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ABSTRACT

Y

One subfield of machine learning is the induction of a representation of a concept from
positive and negative examples of the concept. Given a set of training examplies, the goal
of the inductive system is to creale a description capable of classifying the training ex-
amples, yet general enough to accurately predict the classification of unseen examples.
Often the original attributes describing the instances are inadequate to capture impor-
tant regularities in the concept. New descriptors, constructed through the application
of operators to the original attributes, can provide the proper vocabulary to create con-
cise concept representations at the right level of generalization to be highly predictive.
Constructive induction is the process of generating and applying new aescriptors during
inductije learning,.

The large number of possible constructive operators and combinations of attributes
defines an enormous search space for the inductive process. Knowledge-about the concept
or problem domain can be used to guide the construction of new descriptors. This thesis
lays the foundation of opportunistic consiructive induction in the context of decision-tree
assembly, providing a framework for dynamically applying fragments of knowledge to
produce potentially useful descriptors or hypotheses. A two-staged process of generating

candidate descriplors (hypothesis generation) and focusing the induction on the most
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promising (hypothesis ordering) has been developed and partially implemented. This
thesis concentrates on the development of a hypothesis ordering mechanism that incor-
porates the evaluation of multiple vbjectives to identify the most promising descriptors.
Experiments in four test domains demonstrate the hypothesis ordering mechanism to be
a robust, effective method of significantly reducing the potential computational burden
created by prolific hypothesis generation. In addition, preliminary investigation of hy-
pothesis generation indicates that small amounts of knowledge can provide substantial

increases in the predictive accuracy of the induced decision-trees.
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CHAPTER 1

INTRODUCTION

One of the hallmarks of an intelligent system, whether a person, animal or machine, is
the ability to learn and adapt. Without learning, even the most clever systemn is doomed
to repeat mistakes or perform ineflicient processes over and over. Learning is a broad
topic, encompassing many methods and objectives. This research focuses on one popular
aspect of automated symbolic learning: the acquisition of new and useful concepts by
computer through induction over examples. Inductive concept learning, herein known
simply as inductive learning, seeks to find or create a description of a concept represented
by positive versus negative examples, and to generalize that description to attempt to
correctly predict the classification of examples not seen in the training set.

A concept learned under the conditions noted above is an intensional description of
a class of objects [Hunt et al., 1966, Matheus, 1989), i.e., a condensed, noncnumerated
description of the members of a particular class. This thesis concentrates on discrimi-
nant concept learning: the creation of a description intended to identify members of the
concept and discriminate them from nonmembers (as opposed to characteristic concept
learning which describes the commonalities of members within the class [Dietterich and
Michalski, 1983]). The form of concept representation used in this thesis is the decision
tree, and the concepts considered will be limited to those capable of being represented

by a decision-tree.

Definitions: Appendix A provides definitions of many of the more impoitant and spe-
cialized words appearing throughout this thesis. These words typically appear in italics

in the text and are usually accompanied by short elaborations.




1.1 Inductive Learning

In its simplest form, inductive learning formulates a concept description from the
attributes used to describe the training examples or instances. Several authors freely
interchange the terms attribute and feature, meaning, in both cases, the variables with
which the learning situation is described. In this thesis I maintain a strict distinction
between the two, limiting a feature to be a Boolean attribute whose possible values can
be only “true” or “false.” (See Appendices A and B.)

A common form of inductive learning, similarity-based learning, incorporates the
assumption that instances sharing similar attributes are likely to be members of the
same <lass; i.e., the positive examples of the concept aie similar to each other and distinct
from the negative examples. Selective induction uses the attributes as the dimensions
delineating an instance space (the space of all possible examples), and seeks to find a
boundary capable of separati .g the positive from the negative examples. Often, however,
the examples cannot be so cleanly partitioned. Instead, subregions of the instance space
are isolated and described, and these partial descriptions are disjunctively joined to
create the full concept description [Hunt et al., 1966, Dietterich and Michalski, 1983,
Breiman et al., 1984].

Even with this divide-and-conquer approach, many interesting problems provide ex-
amples so scattered in the instance space that the resultant disjunctive description (if
found at all) is very large and unwieldy. Although such descriptions provide good accu-
racy on the training examples, they often do not provide a communicable and understand-
able description, and can be highly inaccurate on the unseen examples. In these problems,
the current attributes are inadequate to represent the concept. New attributes must be
created to provide a language in which accurate, concise concept descriptions may be ob-

tained [Soloway and Risemen, 1977, Dietterich and Michalski, 1983, Breiman et al., 1984,

Rendell and Seshu, 1990]. One approach to creating new attributes is to construct them




from the existing attributes. When these new attributes are constructed with the intent
of using them to redescribe the instance space and perform induction over the examples
in this modified space, the selecti+ nduction approach takes on a new level of complexity
and is known as constructive induction [Dietterich and Michalski, 1983).

One example of the need for constructive induction can be illustrated with a physics
problem of the kind solved by the system BACON [Langley et al., 1986]: pressure times
volur :equals a cunstant (P xV = C). Figure 1.1(a) shows a two-dimensional projection
of instance space, highlighting the two attributes of interest and displaying a set of
training examples. Selective induction would produce a desc.iption like that shown in
Figure 1.1(b) if high accuracy was desired, or Figure 1.1(c) if conciseness was i nportant.
Yet neither description captures the essence of the true concep’ BACON provides an
iterative method capable of constructing the form (attributeAX x attributeBY) and is
able to discover the required attribute (P x V). When this new attribute is added to

the instance space as a new dimension, the discovery of the compact concept description
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Figure 1.1 Induction of PxV = C. Example physics problem where pressure times
volume is a constant: (a) shows the two-dimensional projection of the examples onto the
interesting attributes, (b) llustrates the partitioning for high accuracy, (c) illustrates the
partitioning for a concise description, and (d) shows the one-dimensional projection over
the constructed attribute, providing both conciseness and accuracy.




becomes a trivial selective induction exercise. Figure 1.1(d) shows the one-dimensional
projection of the instance space over the new attribute.

Constructive induction generally proceeds as follows: first, the need for new attributes
is determined (typically, when the given attributes are deemed inadequate [Matheus,
1989]), and second, new attributes are constructed and tested. This process is repeated
as needed, possibly constructing new attributes from previously constructed attributes.
Generating only the most useful or promising new attributes is a formidable task. The
number of constructive operators available for potential use is large and their types
are varied; for example, Boolean (AND, OR, XOR), mathematical (4, -, X, +, v ),
relational (on-top-of, a-part-of, greater-than), and generalizing (drop condition, close
interval, spatially transform). Given the large number of operators and the arity of the
construction (combining two, or three, or five attributes for example), the number of
possible constructed attrib;ltes is huge. Selecting the most promising constructions from
the space of possible combinations is difficult at best.

Many researchers approacil the task of constructing new attributes by imposing strict
limits on the allowable constructive operations and then restricting the class of problems
made available to the system. While this approach has recognizable research value, these
restrictions must eventually be lifted for intelligent systems to learn effectively in the
real world; therein lies the motivation of this thesis. Its central theme is to establish a
mechanism for managing nearly unrestricted access to potential new attributes through
the opportunistic application of any information available to the system, particularly

knowledge about the domain.




1.2 Thesis Overview

This thesis is concerned with the induction and generalization of decision-trees dur-
ing single concept, supervised learning; i.e., given a set of training instances labeled by
a teacher as positive or negative examples of the concept being iearned, a decision tree
is assembled to distinguish the positive examples of the concept from the negative. The
decision-tree is also generalized during induction in an attempt to predict the classifica-
tion of previously unseen instances.

The original description language used to describe the training instances is not always
adequate to construct a sufficiently accurate, compact, or understandable decision-tree.
This thesis proposes and studies a mechanism for making use of available knowledge
to suggest constructions from the original attributes to promote the assembly of better
decision-trees. Opportunistic constructive induction applies fragments of knowledge to
dynamically suggest constructions, whenever it appears the knowledge might be use-
ful based on the current state of concept induction. The knowledge may be suggested
by the user, compiled in specialized procedures, stored as a domain theory, or learned

automatically from previous inductive tasks.

1.2.1 Importance of the problem

A significant trend in current and computer technology is the transition of increasingiy
complex computer-based applications (e.g., robotics) from the laboratory to the real
world. This {rend requires a much greater amount of autonomy in those systems, since
the real world is rife with novel situations and exceptions to every rule. The most
powerful systems will be those that can analyze previously unfamiliar situations, elicit
the important patterns, and adapt for future encounters. The process of extracting

important or useful patterns from the input data (whether the data are sensory, retrieved




from a database, or input by a human as a problem) is one of manipulating the original
data description language in such a way as to form combinations of the language’s terms
to provide significant portions of the sought after patterns. These combinations of terms
are descriptive extensions to the language; hence, thie process is one of discovering and
incorporating new terms into the description language.

The problem of selecting new terms has been recognized since the early days of ma-
chine learning research. Referring to the selection of terms to use for evaluating board

positions in his checkers playing program, the machine learning pioneer Arthur Samuel

[1959] wrote:

It might be argued that this procedure of having the program select new terms
for the evaluation polynomial from a supplied list is much too simple and that
the program should generate terms for itself. Unfortunateiy, no satisfactory

scheme for doing this has yet been devised.

After over three decades, the problem stills cxists. Although mechanisms have been
developed to guide the creation and selection of new terms in very specific applications,
the approaches are all limited in scope and explore only small segments of the potential

space of new terms. Dietterich and Michalski [1983] wrote:

An important problem is the development of efficient mechanisms for guiding
the process of constructive induction through the pote.ciwly irmense space

of possible derived descriptors.

More recently, Matheus [1989] reiterated what all researchers in constructive induction

know regarding the enormity and complexity of the problem of finding new terms:

The overall result is that the search for an appropriate set of features is

intractable in the general case. Solutions to this problem therefore must rely

on powerful heuristics.




The primary contribution of this thesis is the development of an approach to allow
the treatment of available fragments of domain knowledge as heuristics in the search for
new terms, and to apply them in a manner that utilizes the best ones and prevents the

poor ones {rom impeding the process.

1.2.2 Objectives

This research effort provides the framework for incorr . ing fragments of domain
knowledge to propose potentially useful new terms or hy;.ileses dusing constructive
induction. The use of domain knowledge promises t- be an effective means of tractably
guiding the earch thiough a vast hypothesis space in a nearly best first :ashion. The
primary ¢bjective of this research effort is to deelop a mecharism to allow the use of
domain knowledge in an unrestricted, dynamic fashion while maintaining a manaxcable

omputational load. Achievement of this primary objective entails the accomplishi. . nt

of the following secondary objectives:

1. Penetrate the mechanics of induction to incorporate flexible search guidance that
responds to the needs of the problem at hand (versus the imposed inflexible biascs
usually found in inductive systems). This includes an interleaving of deductive and
inductive mechanisms to provide the necessary opportunism, i.e., to allow the search

guidance to be suggested during concept induction as promising opportunities arise.

(Chapter 2)

o

. Develop a modular system architecture to implement the four components of
the opportunistic constructive induction process: hypothesis generation, hypoth-
esis ordering (focusing), hypothesis evaluation, and hypothesis incorporation. Au

overview of the process is shown in Figure 1.2. The implemented system is intended
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Figure 1.2 Overview of the Cpportunistic Constructive Induction Process.

to provide a doma:n-independent develepr ent and testbed environment for the ap

plication of domain knowledge to guiding decision-tree construction. (Chap.er 3)

3. Develop a robust hypothesis ordering mechanism to manage the potentially enor-
mous computational burden produced by the uninhibited exploration of hypothesis

space. (Chapter 4)

4. Develop a robust hypothesis generation mechanism that uses fragments of domain
knowledge and an assessment of the current state of the inductive process to ex-
plicitly create new hypothesés intended to « .ich the concept description language

for further induction. (Chapters 3 and 6)

This thesis accomplishes secondary objectives 1 through 3 and cxplores several aspects
of secondary objectiv. L. The novel machine learning aspects and contributions of this

research are:

¢ The creation of a conceptual framework fur tic inductive process that encourages
the incorporation of deductive processes using background knowledge to suggest or
provide fragments of the concept description, taking much of the mystery out of the
abduclive process, i.e., the process of creating good hypotheses [Watanabe, 1985)
(Thapter 2). This framework maps directly into an implementation architecture

integrating inductive and deductive mechanisms.




e The investigation of the ﬁse of a hypothesis ordering mechanism to act as a filter
between the generation and test phases of new term creation. Included in the inves-
tigation is the development of a competitive mechanism that uses small samples of
the training data to focus the system’s attention on the most promising hypotheses

and to reject the most useless.

o Exploration of several multiple-objective evaluation functions as the basis of hy-
pothesis ordering, and establishment of the non-dominance method as a robust

and computationally practical approach.

¢ The establishment of the groundwork for a diverse and flexible hypothesis generation
mechanism, including the specification of a baseliz:e: capability, and experimentation

with several applications of knowledge (described below).

1.2.3 Limitations of this research

Since the phase of research described in this thesis is a portion of a larger research
project. the current implementation and completed experiments are limited. Chapter 7
discuss~s several areas of continuation and expansion of this research.

The four-part inductive process shown in Figure 1.2 also represents the degrees of
difficulty of the components and the implementation dependencies. The leftmost compo-
nents, although more interesting, are more difficult and require the implementation of the
rightmost components before they can be properly investigated. Hypothesis evaluation
and hypothesis incorporation are relatively well understood and readily implemented.
Therefore, this thesis focuses on the development of the hypothesis ordering mechanism
to provide 2 foundation for future development of the hypothesis generation capabil-
ity. The current implementation consists of the overall system architecture, baseline hy-

pothesis ordering and hypothesis evalu..tion modules, and partially developed hypothesis




incorporation and central blackboard mechanisms. The hypothesis generation component
has been implemented only to the extent necessaiy to perform controlled experimenta-
tion on the effectiveness of certain pieces of domain knowledge. The generator has not
yet been developed to the degree necessary to become an autonomous and integral part
of the system.

The opportunistic capabilities of a completed system architecture were not fully ex-
ercised in the experime : that is, knowledge was not involed to generate additional
hypotheses based on a partial or tentative concept description. However, the experi-
ments did examine several variations on the type of knowledge used for hypothesis gen-
eration and the stage of induction in which the knowledge was applied. In Chapter 6,
contextual knowledge (knowledge about content) was used by a post-processing proce-
dure ‘. constrain the conclusions drawn from a previously learned decision-tree, i.e., the
knowledge guided learning from experience. This cuombination of expectation and ex-
perience produced a smail set of useful hypotheses for subsequent learning sessions. In
other experiments (Chapters 5 and 6), syntactic (structural) and contextual knowledge
was used by procedural mechanisms to generate hypotheses prior to decision-tree induc-
tion. Ilypotheses generated with proper knowledge provided the means for extremely
rapid convergence to the concept description with small sample sizes. These experiments
demonstrate the feasibility and flexibility of applying domain knowledge for hypothesis

generation.

1.2.4 Thesis organization

Chapter 2 provides the background and motivation of this research, focusing on the
need for incorporating knowl-dge in the constructive induction process. Chapter 3
presents an overview of the implementation of OXG. ‘e, a testbed for opportunisti-

cally utilizing knowledge during constructive induction. The most critical component
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of OXGate in this phase of research, hypothesis ordering, is described in Chapter 4, fol-
lowed by the experimental support and analysis of its viability in Chapter 5. Experiments
with selected applications of knowledge are presented in Chapter 6, providing inroads into
hypothesis generation, the most novel component of OXGate and next logical area for
continued research. Chapter 7 summarizes the important results and contribuiions of
this thesis, and suggests areas of future research. Appendix A provides the definitions
of many of the terms used throughout this thesis. Appendix B presents a formalism
for describing hypotheses, decision-trees, feature and hypothesis construction, and the

application of knowledge. Descriptions of the concepts and data used in the experiments

are presented in Appendices C through F.




CHAPTER. 2

BACKGROUND AND MOTIVATION

This chapter presents a four-part model of the inductive process and an approach to
guiding induction toward a concept description through the application of knowledge.
An overview of opportunistic constructive induction is presented next, followed by de-
scripuons of several established constructive induction systems that form the foundation

for this research.

2.1 A Framework for Analyzing Induction

The end result of inductive learning is a description known as a hypothesis, indicating
it is an approximation of the true concept! and subject to change should future examples
indicate it is incorrect. A hypothesis is a statement relating descriptive attributes of a
concept to values those attributes assume in examples of the concept (Section B.2). The
simplest form of 2 hypothesis is an attribute-value pair: “attribute A has value V.”

The common definition of hypothesis, the end product, can be extended to include any
candidate testable statement that may be used as a component in the formation of the
concept description. Generally, a hypothesis may be a relatively complex description con-
structed from previously established hypotheses, which may themselves be constructed
from still simpler hypotheses, allowing for the incremental or piecewise instantiation of

the internal attribute-value pairs.

'A hypothesis is an approximation of the true concept except when the training sct is exhaustive or
otherwise completely represents the sct of all possible instances. In such cases, the hypothesis is provably
correct and, therefore, no longer a hypothesis.




The framework for viewing inductive learning is de.ived from Satosi Watanabe [1985)].
Watanabe’s term inductive learning can be interpreted to encompass constructive induc-
tion, with the distinction between the common usage of these terms to be only the manner

of generating candidate hypotheses.
Watanabe’s definition:

Inductive Process = Abduction + Induction Proper

where Abduction is the process of creating hypotheses,
and Induction Proper is the experimental assessment of

those hypotheses, i.e., confidence-building. not validation.

Expanding this definition, I refine the abductive process into two components: the

generation of hypotheses and the ordering of hypotheses for testing.
Abduction = Hypothesis Generation + Hypothesis Ordering

Hypothesis generation could be termed abduction proper in the manner of Watanabe.
It is the creation of candidate hypotheses by whaiever means available. In the abstract,
where abduction is distinct from deductive processes [Watanabe, 1985], the creation of
useful hypotheses is extralogical and ezxlre-cvidential: it has a mystical quality where
good hypotheses are simply “pulled out of thin air.” A more pragmatic view allows
the systematic generation of candidate hypotheses through controlled relaxation of a
restricted description language (a typical constructive induction approach), augmented
by the opportunistic utilization of available domain knowledge to suggest and retract

candidate hypotheses.?

2Watanabe describes this and all mechanized processes as purely deductive operations, guided by
heuristics provided by humans. He uses this distinction to support his claim that computers cannot
perform induction. since the creation of the heuristies is ilsell an extralogieal task, a computer is
incapable of induction because it is incapable of true abduction. Philesuphically, he may be correct, bat
such a discrimination does not aid in endoning the computer with the ability to learn, even if “orly™ a
mechanized approximation of human inductive ability.
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Any system that grows the set of candidate hypotheses has the potential of becoming
overwhelmed by the expense of testing them. Previous machine learning systems avoid
this problem by incorporating biases into hypothesis generation that severely constrain
the space of possible hypotheses, thereby limiting the number of hypotheses the system
must entertain. My approach is not to limit the growth of the set of candidate hypotheses
produced through hypothesis generation, but rather to contain the eflects of this growth
through hypothesis ordering. Hypothesis ordering is used to identify the most promising
of the candidate hypotheses for testing 2gainst the instance data (induction proper), and
to reject or suppress those deemed useless. Only the most promising of the hypotheses
are tested, thereby reducing the expense of evaluation. While hypothesis ordering is a
heuristic, beam-search approach, and therefore does not guarantee perfect filtering (the
correct hypothesis may not be in the set of most promising hypotheses), it is a necessary
counterpart to the opportunistic hypothesis generation method. A major contribution of
this research shows that hypothesis ordering is an effective means of managing uninhibited
hypothesis generation.

Continuing to refine Watanabe’s uefinition, I also split induction proper into two

components: hypothesis evaluation and hypothesis incorporation.
Induction Proper = Hypothesis Evaluation + Hypothesis Incorporation

Hypothests evaluation is the testing of a hypothesis against the se* of classified train-
ing instances. Any of several evaluation functions may be used, the goal being to rate
the hypothesis by some measure of credibility or “goodness.” After all the most promis-
ing hypotheses have been tested, the best one is selected for incorporation. Hypothesis
incorporation involves ;propagéting the effects of hypothesis selection through the train-
ing data and assessing whether the learning task has been satisfactorily completed. For
example, in decision-tree learning, incorpurating a hypothesis means splitting the set

of training instances into two subsets: those covered by the hypothesis and those not.
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Associated with the two data subsets are the applicable subsets of the original set of can-
didate hypotheses. For instance, if the hypot s (color = red) were chosen, any other
hypothesis regarding color need not be considered for the covered subset of instances:
these can be removed. In conventional decision-tree learning, the effects of hypothesis
incorporation end here, and the program simply begins induction over the subsets. In the
opportunistic constructive induction system, however, hypothesis incorporation initiates
the process in which domain knowledge is invoked in response to a change in the state of
the system. 1t “closes the loop,” providing a means of affecting the next stage of hypoth-
esis generation. The four-step process of hypothesis generation, ordering, evaluation and
incorporation (Figure 2.1) proceeds cyclically until a satisfactory concept description has

been obtained.

The Inductive Process

Nm
Abduction Induction Proper
M M
Hypothesis Hypothesis Hypothesis Hypothesis
Generation Ordering Evaluation Incorporation

Figure 2.1 The Inductive Process.

2.2 Bias and the Use of Domain Knowledge

The inductive learning problem is to search through hypothesis space for a descrip-
tion capable of distinguishing the positive from negative examples of a concept, and
to generalize that description to predict correctly the classification of unseen examples.

When the positive and negative examples are sufficiently intermixed in instance space,




I-Space I’-Space

‘@@il@,— P s

Figure 2.2 Transforming Instance Space. The original instance space (I-Space)
is pictured here with a disjunctive collection of islands (conjunctive components or other
structures) separating positive from negative instances. Constructive induction trans-
forms I-Space into I'-Space by finding the relationships between the islands and defining
new descriptive terms (dimensions in I'-Space), allowing easier concept induction and a
more compact description.

a complex description is needed to isolate the islands® of positive examples from the
negative background (or vice versa) and relate them in a more global fashion to each
other (Figure 2.2). This building up of a complex description from simpler island de-

scriptions, constructive induction, can be viewed as the transformation of the original

over the islands themselves rather than the examples. Generalization of the description
relating the islands provides the prediction of unseen examples, as well as the predic-
tion of unseen islands of examples. In such a view, the hypothesis space becomes one
where not only are all possible islands describable, but all combinations and transfor-
mations of those descriptions are representable as well. The mechanism needed /to tame
this space and make it amenable to productive search is called bias [Mitchell, 1980,

Utgoff, 1986].

3Closely related to the notion of peaks, which are regions of similar class membership. [Rendell, 1989]




2.2.1 The need for bias

Bias is the preference of certain areas of hyputhesis space over others. In other words,
given the set H of all possible hypotheses, a bias restricts the set of hypotheses accessible
to the learning system to a subset H;. The purpose behind using biases in inductive
learning is to regulate the search through hypothesis space with the aim of finding a
sufficiently correct hypothesis early in the search. Often, biases are viewed as the appli-
cation of extra-evidential information: information not contained in the set of training
examples. A more flexible definition of bias does not require extra-evidentiality, but in-
cludes any mechanicms for establishing a preference in hypothesis space, regardless of the
means of managing or invoking such mechanisms. Biases are indispensable components
of any inductive learning approach, simply because of the vast size of hypothesis space.
For example, in an instance space where examples are describable by five Boolean at-
tributes, there are only 2% or 32 distinct instances. Yet these instances can be combined
to represent 22° o1 4.3 billion possible concepts. In an instance space with nominal, inte-
ger or real dimensions, the number of possible hypotheses becomes astronomical. Biases
pr .ide the means of focusing the inductive search to look first to hypotheses expected
to be characteristic of the particular domain or problem at hand.

Induction over the instance space, while initially viewed as a search in hypothesis
space, can also be described as a search through bias space. Through the regulated
application of proper biases, the inductive learning task becomes mechanical, almost easy:
once proper biases are selected, the fruitful areas of hypothesis space are identified, and
the search for an adequate concept description in hypothesis space is thus constrained.

It is the determination of proper biases which becomes the difficult, yet crucial aspect of

inductive learning.




2.2.2 Manifestations of bias

Researchers always build biases into the inductive systems they implement as a mat-
ter of practicality. One common bias is the use of a restricted description language such
as allowing only Boolean attributes (features) in the instance space. Often the hypothe-
sis/concept description language is limited to conjuncts of the instance space attributes,
with disjunctions and negations prohibited. Systems using the version space method,
such as the heuristic generalization component of LEX [Mitchell et al., 1983}, operate
with this restriction. Some other systems allow disjunctions, but only within the clauses
of the higher-level conjunctive description: these are known as internal disjunctive forms.
The a priori imposition of the syntactic form of the hypotheses limits the kinds of prob-
lems or doinains such systems can address. When the demands of the concept description
exceed the limitations of the system, the system is left with no mechanism for modifying
the bias and must categorize the problem as insolvable. The use of built-in biases which
are inflexible and unresponsive to the demands of the domain at hand can be classified
as contexi-insensilive,

Regardiess of the method used to restrict hypothesis space, another type of bias is
needed to determirn2 the order in. which the circamscribed hypotheses are examined.
Simplicity is one such bias, prel riing to entertain simple hypotheses over more complex
ones. Simplicity has wide domain applicability and is a , -vasive real-world heuristic.
The reason for its success as a heuristic iv straightforward: there are relatively few simple
hypotheses; therefore, a simple hypothesis is unlikely to be consistent with the data by
chance [Dietterich, 1990]. Simplicity could 1e classified as a context-insensitive bias
since there is no information in the domain or pioblem to alter its behavior, yet it does
not interfere with the ultimate discovery of the correct -.uncept description as context-

insensitive biases have the potential to do. Simplicity establishes a prefcrence only within
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the confines of the restrictions imposed by other biases. Hence, simplicity and other
related preference biases can be classified as common sense or conlezt-independent biases.

Conlext-independent and context-insensitive biases are general purpose problem solv-
ing approaches and are useful to consider when stronger, context-sensitive biases are un-
available. However, any available knowledge about the domain or particular problem at
hand should be used whenever possible, since the biases derived from this knowledge have
a strong likelihood of guiding the inductive search appropriately. These context-sensitive
biases provide a means of exploring specific areas of hypothesis space known or suspected
to be relevant to domains and problems similar to the current one. Within these areas of
hypothesis space, context-sensitive biases also provide a means of intelligently selecting
the most promising hypotheses first.

One context-sensitive bias useful for establishing hypothesis preference is a data-
driven approach I have termed the Quick-Look: the evaluation of candidate hypotheses
on a small subset of the training data (Section 4.2.1). The purpose of the Quick-Look
is to identify the hypotheses that appear to be promising and to suppress consideration
of those appearing usrless. Although the Quick-Look is not extra-evidential, it qualifies
as a bias since . regulates the search in hypothesis space. When used in conjunction
with simplicity or other preference biases, it forms the basis of the hypothesis ordering
mechanism needed to complement the aggressive, domain-knowledge-driven exploration

of hypothesis space.

2.2.3 Knowledge as a powerful form of bias

Context-sensitive biases can be sensitive to the current data or the current domain.
The Quick-Look is an example of a bias sensitive to the current data. Another bias
sensitive to the data is the use of “outlier” instances to serve as the basis for suggest-

ing new hypotheses. Biases sensitive to the current domain can use domain knowledge
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in both hypothesis generation and hypothesis ordering. In hypothesis generation, do-
main knowledge may be used to explicitly suggest hypotheses or to constrain the gen-
eration of hypotheses through tle restriction of the concept description language. Do-
main knowledge can also be used to intelligently relax previous language restrictions or
to extend the language through the explicit addition of useful operators (such as ex-
tending the set of candidate mathematical operators) or constructors [Matheus, 1989,
Seshu et al., 1989]. Domain knowledge can also be used in the hypothesis ordering
mechanism: knowledge of the past performance of the hypothesis (or class of hypothe-
ses the current one belongs to) can be used to predict the utility of the hypothesis.
Context-sensitive biases provide the only means of intelligently exploring diverse areas
of hypothesis space without excessive sampling, and at the same time provide the means
to tame the potential explosion of hypotheses.

One example of the use of domain knowledge to extend the space of possible hy-
potheses can be found in the system STABB (Shift To A Better Bias) [Utgoff, 1986).
In.STABB, Utgofl uses a knowledge-based means of relaxing the initial language restric-
tion bias through the use of information contained in the grammar of the description
language and a set of backward problem-solving operators. This analytical approach
produces new attributes that are refinements of the existing representation language as
well as having been tested against a portion of the training instances. As such, they have
a greater likelihood. of being useful attributes than those suggested by context-insensitive
or context-independent biases.

Work is also being done to use domain knowledge to explicitly guide the selection of
generalization heuristics. In PREDICTOR [Gordon and Perlis, 1989], domain knowledge
is used tc determine the applicability of three heuristics for screening out potentially in-
appropriate hypotheses: cohesion, irrelevance, and independence. The cohesion heuristic

indicates when it is appropriate to climb the generalization tree of a structured attribute.
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The irrelcvance heuristic indicates when attributes appear useless as discriminators and
should be dropped. The independence heuristic is used in converting a disjunctive normal
form to a conjunctive normal form with internal disjunction, thereby generalizing and
compacting the description. One example of the application of these hecristics is the use
of the irrelevance heuristic in the recognition of color as a useless attribute when describ-
ing something graspable by a robotic manipulator. When knowledge indicates that only
structural or textural properties such as size, shape, hardness and surface slickness are
applicable, any hypothesis containing the attribute color need not be generated.

In addition to using domain knowledge for generating hypotheses, it may also be
advantageous to use domain knowledge to retract previously generated hypotheses. Ior
example, in the robotic manipulator scenar.o, the system may have already proposed
hypotheses using color as a component. At some point, when the system recognizes that
the concept involves the graspability of an object, the proper domain knowledge can be
invoked indicating the uselessness of the color as an attribute. The system can then
discard or modify all hypotheses relating to color. An alternative approach would be to
have the hypothesis ordering mechanism severely penalize those “retractable” hypotheses.
This way, the hypotheses may not be completely eliminated from future consideration in
case the domain knowledge turns out to be inapplicable.

Four primary approaches to using domain knowledge are considered in this thesis.
They are discussed in greater detail in Section 3.1.1. In the first approach, domain
knowledge is used to explicitly propose potentially useful hypotheses. This use of domain
knowledge is illustrated in Sections 2.3 and 3.2, and is applied in some of the experiments
of Chapters 5 and 6. The second approach involves using domain knowledge to propose
operators and create new attributes; these operators and attributes provide avenues for
the generation of new families of hypotheses. One example is the proposition of the XOR

or parity operators in a Boolean domain to overcome the parity problem [Seshu, 1989).




Other examples are the proposition of the multiplication operator in mathematical or
physical systems domains, and the use of symmetry in spatial domains such as board
games. The proposition of Boolean operators AND, OR, and NOT is applied in some of
the experiments of Chapters 5 and 6.

The third approach to applying knowledge for hypothesis generation uses domain
knowledge to-screen out or.retract hypotheses, such as described in the robotic manipu-
lator scenario. Knowledge is used in Section 6.1 to screen hypotheses generated through
experiential learning. Finally, domain knowledge might be used to retract groups of hy-
potheses by the elimination of previously proposed operators. An example of this process
is the rejection of the multiplication operator, and all hypotheses using it, when the sys-
tem discovers that only nominal-valued atiributes are applicable to the domain under

consideration. This last approach is not used in any experiment of this thesis.

2.3 Opportunistic Constructive Inducticn in Action

Discussing the need for continued reseaich in the area of constructive induction, Ker-

ber [1988] wrote:

A key limitation of current systems that perform constructive induction is
that many of the descriptors “constructed” are either predefined, constructed
prior to examining a single training example, or constructed regardless of
which training examples are encountered. More valuable, are learning systems
capable of extending the description language during run-time by creating
new descriptors whose necessity was not pre-anticipated but whose creation

is triggered by the needs of the current situation.

The opportunistic constructive induction process embodies this latter type of system:

the hypothesis generator proposes hypotheses relevant to the state of induction. This
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Figure 2.3 Opportunistic Constructive Induction of Decision-Trees.

section illustrates the interactions of the components of the opportunistic constructive
induction process with a simple example. Figure 2.3 provides a pictorial representation
of the pattern of operation. Knowledge and the original attributes are used by the
hypothesis generator to produce a pool of potentially useful hypotheses. The hypothesis
ordering component extracts hypotheses from the yo-1 and provides the most promising
ones to the hypothesis evaluation mechanism. Th- Lest hypothesis is selected and passed
to the hypothesis incorporation mechanism to begin assembly of the decision-tree; i.e.,
the hypothesis is inserted as a decision poin. iu the tree and the set of training data is
divided among the branches. The incorpora.ion of this hypothesis represents a change
in the state of the system: it knows more about the concept. This state change can
be used by the hypothesis generator to trigger more krowledge and produce additional
hypotheses for the pool. The operation proceeds cyclically until a satisfactory tree has
been assembled.

Figure 2.4 provides a simple example of a concept requiring constructive induction.
A selective induction system could determine that the concept had something to do

with the geometry of the objects (i.e., separate the objects into blocks and non-blocks),
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Figure 2.4 A Difficult Concept: Large Blocks.

but would not be able to resolve the remainder of the concept given the listed at-
tributes: wolume is simply not in its vocabulary. For instance, in one experiment us-
ing the simplified values of small, medium, and large as the possible values for each
of the attributes height, width, and depth, the selective induction system ID3 (Sec-
tion 2.4.1) determined the concept had to be at least a block. It then overspecialized
the description, requiring the blocks to be either tall (height = large), medium height
and blue ((height = medium) AND (color = blue)), or short of height and of medium
width ((height = short) AND (width = medium)). This description does not capture
the essence of the intended concept, and is difficult to understand and convey.

Figure 2.5 illustrates the operation of the opportunistic constructive induction on the
same concept. Initially, in part (a), nothing is known about the concept so the hypothesis
generator proposes a set of primitive hypotheses based on the original attributes. At this
point, the only knowledge applied would be the method used to form the intervals to make

hypotheses from the real-valued attributes. The hypothesis ordering mechanism culls

“The mechanism for converting real- or integer-valued attributes into nominal attributes by producing
discrete ranges of values is not addressed in this thesis. Statistical partitioning approaches such as those
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Figure 2.5 Using Knowledge Opportunistically. In part (a), the knowl-
edge about the type of problem is used in conjunction with the original attributes
to propose a set of primitive hypotheses to begin induction. One of the hypothe-
ses, (geometry = block), is selected to begin the decision-tree. In part (b), this ini-
tial selection triggers the proposition of more hypotheses, based on domain knowledge
about blocks (e.g., relationships among dimensions, construction of volume, etc.). The
opportunistic constructive induction system can then discover the proper description:
((geometry = block) AND (volume > 45)).




from the poul of hypotheses and passes the most promising to the hypothesis evaluation
component, based on a heuristic estimate of their potential utility. Full evaluaiion deter-
mines the hypothesis (yeometry = block) to be the best choice to begin the decision-tree.
The hypothesis incorputation component establishes the hypothesis in the decision-tree
and partitions the training data accordingly.

In part (b) the state change of the system (i.e., from knowing nothing about the con-
cept to believing the geometry is a block) is made available to the hypothesis generator.
This triggers the application of domain knowledge which proposes volume as a potentially
useful attribute when dealing with geometric objects. Once the new set of hypotheses
has been proposed, hypothesis ordering is again used to select the most promising and
pass them along for evaluation. In this example, (volume > 45) is found to be the best
available hypothesis and is incorporated into the tree. At this point the decision-tree
perfectly discriminates the traini.g examples, but without overspecializing the tree as

was the case with selective induction.

2.4 Relationship to Other Work

This section provides descriptions of several constructive induction systems in the
context of the opportunistic constructive induction model presented in Figure 2.3. The
number of extant constructive induction systems is large; thus, this section is intended
to provide an overview of a broad range of approaches and capabilities, not to be exhaus-
tive. Before the presentation of the constructive induction systems, the well-established

selective induction system ID3 is discusscd as a frame of reference.

used by STAGGER [Schlimn.cr, 1987] or the PLS series of programs [Rendell, 1985) could be incurporated
into the hypothesis generation component to provide a preliminary set of ranges.
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2.4.1 ID3

Figure 2.6 depicts the fundamental operation of ID3 for single concept learning [Quin-
lan, 1986]. The system ID3 typifies the selective induction process for decision-tree cre-
ation. The attributes in the original description Janguage are tested against the training
data to determine which attribute is the most informative for separating the positive
examples from the negative. The chosen attribute is established as the decision-point in
the tree, and for each branch created by a particular value of the attribute, the reievant
training examples are collected. For each branch containing a mixture of positive and
negative examples, the splitting process is repeated using the remaining att:ibutes. In-
duction is complete when each leaf is pure (contains either positive or negative examples,

but not both), or the set of original attributes is exhausted.

R

Evaluation /—9»-\ Incorporation

Original Attributes

TFigure 2.6 Selective Induction in ID3.

Hypothesis generation: The set of original (ground) attributes forms the pool. Hy-
potheses in the sense defined in Appendix B (i.e., testable statements that are either
“true” or “false”) are not used, except when the attributes happen to be Boolean.
Each attribute is considered across its complele space of possible values, rather than
in attribute-value pairs as implemented in OXGate. Real and integer-valued attributes
must be partitioned into a finite number of discrete ranges by an external agent such as

the user belore induction can begin.
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Hypothesis ordering: No hypothesis ordering is used to reduce the cost of evaluation.
An ordering on attributes is imposed by the domain-definition that can affect the outcome
of decision-tree induction zince it specifies the order in which the attributes are evaluated.
In the basic implementation, if two attributes prove equally good, the first one tested is

selected.

Hypothesis evaluation: An estimate of the information-gain (Section 4.2.1.2) is used

to select the best attribute.

Hypothesis incorporation: The decision-tree is constructed by incorporating the
attribute as the decision-point, and creating one branch for each of the values. The
training examples are allocated to the branches according to the values they represent of
the ¢" .ibute. Branches containing purely positive or purely negative examples are labeled
as such. The end of the branch is declared to be a leaf node. Branches related to values
not represented in the training data are terminated with leaf nodes labeled “unknown”
in the basic implementation; probabilistic approaches are used in more powerful versions.
The remaining branches undergo the evaluation-incorporation process on their respective
subsets of training examples until all branches terminate in leaf nodes, or the set of

attributes is exhausted.

