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ABSTRACT

Knowledge acquisition is often considered a "bottleneck"

in the development of expert systems. This study conducted a

review of 14 knowledge acquisition methods with a survey of

knowledge types, task characteristics, and representation

schemes. All of the knowledge acquisition techniques are

considered deficient in their ability to capture a

representation of an expert's mental model and procedural

knowledge.

Cognitive feedback and the lens model, drawn from Egon

Brunswik's probabilistic functionalism, are proposed as an

alternative knowledge acquisition methodology. Cognitive

feedback's theoretical underpinnings are explained as are the

various uses to which it has been put. A summary of the many

research studies conducted into the effectiveness of cognitive

feedback is presented. An automated knowledge acquisition

tool using cognitive feedback is proposed and illustrated with

state transition diagrams and sample computer screens.
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I. INTRODUCTION

A. GENERAL

Expert Systems are rapidly gaining in popularity

throughout a wide range of applications. The fascination with

these systems is evidenced by the increasing number of expert

system related articles appearing in academic journals and

business publications (Olson and Rueter, 1987). Successful

expert systems are currently being used to solve problems in

such diverse fields as space shuttle crew planning, oil

drilling, tactical air targeting, tax planning, Soviet radar

systems identification, and wine selection (Waterman, 1986).

An expert system is a computer system that uses the

experience and knowledge of one or more experts within a

particular problem domain. The expert system's knowledge base

is its store of domain specific knowledge and is symbolically

represented, usually but not always, in the form of facts or

rules. The knowledge base is kept separate from the reasoning

mechanism or inference engine. These are the methods by which

the symbolic knowledge is manipulated to arrive at a solution.

Knowledge engineering is the term given to the entire process

of information accumulation, representation, and manipulation.

Central to the knowledge engineering process is the

acquisition of knowledge from an expert. (Boose, 1986)
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The acquisition of knowledge is one of the most difficult

steps in the development of a knowledge base. This is due to

the differences that exist between an expert's knowledge and

what he or she can successfully articulate. What cannot be

articulated is known as implicit knowledge and few methods are

able to extract this from an expert. A gap is created in the

body of knowledge acquisition techniques because most of the

methods rely on the expert to consciously access information

or they assume some underlying organization. The cause of

this gap is that some knowledge may not be consciously

accessible or known, a priori, to exist in a particular form.

(Berry, 1987)

Cognitive feedback is a technique that returns some

elements of output from a decision maker's cognitive

processes, enabling the decision maker to solve a problem more

effectively. This process captures and refines the decision

maker's judgement rules, permitting the application of the

knowledge again at some point in the future. Research has

proven the effectiveness of this technique as an aid for

representing domain knowledge (Balzer, Doherty, and O'Connor,

1989). Cognitive feedback is proposed to fill the gaps that

exist in the body of knowledge acquisition techniques.

1. The Importance of Knowledge Acquisition

The knowledge in an expert system may be derived from

many different sources: textbooks, reports, data bases, case

2



studies, empirical data, and personal experience. The primary

source, however, is the domain expert, the individual with the

expertise in the field of interest. The knowledge engineer

must usually obtain this knowledge through direct interaction

with the expert. (Boose, 1986)

The knowledge acquisition phase is central to the

development of an expert system because the power and utility

of the resulting product is dependent upon the quality of the

underlying representations. The determinants of that quality

seem to rest with domain knowledge rather than the complexity

of the formal reasoning methods employed. This is because

many difficult tasks resist the exact specifications necessary

for traditional algorithmic methods. (Garg-Janardan and

Salvendy, 1987)

2. The Proolems of Knowledge Acquisition

Knowledge acquisition is the crucial first step in the

development of expert systems. In traditional methods of

standard software development most of the time is spent on

coding. However, most time spent on the development of expert

systems is consumed by this first step, the planning and

deciding of what knowledge to include, followed by the actual

extraction of the information from the expert. (Harmon and

King, 1985; Waterman, 1986)

The actual elicitation of knowledge is highly

problematic because experts possess much information that is

3



cognitively complex, pragmatic, and tacitly formulated.

Getting at this information is not possible in a standard

interviewing situation that deals predominantly with facts

without recourse to their schematic foundations. Often the

expert will not be able to adequately access the knowledge so

it can be easily represented in a program. It is also

difficult to determine when that information is correct,

consistent, and complete. (Berry, 1987)

3. Implications for Expert System Development

The time required by the knowledge acquisition phase

consumes an inordinate amount of the six to 24 months it takes

to develop an expert level prototype (Boose, 1985). The

traditional approach to knowledge acquisition uses a knowledge

engineer who typically spends a period of "apprenticeship"

within the domain. The knowledge engineer must also be well

versed in several f elds of computer science and computer

systems. Such incividuals are becoming increasingly harder to

find as the pace of demand outstrips the supply of knowledge

engineers. (Shaw and Gaines, 1987a)

The reliance upon knowledge engineers creates problems

for knowledge acquisition in other ways, as well. The

knowledge engineer-expert interaction is often mismatched

because the engineer is usually a novice at the outset. They

will not be seeing the same thing even when both are

discussing the same phenomena. This results in an inability
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to take account of the greater abstraction possessed by the

expert and risks development of a shallow and narrowly useful

knowledge base. The knowledge engineer, in effect, acts as an

imperfect filter for the knowledge that is passed from the

expert to the knowledge base. (Berry, 1987) This continuing

reliance upon human labor is contrary to other trends within

the industry. The human labor expenses become a dominating

constraint as prices for system technology drop. (Shaw and

Gaines, 1987a)

B. THE PROBLEM

The background has presented two primary problems with

respect to the knowledge acquisition phase of expert systems

development. First, the nature of expert knowledge is such

that much time is spent on extracting it. Once obtained there

is no guarantee that it truly reflects the knowledge actually

held by the expert.

Second, the use of knowledge engineers in traditional

roles hinders translation of expertise and knowledge from the

expert to the knowledge base. The shortage of knowledge

engineers only exacerbates this problem by contributing to

project delay and increased cost.

C. THESIS OBJECTIVES

This study has three primary objectives. The first is to

determine what gaps exist in current knowledge acquisition
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methodologies. Of special interest are those techniques which

purport to extract the implicit or tacit types of knowledge.

A second objective of this thesis is to determine whether

cognitive feedback is appropriate as a tool for filling the

gaps that exist in knowledge acquisition. Effort is primarily

directed toward determining if cognitive feedback is capable

of extracting types of knowledge that other techniques cannot.

The third objective is to determine how cognitive feedback

can be put to use for extracting an individual's knowledge.

To this end, the high level specifications of an automated

knowledge acquisition tool will be generated.

D. RESEARCH QUESTIONS

This study will address three primary questions. The

first is: Can any of the current knowledge acquisition

techniques satisfactorily elicit the special knowledge that

experts possess? Secondarily:

-- What is the nature of an expert's knowledge?
-- Once the knowledge is elicited, what are the ways of

representing this knowledge?
-- Can the nature of a task influence the knowledge

acquisition strategy?
-- Are some acquisition techniques more suited to one type

of task than another?
-- What are the strengths and weaknesses of each knowledge

acquisition methodology?

The second question addressed by this thesis is: Can

cognitive feedback be used in the knowledge extraction

process? Secondarily:
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-- What is cognitive feedback and what are its theoretical
underpinnings?

-- How is cognitive feedback operationalized?
-- Is cognitive feedback better than other types of

feedback?
-- How is the knowledge captured by cognitive feedback

represented?
-- Has cognitive feedback been empirically validated?
-- Are there other uses for cognitive feedback?

The last question addressed is: Can cognitive feedback

can be used in an automated knowledge acquisition tool?

Secondarily:

-- What is a likely high level specification for such a
tool?

-- How would the tool work?
-- Can such a tool decrease reliance on knowledge

engineers?

E. SCOPF

This research focuses on determining whether cognitive

feedback can make a contribution to the field of knowledge

engineering. The gaps uncovered in the current knowledge

acquisition techniques, with information drawn from studies on

cognitive feedback, will be considered for a high level

specification of an automated knowledge acquisition tool.

This research does not involve empirical studies of any kind.

The actual cod4ng of the automated knowledge acquisition tool

is the subject of a follow-on thesis.

F. ORGANIZATION OF THE STUDY

This thesis is divided into three main sections excluding

the introduction and conclusion. The first major section,

7



Chapter II, is a survey of current knowledge acquisition

techniques. The chapter begins with background regarding the

various types of knowledge and how an expert's knowledge is

unique. Different knowledge representation schemes and how

these are important to knowledge acquisition are presented.

Task characteristics are detailed along with a theory for

their classification. The body of the chapter is composed of

a brief summary and a list of advantages and disadvantages for

each of 14 knowledge elicitation methods.

The second major section, Chapter III, concerns the theory

from which cognitive feedback has been derived, Brunswik's

probabilistic functionalism. The operationalization of the

theory, in the lens model, is presented and the notion of

feedback in general is discussed. Cognitive feedback is

defined in detail and contrasted with another form of

feedback, outcome feedback. The mathematical representations

of the knowledge captured by cognitive feedback are outlined.

Empirical studies regarding the effectiveness of cognitive

feedback are summarized.

The third major section, Chapter IV, is a proposed

automated knowledge acquisition tool that uses cognitive

feedback. It is set within the context of a simple personnel

evaluation for promotability task.
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II. KNOWLEDGE ACQUISITION TECHNIQUES AND
METHODOLOGIES: A SURVEY

A. INTRODUCTION

Knowledge Acquisition has long been recognized as the

"bottleneck" in the development of expert systems (Harmon and

King 1985; Waterman, 1986). The source of this difficulty

lies in the varied and intricate nature of expert knowledge.

Any expert has knowledge that is explicit and objective, as

well as knowledge that is more implicitly formulated (Hawkins,

1983). The latter is usually very difficult for experts to

articulate (Broadbent, Fitzgerald, and Broadbent, 1986).

Knowledge acquisition techniques that consist of standard

interview methods or unstructured think-aloud protocols may

bias the knowledge engineer into fixating on those aspects of

the task that can be well represented within if/then, rule

based systems. The resulting knowledge base may then lack

vital components of the expert's knowledge (Bainbridge, 1979).

It is important to recognize then, that a domain expert

will possess knowledge of several different kinds (Berry,

1987). Each type of knowledge demands a technique that can

most effectively capture it. The technique must transform this

knowledge to a representation suitable for the inference

strategy used in the problem solving process. Rather than use
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a single knowledge acquisition technique, several techniques

should be employed, with each matched to a different kind of

knowledge (Gammack and Young, 1985).

The nature of the task is an important feature that should

be explored when the components of an expert's knowledge are

investigated. The nature of the task is salient in that it

determines the possible strategies an expert uses to complete

or solve a task (Hogarth, 1974). When the particular problem

solving task is isolated and identified, the type of knowledge

necessary to solve that nroblem, independent of any particular

implementation, should be analyzed and described. This

enables the knowledge engineer to decompose the expert's

compiled knowledge and to identify discrete tasks, types of

knowledge being processed, and the relationships among the

data, facts, and procedures (McGraw and Riner, 1987).

Before describing the role that cognitive feedback can

play in the knowledge acquisition process it is necessary to

identify where gaps in the current methodologies and

techniques exist. This chapter presents a survey of the

current state of the art in knowledge acquisition by first

examining knowledge types, knowledge representations, and task

types. This is followed by an analysis of different knowledge

elicitation techniques.

10



B. TYPES OF KNOWLEDGE

Selection of the appropriate knowledge acquisition

technique requires that the knowledge engineer recognize the

type of knowledge within the domain under investigation.

Major problems within knowledge engineering include

recognition and analysis of domain knowledge and selection of

an appropriate knowledge acquisition technique. There exists

today several methodologies for the classification of

knowledge, no one of which is universally accepted. McGraw

and Riner employ a widely accepted scheme to classify

knowledge into four basic types: procedural, declarative,

semantic, and episodic. (McGraw and Riner, 1987)

1. Procedural Knowledge

This includes the skills that an individual knows. It

may involve an automatic response to a stimulus, and can be

reactionary in nature. Such skills are deeply ingrained and

linked sequentially, one step serving as the trigger for

completing the next. This knowledge is implicit and highly

compiled so that the expert will have great difficulty in both

identifying and verbalizing it and therefore is of primary

interest to knowledge engineers (McGraw and Riner, 1987).

When individuals master increasingly more knowledge to carry

out a task efficiently, they also lose awareness of what they

know. This has been called the "paradox of expertise"

(Johnson, 1983).
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Procedural knowledge is not necessarily motor in

nature. Knowledge of one's native language is procedural.

While most people have this knowledge, they find it difficult

to describe precisely the rules of usage. This type of

knowledge may also include that which is gained from implicit

learning or an unconscious process such as socialization,

perception, and the rules of complex games. (Gammack and

Young, 1985)

2. Declarative Knowledge

This represents surface level information that experts

can verbalize. The primary distinction between this and

procedural knowledge is the ability to verbalize or express

it. Declarative knowledge is what the expert is conscious of

knowing. Therefore, it may not adequately reflect the

cognitive foundations and concepts that will convey the

expert's information in a meaningful way. This type of

knowledge is relatively easy to acquire. (McGraw and Riner,

1987)

3. Semantic Knowledge

This represents one of the two theoretical types of

long term memory. It reflects cognitive structure,

organization, and representation. As a result it will be

difficult for experts to express. Because this type of

knowledge includes memories for vocabulary, concepts, facts,

definitions, and relationships among facts, it too is of

12



importance to knowledge engineers. It is semantic information

that determines whether the expert system actually emulates

the work of an expert in the given domain. It will present

problems with regard to identification and retrieval. (McGraw

and Riner, 1987)

4. Episodic Knowledge

This is autobiographical, experience-oriented

information that the expert has grouped or chunked by episodes

and is the second theoretical type of long term memory. It

consists of information organized by time and place of

occurrence, and often may be described in terms of perceptual

characteristics. This is highly compiled information and is

one of the most difficult types of knowledge to extract and

dissect. Since this knowledge is chunked, the expert may or

may not be aware of the separate knowledge entities and

decision-making processes used to complete the task. (McGraw

and Riner, 1987)

C. KNOWLEDGE REPRESENTATION SCHEMES

Selection of an appropriate knowledge representation

scheme is critical in the development of an expert system.

