands that the filters be finite or rapidly decreasing.
Once again, a popular choice [28] is f, f, + gz g = 1, which, for example, can be
solved for gz by taking the square root of 1 -If21 as long as I( W)I < 1, ('or, vice-
versa, it can be solved for f4). The Daubechies (QMF) filters h/V/2 and g/\/2 cer-
tainly satisfy this equation so that inversion for the undecimated version of the Mallat
algorithm is immediate. Another case, useful in signal processing, is to choose f to
be 'a trous, p = ft/2, and g any filter with nonvanishing spectrum except possibly
where f(w)I equals V2 (cf., next subsection). Important questions of numerical
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stability, filter lengths, etc.,certainly remain to be answered, but are well beyond the
scope of the present report.

Si  f go Si+i Si  P Si+ 1

g9 q

;i+i ;i+i

Figure 6.1 Illustration of a single stage and its inverse for the
undecimated algorithm found in figure 3.1.

Finally, before departing from this subject, it should be mentioned that inversion
of the undecimated case in the form of figure 3.1 also follows from (6.4). The invert-
ing filters are just D'p and D'q. It is a simple matter to verify that (6.4) implies that

(D'p) * (D'f) + (Diq) * (D'g) = 6 (6.6)

(Inserting zeros in 6 just yields 6.)

FINITE ENERGY AND BOUNDEDNESS
The discrete wavelet transform is a mapping of sequences sn, n = 1, 2, ... into

the space of doubly indexed sequences wn, i,n = 1, 2, ... Finite energy for the sig-
nal is simply

I sn, 2 < co (6.7)
n

One's initial tendency is to look for the same condition on the wavelet transform,
i.e., E Iw'I 2 < oc. However, the actual situation is not quite so transparent.

i,n n

Referring back to the continuous case, we have [16]

f Is(t)1 2 dt = f IW(a, b)1 2 dadb, (6.8)
a2

i.e., the weight (measure) dadb/a 2 results in units of energy. For the DWT, a = 2i

and db is either I (the undecimated case) or 2i (the decimated case). Discretizing and
noting that da /a = d(lna), we see that
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da db (1n2) ,i Ab 1n2 b(6.9)

a2  2' 2'

since Ai = 1 . Observing that octave i has a bandwidth, up to a constant factor, of
1/2' , we assign (6.9) the following physical interpretation: The discrete wavelet
transform is in units of power/Hz. Multiplying by the bandwidth 1/2' gives power,
and additional multiplication by the time interval Ab gives energy. Note that the
decimated version only outputs every 2i points so that in that case Ab = 2'. In sum-
mary,

(i) Iwi 2, II2 are in units of power/Hz.

(ii) Octave i has bandwidth = 1/2 i .

(iii) ]i]2/2i and Iwn 2 are in units of energy.

One should take care to note that for wi, the energy weight da db/a 2 is a constant

independent of i so that Iwi12 is discretized in a fashion so as to be both power/Hz
and energy.

Let SI s 1 _ Is.l2 be the squared norm of s, and define
n

1 1

II g, 112 lim sup-- I I 11 , (6.10)

which corresponds to the DC energy (i.e., at w = 0). Finally, define the energy of the
DWT by

1

I 2-'  II i112 + II go112 (6.11a)
2'

E = 1 1w'11 2 + IIsll2 
. (6.11b)

Energy conservation takes the form of the following Parseval's relationship for
discrete wavelets:

Definition 6.1

A particular choice of filters f and g is said to be energy conserving if

II1112 = C(Z _ I I1 2 + IIg11 2 ) (6.12)
12'

Oie may also specify conservation for decimated transforms, in which case the 2' is
dropped.
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Except for some clarifying remarks at the end, we restrict the discussion in the
remainder of this subsection to the undecimated DWT. Following the above defini-
tions, we see that the wavelet transform will have finite energy if and only if

Zi 1-i 112 + I lIg2 < 00 (6.13)

This is a necessary condition for the mapping i', from 12(Z) to 12(Z 2 ; 2- i, 1) to be
bounded. Of course, in practice, implementations never compute an infinite number
of octaves. Nevertheless, the property (6.13) of finite energy can be quite important.
Unbounded transformations tend to have poor numerical behavior even when trun-
cated. Similarly, the inverse will not be bounded unless the series (6.13) is bounded
below. A wavelet representation which has these properties,

A I 12 < -1 1 Vl~iI1 + IIgool 12 < B ISH , (6.14)
21

is called a frame (cf., [31, although here the ambient Hilbert space is 12 rather than
[2(R).) We proceed to derive conditions on the filters f and g for (6.14) to hold.