Extensions: The basic implementation of ID3 suffers several limitations, many of
wiich are addressed in more sophisticated versions and derivative systems [Quinlan, 1985,
Quinlan, 1986, Cheng et al., 1988, Wirth and Catlett, 1988, Utgoff, 1988, Norton, 1989).
One limitation is that the simple system tends to overfit the decision trees to the train-
ing data. A statistical (approximately chi-squared) pre-pruning approach is used in later
versions to make the decision-trees more general and less susceptible to noise [Quin-

lan, 1986]. Another limitation is that the basic version unduly prefers atiributes with
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large numbers of values over those with few values. To offset this preference, a modified
cvaluation measure is used, i.e., the gain-ratio. The gain-ratio employs an -estimate of
the intrinsic value of the attribute in addition to the information-gain [Quinlan, 1985,
Quinlan, 1986].

The system ID3 has been used for several commercial applications with very large
amounts of training data. To reduce the memory storage requirements, the technique
of windowing was developed. A subset (window) of the training data is used to develop
the decision-tree, then the tree is tested against the remaining data. If the decision-tree
is inadequate to correctly classify the examples, a subset of the exceptions are added
to the window, and the decision-tree is relearned. This process is repeated until the
decision-tree satisfactorily represents the full set of training data. The use of windowing
reduces memory requirements at the cost of greater processing time, with no apparent

loss of accuracy [Wirth and Catlett, 1988].

2.4.2 FRINGE

Figure 2.7 depicts the operation of the constructive induction system FRINGE, an

extension of the selective induction system ID3 [Pagallo and Haussler, 1989, Pagallo,

Fringe
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Figure 2.7 Constructive Induction in FRINGE.
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1989]. FRINGE typifies a class of cxperiential learning systems that use the results of one
learning session to create new descriptive terms for subsequent sessions. The motivation
behind the development of FRINGE was to solve the replication problem in decision-tree
induction: the occurrence of duplicated subtrees in the concept description. FRINGE
construclts new terms using the decision points at the fringes of the positive branches
of the decision-tree (described in detail in Chapter 6). These new terms are added to
the description language and the decision-tree is relearned. Eventually, the replicated
subtrees are represented as single complex terms and become incorporated in a simpler
decision-tree as depicted in Figure 2.8. This approach to feature construction (hypothesis
generation) is effective in improving the accuracy on random Boolean functions, even in

the presence of noisy data [Pagallo, 1989].

Figure 2.8 Solving the Replication Problem.

Hypothesis generation: FRINGE operates in the domain of Boolean functions; there-
fore, all descriptors are Boolean attributes, or features. The initial pool of hypotheses

consisis of the original features. As discussed in Appendix B, a feature is a simple form
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of hypothesis, and the features found in the original description language are equivalent
to primitive hypotheses. After a decision-tree is created, the features used as decision
points nearest the positive leaves are conjoined to create new features. These constructed

features are added to the pool for the next iteration of the process.

Hypothesis ordering: No hypothesis ordering is used to reduce the cost of evaluation.
Hypothesis generatiou is terminated, however, if the number of new hypotheses exceeds a
user-defined threshold. Asin ID3, the order in which the features are evaluated may affect
the outcome of decision-tree induction. This effect is ameliorated by the introduction of

the new, and presumably better, features for subsequent iterations.

Hypothesis evaluation: As in ID3, an estimate of the information-gain is used to

select the best feature.

Hypothesis incorporation: The decision-tree is assembled in the typical fashion.
Induction is declared complete when no new features are constructed, or when the number

of new features reaches a predefined threshold.

2.4.3 CITRE

Figure 2.9 depicts the operation of the constructive induction system CITRE, an ex-
tension of the experiential learning approach found in FRINGE [Matheus, 1989]. CITRE
provides a variety of biases for feature selection, can filter out undesirable features with
domain knowledge, has the potential to generalize constructed features, and can control

the number of features made available for decision-tree assembly.

Hypothesis generation: Like FRINGE, CITRE uses Boolean attributes (features)

only for decision tree induction: nominal-, real-, and integer-valued atiributes must be
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converted to Boolean before induction can begin (Appendix B). The set of original
features forms the initial pool of primitive hypotheses. After a decision-tree is created,
pairs of features appearing along paths to positive leaves are used as operands for the
construction of new features, limited to certain locations along the paths by a user-
selectable bias (Chapter 6). Domain knowledge can also be applied to filter out feature
pairs deemed inappropriate by the knowledge for new feature construction. New features
are constructed from the remaining feature pairs. If domain-dependent generalization

knowledge is available, the new features are generalized before being added to the pool.

Hypothesis ordering: CITRE is able to use one of two approaches to limit the number
of constructed features retained for decision-tree induction. One method evaluates each
new feature against the entire set of training data and keeps the N features with the
highest values of information-gain. The value of N is a fixed threshold equal to the
number of internal nodes present in the original decision-tree. The other method ages
the hypotheses, discarding all hypotheses created in previous iterations but not appearing
in the latest decision-tree. In both cases, the primitive hypotheses always remain in the

pool.
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Figure 2.9 Constructive Induction in CITRE.
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Hypothesis evaluation: An estimate of the information-gain is used to select the best

feature to incorporate in the decision-tree.

Hypothesis incorporation: The decision-tree is assembled in the typical fashion.

Induction is declared complete when no new features are constructed.

2.4.4 MIRO

The constructive induction system MIRO uniquely integrates the deductive use of
knowledge with induction over an abstraction of the training examples [Drastal and
Raatz, 1989, Drastal et al., 1989]. Processing occurs in several stages: a preprocessing
stage vo create an abstraction space, an induction stage to formulate the concept de-
scription, and a postprocessing stage to convert the discriminant representation into a
characteristic one. The resultant concept description is in disjunctive normal form, a
representation readily convertible to a decision-tree.

In the first stage, the deductive component of MIRO uses the domain knowledge to
create an abstraction space from which to derive the concept description language. Each
training example is applied to the domain knowledge to instantiate/prove aspects oi .he
knowledge set and create proof structures. The most abstract (general) descriptors in the
proof structures become the set of hypotheses composing the initial concept description
language.

The second stage uses the abstract description language and the training examples to
induce a discriminant concept representation, separating the positive from the negative
examples. If all of the training examples cannot be adequately represented with the set of
most abstract hypotheses, less abstract hypotheses are selected from the proof trees and

added to the description language. This process repeats until all of the positive examples




are distinguished from the negative examples, or the entire set of abstract and primitive
hypotheses is exhausted.

The postprocessing stage specializes the discriminant concept description to create
a characteristic description. For each term of the discriminant disjunctive normal form
description, hypotheses that are common to all of the positive examples covered by the
term are conjoined to the term. The additional hypotheses are selected from the unused
hypotheses in the combined set of abstract and primitive hypotheses. The augmented
terms are then disjoined together to create the complete characteristic description of the
concept. Iigure 2.10 depicts the operation of MIRO in the context of the opportunistic

constructive induction model.
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Figure 2.10 Constructive Induction in MIRO.

Hypothesis generation: The hypothesis pool is filled during the preprocessing stage,
and contains the full set of abstract hypotheses appearing in the proof trees plus the

primitive hypotheses appearing in the descriptions of the examples.

Hypothesis ordering: Only the most abstract hypotheses are selected from the pool

for induction. If the hypothesis evaluation component is not able to distinguish the




positive from negative examples, less abstract hypotheses are heuristically selected from

the pool and made available for induction.

Hypothesis evaluation: Concept induction in MIRO is performed using the one-sided
variant of the candidate elimination algorithm [Mitchell, 1978, Haussler, 1987]. First, a
positive example is heuristically chosen as the seed. Next, the most general descriptions of
that seed that exclude all the negative examples are developed from the set of hypotheses
provided by the hypothesis ordering mechanism. These descriptions are conjunctions of
hypotheses. When multiple descriptions are produced, a heuristic measure is used to
select the one with the best balance between two criteria: the number of (previously
uncovered) positive examples covered by the description, and an extra-evidential measure
of the amount of knowledge collectively entailed in the proof structures of the covered

examples.

Hypothesis incorporation: Once the best description has been selected for the seed,
all positive examples covered by that description are removed from the training set. The
seed description is disjoined to the developing concept description, and the hypotheses
used in the seed description are returned to the pool for possible use with other seeds.
The evaluation-incorporation cycle continues until all of the positive examples have been
removed, or all of the hypotheses in the pool have been considered and determined to be

inadequate.

2.4.5 STAGGER

STAGGER is another novel approach to constructive inductiorn [Schlimmer, 1987,
Schlimmer and Granger, 1986]. Concepts are represented through a collection of hy-

potheses as depicted in Figure 2.11. Each hypothesis contributes to the overall concept
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Figure 2.11 Concept Description Support in STAGGER. Pictorial represen-
tation of the support for the concept (medium AND red). The lines terminated with
small dots represent the logical sufficiency (LS), the others represent logical necessity
(LN). The thickness of a line is indicative of the degree of logical necessity or sufficiency
the associated hypothesis provides for the target concept.

description in accordance with the strengths of two weights associated with the hypoth-
esis. The logical sufficiency (LS) approximates the degree with which the presence of the
hypothesis increases the expectation of an outcome. The logical necessity estimates the
degree with which the absence of the hypothesis decreases the expectation of the out-
come. In the example, the unknown target concept (medium AND red) is best supported
by the constructed hypothesis ((5 < size < 15) AND red), while the primitive (original)
‘hypotheses red and (5 < size < 15) are the most necessary.

STAGGER is an incremental learning system, meaning examples are introduced one
at a time and the concept representation is adjusted with each example. Learning occurs

in three ways. In the first, the LS and LN weights are adjusted for each hypothesis by

p(matched|ezample) _ p(-~matched|czample)
p(matchedj—ezample) 7T p(-matched|-example)

LS =
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With the weighted learning component, STAGGER behaves as a single layer connec-
tionist network. It is capable of discovering only linearly separable concepts in terms of
the existing descriptive elements. The second method of learning uses a Boolean learning
component that proposes more complex hypotheses, thereby allowing the STAGGER to
behave as a multilayered network. Conceptually, STAGGER begins with a strong bias
of using only primitive hypotheses and then relaxes the bias as required to expand the
representation language and construct more complex hypotheses.

The third learning method uses a numerical learning component to handle real- and
integer-valued attributes by partitioning the attributes into discrete Boolcan units. For
example, the real-valued attribute size is recast in the example as three Boolean features:

small (size < 5), medium (5 < size < 15), and large (15 < size).

Hypothesis generation: The Boolean learning component is failure-driven: it is ac-
tivated when the concept description mispredicts the classification of a new example.

Constructed hypotheses are proposed according to the following heuristics:

1. If a negative example is predicted to be positive (error of commission), then the

system is behaving too generally: some necessary hypothesis was unmatched.

o Conjoin two strongly necessary hypotheses,

o Negate a hypothesis that is matched but is a poor predictor.

2. If a positive example is predicted to be negative (error of omission), then the system

is behaving too specifically: some sufficient hypothesis was unmatched.

e Disjoin two strongly sufficient hypotheses,

o Negate a hypothesis that is unmatched and is a poor predictor.

The numerical learning component determines the end-points of the discrete inter-

vals by using statistics collected from the posilive and negative examples to estimate
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the utility of proposed boundaries. The number of partitions is an externally supplied
parameter. First, STAGGER applies-a local smoothing function to remove noise. Then,

the locally maximal end-points are found using the utility formula

Ic!a.sses] .
, p(class;| < end—point)
wd—points) = | odds(class;
U(end—points) Pl odds(classi) x p(class;| > end—point)

3

The conditional probabilities are computed from the nl}mber of Vpositive and negative
examples of each class with values less and greater than the proposed end-point. The
prior -probability is also statistically derived. The best end-points are retained and used
to divide the real-valued attribute into discrete units for use by the Boolean and weight
learning components for concept construction. As more examples are obtained, the end-
points are adjusted accordingly, and any resultant changes to the discrete representation

are propagated through.

ﬁypothesis .ordering and evaluation: In practice, STAGGER. generates more hy-
potheses than it can use; therefore, a method of pruning is required. A set of heuristics
is applied to determine the potential value of hypotheses as they are constructed and to
discard the least promising ones. Simultaneously, the hypotheses already in the pool are
also assessed to remove the least useful ones. A bookkeeping mechanism is incorporated
to allow backtracking should a hypothesis prove to perform more poorly than in the past.
By constantly removing hypotheses from the pool as better ones are added, the system
can extend its search frontier‘ while maintaining a limited number of hypotheses. This
form of beam search allows STAGGER to maintain a manageable memory size and Jinear

search time, even as the expressive power of the representation language increases.

Hypothesis incorporation: All of the hypotheses in the pool are considered part of

the concept description. A new hypothesis is incorporated by establishing the values for




LS and LN as described above. In addition, ecach time a new example is introduced, the

LN and LS weights are incrementally recalculated for each hypothesis.

2.4.6 ML-SMART/ENIGMA

Up to this point, the discussion has focused on similarity-based learning systems,
also known as empirical learning systems, that use relatively large numbers of training
examples to develop the concept descriptions. In the more sophisticated systems, domain
knowledge is added to help guide the inductive process. At the other end of the spectrum
are explanation-bascd, or analytic, learning systems which rely primarily on complete sets
of domain knowledge (domain theory) and perform induction using a small number of
training examples, one at a time. The more sophisticated of these systems are able
to use several training examples simultaneously to overcome and correct deficiencies in
the knowledge base, such as incompleteness or inconsistency. The system ENIGMA, an
extension of ML-SMART, is one example of a hybrid empirical/analytic learning system
that interleaves deduction over the domain knowledge with induction using all of the
training examples simultaneously [Bergadano and Giordana, 1988, Bergadano et al., 1988,
Bergadano et al., 1990].

In analytical learning, the system is given the high-level description of the concept
(often its name) and the set of training examples. The goal of the system is to op-
erationalize the description: reformulate it in terms of the testable attributes of the
examples by splicing together the appropriate pieces of knowledge from the domain
theory. Tor instance, the concept shown in Figure 2.4 could be initially described as
monolith. Operationalizing this concept first involves transforming the description to
((geometry = block) AND (volume > 45)). The first condition is operational (directly
testable), but the second is not: volume must be reformulated before the concept is com-

pletely operationalized. This process “proves” the training examples. If a contradiction
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is reached, the example is either assumed to be noisy, or the domain theory is assumed
to be flawed.

The inadequacies of the domain theory are handled statistically in ENIGMA by uti-
lizing the full set of training examples simultaneously to identify the deficient pieces of
knowledge and avoid themn in the operationalization process [Bergadano and Giordana,
1988]. Statistics over the examples also contribute to a heuristic evaluation criterion used
to select the best partial explanations from a set of alternatives and guide further oper-
ationalization. ENIGMA also handles the acquisition of concepts in noisy domains by
attaching a measure of uncertainty to cach piece of knowledge and updating the measure
through statistical analysis of the examples [Bergadano et al., 1988].

If the training examples are not noisy and the domain theory is correct, operational-
ization will proceed smoothly. ENIGMA will develop the concept description in a com-
pletely top-down fashion, behaving as a pure explanation-based learning system, with the
exception that multiple examples will be used to provide a better evaluation criterion
for selection among competing solutions. If operationalization fails completely, ENIGMA
defaults to the other end of the spectrum and performs purely inductive, similarity-based
learning.

In a sense, ENIGMA performs a type of constructive induction: a new term (the
high-level concept) is added to the description language and is defined by the opera-
tional (primitive) attributes. In addition, intermediate concepts are also developed as
the operationalization of the given concept unfolds. In the case of noiseless data and a
perfect domain theory, the operation of ENIGMA is strictly deductive; however, this is

considered a special case by its developers. The principal mode of operation combines

induction over the examples with the deductive use of knowledge.




Hypothesis generation: At each step of the operationalization process, one or more
hypotheses are proposed. Each hypothesis equates the non-operational intermediate
(or high-level) concept with a specialization of that concept: a more refined definition
described with lower-level terms. Ultimately, the lowest-level terms must be operational,

i.e., primitive hypotheses.

Hypothesis ordering and evaluation: Simple examination of the training examples
determines if the operational components of a hypothesis are correct. If the operational
components are not completely correct, or if multiple hypotheses are being considered, a
heuristic evaluation criterion is applied to select the best hypotheses, if any, for further
consideration. Multiple chains of reasoning may be maintained: the heuristic criterion is
used to limit the scope of the search to the most promising hypothesis. The criterion may
be based on three kinds of heuristics: statistical (a hypothesis is “good™ if supported by
enough examples), domain-independent (e.g., hypothesis simplicity or understandabil-
ity), and domain-specific (a priori knowledge for guiding the search). ENIGMA uses the

statistical and domain-independent heuristics.

Hypothesis incorporation: Multiple chains of reasoning are maintained as long as a
chain appears worthwhile given the examples and heuristic criteria. Accepted hypothe-
ses are incorporated into the chains to create a irec of formulas or specializalion tree
[Bergadano and Giordana, 1985}, and will form the basis for the next attempt at hy-
pothesis generation. Terminal nodes of this trec represent either dead ends o- positive
leaves. A dead end occurs when positive and negative examples cannot be distinguished
with the operational terms present at that node. The positive leaves are partial concept
descriptions that correctly cover some of the positive examples and do not cover any
negative example. When all of the positive examples have been correctly covered, the

concept description is the disjunction of the positive leaves.
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2.4.7 Summary: Relationship to other work

This scction provided a description-of several notable constructive induction systems
in terms of the opportunistic constructive induction model. Many of the ingredients ~*
these systems can be used to creale a genewalized approach to constructive induction,
described in Chapler 3. For instance, the experiential learning mechanisms of FRINGE
and CITRE, the domain knowledge fillering pproach in CITRE, the numerical learn-
ing algorithm of STAGGER, and the deductive applications of domain knowledge in
MIRO and ENIGMA could all be developed as coexisting components of a flexible hy-
pothesis generation mechanism. Hypothesis ordering embodies the notion of limiting the
number of hy potheses to be considered (CITRE), but could do so using a competitive
method based ou heuristic evaluation criteria such as evidential support and simglicity
(ENIGMA). Hypothesis evaluation could use any number of evaluation criteria to de-
termine the “goodness” of the desired representation. The choice of representation also
affects the method of hypothesis incorporation.

This section was not intended to be exhaustive: the number of extant constructive
induction systems and approaches to representation reformulation is large and increasing
rapidly. Matheus [1989] lists thirty-two systems and approaches, ranging from the well-
established v. the most recent advances of 1989. Sirce that time, other systems and
approaches have been introduced, including ENIGMA [Bergadano et al., 1990], CAP
[Hume, 1990], the “boot-strap” learning of Flann [1990], the ILS framework (Silver et
al., 1990], IR1 [Wu et al., 1990], the E* function-finding algorithm of Schaffer [1990], the
bounded generalization algorithm of Smith and Rosenbloom [1990], and pattern-based
approaches to constructive induction [Rendell ar.d Seshu, 1990, Yang ct al., 1991}. The
approaches presented in this section span a broad spectrum of capabilities. They provide
a basis for the discussion of the-opportunistic constructive induction framework, and are

solid starting points for the development of the prototype implementation OXGate.
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CHAPTER 3

THE OXGATE FRAMEWORK

This chapter describes the architecture of OXGate, the prototype opportunistic con-
structive induction system. OXGate is intended to provide a domain-indepcudent de-
velopment and testbed environment for the application of domain knowledge to guiding
decision-tree construction. The major components of 0XGate are described in this chap-
ter, along with justifications for the relative depths of implementation and investigation

each component received during the current phase of research.

3.1 Major OXGate Components

The inductive process presented in Section 2.1 consists of four activities: hypothe-
sis generation, hypothesis ordering, hypothesis evaluation and hypothesis incorporation.
These activities map directly into the four major components of the OXGate architecture
as snown in Figure 3.1. The components interrelate through -the sharing of informalion
posted on a central blackboard. The blackboard itself is not necessary for opportunistic
constructive i+ ' -ction, yet it provides a convenient mechanism for the modular develop-
ment, expansion and testing of OXGate.

The current phase of research described in this thesis is a portion of a larger envisioned
research effort. The thesis is a snapshot of an ongoing program, and OXGate is currently a
partially implemented prototype of the opportunistic constructive induction system. The
current implementation consists of the overall system architecture, baseline hypothesis
ordering and hypothesis evaluation modules, and partially developed hypothesis incor-

poration and central blackboard mechanisms. These components provide a foundation
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Figure 3.1 The OXGate System Architecture. The four components of the
inductive process communicate with each other through the blackboard. The blackboard
maintains the set of potentially useful hypotheses, the available cvaluation functions, and

the bookkeeping information to index hypotheses and instances to the relevant nodes of
the developing decision-tree.

for the exploration of hypothesis generation. The hypothesis generation component has
been implemented only to the extent necessary to perform controlled experiments on the
effectiveness of certain pieces of domain knowledge.

The four major components of OXGate are presented in the order in which they
appear as clements-of the inductive process. This ordering also represents the degrees
of interestingness, difficulty and novelty to {he machine learning community. The first
component discussed, hypothesis generation, is the least understood, most difficult and
most interesting of the four. The last component, hypothesis incorporation (decision-

tree assembly), is the most understood, easiest, and least interesting. The ordering
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also represents an implementation dependency: the more difficult components cannot
be adequately implemented and tested without prior development of the lesser ones.
While hypothesis generation is certainly the primary thrust of the larger research effort,
it cannot be properly addressed without first developing a mechanism for managing the
effects of prolific hypothesis generation. Therefore, this thesis concentrates on hypothesis
ordering with the intention of providing a foundation for future exploration of hypothesis

generation and fully opportunistic constructive induction.

3.1.1 Hypothesis generation

Of the four component. of opportunistic constructive induction, the richest area for
research is hypothesis generation: the proposition of potentially useful portions of the
concept description. The present implementation of OXGate provides a testbed envi-
ronment for investigating the application of knowledge for hypothesis generation, and

some aspects are investigated in Chapter 6. For the most part, knowledge is currently
incorporated into special-purpose procedures to generate large numbers of hypotheses for
exercising the hypothesis orderir;g mechanism and the overall OXGate implementation.
The following discussion lays the foundation for future development of the hypothesis
generation component of OXGate.

The fully developed hypothesis generation component will most likely consist of a
collection of procedures, knowledge sources, and special-purpose routines, managed by a
central controller which provides the interface to the rest of 0XGate through the black-
board. The controller would retric,.’ve the state information from the blackboard, channel
it to the relevant subcomponents, and format their outputs into usable hypotheses. Such
an approach would provide a flexible hypothesis generation capability, allowing a variety
of forms of knowledge to be incorporated into a common framework, and isolating the

rest of OXGate from the specific representations of knowledge used.
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.3.1.1.1 Uses of knowledge

Section 2.2.3 described four approaches to utilizing domain knowledge for hypothesis
generation: 1) explicitly proposing hypotheses, 2) proposing operators, 3) retracting or
screening hypotheses, and 4) retracting operators. The first three are used to varying
degrees in the experiments of Chapters 5 and 6. Three types of knowledge are used in

the experiments: syntactic, contextual, and experiential.

Proposing Hypotheses:  The first approach to using knowledge for hypothesis gen-
eration is for the explicit proposition of hypotheses. This approach was used in the
example of Figure 2.5 where hypotheses involving tl.e attribute volume were generated
once the system discovered the concept involved geometric shapes. In the example, the
system discovered the geometry was a block and this change of state was made available
to the hypothesis generator. This triggered the application of domain knowledge which
proposed volume as a potentially useful attribute when dealing with geometric objects.
Although various schemes are possible, such knowledge might be represented in the foim

of productions, or condition-action statements, as depicted in the following samples.

(geometry = block) — (volume = (height x width x depth))

(geometry = sphere) — (UOIume — (wxwédth3)>

heightxwidthxdepth ))

(geometry = pyramid) — (volume = 5

(geometry = disk) velume = hezght X “—x"’i‘“"z))

The knowledge shown above is a simplification of that required by the hypothesis gen-
erator to form hypotheses. It simply states when and how to create the attribute volume.
The hypothesis generator must also recognize that volume is a real-valued attribute, and

it must generate hypotheses based on this new attribute. A functional description of the
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use of knowledge in this form is

(match-state condition) = (propose—hypotheses (create—attribute actz'on))

The experiments of Section 5.3 and the one shown in Figure 6.6 use the -explicit
generation approach for the NetTalk domain, in which a piece of contextual knowledge
is used as the basis of the powerful domain-specific hypothesis (C3 = C4), i.e., the third
character is equal to the fourth, such as a repeated consonant.! Although the hypothesis
itself is created by hand for the experiments, the approach could easily be automated
as described above. Tor this hypothesis, a declarative representation of the knowledge

might look like
((domain = NetTalk) AND (concept—type = pronunciation)) — (C3=C4)

Hypotheses are also explicitly generated when the original set of primitive hypothe-
ses is crealed, i.e., when the original description language is defined. For nominal and
Boolean attributes, this process is straightforward. The primitive hypotheses are created
from all possible values of the attributes. Appendix B describes this process more fully.
Creating primitive hypotheses from integer- and real-valued attributes is more difficult,
and requires a mechanism to form ranges of values, thereby converting the attributes to
nominal-valued. Statistical partitioning approaches such as those used by STAGGER
[Schlimmer, 1987], the PLS series of orograms [Rendell, 1985}, or the approach described
in [Chan and Wong, 1990] provide a starting point for development of this capability in
OXGate.

Another form of representing knowledge is frame-based or hierarchical. Manago [1989)
uses a frame-based representation in XATE, an extension to ID3 that focuses the exam-
ination of attributes on those relevant to the current partial concept description. Kerber

[1988] uses explicit hypothesis generation in his system OTIS (OpporTunistic Induction

1See Appendix E and Section 5.3 for descriptions of the domain, concept and hypotheses.
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System) which maintains a generalization hicrarchy of relations, attributes, and values
describing the domain of artificial “cancer cells.” The hiciarchy guides the application of
generalization and specialization operations and assists in handling internal disjunction
and two other forms of new term construction (transitive closure and counting argu-
ments). OTIS incorporates a scheduler that maintains an agenda of the most promising
tasks for generating new terms.

Experiential knowledge (knowledge derived from pieviously learned concepts) is also
useful for explicit hypothesis generation. Chapter 6 describes Koala, a special-purpose
routine for examining the results of one decision-tree assembly session and constructing
new hypotheses based on this experience for use in future learning. The knowledge is not
explicitly represented in the hypothesis generator, but rather is contained in a decision-
tree and extracted procedurally to form new hypotheses. These hypotheses embody
knowledge of the past successes and are explicitly proposed in future learning tasks,

making this approach a legitimate form of hypothesis generation.

Proposing Operators:  The second approach to using knowledge for hypothesis gen-
eration proposes operators for constructing hypotheses. The operators can be applied
to attributes to form new attributes, and from these new attributes hypotheses can be
constructed. Operators can also be applied to existing hypotheses to construct more
complicated unes. Generalization operators (sce Matheus [1989]) may also be applied to
the constructed hypotheses at this stage, to create hypotheses less specific to the training
instances. The knowledge for proposing these operators could be syntactic, specifying
the expected form of the concept description, or it may be contextual, specifying the con-
ditions under which the operators might be applied. Examples of this approach include
the proposition of parity operators in a Boolean domain to overcome the parity prob-

lem [Seshu, 1989], proposition of the muitiplication operator in mathematical or physical




systems domains [Langley et al., 1986], and the use of symmetry in spatial domains such
as board games [Rendell and Seshu, 1990].

The Boolean operators AND, OR, and NOT are applied in some of the experiments
of Chapters 5 and 6 to generate large numbers of constructed hypotheses. Here, the
assumed knowledge is syntactic, specifying an expectation of the form of the concept
or useful components of its description. This type of application has the potential to
overwhelm a system with a vast number of irrelevant hypotheses. The operators must be
applied carefully, indicating the need for semantic or contextual knowledge to constrain
the generation and examine selected areas of the hypothesis space.

Of the four approaches, operator proposition for hypothesis generation is certainly the
richest area for research. It is also the most unconstrained. The current implementation of

OXGate provides a convenient development and testing environment for its exploration.

Screening/Retracting Hypotheses: The third approach to using knowledge in the
hypothesis generator does not produce hypotheses, but rather constrains their gen-
eration by the first two approaches. Applying syntactic knowledge to propose op-
erators can result in a proliferation of inapplicable hypotheses. Semantic knowl-
edge can constrain the production by eliminating logically inconsistent hypotheses
and tautologies, for example, ((color = red) AND (color = blue)) or the hypothesis
((X1=T)oRr (X1 =1TF))). Contextual knowledge can be used to restrict the at-
tributes and hypotheses providc 1 to the operators, avoiding senseless constructions such
as ((first—letter = Q) AND (fifth—letter = X)) or hypotheses involving the attribute
taste when dealing with a robotic manipulator.

Knowledge can also be used to retract previously generated hypotheses when the un-
folding concept description indicales that a particular attribute or class ui hypotheses is

no longer relevant. For instance, if OXGate discovers the concept to involve objects of
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sizes larger than automobiles, then any hypothesis constructed with the attribute laste
could probably be removed. Hypotheses involving small sizes could also be removed from
the branches of the decision-tree where the size was established to be large. This latter
type of filtering embodies procedural knowledge of how to determine the logical implica-
tions and refutations of incorporating a hypothesis into the decision-tree. Whether this
function belongs in the hypothesis generator or the hypothesis incorporation component
remains to be determined.

Contextual knowledge is used by Koala to restrict the conclusions drawn from ex-
perience. The mechanization of this process is described in detail in Section 6.1 and
used in the experiments of that section. Essentially, the knowledge is used to specify
which attributes are to be considered as operands for hypothesis construction. Of all the
potential constructions discovered by Koala, only those allowed by the knowledge are

created.

Retracting Operators:  The fourth approach to using knowledge for hypothesis
generation involves retracting previously proposed operators, causing the retraction of
affected hypotheses. An example of this process is the rejection of the multiplication
operator, and all hypotheses using it, when OXGate discovers that only nominal-valued
attributes are applicable to the domain under consideration. This approach is not utilized

in any of the experiments or examples of this thesis.

3.1.1.2 Implementation of the hypothesis generator

Under the current envisionment of OXGate, domain knowledge will be stored in a
collection of modules known as knowledge sources (KS in Figure 3.1), as well as special-
purpose procedures for generating certain types of hypotheses. State changes in the

blackboard will be passed to the knowledge sources by the central controller, which

50




maintains the interface of the hypothesis generator to the blackboard. The knowledge
sources invoked by these changes will propose hypotheses or operators for collection by
the central controller. This data-driven appioach to knowledge source invocation may be
implemented in a control-driven manner similar to the Hearsay approach [Erman et al.,
1980]. Instead of polling all the knowledge sources sequentially, or maintaining a society
of asynchronous self-polling daemons waiting for their triggers to occur, the controller
will si.aply match the state information to a precompiled matrix of triggers to determine
which knowledge sources to invoke.

The central controller is responsible for collecting and collating the hypotheses, reject-
ing those deemed unacceptable by other knowledge sources and prior information, and
removing redundancies. It will pass the hypotheses to the blackboard for posting and
retract those already posted if necessary. Whether proposed operators are best stored on
the blackboard or internal to the hypothesis generator has yet to be determined. If the
hypothesis generator will need to incorporate its own local blackboard for management
of the knowledge sources, the operators should also be stored there.

Since the controller provides the interface to the rest of OXGate through the black-
board, the internal representations used by the knowledge sources can be in any form
convenient to the developer as long as the hypothesis generation mechanism as a whole
posts hypotheses to the blackboard in the proper format (described in Section B.2). A
knowledge source must be procedural in some scnse, but the knowledge used may be in
any form useful to the source to produce a festable hypothesis given the current state of
the inductive process, e.g., declarative, a set of productions, procedural, or frame-based.
Production rules provide a simple mechanism for both explicit hypothesis generation as
well as deductive reasoning within the knowledge source. Reasoning about the state
changes and responding with carefully chosen hypotheses should improve the speed and

quality of the concept learning as the proposed hypotheses are more likely to be directly




applicable. It would be a simple matter to tag the productions to distinguish them from
other productions with different uses, providing the hypothesis generator with the means
of identifying the roles various pieces of knowledge might play. A scheduling mechanism,
similar to the agenda-based approach used in OTIS [Kerber, 1988], could also use these
tags as a basis for evaluating the expected quality of the hypotheses produced by the
knowledge sources and execute the most promising ones first.

The development of knowledge sources cannot proceed in complete isolation: the
particular choice of representation may affect the implementation of the hypothesis in-
corporation mechanism, since it posts the necessary state information to the blackboard
for the hypothesis generator to use. The selection of the specific representations and
cueing mechanisms is beyond the scope of this thesis: it must be addressed during devel-
opment of the hypothesis generation component and its interaction with the hypothesis

incorporation mechanism.

3.1.1.3 Extensions to the hypothesis generator

The previous discussions described requirements and behaviors of the hypothesis gen-
eration component as originally conceived, with the exception of the experiential learning
element, Koala, which evolved during the course of OXGate development and experi-
mentation. In the experiments of Chapter 6, Koala gains experience from learning a
particular concept and applies it to improve the concept description when relearning the
same concept. This experience may alsc prove useful for learning other concepts in the
same domain or similar domains. Applying experience gained in one situation to benefit
learning in a novel situation is a potentially powerful method of hypothesis generation.

Another capability suggested during the development of OXGate involves the man-
agement of hypotheses rejected by the hypothesis ordering mechanism. Section 4.2.1.1

describes the expected impact of discarding apparently useless hypotheses: they may be




needed later in the decision-tree assembly process. The experiments presented in Sec-
tion 5.4.4.2 show that reintroducing the rejected hypotheses can improve the quality of
the final decision-tree, but at a substantial cost in processing time. A promising alter-
native to recovering the rejected hypotheses is to rely on the hypothesis generator to
regenerate certain hypotheses when there is sufficient reason to do so. Typically, the
knowledge sources of the hypothesis generator must be developed so they respond only
to changes in the system state; otherwise, they would repeatedly suggest the same hy-
potheses and nullify any advantage of hypothesis ordering. However, the hypothesis gen-
erator management procedures should be made intelligent enough to recognize when the
decision-tree assembly has reached a terminal state with a sufficiently non-homogeneous
set of data and an alternative approach to hypothesis generation should be attempted.
Such a capability is a topic for future study ‘as proposed in Chapter 7.

Finally, future research should investigate the incorporation of an interface to the
hypothesis generator for interaction with the user of the system. Such an interface would
allow the user or developer to modify easily the knowledge available to the hypothesis
generator. The user could more readily experiment with the effects of particular pieces
of knowledge, apply knowledge incrementally to guide OXGate through induction of a
particularly difficult concept, or provide other types of guidance to the system such as
dynamically modifying the evaluation method and parameters. Another application of a
user interface could be to request confirmation of intermediate results during induction.
Muggleton applies such a user interface to allow his systems DUCE [Muggleton, 1987]
and CIGOL [Muggleton and Buntine, 1988] to ask the user (or oracle) whether induced

rules are correct, and to request names for intermediate concepts.




3.1.2 Hypothesis ordering

The source of inductive power in OXGate is the freedom of the hypothesis generator
to liberally suggest potentially relevant hypotheses, extending the concept description
language in the hope of providing the necessary descriptive elements. With this freedom
comes the risk of saturating OXGate by prolific hypothesis generation. Hypothesis or-
dering is one approach for avoiding this saturation. The hypothesis ordering mechanism
serves as a filter between the hypothesis generation (generate) and hypothesis evaluation
(test) components. It performs an early assessment of all proposed hypotheses, identifies
the most promising ones, and rejects the least promising.

Since proper development of the hypothesis generation component is practical only
with a means to contain the effects of an explosion of hypotheses, the development of the
hypothesis ordering mechanism is the primary implementation and experimental thrust
of this thesis. Iypothesis ordering is described in detail in Chapter 4 with experimental
support provided in Chapter 5. Simply put, hypothesis ordering is a heuristic approach
to assessing and sorting hypotheses based on multiple criteria. The input to hypothesis
ordering is the pool of available hypotheses. A competitive evaluation is used to partition
the pool into three subsets: the most promising hypotheses, potentially useful hypothe-
ses (retained for future consideration), and the least promising hypotheses. The least
promising hypotheses are removed from the pool, and the other two subsets become the

output of the hypothesis ordering component for posting on the blackboard.

3.1.3 Hypothesis evaluation

Ilypothesis evaluation is the component of OXGate that compares hypotheses against
the training examples to determine the next hypothesis to incorporate into the decision-

tree. I experimented with several approaches during the carliest stages of the development
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of OXGate, and converged on one that operates well. The specific measur.s used for eval-
uation, confirmation and sz:mplicity: are discussed in detail in Sections 4.2.1.2 and 4.2.2.
The confirmation is a measure of how well the training data support a hypothesis and
is user-selectable io aid experimentation. The simplicity is an estimate of the cost of
testing the hypothesis. The hypothesis evaluation component uses a procedural evalua-
tion approach: find the hypothesis with the best confirmation and, in case 3 ties, choose
the simplest. In the case in which multiple‘ hypotheses have identics! confirmation and
simplicity me&surements, OXGate selects the first one it happens upon.

During the operation of OXGate, the most promising hypotheses (provided by the
hypothesis ordering mechanism) are evaluated agzinst the full set of training data. The
chosen hypothesis is then passed to the hypothesis incorporation component for inclusion
in the concept description. If no hypothesis is sufficiently applicablé to the training data,
the hypothesis evaluation component will request ad(iitional hypotheses. The hypothesis
ordering component will provide the most promising of the set of potentially useful hy-
potheses it kept in reserve. The hypothesis evaluator will continue to request additional
hypotheses until it cither finds a;l acceptable hypothesis or none are left,.E 'I:his process is

described in greater detail in Chapter 4.

3.1.3.1 Some comments on evaluating hypotheses

The principal research issue for hypothesis evaluation is the measure used to determine
h);pothesis quality or credibility. Several researchers have proposed evaluation measures
of a form best described as the product of a2 measure of the evidential support for the
hypothesis and an estimate of the “goodness™ of the hypothesis apart from the data.
This seclion briefly describes some of these measures.

Hartmann ef al. [1952] use a measure of hypothesis quality consisting of the amount of

information provided by the hypothesis (confirmation) divided by a generalized cfficicncy
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measure. The efficiency measurc provides an estimate of the quality of the decision-
tree, defined by the measure(s) of tree goodness the algorithm is attempting to opti-
mize. Possible measures include the averag. tree depth, average cost of testing, and
storage requirements. One typical measure of testing cost is the inverse of the simplicity:
cost = 1/simplicity. This a1 .roach implies that quality can be defined as the product
of the confirmation and the simplicity.