Psychological evidence suggests that there should be different

representations for each type of knowledge. The representation

scheme should aim at simulating the essentials of suspected

basic mental models in humans. (Rouse and Morris, 1986)

13



An important distinction with respect to the form of

mental models is whether they are spatial or verbal in nature.

Since pattern recognition in human beings is highly developed,

it is likely that the processing and storage of spatially

oriented information is highly developed as well. Mental

models may frequently be pictorial or graphic-like instead of

symbolic, as in list-processing. This will present

difficulties when experts attempt to verbalize their models.

Additionally, the mental models may be dynamic objects with a

variety of forms, even for a certain person in a precise

situation. (Rouse and Morris, 1986)

The selection of a representation is therefore crucial. It

must allow for both a natural mapping of the body of knowledge

and an inference mechanism or algorithm that can effectively

operate on that representation. A representation also should

satisfy three requirements. First, it should have sufficient

expressive power. Second, it should possess uniform

readability. This means that an expression can be read

independently of where it occurs in the program and

independently even of the program itself. Third, it should

ensure a preservation of structures: the many

interconnections between pieces of knowledge must remain

intact. These interconnections support the problem solving

process. (Richter, 1986)

14



What follows is a brief discussion of the most common

forms of knowledge representation: production rules, object-

attribute-values, semantic nets, frames, decision trees,

inference networks, and predicate logic.

1. Production Rules

A production rule is the term used by cognitive

psychologists to describe an if-then rule. A production

system has a data base of production rules and a control

mechanism that selects applicable production rules to reach a

goal state. A major use of these systems has been to model

human cognition, specifically the problem solving techniques

that involve a search process. Production systems are

particularly suited to the representation of procedural

knowledge. (Harmon and King, 1985)

2. Object-Attribute-Value Triplets

O-A-V triplets are useful for the representation of

factual knowledge. An object is an actual or conceptual item

within the expert's domain. An object's properties are called

attributes and they can assume many different values. (Harmon

and King, 1985)

This scheme is a specialized case of the semantic

network described below. Complicated links are simplified in

favor of just two relationships. The object-attribute link is

a "has-a" link and the attribute-value link is an "is-a" link.

(Harmon and King, 1985)

15



3. Semantic Nets

This is a type of knowledge representation that

portrays objects and values as nodes. The nodes are connected

with arcs or links that describe relationships between the

many nodes. The nodes represent objects and descriptors and

the links relate objects and descriptors. Some links are

definitional while others may capture heuristics. Flexibility

and inheritance are two major features of these networks that

attempt to comprise categorical and role-related hierarchical

organization of knowledge. (Harmon and King, 1985)

4. Frames

This representation scheme relates an object with a

assemblage of features. Each of the features are saved in a

slot. A frame is that collection of slots associated with a

specific object. Slots may also contain default values, A

pointers to other frames, rule sets, or methods (procedural

attachments) by which values may be obtained. When compared

to traditional computer programming, a frame is similar to a

property list, schema, or record. (Harmon and King, 1985)

Frames allow for more inventive representations of

knowledge but they are also more sophisticated and difficult

to develop than the simpler O-A-V or rule systems. Frames can

join into a single representation scheme both procedural and

declarative knowledge. This is known as situation related

knowledge. (Harmon and King, 1985)
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5. Decision Trees

A decision tree is similar to a flow chart, but has

nodes and branches. Terminal nodes are those at the bottom

while those above are intermediate nodes. A path, determined

by the values of attributes described in the intermediate

nodes, branches down the tree until a terminal node, or

decision is reached (Hart, 1986). This structure is useful

for describing expert information that may be stored in a

hierarchical flow (Olson and Rueter, 1987).

6. Inference Networks

An inference network is a diagram consisting of boxes

that represent attributes, or states and rules, and they are

generated from rule based systems. Attributes within the

network are data (i.e., observations, facts) that form

preconditions to some rules and targets for others. The rules

form a large inference net between attributes. All possible

inference chains that can be generated from the rules can also

be interpreted as connections between evidence and hypotheses.

Inference networks are versatile tools but are best for small

rule bases as they can quickly become very complicated.

(Waterman, 1986)

7. Predicate Logic

Predicate Logic lends itself to mapping propositions

about arbitrary objects into a theory with well known

mathematical properties. This is an extension of

17



propositional logic. Each elementary unit is called an

object, and statements about the objects are called

predicates. Logic provides a way to assert facts about the

world, but seeking values in this system is not as direct as

seeking values in the systems described above. This is

because when a fact is stated it is either true or false.

Still, a good deal of theoretical refinement can be achieved

when logic is used to codify a suitable knowledge domain.

(Harmon and King, 1985)

n- TASK CHARACTERISTICS

Identification of the application task characteristics is

important because this will influence selection of the

knowledge acquisition tool and the strategies to be applied in

building and refining the knowledge base. The characteristics

of the task affect the manner in which an expert will store

and access task-critical knowledge, and will determine the

problem-solving strategy. Expert knowledge is task centered,

so analyzing the processing states and considerations an

expert applies when performing a task or making a decision is

key to attaining an initial understanding of the domain. An

expert system should not merely capture a static

representation of a knowledge domain, it also should simulate

a particular problem-solving task within that domain.

(Riesbeck, 1984)

18



Artificial Intelligence currently lacks a universal theory

that will map existing expert system tools or shells onto the

categories of tasks that they can solve (Kidd, 1987). Indeed,

there is no universal theory that will categorize all possible

types of problem-solving tasks. However, Kitto and Boose

(1989) summarize a widely used classification of application

tasks. Generic applications can be divided into the task

categories of interpretation, prediction, diagnosis, design,

planning, monitoring, debugging, repair, instruction, and

control. These can then be gathered into two broad groups:

those associated with analysis (interpretive) tasks, and those

concerned with synthesis (constructive) tasks.

Analysis tasks include diagnosis, interpretation,

debugging, and identification. Synthesis tasks include

design, evaluation, configuration, scheduling, and planning.

Analysis-Synthesis tasks include control, instruction,

monitoring, prediction, and repair. (Hayes-Roth, Klahr, and

Mostow, 1986)

Once a classification scheme for application tasks is

selected, the appropriate problem solving method is

identified. The knowledge acquisition tool then provides the

link between the application task and the problem-solving

methodology. The tool must elicit the information necessary

to meet the special problem-solving requirements of an

application task category. (Kitto and Boose, 1989)
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Two basic problem solving methods exist: heuristic

classification and heuristic construction. Each of these can

be applied to a wide range of application tasks. Heuristic

classification is best suited to analysis tasks. This is a

method in which concepts in different classification

hierarchies are heuristically related using a process of data

abstraction, heuristic matching and solution refinement.

Heuristic construction, on the other hand, is most appropriate

to synthesis tasks. With this method, the problem solver

constructs solutions, either by generating complete solutions

or assembling solutions from components while satisfying

constraints. (Clancey, 1986)

Table 1 illustrates what problem-solving methods are

supported by existing knowledge acquisition systems in a

particular application task category. For example, the

knowledge acquisition systems MDIS, MORE, MOLE, TEIRESIAS,

ROGET, and TKAW enable diagnostic application tasks to use the

heuristic classification problem-solving method. Knowledge

acquisition tools do not currently exist for certain

application types within each category. Most current

acquisition tools support one problem-solving method, but it

is possible for a complex application to require several

problem-solving methods to resolve the total problem. (Kitto

and Boose, 1989)
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TABLE 1. KNOWLEDGE ACQUISITION TOOLS LINK APPLICATION TASKS
TO PROBLEM SOLVING METHODS.

Problem-Solving Knowledge Application Task
Method Acquisition Tool Category

Heuristic MDIS, MOLE, MORE, Analysis
Classification ROGET, TKAW, (Diagnosis)

TEIRESIAS

AQUINAS Analysis
(Diagnosis,

Interpretation,
Debugging,
Identification)

ETS, KITTEN, Analysis
STUDENT (Identification)

Heuristic
Construction

Propose-and-revise SALT Synthesis
(Design)

Propose-and-apply KNACK Synthesis
(Evaluation)

Skeletal plan OPAL Synthesis
refinement (Planning)

Synthesis
Not Supported (Configuration,

Scheduling)

Analysis-
Synthesis

Not Supported (Control, Repair,
Instruction,
Monitoring,
Prediction)

E. KNOWLEDGE ELICITATION TECHNIQUES

This section explores the actual techniques used in

extracting knowledge from experts. It is exactly this phase

that has become known as the "bottleneck" in the development
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of an expert system. This phase is also known as "knowledge

extraction" and "knowledge acquisition". It refers to the

transfer and transformation of problem-solving expertise from

a knowledge source (i.e., human expert, documents) to a

program (Hayes-Roth et al, 1986).

Several methods have been developed for knowledge

acquisition, and no single technique is usually used to the

exclusion of others. Sometimes a combination approach may be

used while in other circumstances different techniques may be

appropriate to different stages of the acquisition process.

When selecting a specific technique a knowledge engineer

should identify and isolate the problem-solving task to be

simulated. Then the type of knowledge necessary to solve that

problem should be described and analyzed, independent of any

particular implementation. (Kidd, 1987)

The techniques described here are those most widely noted

in the literature of knowledge acquisition and cognitive

psychology, and those most widely used by knowledge engineers.

Each is briefly described along with its advantages and

disadvantages, type of knowledge or task it is most applicable

to, and what existing automated tools are supported.

The first seven methods (Interview, Questionnaire, On-site

Observation, Interruption Analysis, Protocol Analysis, Drawing

Closed Curves, Inferential Flow Analysis) can be described as

"direct". These techniques ask the expert to report on
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knowledge that he or she can directly articulate. They are

free form, so the possibility exists for the knowledge

engineer to find any type of information. The most likely

type of knowledge that will be uncovered is declarative or

surface knowledge. These methods will extract only what the

expert is able to verbalize and overreliance on these

techniques will exclude important information. (Olson and

Rueter, 1987)

The next seven techniques (Multidimensional Scaling,

Hierarchical Clustering, General Weighted Networks, Ordered

Trees from Recall, Repertory Grid Analysis, Decision Analysis,

Machine Induction) can be described as "indirect". These do

not rely on the expert's ability to articulate the information

used. They collect other behaviors from which the knowledge

engineer makes inferences about what the expert must have

known to perform as he or she did. These may uncover a deeper

(procedural or semantic) knowledge, but will involve

assumptions about the underlying form of the representation

employed by the expert. Therefore, these techniques could be

misused to the extent that their basic assumptions are not

supported by the data. (Olson and Rueter, 1987)

1. Interviews

The interview is the most common technique for the

elicitation of domain knowledge from an expert (Gammack and

Young, 1985). Interviews quickly allow the knowledge engineer
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to grasp important domain concepts and vocabulary. The expert

may reveal the objects he or she thinks about, how they are

related, the judgmental processes used in solving a problem,

and some inference rules (Olson and Rueter, 1987). This can

be the most free form of the direct methods and is the most

likely to uncover unexpected information. Most interviews are

conducted in an unstructured form and will seldom provide

complete or well organized descriptions of cognitive processes

(Olson and Rueter, 1987).

The breadth and accuracy of what can be extracted in

this free form style soon reaches a limit (Olson and Rueter,

1987). At this point the knowledge engineer should switch to

focused or structured interviews that involve careful

preplanning of the questions and their order. This represents

a more goal oriented approach that may uncover additional data

on factual knowledge, types of problems, functions of

expertise, and explanations. (Kidd, 1987)

All interviews are most appropriate to uncovering only

declarative or surface forms of knowledge. Since this

technique ultimately relies on the expert's ability to

articulate what he or she knows, much information will not be

uncovered (i.e., procedural and semantic knowledge). This

technique will not reveal how an expert's thinking or deeply

compiled mental processing is conducted. Interviews

therefore, are good only for the initial knowledge acquisition
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sessions (Olson and Rueter, 1987). There are several

automated knowledge acquisition tools based on some form of

the interview (see Table 2).

TABLE 2. KNOWLEDGE ACQUISITION TOOLS BASED ON INTERVIEW
TECHNIQUES.

TOOL SOURCE

MORE Kahn, Nowlan, and McDermott
(1985)

MOLE Eshelman (1988)

SALT Marcus (1987)

KNACK Klinker, Boyd, Genetet,
and McDermott, (1987)

KADS Breuker and Weilinga (1987)

TEIRESIAS Davis (1979)

2. Questionnaires

Questionnaires can be a much more efficient way of

gathering information than interviews, which are very time

consuming. These questions are not similar to statistical

surveys, they are open-ended and very much like those

presented in an interview. The expert usually feels more in

control and can fill out the questionnaires at his or her

convenience, without the pressure of a one-on-one session with

a knowledge engineer. This technique is particularly useful

in uncovering the objects of the domain with its relationships
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and uncertainties (if instructed to attach these to

conclusions). (Olson and Rueter, 1987)

Most people are very poor at estimating probabilities,

they will overestimate low ones and underestimate high ones

(von Winterfeldt, 1988). So, verbal responses to questions

requiring probabilities will be unreliable. Questionnaires

can overcome this problem by eliciting probability estimates

with pro-formatted response scales. Two examples of this are

the bar on which the expert marks a point to indicate degree

of uncertainty, or a five point verbal scale on which the

expert checks the description most closely associated with

their impression of certainty. (Olson and Rueter, 1987)

The questionnaire is useful for illuminating the

objects, relations, and inference rules of a domain. This

method is similar to interviews in that it relies on the

expert's introspection and articulation. Deep causal

knowledge of the procedural or semantic kind will not usually

be extracted through this method. Therefore, this technique

is best for uncovering declarative knowledge early in the

acquisition process. (Olson and Rueter, 1987)

3. On-site Observation

On-site observation involves the knowledge engineer

observing the expert solving real problems on the job instead

of invented but reasonable problems in a laboratory setting.

