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ABSTRACT

One subfield of machine learning is the induction of a representation of a concept from

positive and negative examples of the concept. Given a set of training examples, the goal

of the inductive system is to create a description capable of classifying the training ex-

amples, yet general enough to accurately predict the classification of unseen examples.

Often the original attributes describing the instances are inadequate to capture impor-

tant regularities in the concept. New descriptors, constructed through the application

of operators to the original attributes, can provide the proper vocabulary to create con-

cise concept representations at the right level of generalization to be highly predictive.

Constructive induction is the process of generating and applying new descriptors during

inductive learning.

The large number of possible constructive operators and combinations of attributes

defines an enormous search space for the inductive process. Knowledge-about the concept

or problem domain can be used to guide the construction of new descriptors. This thesis

lays the foundation of opportunistic constructive induction in the context of decision-tree

assembly, providing a framework for dynamically applying fragments of knowledge to

produce potentially useful descriptors or hypotheses. two-staged process of generating

candidate descriptors (hypothesis generation) and ocusing the induction on the most

iii .% F [ e-( .LL~W~
~t u_



promising (hypothesis ordering) has been developed and partially implemented. This

thesis concentrates on the development of a hypothesis ordering mechanism that incor-

porates the evaluation of multiple objectives to identify the most promising descriptors.

Experiments in foui test domains demonstrate the hypothesis ordering mechanism to be

a robust, effective method of significantly reducing the potential computational burden

created by prolific hypothesis generation. In addition, preliminary investigation of hy-

pothesis generation indicates that small amounts of knowledge can provide substantial

increases in the predictive accuracy of the induced decision-trees.
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CHAPTER 1

INTRODUCTION

One of the hallmarks of an intelligent system, whether a person, animal or machine, is

the ability to learn and adapt. Without learning, even the most clever system is doomed

to repeat mistakes or perform inefficient processes over and over. Learning is a broad

topic, encompassing many methods and objectives. This research focuses on one popular

aspect of automated symbolic learning: the acquisition of new and useful concepts by

computer through induction over examples. Inductive concept learning, herein known

simply as inductive learning, seeks to find or create a description of a concept represented

by positive versus negative examples, and to generalize that description to attempt to

correctly predict the classification of examples not seen in the training set.

A concept learned under the conditions noted above is an intensional description of

a class of objects [Hunt et al., 1966, Matheus, 1989], i.e., a condensed, nonenumerated

description of the members of a particular class. This thesis concentrates on discrimi-

nant concept learning: the creation of a description intended to identify members of the

concept and discriminate them from nonmembers (as opposed to characteristic concept

learning which describes the commonalities of members within the class [Dietterich and

Michalski, 1983]). The form of concept representation used in this thesis is the decision

tree, and the concepts considered will be limited to those capable of being represented

by a decision-tree.

Definitions: Appendix A provides definitions of many of the more impoitant and spe-

cialized words appearing throughout this thesis. These words typically appear in italics

in the text and are usually accompanied by short elaborations.
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1.1 Inductive Learning

In its simplest form, inductive learning formulates a concept description from the

attributes used to describe the training examples or instances. Several authors freely

interchange the terms attribute and feature, meaning, in both cases, the variables with

which the learning situation is described. In this thesis I maintain a strict distinction

between the two, limiting a feature to be a Boolean attribute whose possible values can

be only "true" or "false." (See Appendices A and B.)

A common form of inductive learning, similarity-based learning, incorporates the

assumption that instances sharing similar attributes are likely to be members of the

same ,lass; i.e., the positixe examples of the concept aie similar to each other and distinct

from the negative examples. Selective induction uses the attributes as the dimensions

delineating an instance space (the space of all possible examples), and seeks to find a

boundary capable of separat ..g the positive from the negative examples. Often, however,

the examples cannot be so cleanly partitioned. Instead, subregions of the instance space

are isolated and described, and these partial descriptions are disjunctively joined to

create the full concept description [Hunt et al., 1966, Dietterich and Michalski, 1983,

Breiman et al., 19841.

Even with this divide-and-conquer approach, many interesting problems provide ex-

amples so scattered in the instance space that the resultant disjunctive description (if

found at all) is very large and unwieldy. Although such descriptions provide good accu-

racy on the training examples, they often do not provide a communicable and understand-

able description, and can be highly inaccurate on the unseen examples. In these problems,

the current attributes are inadequate to represent the concept. New attributes must be

created to provide a language in which accurate, concise concept descriptions may be ob-

tained [Soloway and Risemen, 1977, Dietterich and Michalski, 1983, Breiman et al., 1984,

Rendell and Seshu, 19901. One approach to creating new attributes is to construct them

2



from the existing attributes. When these new attributes are constructed with the intent

of using them to redescribe the instance space and perform induction over the examples

in this modified space, the selecti, nduction approach takes on a new level of complexity

and is known as constructive induction [Dietterich and Michalski, 1983].

One example of the need for constructive induction can be illustrated with a physics

problem of the kind solved by the system BACON [Langley et al., 1986]: pressure times

volur equals a cunstant (P x V = C). Figure 1.1(a) shows a two-dimensional projection

of instance space, highlighting the two attributes of interest and displaying a set of

training examples. Selective induction would produce a desciption like that shown in

Figure 1.1(b) if high accuracy was desired, or Figure 1.1(c) if conciseness was i nportant.

Yet neither description captures the essence of the true concep' BACON provides an

iterative method capable of constructing the form (attributeAX x attributeBY) and is

able to discover the required attribute (P x V). When this new attribute is added to

the instance space as a new dimension, the discovery of the compact concept description

p- - -- p- - -

r + r r
e + - + e e+ -

S +.. S + S +
S S
u - - u u-- - --- -- - f 4-- - r -r + I +_

0 + - e -- e ++ + + + ++ + +

volume volume volume c prefsure x volume

Figure 1.1 Induction of P x V = C. Example physics problem where pressure times
volume is a constant: (a) shows the two-dimensional projection of the examples onto the
interesting attributes, (b) ;llustrates the partitioning for high accuracy, (c) illustrates the
partitioning for a concise description, and (d) shows the one-dimensional projection over
the constructed attribute, providing both conciseness and accuracy.
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becomes a trivial selective induction exercise. Figure 1.1(d) shows the one-dimensional

projection of the instance space over the new attribute.

Constructive induction generally proceeds as follows: first, the nieed for new attributes

is determined (typically, when the given attributes are deemed inadequate [Matheus,

1989]), and second, new attributes are constructed and tested. This process is repeated

as needed, possibly constructing new attributes from previously constructed attributes.

Generating only the most useful or promising new attributes is a formidable task. The

number of constructive operators available for potential use is large and their types

are varied; for example, Boolean (AND, OR, xor), mathematical (+, -, X, +, /

relational (on-top-of, a-part-of, greater-than), and generalizing (drop condition, close

interval, spatially transform). Given the large number of operators and the arity of the

construction (combining two, or three, or five attributes for example), the number of

possible constructed attributes is huge. Selecting the most promising constructions from

the space of possible combinations is difficult at best.

Many researchers approach the task of constructing new attributes by imposing strict

limits on the allowable constructive operations and then restricting the class of problems

made available to the system. While this approach has recognizable research value, these

restrictions must eventually be lifted for intelligent systems to learn effectively in the

real world; therein lies the motivation of this thesis. Its central theme is to establish a

mechanism for managing nearly unrestricted access to potential new attributes through

the opportuni5tic applicition of dny information available to the system, particularly

knowledge about the domain.

4



1.2 Thesis Overview

This thesis is concerned with the induction and generalization of decision-trees dur-

ing single concept, supervised learning; i.e., given a set of training instances labeled by

a teacher as positive or negative examples of the concept being learned, a decision tree

is assembled to distinguish the positive examples of the concept from the negative. The

decision-tree is also generalized during induction in an attempt to predict the classifica-

tion of previously unseen instances.

The original description language used to describe the training instances is not always

adequate to construct a sufficiently accurate, compact, or understandable decision-tree.

This thesis proposes and studies a mechanism for making use of available knowledge

to suggest constructions from the original attributes to promote the assembly of better

decision-trees. Opportunistic constructive induction applies fragments of knowledge to

dynamically suggest constructions, whenever it appears the knowledge might be use-

ful based on the current state of concept induction. The knowledge may be suggestcd

by the user, compiled in specialized procedures, stored as a domain theory, or learned

automatically from previous inductive tasks.

1.2.1 Importance of the problem

A significant trend in current and computer technology is the transition of increasingly

complex computer-based applications (e.g., robotics) from the laboratory to the real

world. This trend requires a much greater amount of autonomy in those systems, since

the real world is rife with novel situations and exceptions to every rule. The most

powerful systems will be those that can analyze previously unfamiliar situations, elicit

the important patterns, and adapt for future encounters. The process of extracting

important or useful patterns from the input data (whether the data are sensory, retrieved

5



from a database, or input by a human as a problem) is one of manipulating the original

data description language in such a way as to form combinations of the language's terms

to provide significant portions of the sought after patterns. These combinations of terms

are descriptive extensions to the language; hence, the process is one of discovering and

incorporating new terms into the description language.

The problem of selecting new terms has been recognized since the early days of ma-

chine learning research. Referring to the selection of terms to use for evaluating board

positions in his checkers playing program, the machine learning pioneer Arthur Samuel

[1959] wrote:

It might be argued that this procedure of having the program select new terms

for the evaluation polynomial from a supplied list is much too simple and that

the program should generate terms for itself. Unfortunateiy, no satisfactory

scheme for doing this has yet been devised.

After over three decades, the problem stills cxists. Although mechanisms have been

developed to guide the creation and selection of iae.:, terms in very specific applications,

the approaches are all limited in scope and explore only small segments of the potential

space of new terms. Dietterich and Michalski [1983] wrote:

An important problem is the development of efficient mechanisms for guiding

the process of constructive induction through the pote.;,:ly immense space

of possible derived descriptors.

More recently, Matheus [1989] reiterated what all researchers in constructive induction

know regarding the enormity and complexity of the prob'em of finding new terms:

The overall result is that the search for an appropriate set of features is

intractable in the general case. Solutions to this problem therefore must rely

on powerful heuristics.
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The primary contribution of this thesis is the development of an approach to allow

the treatment of available fragments of domain knowledge as heuristics in the search for

new terms, and to apply them in a manner that utilizes the best ones and prevents the

poor ones from impeding the process.

1.2.2 Objectives

This rebearch effort provides the framework for incor' ig fragments of domain

knowledge to propose potentially useful new terms .or hy1..iheses duing constructive

induction. The use of domain knowledge promises tr be an effective means of tractably

guiding the vearch through a vast hypothesis space in a nearly best-first. lashion. The

primary c bjective of this research effort is to de :elop a mechar;sm to all(,w the u.e of

domain knovledge in an unrestricted, dynamic fashion while maintaining a maua:;Cable

omputational load. Achievement of this primary objective entails the accomplibbl.-at

of the following secondary objectives:

1. Penetrate the mechanics of induction to incorporate flexible search guidance that

responds to the needs of the problem at hand (versus the imposed inflexible biasus

usually found in inductive systems). This includes an interleaving of deductive and

inductive mechanisms to provide the necessary opportunism, i.e., to allow the search

guidance to be suggested during concept induction as promising opporLunities arise.

(Chapter 2)

2. Develop a modular system architectdre to implement the four components of

the opportunistic constructive induction process: hypothesis generation, hypoth-

esis ordering (focusing), hypothesis evaluation, and hypothesis incorporation. n

overview of the process is shown in Figure 1.2. The implemented system is intended
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Figure 1.2 Overview of the Opportunistic Constructive Induction Process.

to prov;de a doman-independent develepr ent and testbed environment for the ap

plicatiop of domain knowledge to guiding decision-tree construction. (Chapoer 3)

3. Develop a robust hypothesis ordering mechanism to manage the potentially enor-

mous computational burden produced by the uninhibited exploration of hypothesis

space. (Chapter 4)

4. Develop a robust hypothesis generation mechanism that uses fragments of domain

knowledge and an assessment of the current state of the inductive process to ex-

plicitly create new hypotheses intended to ,.ich the concept description language

for further induction. (Chapters 3 and 6)

This thesis accomplishes secondary objectives 1 through 3 and explores several aspects

of secondary objectih-, 1. The novel machine learning aspects and contributions of this

research are:

The creation of a conceptual framework foi Xc inductive process that encourages

the incorporation of deductive processes using background knowledge to suggest or

provide fragments of the concept description, taking much of the mystery out of the

abductive process, i.e., the process of creating good hypotheses [Watanabe, 1985]

(Qhapter 2). This framework maps directly into an implementation architecture

integrating inductive and deductive mechanisms.
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" The investigation of the use of a hypothesis ordering mechanism to act as a filter

between the generation and test phases of new term creation. Included in the inves-

tigation is the development of a competitive mechanism-that uses small samples of

the training data to focus the system's attention on the most promising hypotheses

and to reject the most useless.

" Exploration of several multiple-objective evaluation functions as the basis of hy-

pothesis ordering, and establishment of the non-dominance method as a robust

and computationally practical approach.

" The establishment of the groundwork for a diverse and flexible hypothesis generation

mechanism, including the specification of a baseli,., capability, and experimentation

with several applications of knowledge (described below).

1.2.3 Limitations of this research

Since the phase of research described in this thesis is a portion of a larger research

project the current implementation and completed experiments are limited. Chapter 7

discusss several areas of continuation and expansion of this research.

The four-part inductive process shown in Figure 1.2 also represents the degrees of

difficulty of the components and the implementation dependencies. The leftmost compo-

nents, although more interesting, are more difficult and require the implementation of the

rightmos't components before they can be properly investigated. Hypothesis evaluation

and hypothesis incorporation are relatively well understood and readily implemented.

Therefore, this thesis focuses on the development of the hypothesis ordering mechanism

to provide - foundation for future development of the hypothesis generation capabil-

ity. The current implementation consists of the overall system architecture, baseline hy-

pothesis ordering and hypothesis evaht,.,tion modules, and partially developed hypothesis

9



incorporation and central blackboard mechanisms. Thc hypothesis generation component

has been implemented only to the extent necessai3 to perform controlled experimenta-

tion on the effectiveness of certain pieces of domain knowledge. The generator has not

yet been de eloped to the degree necessary to become an autonomous and integral part

of the system.

The opportunistic capabilities of a completed system architecture were not fully ex-

ercised in the experime : that is, knowledge was not invoked to generate additional

hypotheses based on a partial or tentative concept description. However, the experi-

ments did examine several variations on the type of knowledge used for hypothesis gen-

eration and the stage of induction in which the knowledge was applied. In Chapter 6,

contextual knowledge (knowledge about content) was used by a post-processing proce-

dure t-.. constrain the conclusions drawn from a previously learned decision-tree, i.e., the

knowledge guided learning from experience. This .ombination of expectation and ex-

perience produced a small set of useful hypotheses for subsequent learning sessions. In

other experiments (Chapters 5 and 6), syntactic (structural) and contextual knowledge

was used by procedural mechanisms to generate hypotheses prior to decision-tree induc-

tion. Hypotheses generated with proper knowledge provided the means for extremely

rapid convergence to the concept description with small sample sizes. These experiments

demonstrate the feasibility and flexibility of applying domain knowledge for hypothesis

generation.

1.2.4 Thesis organization

Chapter 2 provides the background and motivation of this research, focusing on the

need for incorporating knowizdge in the constructive induction process. Chapter 3

presents an overview of the implementation of OXG. '.e, a testbed for opportunisti-

cally utilizing knowledge during constructive induction. The most critical component
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of OXGate in this phase of research, hypothesis ordering, is described in Chapter 4, fol-

lowed by the experimental support and analysis of its viability in Chapter 5. Expeiiments

with selected applications of knowledge are presented in Chapter 6, providing inroads into

hypothesis generation, the most novel component of OXGate and next logical area for

continued research. Chapter 7 summarizes the important results and contributions of

this thesis, and suggests areas of future research. Appendix A provides the definitions

of many of the terms used throughout this thesis. Appendix B presents a formalism

for describing hypotheses, decision-trees, feature and hypothesis construction, and the

application of knowledge. Descriptions of the concepts and data used in the experiments

are presented in Appendices C through F.
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CHAPTER 2

BACKGROUND AND MOTIVATION

This chapter presents a four-part model of the inducLive process and an approach to

guiding induction toward a concept description through the application of knowledge.

An overview of opportunistic constructive induction is presented next, followed by de-

scrip'.ions of several established constructive induction systems that form the foundation

for this research.

2.1 A F-amework for Analyzing Induction

The end result of inductive learning is a description known as a hypothesis, indicating

it is an approximation of the true concept' and subject to change should future examples

indicate it is incorrect. A hypothesis is a statement relating descriptive attributes of a

concept to values those attributes assume in examples of the concept (Section B.2). The

simplest form of a hypothesis is an attribute-value pair: "attribute A has value V."

The common definition of hypothesis, the end product, can be extended to include any

candidate testable statement that may be used as a component in the formation of the

concept description. Generally, a hypothesis may be a relatively complex description con-

structed from previously established hypotheses, which may themselves be constructed

from still simpler hypotheses, allowing for the incremental or piecewise instantiation of

the internal attribute-value pairs.

'A hypothesis is an approximation of the true concept except when the training set is exhaustive or
otherwise crniplctcl represents the set of all possible instances. In such cases, the hypothesis is proably
correct and, therefore, no longer a hypothesis.
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The framework for viewing inductive learning is de.ived from Satosi XWatanabe [1985].

Watanabe's term inductive learning can be interpreted to encompass constructive induc-

tion, with the distinction between the common usage of these terms to be only the manner

of generating candidate hypotheses.

Watanabe's definition:

Inductive Process = Abduction + Induction Proper

where Abduction is the process of creating hypotheses.

and Induction Proper is the experimental assessment of

those hypotheses, i.e., confidence-building, not validation.

Expanding this definition, I refine the abductive process into two components: the

generation of hypotheses and the ordering of hypotheses for testing.

Abduction = Hypothesis Generation + Hypothesis Ordering

Hypothesis generation could be termed abduction proper in the manner of WVatanabe.

It is the creation of candidate hypotheses by whatever means available. In the abstract,

where abduction is distinct from deductive processes [Watanabe, 1985L. the creation of

useful hypotheses is extralogical and extra-evidential: it has a mystical quality where

good hypotheses are simply "pulled out of thin air." A more pragmatic view allows

the systematic generation of candidate hypotheses through controlled relaxation of a

restricted description language (a typical constructive induction approach), augmented

by the opportunistic utilization of available domain knowledge to suggest and retract

candidate hypotheses. 2

2 VWatanabc describes this and all mechanized prucess, is purely deductive operatio.s, guided by
heuristics pros ided by humans. Ile uses this distinction to support his claim that onmputer,% cannut
perform induction. since the creation of the heuristics is itself an extralogical task, a computer is
incapable of induction because it is incapable of true abduction. Philvophically, he may be correct, but
such a discrimination do not aid in endw, ing the computer with the ability to learn, ewn If " 1" a
mechanized approximation of human inductive ability.
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Any system that grows the set of candidate hypothcses has the potential of becoming

overwhelmed by the expense of testing them. Previous machine learning systems avoid

this problem by incorporating biases into hypothesis generation that severely constrain

the space of possible hypotheses, thereby limiting the number of hypotheses the system

must entertain. My approach is not to limit the-growth of the set of candidate hypotheses

produced through hypothesis generation, but rather to contain the effects of this growth

through hypothesis ordering. Hypothesis ordering is used to identify the most promising

of the candidate hypotheses for testing against the instance data (induction proper), and

to reject or suppress those deemed useless. Only the most promising of the hypotheses

are tested, thereby reducing the expense of evaluation. While hypothesis ordering is a

heuristic, beam-search approach, and therefore does not guarantee perfect filtering (the

correct hypothesis may not be in the set of most promising hypotheses), it is a necessary

counterpart to the opportunistic hypothesis generation method. A major contribution of

this research shows that hypothesis ordering is an effective means of managing uninhibited

hypothesis generation.

Continuing to refine Watanabe's uefinition, I also split induction proper into two

components: hypothesis evaluation and hypothesis in corporation.

Induction Proper = Hypothesis Evaluation + Hypothesis Incorporation

Hypothesis evaluation is the testing of a hypothesis against the se' of classified train-

ing instances. Any of several evaluation functions may be used, the goal being to rate

the hypothesis by some measure of credibility or "goodness." After all the most plomis-

ing hypotheses have been tested, the best one is selected for incorporation. Iypothesis

incorporation involves propagating thc cffects of hypothesis selection through the train-

ing data and assessing whether the learning task has been satisfactorily completed. For

example, in decision-tree learning, incorpurating a hypothesis means splitting the set.

of training instances into two subsets: those covered by the hypothesis and those not.

14



Associated with the two data subsets are the applicable subsets of the original set of can-

didate hypotheses. For instance, if the hypot is (color = red) were chosen, any other

hypothesis regarding color need not be considered for the covered subset of instances:

these can be removed. In conventional decision-tree learning, the effects of hypothesis

incorporation end here, and the program simply begins induction over the subsets. In the

opportunistic constructive induction system, however, hypothesis incorporation initiates

the process in which domain knowledge is invoked in response to a change in the state of

the system. It "closes the loop," providing a means of affecting the next stage of hypoth-

esis generation. The four-step process of hypothesis generation, ordering, evaluation and

incorporation (Figure 2.1) proceeds cyclically until a satisfactory concept description has

been obtained.

The Inductive Process

Abduction Induction Proper

Hypothesis Hypothesis Hypothesis Hypothesis
Generation Ordering Evaluation Incorporation

Figure 2.1 The Inductive Process.

2.2 Bias and the Use of Domain Know;ledge

The inductive learning problem is to search through hypothesis space for a descrip-

tion capable of distinguishing the positive from negative examples of a concept, and

to generalize that description to predict correctly the classification of unseen examples.

When the positive and negative examples are sufficiently intermixed in instance space,
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Figure 2.2 Transforming Inbtance Space. The original instance space (I-Space)
is pictured here with a disjunctive collection of islands (conjunctive components or other
structures) separating positive from negative instances. Constructive induction trans-
forms I-Space into I'-Space by finding the relationships between the islands and defining
new descriptive terms (dimensions in I-Space), allowing easier concept induction and a
more compact description.

a complex description is needed to isolate the islands3 of positive examples from the

negative background (or vice versa) and relate them in a more global fashion to each

other (Figure 2.2). This building up of a complex description from simpler island de-

scriptions, constructive induction, can be viewed as the transformation of the original

instance space into a simpler space- in which induictive learning can be accomplished

over the islands themselves rather than the examples. Generalization of the description

relating the islands provides the prediction of unseen examples, as well as the predic-

tion of unseen islands of examples. In such a view, the hypothesis space becomes one

where not only are all possible islands describable, but all combinations and transfor-

mations of those descriptions are representable as well. The mechanism needed to tame

this space and make it amenable to productive search is called bias [Mitchell, 1980,

Utgoff, 1986).

'Closely related to the notion of peaks, which are regions of similar class membership. [Rendell, 1989]
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2.2.1 The need for bias

Bias is the preference of certain areas of hypuAhesis space over others. In other words,

given the set 7- of all possible hypotheses, a bias restricts the set of hypotheses accessible

to the learning system to a subset 1-b. The purpose behind using biases in inductive

learning is to regulate the search through hypothesis space with the aim of finding a

sufficiently correct hypothesis early in the search. Often, biases are viewed as the appli-

cation of extra-evidential information: information not contained in the set of training

examples. A more flexible definition of bias does not require extra-evidentiality, but in-

cludes any mechanisms for establishing a preference in hypothesis space, regardless of the

means of managing or invoking suLh mechanisms. Biases are indispensable components

of any inductive learning approach, simply because of the vast size of hypothesis space.

For example, in an instance space where examples are describable by five Boolean at-

tributes, there arc only 2' or 32 distinct instances. Yet these instances can be combined

to represent 22,5 o 4.3 billion possible concepts. In an instance space with nominal, inte-

ger or real dimensions, the number of -possible hypotheses becomes astronomical. Biases

pr .ide the means of focusing the inductive search to look first to hypotheses expected

to be characteristic of the particular domain or problem at hand.

Induction over the instance space, while initially viewed as a search in hypothesis

space, can also be described as a search through bias space. Through the regulated

application of proper biases, the inductive learning task becomes mechanical, almost easy:

once proper biases are selected, the fruitful areas of hypothesis space are identified, and

the search for an adequate concept description in hypothesis space is thus constrained.

It is the determination of proper biases which becomes the difficult, yet crucial aspect of

inductive learning.
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2.2.2 Manifestations of bias

Researchers always build biases into the inductive systemb they implement as a mat-

ter of practicality. One common bias is the use of a restricted description language such

as allowing only Boolean attributes (features) in the instance space. Often the hypothe-

sis/concept description language is limited to conjuncts of the instance space attributes,

with disjunctions and negations prohibited. Systems using the version space method,

such as the heuristic generalization component of LEX [Mitchell el al., 1983], operate

with this restriction. Some other systems allow disjunctions, but only within the clauses

of the higher-level conjunctive description: these are known as internal disjunctive forms.

The a priori imposition of the syntactic form of the hypotheses limits the kinds of prob-

lems or domains such systems can address. When the demands of the concept description

exceed the limitations of the system, the system is left with no mechanism for modifying

the bias and must categorize the problem as insolvable. The use of built-in biases which

are inflexible and unresponsive to the demands of the domain at hand can be classified

as context-insensiie,

Regardl: of the method used to restrict hypothesis space, another type of bias is

needed to determiri _ the order ii, which the cirn.mscribed hypotheses are examined.

Simplicity is one such bias, pref',ring to entertain simple hypotheses over more complex

ones. Simplicity has wide domain appliczability and is a , -vasive real-world heuristic.