Figure 3.1 implies that

Isi+( ) 2 + f Iiw1 ( c)I 2 = f (If,(Riw)I 2 + Ig(2i.)j 2 ) Isi(,.)I2 (6.15)

Suppose that

max ,(_,)l2 + Igz(W)1 2 ) < 1 (6.16)

Then, in the time domain, (6.15) and (6.16) imply

1 i+ 112 + - i+1112s -7 1 -7 I < 2 lil (6.17)

Adding I ;Vil 12/2i to both sides and repeating for decreasing octaves implies that

I1 11 2 + Y _ ;V 112 < I S1 2 .
2J+l IIS + <j ' i  (6.18)

Finally, letting J go to infinity, we get not only (6.13), but also the right inequality of
(6.14) with B = 1.

tlowcvcr, the condition (6.16) is much too strong. That is, the transformation
g -+-C g for a large enough constant C would cause (6.16) to be violated even
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though C has no effect other than to multiply the total energy by a constant. In fact
the filters f and g produce finite energy transforms if and only if f and Cg yield finite
energy. Thus, to have finite energy, it is sufficient to find a C > 0 such that
max (1f2(w)12 + C Ig(w)l 2) < 2. Such a C exists provided that Ifz(W)12 < 2 and

1 2

(1/2) Ig7(c)1 2/(1 - L If,(W)12) is finite; i.e., is less than some finite B = 1/C. A

similar argument holds for the lower bound. If

1

min (If,(,)l- + Igz(W)1 2) 1 , (6.19)

then equation (6.18) holds with the inequality reversed and the left inequality of (6.14)
holds with A = 1. Once again, we apply the trick with the constant C and find that,
for the inverse to be bounded, it is sufficient that there exist A = 1/C > 0 such that
(1/2) Ig (W)l2/(1 - 1- If,(w)I 2) > A. In summary,

Theorem 6.1

A sufficient condition for the undecimated DFT iv and its inverse to satisfy
(6.14) (that is, to be bounded) is that, for all w, If'(W)12 < 2 and

0 < A1K 2Igz(w)l 2

< A < < B < o (6.20)

To satisfy (6.20), one must have f (w) = 2 < gz(w) = 0, and the multiplicities of
the corresponding roots must be identical. Note, also, that (6.20) can be used to give
an estimate of B/A, the so-called tightness of the frame.

Whether these conditions are also necessary remains an open question. One
can, however, show from equation (3.11) and an examination of the power i(w) at
w = 0 that a necessary condition is gz(0) = 0 (equivalently, E gn = 0). This is the

n

discrete analogue of the admissibility condition (1.2). The author conjectures that in
the discrete case it is not a sufficient condition. (We remind the reader that even in
those cases for which the DWT is exactly the sampled WT, finite energy of the con-
tinuous wavelet transform does not imply that of the discrete transform.) We do
have, however,

Theorem 6.2

A necessary and sufficient condition for energy conservation (equation (6.12t)is
that for all w

2-(If (w)L + - g,(,), - 1 (6.21)
2 C
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To prove this, we may, without loss of generality, set C = 1 (i.e., redefine g by the
constant factor C). Sufficiency follows as above, with inequalities replaced by equali-
ties. To prove necessity, we first note that energy preservation for arbitrary signals
implies the energy must be conserved for each stage. (For example, if the signal is
s , energy must be preserved, and since it is preserved for so, the first stage must
preserve energy.) From (6.15) this implies (6.21) with C equal to one.

The decimated case seems to present problems. For the above proofs to carry
over, the even part of the si nal would need to compensate for the lack of the factor
1/2 in (6.11b), but I IS,,vnl 1- 1/2 1 Isl 2. This problem presents yet another area
for additional research.

RESOLUTION AND RELATIVE BANDWIDTH

Considerable insight may be gained by viewing the algorithm in the frequency
domain. One stage of the decimated DWT, illustrating equations (4.11) from this
point of view, is pictured in figure 6.2. Since we are dealing with the discrete wavelet
transforms, 9(z) = 9(e"w) is evaluated on the unit circle. For convenience only the
positive frequencies are pictured. Briefly, the algorithm is

(a) Bandpass the upper half of the spectrum to yield wi.
(b) Lowpass to obtain the lower half of the spectrum ( [0, 7r/21).
(c) Decimate to expand the lower half to [0, 7r].
(d) Go to (a).