The knowledge engineer does not interfere but acts as a silent
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observer. This approach lends insight into the complexity of

the problem. This method also gives the knowledge engineer

some idea of the interface required for the finished system to

operate in the field. This technique is not appropriate to

those domains where privacy or time is a limitation. It is

appropriate however for discovering an expert's judgment,

diagnosis, or design decision, if the task is normally

conducted in a relaxed atmosphere. This technique also may

uncover the objects, relations, and inference rules of a

domain. (Olson and Rueter, 1987)

This method has several disadvantages, which include

the observer bias of the knowledge engineer and time pressure.

The knowledge engineer may not understand the significance of

a particular action or the underlying decisions that led to

it. Discussions with the expert afterward will rely upon the

expert's introspection and articulation of the process. The

expert may not be able to verbalize everything. Details

regarding all of the knowledge or mental processes will not be

available. (Olson and Rueter, 1987)

4. Interruption Analysis

On-site observation becomes interruption analysis at

the point where the knowledge engineer can no longer

understand the expert's thought processes and interrupts.

This method will capture the same types of knowledge and

information as will on-site observation. It has the added
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advantage of instantly capturing the core of the eYpert's

concentration and the types of decisions made for the

accompanying procedures. (Olson and Rueter, 1987)

Interruption Analysis has the same disadvantages as

on-site observation. While this technique can be very

illuminating about the procedure observed, there is little

chance that this process can be resumed in a way that will

leave it unaffected by the interruption. This technique may

be most valuable when the expert system is coded and in the

prototype stage; then the expert's performance is compared to

that of the system's in an effort to find discrepancies.

(Olson and Rueter, 1987)

5. Protocol Analysis

Protocol analysis has been widely used for many years

as a technique for knowledge acquisition. This method is

still widely regarded as a solution to the problem of experts

providing unreliable answers when recalling information and

tasks about the domain in question. The expert is observed

actually solving problems and must concurrently verbalize the

decisions made during the task. The dialogue is recorded and

later analyzed for the expert's problem solving strategies.

This may be useful for eliciting some procedures that experts

use, but may be unable to articulate. The intent (mistakenly)

has been to use this technique as a tool to extract implicit

or procedural knowledge. (Gammack and Young, 1985)
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This method has several drawbacks. The knowledge

engineer must be sufficiently familiar with the domain to

understand the expert's task and commentary. Running

commentaries may be difficult for the expert and will affect

the task being performed. It is useful only for those tasks

in which articulation is a natural part of thinking. It may

prove counterproductive in those instances where unique

language is used or where the aloud explaining may be

distorted or even wrong. The explanations may arrogate

attention and energy from perceptual-motor tasks and prove

distracting to the expert. (Berry and Broadbent, 1984)

Protocols are often incomplete and cannot establish

the boundaries of an expert's knowledge (Berry, 1987). This

is because protocol analysis relies on the expert's ability to

introspect and articulate. The expert simply does not have

access to all their knowledge and mental processes. The

deficiency of this technique is noted by Burton and Shadbolt

(1988) in their empirical study of knowledge elicitation

techniques. Protocol analysis yielded significantly worse

results when compared to other methods. It retrieved less

information and took a longer amount of time. Laboratory

studies show that concurrent verbalization can affect the way

in which an expert will perform a task (Berry and Broadbent,

1984). It may force an expert to choose a different line of

reasoning than would otherwise be the case.
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In light of the latest studies involving protocol

analysis, this technique is unlikely to uncover knowledge that

resides deeper than surface or declarative knowledge. As a

tool for eliciting deep knowledge of the procedural or

semantic type, it suffers from substantial weaknesses (Rouse

and Morris, 1986).

6. Drawing Closed Curves

This is a direct method that unlike the previous

techniques, does not attempt to reveal cognitive processes

during the solution of a problem. The previous methods

highlight vocabulary used to express objects along with their

links to one another and the types of inferences drawn. They

do not draw out the form of the relationships, be it networks,

tables, lists, or physical space. (Olson and Rueter, 1987)

The drawing of closed curves is a specialized method

designed for extracting those relationships that are assumed

to be coded in a physical space. This technique requires the

expert to show which of a collection of physical objects

belong together. A line, in the form of a closed curve, is

drawn around those objects that are in some way associated.

(Reitman, 1976)

The advantages of this method are that it is graphical

and no verbalization is required. It can be applied to any

spatial representation, such as a X-ray or CAT scan, a

position on a game board, or a typeset formula. Knowledge
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obtained in this manner is most often represented as networks

or as a physical space of some sort. (Olson and Rueter, 1987)

The disadvantages of this technique are much like

those for the previous techniques. Though no verbalization is

required, this method still relies on the expert's

introspection and articulation. Access to deeper knowledge

and mental processes may be limited. (Olson and Rueter, 1987)

7. Inferential Flow Analysis

This is an adaptation of the interview. With this

technique, the expert answers particular questions regarding

causal relations. A causal network is then built

incor-porating all the objects within the domain of interest.

The expert initially provides a list of some key objects

within the aomain. The knowledge engineer questions the

expert about relations between two of the objects. The

answers will reveal linkages between objects and the

directions of those linkages. (Olson and Rueter, 1987)

The expert's responses over a set of questions should

reveal consistencies in associations between intervening

objects. Each time an object is mentioned by the expert in an

answer, it is linked with previous objects and the association

is labelled either positive or negative. The linked objects

are joined in a network with weights assigned to each link.

The weighting on a link is raised in strength with each

subsequent mention of that link. (Olson and Rueter, 1987)
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The resulting network, though appearing somewhat

contrived, is balanced and agreeable with other sets of

behaviors. Knowledge extracted by this method is most often

represented as flows or networks. This technique is simple to

employ and most useful as a tool for displaying to the expert

facets of the knowledge they have so far revealed. The

resulting display can be used constructively as a springboard

for further interviews. (Olson and Rueter, 1987)

The disadvantage of this technique is that it is good

only for that which can be expressed as relationships between

objects. This method too, relies on the introspection and

articulation of the expert who may not have access to all

details of knowledge or mental processes. (Olson and Rueter,

1987)

8. Multidimensional Scaling

Multidimensional scaling refers to a group of

techniques for deriving structure from a matrix of data.

These data are usually measures of relatedness among a set of

objects whose underlying dimensions of classification are not

well known, but are assumed to vary along a translatable

number of dimensions. Therefore, this procedure should only

be used on data that are assumed to have come from stored

models of multi-dimensional space. The knowledge obtained from

this method, which is primarily declarative, can be

represented in lists, tables, or physical space. (Null, 1980)
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This technique involves having the expert compare each

object as it is paired successively with the others. Then he

or she gives an estimate of the objects similarity by

answering the set of questions: "How similar are A and B?".

The objects should be typical of the larger domain from which

they are drawn. So all objects are judged on a similar basis

they should comprise a relatively uniform set without

including plainly unusual items. Examples are differentiating

flavors of cola drinks or comparing farm animals. (Gammack,

1987)

The similarity estimates provided by the expert are

assumed to be balanced and comparable, and able assume a

continuous value. From the expert's solution set an

explanation can be offered about the nature of the dimensions

that distinguish the objects. This is done by arranging the

similarity judgments in a half-matrix. This is then input to

an analysis program that scans for the best position of these

objects in a space of user specified dimension. A "stress",

measuring deviation from a perfect fit, is assigned to each

dimensional solution. (Olson and Rueter, 1987)

The knowledge engineer selects the lowest "stress"

measurements with the fewest dimensions and plots them. The

plot is examined for the best placement of the axes. A

suitable labelling scheme must be chosen for the axes. For

example, size versus ferocity when comparing jungle animals.
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This procedure produces significant clusters of objects,

relations, and outliers on the plot. (Olson and Rueter, 1987)

A variation on multidimensional scaling is the card

sort. This provides a qualitative multidimensional mapping of

the elements in the domain. This is done through repeated

sorts of a deck of cards, each of which is marked with a

domain element. With each sort, the expert labels the overall

scale and the individual piles. Rules are then extracted

through classification matches. (Burton, Shadbol Hedgecock,

and Rugg, 1988)

Advantages of this technique include its

straightforward manner and the production of quantitative

information not present with many other methods. This method

may provide a complementary view to a hierarchy by using

cross-sectional data on similarities to uncover important

global features. It is best when used on sets of low

dimensionality and may cause a knowledge intensive activity to

deliver large amounts of information. (Gammack, 1987)

Disadvantages of this technique include the tedium of

collecting the data. Pairing comparisons of even a small set

of objects can very quickly run into the hundreds or thousands

and interpretation of the results is not very straightforward.

It is difficult for the knowledge engineer to find the

dimension with the best "stress" value and then determine

placement and names for the axes (Olson and Rueter, 1987).
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This method is inappropriate when used on objects that vary in

too many dimensions or when too few dimensions are common to

all (Gammack, 1987). Another problem with inferring the

underlying structure in this manner is that assumptions, which

may not be correct, must be made about the underlying

representation. (Olson and Rueter, 1987).

9. Hierarchical Clustering

Hierarchical clustering is similar to multidimensional

scaling in that it begins with a half matrix of similarity

judgments. The assumptions that underlie this technique are

the opposite of those for multidimensional scaling.

Multidimensional scaling presupposes symmetric distances and

ranked properties, whereas this technique just assumes that an

object belongs to a cluster or not. Objects cannot

simultaneously satisfy assumptions for both multidimensional

scaling and hierarchical clustering. This technique is too

often misused by some when used to show "clusters" of points

on a multidimensional scaling system. (Olson and Rueter,

1987)

This technique uses an uncomplicated algorithm that

begins with the half matrix and ends with a hierarchical

organization of the objects. Pairs of objects that are

neighbors in the matrix are joined to a single cluster, and a

new matrix drawn with that cluster representing a new object.

This process is iterative, and with each new matrix the
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distances between unclustered objects are copied from the

original matrix. Then, a joining algorithm is selected. The

distances between objects and clusters are figured as either

the maximum, minimum, or average distance of all cluster

objects (all objects within that new cluster) to the object.

This results in a hierarchical tree diagram with all the

objects listed at the bottom as terminal nodes. The degree of

similarity is shown by how far up the tree one must go until

two objects become members of the same overarching category.

(Olson and Rueter, 1987)

The advantage of this procedure is that it can be

accomplished with just a pencil and paper. Additionally, this

technique may help the expert identify a structure that they

recognize as a natural and effective way of describing some

underlying patterns. Knowledge obtained through this

technique is primarily represented as relations in

hierarchies, a form most people can easily relate to.

(Gammack, 1987)

There are several disadvantages of this method. The

half matrix which this technique begins with is tedious to

develop. If there is no firm theoretical justification for

selecting a certain joining algorithm, whether maximum,

minimum, or average, one must make an arbitrary choice. The

different algorithms will produce substantially different

hierarchies, making this technique a somewhat subjective
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analysis. As with multidimensional scaling, this is a

technique based on underlying assumptions and can be misused

to the extent that the assumptions are not supported. (Olson

and Rueter, 1987)

10. General Weighted Networks

General weighted networks are similar to the previous

two techniques in that an expert gives balanced pair-wise

distance judgments for all objects. It is assumed that the

network derives from the expert negotiating a mental network

of relations. The network has a primary path between each

pair of objects and possibly a secondarily coded path as well.

(Olson and Rueter, 1987)

The first step is to create a minimal connected

network from a distance matrix. It is formed by connecting

the most closely linked items. Then additional links are

added and the resulting structure is called a minimal

elaborated network. This second step adds a link only if it

is shorter than the links currently in the network between two

nodes. The network is then examined for dominating concepts

and members of cycles. Dominating concepts are those that

have many connections to several other nodes. :Aembers of

cycles are those that linked into circles. (Olson and Rueter,

1987)

A general weighted network created by an expert is

very different from that created by a novice. An expert's
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network is simpler, connecting larger integrated conceptual

structures. They can more easily identify link relations with

phrases such as "is-a", "affects", "desirable", etc. This

technique can reveal the notable features of expertise.

Knowledge obtained from this method is primarily represented

as a network but it also may provide lists, tables,

hierarchies, or physical models. (Olson and Rueter, 1987)

The primary disadvantage of this technique is that it

assumes an underlying form. Like the previous techniques, it

relies loosely on the ability of the expert to make a single-

valued similarity judgment from whatever form it is stored in.

(Olson and Rueter, 1987)

11. Ordered Trees From Recall

Ordered trees from recall derive from research by

Reitman and Rueter into how memory structure differs between

experts and novices (Reitman and Rueter, 1980). This

technique does not begin with a distance matrix but with

recall trials. It starts by assuming whether objects belong

to a cluster or not, then builds upon a model of memory

organization that states an expert will remember all data from

a particular cluster before recalling data from another. The

basic assumption is that people recall from learned

organization. Knowledge obtained via this technique is

represented as lists or hierarchies. (Olson and Rueter, 1987)
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Patterns found over the set of recalled data are

assumed to reflect memory organizaLiorn. The expertc recall

object names ten to twenty times and are sometimes told to

begin the recall with different names. Pauses during the

recall process suggest a transition from one chunk to another.