The reason for its success as a heuristic . straightforward: there are relatively few simple

hypotheses; therefore, a simple hypothesis is unlikely to be consistent with the data by

chance [Dietterich, 1990]. Simplicity could I e classified as a context-insensitive bias

since there is no information in the domain or pioblem to alter its behavior, yet it does

not interfere with the ultimate discovery of the correct -u,.cept description as context-

insensitive biases have the potential to do. Simplicity establishe a preference only within
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the confines of the restrictions imposed by other biases. Hence, simplicity and other

related preference biases can be classified as common sense or contcxt-independent biases.

Context-independent and context-insensitive biases are general purpose problem solv-

ing approaches and are useful to consider when stronger, context-sensitive biases are un-

available. However, any available knowledge about the domain or particular problem at

hand should be used whenever possible, since the biases derived from this knowledge have

a strong likelihood of guiding the inductive search appropriately. These contdxt-sensitive

biases provide a means of exploring specific areas of hypothesis space known or suspected

to be relevant to domains and problems similar to the current one. Within these areas of

hypothesis space, context-sensitive biases also provide a means of intelligently selecting

the most promising hypotheses first.

One context-sensitive bias useful for establishing hypothesis preference is a data-

driven approach I have termed the Quick-Look: the evaluation of candidate hypotheses

on a small subset of the training data (Section 4.2.1). The purpose of the Quick-Look

is to identify the hypotheses that appear to be promising and to suppress consideration

of those appearing usrIess. Although the Quick-Look is not extra-evidential, it qualifies

as a bias since regulates the search in hypothesis space. When used in conjunction

with simplicity or other preference biases, it forms the basis of the hypothesis ordering

mechanism needed to complement the aggressive, domain-knowledge-driven exploration

of hypothesis space.

2.2.3 Knowledge as a powerful form of bias

Context-sensitive biases can be sensitive to the current data or the current domain.

The Quick-Look is an example of a bias sensitive to the current data. Another bias

sensitive to the data is the use of "outlier" instances to serve as the basis for suggest-

ing new hypotheses. Biases sensitive to the current domain can use domain knowledge
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in both hypothesis generation and hypothesis ordering. In hypothesis generation, do-

main knowledge may be used to explicitly suggest hypotheses or to constrain the gen-

eration of hypotheses through the restriction of the concept description language. Do-

main knowledge can also be used to intelligently relax previous language restrictions or

to extend the language through the explicit addition of useful operators (such as ex-

tending the set of candidate mathematical operators) or constructors [Matheus, 1989,

Seshu et al., 1989]. Domain knowledge can also be used in the hypothesis ordering

mechanism: knowledge of the past performance of the hypothesis (or class of hypothe-

ses the current one belongs to) can be used to predict the utility of the hypothesis.

Context-sensitive biases provide the only means of intelligently exploring diverse areas

of hypothesis space without excessive sampling, and at the same time provide the means

to tame the potential explosion of hypotheses.

One example of the use of domain knowledge to extend the space of possible hy-

potheses can be found in the system STABB (Shift To A Better Bias) [Utgoff, 19861.

InSTABB, Utgoff uses a knowledge-based means of relaxing the initial language restric-

tion bias through the use of information contained in 'the grammar of the description

language and a set of backward problem-solving operators. This analytical approach

produces new attributes that are refinements of the existing representation language as

well as having been tested against a portion of the training instances. As such, they have

a greater likelihood of being useful attributes than ihose suggested by context-insensitive

or context-independent biases.

Work is also being done to use domain knowledge to explicitly guide the selection of

generalization heuristics. In PREDICTOR [Gordon and Perlis, 1989], domain knowledge

is used tc determine the applicability of three heuristics for screening out potentially in-

appropriate hypotheses: cohesion, irrelevance, and independence. The cohesion heuristic

indicates when it is appropriate to climb the generalization tree of a structured attribute.
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The irrelcvance heuristic indicates when attributes appear useless as discriminators and

should be dropped. The independer.cc heuristic is used in convertiiug a disjunctive normal

form to a conjunctive normal form with internal disjunction, thereby generalizing and

compacting the description. One example of the application of these heLcristics is the use

of the irrelevance heuristic in the recognition of color as a useless attribute when describ-

ing something graspable by a robotic manipulator. When knowledge indicates that only

structural or textural properties such as size, shape, hardness and surface slickness are

applicable, any hypothesis containing the attribute color need not be generated.

In addition to using domain knowledge for generating hypotheses, it may also be

advantageous to use domain knowledge to retract previously generated hypotheses. For

example, in the robotic manipulator scenaz:o, the system may have already proposed

hypotheses using color as a component. At some point, when the system recognizes that

the concept involves the graspability of an object, the proper domain knowledge can be

invoked indicating the uselessness of the color as an attribute. The system can then

discard or modify all hypotheses relating to color. An alternative approach would be to

have the hypothesis ordering mechanism severely penalize those "retractable" hypotheses.

This way, the hypotheses may not be completely eliminated from future consideration in

case the domain knowledge turns out to be inapplicable.

Four primary approaches to using domain knowledge are considered in this thesis.

They are discussed in greater detail in Section 3.1.1. In the first approach, domain

knowledge is used to explicitly propose potentially useful hypotheses. This use of domain

knowledge is illustrated in Sections 2.3 and 3.2, and is applied in some of the experiments

of Chapters 5 and 6. The second approach involves using domain knowledge to propose

operators and create new attributes; these operators and attributes provide avenues for

the generation of new families of hypotheses. One example is the proposition of the XOR

or parity operators in a Boolean domain to overcome the parity problem [Seshu, 19891.
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Other examples are the proposition of the multiplication operator in mathematical or

physical systems domains, and the use of symmetry in spatial domains such as board

games. The proposition of Boolean operators AND, OR, and NOT is applied in some of

the experiments of Chapters 5 and 6.

The third approach to applying knowledge for hypothesis generation uses domain

knowledge to-screen out or .retract hypotheses, such as described in the robotic manipu-

lator scenario. Knowledge is used in Section 6.1 to screen hypotheses generated through

experiential learning. Finally, domain knowledge might be used to retract groups of hy-

potheses by the elimination of previously proposed operators. An example of this process

is the rejection of the multiplication operator, and all hypotheses using it, when the sys-

tem discovers that only nominal-valued attributes are applicable to the domain under

consideration. This last approach is not used in any experiment of this thesis.

2.3 Opportunistic Constructive Induction in Action

Discussing the need for continued reseaich in the area of constructive induction, Ker-

ber [1988] wrote:

A key limitation of current systems that perform constructive induction is

that many of the descriptors "constructed" are either predefined, constructed

prior to examining a single training example, or constructed regardless of

which training examples are encountered. More valuable, are learning systems

capable of extending the description language during run-time by creating

new descriptors whose necessity was not pre-anticipated but whose creation

is triggered by the needs of the current situation.

The opportunistic constructive induction process embodies this latter type of system:

the hypothesis generator proposes hypotheses relevant to the state of induction. This
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Figure 2.3 Opportunistic Constructive Induction of Decision-Trees.

section illustrates the interactions of the components of the opportunistic constructive

induction process with a simple example. Figure 2.3 provides a pictorial representation

of the pattern of operation. Knowledge and the original attributes are used by the

hypothesis generator to produce a pool of potentially useful hypotheses. The hypothesis

ordering component extracts hypotheses from the p,.;r 1 and provides the most promising

ones to the hypothesis evaluation mechanism. T-- Lest hypothesis is selected and pmssed

to the hypothesis incorporation mechanism to begin assembly of the decision-tree; i.e.,

the hypothesis is inserted as a decision poin. ini the tree and the set of training data is

divided among the branches. The incorporz,.ion of this hypothesis represents a change

in the state of the system: it knows more about the concept. This state change can

be used by the hypothesis generator to trigger more knowledge and produce additional

hypotheses for the pool. The operation proceeds cyclically until a satisfactory tree has

been assembled.

Figure 2.4 provides a simple example of a concept requiring constructive induction.

A selective induction system could determine that the concept had something to do

with the geometry of the objects (i.e., separate the objects into blocks and non-blocks),
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Positive Examples Negative Examples

Attributes: color (R, G, B), height, width, depth,
geometry (block, disk, sphere, pyramid)

Figure 2.4 A Difficult Concept: Large Blocks.

but would not be able to resolve the remainder of the concept given the listed at-

tributes: volume is simply not in its vocabulary. For instance, in one experiment us-

ing the simplified values of small, medium, and large as the possible values for each

of the attributes height, width, and depth, the selective induction system ID3 (Sec-

tion 2.4.1) determined the concept had to be at least a block. It then overspecialized

the description, requiring the blocks to be either tall (height = large), medium height

and blue ((height = medium) AND (color = blue)), or short of height and of medium

width ((height = short) AND (width = medium)). This description does not capture

the essence of the intended concept, and is difficult to understand and convey.

Figure 2.5 illustrates the operation of the opportunistic constructive induction on the

same concept. Initially, in part (a), nothing is known about the concept so the hypothesis

generator proposes a set of primitive hypotheses based on the original attributes. At this

point, the only knowledge applied would be the method used to form the intervals to make

hypotheses from the real-valued attributes." The hypothesis ordering mechanism culls

"The mechanism for converting real- or integer-valued attributes into nominal attributes by producing
discrete ranges of values is not addressed in this thesis. Statistical partitioning approaches such as those
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Figure 2.5 Using Knowledge Opportunistically. In part (a), the knowl-
edge about the type of problem is used in conjunction with the original attributes
to propose . set of primitive hypotheses to begin induction. One of the hypothe-
ses, (geometry = block), is selected to begin the decision-tree. In part (b), this ini-
tial selection triggers the proposition of more hypotheses, based on domain knowledge
about blocks (e.g., relationships among dimensions, construction of volume, etc.). The
opportunistic constructive induction system can then discover the proper description:
((geometry = block) AND (volume > 45)).
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from the poul of hypotheses and passes the most promising to the hypothesib evaluation

component, based on a heuristic estimate of their potential utility. Full evaluaiion deter-

mines the hypothesis (ycometry = block) to be the best choice to begin the decision-tree.

The hyfothesis incorpoltivii component establishes the hypothesis in the decision-tree

and partitions the training data accordingly.

In part (b) the state change of the system (i.e., from kno%,ing nothing about the con-

cept to bLlieving the geometry is a block) is made available to the hypothesis generator.

This triggers the application of domain knowledge which proposes volume as a potentially

useful attribute when dealing with geometric objects. Once the new set of hypotheses

has been proposed, hypothesis ordering is again used to select the most promising and

pass them along for evaluation. In this example, (volume > 45) is found to be the best

available hypothesis and is incorporated into the tree. At this point the decision-tree

perfectly discriminates the traini,.g examples, but without overspecializing the tree as

was the case with selective induction.

2.4 Relationship to Other Work

This section provides descriptions of several constructive induction systems in the

context of the opportunistic constructive induction model presented in Figure 2.3. The

number of extant constructive induction systems is large; thus, this section is intended

to provide an overview of a broad range of approaches and capabilities, not to be exhaus-

tive. Before the presentation of the constructive induction systems, the well-established

selective induction system ID3 is discusscd as a frame of reference.

used by STAGGER [Schlimn.er, 1987] or the PLS series of programis [Rendell, 1985 could be in.rporated
into the hypothesis generation component to provide a preliminary set of ranges.
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2.4.1 ID3

Figure 2.6 depictb the fundamental operation of ID3 for single concept learning [Quin-

]an, 1986]. The system ID3 typifies the selective induction process for decision-tree cre-

ation. The attributes in the original description language are tested against the training

data to determine which attribute is the most informative for separating the positive

examples from the negative. The chosen attribute is established as the decision-point in

the tree, and for each branch created by a particular value of the attribute, the relevant

training examples are collected. For each branch containing a mixture of positive and

negative examples, the splitting process is repeated using the remaining atti-ibutes. In-

duction is complete when each leaf is pure (contains either positive or negative examples.,

but not both), or the set of original attributes is exhausted.

Original Attributes

Figure 2.6 Selective Induction in ID3.

Hypothesis generation: The set of original (ground) attributes form, the pool. Hy-

potheses in the sense defined in Appendix B (i.e., testable statements that are either

"true" or "false") are not used, except when the attributes happen to be Boolean.

Each attribute is considered across its complete space of possible values, rather than

in attribute-value pairs as implemented in OXCate. Real and integer-val tued attributes

must be partitioned into a finite number of discrete ranges by an external agent such as

the user before induction can begin.
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Hypothesis ordering: No hypothesis ordering is used to reduce the cost of evaluation.

An ordering on attributes is imposed by the domaindefinition that can affect the outcome

of decision-tree induction since it specifies the order in which the attributes are evaluated.

In the basic implementation, if two attributes prove equally good, the first one tested is

selected.

Hypothesis evaluation: An estimate of the information-gain (Section 4.2.1.2) is used

to select the best attribute.

Hypothesis incorporation: The decision-tree is constructed by incorporating the

attribute as the decision-point, and creating one branch for each of the values. The

training examples are allocated to the branches according to the values they represent of

the C -ibute. Branches containing purely positive or purely negative examples are labeled

as such. The end of the branch is declared to be a leaf node. Branches related to values

not represented in the training data are terminated with leaf nodes labeled "unknown"

in the basic implementation; probabilistic approaches are used in more powerful versions.

The remaining branches undergo the evaluation-incorporation process on their respective

subsets of training examples until all branches terminate in leaf nodes, or the set of

attributes is exhausted.

Extensions: The basic implementation of ID3 suffers several limitations, many of

which are addressed in more sophisticated versions and derivative systems [Quinlan, 1985,

Quinlan, 1986, Cheng et al., 1988, Wirth and Catlett, 1988, Utgoff, 1988, Norton, 19891.

One limitation is that the simple system tends to overfit the decision trees to the train-

ing data. A statistical (approximately chi-squared) pre-pruning approach is used in later

versions to make the decision-trees more general and less susceptible to noise [Quin-

lan, 19861. Another limitation is that the basic version unduly prefers attributes with
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large numbers of values over those with few values. To offset this preference, a modified

evaluation measure is used, i.e., the gain-ratio. The gain-ratio employs an -estimate of

the intrinsic value of the attribute in addition to the information-gain [Quinlan, 1985,

Quinlan, 1986].

The system ID3 has been used for several commercial applications with very large

amounts of training data. To reduce the memory storage requirements, the technique

of windowing was developed. A subset (window) of the training data is used to develop

the decision-tree, then the tree is tested against the remaining data. If the decision-tree

is inadequate to correctly classify the examples, a subset of the exceptions are added

to the window, and the decision-tree is relearned. This process is repeated until the

decision-tree satisfactorily represents the full set of training data. The use of windowing

reduces memory requirements at the cost of greater processing time, with no apparent

loss of accuracy [Wirth and Catlett, 1988].

2.4.2 FRINGE

Figure 2.7 depicts the operation of the constructive induction system FRINGE, an

extension of the selective induction system ID3 [Pagallo and Haussler, 1989, Pagallo,

\+

Original Features Constructed E+
F e a t u l e s I " , ,S e l e c t i o n " " I

Hypothesis Generation I

Figure 2.7 Constructive Induction in FRINGE.
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1989]. FRINGE typifies a class of txperiential learning systems that use the results of one

learning bession to create new descriptive terms for subsequent sessions. The motivation

behind the development of FRINGE was to solve the replication problem in decision-tree

induction: the occurrence of duplicated subtrees in the concept description. FRINGE

constructs new terms using the decision points at the fringes of the positive branches

of the decision-tree (described in detail in Chapter 6). These new terms are added to

the description language and the decision-tree is relearned. Eventually, the replicated

subtrees are represented as single complex terms and become incorporated in a simpler

decision-tree as depicted in Figure 2.8. This approach to feature construction (hypothesis

generation) is effective in improving the accuracy on random Boolean functions, even in

the presence of noisy data [Pagallo, 19891.

X X2

X43X

%4X V X

+

Figure 2.8 Solving the Replication Problem.

Hypothesis generation: FRINGE operates in the domain of Boolean functions; there-

fore, all descriptors are- Boolean attributes, or features. The initial pool of hypotheses

consists of the original features. As discussed in Appendix B, a feature is a simple form
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of hypothesis, and the features found in the original description language are equivalent

to primitive hypotheses. After a decision-tree is created, the features used as decision

points nearest the positive leaves are conjoined to create new features. These constructed

features are added to the pool for the next iteration of the process.

Hypothesis ordering: No hypothesis ordering is used to reduce the cost of evaluation.

Hypothesis generation is terminated, however, if the number of new hypotheses exceeds a

user-defined threshold. As in ID3, the order in which the features are evaluated may affect

the outcome of decision-tree induction. This effect is ameliorated by the introduction of

the new, and presumably better, features for subsequent iterations.

Hypothesis evaluation: As in ID3, an estimate of the information-gain is used to

select the best feature.

Hypothesis incorporation: The decision-tree is assembled in the typical fashion.

Induction is declared complete when no new features are constructed, or when the number

of new features reaches a predefined threshold.

2.4.3 CITRE

Figure 2.9 depicts the operation of the constructive induction system CITRE, an ex-

tension of the experiential learning approach found in FRINGE [Matheus, 1989]. CITRE

provides a variety of biases for feature selection, can filter out undesirable features with

domain knowledge, has the potential to generalize constructed features, and can control

the number of features made available for decision-tree assembly.

Hypothesis generation: Like FRINGE, CITRE uses Boolean attributes (features)

only for decision- tree induction: nominal-, real-, and integer-valued attributes must be
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converted to Boolean before induction can begin (Appendix B). The set of original

features forms the initial pool of primitive hypotheses. After a decision-tree is created,

pairs of features appearing along paths to positive leaves are used as operands for the

construction of new features, limited to certain locations along the paths by a user-

selectable bias (Chapter 6). Domain knowledge can also be applied to filter out feature

pairs deemed inappropriate by the knowledge for new feature construction. New features

are constructed from the remaining feature pairs. If domain-dependent generalization

knowledge is available, the new features are generalized before being added to the pool.

Hypothesis ordering: CITRE is able to use one of two approaches to limit the number

of constructed features retained for decision-tree induction. One method evaluates each

new feature against the entire set of training data and keeps the N features with the

highest values of information-gain. The value of N is a fixed threshold equal to the

number of internal nodes present in the original decision-tree. The other method ages

the hypotheses, discarding all hypotheses created in previous iterations but not appearing

in the latest decision-tree. In both cases, the primitive hypotheses always remain in the

pool.

Original Features

Hypothesis Hypothesis Hypothesis
Ordering Egvaluation --b- Incorporation

'INBias Selection

Constrcted

Hypothesis Generation Features
S------------------------------- +

Figure 2.9 Constructive Induction in OITRE.
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Hypothesis evaluation: An estimate of the information-gain is used to select the best

feature to incorporate in the decision-tree.

Hypothesis incorporation: The decision-tree is assembled in the typical fashion.

Induction is declared complete when no new features are constructed.

2.4.4 MIRO

The constructive induction system MIRO uniquely integrates the deductive use of

knowledge with induction over an abstraction of the training examples [Drastal and

Raatz, 1989, Drastal et al., 1989]. Processing occurs in several stages: a preprocessing

stage o create an abstraction space, an induction stage to formulate the concept de-

scription, and a postprocessing stage to convert the discriminant representation into a

characteristic one. The resultant concept description is in disjunctive normal form, a

representation readily convertible to a decision-tree.

In the first stage, the deductive component of MIRO uses the domain knowledge to

create an abstraction space from which to derive the concept description language. Each

training example is applied to the domain knowledge to instantiate/prove aspects o he

knowledge set and create proof structures. The most abstract (general) descriptors in the

proof structures become the set of hypotheses composing the initial concept description

language.

The second stage uses the abstract description language and the training examples to

induce a discriminant concept representation, separating the positive from the negative

examples. If all of the training examples cannot be adequately represented with the set of

most abstract hypotheses, less abstract hypotheses are selected from the proof trees and

added to the description language. This process repeats until all of the positive examples
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are distinguished from the negative examples, or the entire set of abstract and primitive

hypotheses is exhausted.

The postprocessing stage specializes the discriminant concept description to create

a characteristic description. For each term of the discriminant disjunctive normal form

description, hypotheses that are common to all of the positive examples covered by the

term are conjoined to the term. The additional hypotheses are selected from the unubed

hypotheses in the combined set of abstract and primitive hypotheses. The augmented

terms are then disjoined together to create the complete characteristic description of the

concept. Figure 2.10 depicts the operation of MIRO in the context of the opportunistic

constructive induction model.

7 'Hypothesis Hypothesis Hypothesis
'QPo, Ordering -* Evaluation -- Incorporation

Abstract
Features 

Original Features .,. " 11Preprocessing I F
Domain Knowledge prtproces I r essig
Training Examples / (concept refinement)

Hypothesis Generation

Figure 2.10 Constructive Induction in MIRO.

Hypothesis generation: The hypothesis pool is filled during the preprocessing stage,

and contains the full set of abstract hypotheses appearing in the proof trees plus the

primitive hypotheses appearing in the descriptions of the examples.

Hypothesis ordering: Only the most abstract hypotheses are selected from the pool

for induction. If the hypothesis evaluation component is not able to distinguish the
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positive from negative examples, less abstract hypotheses are heuristically selected from

the pool and made available for induction.

Hypothesis evaluation: Concept induction in MIRO is performed using the one-sided

variant of the candidate elimination algorithm [Mitchell, 1978, Haussler, 1987]. First, a

positive example is heuristically chosen as the seed. Next, the most general descriptions of

that seed that exclude all the negative examples are developed from the set of hypotheses

provided by the hypothesis ordering mechanism. These descriptions are conjunctions of

hypotheses. When multiple descriptions are produced, a heuristic measure is used to

select the one with the best balance between two criteria: the number of (previously

uncovered) positive examples covered by the description, and an extra-evidential measure

of the amount of knowledge collectively entailed in the proof structures of the covered

examples.

Hypothesis incorporation: Once the best description has been selected for the seed,

all positive examples covered by that description are removed from the training set. The

seed description is disjoined to the developing concept description, and the hypotheses

used in the seed description are returned to the pool for possible use with other seeds.

The evaluation-ircorporation cycle continues until all of the positive examples have been

removed, or all of the hypotheses in the pool have been considered and determined to be

inadequate.

2.4.5 STAGGER

STAGGER is another novel approach to constructive induction [Schlimmer, 1987,

Schlimmer and Granger, 1986]. Concepts are represented through a collection of hy-

potheses as depicted in Figure 2.11. Each hypothesis contributes to the overall concept
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Figure 2.11 Concept Description Support in STAGGER. Pictorial represen-
tation of the support for the concept (medium AND red). The lines terminated with
small clots represent the logical sufficiency (LS), the others represent logical necessity
(LN). The thickness of a line is indicative of the degree of logical necessity or sufficiency
the associated hypothesis provides for the target concept.

description in accordance with the strengths of two weights associated with the hypoth-

esis. The logical sufficiency (LS) approximates the degree with which the presence of the

hypothesis increases the expectation of an outcome. The logical necessity estimates the

degree with which the absence of the hypothesis decreases the expectation of the out-

come. In the example, the unknown target concept (medium AND red) is best supported

by the constructed hypothesis ((5 < size < 15) AND red), while the primitive (original)

"hypotheses red and (5 < size < 15) are the most necessary.

STAGGER is an incremental learning system, meaning examples are introduced one

at a time and the concept representation is adjusted with each example. Learning occurs

in three ways. In the first, the LS and LN weights are adjusted for each hypothesis by

LS =p(matchedlexam pie) LN = P(-'matchzedl example)
p(matchedj-'example) p(-'matchedl -,example)
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With the weighted learning component, STAGGER behaves as a single layer connec-

tionist network. It is capable of discovering only linearly separable concepts in terms of

the existing descriptive elemenitb. The second method of learning uses a Boolean learning

component that proposes more complex hypotheses, thereby allowing the STAGGER to

behave as a multilayered network. Conceptually, STAGGER begins with a strong bias

of using only primitive hypotheses and then relaxes the bias as required to expand the

representation language and construct more complex hypotheses.

The third learning method uses a numerical learning component to handle real- and

integer-valued attributes by partitioning the attributes into discrete Boolcan units. For

example, the real-valued attribute size is recast in the example as three Boolean features:

small (size < 5), medium (5 < size < 15), and large (15 < size).

Hypothesis generation: The Boolean learning component is failure-driven: it is ac-

tivated when the concept description mispredicts the classification of a new example.

Constructed hypotheses are proposed according to the following heuristics:

1. If a negative example is predicted to be positive (error of commission), then the

system is behaving too generally: some necessary hypothesis was unmatched.

e Conjoin two strongly necessary hypotheses,

* Negate a hypothesis that is matched but is a poor predictor.

2. If a positive example is predicted to be negative (error of omission), then the system

is behaving too specifically: some sufficient hypothesis was unmatched.

9 Disjoin two strongly sufficient hypotheses,

* Negate a hypothesis that is unmatched and is a poor predictor.

The numerical learning component determines the end-points of the discrete inter-

vals by using statistics collected from the positive and negative examples to estimate
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the utility of proposed boundaries. The number of partitions is an externally supplied

parameter. First, STAGGER applies-a local smoothing function to remove noise. Then,

the locally maximal end-points are found using the utility formula

Ictassesl p(classil < end-point)
U(end-points) = fl odds(classi) p

i=X p(class > end-point)

The conditional probabilities are computed from the number of positive arid negative

examples of each class with values less and greater than the proposed end-point. The

prior -probability is also statistically derived. The best end-points are retained and ubed

to divide the real-valued attribute into discrete units for use by the Boolean and weight

learning components for concept construction. As more examples are obtained, the end-

points are adjusted accordingly, and any resultant changes to the discrete representation

are propagated through.