Watanabe [1985] estimates the credibilily of a hypothesis, the inductive probability,
by the product of it¢ -onfirmation (probability of the data D given the hypothesis H)
and its plaus ~lity (the prior probability of the hypothesis), divided by the prior proba-

bility of the data. This inductive probability is simply the well-known Bayesian formula:

p(H\D) = p(D|H)p(H)/p(D). Since the prior probability of the data p(D) is constant
for all hypotheses tested at a decision point, the measure of hypothesis credibility can
be <implified to be the product of its confirmation p(D}|H) and plausibility p(H). The
plausibility, or prior probability of the hypothesis, is uften estimated by the simplicity
of the hypothesis as discussed in Section 4.2.2. Hence, for comparing hypotheses, the
quality measure is again the product of the confirmation and the simplicity.

When using the Bayesian method, the confirination may be estimated as the per-
cenwage of data that is correctly classified (see average purity, Section 4.2.1.2). This
measure does not map smoothly to the information-gain: for every value of purity there
are multiple possible values of information-gair, and vice versa, depending on the mix of
correctly and incorrectly classified positive and negative examples. Rrieman et al. [1984]
address the inadequacies of the purity measure and propuse a family of conver measures
to more appropriately reward the hypotheses that result in purer nodes.

Another related measure of hypothesis quality is the J-measure [Goodman and Smyth,

1988]. The J-measure is also the product of confirmation aad simplicity. The confirmation
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measure is similar in structure to the information-gain, and appears to fall within the
class of convex functions defined by Brieman et al. [19847}.

All of the approaches presented above indicate a common theme: hypothesis quality
can be measured as the product of a measure of confirmation and simplicity. Despite
this theoretical agreement, use of the product for hypothesis evaluation did not produce
well-behaved decision-trees in early investigations during the evolution of OXGate (not
presented). Small changes in the training data resulted in radically different decision-
trees. The decision-trees tended to overspecialize to the training data, resulting in com-
plex structures with replicated subtrees and poor predictive accuracy (Section 4.1). One
possible explanation is the interaction between the measures of simplicity and confirma-
tion. A hypothesis that is twice as complex as another would require at least twice the
value of its confirmation to be selected: a difficult objective to achieve for any of the
confirmation measures. The product form appears to unfairly reward the simplest hy-
potheses, effectively obvialing the benefits provided by the constructed hypotheses. For
these reasons, the product of confirmation and simplicy for hypothesis evaluation was

rejected in favor of the procedural approach described on page 55.

3.1.4 Hypothesis incorporation

The final stage of the processing cycle is the incorporation of the hypothesis chosen
by the evaluator. The hypothesis incorporation component determines the form of the
resultant concept description and assembles it accordingly. The chosen hypothesis, the
list of hypotheses it belonged to, and the set of training instances used to select it are
acquired from the blackboard. The eflects of the decision Lo accept the selected hypothesis
are then propagated to the blackboard for use by the rest of the system.

In OXGate the resultant concept description is a decision-tree. Therefore, hypothe-

sis incorporation involves splitting the set of ... rant instances into two subsets, those
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classified as positive by the hypothesis and those classified as negative, and allocating
them io the left and right branches of the devcloping tree. Alter removing the hypothesis
from the pool of hypotheses, the remainder of the pool is assigned to each branch and a
processing cycle is initiated for each branch.

The hypothesis incorporation component is also responsible for posting the state in-
formation regarding the developing concept onto the blackboard. The state information
is intended to be used by the hypothesis generator to propose new hypotheses. Gen-
erally, development of this capability would proceed in parallel with implementation of
the hypothesis generator as the information requirements become known. However, a
decision-tree is a simple structure, so the basic state information- consists only of the se-
lected hypothesis and the current tree. The baseline hypothesis incorporation capability
is readily implemented.

Another possible function of hypothesis incorporation would be to filter out hy-
potheses that are logically implied or contradicted by the chosen hypothesis. For
example, if the chosen hypothesis is (color =red), then for the positive branch,
all hypotheses of the form (color = zzz) could be removed. Other bypotheses
built using color may also be removed, as long as they are implied or contra-
dicted by selecting (color = red). The hypotheses ((color = red) OR (shape = oval)),
((color = blue) OR (color = green)), and (NOT (color = red)) are candidates for re-
moval. The hypothesis ((color = red) AND (shape = oval)) is not a valid candidate for
removal because the comporent (shape = oval) may be required later. It should be
removed only if the hypothesis (shape = oval) is present.

In the negative branch, all consequences of the negation of the selected hypothe-
sis can be removed as well as all specializations of the hypothesis. In the example,

(NOT (color = red)), and ((color = red) AND (shape = oval)) would be candidates for
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removal. The hypothesis ((color = red) OR (shape = oval)) should not be removed un-
less the hypothesis (shape = oval) is present.

Because of the flexibility of the hypothesis representation language, locating all logi-
cal implications and contradictions of a hypothesis is a computationally expensive task.
Preliminary experiinents during the evolution of OXGate (not presented herein) used a
simple hypothesis filter to remove some of the more obvious implications (simple conjunc-
tion, simple disjunction, and negation). Filtering proved to be slightly beneficial only
when a large percentage of hypotheses were removed (when the number of possible values
the pertinent attribute could take on was large) and when there was a high evaluation
cost per hypothesis (when the set of instances being considered was large). When used
in conjunction with hypothesis ordering, this type of filtering was always detrimental to
the processing speed and provided no evident improvement in accuracy. Performance
was best when the task of removing the useless hypotheses was left to the hypothesis
ordering mechanism: the useless hypotheses would fail to be supported by the instances
associated with the branch and would be quickly rejected. Based on these early results,

hypothesis filtering was disabled for the experiments of Chapters 5 and 6.

3.2 Integration of the Pieces

This section presents an extended example of opportunistic constructive induction to
highlight the interactions among OXGate components. The example provides a demon-
stration of several uses of domain knowledge for hypothesis generation and ordering
during the construction of new terms in the domain of mineralogical classification. In
its strictest sense, classification assumes complete knowledge so that, given the values
for the relevant attributes, the system can deductively idents and name the correct

concept. Pure induction is the inverse of this process, attempting to identify the relevant




attributes given examples of the concept. The two processes converge when complete
knowledge is unavailable and induction is required to bridge the gaps in the classification
process, and the results ¢f partial classifications can be used to further the inductive
process.

Mineralogy is a complex and inherently noisy domain which could benefit signifi-
cantly from the data-handling capabilities of computers. There exist scveral thousand
catalogued minerals, yet the classification of many of them is subjec! to debate among the
experts. One reference catalogues 2600 minerals, but admits the data are flawed, being
an attempt to compile varied and sometimes disparate sources [Roberts et al., 1974). Not
only do the experts disagree about the classification of certain substances, but in some
instances the values listed for certain attributes of a single mineral are mutually exclusive,
physically impossible combinations. Thus, this domain has built-in class and attribute
errors with no means of clearly determining the precise values. A mineral ci»ssification
system must, therefore, have a probabilistic or statistical mechanism for assessing the
best fit to these uncertain values, i.e., a mechanism well suited for instantiation through
induction.

The list of attiibutes potentially useful for mineralogical classification is large and
varied, and the attributes available in the laboratory differ from those available in the
field. Some attributes are measurable physical characteristics such as chemical composi-
tion, specific gravity, and behavior under certain laboratory tests. Some attributes are
inferred, such as the inference of internal crystallographic structuie from the crystal shape
and cleavage planes. Others are observational/subjective characteristics such as luster,
appearance of outgrowths, color, and behavior under stress. Still others are relational,
such as hardness, the ability of one mineral to scratch another, which is measurable only
with respect to other minerals. To complicate matters further, some of the attributes

display an intimate dependency upon others. For example, the “behavior under stress”
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mentioned above, termed tenacity, is frequently dependent upon the geometry of the
crystal structure and the axes of measurement. along one dimension the mineral may
be flexible, but along another it may be brittle. In short, the number of potentially
useful attributes is large, and fo: any particular sample the measured values will likely
be incomplete.

Deterministic classification of individual minerals appears to be best accomplished by
a two-stage approach [Dennan, 1959]. The first stage is to classify the mineral into a fam-
ily group through the recognition of familial attributes composing that group. The second
stage is to discriminate the mineral from others within the family using distinguishing
attributes. This same approach can be used during induction by allowing knowledge
gained through the first stage of processing to be used to focus the second stage. The
resultant concept description is then constructed from the partial descriptions created in
each stage.

One example of this iterative approach proceeds in the following fashion. Know-
ing that the domain is mineralogy (a state posted on the blackboard), the system can
immediately focus on considering the complex atiribute chemical composition first, as
suggested by domain knowledge. There exist eight mineral classes, distinguished by ma-
jor chemical components.? This knowledge allows the chemical formulae of the examples
to be procedurally partitioned with respect to these components, so that each exam-

ple can be temporarily represented by a handful of chemical features. The hypothesis

The eight classes of minerals and their distinctive formulae features are:

L Native Elements (gold, silver, copper, lead, etc.) (AuVAgvCuVPbv...)
11 Sulfides, Sulfosalts (S)

1. Oxides, Hydroxides (Ov(0OAH)) = (0)
IV.  Halides (CIVFVBIVIVAL)

V. Carbonates, Nitrates, Borates ((CVNVB)AO3)

VL. Sulfates, Chromates, Molybdates, Tungstates ((SVCrvMoVW)AO,)
VII.  Phospates, Arsenates, Vanadates ((PVASVV)AO,)
VIII.  Silicates (Siv0,)

Of these eight classes, the last four would be the primary fcatures to test first since the constituents of
classes I-IV can appear as components of minerals in classes V-VIII.
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generator would first propose hypotheses formed from the last four classes, for example,
(contains ((CVNVB)AO3)). If these are insuflicient (the hypothesis incorporation com-
ponent indicates a failure to find a suitable hypothesis), then the hypothesis generator
will create hypotheses from the features for classes I through IV. Induction over this
focused feature space can proceed quickly and should result in the recognition of the
statistical class of minerals to which the positive examples belong.

Once the selected hypothesis is incorporated into the decision-tree and posted to
the blackboard, the knowledge sources in the hypothesis generator would recognize the
mineral class. Now other knowledge can be used to refined the description, such as the
tendency of one element to be substituted for another within that class. This substitution
of elements causes a condition known as isomorphism, where a mineral series will show
a continuous change in chemical composition without a change in form. Isomorphisms
oceur due to the substitution of foreign ions into the crystal lattice whose properties
(radius, valence, ionic potential) are similar to the expected ions: The challenge occurs
in the identification of minerals at certain points along this composition con¢inuum,
especially when considering that some degree of contamination occurs in every mineral
and must be allowed for in the classification. The knowledge of which elements to look for
and which substitutions to expect is an application of domain knowledge readily invoked
by the determination of the mineral class.

As an example, suppose the initial processing has determined the mineral belongs
to the silicate (SiVQy) class. One of the families of minerals within this class is the
olivine series, displaying a complex isomorphism caused by a three-way substitution be-
tween magnesium (Mg), iron (Fe) and manganese (Mn) as illustrated in Figure 3.2. The
system would attempt to isolate the concept to this family by proposing the hypothe-
sis (contains (MgVFeVMn)) along with other hypotheses potentially useful within the

silicate class.
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Tephroite

Knebelite

© Hortonolite
Mg Fe
Forsterite Ofﬁ’ine Fayalite

Figure 3.2 Mineralogical Isomorphism. The olivine series of the silicate class of
minerals. The triangle depicts the isomorphism caused by the three-way mutual substi-
tution of magnesium (Mg), iron (Fe), and manganese (Mn) in the crystal lattice. The
locations of the minerals on the triangle indicate the typical ratios of the three elements.
Although the triangle depicts precise locations for the minerals (for example, the compo-
sition of olivine has .a ratio of Mg to Fe atoms and, therefore, the ratio of ideal forsterite
to ideal fayalite, of 63:37), any ratio is possible in nature; hence, the boundaries between
minerals in the series are imprecise.

Since chemical analysis of any sgmple in this series would almost certainly yield
some amounts of Mg, Mn, and Fe, and since the boundaries delineating the particular
minerals are unclear, chemical analysis would serve to identify only the mineral fam-
ily or series. In this example, the evaluation component would select the hypothesis
(contains (MgVTFeVMn)). The hypothesis would be incorporated into the decision-tree
and posted to the blackboard, and this change of state would let the hypothesis generator
know that all the examples of the mineral belong to the olivine series. Armed with this
newly established hypothesis, the system can begin the third stage of processing: finding
the features to distinguish the positive examples of the mineral from the rest of the fam-
ily. At this point, two things happen to ease the inductive process. First, the number of
examples to consider is reduced since only those belonging to the olivine series nced be
considered. Second, the establishment of the mineral series should invoke additional do-
main knowledge to suggest discriminating attributes (such as hardness) within the family

as well as discard attributes known to be useless (such as crystallographic structure in
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an isomorphism). This has the net effect of reducing the size of the attribute/hypothesis
space while focusing attention on the attributes most lil;ely to be useful. Meanwhile, the
hypothesis ordering mechanism also assists by focusing attention on the most promis-
ing hypotheses and filtering out the least promising ones. The inductive process should
quickly proceed in a fairly conventional fashion to the description distinguishing the
mineral from other members of its family. This description, in conjunction with the
characteristic description of the family, forms the basis for future classification of the

mineral.

3.3 Summary

This chapter described OXGate, the prototype opportunistic constructive induction
system. OXGate provides a domain-independent development and testbed environment
for the application of knowledge to guiding decision-tree construction. The four major
components of OXGate have been implemented to varying degrees, reflecting their roles
in the establishment of a baseline capability.

The hypothesis generator component provides the richest area for future develop-
ment. Knowledge can be applied for hypothesis generation in several fashions: explicitly
proposing hypotheses and constructive operators, retracting hypotheses and operators,
and reasoning deductively about changes in the state of induction to determine which
procedures or knowledge to invoke. A central controller mechanism would provide an
interface to the blackboard to interpret the state changes posted by the hypothesis in-
corporation compuuent, resolve conflicts between knowledge sources, and ensure that all
proposed hypotheses are posted to the blackboard in the proper format. Development of

these capabilities is the next logical thrust for future research.
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The hypothesis ordering and hypothesis evaluation components are essentially com-
plete, providing the fundamental capability for exploration of the hypothesis generation
mechanism and its interaction with hypothesis incorporation. Hypothesis ordering is
implemented with a heuristic filtering mechanism using multiple evaluation criteria for
hypothesis selection. It identifies the most promising hypotheses for consideration by
the hypothesis evaluation component and rejects those appearing useless. The hypoth-
esis evaluation component assesses the hypotheses provided by the ordering mechanism
against the full set of training instances to select the best hypothesis. The hypothesis
incorporation component then adds the hypothesis to the decision-tree, partitions the
training data into the appropriate subsets, and posts these changes to the blackboard for
use by the hypothesis generator.

Of the four major components of OXGate, the hypothesis generation and order-
ing mechanisms are the most interesting and, before this thesis, the least developed.
Tractable investigation of hypothesis generation requires an operational hypothesis order-
ing capability, consequently, the latter is developed first. Hypothesis ordering is discussed
in detail in the next chapter, followed by extensive experimental results in Chapter 5.
Preliminary investigations into some uses of domain knowledge for hypothesis generation

are presented in Chapter 6.
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CHAPTER 4

HYPOTHESIS ORDERING

Hypothesis ordering was described in Section 3.1.2 as the second component of ab-
duction. It is the mechanism for assessing the potential utility of generated hypotheses
and selecting the most promising ones before testing the hypotheses against the full body
of evidence. Hypothesis ordering attempts to locate the most promising of the generated
hypotheses and discard the least promising, using a limited amount of evidential infor-
mation (data) augmented by available extra-evidential sources (knowledge and biases).

An example of this behavior can be found in the scientific discovery process. The
scientist briefly entertains a number of possible explanations of the observed data, using
knowledge of the domain to create hypotheses and screening vut many as being implau-
sible based on additional knowledge. The surviving hypotheses, those generated in this
first step, then compete against each other to determine which are worthy of thoughtful
consideration or experimental assessment. During this competition, readily accessible ev-
idential information is used to refute obviously inappropriate hypotheses and support the
more promising ones, and extra-evidential considerations (such as simplicity or elegance,
case of tesling, analogues in other domains, and the scientist’s intuitions) are applied to
establish a preferential ordering. Only the subset of hypotheses deemed most promising
is retained for the complete evaluation procedure of induction proper.

Since this thesis specifically addresses the assembly of dccision-trees, the operational
use of hypothesis ordering can be described more concretely. At any point during the
assembly process, a pool of hypotheses is available for consideration, potentially restocked

regularly by the hypothesis generator. The hypothesis ordering mechanism examines each
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hypothesis in the pool at the current node of interest and produces a global estimate of
the potential utility of the hypothesis for the current node and future subordinate nodes.

In this thesis, hypothesis ordering uses a multiple-objective evaluation method to
estimate the predicted hypothesis utility [Seshu et al., 1989]. The method is heuristic;
therefore, to avoid relying too much on the outcome, the method is used to highlight the
hypotheses appearing to be very good or very poor relative to the rest of the hypotheses.
These two classifications imply three general categories of predicted hypothesis utility,
which map into three subsets of hypotheses: the most promising, the potentially useful,
and the apparently poor. The subset of most promising hypotheses, herein known as the
primary subset, contains the hypotheses with the highest predicted utility, warranting
precedence during hypothesis evaluation. The subset of potentially useful hypotheses, the
secondary subset, contains those hypotheses that are not outstanding in either extreme,
and so are held in reserve for later use: they do not warrant immediate rejection, but
they also do not appear to be immediately useful at the current node. The subset of
apparently poor hypotheses, the rejected subset, contains those hypotheses with such a
low predicted utility relative to the other hypotheses that they are removed from further
consideration.

During the operation of OXGate, hypothesis evaluation is applied first to the hy-
potheses in the primary subset, searching for the best hypothesis given the training data.
If none of these hypotheses is sufficiently applicable, the secondary subset is considered.
However, rather than evaluate all of the hypotheses in the secondary subset at once, the
secondary subset is first submitted to the hypothesis ordering mechanism for additional

partitioning into primary, secondary and rejected subsets,! and only the hypotheses in the

!Since the hyputheses compete against each other to determine the partitioning (Section 4.2.5),
hyputheses assigned to the secundary subset during initial competition can be reassigned to the primary
or rejected subsets when competing among only themselves. This process has the effect of dynamically
relaxing the requirements for membership in the primary and rejected subsets.




new primary subset are evaluated. If none of these hypotheses is adequate, the process
will repeat using the new secondary subset. The recursive partitioning of the secondary
subset will continue, evaluating the best of the available hypotheses and rejecting the
worst, until a suitable stopping point is reached. Partitioning will stop upon finding an
acceptable hypothesis, reaching a minimum number of hypotheses (below which the over-
head of ordering offsets any gains), or exhausting the set of hypotheses. The recursive
nature of this order-evaluate cycle allows OXGate to utilize more than the original three
categories while creating the refinements only when necessary. This approach avoids an
undesirable reliance on preset partilioning thresholds and an oversensitivity to the results
of the multiple-objective evaluation, while only incurring the overhead of highly refined
partitioning upon demand.

When the best available hypothesis is found, it is incorporated into the decision-tree as
the test at the node of interest. The union of the original (for the current node) primary
and secondary subsets becomes the pool of hypotheses for the next stage of decision-tree
assembly, augmented as appropriate by new suggestions from the hypothesis generator.
In addition, some hypotheses logically nullified by the chosen hypothesis may be filtered

out as part of the hypothesis incorporation process (see Section 3.1.4).

4.1 The Expected Tradeoff

The goal of hypothesis ordering is to reduce the number of hypotheses that the more
expensive evaluation mechanism must examine. Since hypothesis ordering is a heuris-
tic approach, one would expect a tradeoff, gaining processing spced at the expense of
another measure of performance. The most obvious measure potentially affected is the
accuracy of the resultant classifier. Early in the decision-tree assembly process hypoth-

esis ordering may reject or shadow hypotheses necessary further down in the tree for




mazimel resubstilution accuracy (maximum classification accuracy on the training da a).
As will be discussed in Sectivn 4.2.3, forcing the hypothesis ordering mechanism to retain
all primitive hypotheses can generally remove this effect. However, even in the case in
which an imperfect decision-tree is created (one with non-maximal resubstitution accu
racy), the performance of the decision-tree on independent test data is not necessarily
adversely affected.

The performance measure typically used in machine learning literature to compare
inductive systems is the predictive accuracy. Predictive accuracy (herein known as accu-
racy) is a measure of the power of the generalization: the akility to predict the proper
classification of unseen data. Several factors affect the generalization performance, in-
cluding the degree to which the training data represent the test data, and the classifier’s
sensitivity to noisy or rare data. Accepted methods of obtaining robust generalization
often sacrifice a portion of the resubstitution accuracy to gain in predictive accuracy,
accomplished in decision-tree classifiers by removing (post-pruning) or preventing the
creation of (pre-pruning) certain branches of the tree [Breiman ef al., 1984].

The hypothesis ordering mechanisin, in removing giobally unpromising hypotheses,
can be considered to be related to pre pruning since it may force early termination of the
development of the decision-tree as the pool of promising hypotheses is depleted. The
resultant decision-tree is similar to that of a post-pruning approach: a decision-tree devel-
oped from the most well represented and consistent training examples, with the tacit as
sumption that it is better to ignore rare examples (which might represent small disjuncts
or which might simply be noise) in exchange for the potential of better generalizations
[Breiman cf al., 1984]. Given the nature of generalization and the tenuous relationship
between resubstitution accuracy and predictive accuracy, the use of hypothesis ordering
does not imply a reduction in predictive accuracy. As will be seen in Section 5.3, when

compared to the decision trees developed using all of the available hypotheses (primitive

69




and construcled), hypollesis ordering can provide substantial speed improvemert, with

little or no degradation of predictive accuracy.

4.2 Mechaiisms for Ordering Hypotheses

Hyvothesis ordering involves two distinc® processes: assessment of the potential utility
of the hypotheses and division of the pool of hypotheses irnto the three disjoint subsets
lescribed earlier. In this thesis, the assessment is performed through the application
of multiple-objcctive evaluation, assessing each hypothesis along several dimensions and-
combining the results to provide «n indication of potential utility relativet the remaining
hypotheses. The methods of combinizg tue evaluation dimensions and cetermining the
disposition of the hypotheses are varied and belong to the field of multiple-criteria decision
making [Yu, 1985). A significant contribution of this researc.. effort is the analysis and
empirical assessment of several approaches for hypothesis ordering.

In this thesis, three dimensions are used {for multiple-objective evaluation. The first
dimesnsion, the Quick-Lonk, is an estimate of the confirmation of the hypothesis: the
performance o. ne hypothesis on a subset of the training data. The second dimension
is the simplicity of the Lypothesis. The third dimension is the primitiveness, indicating
whether the hypothesis is a primitive derivation from the original description language
(Appeidix B) Abstractly, the Guick-Look is an evidential measure, *he simplicity is a
context-free extr »- cvidential measure, and the primitiveness is a context-dependent extra-
evidential measurc. Other measures are 21« possible, such as the degree of confidence
ascrived to a hyputhesis by ils domain knowledge-based generator or the amovnt of
co:nbined support disjoint knowledge sources provide o hypothesis. The investigation of

additional/alternative measures is suggested as future work (Chapter 7).
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4.2.1 The Quick-Look

The Quick-Look is a heuristic method I devised for estimating the evidential support
for the hypotheses. It is a measure of the confirmation of the hypothesis over a randomly
diawn subset of the training data. The primary motivation for using the Quick-Look
is to identify the hypotheses strongly supported or strongly discourted by the evidence.
Partial justification for using the Quick-Look is in [Etzioni, 1988], where a hypothesis
filter is established, based on a subset of the training instances and the desired reliability
of the filter. In Etzioni’s approach, some good hypotheses may be filtered and some poor
hypotheses retained, depending on how well the sample represents the training data.
The probabiliv; of these events occurring can be made arbitrarily small by increasing the
sample size. The Quick-Look faces the same dependency on the sampling, but since it is
only one of several dimensions in the evaluation, and since the hypotheses are competing
against each other rather than an established threshold, the adverse effects of unfavorable
sanipling are diminished.

The use of the Quick-Look is also similar to the use of windowing in ID3 (Sec-
tion 2.4.1), but the resemblance is superficial. Windowing uses a subset of the training
data to develop a decision-trec. If the remaining training data are not classified correctly,
some of the misclassified examples are added to the subset and the tree is redeveloped.
Windowing teduces the amount of computer memory required for decision-tree develop-
ment by limiting the number of examples to consider. The description Janguage remains
untouched. The Quick-Look also operates on a subset of the training data, not to de-slop
the decision-tree, but to focus the description language. The decision-tree is developed
by the hypothesis evaluation component of OXGate, which uses the full set of training
date and relies on the constrained description language to reduce the size of the search

space, thereby saving processing time.




4.2.1.1 A potential problem and some solutions

The greatest difficulty Quick-Look faces is the potentially detrimental effect that
highly disjunctive concepts may have on its utility as a predictive measure of hypothesis
quality. Some of the islands of a highly disjunctive concept may be only marginally rep-
resented by the training data, and some islands may not be represented at all. While this
is a common problem for all inductive systems, Quick-Look exacerbates the sparseness of
the rei)resentation by teking only a subset of the training data, reducing the likelihood
of selecting any particular example even further. For example, if an island is represented
by 5 of a possible 1000 examples in instance space, a training set of 500 randomly drawn
exauples (with replacement) has a 92% probability of selecting at least one example from
the island. A Quick-Look subset of 10% of the training data (50 examples) has only a
22% probability of containing an example from the island. Thereiore, highly specialized
hypotheses, applicable only-to the smaller islands, will incur a larger probability of being
rejected v lative to their more robust counterparts. Some of the possible approaches to

alleviating this adverse condition are:

1. Assume that the rare examples are indistinguishable from noisy data, ignore them
if necessary, and hope the generalization provides good predictive accuracy on the
test data. As discussed in Section 4.1, this is the philosophy behind decision-tree

pruning and is a common method of dealing with exceptional examples.

. Increase the size of the Quick-Look sample, thereby improving the likelihood of se-
lecting representative samples from each island. The drawback of this approach is
the increased compntational overhead, effectively negating the processing speedup
available through hypothesis ordering. One possible approach to avoiding an un-
necessarily large Quick-Look sample size is to adjust the sample size according to

the concept dispersion or variance [Rendell and Seshu, 1990]. For concepts that are

72




highly dispersed in instance space, more samples from the sparser areas (areas with
small, scattered islands) would improve the likelihood of selecting representative
samples from the islands. The development of mechanisms for assessing the com-
plexity of the concept and dynamically scoping the sample size is a topic suggested

for future research (Chapter 7).

. Rely on the hypothesis generator to produce hypotheses that are at the right
level of generality or abstraction to predict the poorly represented islands and
are supported by enough examples to be rated well by the Quick-Look. The
generator must detect regularities in the data and propose hypotheses incor-
porating those regularities. This is not an additional requirement imposed by
the use of Quick-Look, for predicting the missing islands is the fundamental
challenge faced by any constructive induction system [Drastal and” Raatz, 1989,

Rendell and Seshu;, 1990).

. Artificially increase the proportion of positive to negative examples in the train-
ing set to provide denser islands, thereby increasing the probability of selecting an
example from a smaller island. In the previous example, assume that of the 1000
examples in the instance space, 200 are positi 'e. Doubling the number of positive
examples in the training set (by representing each one twice) would raise the pro-
portion of the examples on the small island from 5 out of 1000 to 10 of 1200. The
Quick-Look sample of 50 examples would then have a 34% chance of containing
an example from the island. Two potential effects of this approach would be an
increase in the false positive rate and a tendency to overgeneralize. This approach

is studied in Section 5.4.4.3.

. Retain the set of primitive hypotheses at all times, disallowing their rejection re-

gardless of their performance in the Quick-Look. This nearly guarantees maximal
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resubstitution accuracy, since the primitive hypotheses provide the original de-
scription language for use in the lower branches of the tree if needed. At the same
time, overspecialization to the training data may be avoided, with a correspond-
ing increase in predictive accuracy, since the more potentially useful constructed
hypotheses are also in the description language and may be incorporated higher in

the tree. This approach is investigated in Section 5.4.4.1.

6. Retain the set of rejected hypotheses for possible use when the primary and sec-
ondary subsets prove insufficient. One likely result would be a substantial increase
in the processing time, since the hypothesis ordering mechanism would have to
reexamine many useless hypotheses. The experiments presented in Section 5.4.4.2
investigate this approach. A potentially eflective alternative to retaining all 1ejected
hypotheses is to rely on the hypothesis generator to regencrate certain hypotheses

when there is sufficient reason to do so.

4.2.1.2 Measuring confirmation

Several measures are available o estimete the confirmation of a hypothesis, and are
applicable to both the Quick-Look as well as the full hypothesis evaluation. Each of these
measures involves the same basic process: test the hypothesis on the sample data, count
the number of correctly and incorrectly identified positive and negative examples, and
combine these four values into a single term. Various measurements have been explored
in the works of Breiman et al. [1984), Hartmann et al. [1982], Goodman and Smyth
[1958], Mingers [1989], and many others. The three measures examined ;n this thesis are
the information-gain (IG), average purity (AvePur), and positive purity (PosPur).

In the following definitions, the references to dala denote the tiaining data testing at

the decision-tree node of interest. These definitions and their formulae are applicable to
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the Quick-Look when considering a randomly drawn subset of training data, as well as

the hypothesis evaluation mechanism when using all the data available at a node.

Let the four measured values be
PG = the number of correctly classified positive examples
NG = the number of correctly classified negative examples
PB = the number of incorrectly classified positive examples
NB = the number of incorrectly classified negative examples

Then let
LT = the number of examples classified as positive (PG + N B)
RT = the number of examples classified as negative (NG + PB)
P = the total number of positive examples (PG + PB)
N = the total number of negative examples (NG + N B)
D = the total number of examples (P + N)

Information-Gain: The IG is a rough estimate of the information gained by choosing the
hypothesis as the criterion for splitting at a node of the decision-tree. It is the difference
between the entropy of the data at the node and the weighted sum of the entropies of the
data in the two branches that would be created by the split. Contrary to the common
use of information-gain, in OXGate the IG is signel to distinguish between a hypothesis

and 1ts antithesis.

The maximum entropy Spmaz = S(P/D) + S(N/D) where S(z) = —zlnz
The entropy of the positive (left) branch Sy = S(PG/LT) + S(NB/LT)
The entropy ot the negative (right) branch S~ = S(NG/RT) + S(PB/RT)
The total entropy of the split Sio = ((Sy x LT) + (S~ x RT))/D

The informa’ »n-gain JG = Spaz ~— Stor

Andif PB/RT > PG/LT, the sign of 1G is made negative.

Average Purity: The AvePur is the percentage of all examples classified correctly by the

hypothesis. AvePur = (PG + NG)/D




Positive Purity: The PosPur is the percentage of positive examples classified correctly

by the hypothesis. PosPur = PG/P

Section 5.4.2 presents evidence showing that the information-gain is the preferred
measure of the three for hypothesis confirmation. Several other inductive systems use the
information-gain as the metric for evaluation; one of the most famous is ID3 by Quinlan
(1986]). Common sense suggests that the measure used for the Quick-Look should be the
same as for hypothesis evaluation since the Quick-Luok serves to estimate the utility the

hypotheses will be awarded during full evaluation.

4.2.2 Simplicity

The second measure used in the multiple-objective evaluation is the simplicity: the
inverse of the cost of processing the hypothesis. Simplicity is often used as an estimate
of the plausibility of the hypothesis or its prior probebility [Watanabe, 1985]. Simplicity
is a context-free, extra-evidential measure based solely upon the syntactic structure of
the hypothesis, independent of the data.

The preference for the simplest hypotheses consistent with the data is a long-standing
heuristic commonly known as Occam’s Razor. More than a heuristic, this bias has
a mathematical basis: a simple hypothesis consistent with the data is provably likely
to be an approximately correct description of the true concept [Blumer et al., 1987).
According to Dietterich [1990], regardless of the nature of the simplicity measurement
there are relatively few simple hypotheses; therefore, a simple hypothesis is unlikely
to be consistent with the data by chance and deserves preference over more complex
hypotheses.

The exact nature of the simplicity measurement should reflect the cost that the

decision-tree is intended to minimize [Hartmann et al., 1982, Breiman ef al., 1984). The




costs of the individual syntactic elements must be incorporated into the measurement, yet
there is great liberty in determining what those costs should be. Counting the number of
tests on the attributes is an obvious potential element of the measurement. However, the
manner of treating the constructive operators is unclear: semantic differences between
operators suggest a continuum of operator costs.

One approach is to simply use the inverse of the number of tests on attributes
and to ignore the effect of constructive operators. One justification for this ap-
proach is the recognition that in real-world applications, the computational cost
of performing the constructive operations can be negligible with respect to the
cost of testing the attributes. For example, the primitive hypothesis (color =
red) would require a single test: its simplicity is 1. The constructed hypothesis
((color = red) AND (size = large) AND (shape = round)) entails a simpli .ty of 1/3.
The difficulty with this approach is that it often creates a decision-tree with poor read-
ability and predictive accuracy: the measure is unable to distinguish between hypotheses A
of the forms (test), f(lest), and f(g(h(j(test)))). For example, it will not indicate a
preference for (X1 = T') over (NOT (X1 = I)).

Assigning a unifu.m cost to the application of each const-uctive operator is also not a
completely satisfactory approach. The semantic differences between operators suggest a
graded cost structure. Clearly ((logg A) > 3) is a computationally more costly operation
than ((A + B) > 3), yet each consists of two attribute tests, the application of one
operator, and a comparison to a constant.

The development of a practical and syntactically attractive approach to operator
cost assignment should be the subject of future research. In this thesis, the Boolean
operators AND, OR, and NOT have costs of zero: preliminary testing during the evolution

of OXGate exhibited no noticeable, consistent benefit from assigning non-zero costs to
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the Boolean operators. The operalors EQP, MEMBER, and WHATIS have costs of one.

Their use is described in Chapter 6.

4.2.3 Primitiveness

The third dimension of multiple-objective evaluation used in this thesis, primitiveness,
is 2 binary indication of whether the hypothesis is primitive. Since the hypothesis ordering
mechanism perfurms a global assessment of the initial pool of hypotheses at the beginning
of decision-tree assembly, those hypotheses representing the smaller islands of the true
concept description may be inadvertently rejected. They are simply overshadowed by the
larger values of confirmation of the hypotheses applicable higher in the decision-trees.

If the hypothesis generator does not regenerate the necessary hypotheses before they

are required deeper in the decision-tree, the remaining hypotheses may be inadequate to
completely classify the training data. Retention of all primitive hypotheses, or primitives,
should provide the capability of achieving at least the maximal resubstitution accuracy
available with a purely selective induction system. The experiments of Section 5.4.4.1
investigate the utility of retaining the primitive hypotheses.

In some cases, it is conceivable that the primitives need not be retained. For example,
in an application in which a function of volume is found to be a useful constructed feature
(constructed from the primitive features derived from the attributes height, width, and
length), it is quite possible that the primitive features and the corresponding primitive
hypotheses will never be used again. Generally, predicting whether a primitive used in

one construction will be useful further down in the decision-tree is difficult at best without

full knowledge of the target concept, therefore, caution must be used when discarding

primitive hypotheses. This is a subject for future research.




4.2.4 Combining the measures

The selection of promising hypotheses for future complete evaluation is a process
analogous to the way decisions are ofien made in business or other disciplines. the decision
makel has a subordinate examine the space of alternatives and provide him with the set
of most promising decisions for his consideration. Although the subordinate assembles a
set of candidate decisions‘and the decision tmaner converges on a single one, both assess
the possible decisions by means of mulliple-criieria decision making. Similarly, in this
thesis, multiple-criteria decision maki'ng is used in both the hypothesis ordering and the
hypothesis-evaluation processes.

The central theme of multiple-criteria decision making is the evaluation of the poten-
tial costs and benefits of candidate decisions in order to identify the most desirable of the
decisions. The process is known as multiple-objective evaluation (MOE): the evaluation
of several measures (objectives) of costs or benefits, and the combination of those objec-
tives into a measure of quality useful for comparing the decisions. A myriad of methods
exist for MOLE, many involving not only an attempt to optimize the choice of decision,
but also to optimize the selection process itself [Yu, 1985). This thesis examines four of
the more tractable approaches. the use of non-dominance, weighted combinaticn of the

objectives, product of the objectives, and procedural use of the objectives.

4.2.4.1 Non-Domination

The most intuitivcly appealing of the MOL combination methods are those that do
not attempt to produce a single comparative term for each hypothesis, but instead com-
pare the hypotheses along each of the objectives and select the ones with the best over-

all performance. One method of this type is the identification of the non-dominated




hypotheses (NDII), a method I developed® based on the determination of the non-
dominated regions of a decision space [Yu, 1985].

The non-dominated regions of a decision space are those regions containing decision
points that are better than every other point in at least one evaluation dimension. The
regions are the extrema of the convex hulls formed over the set of known decision points.
As illustrated in Figure 4.1, the non-dominated points are never surpassed in every
dimension by another point. The appeal of this approach is that the relative importance
of the evaluation measures need not be established to identify which decisions to prefer:
all of the decisions known to be inferior to at least one other decision are discarded.
The use of the non-dominance approach for hypothesis ordering in OXGate involves
broadening the definition of the non-dominated region, and using this new definition as
the basis for dividing the pool of hypotheses into the three subsets described earlier. This

extension is discussed in Section 4.2.5.1.

X1

Figure 4.1 The Regions of Non-Domination. In this projection of decision space
onto the two evaluation dimensions X1 and X2, the non-dominated decision points are
highlighted.