All objects recalled together are identified as chunks and are

scrutinized for regularities. The chunks are written into a

lattice, then redrawn into an ordered tree structure. The

objects are listed at the bottom of the tree as terminal

nodes. Horizontal arrows (to represent unidirectional or

bidirectional relationships) are drawn over chunk components

that were recalled consistently in a certain order. Computer

analysis can then be done on the tree structure, scanning for

indices of organization or outliers. When these are removed

the tree will exhibit a good deal more structure. (Olson and

Rueter, 1987)

This technique can be used to prove that experts will

show much more organization than novices in a particular

domain. Experts within the same domain will exhibit a high

degree of similarity with this method. Close analysis of the

ordered tree can uncover features of what the expert perceives

within their domain of expertise. (McKeithen, Reitman, Rueter,

and Hirtle, 1981)

A disadvantage of this technique may be the explicit

assumption upon which the entire methodology is based.
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Ordered trees assume that domain objects are stored in nested

clusters and that all objects of this cluster are recalled

before shifting to another cluster. The method relies heavily

upon the expert's ability at introspection and recali.

Additionally, the algorithm employed by the computer analysis

may be restricted in what it sees as outliers or indices of

organization. The analysis can be done by hand but it is

tedious and open to perceptual error by the knowledge

engineer. (Olson and Rueter, 1987)

12. Repertory Grid Analysis

The repertory grid technique has its origins in

Personal Construct Theory developed by George Kelly in 1955.

This theory states that each person functions as a "scientist"

who classifies and organizes their own world. Based on these

classifications, the individual can construct personal

theories of how the particular domain functions. They can

then predict and act in that domain based on these theories.

When the expert's classifications have been identified and

their constructs analyzed, a repertory grid can be developed

to represent the expert's understanding of a specific object.

(Hart, 1986)

To develop a grid, the knowledge engineer first

elicits from the expert a set of constructs that are bipolar

in nature. Next, the expert provides a set of examples called

elements. The knowledge engineer then requests that the
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expert rate each element along a linear scale developed to

represent each construct. An example construct is "opaque-

transparent". The resultant linear scale has "opaque" at one

end and "transparent" at the opposite. The element (a type of

plastic) is rated on this scale by placing an "X" at the

appropriate point along the line. This represents the degree

of opaqueness or transparency it possesses. (Hart, 1986)

In the more traditional method of the grid elicitation

technique, and the one used by George Kelly, three elements

are presented to the expert who picks the odd one. The expert

names a dimension such that the odd one is at one pole and the

other two form the opposite pole. The remaining objects are

rated along this dimension and this is repeated until all

objects are distinct in multidimensional space. (Boose, 1986)

When each element is rated according to each

construct, the results may be analyzed with a variety of

techniques including factor analysis and cluster analysis (of

the objects or of the dimensions). The purpose of the

analysis is to measure similarities and distances among

objects and to represent these graphically as a grid. The

elements of the domain are used to define the scope of the

problem domain for the grid. The constructs are used to help

the expert make useful distinctions among the elements. (Hart,

1986)
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The finished grid becomes a cross-referencing system

between vital constructs and domain elements. This can be used

to find patterns or relations during initial knowledge

acquisition efforts (Hart, 1986). It also can be used for

extracting the objects, and inference rules of the expert's

domain (Olson and Rueter, 1987). This technique is better for

analysis problems (debugging, diagnosis, interpretation, and

classification) than for synthesis problems (Shaw and Gaines,

1987). It is particularly applicable to classification

problems, where features of a new object are observed and the

object sorted into one of the known categories (Olson and

Rueter, 1987).

This technique is one of the most complete and widely

used. Advantages include its free form recall and rating

sessions, and the production of a similarity matrix much less

tedious to produce than the direct similarity rating of pairs.

It also can be used to combine the expertise of two experts

within the same domain. (Olson and Rueter, 1987)

This technique has several disadvantages. It is

difficult to apply to deep procedural or semantic knowledge

(Shaw and Gaines, 1987). Repertory grid analysis elicits

traits and builds relationships, but does not find out much

about how or when this data is used in the problem-solving

process. The constructs used are strictly bipolar; it may be

more appropriate sometimes to describe a single trait that
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could take on any number of discrete values. This technique

assumes that the set of elements provided by the expert

sufficiently represents the domain. It is more difficult to

verify that a representative set of constructs has been

extracted. Additionally, interrelationships between

constructs or between elements cannot be easily depicted

within the grid. (Boose, 1986)

Many knowledge acquisition tools have been based on

Personal Construct Theory (see Table 3). The tools based on

repertory grids can help a knowledge engineer determine the

expert's conceptualization of the domain. This is an

important precursor to follow-on efforts in organizing and

developing a knowledge base. Most of these tools interact

directly with the expert to stimulate them to refine, expand,

analyze, and test problem-solving knowledge. See Table 3 for

a list of some of these tools. (Boose, 1986)

13. Decision Analysis

Decision Analysis can be useful for capturing an

expert's inferences or decision rules within their domain.

Knowledge obtained via this method can be represented as an

inference network or decision tree, and a "knowledge

dictionary" of key concepts. It is a technique that has been

widely used in many areas of management and business. This

technique is fairly simple and straightforward. The knowledge

engineer asks the expert to list all possible decisions when
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confronted with a particular problem. For each of those

decisions all possible consequences are listed. The expert

must assess the worth of each consequence and its probability

of occurrence. The expected worth of each consequence is

calculated by multiplying worth by probability. The expected

worth of the decision is a total of the expected worths of its

consequences. The expert then selects the decision that

maximizes the expected worth. (Hart, 1986)

TABLE 3. KNOWLEDGE ACQUISITION TOOLS BASED ON PERSONAL

CONSTRUCT THEORY

TOOL SOURCE

ETS Boose (1986)

PLANET Shaw (1982)

AQUINAS Kitto and Boose (1989)

FMS Aid Garg-Janardan and Salvendy
(1987)

KITTEN Shaw and Gaines (1987a)

KRITON Diederich, Ruhmann, and May
(1987)

KSSO Gaines (1987)

PEGASUS Shaw and Gaines (1987b)

This may be a very quick way of capturing an expert's

heuristics in some circumstances, but it has a serious

drawback. It relies on the expert's estimates of worth and
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probability. Describing their conclusion in terms of

probability theory is not an intuitive or natural way of

thinking (von Winterfeldt, 1988). Various methods have been

developed for eliciting probabilities from people but none has

proven universally acceptable (Hart 1986).

14. Machine Induction

There has been a good deal of controversy over whether

machine induction will prove to be a useful source of

knowledge or not. Some believe that the problem of extracting

deeply compiled procedural and semantic knowledge can be

dodged with this technology. This procedure has the expert

provide a set (training set) of examples of different types of

decisions from the domain. Also provided are the relevant

attributes that affect the decision. All this is fed as data

into a software inductive algorithm that produces the simplest

set of rules that can generate the examples. This allows for

an explanation of the decision process and provides

predictions of decisions for examples not in the training set.

(Berry, 1987)

Automatic induction can produce rule bases very

quickly. It may draw out deeply embedded or compiled

knowledge because the expert need not have a clearly

formulated explicit rule that is used when carrying out a

task. Indeed, the expert need not even be present, as the

training set may be drawn from documentation. (Berry, 1987)
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There are several disadvantages to machine induction.

Some domains do rot have a base of documentation or examples

that can be easily drawn upon. Additionally, what comes out

of the induction algorithm is only as good as what goes in.

The training set must represent the domain, and it must

contain the unusual or rare cases as well. A random sample

will not provide this. Induction algorithms (i.e., ID3)

cannot cope with uncertain or noisy domains. Further, the

rules that an expert uses will not be like those produced by

the algorithm. Machine induction produces rules that tend to

be more complex and difficult to understand and thus less

desirable for coding into expert systems. (Berry, 1987)

F. SUMMARY

The acouisition of knowledge from experts will remain a

"bottleneck" for some time to come. Yet, many of the steps

involved in the knowledge acquisition phase have benefitted

greatly from research over the last two decades. There are

frameworks for classifying knowledge and tasks, matching

problem-solving techniques to tasks, and representing

knowledge. But, the greatest problem remains the extraction

of knowledge from an expert. A plethora of techniques have

been focused upon this problem, but as this survey has shown,

none are wholly satisfactory and all have serious drawbacks.

See Tables 4 and 5 for a summarization of all the techniques.
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TABLE 4. DIRECT KNOWLEDGE ELICITATION TECHNIQUES

TECHNIQUE KNOWLEDGE TYPES DRAWBACKS
ACCESSED

Interviews Declarative 1. Subject to
articulation.

2. No deep know-
ledge
uncovered.

Questionnaires Declarative 1. Subject to
articulation.

2. No deep know-
ledge
uncovered.

On-site Declarative 1. Observer bias,
Observation time pressure.

2. Privacy
limitations.

3. Expert may not
recall all the
reasoning

Interruption Declarative 1. Difficult to
Analysis resume process.

2. Subject to
articulation.

Protocol Analysis Declarative 1. Subject to
articulation.

2. Affects task.

Drawing Closed Declarative 1. Requires expert
Curves introspection.

Inferential Flow Declarative 1. Requires expert
Analysis introspection.

2. Only for that
which can be
expressed as
relationships.
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TABLE 5. INDIRECT KNOWLEDGE ELICITATION TECHNIQUES

TECHNIQUE KNOWLEDGE TYPES DRAWBACKS
ACCESSED

Multidimensional Declarative 1. Tedious.
Scaling 2. Subject to

interpretation.
3. Subject to

assumptions.

Hierarchical Declarative 1. Tedious.
Clustering 2. Algorithm

choice
arbitrary.

3. Subject to
assumptions.

General Weighted Declarative, 1. Assumes an
Networks Some Procedural underlying

form.

Ordered Trees Declarative, 1. Introspection
from Recall Some Procedural and recall.

2. Based upon
assumptions.

Repertory Grid Declarative 1. No deep
Analysis knowledge.

2. Use of limited
(Personal constructs.
Construct 3. Difficult to

Theory) verify.

Decision Analysis Declarative, 1. Relies on
Some Procedural estimates of

probability and
worth.

Machine Induction Procedural 1. Training set
rarely
representative.

2. Only as good as
induction
algorithm.

3. Complex rules
difficult to
code.
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The direct techniques have as the greatest problem,

reliance upon an expert's ability to articulate what he or she

really knows. Five of the seven methods require the expert to

verbalize, either in interviews, or at some point during or

after a problem-solving task. The remaining two methods still

require articulation. Questionnaires are, for the most part

verbalization on paper, and the drawing of closed curves

forces the expert to explicitly indicate relationships where,

in some cases, none may exist. All of the direct methods

require the expert's introspection and mental search for the

correct data.

Research has indicated many problems in extracting the

knowledge of individuals. Knowledge may not be available to

awareness, and even if it is, it may not be expressible in

language. If it is expressible in a language, it may not be

understandable, for example, to a novice. Further, it is

entirely possible that expressed knowledge may be irrelevant,

incomplete, or incorrect. (Gaines, 1987)

The indirect methods of knowledge elicitation attempt to

circumvent reliance upon an expert's introspection and

articulation. Though the indirect techniques presented here

have demonstrated psychological validity in controlled

settings, they all have serious drawbacks to implementation.

These methods cause the knowledge engineer to become the

weakest link in the extraction process because it is he who
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must infer an underlying structure among the data obtained

from the expert. This means that the knowledge engineer must

be highly trained in psychological modelling techniques.

Further, if the underlying structure is not inferred "a

priori" so that the "correct" technique can be selected, the

data may not support the process.

Many elicitation methods have proven useful for tapping

into the declarative knowledge of an expert. Yet, there is no

satisfactory way of extracting procedural or semantic

knowledge. The indirect techniques present a "hit-or-miss"

proposition based on the validity of the underlying

assumptions. Empirical research into comparisons of

elicitation methods is still in its infancy, and the need

clearly exists for a good deal more. Until an empirically

derived data base of domains, tasks, knowledge extraction

techniques, and their interactions exist, the claims and

counter-claims for each technique will remain just that.

This survey indicates a need for an automated technique

based on a sound psychological model of expert thought

processes, that can extract deeply embedded procedural and

semantic knowledge. This technique should be natural to the

expert so that it does not force him or her into different

modes of reasoning. It should eliminate the knowledge

engineer, that translation through another person, so the

expert is enabled to interact directly with the process to
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create a knowledge base. A new technique should allow for a

graphic interface and graphic manipulation, as this is how

much of long term, deeply embedded memory may be stored. Many

automated knowledge acquisition tools have been developed, but

they are based on one or a combination of the techniques

discussed above, with all of the attendant shortcomings.
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III. COGNITIVE FEEDBACK

A. INTRODUCTION

Cognitive feedback is regarded as an effective tool for

the capture and representation of a person's mental model

(Doherty and Balzer, 1988). This chapter will provide the

justification for that assertion and explain how the mental

model can be captured. The theoretical foundations of

cognitive feedback, Brunswik's probabilistic functionalism and

its representation through the lens model are introduced and

summarized first (Hursch, Hammond, and Hursch, 1964; Tucker,

1964). Cognitive tasks and cognitive systems are defined and

their relation to the lens model illustrated.

Cognitive feedback is explained in detail and shown to be

superior to the other form of decision feedback, outcome

feedback. The different types of cognitive feedback will be

described as well as the various formats in which it can be

presented. Cognitive feedback has been put to many different

uses, and there is a moderate corpus of research on the

effectiveness of cognitive feedback. The results of these

studies will be summarized, and some issues and applications

for the future will outlined.
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B. PROBABILISTIC FUNCTIONALISM

Probabilistic functionalism is a description of the

process by which an organism adapts to an uncertain,

probabilistic environment, and how the tradeoffs it must make

to survive play a central role. Brunswik (1943) believed that

to understand the underlying forces guiding an organism's

behavior one must focus on the organism's achievement in

adapting to the environment. This involves a thorough study

and characterization of the environment, the organism in the

environment, and the means by which the adaptation occurs.