In somewhat more detail: We first obtain the high-frequency information by using g
to filter the upper half of the spectrum of s'. The filter output is w'. Then, in prepara-
tion for the next octave, s' is lowpass filtered by f. This retains the, as yet unexam-
ined, low-frequency contents and also prevents the upper half of the spectrum from
aliasing (i.e., contaminating the low-frequency contents) in the dilation which follows.^12

Finally, the operator A spreads -the remaining energy to fill the spectrum, producing
octave i + 1. The procedure then repeats itself, s'+' is bandpass filtered to get the
spectral contents at frequencies which are, in absolute units, one-half the frequencies
of the previous octave.

A potential problem is immediately apparent. If the bandwidth of g,(W) is less
than 7r/2, a portion of the signal energy will be discarded; it never appears in w'. One
possible remedy is to make g, sufficiently broad; however, that would limit the resolu-
tion. Alternatively, we may introduce so-called voices. That is, we can employ a
bank of filters of the type g (see figure 6.3) in order to cover the entire upper half of
the spectrum.

12 A, which decimates, is a contraction, Its Fourier transform A is thus a dilation.
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3-7 2V l oV

0 7r/2

Figure 6.3 Plot of the power spectra of the bandpass filters
for four voices where A(w) is given by (6.23).

We formalize some of these concepts using the modulated Gaussian of (1.4) as
an example. With the introduction of an additional parameter /3, g(t) becomes

g(t) ei~ e-B:t /  (6.22)

Its Fourier transform is given by

g(w) = - e- (6.23)

We define the bandwidth of g(w) as twice the interval between points for which the
modulus of (6.23) drops to l/e of its peak value, i.e.,

BW A 2V/23 . (6.24)

The filter g is the sampled version of (6.22), that is,

gn A eiv n e - 02 n2/2 (6.25)

For convenience, we set the sample rate equal to one. The following three
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restrictions on v and f6 are necessary: First, in order that g(W) lie in the upper half of

the spectrum (cf., figure 6.2), we require that

r < V (6.26a)2 -

Next, in order that g(t) be admissible and analytic (cf., [18]), we demand

0 ! E (6.26b)

Under (6.26b), g(w) - 0 for w < 0. ([181 recommends 3 < v/5 as being sufficient.)
Finally, in order that the spectrum not be aliased, we set

v < r - V20 . (6.26c)

These may be summarized in

max(21rO, ir/2) < v < 7r - 12,6 (6.27)

At this point a word of caution is advised. The bandwidth of the discrete filter g
(e.g., (6.25)) is 2%/2 0 only when the sample rate is 1. Since the ith octave is the
result of i decimations by 2, sampling the original. signal so at a rate At = 1 results in a
Nyquist frequency of 7r/2' for octave i (i.e., for s'). Thus, the central frequency of g,
considered as a filter on octave i is v/2', and its bandwidth is 2\/203/2'. For this rea-
son, it is simpler and less ambiguous to speak in terms of a relative bandwidth which
is independent of sample rate. More precisely, we define

RBW =A BW (6.28)
mean frequency (

(Any appropriate representative of the "center" of the filter can replace the mean fre-
quency in (6.28).) In the case of g, we have

RBW =(2Xfl/2i) - 2/2i3 (6.29)
(v/2') V

Also, since 7r/2 < v < 7r, we have 2/2B/, < RBW < 4V%2f/ir, or approximately

f < RBW < 20 . (6.30)

In view of (6.30), we shall consider the parameter 3 as, essentially, the relative
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bandwidth of g.

The number of voices M that we would expect to need to cover the upper half of
the spectrum is

M- ir2 ~ 1 (6.31)2V203 2/3

The filter for voice j, which we denote jv, is determined by sampling the function
g(t/aJ), i.e.,

(iv)n A g(n/oJ) for j = 0,..., M- 1 and a At (6.32)

The power spectra of the iv are illustrated in figure 6.3. An alternative would be to
define the voices as frequency translations of the filter g. However, (6.32) seems to
be a more natural definition since it maintains the affine structure. (It is equivalent to
taking a nondyadic value for the dilation parameter a in equation (1.1).) Note that the
bandwidths of the voices decrease with j, and the spectral spacing 2V2,3/aJ differs
somewhat from that assumed in (6.31).

Control over the relative resolution is important because, although the absolute
resolution (/3/ 2i) improves at higher octaves, at the same time, the analysis frequency
decreases. If one wishes to improve resolution at a given frequency, one has to better
the relative resolution, i.e., decrease 03. On the other hand, the standard tradeoffs
apply to choosing /3. Small /0 increases the relative resolution but also requires more
voices and a longer filter g; thus, more computation. (The duration of g(t) is on the
order of 2V/2// so that to provide a reasonable approximation to (6.22), the length of
g must be proportional to 1//3.) Moreover, the increased length of g implies a wor-
sening of the (relative) time resolution. The time-bandwidth product is bounded
below by the uncertainty principle, and no amount of computation will simultaneously
produce arbitrarily small time and frequency resolution in a single wavelet transform.