Hypothesis ordering and evaluation: In practice, STAGGER generates more hy-

potheses than it can use; therefore, a method'of pruning is required. A set of heuristics

is applied to determine the potential value of hypotheses as they are constructed and to

discard the least promising ones. Simultaneously, the hypotheses already in the pool are

also assessed to remove the least useful ones. A bookkeeping mechanism is incorporated

to allow backtracking ,hould a hypothesis prove to perform more poorly than in the past.

By constantly removing hypotheses from the pool as better ones are added, the system

can extend its search frontier while maintaining a limited number of hypotheses. This

form of beam search allows STAGGER to maintain a manageable memory size and linear

search time, even as the expressive power of the representation language increases.

Hypothesis incorporation: All of the hypotheses in the pool are considered part of

the concept description. A new hypothesis is incorporated by establishing the values for
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LS and LN as described above. In addition, each time a new example is introduced, the

LN and LS weights are incrementally recalculated for each hypothesis.

2.4.6 ML-SMART/ENIGMA

Up to this point, the discussion has focused on similarity-based learning systems,

also known as empirical learning systems, that use relatively large numbers of training

examples to develop the concept descriptions. In the more sophisticated systems, domain

knowledge is added to help guide the inductive process. At the other end of the spectrum

are explanation-based, or analytic, learning systems which rely primarily on complete sets

of domain knowledge (domain theory) and perform induction using a small number of

training examples, one at a time. The more sophisticated of these systems are able

to use several training examples simultaneously to overcome and correct deficiencies in

the knowledge base, such as incompleteness or inconsistency. The system ENIGMA, an

extension of ML-SMART, is one example of a hybrid empirical/analytic learning system

that interleaves deduction over the domain knowledge with induction using all of the

training examples simultaneously [Bergadano and Giordana, 1988, Bergadano et al., 1988,

Bergadano et al., 1990].

In analytical learning, the system is given the high-level description of the concept

(often its name) and the set of training examples. The goal of the system is to op-

erationalize the description: reformulate it in terms of the testable attributes of the

examples by splicing together the appropriate pieces of knowledge from the domain

theory. For instance, the concept shown in Figure 2.4 could be initially described as

monolith. Operationalizing this concept first involves transforming tile description to

((geometry = block) AND (volume > 45)). The first condition is operational (directly

testable), but the second is not: volume must be reformulated before the concept is com-

pletely operationalized. This process "proves" the training eximples. If a contradiction
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is reached, the example ib either assumed to be noisy, or the domain theory is assumed

to be flawed.

The inadequacies of the domain theory are handled statistically in ENIGMA by uti-

lizing the full set of training examples simultaneously to identify the deficient pieces of

knowledge and avoid them in the operationalization process [Bergadano and Giordana,

1988]. Statistics over the examples also contribute to a heuristic evaluation criterion used

to select the best partial explanations from a set of alternatives and guide further oper-

ationalization. ENIGMA also handles the acquisition of concepts in noisy domains by

attaching a measure of uncertainty to each piece of knowledge and updating the measure

through statistical analysis of the examples [Bergadano et al., 1988].

If the training examples are not noisy and the domain theory is correct, opeiational-

ization will proceed smoothly. ENIGMA will develop the concept description in a com-

pletely top- down fashion, behaving as a pure explanation-based learning system, with the

exception that multiple examples will be used to provide a better evaluation criterion

for selection among competing solutions. If operationalization fails completely, ENIGMA

defaults to the otber end of the spectrum and performs purely inductive, similarity-based

learning.

In a sense, ENIGMA performs a type of constructive induction: a new term (the

high-level concept) is added to the description language and is defined by the opera-

tional (primitive) attributes. In addition, intermediate concepts are also developed as

the operationalization of the given concept unfolds. In the case of noiseless data and a,

perfect domain theory, the operation of ENIGMA is strictly deductive; however, this is

considered a special case by its developers. The principal mode of operation combines

induction over the examples with the deductive use of knowledge.
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Hypothesis generation: At each step of the operationalization process, one or more

hypotheses are proposed. Each h3 pothesis equate: the non-operational intermediate

(or high-level) concept with a specialization of that concept: a more refined definition

described with lower-level terms. Ultimately, the lowest-level terms must be operational,

i.e., primitive hypotheses.

Hypothesis ordering and evaluation: Simple examination of the training examples

determines if the operational components of a hypothesis are correct. If the operational

components are not completely correct, or if multiple hypotheses arc being considered: a

heuristic evaluation criterion is applied to select the best hypotheses, if any, for further

consideration. Multiple chains of reasoning may be maintained. the heuristic criterion is

used to limit the scope of the search to the most promising hypothesis. The criterion may

be based on three kinds of heuristics: statistical (a hypothesis is "good" if supported by

enough examples), domain- independent (e.g., hypothesis simplicity or understandabil-

ity), and domain-specific (a priori knowledge for guiding the search). ENIGMA uses the

statistical and domain-independent heuristics.

Hypothesis incorporation: Multiple chains of reasoning are maintained as long as a

chain appears worthwhile givcn the examples and heuristic criteria. Accepted hypothe-

ses are incorporated into the chains to create a tree of formulas or specialization tree

[Bergadano and Giordana, 1988], and will form the basis for the next attempt at hy-

pothesis generation. Terminal nodes of this tree represent either dead ends o positive

leaves. A dead end occurs when positive and negative examples cannot be distinguished

with the operational terms present at that node. The positive leaves are partial concept

descriptions that correctly cover some of the positive examples and do not covcr any

negative example. When all of the positive examples have been correctly covered, the

concept description is the disjunction of the positive leaves.
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2.4.7 Summary: Relationship to other work

This ,ection pros ided a description-of sevral notable constructike induction systems

irk terms of the opportunistic constructive induction model. Many of the ingredients ,.'

these sybtems can be used to create a generalized approach to constructive induction,

described in Chapter 3. For instance, the experiential learning mechanisms of FRINGE

and CITRE, the domain knowledge filtering tpproach in CITRE, the numerical learn-

ing algorithm of ScIAGGER, and the deductive applications of domain knowledge in

MIRO and ENIGMA could all be developed as coexisting components of a flexible hy-

pothesis generation mechanism. Hypothesis ordering embodies the notion of limiting the

number of hyotheses to be considered (CITRE), but could do so using a competitive

method based on heuristic evaluation criteria such as evidential support and simflicity

(ENIGMA). Iypothesis evaluation could use any number of evaluation criteria to de-

termine the "goodness" of the desired representation. The choice of representation also

affects the method of hypothesis incorporation.

This section was not intended to be exhaustive: the number of extant constructive

induction systems and approaches to representation reformulation is large and increasing

rapidly. Matheus [1989] lists thirty-two systems and approaches, ranging from the well-

established L. the most recent advances of 1989. Since that time, other systems and

approaches have been introduced, including ENIGMA [Bergadano et al., 1990], CAP

[FHume, 1990], the "boot-strap" learning of Flann [1990], the ILS framework [Silver et

l., 1990], IRI [Wu et al., 1990], the E* function-finding algorithm of Schaffer [1990], the

bounded generalization algorithm of Smith and Rosenbloom [1990], and pattern-based

approaches to constructive induction [Rendell ar.d Seshu, 1990, Yang et al., 19911. The

approaches presented in this section span a broad spectrum of capabilities. They provide

a basis for the discussion of the-opportunistic constructive induction framework, and are

solid starting points for the development of the prototype implementation OXGate.

42



CHAPTER 3

THE OXGATE FRAMEWORK

This chapter describes the architecture of OXGate, the prototype opportunistic con-

structive induction system. OXGate is intended to provide a domain-indepcudent de-

velopment and tebtbed environment for the application of domain knowledge to guiding

decision-tree construction. The majol components of OXGate are described in this chap-

ter, along with justifications for the relative depths of implementation and investigation

each component received during the current phase of research.

3.1 Major OXGate Components

The inductive process precented in Section 2.1 consists of four activities: hypothe-

sis generation, hypothesis ordering, hypothesis evaluation and hypothesis incorporation.

These activities map directly into the four major components of the OXGate architecture

as shown in Figure 3.1. The components interrelate through -the sharing of information

posted on a central blackboard. The blackboard itself is not necessary for opportunistic

constructivc "v ' °ction, yet it provides a convenient mechanism for the modular develop-

ment, expansion and testing of OXGate.

The current phase of research described in this thesis is a portion of a larger envisioned

research effort. The thesis is a snapshot of an ongoing program, and OXGate is currently a

partially implemented prototype of the opportunistic constructive induction system. The

current implementation consists of the overall system architecture, baseline hypothesis

ordering and hypothesis evaluation modules, and partially developcd hypothesis incor-

poration and central blackboard mechanisms. These components provide a foundation
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Figure -3.1 The OXGate System Architecture. The four components of the

inductive process communicate with each other through the blackboard. The blackboard
maintains the set of potentially useful hypotheses, the available tvaluation functions, and
the bookkeeping information to index hypotheses and instances to the relevant nodes of
the developing decision-tree.

for the exploration of hypothesis generation. The hypothesis generation component has

been implemented only -to the extent necessary to peform controlled experiments on the

effectiveness of certain pieces of domain knowledge.

The four major components of OXGate are presented in the order in which they

appear as elements-of the inductive process. This ordering also represents the degrees

of interestingness, difficulty and novelty to the machine learning community. The first

component discussed, hypothesis generation, is the least understood, most difficult and

most interesting of the four. The last component, hypothesis incorporation (decision-

tree assembly), is the most understood, easiest, and least interesting. The ordering
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also represents an implementation dependency: the more difficult components cannot

be adequately implemented and tested without prior development of the lesser ones.

While hypothesis generation is certainly the primary thrust of the larger research effort,

it cannot be properly addressed without first developing a mechanism for managing the

effects of prolific hypothesis generation. Therefore, this thesis concentrates on hypothesis

ordering with the intention of providing a foundation for future exploration of hypothesis

generation and fully opportunistic constructive induction.

3.1.1 Hypothesis generation

Of the four component. of opportunistic constructive induction, the richest area for

research is hypothesis generation: the proposition of potentially useful portions of the

concept description. The present implementation of OXGate provides a testbed envi-

ronment for investigating the application of knowledge for hypothesis generation, and

some aspects are investigated in Chapter 6. For the most part, knowledge is currently

incorporated into special-purpose procedures to generate large numbers of hypotheses for

exercising the hypothesis ordering mechanism and the overall OXGate implementation.

The following discussion lays the foundation for future development of the hypothesis

generation component of OXGate.

The fully developed hypothesis generation component will most likely consist of a

collection of procedures, knowledge sources, and special-purpose routines, managed by a

central controller which provides the interface to the rest of OXGate through the black-

board. The controller would retrieve the state information from the blackboard, channel

it to the relevant subcomponents, and format their outputs into usable hypotheses. Such

an approach would provide a flexible hypothesis generation capability, allowing a variety

of forms of knowledge to be incorporated into a common framework, and isolating the

rest of OXGate from the specific representations of knowledge used.
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3.1.1.1 Uses of knowledge

Section 2.2.3 described four approaches to utilizing domain knowledge for hypothesis

generation: 1) explicitly proposing hypotheses, 2) proposing operators, 3) retracting or

screening hypotheses, and 4) retracting operators. The first three are used to varying

degrees in the experiments of Chapters 5 and 6. Three types of knowledge are used in

the experiments: syntactic, contextual, and experiential.

Proposing Hypotheses: The first approach to using knowledge for hypothesis gen-

eration is for the explicit proposition of hypotheses. This approach was used in the

example of Figure 2.5 where hypotheses involving the attribute volume were generated

once the system discovered the concept involved geometric shapes. In the example, the

system discovered the geometry was a block and this change of state was made available

to the hypothesis generator. This triggered the application of domain knowledge which

proposed volume as a potentially useful attribute when dealing with geometric objects.

Although various schemes are possible, such knowledge might be represented in the foim

of productions, or condition-action statements, as depicted in the following samples.

(geometry = block) (volume = (height x width x depth))

(geometry = sphere) -* (olume = xwdh

(geometry = pyramid) (volume = ( heQht×whxdePh))

(geometry = disk) 4 (volume = (height x lrxwdth2)

The knowledge shown above is a simplification of that required by the hypothesis gen-

erator to form hypotheses. It simply states when and how to create the attribute volume.

The hypothesis generator must also recognize that volume is a real-valued attribute, and

it must generate hypotheses based on this new attribute. A functional description of the
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use of knowledge in this form is

(match-state condition) ===> (propose-hypotheses (create-attribute action))

The experiments of Section 5.3 and the one shown in Figure 6.6 use the -explicit

generation approach for the NetTalk domain, in which a piece of contextual knowledge

is used as the basis of the powerful domain-specific hypothesis (C3 = C4), i.e., the third

character is equal to the fourth, such as a repeated consonant.' Althouh the hypothesis

itself is created by hand for the experiments, the approach could easily be automated

as described above. For this hypothesis, a declarative representation of the knowledge

might look like

((domain = NetTalk) AND (concept-type = pronunciation)) - (C3 = C4)

Hypotheses are also explicitly generated when the original set of primitive hypothe-

ses is created, i.e., when the original description language is defined. For nominal and

Boolean attributes, this process is straightforward. The primitive hypotheses are created

from all possible values of the attributes. Appendix B describes this process more fully.

Creating primitive hypotheses from integer- and real-valued attributes is more difficult,

and requires a mechanism to form ranges of values, -thereby converting the attributes to

nominal-valued. Statistical partitioning approaches such as those used by STAGGER

[Schlimmer, 1987], the PLS series of 2rograms Rendell, 1985], or the approach described

in [Chan and Wong, 1990] provide a starting point for development of this capability in

OXGate.

Another form of representing knowledge is frame-based or hierarchical. Manago [1989]

uses a frame-based representation in KATE, an extension to ID3 that focuses the exam-

ination of attributes on those relevant to the current partial concept description. Kerber

[1988] uses explicit hypothesis generation in his system OTIS (OpporTunistic Induction

1See Appendix E and Section 5.3 for descriptions of the domain, concept and hypotheses.

47



System) which maintains a generalization hierarchy of relations, attributes, and values

describing the domain of artificial "cancer cells." The hiei ar. hy guides the application of

generalization and specialization operations aad assists in handlirig internal disjunction

and two other forms of new term construction (transitive closure and counting argu-

ments). OTIS incorporates a scheduler that maintains an agenda of the most promising

tasks for generating new terms.

Experiential knowledge (knowledge derived from pieviously learned concepts) is also

useful for explicit hypothesis generation. Chapter 6 describes Koala, a special-purpose

routine for examining the results of one decision-tree assembly session and constructing

new hypotheses based on this experience for use in future learning. The knowledge is not

explicitly represented in the hypothesis generator, but rather is contained in a decision-

tree and extracted procedurally to form new hypotheses. These hypotheses embody

knowledge of the -past successes and are explicitly proposed in future learning tasks,

making this approach a legitimate form of hypothesis generation.

Proposing Operators: The second approach to using knowledge for hypothesis gen-

eration proposes operators for constructing hypotheses. The operators can be applied

to attributes to form new attributes, and from these new attributes hypotheses can be

constructed. Operators can also be applied to existing hypotheses to construct more

complicated unes. Generalization operators (see Matheus [1989]) may also be applied to

the constructed hypotheses at this stage, to create hypotheses less specific to the training

instances. The knowledge for proposing these operators could be syntactic, specifying

the expected form of the concept description, or it may be contextual, specifying the con-

ditions under which the operators might.Abe applied. Examples of this approach include

the proposition of parity operators in a Boolean domain to overcome the parity prob-

lem [Seshu, 1989], proposition of the multiplication operator in mathematical or physical
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systems domains [Langley et al., 19861, and the use of symmetry in spatial domains such

as board games [Rendell and Seshu, 1990].

The Boolean operators AND, OR, and NOT are applied in some of the experiments

of Chapters 5 and 6 to generate large numbers of constructed hypotheses. Here, the

assumed knowledge is syntactic, specifying an expectation of the form of the concept

or useful components of its description. This type of application has the potential to

overwhelm a system with a vast number of irrelevant hypotheses. The operators must be

applied carefully, indicating the need for semantic or contextual knowledge to constrain

the generation and examine selected areas of the hypothesis space.

Of the four approaches, operator proposition for hypothesis generation is certainly the

richest area for research. It is also the most unconstrained. The current implementation of

OXGate provides a convenient development and testing environment for its exploration.

Screening/Retracting Hypotheses: The third approach to using knowledge in the

hypothesis generator does not produce hypotheses, but rather constrains their gen-

eration by the first two approaches. Applying syntactic knowledge to propose op-

erators can result in a proliferation of inapplicable hypotheses. Semantic knowl-

edge can constrain the production by eliminating logically inconsistent hypotheses

and tautologies, for example, ((color = red) AND (color = blue)) or the hypothesis

((X1 = T) OR (XI = F))). Contextual knowledge can be used to restrict the at-

tributes and hypotheses providc. I to the operators, avoiding senseless constructions such

as ((first-letter = Q) AND (fifth-letter = X)) or hypotheses involving the attribute

taste when dealing with a robotic manipulator.

Knowledge can also be used to retract previously generated hypotheses when the un-

folding concept description indicates that a particular attribute or class ui hypotheses is

no longer relevant. For instance, if OXGate discovers the concept to involve objects of
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sizes larger than automobiles, then any hypothesis constructed with the attribute taste

could probably be remox ed. Hypotheses involving small sizes could also be removed from

the branches of the decision-tree where the size was established to be large. This latter

type of filtering embodies procedural knowledge of how to determine the logical implica-

tions and refutations of incorporating a hypothesis into the decision-tree. Whether this

function belongs in the hypothesis generator or the hypothesis incorporation component

remains to be determined.

Contextual knowledge is used by Koala to restrict the conclusions drawn from ex-

perience. The mechanization of this process is described in detail in Section 6.1 and

used in the experiments of that section. Essentially, the knowledge is used to specify

which attributes are to be considered as operands for hypothesis construction. Of all the

potential constructions discovered by Koala, only those allowed by the knowledge are

created.

Retracting Operators: The fourth approach to using knowledge for hypothesis

generation involves retracting previously proposed operators, causing the retraction of

affected hypotheses. An example of this process is the rejection of the multiplication

operator, and all hypotheses using it, when OXGate discovers that only nominal-valued

attributes are applicable to the domain under consideration. This approach is not utilized

in any of the experiments or examples of this thesis.

3.1.1.2 Implementation of the hypothesis generator

Under the current envisionment of OXGate, domain knowledge will be stored in a

collection of modules known as knowledge sources (KS in Figure 3.1), as well as special-

purpose procedures for generating certain types of hypotheses. State changes in the

blackboard will be passed to the knowledge sources by the central controller, which
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maintains the interface of the hypothesis generator to the blackboard. The knowledge

sources invoked by these changes will propose hypotheses or operators for collection by

the central controller. This data-driven appioach to knowledge source invocation may be

implemented in a control-driven manner similar to the Hearsay approach [Erman et al.,

19801. Instead of polling all the knowledge sources sequentially, or maintaining a society

of asynchronous self-polling daemons waiting for their triggers to occur, the controller

will siaply match the state information to a precompiled matrix of triggers to determine

which knowledge sources to invoke.

The central controller is responsible for collecting and collating the hypotheses, reject-

ing those deemed unacceptable by other knowledge sources and prior information, and

removing redundancies. It will pass the hypotheses to the blackboard for posting and

retract those already posted if necessary. Whether proposed operators are best stored on

the blackboard or internal to the hypothesis generator has yet to be determined. If the

hypothesis generator will need to incorporate its own local blackboard for management

of the knowledge sources, the operators should also be stored there.

Since the controller provides the interface to the rest of OXGate through the black-

board, the internal representations used by the knowledge sources can be in any form

convenient to the developer as long as the hypothesis generation mechanism as a. whole

posts hypotheses to the blackboard in the proper format (described in Section B.2). A

knowledge source must be procedural in some bense, but the knowledge used may be in

any form useful to the source to produce a testable hypothesis given the current state of

the inductive process, e.g., declarative, a set of productions, procedural, or frame-based.

Production ruleb provide a simple mechanism for both explicit hypothesis generation as

well as deductive reasoning within the knowledge source. Reasoning about the state

changes and responding with carefully chosen hypotheses should improve the speed and

quality of the concept learning as the proposed hypotheses are more likely to be directly
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applicable. It would be a simple matter to tag the productions to distinguish them from
other productions with different ubs, providing the hypothesis generator with the means

of identifying the roles various pieces of knowledge might play. A scheduling mechanism,

similar to the agenda-based approach used in OTIS [Kerber, 1988], could also use these

tags as a basis for evaluating the expected quality of the hypotheses produced by the

knowledge sources and execute the most promising ones first.

The development of knowledge sources cannot proceed in complete isolation: the

particular choice of representation may affect the implementation of the hypothesis in-

corporation mechanism, since it posts the necessary state information to the blackboard

for the hypothesis generator to use. The selection of the specific representations and

cueing mechanisms is beyond the scope of this thesis: it must be addressed during devel-

opment of the hypothesis generation component and its interaction with the hypothesis

incorporation mechanism.

3.1.1.3 Extensions to the hypothesis generator

The previous discussions described requirements and behaviors of the hypothesis gen-

eration component as originally conceived, with the exception of the experiential learning

element, Koala, which evolved during the course of OXGate development and experi-

mentation. In the experiments of Chapter 6, Koala gains experience from learning a

particular concept and applies it to improve the concept description when relearning the

same concept. This experience may also prove useful for learning other concepts in the

same domain or similar domains. Applying experience gained in one situation to benefit

learning in a novel situation is a potentially powerful method of hypothesis generation.

Another capability suggested during the development of OXGate involves the man-

agement of hypotheses rejected by the hypothesis ordering mechanism. Section 4.2.1.1

describes the expected impact of discarding apparently useless hypotheses: they may be
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needed later in the decision-tree assembly process. The experiments presented in Sec-

tion 5.4.4.2 show that reintroducing the rejected hypotheses can improve the quality of

the final decision-tree, but at a substantial cost in processing time. A promising alter-

native to recovering the rejected hypotheses is to rely on the hypothesis generator to

regenerate certain hypotheses when there is sufficient reason to do so. Typically, the

knowledge sources of the hypothesis generator must be developed so they respond only

to changes in the system state; otherwise, they would repeatedly suggest the same hy-

potheses and nullify any advantage of hypothesis ordering. However, the hypothesis gen-

erator management procedures should be made intelligent enough to recognize when the

decision-tree assembly has reached a terminal state with a sufficiently non-homogeneous

set of data and an alternative approach to hypothesis generation should be attempted.

Such a capability is a topic for future study as proposed in Chapter 7.

Finally, future research should investigate the incorporation of an interface to the

hypothesis generator for interaction with the user of the system. Such an interface would

allow the user or developer to modify easily the knowledge available to the hypothesis

generator. The user could more readily experiment with the effects of particular pieces

of knowledge, apply knowledge incrementally to guide OXGate through induction of a

particularly difficult concept, or provide other types of guidance to the system such as

dynamically modifying the evaluation method and parameters. Another application of a

user interface could be to request confirmation of intermediate results during induction.

Muggleton applies such a user interface to allow his systems DUCE [Muggleton, 1987]

and CIGOL [Muggleton and Buntine, 1988] to ask the user (or oracle) whether induced

rules are correct, and to request names for intermediate concepts.
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3.1.2 Hypothesis ordering

The source of inductive power in OXGate is the freedom of the hypothesis generator

to liberally suggest potentially relevant hypotheses, extending the concept description

language in the hope of providing the necessary descriptive elements. With this freedom

comes the risk of saturating OXGate by prolific hypothesis generation. Hypothesis or-

dering is one approach for avoiding this saturation. The hypothesis ordering mechanism

serves as a filter between the hypothesis generation (generate) and hypothesis evaluation

(test) components. It performs an early assessment of all proposed hypotheses, identifies

the most promising ones, and rejects the least promising.

Since proper development of the hypothesis generation component is practical only

with a means to contain the effects of an explosion of hypotheses, the development of the

hypothesis ordering mechanism is the primary implementation and experimental thrust

of this thesis. Hypothesis ordering is described in detail in Chapter 4 with experimental

support provided in Chapter 5. Simply put, hypothesis ordering is a heuristic approach

to assessing and sorting hypotheses based on multiple criteria. The input to hypothesis

ordering is the pool of available hypotheses. A competitive evaluation is used to partition

the pool into three subsets: the most promising hypotheses, potentially useful hypothe-

ses (retained for future consideration), and the least promising hypotheses. The least

promising hypotheses are removed from the pool, and the other two subsets become the

output of the hypothesis ordering component for posting on the blackboard.

3.1.3 Hypothesis evaluation

Hypothesis evaluation is the component of OXGate that compares hypotheses against

the training examples to determine the next hypothesis to incorporate into the decision-

tree. I experimented with several approaches during the earliest stages of the development
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of OXCate, and converged on one that operates well. The specific mearsur.-s used for eval-

uation, confirmation and simplicity, are discussed in detail in Sections 4.2.1.2 and 4.2.2.

The confirmation is a measure of how welf the training data support a hypothesis ailI

is user-selectable to aid experimentation. The simnplicity is an estimate of the cost of

testing the hypothesis. The hypothesis evaluation component uses a procedural evalua-

tion approach: find the hypothesis with the best confirmation and, in case of ties, choose

the simplest. In the case in which multiple hypotheses have identico! confirmation and

simplicity measurements, OXCate selects the first one it happens upon.

During the operation of OXGate, the most promising hypotheses (provided by the

hypothesis ordering mechanism) are evaluated agF.inist the full set of training data. The

chosen hypothesis is then passed to the hypothesis incorporation component for inclusion

in the concept description. If no hypothesis is sufficiently applicable to the training data,

the hypothesis evaluation component will request additional hypotheses. The hypothesis

ordering compone-it will provide the most promising of the set of potentially useful hy-

potheses it kept in reserve. The hypothesis evaluator will continue to request additional

hypotheses until it either finds an acceptable hypothesis or none are left. This process is

described in greater detail in Chapter 4.