These ideas are salient to practitioners of knowledge

acquisition because their goals are to capture an expert's

mental model. The mental model has developed as a means of

adapting to, and imposing some order upon the environment.

A detailed analysis of the environment is necessary to any

explanation of an individual's judgmental processes. Tolman

and Brunswik (1935) have stressed that an organism, in its

normal interaction with the environment, must deal with many,

interdependent, diverse relations among variables (cues),

which may be partly relevant or irrelevant to its goals. The

cues are limited in t,~eir dependability and may be organized

in a variety of ways. There is considerable redundancy and

interchangeability among the cues. In short, the environment

is probabilistic.
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Given the many complex situations that can arise from a

probabilistic environment, the organism must adjust by

bringing to bear a variety of cognitive processes, such as

perception, thinking, and learning if it is to survive.

Crucial to this process of adjustment is feedback (Hogarth,

1981). If feedback is received and acted upon continuously,

the organism has access to a greater number of cues and

responses. The cues become more intersubstitutable. The

effect that a redundant environment has upon behavior was

stressed by Brunswik through the principle of vicarious

mediation:

Since there is no perceptual cue which would be
available under all circumstances or is completely
trustworthy... the perceptual system of higher organisms
must for most types of perceptual attainment develop what
the present writer has suggested calling an "or-
collective" or an "or-assemblage"... of mutually
interchangeable cues vicariously mediating distance or
other situational circumstances to the organism... Since
cues form a hierarchy just as do means, we may also speak
of a "cue-family-hierarchy"... (1955, p. 677)

The importance of this principle is apparent:

We may add that vicariousness of psychological cues
and means may be viewed as a special case of receiving or
sending messages through redundant, repetitive channels,
thus reducing the probability of errors, that is, the set
of possible causes, or effects, that could result in, or
be produced by, the type of event in question. Vicarious
functioning is thus indeed of the essence of behavior.
(Brunswik, 1955, p. 750)

Substitutions between interchangeable cues lead to equivalent

results. The organism orders the cues into a system that

enables it to make judgments about some object or the future.

54



The vicarious functioning occurs within a certain

environmental context. As a result, Tolman and Brunswik

(1935) argued that more emphasis should be placed upon

studying the environment and the organism within that

environment, than the organism in isolation. The first step

toward this understanding must be to study the texture of the

relationships among cues in the tasks that require judgment.

Brunswik (1955) stated that the organism's (cognitive)

system and the environmental system should be described

symmetrically. This is represented in the lens model of

behavior (Figure 1). Brunswik described the lens model with

a principle of parallel concepts. Each concept on one side is

paralleled by an equivalent concept on the opposite side. The

cues on the task or ecological (environmental) side vary in

ecological validity and the cues on the organism's (cognitive)

side vary in cue utilization. The relations between cues and

distal variables (the criterion or object of interest) on the

ecological side may assume various forms, just as the

relations between cues and judgment on the cognitive side may

assume various forms.

C. THE LENS MODEL

Brunswik's lens model is a general construct that

graphically embodies the principle of parallel concepts and

stresses many important aspects of the decision making process
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Figure 1. The lens model (Libby, 1981).

under uncertainty. The model can be viewed as an individual

judging an event or object (criterion), which cannot be

directly perceived, through a lens of cues. The relationship

of the cues to the criterion event and to the judge are

uncertain. The individual's interaction with the environment

may be described by several relationships such as those among

cues, those between the cues and the criterion event, those

between the cues and the individual's judgment, and those

between the criterion event and the individual's judgment.

(Brehmer, 1979)
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1. The Lens Model Equation

The version of the lens model presented here is the

regression formulation and is the one most widely used. The

model was quantified with regression analysis by Hursch,

Hammond, and Hursch (1964), Hammond, Hursch, and Todd (1964),

and Tucker (1964). The material presented here is drawn from

Libby (1981) who has further refined the model.

There are three elements to the model. The first is

the task environment defined by the cue set (XI, X2 , ... , Xk).

The second element is the criterion event, also called the

focal variable, on the left side of the model and denoted by

Ye* The third element is the judge's estimate of the event

and is denoted by Y, on the right side of the model. The

relationships among these elements (see Figure 1) are

summarized in the lens model equation.

The task environment is defined by the cue set (X,, X2,

X ) and the matrix of intercorrelations between the cues,

r,. The relationships of the cues to the criterion and of the

cues to the judgment are measured by both univariate and

multivariate correlations. The ecological validity of a cue

is measured by the univariate relationship oetween each cue

(Xi) and the criterion event (Ye) and is denoted by nie on the

left side of the model. This measures the relevance of the ith

cue to predicting the criterion event and is independent of

the other cues. The multivariate relationship between all the
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cues and the criterion event is determined by the following

linear regression model:

-Ye = a, + bleXi + b2eX 2 + ... + bkeXk, Ye = -Ye Ue-

The cues-criterion multivariate relationship is assessed by

the correlation of the criterion event (Ye) and the prediction

of the criterion event (^Ye) from the above model. The

measure is known as environmental predictability (Re=rye^ye)

and shows the relevance of the cue set to predicting the

event.

The right side of the model, the cognitive system, is

described in terms similar to that used for the left side, as

required by the principle of parallel concepts. The reliance

of the judge upon individual cues is measured by the

univariate relationship between the cue (Xi) and the response

or judgment (Yd. This is called the utilization coefficient

(rs) and may take a positive or negative value between zero

and one. An ignored cue is given a zero weight. The

multivariate relationship between all the cues and the

response is defined by the linear regression model:

_Ys = a, + bIsXI + b 2sX2 + .". + bksXk' Ys = ,Ys + us'

The cue-response multivariate relationship is assessed by the

correlation of the actual judgment (YO) with the model's

prediction of the judgment (^Ys). This measure is known as

the response linearity (RS=rysys) and may indicate

predictability or consistency of judgment.

58



When the two regression models are compared, the

similarity of the decision maker's weightings of cues to the

environmental relationships can be assessed. This is done by

correlating the predictions of the two equations to form the

matching index (G=r.ye'Ys). If each linear model captures all

reliable variance in each system, the index can be regarded as

an overall measure of the accuracy of cue weighting or

utilization. This is because the effects of human

inconsistency and environmental unpredictability are

eliminated in the regressions.

The achievement index (ra=r~eys) summarizes the judge's

performance and shows the correspondence between the judge's

response and the environmental event. This measure provides

a direct ex post indicator of judgment accuracy. Achievement

can be explained in terms of the other components of the lens

model with the following equation: ra=GReRs. See Table 6 for

a summary of lens model components. Achievement depends on

three factors: (1) the weighting of cues relative to their

weighting in the environment (G is usually less than one

because most decision makers fail to use an optimal weighting

strategy, which is implicit in the environmental model); (2)

the predictability of the environment (Re is less than one

because the environment is not perfectly predictable); (3) the

predictability of the individual (R, is less than one because

decision makers are not perfectly consistent). When combined
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multiplicatively it is apparent that judgmental achievement

will not be high, which is consistent with empirical results.

TABLE 6. LENS MODEL STATISITICS

Symbol Name Definition

tie Ecological rXiye
validity

Re Environmental Rye^Ye
predictability

ris Utilization rXiYs
coefficient

Rs Response linearity Rys^ys
(predictability)

G Matching index r

r, Achievement ryeYs

2. Single Systems

Figure 1 illustrates the double systems paradigm, so

called because it involves analyses of the relations between

two systems. The cognitive system (right side of lens model)

is compared to the task system (left side of lens model).

Standing in contrast to the double system paradigm is the

single system paradigm. This involves analysis of only the

right side of the lens model as depicted in Figure 2. Studies

conducted within this framework analyze the relations between

a set of cues and a set of judgments with multiple regression

or analysis of variance procedures. (Brehmer, 1979)
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Figure 2. The single system case (Libby, 1981).

D. A FRAMEWORK FOR COGNITIVE SYSTEMS AND COGNITIVE TASKS

Brunswik's probabilistic functionalism provides for a

distinction between proximal variables (cues) and a distal

variable (the criterion), and is particularly well suited to

tasks involving inference. Indeed, the proximal-distal

separation is the definition of an inference task. The

ability to make inferences is the ability to go beyond the

information given (cues) and make a conclusion about what

cannot be directly perceived (criterion). Brunswik assumes
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this proximal-distal variable relation is probabilistic in

nature, so inferences cannot be made with complete certainty

regarding the distal variable. There are many important tasks

containing uncertainty and all inference tasks are

probabilistic in nature. (Brunswik, 1955)

The lens model and statistical concepts can be used to

describe cognitive tasks and cognitive systems. This makes it

possible to handle the problem of uncertainty and to express

both the regularities and irregularities of each system.

Formal logic proves inadequate as a representation for this.

The principle of parallel concepts holds that both systems be

described with similar concepts (Brehmer, 1979).

1. Cognitive Tasks

A cognitive task is the process by which an individual

selects a focus and then obtains information about that focus.

Cognitive tasks do not exist independently of a person, they

arise from the person's desire to know something. The focal

variable (criterion) is most often not directly perceived by

the person who must find a set of cues (proximal variables)

upon which to base an inference of the state of the focal

variable. The person must conform to the structure of the

environment, as it applies to the focal variable, when

choosing the set of cues and learning to use them. Cognitive

tasks are therefore dependent on both the individual and the

environment. The implication cf this is that cognitive tasks
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will differ among individuals because each person will select

different foci and cues. (Brunswik, 1955)

A cognitive task, once defined, may be described in

terms of its formal characteristics, of which there are seven

dimensions divided into two classes. The first class groups

together the surface characteristics that relate to the nature

of the proximal variables (cues), as opposed to relations

between cues and focal variables. Surface characteristics

include the number of cues, their metric characteristics

(i.e., nominal or quantitative), and the intercorrelations

among the cues (i.e., the extent to which cues tend to go

together). (Brehmer, 1979)

The second class groups together the four system

characteristics. The first is the re7ative weights for the

cues (i.e., some may be more important than others). The

second is the functional relations between each cue and the

dista7 variable. The third refers to the integration ru7e for

integrating information from the cues into a single judgment

(i.e., additive, averaging, or configural). The fourth system

characteristic is the predictability of the system. System

predictability may be low, as when not all the cues are

available, the system is inherently unstable, or the criterion

event is far into the future. Alternatively, system

predictability may be high, as when all relevant cues are

available or there is little time lag. (Brehmer, 1979)
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2. Cognitive Systems

A cognitive system is a representation or a model of

what a person perceives in the environment. It is the

judgment process by which the person copes with their

surroundings and it is depicted by the right side of the lens

model. A description of a cognitive system details what cues

are used, the weights assigned to each cue, the functional

relations between the cues and the judgment, what principle is

used to combine the cues, and the system's predictability.

Also included in the definition is an account of the metric

level at which the cues are used. This may not be the same as

in the cognitive task because a person may be assigning a

quantitative interpretation to nonquantitative cues or vice

versa. (Brehmer, 1979)

It is important to note that the judgment process

itself does not function according to multiple regression or

analysis of variance. There is a good deal of empirical

evidence against this. But, considerable research suggests

that a simple linear model will often adequately explain the

judgments made by an individual. Hoffman (1960) referred to

the use of linear models as paramorphic representations of

judges. This means that the cognitive processes of

individuals do not actually compute weighted averages of cues

or variables, but rather these processes can be simulated or

described through the use of such weightings.
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E. FEEDBACK

An understanding of cognitive feedback (CFB) first

requires a definition of the term "feedback". As defined by

Doherty and Balzer:

While the term feedback (FB) has been used in a
variety of ways in different disciplines, by definition it
involves an environment that returns some measure of the
output of a system back to the system that produced that
output. The FB then allows the system to compare its
present state with an ideal state, to adjust itself in
light of that comparison, and bring itself closer to that
ideal state. (1988, p. 163)

For the purposes of this thesis that system is a person.

Hogarth (1981) notes the importance of feedback to

judgmental accuracy. Judgment is essentially a continuous

process that is predominately exerted to facilitate action.

The actions normally produce feedback that is immediately

available. This gives rise to a series of incremental

judgment-action-feedback loops that monitor progress during

activity. Feedback is therefore central to behavior. It

enhances an individual's ability to adapt because it reduces

any particular action's implied commitment.

1. Two Types of Decision Feedback: CFB and OFB

In decision and judgment literature, two types of

feedback have been identified: cognitive feedback and outcome

feedback (Hammond, Stewart, Brehmer, and Steinman, 1986).

Cognitive feedback returns some measure of a person's

cognitive output to help that person come to grips with the
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environment. In particular, an individual receives

information describing the relationships defined in the lens

model.

Outcome feedback, had in the past, always been assumed

to improve the accuracy of an individual's judgments. Outcome

Feedback (OFB) simply describes the accuracy or correctness of

a judgment. It is the presentation of Ye to an individual

immediately after that person produces Ys" Cognitive

feedback, on the other hand, returns information on the how

and why that supports the accuracy of a judgment. Given the

definition of feedback presented earlier, OFB is really not a

form of feedback at all, because it does not return

information that a system can use in adjusting its response to

the environment. (Doherty and Balzer, 1988)

Outcome feedback's effects have been studied

extensively, especially with multiple cue probability learning

(MCPL) experiments. In MCPL studies subjects are given sets

of cues and asked to make overall judgments. After making the

judgment they are presented with its accuracy but not with

information regarding relations between cues and criterion.

(Hammond et al, 1975)

2. CFB Versus OFB

Many studies have directly contrasted OFB with CFB.

For example, a study of security analysts participating in a

security analysis decision simulation by Jacoby, Mazursky,
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Troutman, and Kuss (1984), led to two important conclusions.

First, in an environment that permits decision makers to be

selective in the information they choose, not all will access

feedback information if it possesses only outcome value, which

fails to possess predictive or explanatory aspects. Second,

better performing decision makers are less likely to access

OFB than are poorer decision makers. This led to the

conclusion that OFB may be especially dysfunctional in a

complex, dynam~c environment.