2The use of a non-dominated region for hypothesis sclection was suggested in [Seshu et al., 1989].
Details of that implementation have not been published.
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4.2.4.2 Weighted combination

Cne of the simplest combination methods in decision making is the linear weighting
and combination of the evaluation measures, the weighted multiple-objective evaluation
(WMOE) approach. If the relative importance of the evaluation measures is known with
enough certainty and is quantifiable, then for decision D, a weight a, can be assigned to
each of the n measures Ap,. The quantity Qp represents the quality of decision D and

is given by

Qp =) oXp,

i=1
The main drawback of the weighted combination approach is the need to quantify
the relative importance of each evaluation measure. Often this commitment to fixed
weights is unattainable or undesirable. The effective setting of the weights varies with
the situation and the distribution of the known decision points, aud locating the proper

mix of weights is itself a MOE process. [Yu, 1985}

4.2.4.3 Product combination

Several sources use the product of a measure of confirmation and a measure of plausi-
bility as the basis for estimating the overall quality of a premise (e.g., the J-measure
[Goodman and Smyth, 1988], or the inductive probability or credibility [Watanabe,
1985]). These were discussed in Section 3.1.3. The product approach may tend to unduly
favor the simplest hy potheses during hypothesis ordering. The Quick-Look vonfirmation
measure must be over twice as large for the more complex hypotheses if they are to

compete with the simplesi hypotheses.
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4.2.4.4 Procedural combination

When the relative importance of the evaluation measures cannot be quantified, but
the precedence of the measures is known with certainty, the selection of the best deci-
sions can be accomplished procedurally. The decisions arc first ordered according to the
most important objective. When decisions are equally valued ove: the most important
objective, the second objective is applied to break tk. ties. The less impostant objec-
tives are applied in the same fashion as needed. This approach forms the basis of the
lexicographical evaluation function (LEF) used in the series of INDUCE and CLUSTER
programs [Stepp and Michalski, 1986].

The procedural combination approach is not a useful approach for hypothesis or-
dering in J)XGate since the goal of hypothesis ordering is to identify the set of most
promising hypotheses, not the single best hypothesis. It also requires that the prior-
ities of the objectives be fixed in advance; consequently, this method cannot respond
dynamically to the composition of the set of hypotheses. Although empirical support of
the unsuitability of the proccdural approach for hypothesis ordering is not presented in
this thesis, preliminary experimentation demonstrated this approach to produce gener
ally poor decision-trees and to be unstable when used for hypothesis ordering, i.e., very
sensitive to the composition of the randomly drawn Quick-Look data sets. While not
particularly useful for hypothesis ordering, the procedural combination is the method
of choice for the hypothesis evaluation mechanism: it produces decision-trees with the

simplest of the most informative decisions at each node.

4.2.5 Separating the hypotheses

The second stage of hypothesis ordering is the separation of the pool of hypotheses

into three subsets: primary, secondary, and rejected. Two approaches can be used to
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determine the partitioning: setting of thresholds and competition among hypotheses. The
competitive approach is the more desirable of the two because it allows the behavior of the
partitioning to respond flexibly to the characteristics of the hypotheses and the training
data. The establishment of fixed thresholds can result in a large number of hypotheses
being retained when the data represent a simple concept, and the premature rejection
of many hypotheses when the data represent a highly disjunctive concept, simply due to
low absolute values uf the measured confirmation. The compelitive approach is dynamic
since only the relative, and not the absolute, values of the measures are considered.

The non-domination approach to hypothesis crdering naturally places the hypotheses
in competition against one another. For the other combination methods, a single value
of predicted utility is computed for each hypothesis: this value can form the basis of
& clustering approach that causes the hypotheses to gravitate into the three distinct
subsets. Unfortunately, true clustering operaiions are compututionally expensive and
would curtail much of the processing speed benefits available with hypothesis ordering.
Instead, an approach to approsimating the clustering behavior is used: the hypotheses
are ranked according to their predicted atilities, and a histograr.matic method partitions
them into the three subsets.

Of the thrge dimensions used for the multiple-objective evaluation, primitiveness re-
quires special treatment. Section 4.2.3 pointed out the predicted benefits of always re-
taining the primitive hypotheses. One way of implementing this requirement is to treat
primitiveness as an objective of such high importance that the primitive hypotheses are
always in the primary subset. The goal, however, is not fo always have the primitive hy-
potheses in the primary subset, but rather to keep them out of the rejecied subset. This
is accomplished by performing hypothesis ordering using the confiumation and simplicity

measures, and then transferring any primitive hy potheses relegated to the rejected subset

into the secondary subset.




4.2.5.1 Non-Domination

The non-domination approach to hypothesis ordering (NDH) is an extension of the
fundamental description presented in Section 4.2.4.1. By definition, non-dominated hy-
potheses are never surpassed in cvery evaluation dimension by any other hypothesis. If
applied in OXGate, this constraint would force too much reliance on the confirmation
measurement obtained by the Quick-Look. Since the Quick-Look provides only a rough
estimate of the confirmation of the hypotheses, failure to tolerate a margin for error can
result in an unwarranted restriction of the primary subset. By including tolerance bands
for both the primary and secondary subsets, the pool of hypotheses can be partitioned
into the “generally undominated” hypotheses (primary subset), the “heavily dominated”
hypotheses (rejected subsei), and the remaining hypotheses (secondary subset). Fig-
ure 4.2 illustrates the application of tolerance bands in two dimensions.

The tolerance bands are necessary only for dimensions susceptible to error. Simplic-
ity is a known quantity with no error; therefore, it requires no tolerance bands. Tol-

erance bands may be useful; though, for low values of simplicity to avoid unwarranted

Figure 4.2 Using Tolerance Bands with Non-Domination. The use of tolerance
bands avoids overreliance on the quality of estimations X1 and X2. The three bands rep-
resent the generally undominated hypotheses (primary subset, P), the heavily dominated
hypotheses (rejected subset, R), and the remaining ones (secondary subset, S).
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discrimination between marginally different hypotheses. For example, preferring a hy-
pothesis with fifteen components over one with sixteen is too refined a discrimination (if
based on simplicity alone) for use in hypothesis ordering. Since the constructed hypothe-
ses used in the experiments with OXGate are relatively simple, tolerance bands are not
used with the simplicity measure in this thesis.

The application of the primary tolerance band for the Quick-Look confirmation mea-
sure is illustrated in Figure 4.3. Concentually, the approach for partitioning the hypolhe-
ses into the subsets proceeds as follows. First, the truly non-dominated hypotheses are
determined (points A, B, and C in the figure). Second, the primary tolerance band is
extended from these hypotheses. Any hypotheses falling within the banded areas are in-
cluded in the primary subset, except for those that are dominated by another hypothesis
by more than a tolerance width (for example, point D). Third, the hypotheses in the
primary subset are removed from the poot and the process is reapplied to the remaining
hypotheses using the secondary tolerance band to determine the secondary subset. The

hypotheses remaining after this application are rejected.
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Figure 4.3 INon-Dominated Hypotheses in OXGate. The diagram shows the
use of the tolerance band for .he primary subsel of hypotheses. The tolerance band for
the secondary .ubset is r.of shown. The toletance band is applied for the Quick-Look
measurc of confirmatior., but is not necessary for the precisely determinable dimension
of simplicity. (Note the discrete nature of the simplicity measure used by OxGate.)
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4.2.5.2 Weighted and product combinaticns

Both the weighted and the product combination approaches to multiple-objective
evaluativn combine the evaluation dimensions into a single estimate of hypothesis utility.
Using this estimate, the hypotheses can be ordered in a list. Partitioning this list into
three subsets is a matter of finding suitable breakpoints, either by clustering, establish-
ing fixed thresholds, or using a histogrammatic method, described below. Figure 4.4
illustrates the partitioning of the weighted combination in a two dimensional evaluation
space. Figure 4.5 shows the partitioning for the primary subset using the weighted sum
of confirmation and simplicity measures in OXGate.

The product combination is illustrated in Figure 4.6. It is easy to see why this
form might not be useful for hypothesis ordering. The primary subset tends to favor
hypotheses with X1 ~ X2 (confirmation & simplicity) while avoiding the extremes.
Moderately simple hypotheses with medium values of confirmation are preferred over
complex hypotheses with high confirmations. If the hypothesis generator happens to
propose the correct hypothesis to describe the target voncept, but the hypothesis is fairly

complex, the product form of the hypothesis ordering mechanism could inadvertently

Figure 4.4 Partitioning Hypotheses with Weighted MOE. Key: (P)rimary,
(S)econdary, and (R)ejected subsets.
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Figure 4.5 Weighted MOE in OXGate. This diagram illustrates the primary
partition of hypotheses as applied to the weighted sum of the Quick-Look measure of
confirmation and simplicity. (cf. Figure 4.3)

Figure 4.6 Partitioning Hypotheses with Product MOE. XKey: (P)rimary,
(S)econdary, and (R)ejected subsets.




discard it. Another difficulty with using the product form occurs with the information-
gain estimate of confirmation. The information-gain is not a linear measurement: a
hypothesis that correctly classifies twice as many examples does not necessarily yield
twice as much information-gain. The product of information-gain and simplicity tends
to favor a simple hypothesis even when a more complex hypothesis is correspondingly
more accurate.

One method of partitioning an ordered list of quality estimates is by an approach 1
have ioosely termed the histogrammatic method. Essentially, the process is analogous

)

to that of an instructor who grades “on a curve.” The instructor takes the distribu-
tion of student course scores and looks for suitable breakpoints within sensible windows
of opportunity in order to define the boundaries between the grades of A, B, C, etc.
The histogrammatic method examines the ordered list of quality estimates, searching for
sufficiently large drops in quality l;et\veen adjacent items in the list, as depicted in Fig-
ure 4.7. Acceptable drops vccurring within defined windows are used as the breakpoints
to partition the list into the primary, secondary, and rejected subsets.

The windows are currently defined in OXGate by a collection of parameters specifying:

the minimum number of hypolheses in the primary subset, the minimum quality of

Quality 7

£
N
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Figure 4.7 The Histogrammatic Approach to Partitioning.




hypotheses in the primary subset as a percentage of the highest quality in the list, the
magnitude of the drop as a percentage difference between adjacent terms, and other
related parameters to distinguish the secondary subset from the rejected subset. The
major deficiency of this approach is its complexity: with so many parameters to adjust,
it may be difficult or impossible to establish a set of parameters robust enough to apply
properly to every possible pool of hypotheses. Alternative methods of partitioning the
ordered list, such as self-clustering algorithms or the use of clustering attractors, may
provide more robust and psy-hologically satisfying solutions. Clustering algorithms tend
to be computationally expensive, however, and would add substantially to the processing

overhead that hypothesis ordering is intended to reduce.

4.2.5.3 Procedural combination

The procedural combination and partitioning approach to multiple-objective evalu-
ation can be accomplished in at least two ways. In the first approach, the hypotheses
are placed on an ordered list. The most important objective is used first to order the
hypotheses. As in the non-dominated approach, tolerance levels can be established to
avoid placing too much reliance on the accuracy of the measurements. Equally valued
hypotheses, or when using tolerance bands, similarly valued hypotheses, are then ordered
by the second important objective, and so on. The ordered list is then partiticned in
a manner similar to that of the weighted and product combination methods; however,
now there is no single measure with which to compare adjacent hypotheses. The list
must be partitioned according to some other criteria such as defining the subsets to be
fixed percentages of the total number of hypotheses on the list. The effect would be
to have the primary subset consist mainly of the hypotheses with the highest values of
the most important objective regardless of the values of the other objectives. Similarly,

the rejected subset would tend to consist of the hypotheses with the lowest values of
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the most important objectives. The other objectives would affect only the plac ment of
a hypotheses in a particular subset when the partitioning splits a group of hypotheses
having equal or similar values of the most important objective. There appears to be
no redeeming value to this approach: il generally ignores all but the most important
objective, and the partitioning method is blind to the makeup of the pool of hypotheses.

An alternative procedural combination approi.ch to multiple-objective evaluation is
illustrated in Figure 4.8 with X1 as the most important objective and X2 as the next.
The hypotheses with the highest value of X1 are considered first: the ones with the
highest values of X2 are placed in the primary subset and the ones with the lower values
of X2 are assigned to the secondary subset. The algorithm proceeds from the right
towards the left in the figure, assigning the hypotheses with the best values of X2 to
the primary subset for a particular value of X1, and the rest to the secondary subset.
As the value of X1 approaches the middle of its range, the partitioning is adjusted so
that only the hypotheses with the very best values of X2 are selected for the primary
subset, the ones with the worst values of X2 are rejected, and the rest are assigned
to the secondary subset. As the value of X1 approaches the low end of its range, the

partitioning is readjusted so that the hypotheses with the best values of X2 are assigned
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Figure 4.8 Partitioning Hypotheses with Procedural MOE.




to the secondary subset, and the remainder are rejected. Tolerance levels can alsc be
incorporated inte this aigorithm to avoid being overly sensitive to the accuracy of the
measurements.

This procedural combination algorithm suffers some of the deficiencies of the his-
togramiatic approach. Several parameters have to be used fo specify the breakpoints to
all scate hypotheses to the three subsets, as well as define the conditions for adjusting the
partitioning bebavior as described above. More importantly, this approach can exhibit
an unacceptable anomaly ac illustiated in Figure 4.8. Hypothesis A is assigned to the
secondary subset since its value of X2 is less thar that of vhe two vther hypotheses with
nearly the same value of X1. Hypo:hesis B is assigned to the primary subset since it
has the greatest value of X2 for its value of X1. Yet, hypothesis A is clearly superior
to B for each measure X1 and X2. Similarly, hypothesis C should not be rejec.ed when
D is retained in the secondary subsct. This procedural approach for multiple-objective

evaluaiion is simply too ill-behaved for use in hypothesis ordering.

4.3 Summary and Comments

Hypothesis ordering is the second step of the inductive process. Its function is to
make initial estimates of the utilities of hypotheses, present the most promising of the
hypotheses for rigorous evaluation, and reject the seemingly useless hypotheses. The
hypothesis ordering component acts as a buffer between the hypothes:s generator, which
proposes hypotheses, and the hypothesis evaluation component which must evaluate the
hypotheses against the full set of available training data. Since the evaluation against
the full set of data is an expensive operation, hypothesis ordering is necessary to reduce

the number of hypotheses the evaluator must consider.
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Hypothesis ordering involves two processes: assessing the hypotheses, and dividing
the pool of hypotheses into three disjoint subsets. Hypotheses are assessed through the
use of multiple-objective evaluation, a method of using several measures to estimate
overall hypothesis goodness. Three ubjectives are used in the current implementation of
OXGate: the Quick-Look, simplicity, and primitiveness. The Quick-Look measures the
confirmation of a hypothesis against a random subset of the training data. Simplicity is
a measure of the structural complexity of the hypothesis and provides an estimate of its
plausitility. Primitiveness indicates whether the hypothesis is derived from an original
primitive feature, or whether it is constructed from other hypotheses.

Several approaches to combining the measures for multiple-objective evaluation were
considered in this chapter: nfm~domination, weighted combination, product combination,
and the procedural approach. In each approach, the pool of hypotheses is evaluated
over the measures, and the hypotheses compete in some manner against each other for
membership in one of three subsets: the primary subset (most promising), the secondary
subset (potentially useful), and the rejected subset (apparently useless). The approach
used to partition the hypotheses into the subsets depends on the particular combination
method in use. In each approach, primitiveness is given special treatment: a primitive
hypothesis is never rejected. If designated for the rejected subset, it will be reassigned
to the secondary subset.

The non-domination approach for hypothesis ordering is an extension of the use of
non-dominated regions. By definition, a non-dominated hypothesis is one that is not
surpassed in every evaluation dimension by any other hypothesis. To avoid overreliance
on the Quick-Look confirmation measurement, which is only a rough estimate, tolerance
bands are included for both the primary and secondary subsets. In this approach, the

pool of hypotheses is partitioned into the “generally undominated” hypotheses (primary




subset), the “heavily dominated” hypotheses (rejected subset), and the remaining hy-
potheses (secondary subset).

The weighted and product combination approaches both involve producing a single
measure of hypothesis quality, ordering the hypotheses by their quality, and partitioning
the ordered list into the three subsets. The greatest difficulty incurred with these ap-
proaches is the development of an inexpensive partitioning mechanism robust enough to
adapt to the particular mix of hypotheses.

The procedural approach orders the hypotheses according to the most important
objective first, resolves ties by using the next most important objective, and continues in
a similar fashion until the hypotheses are completely ordered or all objectives have been
used. If the list is partitioned as in the weighted or product approaches, the application of
the lesser objectives is generally wasted overhead. An alternative approach is to partition
groups of hypotheses at a time: for each band of values of the must important objective,
the hypotheses included in the band are partitioned into the three subsets according
to the ordering provided by the lesser objectives. Proper assignment of hypotheses to
the subsets involves a dynamically changing criteria for membership that is adjusted
according to the value of the most important objective.

Of the four approaches to multiple-objective evaluation, the non-dominance and
weighted combination methods provide the best empirical performance as will be shown
in Chapter 5. The non-domination approach is the most intuitively appealing of the
methods discussed, since it does not attempt to produce a single comparative term for
each hypothesis based on limited information. Instead, it compares the hypotheses along
each of the objectives and selects the ones with the best overall performance. The non-
domination approach to hypothesis ordering is psychologically satisfying, functionally

robust, and computationally economic, making it the method of choice for implementa-

tion in OXGate.




CHAPTER 5

EXPERIMENTS AND ANALYSIS:
HYPOTHESIS ORDERING

This chapter presents several experiments demonstrating the use of hypothesis order-
ing in OXGate, and the analysis of several important design considerations. The chapter
is divided into five major sections. In the first section, the experimental method and
the domains used during the in\’éstigation are outlined. The second section baselines
0XGate against the well-known inductive system ID3 to establish the basic represen-
tational and processing speed differences. Section 5.3 presents a preview of hypothesis
ordering at its best, providing the context for the succeeding discussions. The system
design is presented in Section 5.4, providing an overview of, and rationale for, several
key design choices made during the evolution of OXGa;te. Following the system design,
Section 5.5 presents the system analysis: the investigation of the robustness of the hy-
pothesis ordering mechanism as it is applied across several domains. The main results

and conclusions are summarized in Section 5.6.

5.1 Experimental Method

The experiments of this chapter are all aimed at evaluating the cffectiveness of the hy-
pothesis ordering mechanism. The hypothesis ordering component was tested by flooding
OXGate with constructed hypotheses and mcasuring the ability of OXGate to manage
the extra load. The constructed hypotheses were either created by hand, produced by
special-purpose routines, or both. The specific method used for generating constructed

hypotheses varied with the experiment and test domain.
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The experiments presented here are intended to illustrate the points being made,
rather than provide an exhaustive account of all possible permutations. Many experi-
ments were run carly in the evolution of OXGate that steered its development toward its
current state. Several of the adjustable parameters were tuned during this phase to pro-
vide reasonably robust performance for concepts from the Boolean and Nominal domains
(described below), and later were checked using concepts irom all four test domains to
ensure their continued acceptability. These paramneters include: the minimum number of
instances in the Quick-Look dataset (10), the maximum size of the Quick-Look dataset
as a percentage of the available training data (10%), a set of five paramelers describ-
ing the breakpoints in the histogrammatic partitioning approach, the relative weights
used in weighted multiple-objective evaluation, the width of the tolerance bands for the
non domination approach (readdressed in Section 3.53.1), and the minimum numbers of
examples (40) and hypotheses (15) required before hypothesis ordering is enabled. This
chapter highlights the most important and illustrative of the experiments accomplished

after the initial phase of OXGate’s development.

5.1.1 Measurements and displayed data

The figures of this chapter show various measurements made on the decision-tree cre-
ated by the sys‘em under consideration: the abscissa is the number of examples used
in training (developing the decision-tree) and the ordinate is the dependent variable.
The three measured variables are the crror-rate. the number of primitive hypotieses
incorporated in the decision tree, and the amount of CPU time necessary to develop
the decision-tree. Two computed variables, the statistical significance and the slow-
down/speedup factor, are also used.

The error-rate is simply the complement of the predictive accuracy (10057 - accuracy)

as measured on a relevant set of test data. The number of primitives is an indication of
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the cost-complexity of the decision-tree, providing a measure of the number of directly
testable components assembled in the tree. In ID3, the number of primitives is calculated
to reflect the number of primitives that would be needed in an equivalent binary decision-
tree. This measurement was chosen over others (e.g., number of nodes or leaves) to
directly relate the OXGate decision-trees to those of ID3. The amount of CPU time
is a useful measure for comparisons within a figure, but not from one figure to another;
different Sur® workstation configurations were used for batch experimentation depending
upon machine availability. The CPU time is included as a comparative measure, not for
strict theoretical purposes, but to provide a means of gauging the practicality of the
OXGate approach in real-world applications.

All graphs show mean values measured over 10 runs, except where noted. Error bars,
where included, represent the 95% confidence interval (two-sided) using the Student’s ¢
distributicn. The slatistical significance, where shown, is also derived assuming the
Student’s ¢ distribution, and represents the likelihood of obtaining the observed results if
the two error-rate curves being compared are assumed to represent the same distribution.
The careful reader should note that, although tempting, it is incorrect to state that
two curves appearing to be significantly different, i.e., having low values of significance,
belong to different distributions. All that can be said is that the experiment supports
the conjecture of one curve being better than the other, but does not prove it.

In Section 5.5.1 another statistical analysis tool, the Friedman test, is used to distin-
guish from among data distributions that appear similar, i.e., where pairwise comparisons
of the distributions have high values of statistical significance. The Iriedman test is a
method of rank analysis, allowing a distribution to be selected as “best” based on its
overall performance [Friedman, 1937].

Two additional points should be noted regarding the graphs. First, the confidence

intervals are sometimes omitted for clarity of presentation. In those cases, the intervals
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provide misleading information: the processing times for the larger training set sizes were
so large that fewer than ten runs werc made, resulting in relatively large confidence in-

"

tervals. Second, some graphs exhibit a peculiar “bump” {or hypothesis ordering on small
training sample sizes. Since the Quick-Look examines only a fraction of the available
training data, hypothesis ordering is disabled for training sets of forty or fewer examples

to avoid oversensitivity to the particular examples drawn.

5.1.2 Domains and concepts

Table 5.1 provides a general overview of the concepts used in the experiments, taken

from four domains. Two domains are artificial (Boolean and Nominal), and two (NetTalk

Table 5.1 Summary of Concepts Used

| Concept | Description | Instance Space | Disjuncts’ |
Boolean 3-term | 3 trinary conjuncts | 12 binary attributes = 3, 13,13
(Appendix C) _3DNF 4096 instances 33%
4-term 1 binary, 3 trinary 4,27, 27
3*DNF | conjuncts 50%
Nominal A structured, 4 nominal attributes 4,7, 7
(Appendix D) medium complexity | 3 to 5 values/attribute => 37%
240 instances
B unstructured, 5 nominal attributes 8, 25, 24
higher complexity | 4 to 9 values per attribute = | 28%
(than Nominal A) 1350 instances
C unstructured, 4 nominal attributes 3,39
low complexity 3 to 5 values per attribute = 60%
240 instances
NetTalk Silent silence in center 7 nominal attributes unknown
(Appendix E) window position 27 values per attribute = ~ 113
10'¢ instances possible, ~ 109
143,000 available in database 14%
Breast Cancer nonrecurrence of 9 nominal attributes unknown
(Appendix T) breast cancer 2 to 13 values per attribute = | =~ 74
91,000 instances possible, = 83
286 available in database 70%

1Disjuncts. the number of positive leaves in the decision-tree, an estimate of the concept complexity.

Three values for the number of disjuncts are given for cach concept. the first is from the target concept
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and Breast Cancer) are complex real-world domains obtained from the Repository of Ma-
chine Learning Domains maintained by the University of California at Livine. Complete
descriptions of the domains, concepts, and data are located in Appendices C-through F.
Table 5.2 provides a mapping indicating which concepts are used in each experimental

category of this chapter.

Table 5.2 Matrix of Experiments

Experimental Application Domain
Section Dimension Boolean Nominal | NetTalk | Cancer
Baseline | Representation 3-term 3DNF AB,&C v v
Processing speed 3-term 3DNF B v
Preview | OXGate preview v
Design MOE vs. SOE 3-term 3DNF B v
Confirmation measures A
Combination methods 3-term 3DNF B v
Concept dispersion v
Analysis | Tolerance bands 4-term 3*DNF A&LB v
Pruning 3-term 3DNF B Vv v
OXGate in action 4-term 3*DNF B v v

5.2 Baselining OXGate

In this section, the basic inductive operation of OXGate is contrasted with the well-
established system ID3. The simple version of ID3? used for comparison performs basic
selective induction with no decision-tree pruning, uses the information-gain as its eval-
uation measure, and operates on single-concept learning tasks. The experiments are in-

tended to determine whether OXGate has a representational advantage or disadvantage

description, the second is from OXGate (using primitives only), and the third is from ID3 (n-way
splitting). The fourth term is the coverage. the percentage of instances in the database which are
positive examples of the concept. The OXGate and ID3 values were obtained from decision-trees created
using the full set of available examples, except for the decision-trees in the NetTalk domain. These were
created using a training set of 2000 examples.

2This implementation of ID3 was written in CommonLisp by Raymond Mooney (©1988).
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relative to ID3 as discussed in Appendix B, along with an assessment of the computa-
tional overheud incurred by the OXGate testbed environment. Performance is examined
in two dimensions: (1) predictiv. sccuiacy as a function of choice of representation, and
(2) processing speed. The corresponding conclusions are: (1) neither representation is
uniformly preferable for simple selective induction, and (2) the overhead of OXGate’s hy-
pothesis maintenance and blackboard administration causes a substantial, yet acceptable,

speed degradation.

5.2.1 Predictive accuracy baseline

The goal of these experiments is to determine on the basis of predictive accuracy
whether the binary decision-tree representation of OXGate is superior or inferior to the
n-ary decision-trees produced by ID3. First, the equivalence of the two approaches under
controlled conditions is established, followed by several comparisons of normal opera-
tion. In these experiments, only the primitive hypotheses were used by OXGate and the
hypothesis ordering mechanism was disabled.

In the first experiment, the artificial 3-term 3DNT Boolean concept was used to
force ID3 to generate binary decision-trees. The hypotheses were organized on OXGate’s
blackboard so that they would be considered in the same order in which ID3 examined
the attributes. Since both systems use the estimate of information-gain to choose the
best hypothesis or attribute and select the first one found in case of a tie, the resultant
decision-trees should be identical. They were identical as indicated in Figure 5.1.

The next experiment examines the effect of randomly ordering the placement of hy-
potheses on OXGate’s blackboard. This should have the effect of producing different
decision-trees than ID3. At those decision points where more than one hypothesis has
the maximum information-gain, the chance ordering of hypotheses can result in a differ-

ent decision being made by OXGate than by ID3. Since the ordering of the atiributes
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Figure 5.1 Representation Baseline: Boolean 3-Term 3DNF (Ordered). The
hypotheses were organized on OXGate'’s blackboard in the same order in which their

equivalents appear internally in ID3. For each set of training data, the decision-tirees
produced by ID3 and OXGate were identical.

in ID3 is essentially random with respect to the concepts, i.e., no attempt is made to
optimize the ordering of the attributes, the additional randomness imposed in OXGate
should have no significant impact. Figure 5.2 shows that for this particular set of ten ex-
perimental runs, OXGate performs slightly better than ID3, but not significantly so. The

two approaches are essentially equal with respect to predictive accuracy and decision-tree

complexity.
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Figure 5.2 Representation Baseline: Boolean 3-Term 3DNJF (Unordered).
Unordered hypotheses in OXGate cause different decision-trees to be formed than with
ID3. The significance curve suggests no preferred representation.
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For certain classes of concepts, ID3 can be expected to perform better than OXGate.
Nominal Concept A (Appendix D) is structured to match the n-ary splitting of ID3 to a
modcrate degree. With this concept, OXGale can be expected to fragment the decision-
tree (OXGate uses attribute-value pairs for decision points rather than attributes), over-
fitting the training data and providing poorer predictive accuracy. Figure 5.3 shows ID3

to perform better than OXGate on this concept.?
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Figure 5.3 Representation Baseline: Nominal Concept A. ID3 is substantially
better than OXGate on this concept because it is structured in an n-way decision form.

Nominal Concept B is more complex than Nominal Concept A and is intentionally
structured to match the n-ary splitting.of ID3 to a lesser degree. Figure 5.4 indicates no
appreciable preference between the decision-trees produced by OXGate and ID3 in terms
of the error-rate; however, OXGate produced more compact decision-trees.

Nominal Concept C is a very simple concept involving onliz one value for each of
three attributes. The primitive hypothesis repiesentation used by OXGate allows the
three terms of concept C to be isolated and discovered with very small training set sizes.
As shown in Figure 5.5, the correct decision-trees were assembled by OXGate much carlier

than by ID3. OXGate’s decision-trees were also more compact than thosc of ID3 in all

3The sudden increase in the significance at the right extreme of the graphs is simply the result of

both systems converging to maximal performance when the set of test data is the same as the set of
training data.
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Figure 5.4 Representation Baseline: Nominal Concept B. 1D3 is not significantly

better than OXGate, because the concept is only partially structured in an n-way decision
form.
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Figure 5.5 Representation Baseline: Nominal Concept C. The performance of
OXGate is substantially better than that of ID3 for this concept.

instances, and optimally compact after sixty training in<*ances. The poor performance
of ID3 is a manifestation of the replication problem (Section 2.4.2)

Having established that artificial concepts can be constructed to prefer either the
decision-tree representation used by ID3 or by OXGate, two real-world concepts are
considered next. The first is the NetTalk Silent concept. In Figure 5.6, ID3 is shown
to have the better decision-tree representation for the larger lraining set sizcs. The

performance of the two systems on the second real-world concept, the nonrecurrence of




— o 200
g R 100}~ o L
Q W = 160
5} 2 g0 €
o < — ’
5 g &
g g 60 :
B 40 Y =7
i ,h
204— 4y o
)
0 ! ! ! ! 0 } = L ! 2 | ! ! !
0 50 1000 1500 2000 0 500 1000 1500 2000 Y S0 1000 1500 2000

Number of Training Examples

Figure 5.6 Representation Baseline: NetTalk Silent  :cept  ID3 appears

substantially better than OXGate for this NetTalk concept whe .-ing the larger training
set sizes.
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Figure 5.7 Representation Baseline: Breast Cancer Concept. OXGate appears
generally better than ID3 for the breast cancer concept.

breast cancer, is shown in Figure 5.7. In this experiment, the binary decision-trees of
OXGate appear to perform better than those of ID3.

The baseline predictive accuracy experiments do not indicate a general preference for
either the OXGate or ID3 decision-tree repres:ntation. Rough overall parity is impor-
tant: it supports the use of the binary decision-trec iepresentation necessary in OXGate
for the incorporation of constructed hypotheses. It also sets the stage for the succeed-

ing experiments. Since no overall intrinsic represeniational advantage exists for either
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approach, I can proceed to examine the effects of the addition of domain knowledge in

»

the form of constructed hypotheses.

5.2.2 Benchmark speced comparisons
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Figure 5.8 Benchmark Speed Comparisons. The overhead of blackboard mainte-
nance and individual b, wthesis consideration creates a performance degradation. Key:
(a) Boolear: 3-term 3D*F Concept, (b) Nominal Concept B, and (c¢) NetTalk Silent
Concept.

The speed comparisons shown in Figure 5.8 contrast the processing times used by ID3
and OXGate for three of the experimcntal domains. As in the previous section, OXGate
was operated in its fundamental mude, using only the primitive hypotheses avaiiable in

the origiz sl instauce description language. The comparisons indicate a substantial, but

not excessive, processing speed differential between the bascline OXGate system and ID3.




For the domains tested, ranging from the simple to the complex, ID3 is between 5 and 40
times faster than OXGate. Several factors contribute to this difference. The most signif-
icant is that OXGate provides a development environment, while ID3 does not. OXGate
is constructed on a blackboard substrate to provide high modularity and flexibility for
continued experimentation and expansion [Jagannathan et al., 1989). It also contains a
wealth of expansion “hooks” and test switches, unnecessary for the basic operation but
desirable for growth and analysis. On the other hand, ID3 is a simple program that does
exactly one thing: it finds the best overall primitive attributes and assembles a decision-
tree from them. Once the development of OXGate has been completed and the critical
components identified and optimized, the remaining portions (including the blackboard)
can be recoded for direct communications and data-hand!'v.g, effectively crystalizing the
system into an efficient form.

Another significant factor aflecting the processing speed of OXGate is the means
of representing and testing hypotheses and instance data. Hypotheses ai: represented
explicitly for ease of understanding, modification and construction. The instances are
also cuued explicitly, using property lists to relate the attributes to their values. In ID3
attributes are represented as positions in an ordered list, and the values are stored in
the respec.ive pusitions. The ID3 approach is more efficient than that of OXGate, but
lacks the accessibility needed for the development of constructed hypethese. anid the
extensibility necessary for their incorporation.

Overall, the baseline overhead in OXGate is not exorbitant. It is a necessary cost
of the flexibilily required at this point in the development of OXGatz. During normal
operaiion, the additin of a large number of constructed hypotheses will impose a large
amount of additional rocessing overhead, but as will be shown in this chapter, the
incorporation of the hypothesis ordering mechanism removes a substantial portion of

that cost.




53 A Preview of OXGate in Action

The purpose of this section is to provide a preview of the benefits of hypothesis
ordering: to show its effectiveness and to provide a focal point for the discussion of
the experiments in subsequent sections. This set of experiments uses the NetTalk Silent
concept (see Appendix E). The results for the other domains are presented in Section 5.5.
The eflectiveness of the application of domain knowledge through constructed hypotheses
is presented first, followed ., a demonstration of the ability of hypothesis ordering to
eliminate much of the computational overhead incurred with the addition of constructed

hypotheses.

5.3.1 Experiments and results: NetTalk

As discussed in Section 5.1, an abundance of con<tructed hypotheses was gencrated
in an attempt to saturate OXGate and gauge the utility of hypothesis ordering. Since
the NetTalk Silent concept describes the concept “silence in the center window posi-
tion” (character position 4, C4), I conceived of two forms of potentially useful domain
knowledge, both involving the characters on either side of C4. The first form of knowl-
edge was the conjecture that the characters adjacent to the center position might be
important. This conjecture is strongly supported by the data of Lucassen and Mercer
[1984], where the mutual infor.nation between the center window position and neigh-
boring letters is shown to be greatest with the adjacent positions, and to decrease
with the distance from the center. This knowledge was procedurally applied to ex-
haustively generate conjuncts of pairs of adjacent characters focused on position 4 (i.e.,
((C3=a) AND (C4=4a)), ..., ((C4=2) AND (C5 = z)), where Cn indicates the nth
window position), including the character “blank™ to signal the beginning or end of words.

This application yielded 1458 constructed hypotheses.
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The second form of knowledge was 1sore general, subsuming some of the first con-
structed terms and anticipating that when the adjacent characters were the same, one
of them would be silent. This was used to create two additional constructed hypotheses,
(C3 = C4) and (C4 = C5), for a total of 1460 constructed and 189 primitive hypotheses.?

This experiment consisted of testing the performance of OXGate under three con-
ditions: using only the primitive hypotheses (OXGate-Prim in the figures), using the
union of the primitive and constructed hypotheses, but with no hypothesis ordering
(OXGate-DK), and using hypothesis ordering on the union of primitive and constructed
hypotheses (OXGate-DE/NDH). The data of the next three figures reflect the averages
of ven experimental runs,® except for the values of OXGate-DK on the larger training set
sizes. Due to the large processing time requirements of OXGate-DK, only three samples
were taken using 1000 training instances, and two samples for each of 1500 and 2000
training instances. The smaller sample sizes resulted in large, uninformative confidence
intervals for OXGate-DI; therefore, the intervals have been omitted from the graphs for
clarity. The smaller sample sizes also yielded abnormally large significance values where
displayed for the 1000, 1500, and 2000 training instance results.

Figure 5.9 presents the improvement in predictive accuracy obtained through the
inclusion of the hypotheses constructed from the domain knowledge. The use of the
domain knowledge results in a marked and consistent improvement over the use of only
primitive hypotheses. Examination of the OXGate-DK decision-trees shows that several
of the constructed hypotheses were consistently incorporated early in the tree assembly,

the most useful being (T3 = C4). In addition, when compared against Figure 5.6, the

“Other obvious forms of knowledge were not used, suclk as omitting occurrences of the “blank™ in C4
and oth. impossible structures (e.g., C5 is blank when both C4 and C6 are not), and using knowledge
about legal letter combinations to filter out hypotheses such as ((C3 = q) anp (C4 = z)).

SEach datum was obtained by training OXGate on the indicated number of examples and then testing
on an independent set of 6000 instances.
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Figure 5.9 Application of Constructed Hypotheses. The inclusion of constructed
hypotheses based on domain knowledge (DK) provides a pronounced improvement over
the original (Prim) description language.

use of the domain knowledge more than compensates for the representational advantage
ID3 has over OXGate for the NetTalk Silent concept.

The impact of hypothesis ordering is presented in Figure 5.10. The hypothesis or-
dering mechanism used for this experiment was the non-dominated hypothesis approach
NDH (Section 4.2.4.1), with the retention of primitive hypotheses (Section 5.4.4.1) and
tolerance bands untuned for this domain.® Although the NDH approach (OXGate-
DEK/NDH) produces decision-trees with roughly the same total number of internal tests
as the non-ordered use of the pool of constructed hypotheses /OXGate-DI), the decision-
trees are less predictive than those of OXGate-DK. Comparison of the decision-trees pro-
duced by OXGate-DK and OXGale-DK/NDH reveals that although the decision-trees
are very similar near the root nodes, the OXGate-DK/NDH uses fewer constructed hy-
potheses towards the leaves, presumably causing an overfitting of the training data and
lack of generalization. This effect was expected as discussed in Section 4.2.1.1 and a

possible solution is presented below.

%See Section 5.5.1 for a discussion of tolerance band tuning and its apparent insensitivity to domain.
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Figure 5.10 Effects of Hypl)thesis Ordecing.  With the NetTalk Silent concept,
hypothesis ordering (DK/NDH) causes soine loss of prediction over the non-ordered ap-
proach (DK), yet is better than using no knowledge. "The significance curves contrast
the use of primitive hypotheses alone (Prim) with the ordered use of the constructed
hypotheses (DK/NDH), and the ordered (DK/NDH) with the non-ordered (DK) uses of
constructed hypotheses.

Although the use of hypothesis ordering fails to capture all of the generalizations
available from the pool of constructed hypotheses, it fulfills its promise of being a useful
heuristic mechanism by the improvement it provides in processing speed. Figure 5.11
shows the amount of CPU time used by OXGate under the three experimental conditions.
Not only did hypothesis ordering substantially speed .p the processing as compared to
the OXGate-DK, but by producing more compact decision-trees than baseline OXGate,
it was able to complete the decision-trec assembly in the shortest time of the three
approaches.