3.1.3.1 Some comments on evaluating hypotheses

The principal research issue for hypothesis evaluation is the measure used to determine

hypothesis quality or credibility. Several researchers have proposed evaluation measures

of a form best described as the product of a measure of the evidential support for the

hypothesis and an estimate of the "goodness" of the hypothesis apart from the data.

This section briefly describes some of these measures.

Hartmann ct al. [19821 use a measure of hypothesis quality consisting of the amount of

information provided by the hypothesis (confirmation) divided by a gencralized efficiency
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measure. The efficiency measurc provides an estimate of the quality of the decision-

tree, defined by the measure(s) of tree goodness the algorithm is attempting to opti-

mize. Possible measures include the averair. tree depth, average cost of testing, and

storage requirements. One typical measure of testing cost is the inverse of the bimplicity:

cost = 1/simplicity. This ai ,roach implies that quality can be defined as the product

of the confirmation and the simplicity.

Watanabe [1985] estimates the credibility of a hypothesis, the inductive probability,

by the product of it -onfirmation (probability of the data D given the hypothesis H)

and its plaus'-,'Iity (the prior probability of the hypothesis), divided by the prior proba-

bility of the data. This inductive probability is simply the well-known Bayesian formu]a:

p(Hi:D) = p(DjH)p(H)/p(D). Since the prior probability of the data p(D) is constant

for all hypotheses tested at a decision point, the measure of hypothesis credibility can

be zimplified to be the product of its confirmation p(DIH) and plausibility p(H). The

plausibility, or prior probability of the hypothesis, is often estimated by the simplicity

of the hypothesis as discussed in Section 4.2.2. Hence, for comparing hypotheses, the

quality measur' is again the product of the confirmation and the simplicity.

When using the Bayesian method, the confi-mation may be estimated as the per-

cenoage of data that is correctly classified (see average purity, Section 4.2.1.2). This

measure does not map smoothly to the information-gain: for every value of purity there

are multiple possible values of information-gain, and vice versa, depending on the mix of

correctly and incorrectly classified positive and negative examples. Brieman et al. [1984]

address the inadequacies of the purity measure and propuse a family of convex measures

to more appropriately rsward tie hypotheses that result in purer nodes.

Another related measure of hypothesis quality ib the J-rneasure [Goodman and Smyth,

19881. The J-measure is also the product of confirmation aind simplicity. The confirmation
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measure is similar in structure to the infoumition-gain, and appears to fall within the

class of convex functions defined by Brieman et al. 11984].

All of the approaches presented above indicate a common theme: hypothesis quality

can be measured as the product of a measure of ,onfirmation and simplicity. Despite

this theoretical agreement, use of the product for hypothesis evaluation did not produce

well-behaved decision-trees in early investigations during the evolution of OXGate (not

piesented). Small changes in the training data resulted in radically different de.,ision-

trees. The decision-trees tended to overspecialize to the training data, resulting in com-

plex structures with replicated subtrees and poor predictive accuracy (Section 4.1). One

possible explanation is the interaction between the measures of simplicity and confirma-

tion. A hypothesis that is twice as complex as another would require at least twice the

value of its confirmation to be selected: a difficult objective to achieve for any of the

confirmation measures. The product form appears to unfairly reward the simplest hy-

potheses, effectively obviating the benefits provided by the constructed hypotheses. For

these reasons, the product of confirmation and simplicy for hypothesis evaluation was

rejected in favor of the procedural approach described on page 55.

3.1.4 Hypothesis incorporation

The final stage of the processing cycle is the incorporation of the hypothesis chosen

by the evaluator. The hypothesis incorporation component determines the form of the

resultant concept description and assembles it accordingly. The chosen hypothesis, the

list of hypotheses it belonged to, and the set of training instances used to select it are

acquired from the blackboard. The effects of the decision to accept the selected hypothesis

are then propagated to the blackboard for use by the rest of the system.

In OXGate the resultant concept description is a decision-tree. Therefore, hypothe-

sis incorporation involves splitting the set of ,, 'ant instances into two subsets, those
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classified as positive by the hypothesis and those classified as negative, and allocating

them to the left and right branches of the developing tree. After removing the hypothesis

from the pool of hypotheses, the remainder of the pool is assigned to each branch and a

processing cycle is initiated for each branch.

The hypothesis incorporation component is also responsible for posting the state in-

formation regarding the developing concept onto the blackboard. The state information

is intended to be used by the hypothesis generator to propose new hypotheses. Gen-

erally, development of this capability would proceed in parallel with implementation of

the hypothesis generator as the information requirements become known. However, a

decision-tree is a simple structure, so the basic state information- consists only of the se-

lected hypothesis and the current tree. The baseline hypothesis incorporation capability

is readily implemented.

Another possible function of hypothesis incorporation would be to filter out hy-

potheses that are logically implied or contradicted by the chosen hypothesis. For

example, if the chosen hypothesis is (color = red), then for the positive branch,

all hypotheses of the form (color = xxx) could be removed. Other hypotheses

built using color may also be removed, as long as they are implied or contra-

dicted by selecting (color = red). The hypotheses ((color = red) OR (shape = oval)),

((color = blue) OR (color = green)), and (NOT (color = red)) are candidates for re-

moval. The hypothesis ((color = red) AND (shape = oval)) is not a valid candidate for

removal because the component (shape = oval) may be required later. It should be

removed only if the hypothesis (shape = oval) is present.

In the negative branch, all consequences of the negation of the selected hypothe-

sis can be removed as well as all specializations of the hypothesis. In the example,

(NOT (color = red)), and ((color = red) AND (shape = oval)) would be candidates for
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removal. The hypothesis ((color = red) oR (shape = oval)) should not be removed un-

less the hypothesis (shape = oval) is present.

Because of the flexibility of the hypothesis representation language, locating all logi-

cal implications and contradictions of a hypothesis is a computationally expensive task.

Preliminary experiments during the evolution of OXGate (not presented herein) used a

simple hypothesis filter to remove some of the more obvious implications (simple conjunc-

tion, simple disjunction, and negation). Filtering proved to be slightly beneficial only

when a large percentage of hypotheses were removed (when the number of possible values

the pertinent attribute could take on was large) and when there was a high evaluation

cost per hypothesis (when the set of instances being considered was large). When used

in conjunction with hypothesis ordering, this type of filtering was always detrimental to

the processing speed and provided no evident improvement in accuracy. Performance

was best when the task of removing the useless hypotheses was left to the hypothesis

ordering mechanism: the useless hypotheses would fail to be supported by the instances

associated with the branch and- would be quickly rejected. Based on these early results,

hypothesis filtering was disabled for the experiments of Chapters 5 and 6.

3.2 Integration of the Pieces

This section presents an extended example of opportunistic constructive induction to

highlight the interactions among OXGate components. The example provides a demon-

stration of several uses of domain knowledge for hypothesis generation and ordering

during the construction of new terms in the domain of mineralogical classification. In

its strictest sense, classification assumes complete knowledge so that, given the values

for the relevant attributes, the system can deductively identi ,nd name the correct

concept. Pure induction is the inverse of this process, attempting to identify the relevant
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attributes given examples of the concept. The two processes converge when complete

knowledge is unavailable and induction is required to bridge the gaps in the classification

process, and the results cf partial classifications can be used to further the inductive

process.

Mineralogy is a complex and inherently noisy domain which could benefit signifi-

cantly from the data-handling capabilities of computers. There exist -. veral thousand

catalogued minerals, yet the classification of many of them is subject to debate among the

experts. One reference catalogues 2600 minerals, but admits the data are flawed, being

an attempt to compile varied and sometimes disparate sources [Roberts et al., 1974]. Not

only do the experts disagree about the classification of certain substances, but in some

instances the values listed for certain attributes of a single mineral are mutually exclusive,

physically impossible combinations. Thus, this domain has built-in class and attribute

errors with no means of clearly determining the precise values. A mineral classification

system must, therefore, have a probabilistic or statistical mechanism for assessing the

best fit to these uncertain values, i.e., a mechanism well suited for instantiation through

induction.

The list of attiibutes potentially useful for mineralogical classification is large and

varied, and the attributes available in the laboratory differ from those available in the

field. Some attributes are measurable physical characteristics such as chemical composi-

tion, specific gravity, and behavior under certain laboratory tests. Some attributes are

inferred, such as the inference of internal crystallographic structule from the crystal shape

and cleavage planes. Others are observational/subjective characteristics such as luster,

appearance of outgrowths, color, and behavior under stress. Still others are relational,

such as hardness, the ability of one mineral to scratch another, which is measurable only

with respect to other minerals. To complicate matters further, some of the attributes

display an intimate dependency upon others. For example, the "behavior under stress"
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mentioned above, termed tenacity, is frequently dependent upon the geometry of the

crystal structure and the axes of measurement. along one dimension the mineral may

be flexible, but along another it may be brittle. In short, the number of potentially

useful attributes is large, and fo. any particular sample the measured values will likely

be incomplete.

Deterministic classification of individual minerals appears to be best accomplished by

a two-stage approach [Dennan, 1959]. The first stage is to classify the mineral into a fam-

ily group through the recognition of familial attributes composing that group. The second

stage is to discriminate the mineral from others within the family using distinguishing

attributes. This same approach can be used during induction by allowing knowledge

gained through the first stage of processing to be used to focus the second stage. The

resultant concept description is then constructed from the partial descriptions created in

each stage.

One example of this iterative approach proceeds in the following fashion. Know-

ing that the domain is mineralogy (a state posted on the blackboard), the system can

immediately focus on considering the complex attribute chemical composition first, as

suggested by domain knowledge. There exist eight mineral classes, distinguished by ma-

jor chemical components.2 This knowledge allows the chemical formulae of the examples

to be procedurally partitioned with respect to these components, so that each exam-

ple can be temporarily represented by a handful of chemical features. The hypothesis

'The eight classes of minerals and their distinctive formulae features are:
I. Native Elements (gold, silver, copper, lead, etc.) (AuVAgVCuVPbV...)
II. Sulfides, Sulfosalts (S)
III. Oxides, Hydroxides (OV(OAH)) # (0)
IV. Halides (CIVFVBrVIVAt)
V. Carbonates, Nitrates, Borates ((CvNvB)A0 3)
VI. Sulfates, Chromates, Molybdates, Tungstates ((SVCrVMoVW)AO4)
VII. Phospates, Arsenates, Vanadates ((PVAsVV)A0 4)
VIII. Silicates (SiV0 4)

Of these eight classes, the last four would be the primary features to test first since the constituents of
classes I-IV can appear as components of minerals in classes V-VIII.
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generator would first propose hypotheses formed from the last four classes, for example,

(contains ((CVNVB)A0 3)). If these are insufficient (the hypothesis incorporation com-

ponent indicates a failure to find a suitable hypothesis), then the hypothesis generator

will create hypotheses from the features for classes I through IV. Induction over this

focused feature space can proceed quickly and should result in the recognition of the

statistical class of minerals to which the positive examples belong.

Once the selected hypothesis is incorporated into the decision-tree and posted to

the blackboard, the knowledge sources in the hypothesis generator would recognize the

mineral class. Now other knowledge can be used to refined the description, such as the

tendency of one element to be substituted for another within that class. This substitution

of elements causes a condition known as isomorphism, where a mineral series will show

a continuous change in chemical composition without a change in form. Isomorphisms

oc.-ur due to the substitution of foreign ions into the crystal lattice whose properties

(radius, valence, ionic potential) are similar to the expected ions. The challenge occurs

in the identification of minerals at certain points along this composition coninuum,

especially when considering that some degree of contamination occurs in every mineral

and must be allowed for in the classification. The knowledge of which elements to look for

and which substitutions to expect is an application of domain knowledge readily invoked

by the determination of the mineral class.

As an example, suppose the initial processing has determined the mineral belongs

to the silicate (SiVO 4 ) class. One of the families of minerals within this class is the

olivine series, displaying a complex isomorphism caused by a three-way substitution be-

tween magnesium (Mg), iron (Fe) and manganese (Mn) as illustrated in Figure 3.2. The

system would attempt to isolate the concept to this family by proposing the hypothe-

sis (contains (MgVFeVMn)) along with other hypotheses potentially useful within the

silicate class.
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Tephroite
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Forsterite Olivine Fayalite

Figure 3.2 Mineralogical Isomorphism. The olivine series of the silicate class of
minerals. The triangle depicts the isomorphism caused by the three-way mutual substi-
tution of magnesium (Mg), iron (Fe), and manganese (Mn) in the crystal lattice. The
locations of the minerals on the triangle indicate the typical ratios of the three elements.
Although the triangle depicts precise locations for the minerals (for example, the compo-
sition of olivine has a ratio of Mg to Fe atoms and, therefore, the ratio of ideal forsterite
to ideal fayalite, of 63:37), any ratio is possible in nature; hence, the boundaries between
minerals in the series are imprecise.

Since chemical analysis of any sample in this series would almost certainly yield

some amounts of Mg, Mn, and Fe, and since the boundaries delineating the particular

minerals are unclear, chemical analysis would serve to identify only the mineral fam-

ily or series. In this example, the evaluation component would select the hypothesis

(contains (MgVFeVMn)). The hypothesis would be incorporated into the decision-tree

and posted to the blackboard, and this change of state would let the hypothesis generator

know that all the examples of the mineral belong to the olivine series. Armed with this

newly establ:shed hypothesis, the system can begin the third stage of processing: finding

the features to distinguish the positive examples of the mineral from the rest of the fam-

ily. At this point, two things happen to ease the inductive process. First, the number of

examples to consider is reduced since only those belonging to the olivine series need be

considered. Second, the establishment of the mineral series should invoke additional do-

main knowledge to suggest discriminating attributes (such as hardness) within the family

as well as discard attributes known to be useless (such as crystallographic 'tructure in
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an isomorphism). This has the net effect of reducing the size of the attribute/hypothesis

space while focusing attention on the attributes most likely to be useful. Meanwhile, the

hypothesis ordering mechanism also assists by focusing attention on the most promis-

ing hypotheses and filtering out the least promising ones. The inductive process should

quickly proceed in a fairly conventional fashion to the description distinguishing the

mineral from other members of its family. This description, in conjunction with the

characteristic description of the family, forms the basis for future classification of the

mineral.

3.3 Summary

This chapter described OXGate, the prototype opportunistic constructive induction

system. OXGate provides a domain-independent development and testbed environment

for the application of knowledge to guiding decision-tree construction. The four major

components of OXCate have been implemented to varying degrees, reflecting their roles

in the establishment of a baseline capability.

The hypothesis generator component provides the richest area for future develop-

ment. Knowledge can be applied for hypothesis generation in several fashions: explicitly

proposing hypotheses and constructive operators, retracting hypothees and operators,

and reasoning deductively about changes in the state of induction to determine which

procedures or knowledge to invoke. A central controller mechanism would provide an

interface to the blackboard to interpret the state changes posted by the hypothesis in-

corporation compuiient, resolve conflicts between knowledge sources, and ensure that all

proposed hypotheses are posted to the blackboard in the proper format. Development of

these capabilities is the next logical thrust for future research.
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The hypothesis ordering and hypothesis evaluation components are essentially com-

plete, providing the fundamental capability for exploration of the hypothesis generation

mechanism and its interaction with hypothesis incorporation. Hypothesis ordering is

implemented with a heuristic filtering mechanism using multiple evaluation criteria for

hypothesis selection. It identifies the most promising hypotheses for consideration by

the hypothesis evaluation component and rejects those appearing useless. The hypoth-

esis evaluation component assesses the hypotheses provided by the ordering mechanism

against the full set of training instances to select the best hypothesis. The hypothesis

incorporation component then- adds the hypothesis to the decision-tree, partitions the

training data into the appropriate subsets, and posts these changes to the blackboard for

use by the hypothesis generator.

Of the four major components of OXGate, the hypothesis generation and order-

ing mechanisms are the most interesting and, before this thesis, the least developed.

Tractable investigation of hypothesis generation requires an operational hypothesis order-

ing capability, consequently, the latter is developed first. Hypothesis ordering is discussed

in detail in the next chapter, followed by extensive experimental results in Chapter 5.

Preliminary investigations into some uses of domain knowledge for hypothesis generation

are presented in Chapter 6.
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CHAPTER 4

HYPOTHESIS ORDERING

Hypothesis ordering was described in Section 3.1.2 as the second component of ab-

duction. It is the mechanism for assessing the potential utility of generated hypotheses

and selecting the most promising ones before testing the hypotheses against the full body

of evidence. I-Iypothesis ordering attempts to locate the most promising of the generated

hypotheses and discard the least promising, using a limited amount of evidential infor-

mation (data) augmented by available extra-evidential sources (knowledge and biases).

An example of this behavior can be found in the scientific discovery process. The

scientist briefly entertains a number of possible explanations of the observed data, using

knowledge of the domain to create hypotheses and screening uut many as being implau-

sible based on additional knowledge. The surviving hypotheses, those generated in this

first step, then compete against each other to determine which are worthy of thoughtful

consideration or experimental assessment. During this competition, readily accessible ev-

idential information is used to refute obviously inappropriate hypotheses and support the

more promising ones, and extra-evidential considerations (such as simplicity or elegance,

ease of testing, analogues in other domains, and the scientist's intuitions) are applied to

establish a preferential ordering. Only the subset of hypotheses deemed most promising

is retained for the complete evaluation procedure of induction proper.

Since this thesis specifically addresses the assembly of dccision-trees, the operational

use of hypothesis ordering can be described more concretely. At any point during the

assembly process, a pool of hypotheses is available for consideration, potentially restocked

regularly by the hypothesis generator. The hypothesis ordering mechanism examines each
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hypothesis in the pool at the current node of interest and produces a global estimate of

the potential utility of the hypothesis for the current node and future subordinate nodes.

In this thesis, hypothesis ordering uses a multiple-objective evaluation method to

estimate the predicted hypothesis utility [Seshu et al., 1989]. The method is heuristic;

therefore, to avoid relying too much on the outcome, the method is used to highlight the

hypotheses appearing to be very good or very poor relative to the rest of the hypotheses.

These two classifications imply three general categories of predicted hypothesis utility,

which map into three subsets of hypotheses: the most promising, the potentially useful,

and the apparently poor. The subset of most promising hypotheses, herein known as the

primary subset, contains the hypotheses with the highest predicted utility, warranting

precedence during hypothesis evaluation. The subset of potentially useful hypotheses, the

secondary subset, contains those hypotheses that are not outstanding in either extreme,

and so are held in reserve for later use: they do not warrant immediate rejection, but

they also do not appear to be immediately useful at the current node. The subset of

apparently poor hypotheses, the rejected subset, contains those hypotheses with such a

low predicted utility relative to the other hypotheses that they are removed from further

consideration.

During the operation of OXGate, hypothesis evaluation is applied first to the hy-

potheses in the primary subset, searching for the best hypothesis given the training data.

If none of these hypotheses is sufficiently applicable, the secondary subset is considered.

However, rather than evaluate all of the hypotheses in the secondary subset at once, the

secondary subset is first submitted to the hypothesis ordering medhanism for additional

partitioning into primary, secondary and rejected subsets,' and only the hypotheses in the

'Since the hyputhcses compete against each other to determine the partitioning (Section 4.2.5),
liyputle. asigned to the secondary subset during initial competition can be reassigned to the primary
or rejected subsets when competing among only themselves. This process has the effect of dynamically
relaxing the requirements for membership in the primary and rejected subsets.
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new primary subset are evaluated. If none of these hypotheses is adequate, the process

will repeat using the new secondary subset. The recursive partitioning of the secondary

subset will continue, evaluating the best of the available hypotheses and rejecting the

worst, until a suitable stopping point is reached. Partitioning will stop upon finding an

acceptable hypothesis, reaching a minimum number of hypotheses (below which the over-

head of ordering offsets any gains), or exhausting the set of hypotheses. The recursive

nature of this order-evaluate cycle allows OXGate to utilize more than the original three

categories while creating the refinements only when necessary. This approach avoids an

undesirable reliance on preset partitioning thresholds and an oversensitivity to the results

of the multiple-objective evaluation, while only incurring the overhead of highly refined

partitioning upon demand.

When the best available hypothesis is found, it is incorporated into the decision-tree as

the test at the node of interest. The union of the original (for the current node) primary

and secondary subsets becomes the pool of hypotheses for the next stage of decision-tree

assembly, augmented as appropriate by new suggestions from the hypothesis generator.

In addition, some hypotheses logically nullified by the chosen hypothesis may be filtered

out as part of the hypothesis incorporation process (see Section 3.1.4).

4.1 The Expected radeoff

The goal of hypothesis ordering is to reduce the number of hypotheses that the more

expensive evaluation mechanism must examine. Since hypothesis ordering is a heuris-

tic approach, one would expect a tradeoff, gaining processing speed at the expense of

another measure of performance. The moot obvious measure potentially affected is the

accuracy of the resultant classifier. Early in the decision-tree assembly process hypoth-

esis ordering may reject or shadow hypotheses necessary further down in the tree for
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maximal resubstitution accul acy (maximum classification accuracy on the training daa).

As will be discussed in Section 4.2.3, forcing the hypothesis ordering mechanism to retain

all primitive hypotheses can generally remove this effect. However, even in the case in

which an imperfect decision- tree is created (one with non-maximal resubstitution accu

racy), the performance of the decision-tree on independent test data is not necessarily

adversely affected.

The performance measure typically used in machine learning literature to compare

inductive systems is the predictive accuracy. Predictive accuracy (herein known as accu-

racy) is a measure of the power of the generalization: the ab;lity to predict the proper

classification of unseen data. Several factors affect the generalization performance, in-

cluding the degree to which the training data represent the test data, and the classifier's

sensitivity to noisy or rare data. Accepted methods of obtaining robust generalization

often sacrifice a portion of the resubstitution accuracy to gain in predictive accuracy,

accomplished in decision-tree classifiers by removing (post-pruning) or preventing the

creation of (pre-pruning) certain branches of the tree [Breiman et al., 1984].

The hypothesis ordering mechanism, in removing glubally unpromising hypotheses,

can be considered to be related to pre pruning since it may force early termination of tie

development of the decision-tree as the pool of promising hypotheses is depleted. The

resultant decision- tree is similar to that of a post-pruning approach: a decision- tree devel-

oped from the most well-represented and consistent training examples, with the tacit as

sumption that it is better to ignore rare examples (which might represent small disjuncts

or which might simply be noise) in exchange for the potential of better generalizations

[Breiman ct al., 1984]. Given the nature of generalization and the tenuous relationship

between resubstitution acctrac3 and predictive accuracy, the use of hypothesis ordering

does not imply a reduction in predictive accuracy. As will be seen in Section 5.3, when

compared to the decision trees developed using all of the available hypotheses (primitive
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and construded), hyp. ,Lesis ordering can provide substantial speed improvemert, with

little or no degradation of predictive accuracy.

4.2 MechaiAsms for Ordering Hypotheses

Hypot'lesis ordering involves two distin ' processes: assessment of the potential utility

of the hypotheses and division of the pool of hypotheses into the three disjoint subsets

described earlier. In this thesis, the assessment is performed through the application

of multiple-objcctive evaluation, assessing each hypothesis along several dimensions and-

combining the results to provide an indicition of )otential utility relative t the remaining

hypotheses. The methods of combin;ni the evaluation dimensions and c'etermining the

disposition of the hypotheses are varied and belong to the field of multiple-criteria decision

making [Yu, 1985]. A significant contribution of this resear, effort is the analysis and

empirical assessment of several approaches for hypothesis ordering.

In this thesis, three dimensions are used for multiple-objective evaluation. The 'first

dimeasion, the Quick-Look, is an estimate of the confirmation of the hypothesis: the

performance o,. ne hypothesis on a subset of the training data. The second dimension

is the simplicity of the I.ypothesis. The third dimension is the primitiveness, indicating

whether the hypothesis is a primitive derivation from the original description language

(Appen cix B) Abstractly, the Quick-Look is an evidential measure, the simplicity is a

context-free extr x.- vidential measure, and the primitiveness is a context-dependent extra-

ev;dential measurc. Othe,' measures arm I--- possible, juch as the degree of confidence

ascribed to a hyputhesis by its domain knowledge-based generator or the amo'mt of

comnbined support disjoint knowledge sources provide, a hypothesis. The investigation of

additionl/alternative measures is suggested as future work (Chapter 7).
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4.2.1 The Quick-Look

The Quick-Look is a heuristic method I devised for estimating the evidential support

for the hypotheses. It is a measure of the confirmation of the hypothesis over a randomly

diawn subset of the training data. The primary motivation for using the Quick-Look

-is to identify the hypotheses strongly supported or strongly discourted by the evidence.

Partial justification for using the Quick-Look is in [Etzioni, 1988], where a hypothesis

filter is established, based on a subset of the training instances and the desired reliability

of the filter. In Etzioni's approach, some good hypotheses may be filtered and some poor

hypotheses retained, depending on how well the sample represents the training data.

The probabiliu of these events occurring can be made arbitrarily small by increasing the

sample size. The Quick-Look faces the same dependency on the sampling, but since it is

only one of several dimensions in the evaluation, and since the hypotheses are competing

against each other rather than an established threshold, the adverse effects of unfavorable

sampling are diminished.

The use of the Quick-Look is also similar to the use of windowing in ID3 (Sec-

tion 2.4.1), but the resemblapce is superficial. Windowing uses a subset of the training

data to develop a decision-tree. If the remaining training data are not classified correctly,

some of the misclassified examples are added to the subset and the tree is redeveloped.