With respect to choosing the lowpass filter f, we note that the spectrum of a
longer filter f will generally have a a sharper cutoff. This cutoff is relevant because it
prevents the energy in the upper half of the spectrum from leaking (aliasing) into the
lower half under the decimation, . For most applications, a Lagrange 'a trous filter
of length 7 (N = 2) is sufficient. [51 One can, of course, also use the asymmetric
filters h. Their discrimination of temporal direction seems intriguing, but remains
uninvestigated.

Finally, how do the above considerations relate to orthonormal wavelets? The
power spectra of filters h and g obeying (2.14) satisfy (cf., [81, [20])

1 h() 12 + I g (-) 2 = 2 (6.33a)

and
Ih,(0)I = Igz(±,)I - ,2 (6.33b)
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It follows that, for positive frequencies (likewise, for negative frequencies), g and h
must each maintain a bandwidth on the order of 7r/2. 13 Thus, in exchange for ortho-
normality one relinquishes control over bandwidth. The relative bandwidth is, essen-
tially, fixed at (7r/2) / (37r/4) = 2/3. On the other hand, if one wishes to give time and
frequency localization equal weight (e.g., /3 = 1 so that bandwidth = duration 2/2),
a relative bandwidth in the neighborhood of 2/3 is in a sense optimal.

13 The larger the value of N, the more rapid the asymptotic convergence of (w) to zero; i.e.,

as w --+ oo. (8] This hints at a smaller bandwidth for 4' and, hence, also for g, for large N.
However, the speed at which the 4((,) fall off near w - 0 appears to be fairly insensitive to N.
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7. CONCLUSION

We have seen that the 'a trous algorithm bears an intimate relationship to
Mallat's multiresolution algorithm. Originally devised as a computationally efficient
implementation, it is more properly viewed as a nonorthogonal multiresolution algo-
rithm for which the discrete wavelet transform is exact. Moreover, the commonly
used Lagrange 'a trous filters are simply the convolutional squares of the Daubechies
filters for compact orthonormal wavelets.

From a broader viewpoint, these two algorithms are instances of the discrete
wavelet transform (DWT), which, in more conventional terms, is simply a filter bank
utilizing decimation and two filters. There are two basic versions of the DWT, one of
which is simply the decimated output (octave i is decimated by 2i) of the other. The
decimated DWT is characterized by octaves: (a) obtained by alternating a lowpass
filter f with decimation, and (b) tapped by a bandpass filter g to produce the output.
The undecimated DWT inserts i zeros between the elements of the filters at octave i
in lieu of decimation. (In the case of voices, several g's are used.) Finally, we note
that under very general conditions, there exists a function V(t) such that the filter
bank outputs w, correspond to he sampled wavelet transform

V),(f- - n) s(t) dt, thus, justifying the terminology discrete wavelet transform.
V2' 2'

The personality of a given DWT is distinguished by the choice of filters. If f
satisfies the 'a trous condition fn = 6n0//2, then g is the sampled version of V$(t);
i.e., gn = $(n). If finite length f and g obey the constraints of the multiresolution
algorithm, then the V2i(4)(2it-n) are the compact orthonormal wavelets. A
number of fundamental constraints have been discussed. In various combinations
they have a bearing on the regularity of the wavelet function, on the energy in the
transform domain, and on the boundedness and invertibility of the transform. In par-
ticular, we have provided a set of conditions on the filters sufficient for the transform
and its inverse to be bounded. The signal-processing properties of the discrete
wavelet transform depends particularly strongly on the choice of g. The general con-
straints mentioned above are not very restrictive on g; however, there is considerably
less freedom in the orthonormal case. In particular, if orthonormality is a require-
ment, the half bandwidth of g (and, hence, the relative bandwidth of the wavelet) is
no longer adjustable. It remains fixed at approximately 7r/2.