The results of this experiment suggest a way of recovering some of the potential gen-
eralizations the use of hypothesis ordering could not capture. According to Figures 5.10
and 3.11, disabling hypothesis ordering for training set sizes below 100 instances would
result in better gencralizations when using small sample sizes. at an acceptable compu-
tational cost. For the larger training sets, the hypothesis ordering inechanism should

be enabled, resulting in a smooth error-rate curve consistently better than using no
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Figure 5.11 Effect of Hypothesis Ordering on Speed. The lefl-hand graph shows
the average processing times of the three approaches. Hypothesis ordering (0XGCate-
DK /NDH) provides an impressive speed improvement over 0XGate-DK, the non-ordered
approach (up to 43 times faster). The right-hand graph is a closeup of the data. With the
NetTalk Silent concept, hypothesis ordering was ever {aster than using only the priaitive
hypotheses (OXGate-Prim), significant at o < 0.0035.

constructed hypotheses. The creation of a mechanism to monitor and control the oper-

ation of hypothesis ordering is a possible subject for future research (sce Chapter 7).

5.3.2 Preview summa.y

The use of hypothesis ordering is a practical heuristic for containing the effects of
massive hypothesis generation. This section demonstraved that: (a) hypothasis ordering
allows the inductive mechanism to discover and incorperate che more potent general-
izations proposed by the hypothesis generator, (h) the use of hypothesis ordering can
substantially reduce the processing overhead of having a large number of con.t, uctc

hypotheses available in OX{Gate, aud (¢} the proposed approach to hypothesis crdering

is viable in a complex, real-world domain.
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5.4 System Design

This section presents several of the desigr choices made during the development of
the hypothesis ordering mechanism in OXGate These choices were made rationally as
discussed in Chapter 4, and are v1pported by the empirical evidence in this section. The
arcas investigated aze. comparison of the muitiple-objective and single-objective evalua-
lion approaches, selection of a w.ll behaved confirmation measure, selection of a viable
combination mevnod fur multiple-objective evaluation, and methods of compensating for
concept dispersion. In this section, the data were collected over five experimental runs,

except where noted. With only five runs, the ervor bars appear misleadingly large.

5.4.1 Multiple- versus Single-Objective Evaluation

The following six figures demonstrate the advantage of multiple-objective evaluation
(MOE) over single-objective evaluation (SOL) when used for hypothesis ordering. The
first three figures present the comparisons of MOE fo SOE when using the weighted
combination approach for hypothesi. ordering, and the other three figuscs present the
comparisons fo. the non-domination approach. Three concepts, random Booleau 3-term
3DNF concevts, Nominal Concept B, and the NetTaln Silent concept are used for each
combination approach.

For eazh comparison, a large number of constructed hypotl.eses were generated
procedurally to burden the hypothesis ordering inechanism. In the experiments with
the Boolean 3-term 3DNF conceptls, there were 24 primitive hypotheses ((X1 =T),
(X1=F), (X2=1T),...) and 2280 constructed hypotheses. Tweaty-four of the cou-
sirucied hypotheses were the negations of the primitives. The identification of lugical
redundancies (e.g., Loting that (X1 = T is equivalent to (80T (X1 = F})) was not a

concetn: the aim was simply to exercise the hypothesis ordering mechanism. Using the
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union of the primitive hypotheses and their negations as the sel of operands, 1128 binary
conjuncts and 1128 binary disjuncts were formed out of every possible pair. Again, logi-
cal consistency was not a concern: the hypothesis ordering mechanism rejects hypotheées
of the form ((X1 = T) AND (X1 = F)) since their confirmations are always zero. Like-
wise, the experiments with Nominal Concept B used 25 primitive and 2475 constructed
hypotheses, generated in the same manner. The experiments with the NetTalk Silent con-
cept used the 189 primitives ai.1 1460 constructed hypotheses described in Section 5.3.
In each figure, the behavior of OXGate without hypothesis ordering (OXGate-Prim)
indicates the performance when using the primitive hypotheses only.

The experiments using only the primitives hypotheses are indicative of the behavior
of SOE with the simplicity measure, 5. Since the partitioning mechanism of hypothesis
ordering is competitive, only the hypotheses with S = 1 would be placed into the primary
subset (unless no hypothesis had S = 1, in which case the hypotheses with the next
highest simplicity would be selected). Even using the non-domination approach with
tolerance bands would not place more complex hypotheses in the primary subset: the next
simpiest hypothesis would have S < 0.5, implying that the primary tolerance band would
have to extend over more than 50% of the evaluation space to include the hypothesis. For
the description languages and concepts used in this section, the primary subset would
consist only of hypotheses with S = 1, i.e., the complete set of primitive hypotheses.

The hypotheses in the secondary subset are tested by the hypothesis evaluation mech-
anism only if none of the hypotheses in the primary subset are acceptable (Chapter 4).
When the original description language is adequate to completely describe the set of
training examples, at least one of the primitive hypotheses will always be acceptable at
each stage of decision-tree assembly. Under this condition, none of the hypotheses in the
secondary subset are ever examined, implying that the use of primitives hypotheses only

(OXGale-Prim} is an accurate emulation of SOE with the simplicily measurement.
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In each of the domains tested in this section, Boolean, Nominal and NetTalk, the
decision-trees created using only the primitive hypotheses always had perfect resubstitu-
tion accuracics. The original description languages were adequate to completely represent
the training examples; consequently, no other hypotheses were necessary for decision-tree
induction. Since no hypotheses from the secondary subset were needed, the use of prim-
itive hypotheses only is an accurate emulation of SOE with simplicity. In the following
figures, OXGate-Prim is understood to represent single-objective evaluation using the
measure of simplicity.

Figure 5.12 contrasts the use of MOE and SOE for the weighted combination approach
on the Boolean 3-term 3DNF concepts. The plots labeled WMOE indicate the use of
the weighted combination approach using the Quick-Look confirmation measure and the
simplicity.” To isolate the effect of using a single objective from the contribution of
the partitioning approach associated with the weighted combination, the same algorithm
was used for SOE as MOE. TFor SOE with the confirmation measure, the weights were
modified to exclude the simplicity (QL Only). The SOE with the simplicity measure
we~ tested as described above (OXGate-Prim). The use of MOE for hypothesis ordering
shows a marked improvement over both SOE approaches in predictive accuracy as well
as the conciseness of the resultant decision-trees.

Figures 5.13 and 5.14 contrast the use of MOE and SOE for the weighted combination
approach for Nominal Concept B and the NetTalk Silent concept. The performance
differentials are not as pronounced as in Figure 5.12, yet the use of weighted MOE is still
superior to hypothesis ordering with the Quick-Look only, as well as hypothesis ordering

with simplicity only.

7A satisfactory set of weights was determined in other experiments: ((5 x Conf.) + (1 x Simp.)).
Primitive hypotheses had special treatment as discussed in Section 4.2.5.
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Figure 5.12 MOE vs. SOE: Weighted Combination, Boolean 3-term 3DNF.
Comparison of the weighted combination approach to multiple-objective evaluation using
the Quick-Look confirmation measure and simplicity (WMOE) versus single-objective
evaluation with the Quick-Look confirmation measure alone (QL Only), and single-
objective evaluation with simplicity alone (OXGate-Prim). This experiment shows a
dramatic improvement in predictive accuracy and tree conciseness when using multiple-
objective evaluation for hypothesis ordering.
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Figure 5.13 MOE vs. SOE: Weighted Combination, Nominal Concept B.
Although not as dramatic as in Figure 5.12, the multipl. objective approach (WMOE)
is still noticeably superior to both of the single-objective ¢ ..luation approaches.
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Figure 5.14 MOE vs. SOE: Weighted Combination, NetTalk Silent Concept.
Although not as dramatic as in Figure 5.12, the multiple-objective approach (WMOE)
is still noticeably superior to both of the single-objective evaluation approaches.

The experiments of Figures 5.15, 5.16, and 5.17 are identical to those just presented
except that the non-domination approach to hypothesis ordering was used. Obtaining thc
QL Only data was accomplished by modifying the function that determines simplicity to
always return the value “1.” The values of the tolerance bands for partitioning with the
non-domination approach were determined in other experiments (see Section 5.5.1). Ex-
cept for poor performance with the Boolean concepts for low values of training set sizes®
(Figure 5.15), the use the non-domination approach with multiple-objectives provided a
small, but noticeable, improvement over the single-objective evaluation.

The combined results of the six experiments promote a general conclusion: the use
of the multiple objectives, Quick-Look confirmation and simplicity, provides nearly con-
sistently better performance than either the confirmation measure or simplicity alone.
Ior the remainder of this thesis, hypothesis ordering will always incorporate multiple-

objective evaluation.

8Tor 41 training exainples, QL Only appears better than NDH, significant at o < 0.11. For 102
training examples, QL Only appears better than NDJ, significant at o < 0.20.

115




9 8 a0}
o 25 O  OXGate-Prim 2 35~
B O NDH E sof-
c 2 + QLOnly & Ll
£ 15 Py - @
Lo i
10 15
101
5 =
o oar T S D S S
0 200 400 600 800 1000 0 200 400 600 800 1000

Number of Training Examples

Figure 5.15 MOE vs. SOE: Non-Domination, Boolean 3-term 3DNF. Com-
parison of the non-domination approach to multiple-objective evaluation using the Quick-
Look confirmation measure and simplicity (NDH) ver.us single-objective evaluation with
the Quick-Look confirmation measu:e alone (QL Only), and single-objective evaluation
with simplicity only (OXGate-Prim). This experiment shows marginal improvement in
predictive accuracy for NDH over QL Ognly, but a substantial improvenient in tree con-
ciseness when using multiple-objective evaluation for hypothesis ordering. Note also the

relative unpredictability (high variance) of the complexity of decision-trees for QL Only
as indicated by the error bars.
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IFigure 5.16 MOE vs. SOE: Non-Domination, Nominal Concept B. In this

set of experiments, the multiple objective approach (NDH) appears slightiy better than
both of the single-objective evaluation approaches.

116




_.
@
o

o [72]

e 2 g

® O OXGae-Prim =

T O NDH £ 120

o 15 + QLOnly o

3 0

t1y 10
5 4071
ot B 1 1
0 400 800 1200 1600 2000 0 400 800 3200 1600 2000

Number of Training Examples

Figure 5.17 MOE vs. SOE: Non-Domination, NetTalk Silent Concept. In
this set of experiments, the multiple objective approach (NDH) appears slightly better
than both of the single-objective evaluation approaches.

5.4.2 Confirmation measures

Section 4.2.1.2 described the three measurements of confirmation considered in this
thesis: information-gain (IG), average purity (AvePur), and positive purity (PosPur).
Experiments accomplished early during the development of OXGate, but not presented
in this thesis, demonstrated marked inconsistencies in decision-tree construction (unnec-
essarily complex decision-trees, poor predictive accuracies, and poor repeatability among
experiments) when the confirmation measure used for hypothesis evaluation was not the
same measure used for the Quick Look cvaluation of hypothesis ordering, regardless of
the combination method used. This suggests that the confirmation method used in the
Quick-Look should be the same as that of hypothesis evaluation. This section empirically
addresses the question of which confirmation measure to use.

Since both hypothesis ordering and evaluation use the same confirmation measure,
selection of the most useful measure can be addressed by examining their use for hy-
pothesis evaluation, the more extensive of the assessments. In the experiments of
Figures 5.18 and 5.19, hypothesis ordering was disabled to isolate the effect of the mea-

surement choice for hypothesis evaluation. Nominal Concept A was used, providing 16




primitive hy potheses for the experiments of Figuze 5.18 and 1008 additional constructed
hy potheses (constructed in the manner described in 5.4.1) for the experiments of Fig-
ure 5.19. All data were acquired over ten experimental runs, except for those using the
larger number of training examples and the set of constructed hypotheses (OXGate-DK)
due to the large processing times without hypothesis ordering: five runs were used for
the runs with 120 training examples, three runs for 180 examples, and one run for 240

examples (the full instance space).
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Figure 5.18 Information-Gain versus Purity Measures. Comparison of three
confirmation measurement methods on the induction of Nominal Concept A. In each
run, the sixteen primitive hypotheses we.e used as the pool of available hypothe-
ses. Hypothesis ordering was disabled; the comparison is between the measurements

used for hypothesis evaluation. Key: Information-Gain (IG), Average Purity (AvePur),
Positive Purity (PosPur).

Mingers [1989] and Breiman et al. [1984] demonstrate that the predictive accuracy
of induced decision-trees is relatively insensitive to the quality of the evaluation mea-
sure (including rancon choice). Instead, the complexity and understandability of the
decision-trees are affected. Except for the single anomalous “bump” (significant only ai
a < 0.20) for AvePur at 60 training examples in Figure 5.18, the results correspond with
those of Mingers and Breiman et al. From the figures it is clear that the average purity
(AvePur) confirmation measure is unstable: it produces decision-trees of widely vary-

ing complexities. The use of positive purity (PosPur) is more stable, but still exhibits
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Figure 5.19 Information-Gain versus Purity Measures: With Knowledge.
Comparison of three confirmation measures under the same conditions as in IFigure 5.18,
except the pool of hypotheses includes 1008 constructed hypotheses.

inferior behavior compared to the use of the information-gain (IG). Since Hartmann et
al. [1982] asserted the efficacy of the information-gain measure for the development of
decision-trees, it has been the measurement of choice in many inductive systems, in-
cluding Quinlan’s ID3. Similar experiments with OXGate in the cther domains (not
presented here) also support the usc of information-gain for hypothesis evaluation and,
therefore, hypothesis ordering. Except where noi: the information-gain was used for

both hypothesis evaluation and ordering for the remaining experiments.

5.4.3 Combination methods

In this section, three of the four multiple-objective evaluation combination methods
presented in Section 4.2 are compared, along with their associated partitioning schemes.
The three appoaches are: weighted combination, non-domination, and product combi-
nation. The fourth method, procedural combination, was so ill-behaved in preliminary
experiments that it was excluded from further consideration as an appropriate method

of hypothesis ordering.
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Figure 5.20 contrasts the performance of the three combination methods and the
baseline on random Boolean 3-term 3DNT concepts. The experiments on the combination
methods used the pool of 2304 hypotheses described in Section 5.4.1. The baseline
OXGate-Prim operated on the 24 primitive hypotheses without hypothesis ordering.
Data for the graphs were accumulated over five experimental runs, except for the Product
data which were taken from ten runs. These additional runs make the confidence intervals

of the Product data appear smaller by comparison than the corresponding intervals of

the other approaches.
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Figure 5.20 Combination Methods: Boolean 3-term 3DNF.

Although not radically worse than the performance of NDH (non-domination)
or WMOE (weighted combination) in predictive accuracy, the product combination
produced significantly more complex decision-trees. In fact, the performance of Prod-
uct was very similar to that of OXGate-Prim. Analysis of the experiments revealed that
the product combination approach had a very strong tendency to reject constructed hy-
potheses early in the decision-tree assembly, leaving only the primitive hypotheses for
further processing. This behavior was expected for the information-gain confirmation
measure as discussed in Chapter 4. The product combination approach was also tried
with the average purity and positive purity confirmation measures, with similar results.

In all cases, the decision-trees bore a strong resemblance to those crcated with only
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primitive hypotheses. Clearly, this behavior is inappropriate for hypoihesis ordering:
the essence of opportunistic constructive induction is to develop and identify useful con-
structed hypotheses to improve the decision-trees. This glaring inadequacy eliminates
the product combination approach from further consideration.

Figure 5.20 also illustrates the similarity between the weighted combination (WMOE)
and non-domination (NDH) approaches lo hypothesis ordering. Figures 5.21 and 5.22
provide additional evidence of the rough equivalency of the two approaches when used
for Nominal Concept B and the NetTalk Silent concept. These results indicate there is
no empirical preference for either approach based on predictive accuracy or decision-tree
complexity. Figure 5.23 shows the relative processing speeds for the NDH and WMOE
approaches on the three concepts. The results for the artificial domains show the non-
domination approach incurred larger, less predictable processing times than the weighted

approach. With the NetTalk Silent concept, the two approaches were nearly identical.
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Figure 5.21 Combination Methods: Nominal Concept B.

Empirically, these experiments suggest that the weighted combination approach is the
best of the four methods presented in Chapter 4. However, as argued by Yu [1985], the
weighted approach has several drawbacks, including its lack of psychological palatabil-
ity: when people make decisions, they seldom can impose relative weightings among

objectives. The current implementation of the histogrammatic partitioning method
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Figure 5.22 Combination Methods: NetTalk Silent Concept.
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associated with the weighted combination approach also provides an extra degree of
disquiet, with five additional parameters to adjust to obtain acceptable performance.
The non-domination approach only requires that two parameters be adjusted, and as
demonstrated in Section 5.5.1, this approach is fairly robust. Since the non-domination
approach is more psychologically satisfying (Chapter 4), provides substantial processing
time reductions (Section 5.5.3), and is the more uncommon of the approaches, the re-
mainder of this chapter will explore the effectiveness of the non-domination approach to

hypothesis ordering.

5.4.4 Compensating for concept dispersion

One of the potential:problems with using the Quick-Look for hypothesis ordering was
the premature rejection uf hypotheses when learning highly disjunctive concepts. Several
potential solutions were presented in Section £.2.1.” and three of those are addressed
here: retaining the primitive hypotheses at all times, recycling the pool of previously
rcjected hypotheses, and adjusting the density of the disjoint islands. Experiments with
the NetTalk Silent concept show that the retention of the primitive hypotheses is a

valuable addition to the capabilities of OXGate.

5.4.4.1 Retaining primitive hypotheses

Tlic set of 14£9 constructed hypotheses described in Section 5.3 was used in conjunc-
tion with ihe original set of 189 primitive hypotheses ‘o provide the hypothesis ordering
mechanism with an initially rich description language. The NetTalk Silent concept is
a highly dispersed concept; therefore, the sample drawn for the Quick-Look has a high
likelihood of failing to represent all the islands available in the training data. As a re-

sult, some hypotheses needi-1 to assemble a good decision tree are rejected prematurely,
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because they score poorly during the iypothesis ordering stages occwiring eaily in the
assembly process. The net eflect is-to remove so much of the vocabulary from the descrip-
tion language that OXGaue is not able to-completely describe the set-of Lraining examples.
This manifests itself as shown in Fignre 5.24 (NDH wo/Primitives) 1. unnatarally small
decision-trees and very poor predictive accuracies, as well s pocr resubstitucion accu-
racies (not shcwr). In addition, the-large confidence intervals indicate a large variation
in the quality of the decision-trees, reflecting an oversensitivity to the maleup of the

Quick-Lock samples.
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Figure 5.24 The Effect of Retaining the Primitive Hypotheses, Retention of
the primitive hypothe .es greatly improvss both the aceuzacy and the stability of decision-
trees created while using hypothesis ordering: NetTalk Silent Concept, 189 primmitive and
1460 constructed hypotheses.

Forcing the retention of prin;:tives does not necessarily compensate for unfavorable
Quick-Look sampling and prevent the premature rejection of hypotheses, but it does
maintain at least 2 minimal vocabulary. With this vocabulary, the training examples-can
be fully classified fcr maximal resubstituticn accuracy, while at the same time, useful con-
structed hypotheses may still be ideatified and incorporated in the decision tree, increas-
ing the potential for improving the predictive accuracy. Figure 5.24 shows the dramatic
improvement provided by the retention of the primitive hypotheses (NDil w/Primitives):

the predictive accuracy is greelly improved, and the small confidence intervals indicate
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a retaiive insensitivity to the constitution of the'Quick-Look sample sets. The increased
complexity of the decision-trees does not indicate overliiting of the dala, but rather the
ability of the vocabulary to adequately represent the training instances.

The processing burden incurred by rebaining the primitive hypotheses is difficult to
measare. Since the aumber of primitive hypotheses {189) is much smaller than the
number of constructed hiypotheses initially available (1460), <nd the primitives are less
expensive to test, the expecled overhead of retaining the primitives should be minor.
Figure 5.26 in Section 5.4.4.2 shows the relative processing speed performance of hypoth-
esis ordering with the retention of primitives (NDH w/Primitives) and without (shown
as NDH wo/Prim/Rec). While retaining the primitives appears to require about thiree
times the processing time as not retaining them, the difference can be accounted for in
the relative.complexity of the decision-trees. Retaining the primitive hypotheses appears
to be an inexpensive and eflective method of augmenting the capabilities of hyputhesis

ordering.

5.4.4.2 Recycling rejected hypotheses

Another approach to compensasing for the interaction of concept dispersion an. the
‘Quick-Look sampling is t2 reuse hypotheses previously rejected by hypothesis ordering.
The pool of rejected hypotheses is maintained, and when the vocabulary available in
the primary and secondary oubsets is inadequate to classify the remaining trainiug in-
stances, the rejected hypotheses ate added back into the vocabulary and the process of
liypothesis ordering is rcirvoked to continue to-develop the decision-tiec. In effect, re-
cvcling rejected hypotneses amounts to reexamining areas of hypotbesis space ti.ab the
hypethesis ordering mechasism had previously desigpated as “dead ends.”

The resultant decision-trees are potentially better than when using tue retention of

primitives opproach, hecause sucycled constructed hypotheses may be incorporaled in
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the lower branches of the trees with a corresponding increase in predictive accuracy.
This gain in capability is complicated by two side effects. The first is the damage done
to the decision-tree before the need for recycling the rejected hypotheses is identified:
marginally acceptable hypotheses in the primary and.secondary subsets are in¢orporated
into the tree as the description vocabulary is exhausted, producing trees with relatively
pouor internal decision points. The second side-effect is the large increase in processing

time incurred by the reconsideration of a potentially large pool of previously rejected

hypotheses.
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Figure 5.25 The Effect of Recycling Rejected Hypotheses. Reusing previously
reizcied hypotheses substantially improves the accuracy of hypothesis ordering. The
dashed lines represent the behavior of NDH w/Primitives from Figure 5.24. (Note: The

number of training examples used is terminated at 1000 due to the large processing time
requirements. )

Figure 5.25 presents the results of recycling rejected hypotheses while learning the
NetTalk Silent concept. The experiments were conducted as in the retention of primi-
tives approach, with the exceptions that the number of training instances was limited to
1000 to reduce the processing burden, and only six runs were used. Primitives were not

retained. The figure shows that recycling the rejected hypotheses (NDH w/Recycling)

provides a large improvement in predictive accuracy over the non-recycled approach

(NDH wo/Recycling). The large difference in accuracy indicates that hypothesis ordering
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rejected hypotheses necessary in the lower levels of the decision-tree: an expected be-
havior since hypothesis ordering performs a global evaluation of the hypotheses (also
discussed in Section 5.4.4.1). This result indicates that hypothesis ordering alone is
overly restrictive in this domain, most likely a consequence of high concept dispe.sion
(Section 4.2.1.1).

Recycling the rejected hypotheses when the description language is exhausted can
reintroduce terms necessary for induction of the lower-level nodes of the decision-tree, as
it did in this experiment. However, it does not completely compensate for the damage
done to the tree before identifying the need to recycle hypotheses. A comparison of
NDH w/Recycled with the use of domain knowledge and no hypothesis ordering (OXGate-
DK in Figure 5.9) shows a moderate degradation in predictive accuracy when using
hypothesis ordering, even with recycled hypotheses.

The speed of processing was also affected as expected. I'igure 5.26 shows that the
recycling approach (NDH w/Recycling) substantially reduces much of the speed improve-
ment available with hypothesis ordering (NDH wo/Prim/Rec) due to the reintroduction
of a large number of rejected hypotheses. The gain in processing speed provided by hy-
pothesis ordering over the non-ordered approach (No NDH) is only a factor of roughly
five times when recycling the rejected hypotheses (NDH w/Recycling). The tradeoff be-
tween the loss in predictive accuracy and this small gain in speed (less than one order
of magnitude) makes this approach to hypothesis ordering only marginally desirable as
a heuristic.

As an alternative to retaining the primitive hypotheses, recycling the rejected hy-
potheses provides both benefits and drawbacks. A comparison of the complexities of
the resultant decision-trees shows that the recycling approach produced substantially
more compact trees than did the retention of primitives approach: examination of the

decision-trees revealed the incorporation of constructed hypotheses in the lower branches
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Figure 5.26 Processing Time Comparisons. The left graph shows the rel-
ative processing times of hypothesis ordering without the retention of primitive hy-
potheses or recycling of rejected hypotheses (NDH wo/Prim/Rec), with the retention
of primitive hypotheses (NDH w/Primitives), with the recycling of rejected hypotheses
(NDH w/Recycling), and using the full set of constructed and primitive hypotheses with-
out ordering (No NDH). The right graph is a closeup of the faster processes. (Note: The
number of training examples used is terminated at 1000 due to the large processing time
requirements of No NDH.)

as expected. At the same time, recycling hypotheses provided nearly the same accuracy as
that obtained by retaining the primitive hypotheses (NDH w/Primitives in Figure 5.24
and repeated in Figure 5.25 with a dashed line), an indication that the decision-trees
were not smaller due to an exhausted description language. However, hypothesis order-
ing when recycling the rejected hypotheses takes considerably longer than when retaining
the primitives. With 1000 training examples, the gain in. processing speed provided by hy-
pothesis ordering over the non-ordered approach (No NDH) is nearly a factor of 30 times
vhen retaining the primitives (NDH w/Primitives), but only slightly over 5 times when
recycling the rejected hypotheses (NDH w/Recycling). Since the objective of hypothesis
ordering is to spced up processing while maintaining most of the predictive accuracy,
~ recycling rejected hypotheses appears to be a much less useful addition to hypothesis
ordering than retaining the primitive hypotheses. The fact that the recycling rejected

hypotheses provided simpler decision-trees is a secondary consideration.
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Another possible approach to hypothesis ordering combines recycling rejected hy-
potheses and retaining primitives. This approach was not tested, but the effects can be
projected for the NetTalk Silent concept based on the experiments of this section and
Section 5.4.4.1. An inspection of the decision-trees developed while retaining the prim-
itive hypotheses showed that they all had maximal resubstitution accuracies, indicating
that the primitive hypotheses provided a sufficiently rich description language. There-
fore, no rejected hypotheses would have been recycled, resulting in a performance equal
to that of retaining the primitive hypotheses only. This analysis also holds for the other
concepts used in this thesis, including the Breast Cancer concept.

In other dopnains the combined approach may be useful, especially for complex con-
cepts incorporating parity. If a concept requires parity constructions deep in the decision-
tree (e.g., the hypothesis (A XOR B)), hypotheses of this type may be rejected early and
would have to be recycled or recreated by the hypothesis generator. Primitive hypotheses
alone would be insufficient to induce the parity construction.® Future research should
investigate the benefits of a combination of recycling rejected hypotheses and retaining

the primitives.

5.4.4.3 Adjusting island densities

A third approach to avoiding the effects of unfavorable Quick-Look sampling is the ar-
tificial adjustment of the proportion of positive to negative examples in the set of training
data. When a target concept is highly disjunctive and the number of negative examples
is much larger than the number of positive examples, there exists a strong likelihood that
some of the smaller islands will be represented by only a few training examples. These

small islands have a good chance of being completely overlooked by the Quick-Look

9See [Seshu, 1989) for one approach to overcoming the parity problem.
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sampling. By increasing the number of examples per island, the probability of sampling
from any particular island goes up; consequently, the small islands have a greater chance
of being represented in the Qui~k-Look sample as discussed in Section 4.2.1.1.

The idea of adjusting the ratio of positive to negative examples to improve the accu-
racy of the resultant decision-tree was proposed in an unpublished manuscript by Spack-
man [1990]. In his approach, both the training and test data sets were adjusted equally:
the training data remained representative of the test data. My approach in OXGate was
to manipulate only the training data, incurring & change in the prior probabilities of the
training data and making the training data less representative of the test data. Although
this approach risks a degradation in the predictive accuracy, this adjustment had very
little effect on the fundamental behavior of OXGate.

The two curves in each Error-Rate graph of this section represent the use of the
original set of training examples (unbalanced) and the modified training set (balanced).
The balanced set of data was created by replicating the positive examples in the original
training set five times, increasing the ratio of positive to negative examples from 271:1729
(14% positive of 2000 examples) to 1626:1729 (48% positive of 3355 examples). The test
data remained at 15% positive examples. I selected the nearly 50/50 ratio of positive
to negative examples since this ratio was considered by Spackman to be the best. To
contrast the behavior of the use of balanced and unbalanced data sets, the figures in
this section all use the statistically expected number of unique training examples as the
abscissae in the graphs. For example, a sample of 1678 instances from the balanced data
set would be expected to contain 813 positive and 865 negative examples. Of these,
the expected number of unique positive examples would be 135, yielding a total of 1000
unique examples. Therefore, half of the balanced data (1678 instances) corresponds to

half of the original, unbalanced data (1000 instances) on the graphs.
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Figure 5.27 shows a general insensitivity to balancing. Only ID3 appears to be consis-
tently affected when using roughly 1000 unique training instances. The other two graphs,
OXGate using only the 189 primitive hypotheses (OXGate-Prim), and OXGate using the
additional 1460 constructed hypotheses (OXGate-DK), indicate that little benefit or cost

is associated with using the balanced data when hypothesis ordering is disabled.
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Figure 5.27 Balancing Positive and Negative Examples.  The three graphs
contrast the use of the original 2000 training examples (unbalanced = 14% positive
examples) with the use of the modified training set of 3355 examples (balanced = 10oughly
50% positive examples). For the “balanced” curves, the Number of Training Examples
shown on the abscissa represents the expected number of unique instances used for the

decision tree construction; e.g., the set of 3355 actual examples corresponds to the set of
2000 original training instances.!?

The next step in this experiment was to investigate the effect of balancing the data on
hypothesis ordering. Figures 5.28 and 5.29 show the effect for hypothesis ordering without
(NDH-NP) and with (NDH-P) the retention of primitives. The use of balanced data
without the retention of primitive hypotheses (NDH-NP) provided some improvement,
but the results were still poor and sensitive to the makeup of the Quick-Look samples.
When using the balanced data in conjunction with the retention of primitives (NDII-P),

a small, but definite, improvement over the unbalanced case was evident. Figure 5.30

19As explained carlier, the number of experimental runs made with the larger training sets for

OXCaie- NK is fewer than 10 due to the large processing times, resulting in abnormally large confi-
dence invet vals.
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shows the comparison of hypothesis ordering using the balanced data and retention of
primitives (NDH-P) against the non-ordered use of the full set of constructed hypotheses
on the original training data (OXGate-DK). Not only is hypothesis ordering able to
provide nearly identical predictive accuracies to those of OXGate-DK (and at one point

better, significant at o < 0.25), but does so up to 25 times as quickly for the NetTalk

concept.
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Figure 5.28 Using Balanced Data Without Retaining Primitives.  Simply
balan:ing the training data is not enough to stably improve hypotlesis ordering as shown
by the somewhat better, but still erratic, performance of hypothesis ordering without the
retention of primitives.
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Figure 5.29 Using Balanced Data While Retaining Primitives. =~ When hy-
pothesis ordering retains the primiti e hypotheses (NDH-P), balancing the training data
provides a clear improvement.
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Figure 5.30 Overall Performance Improvement with Balanced Data. When
using both the retention of primitive hypotheses and balanced data (NDH-P), hypothesis
ordering has a nearly identical predictive accuracy as the non-ordered use of the full set of
constructed hypotheses (OXGate-DK) on the original training data. NDH-P (balanced)
also nets up to a 25-fold increase in processing speed over OXGate-DX (unbalanced).
(Confidence intervals omitted for clarity.)

While the use of balanced training data appears to provide the last bit of capability
needed by hypothesis ordering to match the predictive power of the non-ordered ap-
proach, it has not been incorporated as a feature of OXGate. The effects of skewing the
prior probabilities of training data need further study. Without extensive analysis and

empirical support, forcing the training data to be unrepresentative of the test data seems

to be a risky approach.

5.4.5 System design summary

This seci.on presenced several of the system design choices made during the devel-
opment of the hypothesis ordering mechanism in OXGate. The areas investigated were:
comparison of the multiple-objective and single-objective evaluation approaches, selec-
tion of a well-behaved confirmation measure, selection of a viable combination method

for multiple-objective evaluation, and methods of compensating for concept dispersion.

The investigations of the first three areas yielded the following observations:




1. Multiple-objective evaluation, using the Quick-Look confirmation and simplicity
measures, provided better overall performance than the Quick-Look confirmation

measure alone (single-objective evaluation).

2. Of the three confirmation measures tested, the information-gain measurement

proved superior for hypothesis evaluation, and by association, for ordering.

3. The weighted combination and non-domination approaches to hypothesis ordering
proved roughly equivalent to each other and superior to the procedural and product
combination forms. The weighted combination approach was faster than the use of

non-domination in the artificial domains, and equal in the NetTalk domain.

Based on these observations, the considerations presented in Chapter 4, and the desire
to explore the more novel approach, I incorporated the non-domination approach to
multiple-objective evaluation as the standard method of hypothesis ordering in OXGate.
Included with this decision is the use of the information-gain measure for both hypothesis
evaluation and the Quick-Look confirmation measure.

After establishing the standard method of hypothesis ordering, several approaches
to compensate for concept dispersion were addressed: retaining the primitive hypothe-
ses, recycling the rejected hypotheses, and artificially balancing the training data. The
retention of primitive hypotheses proved to be an inexpensive and effective method of
compensating for the unfavorable interactions of Quick-Look sampling and concept dis-
persion. It has been incorporated as a permanent feature of OXGate. Recycling the
rejected hypotheses was-a computationally expensive approach with little advantage over
the retention of primitives for the concepts used in this thesis, and was dropped from
further consideration. The use of tolerance bands with the non-domination approach
to hypothesis ordering provided reliable enough selectivity that the rejected hypotheses

were not needed. The artificial balancing of the training data, while providing a clear
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improvement for hypothesis ordering for the NetTalk Silent concept, is an area requiring

further research.

5.5 System Analysis

This section investigates the robustness of the hypothesis ordering mechanism with
the non-domination (NDH) approach of multiple-objective evaluation. The first inves-
tigation addresses the adjustment of the tolerance bands associated with NDH. This is
followed by an assessment of post-pruning, a popular method of decision-tree refinement,
to determine if it improves the performance of OXGate. Finally, the ability of NDH
to provide substantial processing speed reduction while maintaining good decision-tree

performance is demonstrated in all four experimental domains.

5.5.1 Tolerance bands

Section 4.2.5.1 described the rationale for the use of tolerance bands for the non-
domination (NDH) approach to hypothesis ordering. Two parameters must be adjusted
to attain satisfactory performance: the width of the primary band (Figure 4.3) and the
width of the secondary band. For NDH to be a robust approach, a pair of values must be
found to give consistently satisfactory performance across multiple domains. This section
describes how a pair of acceptable values for the tolerance bands was determined, and
investigates their sensitivity to domain.

The implementation of OXGate evolved while using the Nominal Concepts A and B
along with two others not described. Various values of the primary and secondary tol-
erance bands were tested to select a set of values that would yield a good balance be-
tween predictive performance and processing time. Based on these results, I selected

values of 0.10 and 0.15 for the primary and secondary tolerance bands of the Quick-Look
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confirmation measures. The values are in terms of the information-gain measurement
and represent absolute quantities.

Figure 5.31 shows the results of applying the same strategy to the random Boolean
4-term 3*DNF concepts (see Appendix C). The pool of hypotheses contained the same
24 primitive and 2280 constructed hypotheses described in Section 5.4.1. The results
indicate the best choice is NDH(10-25), 0.10 primary and 0.25 secondary tolerances,
with NDH(10-15) as the second choice. The confidence intervals (error bars) are not
shown, but for 205 training instances the comparison of the error-rates for NDH(10-15)
and NDH(10-25) is significant at a < 0.23, indicating that the two distributions are not
necessarily as different as they appear on the graph. Even though NDH(10-15) does
not appear optimal for this concept, it does appear to be adequate. It is an acceptable
compromise between the Boolean and Nominal domain tolerance band tunings.

Another test that supports the acceptability of NDH(10-15) is the statistical rank
analysis with two-way layout, or the Friedman test [Friedman, 1937]. Using the approach
outlined in [Hettmansperger, 1984], each test cluster (group of experiments run at a
particular value of training examples) is treated as a “judge” to rate the behavior of the

seven “contestants.” The mean values of the experimental runs (ten runs each for the
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Figure 5.31 Tolerance Band Assessment: Boolean 4-term 3*DNF.




two smaller numbers o training examples, and five runs each for the larger ones) are
used to rank the contestants. The judge’s scores are summed and statistically analyzed
to determine if there is a difference among the contestants.

Based on the error-rate data, with the rank of one associated with the lowest error-
rate, NDH(10-15) is tar.ked a strong third place overall among the seven. The seven con-
testants are not significantly different from each other (different only at @ > 0.25). Based
on the processing ime data, with the lowest time assigned the rank of one, NDH(10-15)
is ranked fourth overall. In this case, some contestants are significantly different than
others: NDH(5-5) is significantly better than both NDH(15-15) and NDH(25-25) at
a < 0.05. When both the error-rate and time data sets are used (eight judges total),
NDH(10-15) is ranked at a very strong second place, very close behind NDH{(5-5), which
finished a weak fifth in error-rate, indicaiing that it does not provide a satisfactory time-
versus-accuracy tradeoff. The seven cuntestants are significantly different from each other
only at a > 0.70. The conclusion to be drawn from this test is that, while no contestant
is significantly better overall than any other, NDH{10-15) is the most reasonable choice
for this concept since NDH(5-5) must be rejected for its poor error-rate behavior.

Figure 5.32 shows the results of the same set of experiments when applied to the
NetTalk Silent concept. Apparently, the best sets of tolerance bands are NDH(15-15)
and NDH(25-25), but these proved to be poor performers with the Buolean concepts.
The next best is NDH(10-15), the set of tolerance values selected above. Comparing
NDH(10-15) to NDH(15-15) and NDH(25-25) at 600 training instances yields similarities
significant at a < 0.29 and a < 0.32, respectively. If these samples are assumed to belong
to the same distribution, the odds of seeing the data as presented are approximately 3:7.
This implies that it is quite possible for the apparent differences to be coincidental.

The I'ricdman test also demonstrates the seven sets of tolerance bands (contestants}

to be statistically indistinguishable. For the test using only the error-rate data, only
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Figure 5.32 Tolerance Band Assessment: NetTalk Silent Concept.

NDH(10-10) could be considered different (worst), but at & > 0.10. The test using the
processing tirae data shows the contestants are different only at a > 0.45. The test using
the data from both error rate and processing time (four judges) shows the contestants
are different only at & > 0.30: Lven though the contestaunts are not statistically different
with any reasonable significance, NDH{(10-15) is the contestant of choice based on the
rankings. The tolerance band set NDH{10-15) is tied for second place with NDII(25-25)
in the error-rate test, tied for first place with NDH(5-5) in the processing time test,
and placed a strong first overall with NDH(5-5) ranked second. Therefore, NDH(10-15)
appears to be the best choice for this NetTalk concept .as well as the concepts tested in
the Boolean .nd Nominal domains.