Windowing reduces the amount of computer memory required for decision-tree develop-

ment by limiting the number of examples to consider. The description language remains

untouched. The Quick-Look also operates on a subset of the training data, not to de--elop

the decision-tree, but to focus the description language. The decision-tree is developed

by the hypothesis evaluation component of OXGate, which uses the full set of training

dat. and relies on the constrained description language to reduce the size of the search

space, thereby saving processing time.
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4.2.1.1 A potential problem and some solutions

The greatest difficulty Quick-Look faces is the potentially detrimental effect that

highly disjunctive concepts may have on its utility as a predictive measure of hypothesis

quality. Some of the islands of a highly disjunctive concept may be only marginally rep-

resented by the training data, and some islands may not be represented at all. While this

is a common problem for all inductive systems, Quick-Look exacerbates the sparseness of

the representation by taking only a subset of the training data, reducing the likelihood

of selecting any particular example even-further. For example, if an island is represented

by 5 of a possible 1000 examples in instance space, a training set of 500 randomly drawn

exainples (with replacement) has a 92% probability of selecting at least one example from

the island. A Quick-Look subset of 10% of the training data (50 examples) has only a

22% probability of containing an example from the island. Therefore, highly specialized

hypotheses, applicable only-to the smaller islands, will incur a larger probability of being

rejected -dative to their more robust counterparts. Some of the possible approaches to

alleviating this adverse condition are:

1. Assume that the rare examples are indistinguishable from noisy data, ignore them

if necessary, and hope the generalization provides good predictive accuracy on the

test data. As discussed in Section 4.1, this is the philosophy behind decision-tree

pruning and is a common method of dealing with exceptional examples.

2. Increase the size of the Quick-Look sample, thereby improving the likelihood of se-

lecting representative samples from each island. The drawback of this approach is

the increased comp'itational overhead, effectively negating the processing speedup

available through hypothesis ordering. One possible approach to avoiding an un-

necessarily large Quick-Look sample size is to adjust the sample size according to

the concept dispersion or variance [Rendell and Seshu, 1990]. For concepts that are
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highly dispersed in instance space, more samples from the sparser areas (areas with

small, scattered islands) would improve the likelihood of selecting representative

samples from the islands. The development of mechanisms for assessing the com-

plexity of the concept and dynamically scoping the sample size is a topic suggested

for future research (Chapter 7).

3. Rely on the hypothesis generator to produce hypotheses that are at the right

level of generality or abstraction to predict the poorly represented islands and

are supported by enough examples to be rated well by the Quick-Look. The

generator must detect regularities in the data and propose hypotheses incor-

porating those regularities. This is not an additional requirement imposed by

the use of Quick-Look, for predicting the missing islands is the fundamental

challenge faced by any constructive induction system [Drastal and- Raatz, 1989,

Rendell and Seshu.y, 19901.

4. Artificially increase the proportion of positive to negative examples in the train-

ing set to provide denser islands, thereby increasing the probability of selecting an

example from a smaller island. In the previous example, assume that of the 1000

examples in the instance space, 200 are positi e. Doubling the number of positive

examples in the training set (by representing each one twice) would raise the pro-

portion of the examples on the small island from 5 out of 1000 to 10 of 1200. The

Quick-Look sample of 50 examples would then have a 34% chance of containing

an example from the island. Two potential effects of this approach would be an

increase in the false positive rate and a tendency to overgeneralize. This approach

is studied in Section 5.4.4.3.

5. Retain the set of primitive hypotheses at all times, disallowing their rejection re-

gardless of their performance in the Quick-Look. This nearly guarantees maximal
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resubstitution accuracy, since the primitive hypotheses provide the original de-

scription language for use in the lower branches of the tree if needed'. At the same

time, overspecialization to the training data may be avoided, with a correspond-

ing increase in predictive accuracy, since the more potentially useful constructed

hypotheses are also in the description language and may be incorporatcd higher in

the tree. This approach is investigated in Section 5.4.4.1.

6. Retain the set of rejected hypotheses for possible use when the primary and sec-

ondary subsets prove insufficient. One likely result would be a substantial increase

in the processing time, since the hypothesis ordering mechanism would have to

reexamine many useless hypotheses. The experiments presented in Section 5.4.4.2

investigate this approach. A potentially effective alternative to retaining all .ejected

hypotheses is to rely on the hypothesis generator to regenerate certain hypotheses

when there is sufficient reason to do so.

4.2.1.2 Measuring confirmation

Several measures are available to estimte the confirmation of a hypothesis, and are

applicable to both the Quick-Look as well as the-full hypothesis evaluation. Each of these

measures involves the same basic process: test the hypothesis on the sample data, count

the number of correctly and incorrectly identified positive and negative examples, and

combine these four values into a single term. Various measurements have been explored

in the works of Breiman et al. [1984], Hartmann et al. [1982], Goodman and Smyth

[1988], Mingers [1989], and many others. The three measures examined ;n this thesis are

the information-gain (IG), average purity (AvePur), and positive purity (PosPur).

In the following definitions, the ref3rences to data denote the tiaining data testing at

the decision-tree node of interest. These definitions and their formulae are applicable to
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the Quick-Look when considering a randomly drawn subset of training data, as well as

the hypothesis evaluation mechanism when using all the data available at a node.

Let the four measured values be
PG = the number of correctly classified positive examples
NG = the number of correctly classified negative examples
PB = the number of incorrectly classified positive examples
ATB = the number of incorrectly classified negative examples

Then let
LT = the number of examples classified as positive (PG + NB)
RT = the number of examples classified as negative (NG + PB)
P = the total number of positive examples (PG + PB)
N = the total number of negative examples (NG + NB)
D = the total number of examples (P + N)

Information-Gain: The IG is a rough estimate of the information gained by choosing the

hypothesis as the criterion for splitting at a node of the decision-tree. It is the difference

between the entropy of the data at the node and the weighted sum of the entropies of the

data in the two branches that would be created by the split. Contrary to the common

use of information-gain, in OXGate the IG is signed to distinguish between a hypothesis

and its antithesis.

The maximum entropy S,,,a, = S(P/D) + S(N/D) where S(x) = -x ln x

The entropy of the positive (left) branch S+ = S(PG/LT) + S(NB/LT)

The entropy oi the negative (right) branch S_ = S(-jVG/RT) + S(PB/RT)

The total entropy of the split St& = ((S+ x LT) + (S_ x RT))/D

The informa' :m-gain IG = Sm.. - Stot

And if PB/RT > POILT, the sign of IG is made negative.

Average Purity: The AvePur is the percentage of all examples classified correctly by the

hypothesis. AvePur = (PG + NTG)/D

75



Positive Purity: The PosPur is the percentage of positive examples classified correctly

by the hypothesis. PosPur = PG/P

Section- 5.4.2 presents evidence showing that the information-gain is the preferred

measure of the three for hypothesis confirmation. Several other inductive systems use the

information-gain as the metric for evaluation; one of the most famous is ID3 by Quinlan

[1986]. Common sense suggests that the measure used for the Quick-Look should be the

same as for hypothesis evaluation since the Quick-Luok serves to estimate the utility the

hypotheses will be awarded during full evaluation.

4.2.2 Simplicity

The second measure used in the multiple-objective evaluation is the simplicity: the

inverse of the cost of processing the hypothesis. Simplicity is often used as an estimate

of the plausibility of the hypothesis or its prior probability [Watanabe, 1985'. Simplicity

is a context-free, extra-evidential measure based solely upon the syntactic structure of

the hypothesis, independent of the data.

The preference for the simplest hypotheses consistent with the data is a long-standing

heuristic commonly known as Occam's Razor. More than a heuristic, this bias has

a mathematical basis: a simple hypothesis consistent with the data is provably likely

to be an approximately correct description of the true concept [Blumer et al., 19871.

According to Dietterich [1990], regardless of the nature of the simplicity measurement

there are relatively few simple hypotheses; therefore, t simple hypothesis is unlikely

to be consistent with the data by chance and deserves preference over more complex

hypotheses.

The exact nature of the simplicity measurement should reflect the cost that the

decision-tree is intended to minimize [Hartmann et al., 1982, Breiman et al., 1984]. The
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costs of the individual syntactic elements must be incorporated into the measurement, yet

there is great liberty in determining what those costs should be. Counting the number of

tests on the attributes is an obvious potential element of the measurement. However, the

manner of treating the constructive operators is unclear: semantic differences betwc-n

operators suggest a continuum of operator costs.

One approach is to simply use the inverse of the number of tests on attributes

and to ignore the effect of constructive operators. One justification for this ap-

proach is the recognition that in real-world applications, the computational cost

of performing the constructive operations can be negligible with respect to the

cost of testing the attributes. For example, the primitive hypothesis (color =

red) would require a single test: its simplicity is 1. The constructed hypothesis

((color = red) AND (size = large) AND (shave = round)) entails a simpli .ty of 1/3.

The difficulty with this approach is that it often creates a decision-tree with poor read-

ability and predictiveaccuracy: the measure is unable to distinguisk between hypotheses

of the forms (lest), f(test), and f(g(h(j(test)))). For example, it will not indicate a

preference for (Xl = T) over (NOT (Xl = F)).

Assigning a unifvum cost to the application of each con.t -uctive operator is also not a

completely satisfactory approach. The semantic differences between operators suggest a

graded cost structure. Clearly ((logB A) > 3) is a computationally more costly operation

than ((A + B) > 3), yet each consists of two attribute tests, the application of one

operator, and a comparison to a constant.

The development of a practical and syntactically attractive approach to operator

cost assignment should be the subject of future research. In this thesis, the Boolean

operators AND, OR, and NOT have costs of zero: preliminary testing during the evolution

of OXGate exhibited no noticeable, consistent benefit from assigning non-zero costs to
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the Boolean operators. The operators EQP, MEMBER, and WHATIS have costs of one.

Their use is described in Chapter 6.

4.2.3 Primitiveness

The third dimension of multiple-objective evaluation used in this thesis, primitiveness,

is a binary indication of whether the hypothesis is primitive. Since the hypothesis ordering

mechanism perfvrms a global assessment of the initial pool of hypotheses at the beginning

of decision-tree assembly, those hypotheses representing the smaller islands of the true

concept description may be inadvertently rejected. They are simply overshadowed by the

larger values of confirmation of the hypotheses applicable higher in the decision-trees.

If the hypothesis generator does not regenerate the necessary hypotheses before they

are required deeper in the decision-tree, the remaining hypotheses may be inadequate to

completely classify the training data. Retention of all primitive hypotheses, or primitives,

should provide the capability of achieving at least the maximal resubstitution accuracy

available with a purely selective induction system. The experiments of Section 5.4.4.1

investigate the utility of retaining the primitive hypotheses.

In some cases, it is conceivable that the primitives need not be retained. For example,

in an application in which a function of volume is found to be a useful constructed feature

(constructed from the primitive features derived from the attributes height, width, and

length), it is quite possible that the primitive features and the corresponding primitive

hypotheses will never be used again. Generally, predicting whether a primitive used in

one construction will be useful further down in the decision- tree is difficult at best without

full knowledge of the target concept, therefore, caution must be used when discarding

primitive hypotheses. This is a subject for future research.
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4.2.4 Combining the measures

The selection of promising hypotheses for future complete evaluation is a process

analogous to the way decisionis are often made in business or other disciplines, the decision

maker hs a suboidinate examine the space of alternatives and provide him with the set

of most promising decisions for his consideration. Although the subordinate assembles a

set of candidate decisions and the decision mai, er converges on a single one, both assess

the possible decisions by means of multiple-criteria decision making. Similarly, in this

thesis, multiple-criteria decision making is used in both the hypothesis ordering and the

hypothesis -evaluation processes.

The central theme of multiple-criteria decision making is the evaluation of the poten-

tial costs and benefits of candidate decisions in order to identify the most desirable of the

decisions. The process is known as multiple-objective evaluation (MOE): the evaluation

of several measures (objectives) of costs or benefits, and the combination of those objec-

tives into a measure of quality useful for comparing the decisions. A myriad of methods

exist for MOE, many involving not only an attempt to optimize the choice of decision,

but also to optimize the selection process itself [Yu, 1985]. This thesis examines four of

the more tractable approaches. the use of non-dominance, weighted combination of the

objectives, product of the objectives, and procedural use of the objectives.

4.2.4.1 Non-Domination

The most intuitively appealing of the MOE conbiination methods are those that do

not attempt to produce a single comparative term for each hypothesis, but instead com-

pare the hypotheses along each of the objectives and select the ones with the best over-

all performance. One method of this type is the identification of the non-dominated

79



hypotheses (NDII), a method I developed2 based on the determination of the non-

dominated regions of a decision space [Yu, 1985].

The non-dominated regions of a decision space are those regions containing decision

points that are better than every other point in at least one evaludtion dimension. The

regions are the extrema of the convex bulls formed over the set of known decision points.

As illustrated in Figure 4.1, the non-dominated points are never surpassed in every

dimension by another point. The appeal of this approach is that the relative importance

of the evaluation measures need not be established to identify which decisions to prefer:

all of the decisions known to be inferior to at least one other decision are discarded.

The use of the non-dominance approach for hypothesis ordering in OXGate involves

broadening the definition of the non-dominated region, and using this new definition as

the basis for dividing the pool of hypotheses into the three subsets described earlier. This

extension is discussed in Section 4.2.5.1.

X2

0 .

x1

Figure 4.1 The Regions of Non-Domination. In this projection of decision space
onto the two evaluation dimensions X1 and X2, thr non-dominated decision points are
highlighted.

'The use of a non-dominated region for hypothesis selection was suggested in [Seshu el a!., 1989].
Details of that implementation have not been published.
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4.2.4.2 Weighted combination

One of the simplest combination methods in decision making is the linear weighting

and combination of the -evaluation measures, the wceighted multiple-objcctive evaluation

(WMOE) approach. If the relative importance of the evaluation measures is known with

enough certainty and is quantifiable, then for decision D, a weight a, can be assigned to

each of the n measures XD,. The quantity QD represents the quality of decision D and

is given by

QD aicYXD.
i=l

The main drawback of the weighted combination approach is the need to quantify

the relative importance of each evaluation measure. Often this commitment to fixed

weights is unattainable or undesirable. The effective setting of the weights varies with

the situation and the distribution of the known decision points, acid locating the proper

mix of weights is itself a MOE process. [Yu, 19851

4.2.4.3 Product combination

Several sources use the product- of a measure of confirmation and a measure of plausi-

bility as the basis for estimating the overall quality of a premise (e.g., the J-measure

[Goodman and Smyth, 1988], or the inductive probability or credibility [Watanabe,

19851). These were discussed in Section 3.1.3. The product approach may tend to unduly

favor the simplest hypotheses during hypothesis ordering. The Quick-Look %.onfirnation

measure must be over twice as large for the more complex hypotheses if they are to

compete with the simplest hypotheses.
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4.2.4.4 Procedural combination

When the relative importance of the evaluation measures cannot be quantified, but

the precedence of the measures is known with certainty, the selecth9n of the best deci-

sions can be accomplished procedurally. The decisions art. first ordered according to the

most important objective. When decisions are equally valued ovw. the most important

objective, the second objective is applied to break th. ties. The less impoitant objec-

tives are applied in the same fashion as needed. This approach forms the basis of the

lexicographical evaluation function (LEF) used in the series of INDUCE and CLUS'-ER

programs [Stepp and Michalski, 1986).

The procedural combination approach is not a useful approach for hypothesis or-

dering in )XGate since the goal of hypothesis ordering is to identify the set of most

promising hypotheses, not the single best hypothesis. It also requires that the prior-

ities of the objectives be fixed in ad,,dnce; consequently, this method cannot respond

dynamically to the composition of the set of hypotheses. Although empirical support of

the unsuitabilit3 of the procedural approach for hypothesis ordering is not presented in

this thesis, preliminary experimentation demonstrated this approach to produce gener

ally poor decision-trees and to be unstable when used for hypothesis ordering, i.e., very

sensitive to the composition of the randomly drawn Quick-Look data sets. While not

particularly useful for hypothesis ordering, the procedural combination is the method

of choice for the hypothesis evaluation mechanism: it produces decision-trees with the

simplest of the most informative decisions at each node.

4.2.5 Separating the hypotheses

The second stage of hypothesis ordering is the separation of the pool of hypotheses

into three subsets: primary, secondary, and rejected. Two approaches can be used to
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determine the partitioning. betting of thresholds and competition among hypotheses. The

comnpetitive approach is the more desirable of the two because it allows the behavior of the

partitioning to respond flexibly to the characteristics of the hypotheses and the training

data. The establishment of fixed thresholds can result in a large number of hypotheses

being retained when the data represent a simple concept, and the premature rejection

of many hypotheses when the data represent a highly disjunctive concept, simply due to

low absolute values vf the measured confirmation. The competitive approach is dynamic

since onlyl the relative, and not the absolute, values of the measures are considered.

The non-domination approach to hypothesis ordering naturally places the hypotheses

in competition against one another. For the other combination methods, a single value

of [predicted utility is computed for each hypothesis: this value can form the basis of

z. clustering approach that causes the hypotheses to gravitate into the three distinct

subsets. Unfortunately, true clustering operations are comput.&tionally expensive and

would curtail much of the prULesSing speed benefits available with hypothesis ordering.

Instead: an approach to approximdting the clustering behavior is used: the hypotheses

are ranked according to their predicted utilities, and a histograr.-natic method partitions

them into the three subsets.

Of the three dimensions used for the multiple-objective evaluation, primitiveness re-

quires special treatment. Section 4.2.3 pointed out the predicted benefits of always re-

taining the primitive hypotheses. One way of implementing this reqrirement is to treat

primitiveness as an objective of such high importance that the primitive hypotheses are

always in the primary subset. The goal, however, is not to always have the primitive hy-

potheses in the primary subset. but rather to keep them out of the rejected subset. This

is accomplished by performing hypothesis ordering using the confirmation and simplicity

measures, and then transferring any primitive hypotheses relegated to tile rejected subset

into the secondary subset.
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4.2.5.1 Non-Domination

The non-domination approach to hypothesis ordering (NDH) is an extension of the

fundamental description presented in Section 4.2.4.1. By definition, non-dominated hy-

potheses are never surpassed in every evaluation dimension by any other hypothesis. If

applied in OXGate, this constraint would force too much reliance on the confirmation

measurement obtained by the Quick-Look. Since the Quick-Look provides only a rough

estimate of the confirmation of the hypotheses, failure to tolerate a margin for error can

result in an unwarranted restriction of the primary subset. By including tolerance bands

for both the primary and secondary subsets, the pool of hypotheses can be partitioned

into the "generally undominated" hypotheses (primary subset), the "heavily dominated"

hypotheses (rejected subset), and the remaining hypotheses (secondary subset). Fig-

ure 4.2 illustrates the application of tolerance bands in two dimensions.

The tolerance bands are necessary only for dimensions susceptible to error. Simplic-

ity is a known quantity with no error; therefore, it requires no tolerance bands. Tol-

erance bands may be useful, though, for low values of simplicity to avoid unwarranted

X2

X1

Figure 4.2 Using Tolerance Bands with Non-Domination. The use of tolerance
bands avoids overreliance on the quality of estimations X1 and X2. The three bands rep-
resent the generally undominated hypotheses (primary subset, P), the heavily dominated
hypotheses (rejected subset, R), and the remaining ones (secondary subset, S).
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discrimination between marginally different hypotheses. For example, preferring a hy-

pothesis with fifteen components over one with sixteen is too refined a discrimination (if

based on simplicity alone) for use in hypothesis ordering. Since the constructed hypothe-

ses used in the experiments with OXGate are relatively simple, tolerance bands are not

used with the simplicity measure in this thesis.

The application of the primary tolerance band for the Quick-Look confirmation mea-

sure is illustrated in Figure 4.3. Conceptually, the approach for partitioning the hypothe-

ses into the subsets proceeds as follows. First, the truly non-dominated hypotheses are

determined (points A, B, and C in the figure). Second, the primary tolerance band is

extended from these hypotheses. Any hypotheses falling within the banded areas are in-

cluded in the primary subset, except for those that are dominated by another hypothesis

by more than a tolerance width (for example, point D). Third, the hypotheses in the

primary subset are removed from the poot and the process is reapplied to the remaining

hypotheses using the secondary tolerance band to determine the secondary subset. The

hypotheses remaining after this application are rejected.

1 . *o.. *.
Simplicity C

* . - ' ,'.. ")V .* •D® --;
D

* A me

Confirmation I

Figure 4.3 Non-Dominated Hypotheses in OXGate. The diagram shows the
use of the tvleraire band for .he primary subset of hypotheses. The tolerance band for
the secord'ary .ubsct is w.ot shown. The toleLance band is applied for the Quick-Look
measurc of confirmatio:., but is not necessaiy for the precisely determinable dimension
of simplicity. (Note the discrete nature of the simplicity measure used by OXGate.)
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4.2.5.2 Weighted and product combinations

Both the weighted and the product combination approaches to multiple-objective

ev,luatiun combine the evaluation dimensions into a single estimate of hypothesis utility.

Using this estimate, the hypotheses can be ordered in a list. Partitioning this list into

three subsets is a matter of finding suitable breakpoints, either by clustering, establish-

ing fixed thresholds, or using a histogrammatic method, described below. Figure 4.4

illustrates the partitioning of the weighted combination in a two dimensional evaluation

space. Figure 4.5 shows the partitioning for the primary subset using the weighted sum

of confirmation and simplicity measures in OXGate.

The product combination is illustrated in Figure 4.6. It is easy to bee why this

form might not be useful for hypothesis ordering. The primary subset tends to favor

hypotheses with X1 - X2 (confirmation ; simplicity) while avoiding the extremes.

Moderately simple hypothebeb with medium values of confirmation are preferred over

complex hypotheses with high confirmations. If the hypothesis generator happens to

propose the correct hypothesis to describe the target uncept, but the hypothesis is fairly

complex, the pioduct form of the hypothesis ordering mechanism could inadvertently

X2

* Si

xl

Figure 4.4 Partitioning Hypotheses with Weighted MOE. Key: (P)rimary,
(S)econdary, and (IR)ejected subsets.
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Confirmation

F igure 4.5 Weighted MOE in OXGate. This diagram illustrates the primary
partition of hypotheses as applied to the weighted sum of the Quick-Look measure of
confirmation and simplicity. (cf. Figure 4.3)

X2I~

0UP

r

Figure 4.6 Partitioning H-ypotheses with Product MOE. Key: (P)rimary,
(S)econdary, and (R)ejected subsets.
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discard it. Another difficulty with using the product form occurs with the information-

gain estimate of confirmation. The information-gain is not a linear measurement: a

hypothesis that correctly classifies twice as many examples does not necessarily yield

twice as much information-gain. The product of information-gain and simplicity tends

to favor a simple hypothesis even when a more complex hypothesis is correspondingly

more accurate.

One method of partitioning an ordered list of quality estimates is by an approach I

have loosely termed the histogrammatic method. Essentially, the process is analogous

to that of an instructor who grades "on a curve." The instructor takes the distribu-

tion of student course scores and looks for suitable breakpoints within sensible windows

of opportunity in order to define the boundaries between the grades of A, B, C, etc.

The histogrammatic method examines the ordered list of quality estimates, searching for

sufficiently large drops in quality between adjacent items in the list, as depicted in Fig-

ure 4.7. Acceptable drops occurring within defined windows are used as the breakpoints

to partition the list into the primary, secondary, and rejected subsets.

The windows are currently defined in OXGate by a collection of parameters specifying:

the minimum number of hypotheses in the primary subset, the minimum quality of

Quality
0,

-'S

- ,O N@

(Ordering)

Figure 4.7 The Histogrammatic Approach to Partitioning.
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hypotheses in the primary subset as a percentage of the highest quality in the list, the

magnitude of the drop as a percentage difference between adjacent terms, and other

related parameters to distinguish the secondary subset from the rejected subset. The

major deficiency of this approach is its complexity: with so many parameters to adjust,

it may be difficult or impossible to establish a set of parameters robust enough to apply

properly to every possible pool of hypotheses. Alternative methods of partitioning the

ordered list, such as self-clustering algorithms or the use of clustering attractors, may

provide more robust and psy-hologically satisfying solutions. Clustering algorithms tend

to be computationally expensive, however, and would add substantially to the processing

overhead that hypothesis ordering is intended to reduce.

4.2.5.3 Procedural combination

The procedural combination and prtitioning approach to multiple-objective evalu-

ation can be accomplished in at least two ways. In the first approach, the hypotheses

are placed on an ordered list. The most important objective is used first to order the

hypotheses. As in the non-dominated approach, tolerance levels can be established to

avoid placing too much reliance on the accuracy of the measurements. Equally valued

hypotheses, or when using tolerance bands, similarly valued hypotheses, are then ordered

by the second important objective, and so on. The ordered list is then partitioned in

a manner similar to that of the weighted and product combination methods; however,

now there is no single measure with which to compare adjacent hypotheses. The list

must be partitioned according to some other criteria such as defining the subsets to be

fixed percentages of the total number of hypotheses on the list. The effect would be

to have the primary subset consist mainly of the hypotheses with the highest values of

the most important objective regardless of the values of the other objectives. Similarly,

the rejected subset would tend to consist of the hypotheses with the lowest values of
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the most important objectives. The other objectives would affect only the plac .nent of

a hypotheses in a particular subset when the partitioning splits a group of hypotheses

having equal or similar values of the most important objective. There appears to be

no redeeming value to this approach: i. generally ignores all but the most important

objective, and the partitioning method is blind to the makeup of the pool of hypotheses.

An alternative procedural combination appro;.ch to multip!e-objective evaluation is

illustrated in Figure 4.8 with X1 as the most important objective and X2 as the next.

The hypotheses with the highest value of XI are considered first: the ones with the

highest values of X2 are placed in the primary subset and the ones with the lower values

of X2 are assigned to the secondary subset. The algorithm proceeds from the right

towards the left in the figure, assigning the hypotheses with the best values of X2 to

the primary subset for a particular value of X1, and the rest to the secondary subset.