Hammond and Summers (1972) have proposed a theory

stating that performance in cognitive tasks depends upon

acquisition of knowledge and cognitive control over knowledge

already acquired. Their studies suggest that OFB is an

impediment to the learning of complex inference tasks,

especially when the relations are complex and under conditions

of uncertainty. When OFB was removed, an increase in response

consistency (-Ys) was typical. When compared, under the same

conditions, to individuals receiving CFB, the CFB group

performed most accurately. Hammond and Summers' conclusion:

Furthermore, the evidence which suggests that
traditional, response oriented outcome feedback is an
impediment to cognitive control (and thus to performance)
also points to the facilitating effect of cognitive
material as feedback. This shift in conception of the
notion of feedback carries considerable practical as well
as theoretical significance, for it is now evident that
computer technology can be used to produce such
facilitating feedback. (1972, p. 66)
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There are some researchers who disagree with the above

conclusion. Klayman (1984) contends that the focus of

research has been on the perception of shapes and magnitudes

of cue-criterion functions and that use of these may not be

how people actually learn. The model building process itself

may be how people acquire knowledge and outcome feedback may

be an effective tool when applied to this. He argues for a

greater research effort directed toward the model building

process.

Despite some favorable reports on the effectiveness of

OFB, most of the current literature shows that OFB provides

little value and may even be detrimental to learning in

cognitively complex, uncertain, probabilistic environments.

Doherty and Balzer states, "The superiority of relational

information, or what has been loosely called CFB, over 'OFB'

has been confirmed many times" (1988, p. 176).

F. COGNITIVE FEEDBACK

1. Definition

Cognitive feedback is the feedback that contributes to

the exercise of control. It consists of cognitive material

rather than response-oriented material (OFB). OFB only

enables individuals to see that ttieir decision was in error,

but not why it was in error. If a person is to discover why

they were in error, they must have feedback that allows them
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to compare the properties of their cognitive system with the

properties of the task system that is being dealt with.

(Doherty and Balzer, 1988)

2. Types of CFB

Three types of information can be returned in the CFB

process: Task information (TI), cognitive information (CI),

and functional validity information (FVI). Task information

refers to the relationships between cues and criterion. It

represents the left side of the lens model (ecological or

environmental side). The TI that can be returned is Re (the

multiple correlation indicating overall task uncertainty), rie

(correlations between individual cues and criterion), and rij

(cue intercorrelations). (Balzer, Doherty, and O'Connor, 1989)

Cognitive information refers to the relationships

between cues and the person's judgments. This is the right

side of the lens model (decision maker side). As implied by

the principle of parallel concepts, CI largely mirrors TI

except that there is no equivalent to r,,. CI that can be

returned is ris (utilization coefficient) and Rs (response

linearity or predictability). Also, the conceptual

interpretations of consistency (right side) are very different

from predictability (left side). (Balzer et al, 1989)

Functional validity information are the relationships

between judgments and criterion. This is the achievement

index r, and the matching index G. (Balzer et al, 1989)
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TI, CI, and FVI can all be returned to an individual,

either alone or in combination with the others. However, for

an operation to be labeled cognitive feedback it must include

a cognitive component, that is, either CI, FVI, or both. Each

CFB measure can be returned to the individual in various

formats: verbally, graphically with bar-graphs or cue-

criterion function forms for example, or statistically by

correlation measures. See Table 7 for a summary of the types

of CFB. (Balzer et al, 1989)

Only CI is provided in the single system paradigm; the

concepts of TI and FVI are irrelevant. When CI is returned to

the decision maker it can be used as a cognitive aid to

heighten insight into one's own system of values as it applies

to a given environment. Most studies have suggested that

individuals may lack a high degree of insight into their

policies. Individual's descriptions of their policies are

often inaccurate and difficult to verbalize. This is one of

the reasons that CFB indexes and procedures were originally

developed. If the hypothesis that individuals lack insight

into their policies is true, it would justify development of

systems to provide them with CI. On the other hand, if

experts' insight into their policies is imperfect but not

totally absent, as one study relates, then presentation of CI,

though redundant, would provide an externalization of their

policy. (Balzer et al 1989)
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TABLE 7. TYPES OF COGNITIVE FEEDBACK.

TYPE MEASURE INTERPRETATION

Matching rye^Ys Extent to which task
Index (G) properties correctly

identified. Accuracy of
cue utilization.

Achievement ryeys Correspondence between
(ra) judge's decision and the

environmental event.

Response Rys-ys Predictability/censistency
Linearity of judgment. Extent to
(RS) which judge controls

execution of knowledge.

Environ- Rye^ye Relevance of the cue set to
mental predicting the criterion
Predict- event. Overall task
ability (Re) uncertainty.

Ecological rxiýe Relevance of the ith cue to
Validity (rie) predicting the criterion

event, independent of other
cues.

3. Presentation of CFB

Cognitive feedback can be presented in a variety of

forms. Brehmer and Svensson (1976) plotted a judge's last

block of judgments on the same graph as the true function

forms. Function forms (Cl) relate the cues to the judgment.

Todd and Hammond (1965) did the same thing and included the

means of the criterion and judgment values. Schmitt and

Levine (1977) presented transformations of beta values from

the regression equation. Many researchers have given solely

verbal descriptions (Deane, Hammond, and Summers, 1972) or
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verbal and graphical descriptions of function forms. All the

above methods have demonstrated effectiveness, but the most

frequently employed method is graphical.

Few studies exist that have directly compared the

variety of feedback formats. This may not be very important

because human beings appear well adapted to receiving input

either verbally or graphically, but people may differ on what

format works best. Therefore, if a cognitive aid is developed

for the purposes of feeding back lens model indexes, it would

be best to build in as much redundancy as possible. (Doherty

and Balzer, 1988)

Presentation of a particular CFB index (i.e., CI, TI,

FVI) or presentation in some format rather than another, may

have the effect of returning slightly different information to

individuals. Since CFB may be used to change a person's

judgment policy, or mental model, different combinations of

CFB may produce different mental models. (Doherty and Balzer,

1988)

The computer is, of course, the perfect tool for

analyzing an individual's judgment policy and for

instantaneously generating graphical feedback. Hammond et al

describes the use of a cognitive aid, "Persons exercising

their judgment can discover, immediately and in pictorial form

(by means of computer graphics), the properties of their own

judgmental system, as well as the properties of another
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person's judgmental system, and change those properties, if

they desire, with complete control" (1986, p. 67). Not only

can representations of cognitive systems be compared,

cognitive systems can also be compared with pictorial

representations of task systems as well. This enables one to

study the degree of match between the two systems, the right

and left sides of the lens model.

Time is an important consideration in the presentation

of feedback. Wickens (1984) notes that if feedback is

delayed, many salient factors that went into the decision

making process will have been forgotten. If the judge is

preoccupied with something else, there will probably be scant

attention paid to the feedback. Fischoff (1977) states that

th s can be exacerbated by cognitive conceit. By this,

individuals underestimate the information gained from

observing the effects of their decision and will overestimate,

in hindsight, the extent of prior knowledge. If the

discrepancy between what is known after a decision, and what

was thought to be known before the decision is slight, there

appears to be nothing wrong with the original decision making

process.

4. Applications of Cognitive Feedback

Much of thp evidence for the power and usefulness of

CFB has come from non-laboratory settings. This suggests that

there are a good many practical applications for CFB, many of
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which are now being realized. Cognitive feedback is also

being used in laboratory settings as a basic research tool.

Cognitive feedback has been used for training purposes

within the medical fields and may be useful to any

practitioner who must make multiple-cue judgments of distal,

incompletely discernable objects. As an example, TI + CI has

been presented by computer program to improve the diagnostic

accuracy of medical students evaluating urinary tract

infections. The same program has been used to improve the

achievement and tuning of diagnoses in streptococcal

infections. Cognitive feedback, as CI, has also been used to

increase agreement between specialists in a medical field

where there is much disagreement over proper treatment

(rheumatoid arthritis). (Balzer et al, 1989)

Cognitive feedback has been used in performance rating

training programs. Here, information (i.e., TI) is provided

to raters about which cues or behaviors should be regarded

during a rating session. The student's patterns of ratings

are compared to ratings provided by experts. This has been

shown to reinforce and improve multiple measures of rating

effectiveness. A technique such as this could conceivably be

used to prepare personnel screening boards for their task, or

for the training of portfolio managers, inspection and

auditing personnel, and even battlefield situation assessment

or conflict prediction/resolution tasks. (Balzer et al, 1989)
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Further examples for the application of CFB as TI come

from Balzer et al:

CFB as TI may be used to teach (a) selection
interviewers to differentially weight dimensions of
interviewees' performances; (b) stockbroker trainees to
use various indexes of company performance when making
sell or buy recommendations; (c) clinical trainees to
focus on certain aspects of a client's personal history,
test performance, or interview behaviors when making
diagnoses; ant' (d) medical students to examine and
integrate particular pieces of current and previous
medical history. (1989, p. 430)

More applications for cognitive feedback involve the

return of FVI in a manner that informs individuals about the

validity of their judgments. Those engaged in personnel

selection could be provided with some measure of the

relationship between their selection decisions and the

subsequent performance of the personnel. This information

could lead them to retain, change, or discard their personal

selection policies. This can be applied to the organizational

level as well. (Balzer et al, 1989)

5. Research on Cognitive Feedback

Many studies have been conducted to determine whether

CFB really "works". A problem with comparing all the studies

is that several measures have been used to assess CFB. Some

have used the common lens model statistics of R,, rV, and G as

dependent variables. Others have used variants on these

statistics or have added self reports from users of CFB.
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Three criteria are used by Balzer et al (1989), to

integrate all the results from studies on CFB. The first is

reaction criteria that includes self reports, informal

testimonials, or formal scale responses. Reaction criteria is

primarily qualitative in nature and most studies in this area

have reported favorable reactions to CFB. The second,

behavioral criteria, appraises change in some specific feature

of a person's performance. The changes may include insight

into one's own policy, consistency of policy usage, or task

learning improvement. When used as dependent variables R,, ra,

and G belong in this second category. The third, results

criteria, measures whether CFB resulted in improvement beyond

the CFB task and as such has not received much examination.

Most studies have dealt with behavioral criteria.

Three behavioral criteria are represented in the lens

model: knowledge (G, the matching index), control (Rz,

response linearity or predictability), and achievement (rd).

Studies have looked at each of these behavioral criteria as if

they were separate and others have explored the interactions

between knowledge and control as it affects achievement.

Several studies assessing the impact of CFB on

knowledge, have found that providing individuals with TI + CI

have led to significant increases in linear matching. In one

project r, (r; = Grs), which assesses the extent to which an

individual can predict linear variance in the environment, was
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significantly higher for those receiving CFB than OFB. Still,

some other experiments providing feedback as TI and extensive

CFB (r 1 ,, r1 ,, RS, Re) led to little or no increase in

knowledge. Most studies however, show that CFB will lead to

increases in knowledge. See Table 8 for a surmnry of studies

on the impact of feedback on knowledge (Balzer et al, 1989).

TABLE 8. STUDIES ON THE IMPACT OF CFB UPON KNOWLEDGE.

Type of Feedback Results Study

CFB + OFB TI+CI+OFB > TI+OFB Schmitt, Coyle,
2 OFB> CI+OFB and King (1976)
CFB < CFB+OFB • Schmitt, Coyle,

No FB and Saari (1977)

CFB, OFB TI t TI+CI+FVI > Nystedt and
OFB Magnusson (1973)

CFB, No FB CFB > Jo FB Fero (1975)

TI + CI CFB > OFB Adelman (1981)
No increase Clover (1979)
CFB > OFB Lindell (1976)
CFB > OFS Hoffman, Earle

and Slovic (1981)

TI, TI + CI + FVI TI+CI+FVI ; TI Galbraith (1984)

CI, TI + CI TI+CI > TI > CI Schmitt et al
(1976)

TI TI > No TI Schmitt et al

(1976)

FVI No studies

CI No studies

TI + FVI Increased Newton (1965)

TI + CI + FVI Increased Newton (1965)

TI + CI + FVI, TI+CI+FVI TI+FVI Steinmann (1974)
TI + FVI > OFB
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CFB has been evaluated with respect to its impact on

control (R,). One of the methods employed was to examine the

effect of CFB on a person's ability to employ policies in a

consistent fashion. Results are mixed, but generally CFB has

produced more significant increases in control than not. In

another study, CFB has significantly improved control at a

Veteran's Administration drug dependency unit. Similar

results were reported in a study of learning and training in

undergraduate students. OFB has also been shown to decrease

R, when presented with CFB. See Table 9 for a summary of

research studies on the impact of CFB upon control (Balzer et

al 1989).

When CFB is examined for its effect on achievement

several studies show significant improvement in r,. It has

been demonstrated that ra is highest when TI + CI is received,

second highest when only TI is received, and lowest when OFB

is presented. One study showed that r, was significantly

lower for OFB individuals than for either CFB or CFB + OFB.

See Table 10 for a summary of research studies on the impact

of CFB on achievement (Balzer et al, 1989).

Most studies indicate that CFB improves behavioral

criteria. It reinforces linear matching of an individual's

policy with the linear environment, linear consistency, and

achievement. Knowledge (G) and cognitive control (Rs) are

both significantly increased by CFB, and in an environment of
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TABLE 9. STUDIES ON THE IMPACT OF CFB UPON CONTROL.