Tolerance band testing in the Breast Cancer domain is not presented because the
domain was so ill-behaved that no tuning was effective (see Appendix F). No amount of
buning produced improvenients; thus, no determination of the best bands was possible.

Tor the three domains investigated, the tolerance bands of 0.10 and 0.15 provide the
most consistently acceptable performance in buth predictive accuracy and processing
time reduction. THe thiree dmﬁains provided concepts with complexities ranging from
simple (4 disjuncts) lo-very c&nplex,(>100 disjuncts), and coverages ranging frotu sparse

(14%) to rich (50%), as described in Table 5.1 on page 97. Since the chosen tolerance
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bands are appropriate for this breadth of cou.ept divérsity, they should be acceptable
across all of the domairs and concepts used for the remaiiing experiments. This tuning
may also be sufficiently robust to be applied in other domains not considered in this

thesis.

5.5.2 Post-Pruning

One of the most important cri’eria to judge the quality of a decision-tree is its pre
dictive accuracy: the ability to correctly classify instances not in the training data. The
predictive accuracy of a decision-tree is closely related to how well the decision-tree as-
sembly algorithm is able to generalize from the training data; in other words, how well
it can avoid overfitting to the training data. Proper generalisations yield high predictive
accuracies. Good generalizations can be achieved through a sufficiently :ich desctiption
language: the ass.umption is ‘that, if terms at the vorrect level of generalization arz in
the existing vocabulary, they will be found and incorporated. This assumption is the
bedrock on which opportimistic constructive induciion is built. Other accepted meth-
ods of obtaining generalization often sacrifice a-portion of the resubstitution accuracy tv
gain in predictive accuracy, accomplished in decision-tree classifiers by removing (post-
pruning) or [... uting the creation of (pre-pruning) certain branches of the tree [Breiman
et al., 19841, 7 .is section examines the use of post-pruming as a potential addition to
the capabilities of OXGate, as well as an alternative to-hypothesis ordering,.

The method of post-pruning used with OXGate is the same approach found in Assis-
tant86. Lach node in the decision-tree is tested to obtain an cstimate of the stalic error
at the node and the dynamic error, a weighted sum of the subtree error estimates given
the decision split. If the static error is less than or equal to the dynamic error, then the

subtrees are removed. {Cestrik et al., 1987]
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Figure 5.33 shows the eflect of post-pruning on decision-trees created using primitive
hypotheses only (OXGate-Prim) and those created using the union of primitive and
constructed hypotheses (OXGate-DK). The constructed hypotheses for the Boolean and
Nominal concepts are those described in Section 5.4.1. The set of constructed hypotheses
for the NetTalk Silent concept consists of the 1458 binary conjunctions described in

Section 5.3, without the two generalizations (C3 = C4) and (C4 = C5).
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Figure 5.33 Effects of Pruning. The graphs show the effect of post-pruning decision-
trees created with the original primitive hypotheses (OXGate-Prim) and constructed
hypotheses (OXGate-DK). Hypothesis ordering was disabled. Key: (a) Boolean 3-Term
3DNF, (b) Nominai Concept B, (c) NetTalk Silent Concept.

As indicated in Figure 5.33, post-pruning provided a small improvement in the
decision-trees for the Nominal and NetTalk concepts when using the primitive hypotheses
only. Since the description language was highly limited, the correct level of generalization
may have been unavailable, resulting in the overfit of the decision-trees to the training
data. Post-pruning removes some of the overfit, generally providing better predictive
accuracy. When using the constructed hypotheses to extend the description language,
post-pruning had no effect on the decision-trees; presumably, sufficiently general terms
were present in the vocabulary to avoid overfitting the training data in the first place.

Figure 5.34 presents the results of applying post-pruning to decision-trees created with

the extended description language and hypothesis ordering enabled. Post-pruning had a
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Figure 5.34 Pruning with NDH. Post-pruning had a negligible effect on the decision-
trees developed using hypothesis ordering on the sets of constructed hypotheses. Key:
(a) Boolean 3-Term 3DNF, (b) Nominal Concept B. The dashed curves represent the
envelopes of the corresponding graphs of Figure 5.33, shown for comparison.

negligible effect. Where it does appear to have slightly altered the predictive accuracy,
the effect was detrimental.

The experiments on the Breast Cancer concept (Appendix F) were performed dif-
ferently than in the other domains. The set of constructed hypotheses for the Breast
Cancer domain was obtained by developing a decision-tree to classify all 286 examples
in the database. (The maximal recubstitution accuracy is 98% due to inconsistent train-
ing data.) The experiential learning program described in Section 6.1 accumulated all
of the possible binary conjuncts appearing in the tree as well .as the generalizations of
those conjuncts. These 242 learned hypotheses were provided as the set of-constructed
hypotheses. In addition, a set of ranges for three of the attributes (age, tumor-size, and
inv-nodes) was also provided to simulate the grouping behavior of Assistant.

When building a decision-tree, OXGate continues to refine it until the leaf nodes
are as pure as a specified value. Normally, this value is set quite high, implying an

expectation of reiatively noise-free training data. The Breast Cancer domain appears
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' One approach to dealing with the noise is to relax the leaf purity

to be very noisy.
requirements to avoid overfitting to the noisy training data.

Figure 5.35 shows the behavior of decision-trees at a variety of leaf purity require-
ments. Each experiment consisted of using a random set of 200 training examples to

develop the decision-tree, and testing the tree on the remaining 86 examples. Each data

point in the figure is the result of ten experimental runs.

3

& 48 O OXGate-Prim

QL 45 a  OXGate-Prim (pruned)
& 42 O OXGate-DK

5 39 A OXGate-DK (pruned)
i

; 8
PR

40 50 60 70 80 ) 100

Leaf Purity
Figure 5.35 Pruning with the Breast Cancer Concept. In these experiments,
decision-trees were developed using 200 examples of the Breast Cancer database, and
tested on the remaining 86 examples. The graph shows the results for several leaf purities
(50%, 60%, 70%, 80%, 90%, 95%, and 99%) used to determine when to stop splitting.
The dashed line indicates the error-rate of chance. The four error bars clustered at each
chosen leaf purity value are spread apart for clarity of presentation. The 95% confidence
intervals are shown to demonstrate the erratic behavior with this domain.

Pruning of the OXGate-Prim decision-trees (developed with just the 51 primitive
hypotheses) helped somewhat for the larger leaf purities, and severely degraded the per-
formance with 50% leaf purity. The effect of pruning on the OXGate-DK decision-trees
(developed with the union of the 51 primitive and 242 learned hypotheses, and hypoth-
esis ordering disabled) was negligible. At 70% leaf purity, which is approximately the

error-rate obtained by guessing, the four approaches yielded nearly identical results.

13See Appendix T for alternative explanations of its misbehavior.
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The experiments across the four domains reveal that post-pruning does not contribute
to the quality of the decision-trees produced by OXGate when a sufficiently enriched de-
scription language is used. In the low-noise domains (Boolean, Nominal, and NetTalk),
no benefit was demonstrated by pruning beyond that provided by knowledge, regard-
less if hypothesis ordering was enabled. Pruning also did not consistently contributeto
decision-tree accuracy in the Breast Cancer domain (a possibly noisy domain), especially
when knowledge was used. As a supplement to hypothesis ordering, post-pruning is not
needed. Without hypothesis ordering, the decision-tree assembly could become com-
putationally very expensive and post-pruning would only add to the burden; therefore,
post-pruning is not a suitable replacement for hypothesis ordering which serves to reduce
the computational expense. Although post-pruning provides some benefit when using
a sparse description language without knowledge, I have rejected it as an addition to
OXGate: the goal of this research is to develop a mechanism for enriching the language,

not to settle for a sparse original language.

5.5.3 OXGate in action

Section 5.3 presented a preview of the effectiveness-of hypothesis ordering when ap-
plied to learning the NetTalk Silent concept. In this complex, real-world domain, hypoth-
esis ordering proved to be a practical approach for reducing the computational burden
imposed by a large number of constructed hypotheses. In this section, the use of hypoth-
esis ordering is examined for learning concepts from the other three domains: Boolean,

Nominal, and Breast Cancer. The results for the NetTalk domain are repeated here for

completeness.




The first three figuies of this section present the effects hypothesis ordering has on the
predictive accuracy and tree conciseness available with constructed. hypotheses.!* The
fourth figure shows thie relative processing times in the four domains, and the fifth figure
displays the prowessing speed improsements provided by hypothesis ordering over the

unordezed use of the constructed hypotheses.
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Figure 5.36 Effects of Hypothesis Ordering: Boolean 4-term 3*DNF. The use
of constructed hypotheses (DK) exhibits a vast improvement in predictive accuracy and
tree conciseness over the use of primitives alone (Prim), indicating that the knowledge
applied was proper for this concept. Hypothesis ordering (DK/NDH) rescinded some of
the accuracy improvements for the smaller sizes of training data.

Figure 5.36 illustrates the benefits of the apblication of proper knowledge to hypothe-
sis generation. Trinary conjunctions (e.g., (X1 =T) AND (X10-= F) AND (X3 =T)))
were added to the pool of constructed hypotheses, enabling very quick convergence to
the actual concept. With the smaller sets of training examples, hypothesis ordering
proved fairly detrimental to the predictive accuracy. This behavior was predicted in
Section 4.2.1.1: the training examples represent a small portion of the instance space,

and the Quick-Look is 2 fraction of the training data. One possible solution could be to

12The Boolean 4-term 3*DNT experiments used 264 binary and 1760 trinary conjunctions as the set of
constructed hypotheses (Appendix C). The Nominal Concept B experiments used the 2475 constructed
hypotheses described in Secticn 5.4. The Breast Cancer concept experiments used the 242 constructed
hypotheses described in Section 5.5.2. The NetTalk Silent concept experiments used the 1460 constructed
hypotheses described in Section 5.3.
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increase the size of the Quick-Look sample, with a corresponding increase in processing
time. A variant of this approach is to increase the sample size only for small or highly
dispersed training sets (proposed in Chapter 7). Another approach is to disable hypoth-
esis ordering for relatively small training set sizes. Figure 5.41(a) shows that for training
set sizes less than 200, hypothesis ordering provides speedups of less than 6. Since pre-
dictive accuracy is being sacrificed for only nominal increases in processing efficiency,
the disabling of hypothesis ordering at these lower training set sizes may be appropri-
ate. Investigation of the means to assess dynamically the performance of the hypothesis
ordering and disable the mechanism is also proposed in Chapter 7.

In the Nominal and Breast Cancer domains (Figures 5.37 and 5.38), the knowledge
used to generate the constructed hypotheses does not appear to be appropriate: the gains
in predictive accuracy and conciseness are marginal or nonexistent. The use of hypothesis
ordering neither improved nor worsened the performance relative to the unordered ap-
proach, yet as shown in Figure 5.40 it did remove a substantial amount of the processing
overhead. The conclusion drawn from these experiments is that hypotheses generated
from inappropriate knowledge are quickly removed from OXGate. Hence, hypothesis or-
dering is effective as a filter between the hypothesis generator and evaluator, preventing
poorly applied knowledge from inundating the evaluator with useless hypotheses.

Figures 5.39 and 5.41 demonstrate the balance in performance tradeoffs hypothesis
ordering was intended to achieve. With NetTalk, a complex, real-world domain, the
decision-trees developed using hypothesis ordering were not as accurate as those pro-
duced with the full set of constructed hypotheses: this was expected (Section 4.2.1.1).
Yet, this small loss in accuracy was incurred while producing a substantial increase in pro-
cessing speed, an acceptable tradeoff. Moreover, not only are the resultant decision-trees

substantially more accurate and concise than those developed fron. vnly the primitive
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Figure 5.37 Effects of Hypothesis Ordering: Nominal Concept B. The use
of constructed hypotheses (DK) exhibits a smali, albeit inconsistent, improvement in
accuracy and conciseness over the use of primitive hypotheses alone (Prim). Hypothesis
ordering (DK/NDH) appears to have little detrimental effect on the predictive accuracy.
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Figure 5.38 Effects of Hypothesis Ordering: Breast Cancer Concept. The

significance curves indicate very little support for concluding that one approach is better
than another.
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Figure 5.39 Effects of Hypothesis Qrdering: NetTalk Silent Concept. Repeat
of Figure 5.10, included for completeness. The use of hypothesis ordering (DX/NDH)
causes some loss of predictive accuracy over the non-ordered approach (DX), yet is sub-
stantially better than using no constructed hypotheses at all (Prim).
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Figure 5.40 Processing Times. Key: (a) Boolean 4-term 3*DNF, (b) Nominal
Concept B, (c) Breast Cancer Concept, (d) NetTalk Silent Concept.
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Figure 5.41 Speedup Factors. Comparison of the processing speed improvements
provided by hypothesis ordering (OXGate-DK/NDH in Figures 5.36 through 5.40) over
the unordered use of the constructed hypotheses (OXGate-DK). Key: (a) Boolean 4-term
3*DNT, (b) Nominal Concept B, (c) Breast Cancer Concept, (d) NetTalk Silent Concept.
All data were collected over 10 runs except as noted: (a) used 5 runs with 2048 training
examples, 3 runs with 3072, 1 run with 4096; (b) used 5 runs at 675, 3 runs at 1012, 1
run at 1350; (d) used 3 runs at 1000, 2 runs at 1500, 2 runs at 2000. Where fewer than
10 runs were used, the error bars appear abnormally large relative to the rest.




hypotheses, but the use of hypothesis ordering was even:faster than using no constructed
hypotheses, as was shown in Figure 5.11.
T"ese four sets of experiments demonstrate two important characteristics of hypoth-

esis ordering and its use in OXGate:

1. The hypothesis ordering mechanism is quickly able to identify hypotheses con-

structed from properly applicable knowledge and focus the evaluator on them.

2. The hypothesis ordering mechanism is quickly able to identify hypotheses con-

structed from inappropriate knowledge and eliminate them.

5.5.4 System analysis summary

This section analyzed the performance of the non-domination approach to hypoth-
esis ordering in three areas of interest. The first area addressed the robustness of the
tolerance band settings. The tolerance band values selected during early OXGate devel-
opment provided an acceptable balance between processing speed gains and predictive
accuracy for the Nominal concepts. Experiments in the Boolean and NetTalk domains
demonstrated these settings to provide a desirable balance between accuracy and speed,
confirming the robustness of the initial settings and the use of tolerance bands.

The second area of interest examined the utility of post-pruning the resultant decision-
trees with the aim of determining if post-pruning would be a useful addition to or re-
placement for hypothesis ordering. The experiments in all four domains revealed that
post-pruning did not contribute to the quality of the decision-trees produced by OXGate
when a sufficiently enriched description language was used. As a supplement to hypoth-
esis ordering, post-pruning is not nceded. Without hypothesis ordering, the decision-tree

assembly could become computationally expensive and post-pruning would only add to
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the burden; therefore, post-pruning is not a suitable replacement for hypothesis ordering
which serves to reduce the computational expense.

The third area of interest investigated the performance of hypothesis ordering in all
four domains. Hypothesis ordering proved to be a powerful method of reducing the
processing 5urden incurred with massive hypothesis generation, with little or no loss in
predictive accuracy. This heuristic approach was quickly able to exploit the applicable
hypotheses and filter out those developed from inappropriate knowledge. Its behavior
across the diverse domains attests to the robustness of hypothesis ordering in OXGate

and the use of the non-domination approach to multiple-objective evaluation.

5.6 Summary of Results

This chapter presented a sequence of experiments designed to (a) guide the devel-
opment of an effective hypothesis ordering mechanism, and (b) assess its utility as a
heuristic approach to managing the computational burden of the prolific hypothesis gen-
eration expected with opportunistic constructive induction.

Section 5.2 provided a comparison between the basic inductive operation of OXGate
and the well-established selective induction system ID3 to ascertain whether a repre-
sentational advantage exists for either system. Neither representation proved generally
superior: the representational advantage depended on the concept being considered.
This rough parity supports the use of the binary decision-tree representation necessary
in OXGate for the incorporation of constructed hypotheses. At the same time, it provides
the foundation to assess the incorporation of knowledge in subsequent experiments since
this parity implies that substantial gains in predictive accuracy are not inherent in the

representation but, instead, are the result of applying knowledge.
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Section 5.4 investigated several design choices necessary to guide the development
of the hypothesis ordering mechanism of OXGate. The information-gain confirmation
measure proved to be the most effective measure tested, and has been incorporated
in both the hypothesis ordering and hypothesis evaluation components. Two multiple-
objective evaluation approaches to hypothesis ordering, weighted combination and non-
domination, proved superior to the other approaches, including single-objective evalua-
tion with the Quick-Look confirmation measure and single-objective evaluation using sim-
plicity. The weighted combination approach tended to be faster than the non domination
approach in the artificial domains. In the complex, real world, NetTalk domain, the non-
domination approach produced slightly better decision-trees than the weighted combi-
nation approach, and both approaches were equally fast. For its strengths, particularly
its effectiveness at hypothesis ordering, as well as its uniqueness and appeal, the non-
domination approach was selected as the standard method for hypothesis ordering.

Once the standard method of hypothesis ordering was established, several approaches
to compensate for concept dispersion were addressed: retaining the primitive hypotheses,
recycling the rejected hypotheses, and artificially balancing the training data. Retain-
ing the primitive hypotheses proved to be an inexpensive and highly effective method
of compensating for the unfavorable interactions of Quick-Look sampling and concept
dispersion. This has been incorporated as a permanent feature of OXGate. Recycling
the rejected hypotheses provided similar improvements in decision-tree accuracy and sim-
pler decision-trees, but at a high cost in processing time. The accuracy achieved when
recycling rejected hypotheses was no better than that obtained by retaining the primi-
tive hypotheses. This result indicates that the non domination approach to hypothesis
ordering with the retention of primitives is generally effective at selecting the right hy-
potheses to reject. The third approach, artificially balancing the training data when using

hypoihesis ordering, provided some improvement in decision-tree accuracy, but since it
3




may skew the training data to be unrepresentative of the doinain, this approach requires
further study.

Following the system design experiments, t*. robustness of the non-domination ap-
proach for hypothesis ordering was investigated. The use of the two tolerance bands to
determine the memberships of the primary, secondary, and rejected subsets proved to be
well-behaved and robust. The band settings selected o provide a desirable balance be-
tween processing speed and predictive accuracy in the Nominal domain also turned out
to be the most consis* ~ntly applicable settings for the Boolean and NetTalk domains,
confirming the robustness of the initial settings and the use of tolerance bands.

[inally, I eval:.ated the performance of hypothesis ordering in all four experimental
domains. Hypothesis ordering, particularly the non-domination approach, proved to be
a powerful method of containing the explosion of computational overhead produced with
prolific hypothesis generation, without a significant decrease in the predictive accuracy
and decicion-tree conciseness available with the full set of constructed hypotheses. In
the complex, real-world domain of the NetTalk Silent concept, not only did OXGate
with hypothesis ordering produce decision-trees with considerably improved accuracy
over that available with only the -primitive hypotheses, but it was able to do so faster.
As ¢ heuristic approach, hypothesis ordering behaved as anticipated, providing a good

balance between computing efficiency and decision-tree quality.
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CHAPTER 6

USING KNOWLEDGE:
PRELIMINARY INVESTIGATIONS

The most interesting and certainly the most challenging aspect of opportunistic con-
structive induction is the incorporation of domain knowledge into the hypothesis genera-
tion mechanism in a form suitable to produce useful hypotheses. Section 3.1.1 described
the hypothesis generator and proposed some ways knowledge might be applied. This
chapter presents preliminary investigations on the application of knowledge. These in-
vestigations, particularly the first, are beyond the original scope of this thesis. They are
included for the insight they provide toward future research. Section 6.1 discusses learning
from experience, which is tantamount to constructing hypotheses based on the knowledge
of past successes. Section 6.2 demonstrates the power of applying the right knowledge for
hypothesis construction. The experiments demonstrate that the correct knowledge, even
a very s.nall amount, substantially improves the performance of decision-tree induction.

Many researchers throughout the history of machine learning have recognized the
value of adding some form of knowledge to assist their systems through the learning
tasks. Samuel [1967) added several heuristics to guide the adaptation of the scoring func-
tion in his checkers-playing program. Lenat [1983] used probleni-solving heuristics to
guide the mathematical learning system AM. Michalski [1983] proposed a methodology
for applying background knowledge to constrain the application of inference and gener-
alization rules luring concept induction, and demonstrated its application in the system
INDUCE. More ;ecently, several other researchers have demonstrated the effectiveness of
applying small amounts of domain-specific knowledge during concept induction. Matheus

(1989, 1990] uses fragments of knowledge in CITRE to constrain the generation of new
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features during experiential learning and explicitly guide the generalization of these new
features (Sections 2.4.3 and 6.1). Specifically, he has demonstrated the efficacy of three
pieces of knowledge in learning tic-tac-toe: 1) piece type is important, 2) piece adjacency
is important, and 3) features constructed from one section of the board may be appli-
cable elsewhere.! MIRO [Drastal and Raatz, 1989] applies domain-specific knowledge
{o establish an abstract framework for induction. MIRO begins learning with the most
general description language (as defined by the knowledge) and specializes the language
if necessary to induce the concept description (Section 2.4.4).

Applying small amounts of knowledge to guide concept induction is not unique to
symbolic concept learning. Towell et al. [1990] use nearly correct background knowledge
to establish an initial topelogy for the neural network system KBANN. The network then
learns from training examples to correct the deficiencies in the background knowledge.
The knowledge provides expectations of the internal (hidden) nodes of the multilayered
network: in essence, it suggests how to construct partial concept descriptions (constructed
hypotheses). The original knowledge, although flawed, provides enough guidance for the
network to learn the concept betier than several knowledge-poor approaches. Abstractly,
this approach is similiar to ENIGMA (Section 2.4.6) except that learning is network-based
in KBANN vather than symbolic.

The systems just described are samples of a myriad of hybrid systems that combine
knowledge and inductive concept learning. They share a common theme: small amounts
of the correct knowledge can greatly enhance the quality of inductive learning. Domain
knowledge has the potential of enriching the concept description language so completely
that substantial components of the target concept, or even the entire concept description,

may be found in the vocabulary. The following experiments support this expectation.

"Matheus implemented a generalization operator for spatial trauslation that also provided reflection
about the major axes. Rotation about-the center and reflection about the diagonals were not addressed.
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6.1 Learning from Expericnce

A common nethod of generating Liypotheses is chrough experiential learning: creat-
ing a concept descriptiun and examining that description to develup potr tially useful
hypotheses for continued concept refinement. Theconeépt is then .eiear.el, using a mod-
ified description vocabulury consisting of the union of the uewly ccastructed hypotheses
and all or 2 port.on of the previvus vocabulary. This process is repeated until a suitably
concise concept descriptiou is obta’ned or until some vther measuze of deter; vinirg con-
vergence is satisfied {e.g., a lack of improvement in predictive accuracy). The ~stems
FRINGE [Pagallo .and Hauusler, 1989] and CITRE [Matheus, 1989] are two ..-amples of
decision-tree-based experiential learning systems (Section 2.4).

Both FRINGE and CITRE create hypotheses by conjoining pairs of features associ-
ated with branches leading to positive leaf nodes. This approach implemerss a simpie
heuristic: since experience shovis that feature A and feature B are both neeled to lead
to a particular positive leaf, teature (A AND E) will lead to that leaf and may be useful
elsewhere. Other binary combinations are also possible, but ar¢ not considered for the
sake of simplicity. For example, Pagallo [1990] aisc describes the construction of new
conjunctive {eatures from branches leading to negative leaves ia -the system Symmetric
FRINGE, and Yang et al. [1891] construct features using disjunction in DCFringe.

A second simplification FRINGE uses .; to consider only the featurzs associated
with adjacent fringe branches in the tree as operands to the conjunction. The two
features composing a fringe pairing are those associated with the two lowest-level branches
leading to a positive leaf. In Figure 6.1, the fringe pairs are (C7=Y, C3=2S5) and
(C5 = R, C4 = E). This simplification drastically reduces the number of potential new
hypotheses that must be considered.

‘CITRE also simplifies the number of hypotheses to cc... .r by applying one of five

user-selectable biases to the operand selection. Selecting the {ringe pair is one of those
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All possible pairings (of those shown):
(Cd=H, C7=Y), (C4=H, C3=8), (C4=H, C3=P)
(C7=Y, C3=8), (C7-Y, C3=P), (C5=R, C4~E)
Knowledge-guided pairings:
{(ca-H, C3-5), (C4=1, C3=P), (C5-R, C4-E) }

Generalization of knowledge-guided pairings:
{(ca=t, C3e45,PY)}

At each test, True is to the left branch.

Figure 6.1 Learning from Experience. This example shows a possible portion cf a
decision-tree for the NetTalk Silent concept to illustrate the search for useful constructs.
Positive tests leading to positive leaves are the operands (pairings) for forming binary
conjunctions. Domain knowledge can be used to constrain the possible combinations.
The effect of applying a domain-independent generalization operator, the merging of
disjunctive regions, is also shown. The decision-tree is learned from a collection of seven-
character windows (C1 through C7) on a dictionary of words. An example of such
a window is from the word “symphony,” with the letter “h” as the center character:
slymp(h)ony]. This window corresponds to the pairings (C4=H,C7=Y), (C4=H,C3=P),
and (C7=Y,C3=P), and supports the generalization (C4=H,C3€{S,P}). A word that
provides multiple windows with silent center characters is “haberdashery”: [hab(e)rda]
and [ash(e)ry] both support (C5=R,C4=E); and [das(h)ery] supports (C4=H,C7=Y),
(C4=H,C3=S), (C7=Y,C3=S), and the generalization (C4=H,C3&{S,P}).

biases (fringe). Another bias, all, seiects all possible pairings. Root selects the two
features associated with the highest-level branches leading to a positive leaf: an example
is (C4=H, CT=Y) in Figure 6.1. Root-fringe selects the features corresponding to
the single highest-level and single lowest-level branches leading to a positive leaf, such
as (C4 = H, C3 = P). The fifth bias, adjacent, selects features associated with any two
adjacent branches leading to a positive leal. The operand pairs selected using the fringe
and root biases are a subset of those selected using the adjacent bias.

The application of these biases restricts the selection of operands from within a subtree
leading from the root node to a positive leaf. Section B.3 defines these restrictions

formally. The biases are implemented as filters that act on the positions of the features

156




within the tree. Knowledge may also be applied as filters, but, in addition to being
concerned with the position of features (syntactic filtering), knowledge-based filters may
also be concerned with the meaning of the terms (semantic filtering) or their relationship
to the domain (contextual filtering). When learning from experience, OXGate limits
the number of potential new hypotheses through contextual filtering by the procedural
application of domain knowledge.

Figure 6.1 illustrates a possible portion of a learned decision-tree for the NetTalk
Silent concept. The given attributes are the seven characters C1 through C7. The
knowledge used to guide the pairings in Figure 6.1 can be stated as: the center character
is the focus of attention, and the characters adjacent lo the center provide the most
information-gain [Lucassen and Mercer, 1984]. This knowledge focuses the selection of
features for construction on those related to the attribute pairs (C4,C3) and (C4,C5).

The implementation of the experiential learning mechanism in OXGate is through a
post-processing procedure called Koala. Koala searches for all pairings of true hypotheses
leading to positive leaf nodes, but keeps only those defined by knowledge as coded in

search patterns. Invocation of the procedure takes the form

koala tree pattern focus-atiributes focus-values
P

scope-attributes scope-values trivia-tolerance)

where tree is the decision-tree to be learned from,
pattern is the form (template) of the hypotheses being searched for,
focus-attributes are the attributes used as the focus of the search,
focus-values are the values accepted in the focus template,
scope-atiributes are the attributes used for the scope of the search,

scope-values are the values accepted in the scope template, and

trivia-tolerence is the number of times a pairing must occur.




Using the NetTalk example, the search for pairs of characters adjacent in the word

to the center position would be invoked by
(koala tree (EQP atiribuie value) *C4 ** (adjacent *C4) * 1) (6.1)

The pattern “(EQP atiribute value)” indicates only primitive hypotheses are to be con-
sidered. It is a test (true or false) to see whether the value of the attribute for the
instance under consideration is the same as the stated value. The focus-attribute “C4”
indicates the search is focused on the center window character C4. The focus-value “*”
is a wildcard, telling Koala to accept any value for attribute C4. The focus template is
created from these three parameters, preparing the upcoming search to locate any hy-
potheses of the form (EQP *C4 any-letter). The scope of the search is defined by the next
two-parameters. The scope-atiributes are defined in this case by the function “(adjacent
’C4),” indicating either attribute C3 or C5 is-acceptable. The scope-value “** indicates
that any value will be accepted in-the scope templates. From these two scope parameters
and the original pattern, Koala creates two scope templates, (EQP 'C3 any-letter) and
(EQP 'C5 any-letter). The final parameter, trivia-tole;"ance, is the number of times an
acceptable pairing must occur before being retained (learned from experience). Here, it
is set to one.

These parameters and templates are used by Koala to sort through the space of all
possible pairings defined by the decision-tree. The knowledge-guided pairings will be the
ones containing valid matches to the focus templatle and a scope template. In addition
to the construction of the new hypotheses, Koala builds generalizations of the pai.ings
as depicted in Figure 6.1. Once all of the acceptable pairings are collected, the focus
template is used to guide the generalization. For each instantiation of the focus template,

the pairings containing the instantiation are collected, and the scope instantiations are




grouped by scope-attribute to create membership functions as shown in Figure 6.1, for

example,

(AND (EQP ’C4 ’H) (MEMBER (WHATIS 'C3) (SP W G T (C)))

meaning “H is silen? when it follows S, P, W, G, T, or C.”

The operator WHATIS looks up the value of the attribute for the instance under
consideration. It is assigned a cost of one (see Section 4.2.2). MEMBER tests if this
value is a member of the given set, and is also assigned a cost of one. The function
(EQP atiribute value) is actually implemented as (EQ value (WHATIS attribute)), testing
if the stated value matches the value found by WHATIS. The test for equality has zero
cost, but since WHATIS has a cost of one, EQP also incurs a cost of one. These costs are
used to determine both the simplicity of hypotheses and the complexity of the resultant
decision-trees. Thus, primitive hypotheses have a cost of one, binary constructs have
a cost of two (the Boolean operators have zero cost), and generalizations such as that
shown above have a cost of three {simplicity of 1/3).

Another feature of Koala provides constraints on the original collection of .possible
pairings. By setting the global variable *iree-adjecent® irue, only physically adjacent
terms in the decision-tree are collected. With minor modification this variable could be
used to select from any of the syntactic filters discussed on pages 155 through 156. For
the experiments of this chapter, *trce-adjacent® was false, corresponding to the syntactic
bias all.

With *tree-adjacent* set false and trivia-telerance seb to one, Koala limits the selec-
tion of operands for construction based only on their content. The hnowledge incorpo-
rated in Equation (6.1) allows only primitive hypotheses involving the named attributes
to be selected. This knowledge can be viewed as = filter applied by Koala on the set of

all possible constructions derivable from the decision-tree (see Section B.3).
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Koala provides a convenient mechanism for incorporating knowledge to constrain the
extent of experiential learning. This is necessary to avoid overlearning when drawing
upon a single decision-tree. In the example, the setting of a few simple parameters
provides Koala with all the guidance it needs to learn every combination of the center
window character (C4) and its nearest neighbors (C3 and C5) appea;illg along the way to
a positive leaf. An allernative view is that the experience contained in the decision-tree
constrains the application of domain knowledge by the hypothesis generator. Instead
of generating all possible hypotheses indicated by the knowledge (as was done for the
experiments of Chapter 5), Koala limits the constructed hypotheses to those suggested
by experience to be useful. This combination of expectation and experience defines the

most promising extensions to the concept description language.

6.1.1 Experimentation

One way to judge the efficacy of the knowledge used to guide experiential learning
is by examining the utility of the learned constructions in subsequent induction. This
experiment compares the performance of three sets of constructed hypotheses: two sets
were created using knowledge for guidance, the third was not. Hypothesis ordering
was disabled to isolate the effects of the knowledge itself. The experiment shows that
correct knowledge focuses the experiential learning vn those constructed hybotheses most
beneficial to subsequent decision-tree assembly.

The first step 1n the experiment was to create the initial decision-tree and the three
sets of constructed hypotheses. OXGate was run on the 2000 training cxamples of
the NetTalk Silent concept, using only primitive hypotheses. This decision-tree was
then used as the basis for experiential learning. The first set of knowledge-guided con-
structed hypotheses was created using Koala as shown in Equation (6.1), producing

46 binary conjuncts and 11 generalizations (Learned w/DK in Figure 6.2). The second
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set of knowledge-guided constructed hypotheses (Learned w/DK(-)) is a subset of the
Learried w/DK hypotheses: the 37 binary conjuncts subsumed by the generalizations
were removed, leaving 9 binary conjuncts and 11 generalization hypotheses. To generate
the third set of constiucted hypotheses, the ones created without the guidance of knowl-
edge (Learned wo/DK), Koala was invoked with wildcards for the attributes and values
of both the focus and the scope. This provided all possible pairings and generalizations

(247 binary conjuncts and 97 generalizations).
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Figure 6.2 Learning from Experience: NetTalk Silent Concept.

Figure 6.2 presents the effects of a single iteration of experiential learning. A single
iteration consists of assembling an initial decision-tree and constructing hypotheses from
the cvidence in the initial tree (as described above), and then measuring the perform-
ance of subsequent decision-trees created with the extended description language. The

lower right graph displays the complexity of the resultant decision-trees. Complezity is
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a modified form of the measure primitives used in the experiments of Chapter 5. It in-
cludes the number of primitive hypotheses incorporated in the decision-tree and accounts
for the cost of the membership-function MEMBER in the generalizations. Complezity is
the inverse of the measure of simplicity defined in Section 4.2.2. As other operators of
non-zero cost are introduced into OXGate these two measurements will diverge further.
Where no membership functions are included, complexity and primitives are identical
measurements.

The plots labeled O.XGate show the baseline performance of the decision-trees created
using only the set of primitive hypotheses. Learned wo/DK shows the marked improve-
ment in predictive accuracy supplied by the addition of the 344 constructed hypotheses to
the description language. Processing time also increased correspondingly. Interestingly,
the complexity of the decision-trees remained nearly the same. The number of decision
nodes decreased with the ~Jdition of learned hypotheses, but, in this case, the increased
cost of some nodes offset the reduction in structural complexity.

The plots labeled Learned w/DK present the results of using the knowledge-guided
constructed hypotheses, a subset of those used for Learned wo/DK. Although the addi-
tional knowledge did not appear to improve the predictive-accuracy, the reduction in the
number of hypotheses did have a substantial impact on the processing speed. This indi-
cates that the knowledge served to remove the hypotheses of little or no utility, leaving
what was needed to assemble good decision-trees. Learned w/DK(-) shows the results
with the non-redundant subset of the Learned w/DI hypotheses. This more limited de-
scription language provided powerful generalizations, yet prevented overfitting with the
small sample sizes, resulting in a slight increase in accuracy, more compact decision-{rees,

and faster processing.




6.1.2 Summary: Learning from experience

The approach used in OXGate for experiential learning, the application of Koala, is
similar to that of FRINGE and CITRE: a decision-tree is developed and then evaluated
to determine useful constructions. It is different in that only domain knowledge (contex-
tual information provided by the developer or available in the hypothesis generator) is
used in Koala to constrain the generation of experientially learned hypotheses. FRINGE
uses the positions of the operands in the decision-tree (a syntactic bias) to select com-
ponents for hypothesis construction. CITRE uses a combination of syntactic bias and
user-supplied domain knowledge to guide construction. Like CITRE, Koala uses knowl-
edge to constrain the selection of operands suggested by the decision-tree, and to produce
domain-dependent generalizations. The difference between CITRE and OXGate/Koala
is primarily one of focus: CITRE’s principal mode of operation is the syntactically guided
search for new constructions, while in OXGate the application of contextual knowledge
is the primary mode of operation. Kozla is an extension to OXGate for investigating the
application of contextual knowledge and experiential learning in hypothesis generation.

The knowledge used in the experiment focused Koala on constructing hypotheses from
primitives involving the target character C4 and those using the contextually adjacent
characters C3 and C5. When multiple pairs were found using a common primitive involv-
ing C4, a generalization was also created. The experiment clearly showed an increase in
predictive accuracy when hypotheses created through experiential learning were added
to the description language. It also demonstrated the focusing effect of correct domain
knowledge: the hypotheses most beneficial to subsequent decision-tree assembly were

retained, with a subrsiantial improvement in processing speed.
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6.2 Applying the Right Knowledge

The power of applying the right knowledge for hypothesis generation is demonstrated
in this section. The first two experiments show the application of two sets of knowledge
in both the Boolean and Nominal domains. The knowledge was syntactic, specifying an
expectation of the form of components of the concept description. The third experiment
demonstrates the power of a single hypothes.. constructed from correct contextual knowl-
edge in the NetTalk domain. In these three experiments, hypothesis ordering was disabled
to isolate the effects of the knowledge. The experiments of Chapter 5 demonstrate the
effects of hypothesis ordering: generally, hypothesis ordering revokes the contributions of

the weaker or less applicable knowledge.

6.2.1 Boolean 3-term 3DNF concepts

The first set of knowledge suggests that negations of the primitives, binary conjuncts,
and binary disjuncts are useful constructions (see Appendix C). This knowledge is ap-
plied procedurally by invoking a handful of special-purpose routines. The overall control
of the piucedures has been partially generalized so that subsets of the hypotheses can
be selectively generated by changing the keywords *NOT*, ¥*AND*, and *OR*. For the
Boolean concepts, the 24 primitive hypotheses yield 24 negations, and these 48 unary
hypotheses are used to generate 1140 binary conjuncts and 1140 binary disjuncts (shown
as DK-typel knowledge in Figure 6.3). The negations of primitives are logically redun-
dant hypotheses in the Boolean domain, and were originally produced to help flood the
hypothesis ordering mechanism for the experiments of Chapter 5. Since the hypothe-
sis ordering mechanism is disabled for the following experiment, the negations simply
serve to illustrate that, although knowledge might suggest generating a certain type of

hypothesis, the knowledge may not be fully applicable to the domain at hand.
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The second set of knowledge suggests that trinary conjunctions of the primitive hy-
potheses might be useful. Again, a special-purpose procedure builds the constructions.
From the 24 primitive hypotheses in the Boolean domain, 264 binary conjuncts and 1760

trinary conjuncts are formed (shown as DK-type2 knowledge in Figure 6.3).
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Figure 6.3 Using Correct Knowledge: Boolean 3-term 3DNFE. Note: The
number of training instances shown for the error-rate is truncated after 1024 examples
for clarity of presentation.