As the value of XI approaches the middle of its range, the partitioning is adjusted so

that only the hypotheses with the very best values of X2 are selected for the primary

subset, the ones with the worst values of X2 are rejected, and the rest are assigned

to the secondary subset. As the value of XI approaches the low end of its range, the

partitioning is readjusted so that the hypotheses with the best values of X2 are assigned

X21 0

D* Cm
0

0

* 0

[] Key

XI

Figure 4.8 Partitioning Hypotheses wit;h Procedural MOE.
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to the secondary subset, and the remainder are rejected. Tolerance levels can als( be

incorporated into this algorithm to avoid being or.-!y sensitive to the accuracy of the

measurements.

This procedural combination algorithm suffers some of the deficiencies of the his-

tograminatiL approach. Several parameters have to be used to speci"y the breakpoints to

all cate hypotheseb to the three subsets, is -well as define the conditions for adjusting the

partitioning behavior as described above. More importantly, this approach can exhibit

an unacceptable anomaly as illustLated in Figure 4.8. Hypothesis A is assigned to the

secondary subset since its value of X2 is less than that of *he two other hypotheses with

nearly the same value of X1. Hypo.hesis B is assigned to the primary subset since it

has the greatest value of X2 for its value of X1. Yet, hypothesis A is clearly superior

to B for each mea.sure X1 and X2. Similarly, hypothesis C should not be rejected when

D is retained in the secondary subset. This procedural approach for multiple-objective

evaluation is simply too ill-behaved for use in hypothesis ordering.

4.3 Summary and Comments

Hypothesis ordering is the second step of the inductive process. Its function is to

make initial estimates of the utilities of hypotheses, present the most promising of the

hypotheses for rigorous evaluation, and reject the seemingl3 useless hypotheses. The

hypothesis ordering component act- as a buffer between the hypothes;s generator, which

proposes hypotheses, and the hypothesis evaluation component which must evaluate the

hypotheses against the full set of available training data. Since the evaluation against

the full set of data is an expensive operation, hypothesis ordering is necessary to reduce

the number of hypotheses the evaluator must consider.
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Hypothesis ordering involves two processes: assessing the hypotheses, and dividing

the pool of h3 potheses into three disjoint subsets. Hypotheses are assessed through the

use of multiple-objective evaluation, a method of using several measures to estimate

overall hypothesib goodness. Three objectives are used in the current implementation of

OXGate: the Quick-Look, simplicity, and primitiveness. The Quick-Look measures the

confirmation of a hypothesis against a random subset of the training data. Simplicity is

a measure of the structural complexity of the hypothesis and provides an estimate of its

plausilility. Primitiveness indicates whether the hypothesis is derived from an original

primitive feature, or whether it is constructed from other hypotheses.

Several approaches to combining the measures for multiple-objective evaluation were

considered in this chapter: non-domination, weighted combination, product combination,

and the procedural approach. In each approach, the pool of hypotheses is evaluated

over the measures, and the h: potheses compete in some manner against each other for

membership in one of three subsets: the primary subset (most promising), the secondary

subset (potentially useful), and the rejected subset (apparently useless). The approach

used to partition the hypotheses into the subsets depends on the particular combination

method in use. In each approach, primitiveness is given special treatment: a primitive

hypothesis is never rejected. If designated for the rejected subset, it will be reassigned

to the secondary subset.

The non-domination approach for hypothesis ordering is an extension of the use of

non-dominated regions. By definition, a non-dominated hypothesis is one that is not

surpassed in every evaluation dimension by any other hypothesis. To avoid overreliance

on the Quick-Look confirmation measurement, which is only a rough estimate, tolerance

bands are included for both the primary and secondary subsets. In this approach, the

pool of hypotheses is partitioned into the "generally undominated" hypotheses (primary
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subset), the "heavily dominated" hypotheses (rejected subset), and the remaining hy-

potheses (secondary subset).

The weighted and product combination approaches both involve producing a single

meabute of hyputhei qutlity, ordering the hypotheses by their quality, and partitioning

the ordered list into the three subsets. The greatest difficulty incurred with these ap-

proaches is the development of an inexpensive partitioning mechanism robust enough to

adapt to the particular mix of hypotheses.

The procedural approach orders the hypotheses according to the most important

objective first, resolves ties by using the next most important objective, and continues in

a similar fashion until the hypotheses are completely ordered or all objectives have been

used. If the list is partitioned as in the weighted or product approaches, the application of

the lesser objectives is generally wasted overhead. An alternative approach is to partition

groups of hypotheses at a time: for each band of values of the most important objective,

the hypotheses included in the band are partitioned into the three subsets according

to the ordering provided by the lesser objectives. Proper assignment of hypotheses to

the subsets involves a dynamically changing criteria for membership that is adjusted

according to the value of the most important objective.

Of the four approaches to multiple-objective evaluation, the non-dominance and

weighted combination methods provide the best empirical performance as will be shown

in Chapter 5. The non-domination approach is the most intuitively appealing of the

methods discussed, since it does not attempt to produce a single comparative term for

each hypothesis based on limited information. Instead, it compares the hypotheses along

each of the objectives and selects the ones with the best overall performance. The non-

domination approach to hypothesis ordering is psychologically satisfying, functionally

robust, and computationally economic, making it the method of choice for implementa-

tion in OXGate.
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CHAPTER 5

EXPERIMENTS AND ANALYSIS:
HYPOTHESIS ORDERING

This chapter presents several experiments demonstrating the use of hypothesis order-

ing in OX~ate, and the analysis of several important design considerations- The chapter

is divided into five major sections. In the first section, the experimental method and

the domains used during the investigation are outlined. The second section baselines

OXGate against the well-known inductive system ID3 to establish the basic represen-

tational and processing speed differences. Section 5.3 presents a preview of hypothesis

ordering at its best, providing the context for the succeeding discussions. The system

design is presented in Section 5.4, providing an overview of, and rationale for, several

key design choices made during the evolution of OXGate. Following the system design,

Section 5.5 presents the system analysis. the investigation of the robustness of the hy-

pothesis ordering mechanism as it is applied across several domains. The main results

and conclusions are summarized in Section .5.6.

5.1 Experimental Method

The experiments of this chapter are all aimed at evaluating the effectiveness of the hy-

pothesis ordering mechanism. The hypothesis ordering component was tested by flooding

OXGate with constructed hypotheses and mcasuring the ability of OXGate to manage

the extra load. The constructed hypotheses were either created by hand, produced by

special-purpose routines, or both. The specific method used for generating constructed

hypotheses varied with the experiment and test domain.
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The experiments presented here are intended to illustrate the points being made,

rather than provide an exhaustive account of all possible permutations. Many experi-

ments were run early in the evolution of OXGate that steered its development toward its

current state. Several of the adjustable parameters were tuned during this phase to pro-

%ide reasonabl) robust performance for concepts from the Boolean and Nominal domains

(described below), and later were checked using concepts irom all four test domains to

ensure their continued acceptabilit). These parameters include the minimum number of

instances in the Quick-Look dataset (10). the maximum size of the Quick-Look dataset

as a percentage of the available training data (10%), a set of five parameters describ-

ing the breakpoints in the histogrammatic partitioning approach, the relative weights

used in weighted multiple-objective evaluation, the width of the tolerance bands for the

non domination approach (readdres-ed in Section 3.5.1), and the minimum numbers of

examples (40) and hypotheses (15) required before hypothesis ordering is enabled. This

chapter highlights the most important and illustrative of the experiments accomplished

after the initial phase of OXGates development.

5.1.1 Measurements and displayed data

The figures of this chapter show various measurements made on the decision-tree cre-

ated bv the sys'em under consideration; the abscissa is the number of examples used

in training (developing the decision-tree) and the ordinate is the dependent variable.

The three measured variables are the error-rate, the number of primitive hypot:leses

incorporated in the decision tree, and the amount of CPT. time nec-ssary to develop

the dec.sion-tree. Two computed variables, the statistical sgnificance and the slow-

down/speedup factor, are also used.

The error-rate is simply the complement of the predictive accuracy (10Jt - accuracy)

as measured on a relevant set of test data. The number of primitives is an indication of
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the cost-complexity of the decision-tree, providing a measure of the number of directly

testable components assembled in the tree. In ID3, the number of primitives is calculated

to reflect the number of primitives that would be needed in an equivalent binary decision-

tree. This measurement was chosen over others (e.g., number of nodes or leaves) to

directly relate the OXCate decision-trees to those of ID3. The amount of CPU time

is a useful measure for comparisons within a figure, but not from one figure to another;

different Sun® workstation configurations were used for batch experimentation depending

upon machine availability. The CPU time is included as a comparative measure, not for

strict theoretical purposes, but to provide a means of gauging the practicality of the

OXCate approach in real-world applications.

All graphs show mean values measured over 10 runs, except where noted. Error bars,

where included, represent the 95% confidence interval (two-sided) using the Student's t

distributicn. The statistical significance, where shown, is also derived assuming the

Student's t distribution, and represents the likelihood of obtaining the observed results if

the two error-rate curves being compared are assumed to represent the same distribution.

The careful reader should note that, although tempting, it is incorrect to state that

two curves appearing to be significantly different, i.e., having low values of significance,

belong to different distributions. All that can be said is that the experiment supports

the conjecture of one curve being better than the other, but does not prove it.

In Section 5.5.1 another statistical analysis tool, the Friedman test, is used to distin-

guish from among data distributions that appear similar, i.e., where pairwise comparisons

of the distributions have high values of statistical significance. The Friedman test is a

method of rank analysis, allowing a distribution to be selected as "best" based on its

overall performance [Friedman, 1937].

Two additional points should be noted regarding the graphs. First, the confidence

intervals are sometimes omitted for clarity of presentation. In those cases, the intervals
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provide misleading information: the processing times for the larger training set sizes were

so large that fewer than ten runs were made, resulting in relatively large confidence in-

tervals. Second, some graphs exhibit a peculiar "bump" for hypothesis ordering on small

training sample sizes. Since the Quick-Look examines only a fraction of the available

training data, hypothesis ordering is disabled for training sets of forty or fewer examples

to avoid oversensitivity to the particular examples drawn.

5.1.2 Domains and concepts

Table 5.1 provides a general overview of the concepts used in the experiments, taken

from four domains. Two domains are artificial (Boolean and Nominal), and two (NetTalk

Table 5.1 Summary of Concepts Used

Concept Description Instance Space Disjuncts'

Boolean 3-term 3 trinary conjuncts 12 binary attributes =€, 3,13,13
(Appendix 0) 3DNF 4096 instances 33%

4-term 1 binary, 3 trinary 4, 27, 27
3*DNF conjuncts 50%

Nominal A structured, 4 nominal attributes 4, 7, 7
(Appendix D) medium complexity 3 to 5 values/attribute :, 37%

240 instances
B unstructured, 5 nominal attributes 8, 25, 24

higher complexity 4 to 9 values per attribute = 28%
(than Nominal A) 1350 instances

C unstructured, 4 nominal attributes 3,3, 9
low complexity 3 to 5 values per attribute =€ 60%

240 instances

NetTalk Silent silence in center 7 nominal attributes unknown
(Appendix E) window position 27 values per attribute = z 113

1010 instances possible, , 109
143,000 available in database 14%

Breast Cancer nonrecurrence of 9 nominal attributes unknown
(Appendix F) breast cancer 2 to 13 values per attribute = z 74

91,000 instances possible, ; 83
286 available in database 70%

'Disjuncts. the number of positive leaves in the decision-tree, an estimate of the concept complexity.
Three values for the number of disjuncts are given for each concept. the first is from the target concept
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and Breast Cancer) are complex real-world domains obtained from the Repository of Ma-

chine Learning Domains maintained by the University of California at Lvine. Complete

descriptions of the domains, concepts, and data are located in Appendices C -through F.

Table 5.2 provides a mapping indicating which concepts are used in each experimental

category of this chapter.

Table 5.2 Matrix of Experiments

Experimental Application Domain
Section Dimension Boolean Nominal NetTalk Cancer
Baseline Representation 3-term 3DNF A, B, & C V V

Processing speed 3-term 3DNF B V
Preview OXGate preview _V

Design MOB vs. SOE 3-term 3DNF B V
Confirmation measures A
Combination methods 3-term 3DNF B V
Concept dispersion V/

Analysis Tolerance bands 4-term 3*DNF A & B V
Pruning 3-term 3DNF B / ,
OXGate in action 4-term 3*DNF B ,/ ,

5.2 Baselining OXGate

In this section, the basic inductive operation of OXGate is contrasted with the well-

established system ID3. The simple version of ID32 used for comparison performs basic

selective induction with no decision-tree pruning, uses the information-gain as its eval-

uation measure, and operates on single-concept learning tasks. The experiments are in-

tended to determine whether OXGate has a representational advantage or disadvantage

description, the second is from OXGate (using primitives only), and the third is from ID3 (n-way
splitting). The fourth term is the coverage, the percentage of instances in the database which are
positive examples of the concept. The OXGate and ID3 values were obtained from decision-trees created
using the full set of available examples, except for the decision-trees in the NetTalk domain. These were
created using a training set of 2000 examples.

2This implementation of ID3 was written in CommonLisp by Raymond Mooney (@1988).
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relative to ID3 as discussed in Appendix B, along with an assessment of the computa-

tional oveihe.d incurred by the OXGate testbed environment. Performance is examined

in two dimensions: (1) predictiv, tcculacy as a function of choice of representation, and

(2) processing speed. The corresponding conclusions are: (1) neither representation is

uniformly preferable for simple selective induction, and (2) the overhead of OXGate's hy-

pothesis maintenance and bla.ckboard administration causes a substantial, yet acceptable,

speed degradation.

5.2.1 Predictive accuracy baseline

The goal of these experiments is to determine on the basis of predictive accuracy

whether the binary decision-tree representation of OXGate is superior or inferior to the

n-ary decision-trees produced by ID3. First, the equivalence of the two approaches under

controlled conditions is established, followed by several comparisons of normal opera-

tion. In these experiments, only the primitive hypotheses were used by OXGate and the

hypothesis ordering mechanism was disabled.

In the first experiment, the artificial 3-term 3DNF Boolean concept was used to

force ID3 to generate binary decision-trees. The hypotheses were organized on OXGate's

blackboard so that they would be considered in the same order in which ID3 examined

the attributes. Since both systems use the estimate of information-gain to choose the

best hypothesis or attribute and select the first one found in case of a tie, the resultant

decision-trees should be identical. They were identical as indicated in Figure 5.1.

The next experiment examines the effect of randomly ordering the placement of hy-

potheses on OXGate's blackboard. This should have the effect of producing different

decision-trees than ID3. At those decision points where more than one hypothesis has

the maximum information-gain, the chance ordering of hypotheses can result in a differ-

ent decision being made by OXGate than by ID3. Since the ordering of the attributes
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Figure 5.1 Representation Baseline: Boolean 3-Term 3DNF (Ordered). The
hypotheses were organized on OXGate's blackboard in the same order in which their
equivalents appear internally in ID3. For each set of training data, the decision-trees
produced by ID3 and OXGate were identical.

in ID3 is essentially random with respect to the concepts, i.e., no attempt is made to

optimize the ordering of the attributes, the additional randomness imposed in OXGate

should have no significant impact. Figure 5.2 shows that for this particular set of ten ex-

perimental runs, OXGate performs slightly better than ID3, but not significantly so. The

two approaches are essentially equal with respect to predictive accuracy and decision-tree

complexity.

50
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a) (D3 = 40A ID 3 8 0
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Figure 5.2 Representation Baseline: Boolean 3-Term 3DNF (Unordered).
Unordered hypotheses in OXGate cause different decision-trees to be formed than with
ID3. The significance curve suggests no preferred representation.
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For certain classes of concepts, ID3 can be expected to perform better than OXGate.

Nominal Concept A (Appendix D) is structured to match the n-ary splitting of 1D3 to a

moderate degree. With this concept, OXGate can be expected to fragment the decision-

tree (OXCate uses attribute-value pairs for decision points rather than attributes), over-

fitting the training data and providing poorer predictive accuracy. Figure 5.3 shows ID3

to perform better than OXate on this concept. 3

,50" 15-

0 OXGate 0 100 - Z
0 40 A 103 0) 12-

CC C3

(09" 20 (I 4 0 - 6

10 26-

01 o 0 0
0 60 120 I80 240 0 60 120 180 240 0 60 120 180 240

Number of Training Examples

Figure 5.3 Representation Baseline: Nominal Concept A. ID3 is substantially
better than OXGate on this concept because it is structured in an n-way decision form.

Nominal Concept B is more complex than Nominal Concept A and is intentionally

structured to match the n-ary splitting.of ID3 to a lesser degree. Figure 5.4 indicates no

appreciable preference between the decision-trees produced by OXate and ID3 in terms

of the error-rate; however, OXGate produced more compact decision-trees.

Nominal Concept C is a very simple concept involving only one value for each of

three attributes. The primitive hypothesis repiesentation used by OXGate allows the

three terms of concept C to be isolated and discovered with very small training set sizes.

As shown in Figure 5.5, the correct decision-trees were assembled by OXGate much earlier

than by ID3. OXGate's decision-trees were also more compact than those of ID3 in all

3The sudden increase in the significance at the right extreme of the graphs is simply the result of
both systems converging to maximal performance when the set of test data is the same as the set of
training data.
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Figure 5.4 Representation Baseline: Nominal Concept B. ID3 is not significantly
better than OXGate, because the concept is only partially structured in an n-way decision
form.
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Figure 5.5 Representation Baseline: Nominal Concept C. The performance of
OXGate is substantially better than that of ID3 for this concept.

instances, and optimally compact after sixty training in-1 inces. The poor performance

of ID3 is a manifestation of the replication problem (Section 2.4.2 )

Having established that artificial concepts can be constructed to prefer either the

decision-tree representation used by ID3 or by OXGate, two real-world concepts are

considered next. The first is the NetTalk Silent concept. In Figure 5.6, ID3 is shown

to have the better decision-tree representation for the larger training set sizes. The

performance of the two systems on the second real-world concept, the nonrecurrence of
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Figure 5.6 Representation Baseline: NetTalk Silent .:'ept ID3 appears
substantially better than OXGate for this NetTalk concept whL -,Ing the larger training
set sizes.
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Figure 5.7 Representation Baseline: Breast Cancer Concept. OXGate appears
generally better than ID3 for the breast cancer concept.

breast cancer, is shown in Figure 5.7. In this experiment, the binary decisiop-trees of

OXGate appear to perform better than those of ID3.

The baseline predictive accuracy experiments do not indicate a general preference for

either the OXGate or ID3 decision-tree repres.mtation. Rough overall parity is impor-

tant: it supports the use of the binary decision-tree ,epresentation necessary in OXGate

for the incorporation of constructed hypotheses. It also sets the stage for the succeed-

ing experiments. Since no overall intrinsic representational advantage exists for either
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approach, I :an proceed to examine the effects of the addition of domain knowledge in

the form of constructed hypotheses.

5.2.2 Benchmark speed comparisons
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Figure 5.8 Benchmark Speed Comparisons. The overhead of blackboard mainte-
nance and indi ,'idual h. _thesis consideration creates a performance degradation. Key:
(a) Boolear 3-term 3D":F Concept, (b) Nominal Concept B, and (c) NetTalk Silent
Concept.

The speed comparisons shown in Figure 5.8 contrast the processing times ubed by ID3

and OXGate for three of the experimcital domains. As in the previous section, OXGate

was operated in its fundamental mode, using only the primitive hypotheses avaiiable in

the ori,;-3l in-.it~me description language. The comparisons indicate a substantial, but

not excessivc, processing speed differential between the baseline OXGate system and ID3.

104



For the domains tested, ranging from the simple to the complex, ID3 is between 5 and 40

times faster than OXGate. Several factors contribute to this difference. The most signif-

icant is that OXGate provides a development environment, while ID3 does not. OXGate

is constructed on a blackboard substrate to provide high modularity and flexibility for

continued experimentation and expansion [Jagannathan et al., 1989]. It also contains a

wealth of expansion "hooks" and test switches, unnecessary for the basic operation but

desirable for growth and analysis. On the other hand, ID3 is a simple program that does

exactly one thing: it finds the best overall primitive attributes and assembles a decision-

tree from them. Once the development of OXCate has been completed and the critical

components identified and optimized, the remaining portions (including the blackboard)

can be recoded for direct communications and data-h.nd!*i.g, effectively crystalizing the

system into an efficient form.

Another significant factor affecting the processing speed of OXCate is the means

of representing and testing hypotheses and instance data. Hypotheses at,; represented

explicitly for ease of understanding, modification and construction. The instances are

also coed explicitly, using property lists to relate the attributes to their values. In ID3

attributes are representcd as positions in an ordered list, and the values are stored in

the respecive pusitions. The ID3 approach is more efficient than ttat of OXGate, but

lacks the accessibility needed for the development of constructed hypcthC5... vJ tlh.

extensibility necessary for their incorporation.

Overall, the baseline overhead in OXGate is not exorbitant. It is a necessary cost

of the flexibility required at this point in the development of OXGa!-e. During normal

operation, the; additi )n of a large number of constructed hypotheses will impose a large

amount of additional processing overhead, but as will be shown in this chapter, the

incorporation -f the hypothesis orderimg mechanism removes a substantial portion of

that cost.
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5.3 A Preview of OXGate in Action

The purpose of this section is to provide a preview of the benefits of hypothesis

ordering: to show its effectiveness and to provide a focal point for the discussion of

the experiments in subsequent sections. This set of experiments uses the NetTalk Silent

concept (see Appendix E). The results for the other domains are presented in Section 5.5.

The effectiveness of the application of domain knowledge through constructed hypotheses

is presented first, followed -, a demonstration of the ability of hypothesis ordering to

eliminate much of the computational overhead incurred with the addition of constructed

hypotheses.

5.3.1 Experiments and results: NetTalk

As discussed in Section 5.1, an abundance of contructed hypotheses was generated

in an attempt to saturate OXGate and gauge the utility of hypothesis ordering. Since

the NetTalk Silent concept describes the concept "silence in the center window posi-

tion" (character position 4, C4), I conceived of two forms of potentially useful domain

knowledge, both involving the characters on either side of C4. The first form of knowl-

edge was the conjecture that the characters adjacent to the center position might be

important. This conjecture is strongly supported by the data of Lucassen and Mercer

[1984], where the mutual infoihnation between the center window position and neigh-

boring letters is shown to be greatest with the adjacent positions, and to decrease

with the distance from the center. This knowledge was procedurally applied to ex-

haustively generate conjuncts of pairs of ,adjacent characters focused on position 4 (i.e.,

((C3 = a) AND (C4 = a)), ... , ((C4 = z) AND (C5 = z)), where Cn indicates the nth

window position), including the character "blank" to signal the beginning or end of words.

This application yielded 1458 constructed hypotheses.
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The second form of knowledge was imore general, subsuming some of the first con-

structed terms and anticipatirg that when the adjacent characters were the same, one

of them would be silent. This was used to create two additional constructed hypotheses,

(C3 = C4) and (C4 = C5), for a tctal of 1460 constructed and 189 primitive hypotheses."

This experiment consisted of testing the performance of OXGate under three con-

ditions: using only the primitive hypotheses (OXGate-Prim in the figures), using the

union of the primitive and constructed hypotheses, but with no hypothesis ordering

(OXGate-DK), and using hypothesis ordering on the union of primitive and constructed

hypotheses (OXGate-DK/NDH). The data of the next three figures reflect the averages

of ,en experimental runs,5 except for the values of OXGate-DK on the larger training set

sizes. Due to the large processing time requirements of OXGate-DK, only three samples

were taken using 1000 training instances, and two samples for each of 1500 and 2000

training instances. The smaller sample sizes resulted in large, uniiformative confidence

intervals for OXGate-DK; therefore, the intervals have been omitted from the graphs for

clarity. The smaller sample sizes also yielded abnormally large significance values where

displayed for the 1000, 1500, and 2000 training instance results.

Figure 5.9 presents the improvement in predictive accuracy obtained through the

inclusion of the hypotheses constructed from the domain knowledge. The use of the

domain knowledge results in a marked and consistent improvement over the use of only

primitive hypotheses. Examination of the OXGatc-DK decision-trees shows that several

of the constructed hypotheses were consistently incorporated early in the tree assembly,

the most useful being (C3 = C4). In addition, when compared against Figure 5.6, the

4Other obvious forms of knowledge were not used, such as omitting occurrences of the "blank" in C4
and oth, impossible structures (e.g., C5 is blank when both 04 and C6 are not), and using knowledge
about legal letter combinations to filter out hypotheses such as ((C3 = q) AND (C4 = x)).

5Each datum was obtained by training OXGate on the indicated number of examples and then testing
on an independent set of 6000 instances.
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Figure 5.9 Application of Constructed Hypotheses. The inclusion of constructed
hypotheses based on domain knowledge (DK) provides a pronounced improvement over
the original (Prim) description language.

use of the domain knowledge more than compensates for the representational advantage

ID3 has over OXGate for the NetTalk Silent concept.

The impact of hypothesis ordering is presented in Figure 5.10. The hypothesis or-

dering mechanism used for this experiment was the non-dominated hypothesis approach

NDH (Section 4.2.4.1), with the retention of primitive hypotheses (Section 5.4.4.1) and

tolerance bands untuned for this domain.6  Although the NDH approach (OXGate-

DK/NDII) produces decision-trees with roughly the same total number of internal tests

as the non-ordered use of the pool of constructed hypotheses (OXGatc-DK), the decision-

trees arc less predictive than those of OXGate-DK. Comparison of the decision-trees pro-

duced by OXGate-DK and OXGate-DK/NDII reveals that although the decision-trees

are very similar near the root nodes, the OXGate-DK/NDII uses fewer constructed hy-

potheses towards the leaves, presumably causing an overfitting of the training data and

lack of generalization. This effect was expected as discussed in Section 4.2.1.1 and a

possible solution is presented below.