Type of Feedback Results Study

CFB + OFB No effects Schmitt et al
(1976)

CFB > CFB + OFB Schmitt et al
(1977)

CFB, OFB Decreased Balke, Hammond
and Meyer (1973)

TI ; TI+CI+FVI Nystedt and
OFB Magnusson (1973)

CFB, No FB CFB > No FB Fero (1975)

TI + CI CFB > OFB Adelman (1981)
No increase Clover (1979)
CFB % PDF > OFB Hoffman et al

(1981)
CFB > OFB Lindpll (1976)

TI, TI + CI + FVI TI+CI+FVI = TI Galbraith (1984)

CI, TI + CI No studies

CI No studies

TI No studies

FVI Increased Newton (1965)

TI + CI + FVI Increased Newton (1965)

TI + CI + FVI, TI+CI+FVI Steinmann (1974)
TI + FVI TI+FVI > OFB

given predictability, achievement (r, = GReRs) depends on these

two components. This is because Re has little effect: it

appears that as environmental predictability increases so does

an individual's predictive ability. To summarize the effect

upon behavioral criteria Balzer et al states:

. .the lens model equation is not only a statistically
correct decomposition of achievement, it is also an
analytical tool that gives us insight into the dynamics of
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achievement. People are capable of improving their
achievement by increasing both knowledge and control; CFB
is a means of enhancing both. (1989, p. 422)

TABLE 10. STUDIES ON THE IMPACT OF CFB UPON ACHIEVEMENT.

Type of Feedback Results Study

CFB + OFB No effects Schmitt et al
(1976)

CFB > CFB+OFB Schmitt et al
(1977)

TI+CI+FVI : TI+CI+ Todd and Hammond
FVI+OFB > OFB (1965)

CFB, OFB TItTI+CI+FVI>OFB Nystedt and
Magnusson (1973)

CFB, No FB CFB > No FB Balke et al(1973)
CFB > No FB Fero (1975)

TI + CI CFB > OFB Adelman (1981)
No increase Clover (1979)
CFB > OFB Hoffman et al

(1981)
CFB > OFB Lindell (1976)

TI, TI + CI + FVI TI+CI+FVI 2 TI Galbraith (1984)

CI, TI + CI TI+CI > TI > OFB Hammond and Boyle
(1971)

TI Increased Deane(1970, cited
in Hammond and

_Boyle, 1971)

FVI No studies

CI Decreased Flack and Summers
(1971)

Increased Stang (1985)

TI + FVI Increased Newton (1965)

TI + CI + FVI Increased Newton (1965)
Increased Stang (1985)

TI + CI + FVI, TI+CI+FVI Steinmann (1974)
TI + FVI TI+FVI > OFB
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6. Issues

a. contributions of Individual CFB Components

Only a few experiments or studies have

examined the individual effects of TI, CI, and FVI on improved

performance. The results so far are not conclusive enough to

show which component contributes most to judgment policy

learning and understanding. Trends however, suggest that TI

may be the primary contributing component and that CI may be

of lesser value. It must be noted that most experiments are

of limited cognitive complexity and that as complexity

increases so may the contribution of CI. (Balzer et al, 1989)

b. The Role of CI

The greatest future growth within the field of

CFB may come f rom the use of CI. According to Doherty and

Balzer:

We believe that the future growth of CFB applications
will be in the measurement of utilities rather than in
modelling environments. We see more people benefitting
from CFB, specifically the CI component, by an increased
understanding of, and ability to communicate, what they
personally value ... rather than from an improved
prediction of an uncertain environment ... If the promise
of wide availability of CFB software packages for general
purposes is fulfilled, there may be another benefit to
users. Since the user will have to decide upon the
dimensions (or cues) and their '.evels, the user will not
only have the benefit of having to make trade-offs,
receiving CFB, etc. , but will also have the benefit of the
insights gained from the decomposition of the problem
common to the early stages of decision analysis. (1988, p.
189)
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c. Policy PC

Policy PC: Judgment Analysis Software1 is a

program written for IBM and compatible personal computers.

This is an example of software developed on the lens model

single system paradigm, using statistical methods to make

models of human judgment. The program enables the user to

construct a series of problem characterizations or scenarios

and to then extract judgments about them. It calculates the

regression measures and returns cognitive feedback as graphic

displays. It can analyze the judgments of up to eight

decision makers, use up to eight cues (text or numeric) in 100

cases, and compute the statistics for each task, judge, and

policy.

Policy PC and similar programs were not intended

for use in research into expert system development. Though it

has some features that would b= desirable in such an effort,

it lacks some properties necessary for expert system

development. For example, this program will not allow an

expert to iteratively refine his or her model. It does not

have a method for defining a cue in terms of other "subcues"

in a hierarchical manner. Cues cannot be temporarily

modified, added, or deleted so that a model can be quickly

refined in response to changing feedback. The feedback (a

Executive Decision Services, Inc., Albany, NY
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combination of TI + CI), as presented in simple text mode, is

not readily assimilable or intuitive. Additionally, it is not

accompanied by much textual explanation, an important form of

feedback. Policy PC is also incapable of capturing an

expert's initial impressions of cue correlations, as a

"starting point", should the expert already have a feel for

what his or her policy is.

G. SUMMARY

This chapter presented a modern psychological theory that

explains the manner in which information is used in decision

making. Brunswik's probabilistic functionalism and the

quantification methods provided by subsequent researchers,

provide a mathematical means of modeling mental processes.

This simple and straightforward way of constructing a linear

model provides a technique for testing hypotheses about the

way individuals combine information and exercise judgment.

A major contribution of this theory is to stress

representativeness in research design. The experiments and

investigations must have an ecological validity or "true-to-

life" modeling if they are to be at all successful in

discovering or representing judgmental processes. With

respect to representative design, Hoffman observed, "In

focusing upon the individual as the unit of research while at

the same time preserving methodological rigor it becomes
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possible to achieve a level of r3ychological description which

would otherwise be quite difficult" (1960, p. 131).

The effects of cognitive feedback have been extensively

studied for almost 30 years. The majority of the research

findings demonstrate that when cognitive feedback is given to

an individual it will improve performance with respect to

knowledge, control, and achievement. This indicates that

cognitive feedback is a useful tool for representing a

person's mental model and for altering that mental model as

well. This is only effectively accomplished when information

regarding relationships is returned to an individual rather

than information concerning outcomes.

The wide variety of settings in which cognitive feedback

has been successively used show that broad applicability is

possible. It can be used to resolve interpersonal or

interorganizational conflicts. It also can allow for the

resolution of intrapersonal conflicts, that is, it can clarify

and enhance an individual's view into his or her own value

system. Cognitive feedback can improve a person's judgment

and it can improve learning.

The computer is the logical device for the employment of

cognitive feedback in analyzing judgment policy and providing

the feedback in a timely manner. The variety of possible

formats and methods allow the feedback process to be tailored

to an individual. The following chapter provides a high level
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description of a proposed cognitive feedback system for use in

knowledge acquisition for expert systems.
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IV. A PROPOSAL FOR AN AUTOMATED KNOWLEDGE ACQUISITION
TOOL USING COGNITIVE FEEDBACK

A. INTRODUCTION

The previous chapter established the validity of cognitive

feedback as a tool for enhancing the learning process and for

understanding how an individual may perceive his or her

environment. More importantly, empirical studies have shown

cognitive feedback to be useful in capturing a person'c policy

or mental model. Since this is based upon Brunswik's

probabilistic functionalism, depicted in the lens model, the

expert's policy or knowledge can be represented as a simple

numerical model (linear equation). (Hursch et al, 1964;

Hammond et al 1964; Tucker, 1964)

This chapter proposes an automated knowledge acquisition

tool known as KARCOF, Know7edge Acquisition and Representation

with COgnitive Feedback. The tool is described with state

transition diagrams and computer screens, set within the

context of a task that evaluates personnel performance. The

program interacts with an expert personnel evaluator (user) to

elicit a policy that will determine the promotability of

individuals within a particular field of exp'rLisb. KARCOF

uses the single system paradigm and through presentation of

cognitive feedback in graphical form, allows the expert to
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iteratively refine their policy. When the expert is satisfied

that the program has successfully captured their polic" or

knowledge, it is stored or represented as a numerical model in

a linear regression equation.

KARCOF is more than a knowledge acquisition tool, it also

can be considered as the developing core of a Knowledge

Support System (KSS). KSS's encompass tools for knowledge

engineering and support for human knowledge processes. KARCOF

can be used toward this end by returning an individual's

policies, or by enabling them to clarify a decis~on making

process. KARCOF has several other characteristics of a KSS.

These include domain independeince (cognitive feedback has

shown broad applicability with respect to tasks (Balzer et al,

1989)), direct interaction with the expert, provision for

validation, a sound theoretical foundation, and the ability to

incorporate different forms of knowledge and relationships

between knowledge. (Shaw and Gaines, 1987a)

B. SPECIFICATION

A top level view of how the KARCOF program operates is

illustrated by Figure 3. This is a state transition diagram

that uses Wasserman's (1985) methodology for specifying and

implementing interactive information systems. The following

is a brief listing and definition of the diagram components:
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-- Nodes are shown by a circle and represent a stable state
awaiting some user input. A node displays a message.

-- Arcs are shown by arrows that connect the nodes to one
another. The arc is a state transition caused by some
user input. The arc is labeled by the input or variable
assignment that causes the transition.

-- An operation is shown by a small square with "ca" (call
action) and is associated with an integer that
differentiates the actions. It may be associated with
a transition to show a particular action that is taken
when an arc is traversed. The action also may be
associated with more than one arc.

-- A subconversation is shown by a rectangular box with an
associated diagram name. It is a lower level diagram or
module to which control is passed. The new diagram is
traversed to the exit and control is then returned to
the top level.

-- The "+" denotes return to a previous node without
intervening user input.

-- The "0" denotes resumption of a program after it has
paused for access to the help feature.

Each node in Figure 3 represents a computer screen and each

rectangle represents another diagram. All are included in

subsequent figures to illustrate how an expert would use this

tool.

1. Setup and Initial Steps

The session begins with the user entering the data

that will identify this knowledge base when the session is

complete. The first node in Figure 3 is the "Setup" phase and

it is here that the purpose or name of the policy, name of the

expert, and name of the file in which the data is to be

stored, is entered. The elicitation begins with the user

specifying the number of cues, up to a maximum of eight, that

will be used in the model, as shown in Figure 4. Input is via

the keyboard and the functions at the bottom of the screen are
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accessed by mouse or cursor keys. Available functions, at any

particular step, are denoted by an asterisk. At the top of

the screen is a message bar showing what is required for the

present step and how to move to the next phase.

The next step, Figure 5, requires the user to specify

the nature of the cues in a popup window. There are two

available choices: cardinal (for a discontinuous scale), and

numeric (for continuous values). For each cue the user enters

a name and a value range. In this example, each cue can

assume integer values between one and ten inclusive, though

all the cues need not have the same scale. As an anchor point

for the scale, one means "worst" or "least desirable", and ten

means "best" or "most desirable". If the user desires

additional information on any step, help is always available

through a popup, scrollable, context sensitive window, as in

Figure 6.

When determining the number of cues to be used, the

expert should always be mindful that only the minimum

necessary for the judgment should be entered. Judges will

most often include too many cues: the important ones and some

unimportant ones (Stewart, 1988). Feedback after the first

iteration or so should suggest to the user which cues are used

the least so that these can be deleted.
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At the next step, Figure 7, the user enters his or her

estimate of the correlation between each combination of cues.

Since humans deal poorly with statistical estimations, a

graphical representation as a number line, is provided for the

entry of estimates. Figure 7 shows the cue pair X,-X2 to have

a weak positive correlation, XI-X3 to have a strong positive

correlation, and X2-X3 to have a weak negative correlation.

This step is necessary because the principle of parallel

concepts states that cues in the cognitive task should match

cues in the cognitive system. The environmental cues are

unknown, of course, so they must be estimated by the expert.

These subjective cue intercorrelations may be reasonably

accurate if the expert has observed occurrences of similar

correlations in real life over many cases (Stewart, 1988).

This example uses four cues, so several more screens of

correlations would be necessary.

2. Case Generation and Judgments

To capture an expert's policy or knowledge, KARCOF

must obtain a series of judgments made by the expert over a

set of representative cases. Stewart (1988) has set forth

some guidelines for creating an algorithm that determines the

number of cases necessary to obtain a statistically stable

model of the expert's policy. The requirement for stability

sets a lower bound on the number of cases required. However,

this number cannot be precisely calculated because it depends
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upon the complex interactions of three factors:

-- The number of cues, which when increased requires an
increase in the number of cases to maintain stability.

-- The fit of the model to the judgments as shown by
the multiple correlation. If the fit is good, fewer
cases are required.

-- The Cue intercorrelat ions, when zero, result in greatest
stability. If correlations exist, then more cases will
be required.

Various levels of each of these factors affects the standard

error of the regression coefficient (SE), which can be

interpreted as an estimate of the instability of the model.

A high SE suggests greater instability and unreliability of

the analysis.

The knowledge engineer administering KARCOF must

choose an appropriate SE before beginning an elicitation

session. An SE of .1 is generally relevant for most

circumstances, and when combined with a known level of cue

intercorrelations, a suitable number of cases can be

determined. Past research has shown that judgments over 30

cases will yield a statistically stable model with this

example's number of cues and level of intercorrelation.

Generally, 30 cases for the first four cues and 5 cases for

each additional cue will yield a stable model. (Stewart, 1988)

Cook (1976) as cited in Stewart (1988), submits that

the standard statistical assumptions may not apply to this

application (judgment analysis). He found that stability

could be achieved with fewer cases than is suggested by
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statistical theory. If true, then the above procedure will be

too conservative. Cook's findings have yet to be duplicated,

but the above algorithm should yield the appropriate accuracy.