Figure 6.3 dramatically illustrates the effect of proper knowledge when learning the
Boolean 3-term 3DNF concepts. The plots labeled OXGat. show the baseline perform-
ance using only the 24 primitive hypotheses. DK-typel shows a marked improvement,
mainly from the incorporation of the binary conjuncts in the decision-trees. The pro-
cessing time increases tremendously since the decision-trees still require several levels of
branching, and a large number of hypotheses must be considered at svery level.

The plots for DK-type2 show that with trinary conjuncts, the decision-trees perfectly
represent the concepts with only 102 training examples, about 1/10th the number re-
quired for OXGate. The processing time is still much larger than when using only the
primitive hypotheses since the number of hypotheses to consider is much larger. The pro-
cessing time is substantially smaller than when using the DK-fypel hypotheses because

convergence to the solution occurs much faster. DK-type?2 knowledge, particularly the




use-of trinary conjunci , works well bocause it perfectly matches the syntactic strncture

of the Boolean 3-term JDNI concepts:

((trinary-conjunct) OR (trinary-conjunct) OR (irinary-comjunct))

Comments: An alternative approach to- generating and evaluating the sets of con-
structed hypotheses is through the use -.{ look-ahead, a common ressoning strategy for
decision-making [Barr and Feigenbaum, 1982). Tor decision-tree induction, look-ahead
‘nvolves postponing the decision to incorporate a hypothesis until the quality of the po-
tential subtrees can be determined {Hartmann et al., 1982). A system using look-ahead
performs “what-if” .easoning on each hypothesis: “What is the best subtree available if
hypothesis X is used to split here?” The best hypothesis for the current node is the one
producing the best subtree overall. For example, using a look-ahead of two, a system
sach as-OXGate woulc pretend to split on a hypothesis, and then find the best hy,,othe-
ses for splitting av the two nodes (left and right) lower in the decision-tree. The value of
the hypothesis at the current node of interest is the aggregate information-gain provided
by the three splits (entropy at the current node minus the remaining entropy two levels
down). After considering each hypothesis at the current node, the system would select
the hypothesis with the higi.zst value, i.e., the best potential subtree.

The *inary hypotheses constructed from-the DI-type! and DK-ty,.e2 knowledge are
equiv-lent to portims of the subtrees considered with a look-ahead of two (Figure 6.4).
Cince look-ahead allows an i~ductive system to make more informed choices at a node,
the resultant decision-trees are potertially better than those created with no look-ahead.
Similarly, the binary hypotheses used in this experiment provided an enriched description
language, also leading to more informed decisions and better decision-trees.

Ore of .he drawbacks of using look-ahead is the potentially large increacz in. process-

uig tile with each added level of look-ahead depth, due to the number of aaditional
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combinations to be investigated. However, as the decision-iree is developed, look-alicad
becomes less expensive because the number of hypotheses tv consider is reduced: some
have been incorporated in the tree and are no longer available. The same effects occur
with hypothesis generation from syntactic knowledge: the mnore complex syntactic struc-
tures yield greater numbers of hypotheses, each of which requires evaluation. Syntactic
fillering of hypotheses (Section 3.1.4) can reduce the number of hypotheses considered
at the lower nodes of the decision-tree, providing a similar reduction in computational
expense as that found with look-ahead. In addition, the use of hypothesis ordering pro-

vides a more powerful focusing mechanism to reduce the processing time, by identifying

the most promici.g hypotheses and removing the least promising ones. The analogous
‘behavio, with look-ahead would be to determine a priori which subtrees to consider fitst

and which to avoid.

X1 X1 X1
X2 X2 X2
- - +
+ - + - + -
X1X2 Xix2 X1 orX2 XiX2x3

{a) {b] [c] {d)

Figure 6.4 Relating Look-Ahead to Hypothesis-Construction. Several potential
subtrees created with a look-ahead of two ([a], [b] and [c]) and three ([d]) are shown. The
equivalent coustructed hypotheses are provided below the subtrees.

Using look-ahead coes not always incur a significant processing burden. Ragavan c. al.
[1991] demonstrated that with the right level of look-ahead for the target concept, a more
accurate decision-tree can be produced than without look-ahead, yet with little additional
proc-ssing time. This is because the proper, compact decision-tree can be identified and
developed quickly. Without lovk-ahead, the system tends to assemble large, inaccurate

trees. A similar effect was demonstrated in Figure 6.3: with the hypotheses created using

167




the Dh-type2 knowledge: three of the trinary conjuncts were all that were needed to
quickly learn the Boolean 3-term 3DNF concept. For both look-ahead and hypothesis
generation, if the size of the terms in a A-term !DNF Boolean function is known (i-e., the
value of 1), then the optimum depth of look-ahead (1) or width of the syntactic template
(also 1) is specificied.

Determining the correct level of look-ahead o1 the correct syntactic template for hy-
pothesis ge.acration is problematic. Ragavan and Rendell [1991] propose a ineasure of
cuncept dispersion that estimates the difficulty of learning the concept with a given-set of
hypctheses. They are currently investigating heuristics for applying this aud other muea-
sures for predicting tlie proper level of look-ahead [Ragavan et al., 1991]. When available,

these heuristics should be incorporated into the hypothesis.generator of QX Gate.

6.2.2 Nominal Concept B

Figure 6.5 shows the results of applying the same approach used in: Section 6.2.]
to Nominal Coscept B (Appendix D).' The first generation of hypotheses used the 25
primitive hypotheses to create 25 negations, 1225 binary .conjuncts, .and 1225 binary
disjuncts (DK-typel knowledge in the figure). The second generation produced 229
birary conjuncts and 915 trinary conjuncts (DK-type2 knowledge). In this domain,
inconsistencies such as ((color = red) AND (color = blue)) were not gererated. With
this concept, DK-typel performed gernerally better for the smaller {raining set sizes.
The processing time for DK-type! was substantially greater due‘to the larger number of
hypotheses to test.

Analysis of the resultavt decision-trees reveals that several of the DK-iypel hypothe-
ses were incorporated carly in decision-tree developmeut with sinall training set sizes,
accounting for their improved accuracy. For inslance, with 135 training instances, one

decision-tree consisted of the binary disjunct ((color = green) OR (size = huge)) and
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Figure 6.5 Using Partially Applicable Knowledge: Nominal Concept B.

three binary conjuncts. With the full set of 1350 training examples, the-decision-trees
were more complex: one consisted of seventeen constructed and three primitive hypothe-
ses. The decision-tree was-difficult to decipher because it described annther of the many
logically equivalent decision-tre.s completely representing Nominal Conc pt B.

The DK-type? knowledge provided very few useful hypotheses for learning this
concept.  The decision-trees developed using small training set sizes were very
similar to their OXGate counteiparts (created using primitive hypotheses only),
with thé occasional inclusion of one or two binary conjuncts. The decision-
trees created with the full set of training data contained one trinary conjunct
{(color = bluej ANV (tasie = bitter) AND (shape = triangle)), four binary conjuncts,
and twenty-three primitive hypotheses.

The syntactic k;iowledge provided for DIK-typel was moderately useful for Nomi-
nal Concept B. Since the structure of the concept does not reflect an obvious syatactic
pattern, large increas’es in performance should not be expected. The DA-{ype2 knowl-
edge had little utility for learning this concept. The binary and trinary conjuucts did
not provide the right extensions to the description language and went largely unused.
Generally, the proposed syntactic knowledge was not applicable: the lack of substantial

improvement in performance reflects this. -
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The measure of concept dispersion proposed by Ragavan and Rendell [1991] may
predict that these two description languages, although substantially enriched, are not
particularly useful for learning this concept. This measure, once fully understood and
developed, may be very useful to guide the selection of the proper syntactic structure to
use for hypothesis generation. As Breiman et al. {1984] relate, the development of new and
useful hypotheses “is an art guided by the analyst’s intuition and preliminary exploration
of the data.” Measures such as concept dispersion -and the associated heuristics for

applying them are necessary to automate hypothesis generation effectively.

6.2.3 NetTalk Silent concept

The third-experiment uses a piece of contextual knowledge to generate a single pow-
erful hypothesis: “when a character is repeated, the second is silent.” This heuristic is
generally true, with the exception of words like zoology. Since the NetTalk Silent concept
is concerned about silence in the center window position (C4), this piece of knowledge
translates to the equality hypothesis (EQP (WHATIS *C3) (WHATIS 'C4)), a test to de-
termine if (C3=C4) is true.

Figure 6.6 presents the marked improvement in all three performance measurements
with the addition of the single hypothesis. OXGate shows the behavior when only the
primitive hypotheses were vsed for decision-tree assembly. Learned w/DIK(-) shows the
performance when the set of 21 empirically learned (non-redundant) hypotheses.described
in Section 6.1 were included. Learned w/DK(+) presents ihe performance when the
equality hypothesis was used in addition to-the 21 learned hypotheses.

The equality hypothesis subsumes only three of the nine binary hypotheses -of
Learned w)DK(-) and a portion of one of the generalized hypotheses, yet provided -a
lz-ge improvement in the predictive accuracy, produced substantially simpler decision-

trees, and allowed Learned w/DK(+) to complete faster than Learned w/DIK(-). This

170




2 8 lc.):acr;:égwIDK(-) 1007~ A OXGate vs. Learned wiDK(-)
o Leared wiDK(s) A Leamed w/DK(-) vs. wiDK(+)

b
-]

(2]
[=Jo:
{

Error Rate (%)
5 >

Significance (%)

(-]
P
<

e

3

b1 1 Ay
0 ~ 500 1000 1500 2000 0 500 1000 1560 2000

710007 >, 2001
g
g 80j- 5. 160
] €
®; 3
3 %t O 1207
E
i= 400{— 801

2004— 401

ol 1 | | ! 0

0 500 1000 500 2000
Number of Training Examples

Eigure 6.6 Adding Correct Knowledge: NetTalk Silent Concept.

simple addition to the description language demonstrates the power available with even

small amounts cf the correct knowledge.

Comments: Other pieces of knowledge could also prove useful for quick and effective
decision-tree induction. Their utility is-directly rzlated-to the amount-of instance space
they cover, i.e., the percentage of instances. correctly identified by the application of the
knowledge. The reason (C3=C4) is so effective is that it occurs in a large number of
instances and accounts for a-significant percentage-of all the ways the center character
could be silent. Another potentially powerful piece of knowledge suggests that the second
vowel.in a diphthon, (e.g., ea, oi, and ou) is generally silent. The hypothesis discovered

in Section 6.1, “h is silent when it follows s, p, w, g, t, or ¢” represents highly useful




semantic knowledge about the behavior of the letter “h” that could have been proposed
a priori.

Knowledge that is more specialized is less relevant to the concept in general, but may
be highly useful to uncover portions of the-concept sparsely represented by the training
data. One such piece of semantic knowledge might suggest that the letter “y” following
a vowel will generally be silent. Another highly specialized piece of knowledge might
suggest that the “q” in words with “cqu” (e.g., acquaint, lacquer, and racquet) is always
silent. A similar piece of knowledge might suggest that the “u” in words ending with
“que” (e.g., unique, torque, and critique)is always silent. A slight generalization of this
knowledge, “que” appearing anywhere, is not applicable though. It is sometimes silent
(e.g., bouquet, conquer, and etiquette) and pronounced at other times (e.g., banquet,
conquest, equestrian, frequent, and eloquent).

Knowledge can also be used to describe which hypotheses should not be generated,
i.e., hypothesis screening as-described in Section 3.1.1. Many letters in specific-combina-
tions are almost never silent (e.g., the “k” in “tk™). This semantic knowledge could be
applied as a set of filters to the output of a mechanism that generates all combinations
of letters, with the net result being a set of “non-disallowed” hypotheses: a superset of
the applicable hypotheses. When both approaches to hypothesis generation are used,
one to generate promising hypotheses and the other to screen out the most useless, the
enriched description language can be focused to include only the most potentially useful

hypotheses even before hypothesis ordering is invoked.

6.3 Summary and Comments

This chapter presented some preliminary investigations on the application of knowl-

edge to hypothesis generation. These investigations were beyond the original scope of




this thesis, but were included for the iusight they provide towards future research. The
experiments in this chapter demonstrate the efficacy -of even small amounts of correctly
applied knowledge and support the assertion that domain knowledge provides the means
for effective induction of complex concepts.

Section 6.1 described the experiential learning addition to OXGate, Koala. Koala
examines an assembled decision-tree, collecting promising decision points (true hypothe-
ses leading to positive leaves) to use as operands for constructing binary conjuncts and
generalizations of t;IiOSC conjuncts. Knowledge is readily incorporated in the invocation
of Koala to constrain the construction of hypotheses to thuse which are both predicted
useful by the knowledge and supported by experience. Abstractly, this interaction may
be viewed as applying knowledge to limit the te.i.ative conclusions drawn from a single
learning session. Conversely, it may alsn-he viewed as using experience to gu:de and con-

strain prolific hypothesis generation based on what OXGate “thinks it knows.” Either

view sustains the suggestion ihat experientiallcarning is a unique and useful addition to
the set of hypothesis generation mechanisms.

The experiment with the NetTalk Silent concept clearly showed an increase in pre-
dictive accuracy wnen hypotheses created through experi-ntial learning were added to
the description language. It alsu demcnstrated the focusing effect of correct domain
knowledge: the hypotheses inost beneficial to subsequent decision-tree assembly were re-
tained, with a substantial improvement in processing speed. These results are in accord
with those obtained by Matheus [1990] for the game of tic-tac-toe, where the addition
of knowledge about piece adjacency, piece type, and spatial translation focused feature
construction during experiential learning to produce highly accurate decision-trees within
relatively low processing times.

The second part of the investigation, Section 6.2, demonstrated the power of applying

the right domain knowledge during hypothesis generation by examining the benefits of
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applying small amounts of correct knowledge. The knowledge used in the experiments
on the Boolean 3-term 3DNT concepts and Nominal Concept B-was syniactic, specifying
expectations of the for.n of components of the concept description. Where the expectation
matched the actual form of the concept, such as the trinary-conjunction form in the
Boolean experiment, the generated hypotheses provided the means for extremely rapid
convergence to the concept description with small sample sizes. Nominal Concept B
is a complex structure with few repeated syntactic forms; consequently, the proposed
knowledge provided only modest improvements in decision-tree performance.

The success of the trinary-conjunction form of knowledge for the Boolean 3-term
3DNTF concepts is directly attributable to the perfect match between the syntactic form
of the hypotheses (trinary conjuncts) and the disjoint terms in the concepts. This use of
the correct syntactic template reflects the use of the. correct level of look-ahead, providing
the hypothesis evaluator with the means to make well-informed decisions.

The third experiment of Section 6.2 demonstrated the potency of correct contextual
knowledge with the NetTalk Silent concept. When the single, well-founded, hypothesis
(C3=C1) was added, which generalized some of the results from experiential learning,
OXGate achieved a substantial and consistent improvement in each of the three perform-
ance measurements.

Domain knowl‘edge has the potential of enriching the concept description language
so completely that substantial components of the target concept, or even the entire con-
cept description, may be found in the vocabulary. Clearly, applying the right knowledge
for hypothesis construction provides the basis for highly efficier.t decision-tree induction.
Recognition of the power of background knowledge is the foundation of the entire class
of explanation-based (or analytic) learning systems, which reiy heavily on knowledge for
concept induction (Section 2.4.6). There exists a strong synergism between analytic and

empirical {(similarity-based) learning: good domain knowledge reduces the amount of
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training data required to learn a concept and provides iapid convergence to a compact
representation (top-down reasoning), and the regularities in the training data can com-
pensate for deficiencies in the domain knowledge (bottom-up reasoning). Hybrid systems
such as MIRO (Section 2.4.4), ENIGMA (Section 2.4.6), and OXGate take advantage of
both approaches as needed to compensate for sparse or noisy data, and incomplete or
inconsistent knowledge. The fact that over thirtv papers addressed the combination of
empirical and- explanation-based learning at the Sixth International Workshop on Ma-

chine Learning (1989) reflects the importance of integrating both approaches.




CHAPTER 7

CONCLUSION

7.1 Thesis Summary

This thesis lays the foundation for the investigation of opportunistic constructive in-

duction: using fragments of knowledge to propose potentially useful new terms during

the inductive process. The -primary objective of-this research effort is to develop a mecha-

nisui-to allow the use of domain knowledge in an unrestricted, opportunistic fashion while

maintaining a manageable computational load. This primaty objective was achieved by

accomplishing the following secondary objectives:

1.

Penetration of the mechanics.of induction to incorporatc flexible search guidance,

including an intérleaving of deductive and inductive mechanisms. (Chapter 2)

Development of a modular system architecture to implement the four components of
the opportunistic constructive induction process: hypothesis generation, hypothesis
ordering, hypothesis evaluation, and hypothesis incorporation. The prototype op-
portunistic constructive induction system OXGate provides a domain-independent
development and testbed environment for future work in applying domain knowl-

edge to guiding decision-tree construction. (Chapter 3)

. Development of a robust hypothesis ordering mechanism to manage the poten-

tially enormous computational burden produced by the uninhibited exploration of

hypothesis space. (Chapter 4)

. Investigation into the development of a robust hypothesis generation mechanism

that uses fragments of domain knowledge and an assessment of the current state




of the inductive process to explicitly create new hypotheses intended to enrich the

concept description language for further induction. (Chapters 3-and 6)

The phase of research described.in this thesisis a portior of a larger envisioned effort:
so far it has only scratched the surface of the hypothesis generator. Since the hypothesis
generator is expected to produce large numbers of hypotheses, the hypothesis ordering
mechanism was first developed to contain the effects of prolific hypothesis generation
for both t.actable experimentation with knowledge and eventual real-world operation.
The current implementation consists of the overﬂall OXGate architecture, baseline hy-
pothesis ordering and hypothesis evalua:tion modules, and partial implementations of the
hypothesis incorporation and central blackboard mechanisms. The hypothesis ordering
and hypothesis evaluati(;n components are essentially complete, providing the fundamen-
tal capability for exploration of the hypothesis generation mechanism and its interaction
with hypothesis incorporation.

The experiments accompanying and supporting the deelopment of OXGate inves-
tigated two major fronts: the costs and benefits of hypothesis ordering, and the effects
of select pieces of domain knowledge. The principal investigations of this thesis concen-
trated on the use of hypothesis ordering; the preliminary investig=tion of the application
of knowledge to hypothesis generation was beyond the original scope of this thesis.

The hypothesis ordering mechanism acts as a filter between the hypothesis genera-
tion and hypothesis evaluation phases of the constructive induction process. Its function
is to make initial estimates of the utilities of hypotheses, present the most promising
ones for rigorous evaluation, and reject the seemingly useless hypotheses. For this it
uses a competitive mechanism based in part on small samples of the training data. This
thesis explored several multiple-objective evaluation funclions as the basis of hypothe-
sis ordering, and established the non domination method as a psychologically satisfying,

functionally robust, and computationally practical approach. Hypothesis ordering was
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not intended to optimize predictive accuracy, but rather to serve as a-practical approach
to creating a manageable testbed envirorment and pave the way for operation in the
real world. Hypothesis ordering with the non-domination method proved to be.an effec-
tive heuristic method that lives up to its expectations: it sacrifices a small amount of
predictive accuracy for large improvements in prbcessing“speed.

The preliminary investigation of the application of knowledge to hypoihesis gener-
ation showed that even small amounts of correct knowledge provide powerful guidance
for constructive induction. The experiments examined several variations on- the typs of
knowledge used for hypothesis generation and the stage of induction in which the knowl-
edge was applied. In Chapter é, contextual knowledge (knowledge about content) was
used by th= posi-processing procedure Koala to constrain the conclusions drawn when
learning fron: cxperience. This combination of expectation and experience produced a
small set of very useful hypotheses for subsequent learning sessions. In other experinents
(Chapters 5 and 6), syntactic (structural) and contextual knowledge was used by proce-
dural mechanisms to generate hypotheses prior to decision-trze induction. Hypotheses
generatea with proper knowledge provided the means for extremely rapid convergence
to the concept description with small sample sizes. This investigation established that
domain knowledge has the potential of enriching the concept description language so
cumpletely ikat substantial components of the target concept or even the entire concept
description may be found in the vocabulary.

Although the limitations of the implementation and experiments certainly warrant
conservativism in claims of success and promises of future capabilities, I am confident the
approach presented in this thesis is a robust and effective-mechanism for utilizing domain
knowledge to guide the constructive induction process. Domain knowledge provides the
means for effective induction of complex concepts, and hypothesis ordering makes the

operation of OXGate practical even with prolific hypothesis generation.




7.2 Specific Contributions
The novel machine learning aspects and contributions-of this research:are:

-« The refinement of a-conceptual framework for the inductive process that encour-
ages the incorporation of deductive processes using background knowledge to sug-
gest fragmeats of the concept description. This framework maps directly into-an
implementation architectureintegrating inductive and deductive mechanisms in an

opportunistic fashion.

o The investigation of the use of a hypothesis ordering mechanism to act as a filter
bc_etween the generation and test phases of new term creation. Hypothesisordering is
implemented with-a competitive mechanism in which small samples-of the training
data are used {ofocus the system’s attention-on the most promising hypotheses and
to reject the most useless. This investigation explored several multible-objective
evaluation functions as the basis of the filtering operation, and established the

non-dominance method as a robust and computationally practical approach.

e The establishment of the groundwork for a diverse and flexible hypothesis genera-
tion mechanism. A hypothesis generator is any mechanism that produces a testable

hypothesis given the current state of the inductive process.

7.3 Suggested Future Worn

This thesis lays the foundation of a much iarger research effort. The prototype sys-
tem OXGate provides a tool for the next stage. the development of the hypothesis gen-
eration component. Two major undertakings are-involved in the implementation of the
hypothesis generator. The first is the development of automated mechanisms for hypoth-

esis generation as described in Section 3.1.1. The second is the development of cueing

179




mechanisms for the state changes resulting from hypothesis incorporation to trigger the
application of domain knowledge in the hypothesis generator.

The hypothesis generation component was implemented only to-the extent necessary
to vetfurm controlled experiments on the effectiveness of certain pieces of dom..in knowl-
edge. The generator was not developed to the degree necessary to become an autonomous
and integral part of OXGate. Since OXGate is incomplete, the full opportunistic capa-
bilities of a completed system architecture have not been demonstrated. Specifically, the
experiments did not require that knowledge be invoked to-generate additio.nal hypothe-
ses based on a partial or tentative concept description. However, the experiments did
examine several variations on the types of knowledge used and the stage of induction in
which the knowledge was applied. In the experiments of Chapter 5, declarative knowl-
edge was used to create hypotheses before beginning the initial decision-tree induction.
This approach is similar to the situation in which the system generates hypotheses based
on the recognition of the problem domain. Another set of experiments (Section 6.1) ap-
plied both declarative and procedural knowledge to a completed decision-tree, to create
hypotheses for future use (learning from experience). These experiments demonstrate
the feasibility and flexibility of applying demain knowledge for hypothesis generation.

Several other areas of future investigation were identified during the course of this
research. They can be divided into three categories: evaluation measures, hypothesis

ordering considerations, and interesting extensions of the basic operation of OXGate.

Evaluation measures

¢ An alternative concave measurement of node impurity has been suggested by
Breiman et al. [1984]. Instead of using the entropy or information-gain of the
node, they propose the computationally simpler method of forming the product

of the positive and negative purities. Using this approach to estimate the quality
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of a split simply involves calculating the difference of the node impurity and the
weighted sum of the impurities of the branches. The formulas are identical to those
of information-gain presented on page 75. As the basis of a cost-complexity mea-
sure, it may be useful in product combination with simplicity fu. -both hypothesis

evaluation as well as ordering.

e Another area for future work is the development of a practical and syntactically
attractive approach to operator cost assignment for calculating hypothesis com-
plexity/simplicity. In this thesis, the operators AND, OR, and NOT are used with
costs of zero, while WHATIS and MEMBER. have costs of one. Preliminary testing
during the evolution of OXGate exhibited no noticeable, consistent benefit from
assigning non-zero custs to the Boolean operators. However, as discussed in Sec-
tion 4.2.2, constructive operators should be assigned costs commensurate with their

computational difficulty.

e Section 3.1.3 discusses the use of the product of confirmation and simplicity as
the basis for hypothesis evaluation. Theoretically, this approach should produce
well-behaved decision-tree induction; however, early empirical investigations con-
tradicted this expectation. This empirical disagreement with well-founded theory

warrants continued. investigalion.

Hypothesis ordering considerations

o In the -current implementation of lLypothesis ordering, three dimensions were
used for multiple-objective evaluation: confirmation, simplicity, and primitiveness.
Other measures are also- possible, such as the degree of confidence ascribed to a
hypothesis by its domain hnowledge-based generator, or the amount of combined
support that disjoint knowledge sources provide a hypothesis. Past behavior is

also a promising evaluation measure, using the history of the hypothesis on similar
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concepts or domains, the behavior of the family of hypotheses to which it belongs,

or the past utility of the operator(s) used to construct the hypothesis.

Four methods of contbining the evaluatio. measures were investigated in.Chapters 4
and 5. The linearly weighted combination approach and the application of a mod-
ified non-domination method were the best-behaved. Other combination methods
aiso warrant examination, such as modei-based decision analysis, the use of fuzzy

sets. or the Dempster-Schaeffer method of uncertain reasoning,.

Section 4.2.1.1 described several approaches to resolving the problem of the Quick-
Look sample not adequately representing highly disjunctive concepts. Increasing
the size of the sample improves the likelihvod of representing the islands, but at
a significant computational cost. One possible approach to avoid maintaining too
large a Quick-Look sample is to adjusl the sainple size according to the concept
dispersion or concept variation [Rendell and Seshu, 1990]. Such an approach re-
quires the development of mechanisms for assessing the complexity of concept and

dynamically scoping the sample size.

Another approach for handling highly disjunctive concepts is to balance the training
data (Section 5.4.4.3). While this approach appears to be an effective addition to
hypothesis ordering, the effects of intentionally skewing the training data need

further investigation.

Even with concepts of low complexily, when using small sets of training examples,
hypothesis ordering becomes very sensitive te the particular examples randomly
selected (Sections 5.3.and 5.5.3). A mechanism to assess the behavior of hypothesis

ordering and disable it {or smaller training sets would alleviate this sensitivity.
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e Section 5.4.4.1 demonstzated the benefit of retaining the full set of primitive hy-
potheses during induction. However, for a complex concept with a very rich initial
description-language, after several useful hypotheses have been constructed, there
may be no need to retain many of the primitive hypotheses any longer. It may be

‘beneficial to identify and eliminate the unneeded primitives.

Extensions of OXGate

e When selecting a hypothesis for incorporation, sometimes it is necessary to choose
from among several equally or near equally credible hypotheses. This choice may
have a substantial impact on the ability of OXGate to generate the proper hy-
potheses for good concept induction. One approach to avoid this sensitivity is to
instill OXGate with the ability to entertain multiple world-views. Each world-view
represents the state of the system after incorporating one of the hypotheses. After
the hypothesis generation has proposed more hypotheses and induction has pro-
ceeded further, OXGate can commit to one of the world-views and discard the rest.
This approach is a form of look-ahead: it is computationally expensive, but could

potentially pioduce better decision-trees.

¢ The experiential learning program Koala (Chapter 6) is currently relatively inflex-
ible with respect to the choice of patterns. The template building mechanism used
by Koala does not allow structural “wildcarding” in the pattern: only content wild-
cards are allowed. It does not have CITRE’s flexibility to pick a node for use as an
operand regardless of its structure. Such a capability would provide OXGate with
the ability to construct hypotheses of any level of complexity during experiential

learning.

o The experiments of Section 5.4.4.2 show that retaining and reintroducing some

of the hypotheses rejected by the hypothesis ordering mechanism may be
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advantageous for creating accurate decision-trees. A promising alturnative to recov-
ering the rejected hypotheses is to rely on the hypothesis generatcr to regenerate
certain ones when there is sufficient reason to do so. The hypothssis generator
should be made intelligent enough to recognize when the decision-tiee assembly
has reached an impasse, and attempt alternative approaches to hypothesis genera-

tion such as the selective regeneration of previously rejected hypotheses.

A user or developer interface to the hypothesis generator would provide the abil-
ity to modify easily the knowledge available to OXGate. The user could readily
experiment with the effects of particular pieces of knowledge, apply knowledge in-
crementally to-guide OXGate through induction of a particularly difficult concept,
or provide other types of guidance to the system such as dynamically modifying the
evaluation method and parameters. This interface would be a powerful addition to

the capabilities of OXGate as a flexible development environment.
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APPENDIX A

DEFINITIONS

Abduction: The act of producing a new hypothesis. The eztralogical production of a

general statement in the presence of concrete instances. [Watanabe, 1985)]

Accuracy: The measure of predictive performance of the resultant classifier on a set of
test data independent of the training data. It is the number of correctly identified
examples divided by the total number of examples-in the test set. [Breiman et al.,

1984] (See also Resubstitution Accuracy.)

Attribute: A variable describing a measurable property of an instance. An attribute

may be Boolean (binary), integer, real, or nominal valued. (See also Feature.)

Bias: A preference for certain areas of hypothesis space over others [Mitchell, 1980,
Utgoff, 1986]. Biases are necessary for effectively searching for a concept descrip-

tion. They can be context-insensitive, contezt-independent, or context-sensitive

(Section 2.2.2).

Binarization: The process of converting a non-binary attribute to a single feature.
The possible values of the attribute are grouped into two distinct subsets, thereby

converting an n-way decision into a binary one. [Cestrik et al., 1987]

Concept: An intensional description of a class of objects, i.e., a condensed (nonenumer-
ated) description intended to identify members of a particular class and discriminate

them from non-members. [Hunt et al., 1966, Matheus, 1989]

Concept Dispersion: The degree of disjunction inherent in the representation of the

concept in instance space. A complex concept has several distinct areas of positive
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examples of the concept spread throughout instance space, making it difficult or

impc.sible for a selective induction algorithm to-learn the concept.

Confirmation: The degree of confidence placed in a hypothesis on the grounds of the

empirical evidence.

Constructive Induction: A form of inductive concept learning in which new terms are

generated to enhance the instance description language. [Dietterich and Michalski,

1983]

Credibility: The quality or inductive probability of a hypothesis, defined as the product
of its confirmation and.plausibility, divided by the prior probability of the evidence.
[Watanabe, 1985]

Deduction: The act of drawing a conclusion from a set of declarations through logical

reasoning.

Evidential, Extra-Evidential/Extralogical: Factors affecting the evaluation of a hy-
pothesis. Evidential factors are based on empirical evidence (training data). Extra-
evidential/extralogical factors are based on aspects other than evidence, including
simplicity, elegance, harmony with a larger theoretical structure, and relationship

to other competing hypotheses. [Watanabe, 1985

Feature: According to Breiman et al. [1984], a feature is a real-valued variable manu-
factured from the function of the measured variables. Matheus [1989], Michalski
[1983] and other sources use feature loosely, equaling it to atiribute as a variable
with many possible values. In this thesis, a feature is defined as a special case of
attribute whose value can be only irue or false, i.e., limited to a Boolean-valued

variable (Section B.2).



Feature Construction: The application of constructive operators to existing features
PP P

resulting in the definition of one or more new features. {Matheus, 1989

Generalization: The modification of a feature or hypothesis to make it less specific to
the training instances, with the inient oi making it more applicable to the true

concept.

Hypothesis: A statement-of arbitrary complexity, defined as a function of terms from
the original instance description language. A hypothesis must be festable: it can be
determined to be “true” or “false” for a given instance by instantiating, the ground
attributes in the hypothesis description with the values present in the instance data.

(See also Primitive Hypotkesis.)

Hypothesis Evaluation: Determination of the credibility of a hypothesis Ly testing

against the full set of available training data.

Hypothesis Generation: The creation and proposition of candidate hypotheses for use
in inductive learning, i.e., the proposition of the original set of primitive hypotheses,

and the construction of new terms.

Hypothesis Incorporation: Acceptance of a hypothesis as a portion of the concept de-
scription. In decision-tree induction, incorporation involves adding the hypothesis
as a decision node in the tree, sorting the training data according to the hypothe-
sis, making the new state of the decision-tree available to the rest of OXGate, and

determining if the learning task has been satisfactorily completed.

Hypothesis Ordering: The heuristic means of constraining the number of hypotheses
passed along for hypothesis evaluation. Hypothesis ordering is used to identify the
most promising of the candidate hypotheses, and to reject or suppress those deemed

useless.
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Induction: The act of proposing a ger.eral conclusion from a limited set of evidence.

Inductive Concept Learning, Inductive Learning: Learning a concept description
from a set of training examples, with the intent of finding a sufficiently general

description to effectively predict the classification of previously unseen examples.

Incomplete Instance Description Language: A language is incomplete when the sct
of attributes is insuflicient to completely-discriminate between noise-free cases with
different outcomes [Michalski et al., 1986). In this situation, attributes constructed

from this language would also be insufficient to overcome the deficiency.

Koala: The experiential learning procedure used in OXGate. Koala peruses a compieted
decision-tree looking for hypotheses with which to construct new hypotheses. The
name Koala reflects the behav ior of the procedure: it climbs the entire tree, but is

particular about selecting only ccrtain branches leading to-the choicest leaves.

Multiple-Objective Evaluation/Multiple-Criteria Decision Making: The act of

formulating a decision based on several evaluation measures or criteria. [Yu, 1985)

Non-Dominance, Non-Dominated Hypotheses: A modified method of multiple-
criteria decision making applied to hypothesis ordering in which the preferred hy-
potheses are those not substantially surpassed in every evaluation dimension by

another hypothesis.

Opportunistic: Taking advantage of the current situation to further an existing goal.
In a system that reasons opportunistically, the determination of which knowledge
to apply is made dynamically, one step at a time, resulting in the incremental
generation of partial solutions. The choice of the knowledge to apply is based on

the current state of the solution. [Barr ¢t al., 1989]
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Opportunistic Constructive Induction: Concept induction that applies knowledge
at any opportune time during the inductive process to create new terms for the

description language. (See also Opportunistic and Constructive Induction.)

OXGate: OXGate is the name of the implementation developcd for this thesis. The
name is derived from a ferm used in the science fiction novel The Jesus Incident
by Larry Niven and Jerry Pournelle. In the novel, the Ox gate is a mysterious
port in a shipboard computer system from where deeply archived information and
well-kept secrets periodically emerge. IFrom the point of view of the hypothesis
evaluation mechanism in OXGate, generally useful hypotheses simply appear on
the blackboard with no indication of their origin; hence, they emerge from the “Ox

gate.”

Parity Problem: The general situation exemplified by the exclusive-or (XOR) operator:
no attribute involved in the parity situation provides a means of discriminating
between positive and negative examples. Either blind guessing, look-ahead, or

feature construction is required to proceed with concept induction. [Seshu, 1989]

Post-Pruning: A method of generalizing a completed decision-tree by removing decision
nodes which are statistically only weakly supported by the training data. [Breiman

et al., 1984]
Predictive Accuracy: (See Accuracy)

Pre-Pruning: A method of generalizing a decision-tree during assembly by performing
a statistical evaluation of the expected error of adding a particular decision node,
comparing it to the cstimated error of not adding the decision node, and adding

the node if appropriate. [Breiman et al., 1984)
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Primary Subset: An output of the hypothesis ordering component: the portion of
the pool of currently available hypotheses appearing to be the most promising for

further decision-tree induction.

Primitive Hypothesis: A primitive hypothesis is an attribute-value pair in which the
attribute is a member of the original instance description language. Only the
primitive hypotheses are operational: they arethe unly hypotheses directly testable

against the data.

Prior Probability: The prior (a priori) probability of a hypothesis is interpreted as
the extra-evidential likelihood of the hypothesis. It is the degree of confidence
attached to the hypothesis on the grounds of considerations outside the empirical

data. [Watanabe, 1985

Quick-Look: A heuristic method of estimating the confirmation of hypotheses by testing
against a small random subset of the training examples. It is related to hypothesis
filtering [Etzioni, 1988] and, very loosely, the use of windowing in ID3 [Wirth and

Catlett, 1988].

Rejected Subset: An output of the hypothesis ordering component: the portion of the
pool of currently available hypotheses appearing to be useless for current and future

decision-tree induction.

Replication Problem: The recurrence of portions of the concept description (subtrees)
throughout the decisiun-tree (Figure 2.8). When these subtrees are identified, they

can be added to the description language as constructed hypotheses, yiclding a more

concise and accurate decision-tree in subsequent induction. [Pagallo and Haussler,

1989]
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Resubstitution, Resubstitution Accuracy: Resubstitution refers to testing the clas-
sifier on the training data. The resubstitution accaracyis the percentage of training
instances classified properly. Mazimal resubstitulion accuracy implies that 100%
correct classification of the training data is not always possible due to a noisy data

set or an incomplete instance description language. [Breiman et al., 1984}

Secondary Subset: An output of the hypothesis ordering component: the portion of
the puol of currently available hypotiicses left over after removal of the primary and
rejected subsets. It represents the set of hypotheses potentially useful later during

the decision-tree assembly.

Selective Induction: Inductive concept learning using only the original instance de

scription language to formulate the concept description, without the benefit of

constructive operators.
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APPENDIX B

HYPOTHESIS REPRESENTATION

The decision-tree construction process underlying OXGate proceeds by the-selection
and piecewise incorporation. of testable hypotheses, statements which when tested against
an instance are either “true” or “false.”® Regardless of how complex constructed hy-
potheses become, as long as their evaluation on an instance results in the determination
of their truth or falsehood, they can be used-by OXGate for assembly of the decision-tree.

Therefore, the decision-tree produced by OXGate is always a binary tree.

ID3 Assistant OXGate

{reg;‘gkmv } \,\lfaxlcl‘g }

(X X1 [ XX

Figure B.1 Contrast of Three Representations. For nominal or discretized numer-
ical scales, such as the attribute color, ID3 performs n-way splitting across an attribute,
Assistant performs binarization, and OXGate produces a strictly binary decision-tree
representation.

The binary tree of OXGate is an alternative representation to the n-ary trees produced

by ID3 (Figure B.1). In the case of binary attributes, the resultant trees will be identical.