6Scc Section 5.5.1 for a discussion of tolerance band tuning and its apparent inocrisitivity tu domair..
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Figure 5.10 Effects of Hypothesis Ordci ing. With the NetTalk Silent concept,
hypothesis ordering (DK/NDH) causes sorne loss of pre!diction over the non-ordered ap-
proach (DK), yet is better than using no knowledge. The bignificance curvs contrast
the use of primitive hypotheses alone (Prim) with the ordered use of the constructed
hypotheses (DK/NDH), and the ordered (DK/NDH) with the non-ordered (DK) uses of
constructed hypotheses.

Although the use of hypothesis ordering fails to capture all of the generalizations

available from the pool of constructed hypotheses, it fulfills its promise of being a useful

heuristic mechanism by the improvement it provides in processing speed. Figure 5.11

shows the amount of CPU time used by OXGate under the three experimental conditions.

Not only did hypothesis ordering substantially speed u p the processing aS compared to

the OXGatc-DK, but by producing more compact decision-trees than baseline OXGate.

it was able to complete the decision-tree assembly in the shortest time of the three

approaches.

The results of this experiment suggest a way of recovering some of the potential gen-

eralizations the use of hypothesis ordering could not capture. According to Figures 5.10

and 5.11, disabling hypothesis ordering for training set sizes below 100 instances would

result in better generalizations when using small sample sizes. at an acceptable compu-

tational cost. For the larger training sets, the hypothesis ordering mechanism should

be enabled, resulting in a smooth error-rate curve consistently better than using no
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Figure 5.11 Effect of Hypothesis Ordering on Speed. The left-hand graph shows
the average processing times of the three approaches. Hypothesis ordering (OXCate-
DK/NDH) provides an impressive speed improvement over OXGate-DK, the non-ordered
approach (up to 43 times faster). The right-hand graph is a closeup of the data. With the
NetTalk Silent concept, hypothesis ordering was ever faster than using only the pri;ait 'e
hypotheses (OXGate-Prim), significant at a < 0.0035.

constructed hypotheses. The creation of a mechanism to monitor and control the oper-

ation of hypothesis -ordering is a possible subject for future research (sce Chapter 7).

5.3.2 Preview summa..y

The use of hypothesis ordering is a plactical he,,ristic for critaining the effects of

massive hypothesis generation. This section demonstrated that: (a) hypoth-sis ordering

allows the inductive mechanism to discoer and incorporate uine more potent general-

izations proposed by the hypothesis generator, (1,) the use of hypothesis ordering can

substantially reduce the procssing overhead of having a lrge number of co];t, ucti.I

hypotheses available in 02[Gate, and (c) the proposed approach to hypothesis ordering

is viable in a complex, ren1-world domain.
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5.4 System. Design

This seution presents several of the Jesigin choices made during the development of

the hypothesis ordering imeichanism in OXGate These choices were made rationally as

discussed iM Chapter 4, and are .,npported by the empirical evidence in this section. The

arcas investigated arc. comparison of the multiple-objective and single-objective evalua-

Lion approaches, selection of a wal behaved confirmation measure, selection of a viable

combination meiiod Wur multiple-objective eN aluation, and methods of compensating for

conctpt dispersion. In this section, the data were collected over five experimental runs,

except where noted. With only five runs, the error bars appear misleadingly large.

5.4.1 Multiple- versus Single-Objective Evaluation

The following six figures demonstrate the advantage of multiple-objective evaluation

(MOE) over single-objective evaluation (SOE) when used for hypothesis ordering. The

first three figures present the comparisons of MOE to SOE when using the weighted

combination approach for hypothesk. ordering, and the other three figucs present the

comparisons fo, the non-domination approah. Three concepts, ruidom Boolean 3-term

3DNF concepts, Nominal Concept B, and the NetTalk Silknt concept are used for each

combination approach.

rbr each comparison, a large number of constructed hypoti.eses were generated

procedurally to burden the hypothesis ordering mechanism. In the experiments ,ith

the Boolean 3.term 3]DNP concepts, there were 24 primitive hypothAeses ((Xl = T),

(X1 = F), (X2 = T),. .. ) and 2280 constructed hypotheses. Twenty-four of the con-

struc'tPd hlpotheses were the negations of the primitives. The iden!ification of logical

redundances (e.g., i.oting that (X1 = T) is equivalent to (NOT (XI = f))) was not a

concevn: the aim w-s simply to exercise the hyputhesis ordering mechianism. Uiug the
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union of the primitive hypotheses and their negations as the set of operands, 1128 binary

conjuncts and 1128 binary disjuncts were formed out of every possible pair. Again, logi-

cal consistency was not a concern: the hypothesis ordering mechanism rejects hypotheses

of the form ((XI = T) AND (X1 = F)) since their confirmations are always zero. Like-

wise, the experiments with Nominal Concept B used 25 primitive and 2475 constructed

hypotheses, generated in the same manner. The experiments with the NetTalk Silent con-

cept used the 189 primitives ai.- 1460 constructed hypotheses described in Section 5.3.

In each figure, the behavior of OXGate without hypothesis ordering (OXGate-Prim)

indicates the performance when using the primitive hypotheses only.

The experiments using only the primitives hypotheses are indicative of the behavior

of SOE with the simplicity measure, S. Since the partitioning mechanism of hypothesis

ordering is competitive, only the hypotheses with S = 1 would be placed into the primary

subset (unless no hypothesis had S = 1, in which case the hypotheses with the next

highest simplicity would be selected). Even using the non-domination approach with

tolerance bands would not place more complex hypotheses in the primary subset: the next

simplest hypothesis would have S < 0.5, implying that the primary tolerance band would

have to extend over more than 50% of the evaluation space to include the hypothesis. For

the description languages and concepts used in this section, the primary subset would

consist only of hypotheses with S = 1, i.e., the complete set of primitive hypotheses.

The hypotheses in the secondary subset are tested by the hypothesis evaluation mech-

anism only if none of the hypotheses in the primary subset are acceptable (Chapter 4).

When the original description language is adequate to completely describe the set of

training examples, at least one of the primitive hypotheses will always be acceptable at

each stage of decision-tree assembly. Under this condition, none of the hypotheses in the

becondary subset are ever examined, implying that the use of primitives hypotheses only

(OXGate-Prim) is an accurate emulation of SOE with the simplicity measurement.
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In each of the domains tested in this section, Boolean, Nominal and NetTalk, the

decision-trees created using only the primitive hypotheses always had perfect resubstitu-

tion accuracies. The original description languages were adequate to completely represent

the tiaining examples; consequently, no other hypotheses were necessary for decision-tree

induction. Since no hypotheses from the secondary subset were needed, the use of prim-

itive hypotheses only is an accurate emulation of SOE with simplicity. In the following

figures, OXGate-Prirn is understood to represent single-objective evaluation using the

measure of simplicity.

Figure 5.12 contrasts the use of MOE and SOE for the weighted combination approach

on the Boolean 3-term 3DNF concepts. The plots labeled WMOE indicate the use of

the weighted combination approach using the Quick-Look confirmation measure and the

simplicity.7 To isolate the effect of using a single objective from the contribution of

the partitioning approach associated with the weighted combination, the same algorithm

was used for SOE as MOE. For SOE with the confirmation measure, the weights were

modified to exclude the simplicity (QL Only). The SOE with the simplicity measure

w?- tested as described above (OXGate-Prim). The use of MOE for hypothesis ordering

shows a marked improvement over both SOE approaches in predictive accuracy as well

as the conciseness of the resultant decision-trees.

Figures 5.13 and 5.14 contrast the use of MOE and SOE for the weighted combination

approach for Nominal Concept B and the NetTalk Silent concept. The performance

differentials are not as pronounced as in Figure 5.12, yet the use of weighted MOE is still

superior to hypothesis ordering with the Quick-Look only, as well as hypothesis ordering

with simplicity only.

7 A satisfactory set of weights was determined in other experiments. ((5 x Conf.) + (1 x Simp.)).
Primitive hypotheses had special treatment as discussed in Section 4.2.5.
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Figure 5.12 MOE vs. SOE: Weighted Combination, Boolean 3-term 3DNF.
Comparison of the weighted combination approach to multiple-objective evaluation using
the Quick-Look confirmation measure and simplicity (WMOE) versus single-objective
evaluation with the Quick-Look confirmation measure alone (QL Only), and single-
objective evaluation with simplicity alone (OXGate-Prim). This experiment shows a
dramatic improvement in predictive accuracy and tree conciseness when using multiple-
objective evaluation for hypothesis ordering.
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Figure 5.13 MOE vs. SOE: Weighted Combination, Nominal Concept B.
Although not as dramatic as in Figure 5.12, the multiplo objective approach (WMOE)
is still noticeably superior to both of the single-objective u..duation approaches.
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Figure 5.14 MOE vs. SOE: Weighted Combination, NetTalk Silent Concept.
Although not as dramatic as in Figure 5.12, the multiple-objective approach (WMOE)
is still noticeably superior to both of the single-objective evaluation approaches.

The experiments of Figures 5.15, 5.16, and 5.17 are identical to those just presented

except that the non-domination approach to hypothesis ordering was used. Obtaining th.

QL Only data was accomplished by modifying the function that determines simplicit to

always return the value "l." The values of the tolerance bands for partitioning with the

non-domination approach were determined in other experiments (see Section 5.5.1). Ex-

cept for poor performance with the Boolean concepts for low values of training set sizes'

(Figure 5.15), the use the non-domination approach with multiple-objectives provided a

small, but noticeable, improvement over the single-objective evaluation.

The combined results of the six experiments promote a general conclusion: the use

of the multiple objectives, Quick-Look confirmation and simplicity, provides nearly con-

sistently better performance than either the confirmation measure or simplicity alone.

For the remainder of this thesis, hypothesis ordering will always incorporate multiple-

objective evaluation.

VFor 41 training examples, QL Only appears better than NDII, significant at Ce < 0.11. For 102
training examples, QL Only appears better than NDII, significant at cr < 0.20.
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Figure 5.15 MOE vs. SOE: Non-Domination, Boolean 3-term 3DNF. Com-
parison of the non-domination approach to multiple-objective evaluation using the Quick-
Look confirmation measure and simplicity (NDH) ver.,ts single-objective evaluation with
the Quick-Look confirmation measu :e alone (QL Only), and single-objective evaluation
with simplicity only (OXCate-Prim). This experiment shows marginal improvement in
predictive accuracy for NDH over QL Only, but a substantial improvement in tree con-
ciseness when using multiple-objective evaluation for hypothesis ordering. Note also the
relative unpredictability (high variance) of the complexity of decision-trees for QL Only
as indicated by the error bars.
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Figure 5.16 MOE vs. SOE: Non-Domination, Nominal Concept B. In this
set of experiments, the multiple objective approach (NDH) appears slightiy bettei than
both of the single-objective evaluation approaches.
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Figure 5.17 MOE vs. SOE: Non-Domination, NetTalk Silent Concept. In
this set of experiments, the multiple objective approach (NDH) appears slightly better
than both of the single-objective evaluation approaches.

5.4.2 Confirmation measures

Section 4.2.1.2 described the three measurements of confirmation considered in this

thesis: information-gain (IG), average purity (AvePur), and positive purity (PosPur).

Experiments accomplished early during the development of OXGate, but not presented

in this thesis, demonstrated marked inconsistencies in decision-tree construction (unnec-

essarily complex decision-trees, poor predictive accuracies, and poor repeatability among

experiments) when the confirmation measure used for hypothesis evaluation was not the

same measure used for the Quick Look evaluation of hypothesis ordering, regardless of

the combination method used. This suggests that the confirmation method used in the

Quick-Look should be the same as that of hypothesis evaluation. This section empirically

addresses the question of which confirmation measure to use.

Since both hypothesis ordering and evaluation use the same confirmation measure,

selection of the most useful measure can be addressed by examining their use for hy-

pothesis evaluation, the more extensive of the assessments. In the experiments of

Figures 5.18 and 5.19, hypothesis ordering was disabled to isolate the effect of the mea-

surement choice for hypothesis evaluation. Nominal Concept A was used, providing 16
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primitive hypotheses for the experiments of Figure 5.18 and 1008 additional constructed

hby otheses (constructed in the manner described in 5.4.1) for the experiments of Fig-

ure 5.19. All data were acquired over ten experimental runs, except for those using the

larger number of training examples and the set -of constructed hypotheses (O.XGate-DK)

due to the large processing times without hypothesis ordering; five runs were used for

the runs with 120 training examples, three runs for 180 examples, and one run for 240

examples (the full instance space).

S50- 0 OXGate (IG) 0 15^ OXGate (AvePu.
2 40 o OXGate (PosPur) 2 12

crin
W- 20 -e

w2 0  6

10 0
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Figure 5.18 Information-Gain versus Purity Measures. Comparison of three
confirmation measurement methods on the induction of Nominal Concept A. In each
run, the sixteen primitive hypotheses we, e used as the pool of available hypothe-
ses. Hypothesis ordering was disabled; the comparison is between the measurements
used for hypothesis evaluation. Key: Information-Gain (IG), Average Purity (AvePur),
Positive Purity (PosPur).

Mingers [1989] and Breiman et al. [1984] demonstrate that the predictive accuracy

of induced decision-trees is relatively insensitive to the quality of the evaluation mea-

sure (including randomi choice). Instead, the complexity and understandability of the

decision-trees are affected. Except for the single anomalous "bump" (significant only a.

a < 0.20) for AvePur at 60 training examples in Figure 5.18, the results correspond with

those of Mingers and Breiman ct al. From the figures it is clear that the average purity

(AvePur) confirmation measure is unstable: it produces decision-trees of widely vary-

ing complexities. The use of positive purity (PosPur) is more stable, but still exhibits

118



OXGate-DK (IG) 0 140-!E' 40 0 OXGate-DK (AvePcr) Z

2 0OXGate-DK (PosFur - 120-

ir 30 ~100O
S80-

t~i 2060

to 40

1 20

0 50 100 150 200 2 0 0 5 100 150 200 250
Number of Training Examples Number of Training Examples

Figure 5.19 Information-Gain versus Purity Measures: With Knowledge.
Comparison of three confirmation measures under the same conditions as in Figure 5.18,
except the pool of hypotheses includes 1008 corstructed hypotheses.

inferior behavior compared to the use of the information-gain (IG). Since Hartmann et

al. [1982] asserted the efficacy of the information-gain measure for the -development of

decision-trees, it has been the measurement of choice in many inductive systems, in-

cluding Quinlan's ID3. Similar experiments with OXGate in the other domains (not

presented here) also support the use of information-gain for hypothesis evaluation and,

therefore, hypothesis ordering. Except where not..," the information-gain was used for

both hypothesis evaluation and ordering for the remaining experiments.

5.4.3 Combination methods

In this section, three of the four multiple-objective evaluation combination methods

presented in Section 4.2 are compared, along with their associated partitioning schemes.

The three appoaches are. weighted combination, non-domination, and product combi-

nation. The fourth method, procedural combination, was so ill-behaved in preliminary

experiments that it was excluded from further consideration as an appropriate method

of hypothesis ordering.
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Figure 5.20 contrasts the performance of the three combination methods and the

baseline on random Boolean 3-term 3DNF concepts. The experiments on the combination

methods used the pool of 2304 hypotheses described in Section 5.4.1. The baseline

OXGate-Prim operated on the 24 primitive hypotheses without hypothesis ordering.

Data for the graphs were -accumulated over five experimental runs, except for the Product

data which were taken from ten runs. These additional runs make the confidence intervals

of the Product data appear smaller by comparison than the corresponding intervals of

the other approaches.
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Figure 5.20 Combination Methods: Boolean 3-term 3DNF.

Although not radically worse than the performance of NDII (non-domination)

or WMOE (weighted combination) in predictive accuracy, the product combination

produced significantly more complex decision-trees. In fact, the performance of Prod-

uct was very similar to that of OXGate-Prim. Analysis of the experiments revealed that

the product combination approach had a very strong tendency to reject constructed hy-

potheses early in the decision-tree assembly, leaving only the primitive hypotheses for

further processing. This behavior was expected for the information-gain confirmation

measure as discussed in Chapter 4. The product combination approach was also tried

with the average purity and positive purity confirmation measures, with similar results.

In all cases, the decision-trees bore a strong resemblance to those created with only
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primitive hypotheses. Clearly, this behavior is inappropriate for hypoLhesis ordering:

the essence of opportunistic constructive induction is to develop and identify useful con-

structed hypotheses to improve the decision-trees. This glaring inadequacy eliminates

the product combination approach from further consideration.

Figure 5.20 also illustrates the similarity between the weighted combination (PVMOE)

and non-domination (NDII) approaches to hypothesis ordering. Figures 5.21 and 5.22

provide additional evidence of the rough equivalency of the two approaches when used

for Nominal Concept B and the NetTalk Silent concept. These results indicate there is

no empirical preference for either approach based on predictive accuracy or decision-tree

complexity. Figure 5.23 shows the relative processing speeds for the NDII and WMOE

approaches on the three concepts. The results for the artificial domains show the non-

domination approach incurred larger, less predictable processing times than the weighted

approach. With the NetTalk Silent concept, the two approaches were nearly identical.
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Figure 5.21 Combination Methods: Nominal Concept B.

Empirically, these experiments suggest that the weighted combination approach is the

best of the four methods presented in Chapter 4. However, as argued by Yu [1985], the

weighted approach has several drawbacks, including its lack of psychological palatabil-

ity: when people make decisions, they seldom can impose relative weightings among

objectives. The current implementation of the histogrammatic partitioning method
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Figure 5.22 Combination Methods: NetTalk Silent Concept.
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Figure 5.23 Combination Methods: Processing Time Comparison.
Fey: (a) Boolean 3-tcrm. 3DNF, (b) Nominal Concept B, (c) NetTalk Silent Concept.
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associated with the weighted combination approach also provides an extra degree of

disquiet, with five additional parameters to adjust to obtain acceptable performance.

The non-domination approach only requires that two parameters be adjusted, and as

demonstrated in Section 5.5.1, this approach is fairly robust. Since the lion-domination

approach is more psychologically satisfying (Chapter 4), provides substantial processing

time reductions (Section 5.5.3), and is the more uncommon of the approaches, the re-

mainder of this chapter will explore the effectiveness of the non-domination approach to

hypothesis ordering.

5.4.4 Compensating for concept dispersion

One of the potentialproblems with using the Quick-Look for hypothesis ordering was

the premature rejection of hypotheses when learning highly disjunctive concepts. Several

potential solutions were presented in Section ..2.1.' and three of those are addressed

here: retaining the prinitive hypotheses at all times, recycling the pool of previously

rcieed hypotheses, and adjusting the density of lie disjoint islands. Experiments with

the NetTalk Silent concept show that the retention of the primitive hypotheses is a

valuable addition to the capabilities of OXGate.

5.4.4.1 Retaining primitive hypotheses

The set of 140 constructed hypotheses described i. Section 5.3 was used in conjunc-

tion with the original set ,f 189 primitive hypotheses to provide the hypothesis ordering

mechanism with an initially rich description language. The NetTalk Silent concept is

a highly dispersed concept; therefore, the sample drawn for the Quick-Look has a high

likelihood of failing to represent all the islands available in the training data. As a re-

sult, some hypotheses need--.! to assenible a good decision tree are rejected prematurely,
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because they score poorly (luring the '.ypothe-is ordering stage-s oc ,u ring eaily it. tho

assembly piucess. The net effect is-to remove so much of the vocabulary from the des.cxip-

Lion language f hat OXGa~e is not able to-c;ompleteiy describx. the set,(; training examples.

This manifests itself as shown in Figiire 5.24 (NiI zo/Primitive82 1,1. unnatirally srr~al

decision-trees and very poor p~redictive accuracies, as well1 az, poor resubstit'uuion accil-

racies (not sb,,-r). In addition, the -large confidence ntervals indicate a largu -variation

in the quality of the decision-trees, reflecting an oversensitivity to the ma!:eup oi the,

Quick-Look samples.

S30 0 N~wPrimitives ~.100 iz,
a) 25 WO~JH wolPrimitives 8

CaC

10 (40
105 204 30

0t 0 .! 0 L---4---4. c Z0 500 1000 1500 2000 0 500 1 0C01 50 02000o- 0 500 1000 1500 2000)
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Figure 5.24 The Effect of Retaining the Primitive Hypotheses. Rtetention of
the primitive hypothe es greatly improvfes both tLhe accuracy and the rtability O.'decision-
trees created while using hypothesis ordering; NetTalk'Silent Concept, 189 primitive and
1460 constructed hypotheses.

Forcing the retention of prini~tives does not necessarily compensate for (unfim/orabie

Quick-Look sampling and -prevent the premature rej~ection of hypotheses, but it does

maintain at least a minimal vocabulary. With thl-s vocab~ulary, the training examples-can

be fully classified fcr maximal resubstituticn accuracy, while at the same time, useful- con-

structed hypotheses may still be identified and in-corporated in the decision -tree, increas-

ing the potential for improving the predictive accuracy. Figure 5.24 shows the dramatic

improvement provided by the retention of the primitive hypotheses (NDiI w/lPrimitives)l:

the predictive accuracy is greatly imnproved, and the small confidence intervals indicate
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a zelativc ibensitikity to the constitution of the Quick-Look samrplb sets. The iacreased

complexity of the dc(cision- trecs does not indicate uveii!'ting of the da.ta, but rather the

ability of the vocabelary to ade quately represent the training instances.

The processing burdeni incurred by retaining the primitive hypothuses is difficult to

xaeasare. Since the inbier of primitive -hypothtses (189) is much smaller than the

number of constructed hypotheses initially available (1460), nd the primitives are leSb

expensive to test, the expected overhead of retaining the primtives should be minor.

Figure 5.26 in Section 5.4.4.2 shows the relative processing speed performance of hypoth-

esis ordering with the rettnition of primitives (N.DII w/Frimilives) and without (showii

as NDH1 wo/PrimRec). While retaining the primitives appears -to require about three

times the processing time as not retainng them, the difference can be accounted for in

the redati ve-coinplcxity of the clcci~ion-trees. Retaining the primitive hypotheses appears

to be an inexpeiisive and effective method of augmentibg the capabilities of hy puthebis

ordering.

5.4.4.2 Recycling rejected. hypotheses

Another approach to compensating for the interaction of concept disperbsiOr. an-. the

-Ouick-Look sampling Is L) reuse hypotheseb previou-1y rejected by hypothesis ordering.

The pool of rejected hypotheses -is maintained, and -when the vocabulary available in

the primary and secondfvry .ubsets is inadequate to classify the remainipng traizing in-

stances, the rejected hypotheses ate added back into the vocabulary and t'he process of

hypothesis ordering is reirivoked to continue to-develop thc decision-tie(,. In effect, re-

cycling rejected hypoth.eses amounts to reexaminng areas of hypothesis spae-u tLat the

hypothesis ordering mechar~ism had previously dcosignated as "dead ends."

The resultant decision -trees are potentially better than tvhcau iuslig tde retention of

primitives o~ppr-oach, becau.,e -s.cycled conmtructed hypotheses mnay be irncorporated in
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the lower branches of the trees with a corresponding increase in predictive accuracy.

This gain in capability is complicated by two side effects. The first is the damage done
to the decision-tree before the need for recycling the rejected hypotheses is identified:

marginally acceptable hypotheses in the primary and-,secondary subsets are incorporated

into the tree as the description vocabulary is exhausted, producing trees with relatively

poor internal decision points. The second side-effect is the large increase in processing

time incurred by the reconsideration of a potentially large pool of previously rejected

hyl)otheses.

0 '4DH w/Recycling - NDH YdRecycling Q
0 NDH wo/Recycling S vs.

~25 80 NDH wa/Recycling
80 60-~2OCO IL

uJ 6 040

5 20 10

0 720400 600 81001000 0 200 400 600 800 1000 0 200 400 600 800 1000
Number of Training Examples

Figure 5.25 The Effect of Recycling Rejected Hypotheses. Reusing previously
rejx cted hypotheses substantially improves the accuracy of hypothesis ordering. The
dashed lines represent the behavior of NDH w/Primitives from Figure 5.24. (Note: The
number of training examples used is terminated at 1000 due to the large processing time
requirements.)

Figure 5.25 presents the results of recycling rejected hypotheses while learning the

NetTalk Silent concept. The experiments were conducted as in the retention of primi-

tives approach, with the exceptions that the number of training instances was limited to

1000 to reduce the processing burden, and only six runs were used. Primitives were not

retained. The figure shows that recycling the rejected hypotheses (NDiI w/Recycling)

provides a large improvement in predictive accuracy over the non-recycled approach

(NDII wo/Recycling). The large difference in accuracy indicates that hypothesis ordering
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rejected hypotheses necessary in the lower levels of the decision-tree: an expected be-

havior since hypothesis ordering performs a global evaluation of the hypotheses (also

discussed in Section 5.4.4.1). This result indicates that hypothesis ordering alone is

overly restrictive in this domain, most likely a consequence of high concept dispG-.zion

(Section 4.2.1.1).

Recycling the rejected hypotheses when the description language is exhausted can

reintroduce terms necessary for induction of the lower-level nodes of the decision-tree, as

it did in this experiment. However, it does not completely compensate for the damage

done to the tree before identifying the need to recycle hypotheses. A comparison of

NDH w/Recycled with the use of domain knowledge and no hypothesis ordering (OXGate-

DK in Figure 5.9) shows a moderate degradation in predictive accuracy when using

hypothesis ordering, even with recycled hypotheses.

The speed of processing was also affected as expected. Figure 5.26 shows that the

recycling approach (NDH w/Recycling) substantially reduces much of the speed improve-

ment available with hypothesis ordering (NDII wo/Prim/Rec) due to the reintroduction

of a large number of rejected hypotheses. The gain in processing speed provided by hy-

pothesis ordering over the non-ordered approach (No NDH) is only a factor of roughly

five times when recycling the rejected hypotheses (NDH w/Recycling). The tradeoff be-

tween the loss in predictive accuracy and this small gain in speed (less than one order

of magnitude) makes this approach to hypothesis ordering only marginally desirable as

a heuristic.