KARCOF's algorithm, after determining the number of

cases, generates a random number matrix from a clock time

seed. The matrix is an assignment of a random number to each

cue over the set of required cases. The algorithm then

performs the appropriate statistical operations upon the

matrix to compute the standard error and the cue

intercorrelations. These two measures are then compared

against the SE specified by the knowledge engineer and the cue

intercorrelations specified by the expert. If there is not a

resulting match, within a certain tolerance range (say, 10%),

to prevent an inordinate number of iterations, the above steps

are repeated. When a match of SE and cue intercorrelations is

finally achieved, the cue values are rescaled according to the

range prescribed by the expert.

The final matrix of cue values over the prescribed set

of cases is then presented to the expert, as in Figure 8. The

expert performs a judgment for each case and enterc it in the

"Judgment (Y,)' column of the matrix. The example in Figure

8 would require another screen of 14 judgments to be executed

before this phase is complete. An expert can generally make

40-75 such judgments in one hour (Stewart, 1988).
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3. Feedback

When the expert has completed all the necessary

judgments, control of the program is passed to the "Feedback"

subconversation or module, Figure 9 (also see Figure 3). All

the statistical measures required by the single system

paradigm are computed and the expert is then given a choice of

how he or she wishes to view the feedback, as shown in Figure

10. Three choices, with a sample of each are shown in this

step:

-- The relationship (7ens) model is a graphical
representation of all cues and subcues. Strength of cue
correlation to judgment and of subcue to parent cue is
shown by the thickness of the connecting line.

-- Function forms represent the relation between a single
cue and the judgment. it is presented on a simple X-Y
graph.

-- Decision weights are the standard regression
coefficients, or beta weights, of each cue expressed in
percentages. This eliminates differences due to units
of measure between each cue and estimates the direct
impact a cue has on a judgment if the other cues are
held constant. The data is presented on a simple
vertical bar chart. A negative decision weight is shown
below the X-axis.

The expert views the feedback in Figure 11 , and has the option

of seeing each type in succession. A detailed verbal

explanation of each form of feedback is available by accessing

the Help facility. When finished viewing the feedback, the

user may revise the cues in any manner, revise the judgments,

or view the knowledge base (validation). (Stewart, 1988)
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4. Validation

Should the expert feel satisfied the feedback

indicates that his or her policy may be effectively captured,

the next step is to select "Knowledge Base", an option in

Figure 11. Control of the program is then passed to the

"Knowledge Base" subconversation or module, Figure 12. KARCOF

generates another random number matrix for each cue and case,

and the requirement for matching cue intercorrelations and a

matching SE is again satisfied. KARCOF applies the expert's

captured policy, in a multiple regression equation, to predict

a judgment for each case, Figure 13.

The expert inspects the machine generated judgments

and if satisfied, elects to save the knowledge base and

terminate the session, Figure 14. However, KARCOF may not

have produced satisfactory judgments, indicating to the expert

that his or her policy has not yet been faithfully captured.

If this is the case the expert may elect to save the knowledge

base and continue the session at another time, or revise the

cue set and subsequently do another iteration of cue

correlations, judgments, and feedback.

5. Refinement

After viewing feedback from the first set of

judgments, the expert may choose to rejudge the original set

of cases. He or she may have under or overemphasized certain

cues at the expense of others. This would result in a model
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that does not truly reflect the expert's policy. In Figure 11

the expert selects "Revise Judgments" to return and rejudge

the original set of cases. When completed, feedback is

accessed again. The user may indefinitely iterate in this

fashion until satisfied with the feedback and validation of

the model.

An alternative to rejudging the original cue set,

which may not produce the desired feedback, is to alter the

parameters of the model. When the user selects "Revise Cues"

in Figure 11 four options present themselves: add a cue,

delete a cue, "explode" a cue, and edit a cue. Should the

user choose to add a cue, control of the program is passed to

the "Add Cue" subconversation or module, Figure 15. The user

is prompted for the number of additional cues to incorporate

into the model, Figure 16, and for the names and value ranges

of the new cues, Figure 17. After this step the expert may

further refine the model by deleting, exploding, or editing

cues or may proceed to correlate and judge the cues again.

Another option in the refinement process is to delete a

cue. The expert may choose to do this if he or she considers

a cue to be unimportant, contributing little or even

detracting from the final decision. In Figure 18 the expert

is asked which cues to delete. Afterward, the refinement

process may, continue, or the cue combinations may be

recorrelated and judged.
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A third option in the refinement process is to

"explode" a cue. Control of the program is passed to the

"Explode" subconversation or module, then a cue can be

hierarchically defined in terms of lower level subcues, as

shown in Figure 19. This module contains processes and

screens that are virtually identical to that of the main

program. The only difference is that a parent cue is now

regarded as a judgment or decision. A regression model,

formulated in terms of -he subcues, is created to define the

parent cue through the same operations of cue correlation,

case generation, judgment, feedback, refinement, and

validation.

The last option in the refinement process is to edit

a cue. When "Edit Cue" is selected, control of the program is

passed to the "Edit Cue" subconversation or module, Figure 20.

The user is given a choice of which cue to modify. The name

of the cue, Figure 21, and the value range, Figure 22, may be

altered. The expert may continue the refinement process or go

to the steps of cue correlation, judgment, feedback, and

validation.

C. SUMMARY

KAPCOF is a highly interactive program that can provide an

expert with instantaneous feedback to his or her decisions.

Parameters of the decision model can be altered dynamically

and there is little delay between the judgments and the
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feedback. This is expected to eliminate the negative and

counterproductive aspects of delayed feedback. If feedback is

not immediate, its effectiveness will be diminished, as many

factors that went into the decision making process may be

forgotten or attenuated. The expert's mind is invariably

preoccupied with something else if the feedback arrives late.

(Wickens, 1984)

The ability of KARCOF to define a hierarchical model is

more reflective of actual decision making processes.

Decisions may not always be based upon a single layer of cues.

Many situations may be dependent on several decisions, some of

which impinge on others in a hierarchical manner.

A program such as KARCOF, when finally implemented, should

allow the domain expert to assume many functions currently

performed by a knowledge engineer. Table 11 summarizes the

steps in KARCOF. This will result in enhanced quality of the

knowledge base and one that is more reflective of the domain

expert's mental model. The knowledge engineer's function

would be redefined to that of a facilitator with in-depth

technical knowledge of the tool. He or she would handle some

refinement in the form of the knowledge base and whatever

special situations in coding or coordination that invariably

arise. The expert would no longer be confined by the focus of

the knowledge engineer on implementation and representation

problems.
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TABLE 11. SUMMARY OF THE STEPS IN KARCOF.

Step Action Figure

1 Setup. Name the 3
policy, expert,
and file.

2 Specify the number 4
of cues.

3 Specify nature, 5
name, and range of
cues.

4 Specify cue 7
correlations.

5 Judge a set of 8
generated cases.

6 Specify form of 10

feedback.

7 View feedback. 11

8 Validate knowledge 13
base.

9 Save knowledge 14
base or iterate 16
between steps 2-8: 17
Add Cue, Explode 18
Cue, Delete Cue, 21
or Edit Cue. 22
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V. CONCLUSION

A. SUMMARY

A major goal of the knowledge acquisition process is to

determine what a domain expert knows and uses to solve

problems. An understanding of the different types of

knowledge that exist is an important first step toward this

goal. Chapter II surveyed four types of knowledge:

declarative, procedural, semantic, and episodic. Of

particular interest, when considering expertise, are the

procedural and semantic types of knowledge.

Procedural knowledge presents especially difficult

problems for the knowledge acquisition process. This is due

to its highly compiled and automated nature. Knowledge that

was once declarative is combined with other types of

knowledge; then refined, tuned, strengthened, and integrated

into the expert's overall knowledge base. The facts, rules,

and concepts that comprise procedural knowledge are

represented in a more abstract and solution-oriented manner.

These cognitive changes have a beneficial impact on a person's

ability to use the information, but negatively impact an

individual's ability to consciously access the information.

The inability of experts to verbalize about their cognitive

processes is well documented.
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Many different techniques have been developed in an effort

to capture expert knowledge. Chapter II presented 14 of

these, half which can be considered "direct" techniques, and

half which can be considered "indirect". Direct techniques

rely on some form of verbalization or introspection by the

individual. These methods are only effective at illuminating

the declarative aspects of knowledge and they work poorly with

procedural knowledge. The "indirect" techniques rely less on

verbalization and more on methods that attempt to describe the

underlying forms or organization (mental models) of the

knowledge. A problem with the indirect techniques is that all

assume, a priori, some underlying form. These methods can

only succeed to the extent that the expert's underlying mental

model parallels the assumed forms.

Many cognitive scientists hypothesize that human thinking

is a multi-representational system (Rouse and Morris, 1986).

Each aspect of the represented environment is mapped into the

representation best suited to a particular use or domain. It

is apparent that since the indirect techniques of Chapter II

assume an underlying form, they are capable of representing

but one model.

Chapter III presented Brunswik's probabilistic

functionalism theory that explains how pieces of information

or cues, may be used by a person in a decision making process.

The cues are viewed as less than dependable, and they exist
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within a probabilistic environment. Depending on the task at

hand, the cues may be combined and used in a multitude of

ways. The theory is operationalized through use of the lens

model that graphically represents how an expert may combine

cues when an inference is made about some object or event in

the future. Each different arrangement of cues may be

considered a representation of a different mental model.

Therefore, the lens model can represent far more than the

single models of Chapter II's indirect techniques.

The lens model also provides a convenient way to combine

an expert's cognitive system (mental model representation)

with representations of the environment and the task, into a

single overarching model. Statistical analysis techniques

allow for comparisons and predictions between each of the

systems depicted in the lens model. Measurements of the

decision maker's achievement, predictability, and the match

with the environment are possible.

When the lens model is employed in the single system

paradigm, the expert's cognitive system, or mental model, is

represented. Cognitive feedback, the return of some aspects

of the decision output to the decision maker, can be used to

capture and even change the expert's working mental model.

Chapter III described in detail the types of cognitive

feedback that can be returned and a summary of studies that

have examined the effectiveness of each.
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The utility of cognitive feedback is well documented, as

are comparisons with the otner type of decision feedback,

outcome feedback. Outcome feedback may have a detrimental

impact on cognitive processes whereas cognitive feedback has

shown a positive and constructive effect on cognitive

processes.

Cognitive feedback has been successfully used in a variety

of fields that involve training and learning. It has also

been used to resolve conflicts among individuals and

organizations by providing each party with a view of what they

value most. Computers have been used with these examples to

capture the individual's policy or knowledge, and display

feedback in graphical form.

B. FINAL REMARKS

The above summary addressed the first and second

objectives of the thesis. The first was to discover what gaps

exist in current knowledge acquisition methodologies. A

survey of the techniques revealed that there appears to be no

reliable technique for capturing an expert's procedural

knowledge or mental model in general.

The second objective was to determine whether cognitive

feedback is appropriate as a tool for filling the gaps

identified in the current techniques. This study has found

ample evidence that cognitive feedback and the lens model may

122



be effective in capturing a variety of mental models, and with

that, an expert's procedural knowledge.

The third objective of this study was to determine how, in

an operational sense, cognitive feedback could be employed to

extract an individual's knowledge. Chapter IV addresses this

goal through the description of a proposed automated knowledge

acquisition tool that uses cognitive feedback. The program

can be used directly by an expert without the intervention of

a knowledge engineer. The expert furnishes the program with

the number of cues and cue intercorrelations used in a

decision making process. Based on this, and a standard error

suitable for statistical stability specified by a supervising

knowledge engineer, the program generates a number of cases.

The expert then enters a numerical judgment for each case.

The program calculates the necessary statistical measures and

presents cognitive feedback in graphical form. If the expert

is not satisfied with the feedback he or she may revise

previous judgments or alter the parameters of the problem.

This may continue in an iterative manner until the expert is

convinced that the computer has captured a workable

representation of their knowledge.

C. APPLICABLE TASKS

Cognitive feedback appears to have broad applicability

irrespective of domain or problem solving technique. As shown
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in Chapter II, many knowledge acquisition tools form a

specific link between a problem solving method and an

application task category. Cognitive feedback however, due to

its general nature, may work with a number of problem solving

techniques. It is also particularly well suited to inference

tasks since the lens model, with its proximal-distal variable

separation, is the very definition of an inference task.

Cognitive feedback could be used in personnel selection

boards, or in tasks that rate the performance of individuals.

It could be used for complex learning situations such as

nuclear reactor operation or anti-submarine operations. Many

other possible applications present themselves:

-- Economic forecasting;
-- Practice in battlefield situation assessment;
-- Conflict resolution;
-- Auditing;
-- Security risk assessment;
-- Law: Case evaluation, litigation risk;
-- Medical diagnosis;
-- Hardware diagnosis.

D. AREAS FOR FURTHER RESEARCH

Coding of the automated knowledge acquisition program is

the subject of a follow-on study to this thesis. Once the

prototype has been developed the logical next step involves

empirical studies of its effectiveness in capturing procedural

knowledge. Empirical studies should also be conducted to

determine what domains or tasks, within the Department of

Defense, would benefit from the development of this tool.
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The primary goal of a knowledge acquisition tool, whether

automated or manual, is to represent knowledge for ultimate

inclusion into a working expert system. Follow-on research

should take the knowledge captured by cognitive feedback, as

linear equations, and combine it with an effective inference

mechanism in an expert system. An alternative would be to

transform this captured knowledge into a form that can be used

by an existing inference engine in an expert system.

Additional areas of research should investigate the

intricacies of dealing with uncertainty. There are two

aspects to this problem. First, considering the emphasis that

probabilistic functir-• ism places upon the probabilistic

nature of the env r .,ment, researchers have yet to devise a

means of representing uncertainty with the lens model. Re and

R. represen4 point estimates of overall error but a means of

represenLing error bands around parameters is lacking. Some

parameters that should be treated in this way are the

estimates of ecological validities, utilization coefficients,

and r.. Second, methods of handling uncertainty must be

worked into the expert system that uses knowledge, in linear

equations, captured by cognitive feedback.
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