'In OXGate the “don’t know” condition on a tested attribute is treated as false. Other approaches
could be used, such as assigning conditional probabilities to each pussible value of the attribute (Assis-
tant86 [Cestrik et al., 1987]) or simply selecting the most probable value (CN2 [Clark ar.d Niblett, 1987)).
In addition, if an instance cannot be identified as a positive exainple of the concept, OXGate considers
it to be a negative example. Other approaches such as tlic Bayesian classification in Assistant86 could
be incorporated into OXGate, but the exact treatment of unknowns is not germane to the theme of this
research and is not addressed. See [Quinlan, 1989] for a discussion of approaches.
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For nominal attributes of arity greater than two, the preference of one representaiion over
the other is a function of the particular concept being described (Section B.1). For other
attribute scales, such as real numbers, the superiority of one representation over the other
is subject to interpretation: to use these scales, ID3 mwmst receive from some external
source a translation of the scales in a discretized (nominal) form. OXGate can use the
real-valued scales directly by postulating ranges over the values-or other mathematical
functions, but, in-essence, this requires the same process of finding suitable breakpoints in
the original scale and transforming the representation to-a usable form. In both systems,
this change of representation clouds direct comparisons between OXGate:and 1D3 vn the
strengths of the decision-tree representations alone.

Assistant and its descendant Assistant86 [Cestrik el ul., 1987), derivatives of the 1D3
family of decision-tree learning systems, also use a binary decision-tree reptesentation.
Assistant uses a process called binarization to group the possible values of the atiribute
being considered at a particular decision point into two -distinct subsets, thereby con-
verting an n-way decision into a binary one (Figure B.1). For real-valued attributes,
Assistant preprocesses the scales into-a finite number-of subintervais and uses-a heuristic
method to avoid testing all possible groupings. This approach is abstractly equivalent
to that of OXGate, although OXGate retains the distinct advantage of being able to
accept suggestions by the knowledge sources on possible approaches to the partitioning
an'cl grouping functions. With norainal scales, Assistant always performs binarization,
heuristically secking the most useful subsets of values. In OXGale, the nominal val-
ues could be grouped into subsels provided some knowledge or impctus exists to do so,
but its basic mode of operation is to use simple attribute-value pairs as individual de-
cision points. This type of “fine-grained binarization” used by OXGate is also found
in CITRE [Matheus, 1989], STAGGER [Schlimmer, 1987], and the original family of
Concept Learning Systems (CLS) [Hunt ef al., 1966].
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B.1 ruanctional Equivalence and Justification

One of the ubvious criticisms OXGate faces is the claim that attributes may need to be
evaluated mote than once during the-classification of a test instance while ID3 evaluates
each attribute at most once. While on the surface this seems a valid criticism, it loses
its potency as an argument against OXGate when one considers the implementation
details involved in acquiring the value of an attribute for a specific instance, storing the
value in a readily accessible location, and comparing the value against the decision point
wonditionals until the match is found. It would be a simple matter to equip OXGate with
the ability to cache the test results for future use if speed was a primary concern.

For the attribute color in Figure B.1, ID3 tests the five values for the attribute and
is finished with it. Assistant tests five attribute-value pairs at the top level, three at
the second level and two at the third level for a total of ten tests. OXGate tests five
attribute-value pairs at the top level, four at the second level, and three at the third level
for a total of twelve tests. Although the binary representation of Assistant results in
fewer tests than in OXGate, Assistant must consider fifteen unique subset combinations
of the tested values at the top level, seven combinations at the second level, and three
combinations at the third. The computational complexity of determining the best subsets
may outweigh the cost of the additional tests incurred by OXGate.

Although the representation used in ID3 appears superior to the binary representa-
tions in the previous example, the algorithmic and decision-tree complexities of the three
approaches vary with the concept. At times, the binary decision-tree representation is
superior to the ID3 decision-tree. In the example shown in Figure B.2, the Assistant and
0XGate representations are equivalent, and neither suffers the problem of the replication
of subtrees shown by ID3 or its associated lack of understandability [Pagallo and Haus-
sler, 1989]. The average number of tests needed to classify an example (2.167), as well

as the worst-case number of tests (3), is identical across representations.
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ID3 Assistant OXGate

circle, oval,
triangle

Figure B.2 Comparison of Decision-Trees. The structured splitting method of
1ID3 (mendatory n-way splitting) puts it at a distinct disadvantage for the concept
((color = red) OR (size = large) OR (shape = square)).

The preference of one decision-tree representaticn over another depends on the com-
plexity of the concept and. domain being considered, as well as the choice of metrics
for evaluating tree quality (e.g., comprehensibility, lack of replication, average number of
tests during classification). Section 5.2 presents experiments to ascertain if-either the ID3
or OXGate decision-tree representations possess an intrinsic representational advantage
over the other. Several artificial and two real-world concepts were used for the tests. The
binary representation used in OXGate provides neither generally better nor worse intrin-
sic performance than the ID3 representation, yet, in allowing the flexible incorporation

of generated hypotheses, it provides the foundation for the opportunistic use of domain

knowledge.

B.2 Representation Formalism

In this section, a formalism-and notation is presented to establish a frame of reference
for describing the application of biases and knowledge in Section 6.1. This section presents
the development of a feature-based description language from an original attribute-based

language, and concludes with a description of decision-trees as a sct of binary relations.
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B.2.1  Attributes and features

Let 7(@Q) be defined as a test on ¢ (an attribute, feature, class, or leaf node) to
determine the value of its instantiation. The original attribute-based description language

A is a set-of original or ground atéributes, and is defined by

attribute a;, 1=1,2,...,
attribute-based description language A = {e;},
7** value of attribute a; : v,w, i=12,...,

and the set of values of attribute a; : Vi = {'u,(j)} (le., 7(a;) € Vi)

To-convert the attribute-based description language to a feature-based language suit-
able for the assembly of the fine-grained binary decision-trees used by OXGate, create for
each nominal attribute a, a set of primitive features (primitive hypotheses) X, = {.vfj)}

such that there is a primnitive fealure xf’.) for every possible attribute-value pair:

P 2 ('r(a,-) = vfj))z, where 7 ('vf’)) € {T, F}

For numerical-vaiued attributes (real or integer), it is usually disadvantageous to
atlempt to create a feature for each possible value of the attribute. Binarization is
accomplished by selecting ranges of values, 2nd the feature becomes a test whether the
instantiation of the attribute falls-within the range. For these attributes a,, create a set

of primitive features X; = {m;(")}:

primitive feature z{*) £ (T(a;) € !]I.-(V,-)), where
ge(Vi) CV; {defined with <, <,>,>, etc.),
Ugr(Vi)=Vi, 7 ('z:f")) € {T,F}, and

Vm¥n [(m #n) = (gn (V) N ga(V2) = 0)]
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This binarization of the attributes defines a feature-based description language
X = U,&X,. Essentially, a feature is defined as a test (true or false) to determine whether
the instantiation of a particular attribute is a member of a particular subset of possible
values. This approach also applies to the binarization method of Assistant on nominal-
valued attiibutes with two exceptions: the relational operators defining which subsets of
V, constitute gx(V;) are not applicable to nominal-valued attributes, and the requirement

for disjoint subsets is unnecessary.

B.2.2 Decision-trees

For-inductive concept learning of a decision-tree, a set of training instances Z, is pro-
vided, where each instance I, € I; is described by an attribute vector @ = (a1, az, ..., ¢s),
corresponding to the attribute-based description language A = {a1,4as,...,a,}. The
vector @ can be recast as a-feature vector ¥ = (xﬁl),x?), T L C IS O T ,:1:53'"))
corresponding to the feature-based description language X = a:gl),...,:z:g")}. To sim-
plify the notation, {:cgl), . ,:vﬁ,"")} shall be mapped one-to-one onto {z,...,zm} with
the understanding that this description language X = {x,,...,2n} is derived from the
original attribute language in the manner presented in the previous section.

Each instance I, can then be described by a tuple (%, ;) in which &, is the instan-
tiation of the feature vector Z for I, and ¢, is its classification, i.e., @, € {+,-}.

The result of inductive concept learning under the conditions described above is a
binary decision-tree 7(X’) over the feature-based language ;Y. To describe the tree, first
let X, be the subset of features used as decision points in the construction of 7(X) for

the training instances Z,:

X, C X such ihat T(f c) = T(X)




An individual feature &, € X, may be used multiple times in the tree. Let a noce be
defined by using a feature as a decision, and let A, be the set of nodes forming the tree
T (X.). The mapping from N, to X, is surjective, and not-injective: a node maps to a
single feature, but a feature may be mapped onto by multiple nodes. The relationship

between a node n, and its associated feature x; is depicted as

Ny ¢

Also, let Z, be the set of termini (leaf nodes) in 7 (X,):

Z.={z,2,...} and 7(z)€ {+,—}

Then, the tree 7(X,) may be described by the set of nodes Y, = N U Z; and a set of

binary relations (edges) R. over ), providing directed con icctions between the nodes.

B.2.3 Feature construction

Section 6.1 describes the use of learned uecision-trees as the basis for feature construc-
tion when learning from experience. FRINGE and CITRE both construct new features
as binary conjunctions of operands formed from existing features, described below. The
selection of the features to use for construction is addressed in Section B.3.

Typically, the notation used for a relation in R, is ((na,? NETR \ indicating that
a directed edge exists from node n, to n,. For the purposc ol using the information
contained in the structure of the decision-tree 7 (X;) to se' .t features for use in feature
construction, it is necessary to distinguish between the left and. right branches emanating
from a decision node. The relations in R, cannot be described simply as ((na,nb) € 'R,c)

without taking into account the result of the test of the feature at that node. Therefore,
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define R, = R U R, (union of the left and right branches), such that for n, — z,

(e ) € RD) = (n(wa) =T),
((na,nb} € R,) = (T(.’Eg\ = F) ,
and RyNR, =10

Also, define Q(z,) to be an operand for the <.t -.cuction of a new featur: under
the conditions (nq,np) € R. and n, — z,. Where tk relalion is-a left branch from the
decision, the operand is the feature x,. Where ther. . . is ar zht branch, the negation

of the feature, T, is used as the operand.

z, for (ng,np) € Ry,
Qza) = (nesms) € R (B.1)
T, for (ne,mp) € R

General feature construction [Matheus, 1989] consists of the application of & .onstruc-

tive operator O; to a set of operands to create a new feature z*:
= 0; (zj), ...) (B.2)

The applications discussed in Section 6.1 (FRINGE, CITRE, and 0XGate/Koala) use
a learned decision-tree as the basis for selection of operands for feature construction.
Binary conjunction is the only constructive operator (O,) considered. As Matheus [1989]
points out, the iterative application of binary conjunction in concert with the negation
implicit in the nodes of a binar: decision-tree (and incorporated into the operands) yields
a complete Boolean representational capabil’cy. Generalization operators are also applied
in CITRE and OXGate, but only after the binary conjunctions are created. Tl :zefore,

for these applications, the set of new features X derivable from the decision-tree T(X,)
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in a single iteration is

%; = {(Owe) A=) | T(X), 20 € Xy € Xy 1)

An additional general limitation used by these applications is that not all possible
combinations of operands are used for new feature construction. Instead, operands are
selected only fro- paths in the decision-tree leading from the root node ng to positive
leaf nodes. The root node ng is definéd as the only node in 7(X;) that s not on the
subordinate end of a relationship with any other node in the tree. The fc ture g used

at the root node (ng — zp) is defined by
zo = <$5 | -3 [(<ni=nj) € Re) N (n; = ) N (nj v ;) N (i € Xo) 0 (5 € Xc)])
The set of all positive leaves (4 termini) in T(X;) is

28 ={zi|z ¢ Zey7(z) = +}
A single path leading from the root zg to a positive leaf z; is a subtree T(X;) of
T (X.) defined by nodes N, where
Ny = Xy, X, C X, (includes zg), Y, =N, U {z},

Ry CRi, Ryy CRyy, and Ry=TR, UR,,

The set of features A is the subset of features from A that are used as decision

points along the path from the root node to the positive leaf z;. Therefore, the set

of new features possible th.ough construction using the operands presented in subtree

T(X,)is

Xy = {(.Q(:ca) A Q(a:b)) | T(X,), s € Xy, x € &y, a b} (B.3)




The complete set of new features is the union of new features constructed from each of

the paths: T(X;) is
xr=Jx;

q

B.2.4 Hypothesis construction

The construction of general features defined in Equation (B.2) is a limited form of
construction. Each of the-operands can return only the value of “true™ or “false” when
tested, limiting the types of operator and the power of the construction. When the
original attributes are themselves Boolean features, this restriction is not an issue. Con-
structions using nominal-valued attributes ure also not limited by this restriction since
the nature of the attribute limits the types of operators applicable. However, this ap-
proach to construction severely limits the potential available with real- and integer-valued
attributes. For example, using the illustration shown in Figure 1.1 (page 3), no amount
of feature construction could create the feature (P x V = C) fron. the initial feature set
{P1:pP2;--1PnsV1,V2,...,un} where the features p, and v; represent tests for ranges of
pressure and volume, respectively. The attributes themselves must be combined into a
rew attribute, and then a useful hypothesis (in this case the true concept description)
can e created testing the new attribute against a set or range of values. Hypothesis
construction of this form can be described as creating a new attribute ¢* and a new

hypothesis A~ by
@ e F(A), and b & <T(a“) €y (f-(V’)))

whete A’ is the set of all attributes including previously constructed ones, F is a function
or sct of operatorss applied to A', and F(V') is the possible range of values corresponding
to the new attribute (typically F is the same Junc oz 22 T hut is applied to the ranges

of the attributes). Each new at!ribute a* is one of several atir:hutes potentially created
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by applying the set of operators F to-the set of existing attributes A’. A new hypothesis
is a test to determine if the instantiation of the new attribute (the test 7 on a”) is ap
element of a subset of the new values.

A constructed hypothesis is essentially a feature of arbitrary complexity. Hypotiiesis
construction subsumes feature construction (Equation (B.2)) since features are simply
Boolean-valued attributes. The general form of a constructed hypothesis is a test whether
the instantiatior, * a certain function of attributes is related in some fashion to a specific

subset of values, and can be defined by
he & (,~ (F(ay) &g (ﬁ(v'))) (B.4)

Equation (B.4) is very general and necessarily noncommittal. It encompasses a wide
variety of statements: in fact, any statement that is ultimately a function of only the
ground attributes. The reason it needs to be so general is illustrated below with a few
short examgles. Tor ease of understanding the examples here and throughout the thesis,
the form (A = B) will be used as shorthand for (’:‘(A) = B), both meaning “test if

attribute A hz}s value B.”

1. Let two features be z; = (width = 10) and =z, = (length = 10), corresponding to
a; = width, v; = 10, a; = length, and v, = 10. One possible construction would
be the application of the additio.: operator, resulting in a new attribute a3 =
(a1 + a2) = (width + length), and a new hypothesis h3 = ((width + length) = 20).
This hypothesis has the form ('r (.7' (al,ag)) =F (‘01,'02)).

2. Using the same two features with their corresponding attributes and values, an-

other reasonable construction would be h; = ((width, = length) = T) entailing a
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new Boolean attribute a3 = (width = length).2 This hypothesis has the form

(’r (}' (as, (Lg)) = T) , or more simply, F(ay,a2).

3. Now consider two features x4 = (color = red) and z5 = (shape = oval). In this
case it would not make sense to combine the attributes color and shape.
Construction involves combinations of the features, such as the hypothesis
he = ((color = red) AND (shape = oval))'. This hypothesis-has the form F (x4, z5),
equivalent to ('r (.77 (:1:4,:1:5)) = T). This approach to hypothesis construction is
equivalent to the non-generalizing feature construction used in FRINGE, CITRE,

and Koala.

4. From the preceding components, a more complex hypothesis can be constructed:
hr = ((color = red) AND (shape = oval) AND ((width + length) = 20)). This
hypothesis takes the general form of Equation (B.4) where a complex function

of the ground attributes is related in some fashion to a complex function of values.

5. Another type of hypothesis that takes the form of Equation (B.4) is the gen-
eralization created through the collection of disjoint terms. For example, the
hypothesis ((shape =rect.) AND (color € {red,white, blue})) is a generalization
of ((shape = rect.) AND (color = red)), ((shape =rect.) AND (color = white)),
and ((shapc = rect.) AND (color = blue)). This approach to generalization is im-

plemented in Koala through the use of the MEMBER operator.

2Notc the equivalence of ((width = length) = T) and (width = length). Both are statements with
identical meanings. This example illustrates une of the difficulties of describing exactly what a feature
is, for if A is a Boolean attribute, then 4, (A=T), (A=T)=7T), (A=T)=T)=T),... arc all
equivalent statements. By the definitions used herein, all are hypotheses, but only A is a feature.




B.3 Applying Biases and Knowledge

Section 6.1 describes the application of biases and knowledge to select operands for
constructing new features (FRINGE and CITRE) or hypotheses (0XGate/Koala) from
a learned decision-tree. The biases incorporated in FRINGE and CITRE provide syn-
tactic guidance, specifying locations in the tree from which to choose operands. CITRE
and Koala use knowledge to impose other constraints, specifying the nature of allowed
operands. This section parallels Section 6.1 and presents the application of biases and
knowledge as constraints on the set of constructions possible from the decision-tree.

FRINGE uses a single ‘bias for operand selection: fringe. CITRE is able to use one
of five biases: fringe, root, root-fringe, adjacent, and none. These biases are described
in Section 6.1. Using the notation developed in Section B.2, it is easy to show how the
application of these biases refines the selection of operands from within a subtree 7(.Yy),
the path from the root node ng to positive leaf z,. Each bias can be viewed as a filtering
operation by the imposition of additional constraints on the construction of a new feature

A (defined in Equation (B.3) and repeated here)
Ay = {(Q(:z:a) AQws)) | T(X,), 20 & Xy 24 € Xy 0 b} (B.5)

where z, and r, are the two features used at the selected decision points in the path,
and Q(x,) and Q(z;) are the two operands derived from those features according to
Equation (B.1).

One example of this filtering operation is the application of the fringe bias, imposing

the additional constraints of

(nasmp) € Ry, (ny,2) ERyy Mg 13 T, M+ T,

with z, € Z¥ N, (i.e, the only positive leafl node in T(X,))
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to those already incorporated in the subtree. This results in the full definition of new

feature X; as

(Qee) A=) | T(,), 2e € Xy 5 € Xy a b, -

fringe

#= (1as5) € Ray (s} € Ry~

Ng + o, N+ Tp, 2, € z:nyq

Similarly, the adjacent bias imposes additional constraints to A of
1

(na,7e) € Ry, (ns,4:) €ER,, and y: € D),

In addition, the root bias is identical to the adjacent bias with the restriction that
i
the most superior node of the two relations be ng;:

(ng,ne) € Ry, (ne.u:) €R,, and y: € )

Finaily, the roof-fringe bias demands that

(ng.ns) € Ry, (np,25) € Ry, mp # 0z, . # 2. and 2z, € EF NY,
i

The biases just described are implemented 2s filters that act on the positions of the
features within the tree. Knowledge may also be applied as fi'ters, but in addition to being
concerned with the position of features (syntactic filtering), knowledge-based filters may
also be concerned with the meaning of the terms (semantic filtering) or their relationship

to the domain (contextual filtering).

Figure 6.1 (page 156) illustrates a possible porlion of a learned decision-tree for the

NetTalk Silent concepi. The given attributes are the seven characters () through 7,




in order)® composing thie window used to-examine a word fragment. In accordance with

the notation of Section B.2.1, this domain is described by

A ={Cy,Ca,Cs,Cs,Cs, Cs, Ci)

V; = {a,b,¢c,...y,2,} for i=1...7,
o & (fr(C'i) = v,gk)) ,

and X = {a{"} forallk

The knowledge used to guide the pairings in Figure 6.1 can be stated as: the center
character is the focus cf attention, and the characters adjacent to the center provide the
most information-gain [Lucassen and Mercer, 1984). This knowledge focuses the selection
of features for construction on those related to the attribute pairs (Cy, C3) and (Cy, Cs).

The knowledge can be described as additional constraints on A7 (Equation (B.3)) of

T, € X4, Tp € X30X5,
(na,?/'y) € Rq) Ng 1 Ty,
(b, Ys) € Ry, np = @,

Yy € yq; and Ys € yq

resulting in new hypotheses of the form found in Example 3 on page 203.

The implementation-of the experiential learning mechanism in OXGate is the proce-
dure Koala. Koala searches for all pairings of irue hypothes. leading to positive leaf
nodes, but keeps only those defined by knowledge (such as that desciibed above) as
coded in search patterns. The acreptance of true hypotheses only, as opposed tc their
negations, embodies the additional constraints on. Xy of (na,y) € Ry and (ns, ys) € Ry,

which define theﬁperand (z) to equal z; for all i.

3For notational convenience ir_rclating to the other discussions of NetTalk throughout this thesis,
the terms CX” and Cx are assumed synonymous, i.¢., C1 is identical to C}, and so forth.




APPENDIX C

ARTIFICIAL BCOLEAN FUNCTI@NS

CONCEPT: (conbp ((anp (EQP ’X10'T)
(EqQp ’X5 'T)
(eqp ’X11'T)))
((AnD (EQP ’X2 'F)
(eQr X7 'T)
(8P 'X6 'F)))
((anD (EQP ’X1°T)
(EQpr X3 'F)
{(Eqpr 'X12-°T))))

DOMAIN: (X (T F)), (X2 (T F)), (X3(T F)), (X4 (T F),
(X5 (T F), (X6 (T F)), (X7 (T 1Y), (X8(T 1)),
(X9 (T ), (X10(T 7)), X211 (T ), (X12 (T F))

MBANING: ((X10 A X5 A X11) v (X2 A X7 A X0) V (X1 A X3 A X12)

Instance space size = 4096 instances
-Coverage = 33% positive
24 primitive hypotheses available

Figure C.1 Lypical Boolean:3-term 3DNF Concept.

This appendix presents the artificially created concepts with Boolean-valued at-

tributes. In the experiments of Chapter 5, the-{raining date used are random subsets of

the instance space-and the test:data comprisethe set of all examples in the instance space.

Each run within an experiment uses 2 different randoruly generated concept. TFigure C.1

describes’ a iypical 3~ter_rﬁ 3DNT concept: a-concept with threu terms joined together

by disjuncts, with-cach term consisting.of the-conjuiction of three primitive hypotheses.

Yn the figures. the copcepls are deéscribed in CommonLisp where COND- represents the
“if-Lhen-else-1f” function and BQP is a test of whether the value of the attribute for a considered
- instance equals the given value.
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Figure C.2 describes a typical 4-term 3*DNF concept: a disjunction of four terms, where
three of the terms are conjunctions of three primitive hypotheses, and the fourth term is a
binary conjunction. For the experiments of this thesis, the concept generation algorithm
produces only “clean” concepts, where a particular fecature is used at most once in ‘the

concept.

CONCEPT: (conp ((AND (EQP ’X10 'T)

(EQp X5 'T)
(eQr 'X11 °T)))

((anD (BqQP X2 T)
(EQr 'X7°'T)
(EQP X6 'T))

((anp (BQP ’X1°T)
(EQP 'X3 'T)
(EQpr ’X12'T))))

((anD (EQP X9 'F)
(EQP X8 °T))))

DOMAIN: (X1 (T F)), (X2 (T F)), (X3 (T F)), (X4 (T ),

(X5 (T ), (X6 (T F)), (X7 (T F)), (X8 (T ),
(X9 (T ), (X10 (T ), (X11 (T F)), (X12 (T I))

MEANING: ((X10 A X5 A X11) v (X2 A X7 A X6) V
(X1 AX3 A X12) v (X9 A X8))

Instance space size = 4096 instances
Coverage = 50% positive
24 primitive hypotheses available

Figure C.2 Typical Boolean 4-term 3*DNF Concept.

The primitive hypotheses are of the form (X1 = T'), or as implemented, (EQP ’X1 'T).
In the experiments of Chapters 5 and 6, sets of constructed hypotheses are used to
exercise the hypothesis ordering mechanism of OXGate. The knowledge used to generate
hypotheses in this domain is weak, syntactic knowledge and anticipales only the form of

elements of the decision-trees. Two sets of constructed hypotheses are used, described

below.




In one set of constructed hypotheses, the negations of all of the primitives are first
created, e.g., (NOT (X1 =1T)). Although this is logically equivalent to (X1 = F), the
negations are included to help flood OXGate with constructed hypotheses. The primitive
hypotheses and their negations are then used as operands to create binary conjuncts and
binary disjuncts. An example of a binary conjunct is (X1 =T) AND (X2 = F)). An
example of a binary disjunct is ((X1 =T) Or (NOT (X3 = F))). This last example
would be represented in OXGate as ((EQP 'X1 'T) or (NOT (EQP 'X3 'F"))). In this 12-
featured Boolean domain, 24 primitive hypotheses are available. From these, 24 negations
can be created. Using these 48 hypotheses as operands, 1128 binary conjuncts and 1128
binary disjuncts can be created for a total of 2280 constructed hypotheses. The other

set of constructed hypotheses consists of 264 binary and 1760 trinary conjuncts created

from the 24 primitive hypotheses, for a total of 2024 constructed hypotheses.




APPENDIX D

ARTIFICIAL NOMINAL FUNCTIONS

This appendix presents three artificially created concepts with nominal-valued at-
tributes. In the experiments of Chapter 5, the training data used are random subsets
of the instance space and the test data comprise the set of all examples in the instance
space. Iligure D.1 describes Concept A, a concept of medium complexity, Figure D.2
describes Concept B, a more complex structure, and Figure D.3 describes Concept C, a
very simple construct, but one difficult for ID3 to represent. The concepts are described
in CommonLisp where COND repiesents the “if-then-else-if” function and EQP is a test

of whether the value of the attribute for a considered instance equals the given value.

CONCEPT: (conp ((EQP ’color ’green))
((eqP ’color ’blue)
(or (EQP ’shape ’circle)
(EQP ’shape ’square)))
((eQP ’color ’red)
(conp ((NOT (EQP ’size *medium))
(or{EGP ’shape ’triangle)
(EQp 'shape ‘oval))))))

DOMAIN:  (color (red white blue blac xreen)),
(shape (oval circle triangle square)),
(size (stzall medium large)),
(flavor (tart sweet salty bad))

MEANING: An object is zither green, a blue circle, a blue square,
a red non-medium triangle, or a red non-medium oval.

Instance space size = 240 instances
Coverage = 37% positive
16 primitive hypotheses available

Figure D.1 Nominal Coxcept A.




CONCEPT: (conp ((EQP “color ’green))
((eqp ’color ’blue)-
(conp ((EQP ’shape ’circle)
(or (EQP ’flavor ’sweet)
(eqQp “flavor ’salty)
(eQP ’flavor ’tart)))
((eQp ’shape ’triangle) (EQP ’flavor *bitter))))
((eqr ’color ’red)
(conD ((EQP 'shape ’triangle)
(conDp ((EQP ’size ’large)
(or (EqP *flavor ’sweet)
(eqQp *flavor ’salty)
(eqp ’flavor *tart)))
((or (EQP ’size ’small)
(EQP ’size *medium))
(eqp “flavor *bitter))))
((eQp ’shape ’oval) (NoT (EQP ’size ’huge)))
((anD (EQP ’flavor ’spicy)
(EQP size ’large)))))
((eqQp ’size *huge)))

DOMAIN:  (color (red white blue black green orange purple aqua gray)),
(shape (oval circle triangle square diamond crescent)),
(size-(tiny small medium large huge)),
(flavor (tart sweet salty spicy bitter))

MEANING: An object is_either green, a sweet blue circle, a salty
blue circle, a tart blue circle, a bitter blue triangle,
a Jarge sweet red triangle, a large-salty red triangle,
a large tart red triangle, a small bitter red triangle,
a medium bitter red triangle, a non-huge red oval,
a large spicy red anything, or huge if it isn’t green,
blue, or red.

Instance space size = 1350 instances
Coverage = 28% positive
25 primitive hypotheses available

Figure D.2 Nominal Concept B.
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CONCGCEPT: (conD ((EQP ’color 'red))
((EQP ’size 'large))
((EQp ’shape ’circle)))

DOMAIN:  (color (red white blue black green)),
(shape (oval circle triangle square)),
(size (small medium large)),
(flavor (tart-sweet salty bad))

MEANING: An object is either red, large, or a circle.

Instance space size = 240 instances
Coverage = 60% positive
16 primitive hypotheses available

Figure D.3 Nominal Concept C.

The primitive hypotheses are of the form (color = green), or as implemented,
(EQP ’color ’green). In the experiments of Chapters 5 and 6, sets of constructed hy-
potheses are used to exercise the hypothesis ordering mechanism of OXGate. The
knowledge used to generate hypotheses in this domain is weak, syntactic knowledge
and only anticipates the form of elements of the decision-trees. To construct hypothe-
ses, the negations of all the primitives are first created, e.g., (NOT (color = green)).
The primitive hypotheses and their necgations are then used as operands to cre-
ate binary conjuncts and binary disjuncts. An example of a binary conjunct
is ((color = green) AND (shape = oval)). An example of a binary disjunct is
((color = green) OR (NOT (lasie = tart))). This last example would be represented in
OXGate as ((EQP ’color ’green) OR (NOT (EQP ’taste ’tart))).

For Concepts A and C, 16 primitive hypotheses are available with the given domain
list. From these, 16 negations can be created. Using these 32-hypotheses as operands, 496
binary conjuncts and 496 binary disjuncts can be created for a total of 1008 constructed:
hypotheses. Ior Concept B, the 25 primitive hypotheses yield 25 negations, 1225 binary

conjuncts, and 1225 binary disjuncts, for a total of 2475 constructed hypotheses.
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APPENDIX E

NETTALK DOMAIN

The NetTalk domain database! is an updated version of the data set used by Se-
jnowski and Rosenberg in their study of speech generation using a neural network [Se-
jnowski and Rosenberg, 1987). It is available for academic use froin: the Repository of
Machine Learning Domains maintained by the University of California at Irvine. The
databasc contains a list of 20;008 LEnglish words, along with a phonetic transcription
for each character position of each word. The transcriptions include 51 phoneme repre-
sentations, 5 stress/syllabic markers, and a marker for a silent character position. An
additional marker is used for foreign/irregula: words, providing a total of 58 distinct
concepts explicitly represented-in the database.

The original use of the data was to-train a neural ‘network to produce the proper
phonemcs, given a string of letiers as input. The input to the network was a series
of seven conseculive letters from- one of the training words. The central letter in this
sequence was the “current” one for which the phonemic output was to be produced.
Three letters on either side of this central letter provide context that helps to determine
the pronunciation. (A few words exist in English for which this local seven-letter window
is not sufficient to determine the proper output.) For the study using this dictionary
corpus, individual words were moved through the window so that each letter in the word
was seen in the central position. Blanks were added before and after the word as needed.

In the petwork training task, 29 input units were provided to the network for each
of the seven characters in the window. The output side of the network used a dis-

tributed representation for the phonemes. There were 21 output units representing

1Copyright ©1988 by Terrence J. Sejnowski.




various articulatory features such-as voicing and vowel height. Each phoneme was repre-
sented by a distinct bina1y vector over this set of 21 units. In addition, there were 5 output
units that encoded the stress and syllable boundaries. This 26-bit string represented the
input vector to a speech generation unit (DecTalk). The network was trained by sliding
the words in the dictionary across the seven-character window. Several iterations werc
run using the entire dictionary before learning was declared complete. [Sejnowski and
Rosenberg, 1987

In this thesis, the NetTalk database was used differently. Comparisons between the
effectiveness of the neural network approach and OXGate are neither possible nor rele-
vant. For OXGate, a single concept (described below) was selected from the 58 explicitly
represented concepts in the database. The output of OXCate was a decision-tree de-
scription of this concept while the neural network aitempted to simultaneously learn all
58 concepts in the 26-bit vector representation. The mapping of the 26-bit string pro-
duced by the network to the phonemic representations was not provided in the NetTalk
database, making direct coinparisons between the two approaches impossible. In addi-
tion, the neural network input consisted of the entire dictionary database while OXGate

used subsets of the data for training and testing.

The NetTalk Silent Concept Each of the seven character positions in the presen-
tation window is an attribute (C1 through C7). The focus of learning is the center
position, C4. Each attribute may-take on one of 27 values: the 26 letters of the alphabet
and the blank.> This domain defines a potential instance space of 277 (> 10'°) unique
examples. The actual instance space is much sparser since the English language cxcludes
many letter combinations. This set of attributes also defines 27 x 7 = 189 primitive

hypotheses.

2Attribute C4 is also allowed to become “blank,” although this situation never occurs in practice due
to the nature of the windowing process.




The single concept of “silence in the center window position,” known in this thesis
as the NetTalk Silent concept, was chosen for its ease of understanding, potential for
application of domain knowlcdge, and prevalence. Positive examples of this concept
associate the “silent” phoneme marker with window position 4, or character C4. Of
the more than 143,000 seven-character windows possible from the 20,008 words in the
NetTalk database, a random set of 2000 instances was drawn for training and a separate
set of 6000 instances was randomly drawn for testing. The training set consisted of
13.55% positive examples; the tesi set was 15.3% positive.

Two forms of potentially useful domain knowledge, both involving the characters on
either side of pusition C4, provided the set of constructed hypotheses used to exercise
OXGate. The first form of kuowledge was the conjecture thay the characters adjacent
to the center position might be important. This conjecture is strongly supported by
the data of Lucassen and Mercer [1984], where the mutual information between the cen-
ter window position and neighboring letters is shown to be greatest with the adjacent
positions, and decreases with the distance {r. 1 the center. This knowledge was procedu-
rally applied to exhaustively generate ¢ ~.juncis of pairs of adjacent charzvters focused
on C4, i.e., ((C3 =«a) AND (C4 =a)), ..., ((C4 =2) AND (C5 = 2)), including those
using blanks. This application yieldud 135§ constructed hypotheses. The second form-of
knowledge was more general, subsui.ing some of the first constructed-terms, and conjec-
tured that when the adjacent characters were the same, one of them would be silent. This
was used to create two additional constructed hypotheses, (C3 = C4) and (C4 = C5),
for a total of 1460. Other obvious forms of knowledge were not used, such as omitting
occurrences of the “blank” in C4 and other impossible structures (e.g., C5 is blank when
both C4 and C6 are not), and using knowledge about legal letter combinations to filter

out hypotheses such-as ((C3 = q) AND (C4 = z)).
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APPENDIX F

BREAST CANCER DOMAIN

The Breast Cancer database consists of medical data collected on 286 patients that
have undergone an operation to treat breast cancer. Of those, approximately 30% had
the condition recur within five years. The database was provided for academic use by
M. Zwitter and M. Soklic of the Uriversity Medical Centre, Institute of Oncology, Ljubl-
jana, Yugoslavia. The Breast Cancer domain is one of three medical domains provided by
the Oncology Institute that have repeatedly appeared in machine learning literature; lym-
phography and primary-tumor are the other two. The database-is available for academic
use from the Repository of Machine Learning Domains maintained by the University of
California at Irvine.

The instances are described by nine attributes. Five of the attributes are integer-
valued and were discretized into tanges (converted to nominal attributes) by the authors.
Two attributes are nominal-valued, and the remaining two are binary (Boolean). The
attributes and their possible values are described in Table F.1.

The data (286 instances) are divided into two classes: 201 instances of no-recurrence-
events, the posilive examples of the concept; and 85 instances of recurrence-events, the
negative examples. In the experiments, a set of training data is 70% of the database
(200 instances), drawn randomly without replacement. OXGatc is trained on subsets of
the training data and tested on the remaining 86 instances of the database. Different
experimental runs use different random training sets. This approach-is typical of machine
learning research projects involving the Breast Cancer database.

Several efforts have investigated the Breast Cancer domain, with varying degrees of

classification success. Chance, always saying the cancer will not recur, is 70% accurate.




Table F.1 Breast Cancer Domain Attribute Descriptions

Age: the patient’s age at the time of treatment [integer]
values: 10-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70-79, 80-89, 90-99
Menopause:  the age of the patient at the beginning of menopause [integer]

values: 1t40: (less than 40), ged0 (greater than or equal to 40),
premeno (has not had menopause)
Tumor-size:  (Note: The umt of measure was not provided) [integer]
values: 0-4, 5-9, 10-14, 15-19, 20-24, 25-29, 30-34, 35-30, 40-44,
45-49, 50-54, 55-59
Iny-nodes:  the number of lymph nodes involved [integer]
values: 0-2, 3-5, 6-8, 9-11, 12-14, 15-17, 18-20, 21-23, 24-96, 27-29,
30-32, 33-35, 36-39

Node-caps:  (Note: The meaning of this attribute was not provided) [binary]
values: yes, no

Deg-malig:  the degree of malignancy of the tumor [integer]
values: 1,2,3 )

Breast: which breast the tumor was in [nominal]
values: left, right

Breast-quad:  the tumor location in the affected breast [nominal]
values: left-up, left-low, right-up, right-low, center

Irradiat: whether radiation treatment was used [binary]

values: yes, no

Various reports of the testing of oncologist specialists and internist non-specialists show
they correctly predict the prognosis in 64-65% of the cases. Michalski et al. [1956]
achieved accuracies over four runs of 66-68% with their system AQ15. They also tested
an early version of Assistant and obtained accuracies of 67-72% depending on the prun-
ing method. Clark and Niblett [1987] present several systems and configurations, with
accuracies ranging from 65-72%. Cestnik et al. {1987] show an accuracy of 78% in Assis-
tant86 with post pruning. Tan and Eshelman’s system IWN boasts an-accuracy of 73%
[Tan and Eshelman, 1988]. Finally, Spackman [1988] claims accuracies as high as 85%
for both his CRLS system and Michalski’s AQ15. Since Michalski does not claim such a
high accuracy in Jater publications, his results must be assumed to be questionable and

await confirmation or refutation.




As indicated above. various methods have been tried, yet the general result is not
much better than chance and often worse. The set of attributes in the Breast Cancer
database appears to be inadequate to properly classify the data. It appears that a
_andom T70% of the database is simply not representative of the remaining 30%. Two
factors could contribute to this lack of success: noisy data and an inadequate description
language [Clark and Niblett, 1987].

The database contains thirteen examples that could be considered obviously noisy.
In these cases, one instance is a positive example of the concept and another instance
with an identical description is a negative example. These thirteen anomalous examples
account for an error-rate of only 2-3%. Other noise could exist in the database, but
since the data are culled from existing medical records, and the data were verified after
collection, it seems unlikely that the magnitude of the inherent error would be sv large.
A more realistic cause is an-inadequacy in the description language [Cestrik et al., 1987,
Clark and Niblett, 1987, Michalski et al., 1986].

An inadequate description language implies that the given attributes provide insuf-
ficient information. Constructive induction may enrich the language sufficiently to form
an accurate classifier, but if the original attributes are simply the wrong measurements,
then no amount of construction can compensate. It is quite possible that other attributes
such as tissue type, condition of the immune system, and response of the particular tis-
sue type tc radiation treatment are also important. Even the patient’s state of mind has
a significant bearing on her recovery and continued health. It is my opinior that this
particular database requires enrichment of its description language beyond tha! ~vailabie

with constructive induction.
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