Many topics remain for investigation. Although considerable work has been
done in finding filter pairs which have a complementary set for the inverse transform
(cf., [8], [26], [27]), it is far from exhaustive. The equivalence of maximally flat filters
(with equal order roots at 0 and 7r) with Lagrange 'a trous filters as a design tool is
perhaps worthy of investigation. Many of our filter conditions on energy are suffi-
cient but possibly not necessary; a tight set of necessary and sufficient conditions for
boundedness would be desirable. Finally, an investigation into the quality of the
approximation of the DWT to the sampled WT in the case where it is not exact could
be fruitful. It would perhaps lend more insight into the role of the regularity of the
wavelet function in particular applications.
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APPENDIX A - PROOF OF LEMMA 3.1 AND ! EMMA 3.2

Lemma 3.1

(AF)imk = (AF)i 0 k_2im (A.1)

Proof
For i = 1, we have

(AF)mk = f2m-k = (AF) 0 , k-2m (A.2)

Then, by induction,

(AF)imk = .f2m-j (AF)i-jk

= f2m-j (AF)i-ok_2i-'j

f-j (AF)i-10,k-2'-lj-2'm

= .f-i (AF )i-l j,k-2im

= (AF)',k_2im (A.3)

Lemma 3.2

i-I

(AF)ink eikw = ei2inw H f((2jw) (A.4)
k j-0

Proof
For i - 1, we have

S(zF)n elk = Z f2n-k eikw
k k

E ei
2

n w f (,) (A.5)k

Then, by induction,

i-2

I (AF)ink eikw = E (AF)nk eik(2i- ' w) H fz(2Jw)
k k j-o

i-I

= ei 2'nw H f (2'w) (A.6)
j-o

A-1



APPENDIX B - SUMMARY OF FILTER CONSTRAINTS

The discrete wavelet transform Zi and the decimated discrete wavelet transform
wi (or d') are defined for arbitrary filters f and g by

S = (D' f) *s (B.la)

Zi = (D'g) * s' , (B.b)

and

si+ = A(f'ks i) (B.2a)

wi = g* si  (B.2b)
di+ l = A wi , (B.2c)

respectively. Also,

Wn = 2'n (B.3)

In essentially all applications f is a lowpass filter and g is highpass. This rather vague
ualification is quantified below.

That is, in addition to the above definitions, it is expedient to impose auxiliary
conditions on the filters to insure (a) that the DWT is related to some WT with a rea-
sonably behaved scale function 0(t); (b) that the transform have finite energy and be
a bounded transformation; and, often, (c) that it be invertible. The algebraic condi-
tions for invertibility are found in equations (6.2) and (6.4). At the time of this
report, no single set of necessary and sufficient conditions exist for the satisfaction of
(a) and (b). Indeed, the definition of "reasonable behavior" of the scale function ulti-
mately depends on the application. In an attempt to provide some degree of organiza-
tion, we first list the candidate constraints, loosely labeled as lowpass, highpass, or
energy conditions. We then summarize their consequences. If either of the filters is
infinite it is assumed to satisfy the decay condition (cf., [8], [251)

( such that E IfnIn' < oc (B.4)
n

CANDIDATE CONSTRAINTS

(i) lowpass

E f =V2 (B.5)
n

I1

(i.e., lfz(0 ) 1)

B-1



(ii) energy

1- [f ( )l12  < 1 (B.6)

(iii) lowpass

12f,(w) = (1 + e")N 1(w) (B.7)

where I"y(w) I < C < 1

(Note that (B.7) implies that fz(ir) = 0)

(iv) energy: c, mp!ementary lowpass/highpass pair

1 1 2

0 < A < < B < oo (B.8)
1 - If (W )2

Equation (B.8) implies

(a) highpass

Z gn = 0 (B.9)
n

(i.e., g_(O) - 0)

(b) lowpass/highpass

1- = 1 =: g (w) = 0 (B.lOa)

g"(W) = 0 f ±Irz(W)I = 1 (B.10b)

(v) energy

2(Irz(w)12 + C g(w) 2) - 1 (B.11)
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IMPLICATIONS

Necessity for pointwise convergence of (4.1) to k(w): (B.5)

Sufficiency for (4.1) and (4.4) to converge in L1(R), and L2 (R) to contimuous
0(t) and c(w) respectively: (B.5), (B.6), and (B.7).
This is one of the central results of [81, which also incaudes an examination of
the decay of 0(t) and other regularity properties. Note, that an important class
of wavelets which do not fall under the domain of this theorem is the Haar
wavelets (cf.,equation (2.28a)). Pointwise convergence still holds for the Haar
wavelets, but they are not continuous.

Necessity for for finite energy : (B.9).

Sufficiency for finite energy and that the transformation be bounded: (B.6) and
B < ooin (B.8).

Sufficiency for a bounded inverse: (B.6) and A > 0 in (B.8).

Necessity and sufficiency for energy conservation : (B.11).
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