As an alternative to retaining the primitive hypotheses, recycling the rejected hy-

potheses provides both benefits and drawbacks. A comparison of the complexities of

the resultant decision-trees shows that the recycling approach produced substantially

more compact trees than did the retention of primitives approach: examination of the

decision-trees revealed the incorporation of constructed hypotheses in the lower branches
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Figure 5.26 Processing Time Comparisons. The left graph shows the rel-
ative processing times of hypothesis ordering without the retention of primitive hy-
potheses or recycling of rejected hypotheses (NDH wo/Prim/Rec), with the retention
of primitive hypotheses (NDH w/Primitives), with the recycling of rejected hypotheses
(NDH w/Recycling), and using the full set of constructed and primitive hypotheses with-
out ordering (No NDH). The right graph is a closeup of the faster processes. (Note: The
number of training examples used is terminated at 1000 due to the large processing time
requirements of No NDI.)

as expected. At the same time, recycling hypotheses provided nearly the same accuracy as

that obtained by retaining the primitive hypotheses (NDH w/Primitives in Figure 5.24

and repeated in Figure 5.25 with a dashed line), an indication that the decision-trees

were noL smaller due to an exhausted description language. However, hypothesis order-

ing when recycling the rejected hypotheses takes considerably longer than when retaining

the primitives. With 1000 training examples, the gain in.processing speed provided by hy-

pothesis ordering over the non-ordered approach (No NDII) is nearly a factot of 30 times

dhen retaining the primitives (NDH w/Primitives), but only slightly over 5 times when

recycling the rejected hypotheses (NDII w/Recycling). Since the objecti,,e of hypothesis

ordering is to speed up processing while maintaining most of the predictive accuracy,

recycling rejected hypotheses appears to be a much less useful addition to hypothesis

ordering than retaining the primitive hypotheses. The fact that the recycling rejected

hypotheses provided simpler decision-trees is a secondary consideration.
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Another possible approach to hypothesis ordering combines recycling rejected hy-

potheses and retaining primitives. This approach was nof, tested, but the effects can be

projected for the NetTalk Silent concept based on the experiments of this section and

Section 5.4.4.1. An inspection of the decision-trees developed while retaining the prim-

itive hypotheses showed that they all had maximal resubstitution accuracies, indicating

that the primitive hypotheses provided a sufficiently rich description language. There-

fore, no rejected hypotheses would have been recycled, resulting in a performance equal

to that of retaining the primitive hypotheses only. This analysis also holds for the other

concepts used in this thesis, including the Breast Cancer concept.

In other domains the combined approach may be useful, especially for complex con-

cepts incorporating parity. If a concept requires parity constructions deep in the decision-

tree (e.g., the hypothesis (A xoR B)), hypotheses of this type may be rejected early and

would have to be recycled or recreated by the hypothesis generator. Primitive hypotheses

alone would be insufficient to induce the parity construction.' Future research should

investigate the benefits of a combination of recycling rejected hypotheses and retaining

the primitives.

5.4.4.3 Adjusting island densities

A third approach to avoiding the effects of unfavorable Quick-Look sampling is the ar-

tificial adjustment of the proportion of positive to negative examples in the set of training

data. When a target concept is highly disjunctive and the number of negative examples

is much larger than the number of positive examples, there exists a strong likelihood that

some of the smaller islands will be represented by only a few training examples. These

bmall islands have a good chance of being completely overlooked by the Quick-Look

9See [Seshu, 1989] for one approach to overcoming the parity problem.
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sampling. By increasing the number of examples per island, the probability of sampling

from any particular island goes up; consequently, the small islands have a greater chance

of being represented in the Qui-k-Look sample as discussed in Section 4.2.1.1.

The idea of adjusting the ratio of positive to negative examples to improve the accu-

racy of the resultant decision-tree was proposed in an unpublished manuscript by Spack-

man [1990]. In his approach, both the training and test data sets were adjusted equally:

the training data remained representative of the test data. My approach in OXCate was

to manipulate only the training data, incurring a change in the prior probabilities of the

training data and making the training data less representative of the test data. Although

this approach risks a degradation in the predictive accuracy, this adjustment had very

little effect on the fundamental behavior of OXGate.

The two curves in each Error-Rate graph of this section represent the use of the

original set of training examples (unbalanced) and the modified training set (balanced).

The balanced set of data was created by replicating the positive examples in the original

training set five times, increasing the ratio of positive to negative examples from 271:1729

(14% positive of 2000 examples) to 1626:1729 (48% positive of 3355 examples). The test

data remained at 15% positive examples. I selected the nearly 50/50 ratio of positive

to negative examples since this ratio was considered by Spackman to be the best. To

contrast the behavior of the use of balanced and unbalanced data sets, the figures in

this section all use the statistically expected number of unique training examples as the

abscissae in the graphs. For example, a sample of 1678 instances from the balanced data

set would be expected to contain 813 positive and 865 negative examples. Of these,

the expected number of unique positive examples would be 135, yielding a total of 1000

unique examples. Therefore, half of the balanced data (1678 instances) corresponds to

half of the original, unbalanced data (1000 instances) on the graphs.
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Figure 5.27 shows a general insensitivity to balancing. Only ID3 appears to be consis-

tently affected when using roughly 1000 unique training instances. The other two graphs,

OXGate using only the 189 primitive hypotheses (OXGate-Prim), and OXGate using the

additional 1460 constructed hypotheses (OXGate-DK), indicate that little benefit or cost

is associated with using the balanced data when hypothesis ordering is disabled.

32 - 32 - e3-

28 -* ID3 (unbalanced) " 28 - OXGate-Prim (unbalanced) 8 2 0 OXGate-DK (unbalanced)
• 24 ID3 (balanced) o 24 0 OXGate-Prim (balanced) 0 2 OXGate-DK (balanced)

- 20 - 20 & R20
0 0 2t16 ~16 -16

12 12 12

8 8 8

4 4 4
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Figure 5.27 Balancing Positive and Negative Examples. The three graphs
contrast the use of the original 2000 training examples (unbalanced = 14% positive
examples) with the use of the modified training set of 3355 examples (balanced = toughly
50% positive examples). For the "balanced" curves, the Number of Training Examples
shown on the abscissa represents the expected number of unique instances used for the
decision tree construction; e.g., the set of 3355 actual examples corresponds to the set of
2000 original training instances.1i

The next step in this experiment was to investigate the effect of balancing the data on

hypothesis ordering. Figures 5.28 and 5.29 show the effect for hypothesis ordering without

(NDIl-NP) and with (NDII-P) the retention of primitives. The use of balanced data

without the retention of primitive hypotheses (INDIJ-NP) provided some improvement,

but the- results were still poor and sensitive to the makeup of the Quick-Look samples.

When using the balanced data in conjunction with the retention of primitives (NDII-P),

a small, but definite, improvement over the unbalanced case was evident. Figure 5.30

'0As explained earlier, the number of experimental runs made with the larger training sets for

OXCaie- ')K is fewer than 10 due to the large processing times, resulting in abnormally large confi-
dence inw ,i als.
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shows the comparison of hypothesis ordering using the balanced data and retention of

primitives (YDII-P) against the non-ordered use of the full set of constructed hypotheses

on the original training data (OXGate-DK). Not only is hypothesis ordering able to

provide nearly identical predictive accuracies to those of OXGate-DJK (and at one point

better, significant at a < 0.25), but does so up to 25 times as quickly for the NetTalk

concept.

* NDH-NP (unbalanced)
a hJH-NP (balanced)
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Figure 5.28 Using Balanced Data Without Retaining Primitives. Simply
balaning the training data is not enough to stably improve hypothesis ordering as shown
by the somewhat better, but still erratic, performance of hypothesis ordering without the
retention of primitives.
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Figure 5.29 Using Balanced Data While Retaining Primitives. When hy-
pothesis ordering retains the primiti .'e hypotheses (NDH-P), balancing the training data
provides a clear improvement.
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Figure 5.30 Overall Performance Improvement with Balanced Data. When
using both the retentiun of primitive hypotheses and balanced data (NDH-P), hypothesis
ordering has a nearly identical predictive accuracy as the non-ordered use of the full set of
construced hypotheses (OXGate-DK) on the original training data. NDH-P (balanced)
also nets up to a 25-fold increase in processing speed over OXGate-DK (unbalanced).
(Confidence intervals omitted for clarity.)

While the use of balanced training data appears to provide the last bit of capability

needed by hypothesis ordering to match the predictive power of the non-ordered ap-

proach, it has not been incorporated as a feature of OXGate. The effects of skewing the

prior probabilities of training data need further study. Without extensive analysis and

empirical support, forcing the training data to be unrepresentative of the test data seems

to be a risky approach.

5.4.5 System design summary

This secp.,l presc:ied several of the system design choices made during the devel-

opment of the hypothesis ordering mechanism in OXGate. The areas investigated were:

compaison of the multiple-objective and single-objective evaluation approaches, selec-

tion of a well-behaved confirmation measure, selection of a viablc combination method

for multiple-objective evaluation, and methods of compensating for concept dispersion.

The investigations of the first three areas yielded the following observations:
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1. Multiple-objective evaluatioh, using the Quick-Look confirmation and simplicity

measures, provided better overall performance than the Quick-Look confirmation

measure alone (single-objective evaluation).

2. Of the three confirmation measures tested, the information-gain measurement

proved superior for hypothesis evaluation, and by association, for ordering.

3. The weighted combination and non-domination approaches to hypothesis ordering

proved roughly equivalent to each other and superior to the procedural and product

combination forms. The weighted combination approach was faster than the use of

non-domination in the artificial domains, and equal in the NetTalk domain.

Based on these observations, the considerations presented in Chapter 4, and the desire

to explore the more novel approach, I incorporated the non-domination approach to

multiple-objective evaluation as the standard method of hypothesis ordering in OXGate.

Included with this decision is the use of the information-gain measure for both hypothesis

evaluation and the Quick-Look confirmation measure.

After establishing the standard method of hypothesis ordering, several approaches

to compensate for concept dispersion were addressed: retaining the primitive hypothe-

ses, recycling the rejected hypotheses, and artificially balancing the training data. The

retention of primitive hypotheses proved to be an inexpensive and effective method of

compensating for the unfavorable interactions of Quick-Look sampling and concept dis-

persion. It has been incorporated as a permanent feature of OXGate. Recycling the

rejected hypotheses was-a ;omputationally expensive approach with little advantage over

the retention of primitives for the concepts used in this thesis, and was dropped from

further consideration. The use of tolerance bands with the non-domination approach

to hypothesis ordering provided reliable enough selectivity that the rejected hypotheses

were not needed. The artificial balancing of the training data, while providing a clear
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improvement for hypothesis ordering for the NetTalk Silent concept, is an area requiring

further research.

5.5 System Analysis

This section investigates the robustness of the hypothesis ordering mechanism with

the non-domination (NDH) approach of multiple-objective evaluation. The first inves-

tigation addresses the adjustment of the tolerance bands associated with NDH. This is

followed by an assessment of post-pruning, a popular method of decision-tree refinement,

to determine if it improves the performance of OXGate. Finally, the ability of NDH

to provide substantial processing speed reduction while maintaining good decision-tree

performance is demonstrated in all four experimental domains.

5.5.1 Tolerance bands

Section 4.2.5.1 described the rationale for the use of tolerance bands for the non-

domination (NDH) approach to hypothesis ordering. Two parameters must be adjusted

to attain satisfactory performance: the width of the primary band (Figure 4.3) and the

width of the secondary band. For NDH to be a robust approach, a pair of values must be

found to give consistently satisfactory performance across multiple domains. This section

describes how a pair of acceptable values for the tolerance bands was determined, and

investigates their sensitivity to domain.

The implementation of OXGate evolved while using the Nominal Concepts A and B

along with two others not described. Various values of the primary and secondary tol-

erance bands were tested to select a set of values that would yield a good balance be-

tween predictive performance and processing time. Based on these results, I selected

values of 0.10 and 0.15 for the primary and secondary tolerance bands of the Quick-Look
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confirmation measures. The values are in terms of the information-gain measurement

and represent absolute quantities.

Figure 5.31 shows the results of applying the same strategy to the random Boolean

4-term 3*DNF concepts (see Appendix C). The pool of hypotheses contained the same

24 primitive and 2280 constructed hypotheses described in Section 5.4.1. The results

indicate the best choice is NDII(1O-25), 0.10 primary and 0.25 secondary tolerances,

with NDH(1O-15) as the second choice. The confidence intervals (error bars) are not

shown, but for 205 training instances the comparison of the error-rates for NDII(10-15)

and NDII(10-25) is significant at a < 0.23, indicating that the two distributions are not

necessarily as different as they appear on the graph. Even though NDII(10-15) does

not appear optimal for this concept, it does appear to be adequate. It is an acceptable

compromise between the Boolean and Nominal domain tolerance band tunings.

Another test that supports the acceptability of NDH(IO-15) is the statistical rank

analysis with two-way layout, or the Friedman test [Friedman, 1937]. Using the approach

outlined in [Hettmansperger, 1984], each test cluster (group of experiments run at a

particular value of training examples) is treated as a "judge" to rate the behavior of the

seven "contestants." The mean values of the experimental runs (ten runs each for the
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Figure 5.31 Tolerance Band Assessment: Boolean 4-term 3*DNF.
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two smaller numbers o," training examples, and five runs each for the larger ones) are

used to rank the contestants. The judge's ,cores are summed and statistically analyzed

to determine if there is a difference among the contestants.

Based on the error-rate data, with the rank of one associated with the lowest error-

rate, NDII(10-15) is rar.ked a strong third place overall among the seven. The seven con-

testants are not significantly different from each other (different only at a > 0.25). Based

on the processing time data, with the lowest time assigned the rank of one, NDII(10-15)

is ranked fourth overall. In this case, some contestants are significantly different than

others: NDHt(5-5) is significantly better than both NIDI-(15-l5) and .DH(25-25) at

a < 0.05. When both the error-rate and time data sets are used (eight judges total).

ANDII(10-15) is ranked at a very strong second place, very close behind NDH(5-5), which

finished a weak fifth in error-rate, indicating that it does not provide a satisfactory time-

versus- accuracy tradeoff. The se, en cntestants are significantly different from each other

only at a > 0.70. The conclusion to be drawn from this test is that, while no contestant

is significantly better overall than any other, NDI(10-15) is the most reasonable choice

for this concept since ;ND14(5-5) must be rejected for its poor error-rate behavior.

Figure 5.32 shows the results of the same set of experiments when applied to the

NetTalk Silent concept. Apparently, the best sets of tolerance bands are N"DII(15-15)

and NDII(25-25), but these proved to be poor performers with the Boolean concepts.

The next best is ND1I(10-15), the set of tolerance values selected above. Comparing

N¥DI(10-15) to VDII(15-15) and NrDH(25-25) at 600 training instances yields similarities

significant at a < 0.29 and a < 0.32, respectively. If these samples are assumed to belong

to the same distribution, the odds of seeing the data as presented are approximately 3.7.

This implies that it is quite possible for the apparent differences to be coincidental.

The Friedman test also demonstrates the seven sets of tolerance bands (contestants)

to be statistically indistinguishable. For the test using only the error-rate data, only
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Figure 5.32 Tolerance B-and Assessment: rqet'QTalk Silent Concept.

NDfc1O-1O,) could be considered different (worst), but at a > 0.1.0. The test using the

processing tie data shows the contestants are different only at a > 0.45. The test using

the data from both error rate and processing time,(four judges) shows the conte-itants

are different only at a >-0.30. Even though the contestants art- not stat~istically different

with any reasonable significance, NIVDI-(10-151~ is the contestant of choice based on the

rankings. The tolerance band set XDHf(/iO-15) is tied for second place with NDH1'25-25)

in the error-rate test, tied for first place with NVDII'5-5 in the processing time test,

and placed a strong-first overall with N.DH(5-5) -rank(ed second. Therefore, NDH(O-1c5)

appears to be the best choice for this NetTalk concept ~as -well C-_ the concepts tested in

the B~oolean ..nd Nominal domains.

Trolerance band testing in the Breast Cancer domain is not p)resented because the

domain was so ill-behaved that no hining was effective,(see Appendix F). No amount of

tuning produced improvenientU; thus, no determination of the best ba.nds was possible.

For the three domainms investigated, the tolerance. bands of 0.10 and 0.15 provide the

most consistently acceptalble performance in both predictive accuracy3 and processing

time reduction, The three doinains -provided -oncepts with complexities ranging from

simple (4 disjuncts) to-very complex,(>100 disjun~cts), and coverages ranging, frout sparse

(14%) to rich (50%), as described in Table 5.1. on page 97. Since the chosen tolerance
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bands are appropriate for this breadth of co%,ept diversty, they should be acceptable

across all of the domairs and concepts used for the remai ling experiments. T:s tuning

may also be sufficiently robust to be applied -in other domains not considered in this

thesis.

5.5.2 Post-Pruning

One of the most important criteria to judge the quality of a decision-tree is its pre

dictive accuracy: the ability to correctly classify instances not in the training data. The

predictive accuracy of a decision-tree is closely related to how weUl the decision-tree as-

sembly algorithm is able to generalize horn the training data; in other words, how vell

it can avoid overfitting to the-training data. -Proper generalizations yield high predictive

accuracies. Good generalizations can- be achieved through a- sufficiently rich dcbutption

language: the assumption is -that, if terms at the torrect level-of generalization a,rz in

the existing vocabulary, they will be found and incorporated. This assumption is the

bedrock on which opportunistic constructive inducdion is built. Other, accepted meth-

ods of obtaining generalization often sacrifice a-portion of the resubstitution accuracy to

gain in predictive accu.acy, accomplished in decision-Lree classifiers by removing (post-

pruning) or I , uting the creation of (pre-pruniug) certain branches of the tree [Breiman

et al., 1984!. iis section examines the use of post-pruning as a potential addition to

the capabilities of OXGate, as well as an alternative to-hypothesis ordering.

The method of post-pruning used with OXGate is the same approach found in Assis-

tant86. Each node in the decision-tree is tested to obtain an estimate of the static error

at the node and the dynamic error, a weighted sum of the subtree error estimates given

the decision split. If the static error is less than or equal to the dynamic error, then the

subtrees are removed. [Cestrik et al., 1987]
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Figure 5.33 shows the effect of post-pruning on decision-trees created using primitive

hypotheses only (OXGate-Prim} and those created using the union of primitive and

constructed hypotheses (OXGatc-DK). The constructed hypotheses for the Boolean and

Nominal concepts are those described in Section 5.4.1. The set of constructed hypotheses

for the NetTalk Silent concept consists of the 1458 binary conjunctions described in

Section 5.3, without the two generalizations (C3 = C4) and (C4 = C5).

0 OXGate-Prim

is AOXGate-Prim (pruned) 12 12

.; 15 X OXGate-DK ) 15.
1 OXGate-DK (pruned) '6 10 Ce

cc 12 8 (r 12
0 0 0

6 4 6-

3 2 3-
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Figure 5.33 Effects of Pruning. The graphs show the effect of post-pruning decision-
trees created with the original primitive hypotheses (OXGate-Prim) and constructed
hypotheses (OXGate-DK). Hypothesis ordering was disabled. Key: (a) Boolean 3-Term
3DNF, (b) Nominal Concept B, (c) NetTalk Silent Concept.

As indicated in Figure 5.33, post-pruning provided a small improvement in the

decision-trees for the Nominal and NetTalk concepts when using the primitive hypotheses

only. Since the description language was highly limited, the correct level of generalization

may have been unavailable, resulting in the overfit of the decision-trees to the training

data. Post-pruning removes some of the overfit, generally providing better predictive

accuracy. When using the constructed hypotheses to extend the description language,

post-pruning had no effect on the decision-trees; presumably, sufficiently general terms

were present in the vocabulary to avoid overfitting the training data in- the first place.

Figure 5.34 presents the results of applying post-pruning to decision-trees created with

the extended description language and hypothesis ordering enabled. Post-pruning had a
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Figure 5.34 Pruning with NDH. Post-pruning had a negligible effect on the decision-
trees developed using hypothesis ordering on the sets of constructed hypotheses. Key:
(a) Boolean 3-Term 3DNF, (b) Nominal Concept B. The dashed curves represent the
envelopes of the corresponding graphs of Figure 5.33, shown for comparison.

negligible effect. Where it does appear to have slightly altered the predictive accuracy,

the effect was detrimental.

The experiments on the Breast Cancer concept (Appendix F) were performed dif-

ferently than in the other domains. The set of constructed hypotheses for the Breast

Cancer domain was obtained by developing a decision-tree to classify all 286 examples

in the database. (The maximal re-ubstitution accuracy is 98% due to inconsistent train-

ing data.) The experiential learning program described in Section 6.1 accumulated all

of the possible binary conjuncts appearing in the tree as well as the generalizations of

those conjuncts. These 242 learned hypotheses were provided as the set ofconstructed

hypotheses. In addition, a set of ranges for three of the attributes (age, tumor-size, and

inv-nodes) was also provided to simulate the grouping behavior of Assistant.

When building a decision-tree, OXGate continues to refine it until the leaf nodes

are as pure as a specified value. Normally, this value is set quite high, implying an

expectation of relatively noise-free trai,.ing data. The Breast Cancer domain appears
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to be very noisy." One approach to dealing with the noise is to relax the leaf purity

requirements to avoid overfitting to the noisy training data.

Figure 5.35 shows the behavior of decision-trees at a variety of leaf purity require-

ments. Each experiment consisted of using a random set of 200 training examples to

develop the decision-tree, and testing the tree on the remaining 86 examples. Each data

point in the figure is the result of ten experimental runs.

48"-- 0 OXGate-Prim

45 , OXGate-Prim (pruned)
cc 42 ' OXGate-DK

29 A OXGate-DK (pruned)
~36

33

27
240 50 60 70 80 90 10

Leaf Purity

Figure 5.35 Pruning with the Breast Cancer Concept. In these experiments,
decision-trees were developed using 200 examples of the Breast Cancer database, and
tested on the remaining 86 examples. The graph shows the results for several leaf purities
(50%, 60%, 70%, 80%, 90%, 95%, and 99%) used to determine when to stop splitting.
The dashed line indicates the error-rate of chance. The four error bars clustered at each
chosen leaf purity value are spread apart for clarity of presentation. The 95% confidence
intervals are shown to demonstrate the erratic behavior with this domain.

Pruning of the OXate-Prim decision-trees (developed with just the 51 primitive

hypotheses) helped somewhat for the larger leaf purities, and severely degraded the per-

formance with 50% leaf purity. The effect of pruning on the OXGate-DK decision-trees

(developed with the union of the 51 primitive and 242 learned hypotheses, and hypoth-

esis ordering disabled) was negligible. At 70% leaf purity, which is approximately the

error-rate obtained by guessing, the four approaches yielded nearly identical results.

"See Appendix F for alternative explanations of its misbehavior.
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The experiments across the four domains reveal that post-pruning does not contribute

to the quality of the decision-trees produced by OXGate when a sufficiently enriched de-

scription language is used. In the low-noise domains (Boolean, Nominal, and NetTalk),

no benefit was demonstrated by pruning beyond that provided by knowledge, regard-

less if hypothesis ordering was enabled. Pruning also did not consistently contribute-to

decision-tree accuracy in the Breast Cancer domain (a possibly noisy domain), especially

when knowledge was used. As a supplement to hypothesis ordering, post-pruning is not

needed. Without hypothesis ordering, the decision-tree assembly could become com-

putationally very expensive and post-pruning would only add to the burden; therefore,

post-pruning is not a suitable replacement for hypothesis ordering which serves to reduce

the computational expense. Although post-pruning provides some benefit when using

a sparse description language without knowledge, I have rejected it as an addition to

OXGate: the goal of this research is to develop a mechanism for enriching the language,

not to settle for a sparse original language.

5.5.3 OXGate in action

Section 5.3 presented a preview of the effectiveness-of hypothesis ordering when ap-

plied to learning the NetTalk Silent concept. In this complex, real-world domain, hypoth-

esis ordering proved to be a practical approach for reducing the computational burden

imposed by a large number of constructed hypotheses. In this section, the use of hypoth-

esis ordering is examined for learning concepts from the other three domains: Boolean,

Nominal, and Breast Cancer. The results for the NetTalk domain are repeated here for

completeness.
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The first three figuies of this be,.tion present the effects hypothesis ordering has on the

predictik,-z a,.curacy and tree conciseness available with constructed. hypotheses.' 2 The

fourth -figure .huws the relative processing times in the four domains, and the fifth figure

displays the pio,.essing speed improveinents provided by hypothesis ordering over the

unordered use of the constructed hypotheses.
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Figure 5.36 Effects of Hypothesis Ordering: Boolean 4-term 3*DNF. The use
of constructed hypotheses (DK) exhibits a vast improvement in predictive accuracy and
tree conciseness over the use of primitives alone (Prim), indicating that the knowledge
applied Nas proper for this concept. Hypothesis ordering (DK/NDH) rescinded some of
the accu'acy improvements for the smaller sizes of training data.

Figure 5.36 illustrates the benefits of the application of proper knowledge to hypothe-

sis generation. Trinary conjunctions (e.g., ((XI = T) AND (X1O-= F) AND (X3 = T)))

were added to the pool of constructed hypotheses, enabling very quick convergence to

the actual concept. With the smaller sets of training examples, hypothesis ordering

proved fairly detrimental to the predictive accuracy. This behavior was predicted in

Section 4.2.1.1: the training examples represent a small portion of the instance space,

and the Quick-Look is % fraction of the training data. One possible solution could be to

12The Boolean 4-term 3*DNF experiments used 264 binary and 1760 trinary conjunctions as the set of
constructed hypotheses (Appendix C). The Nominal Concept B experiments used the 2475 constructed
hypotheses described in Section 5.4. The Breast Cancer concept experiments used the 242 constructed
hypotheses described in Section 5.5.2. The NetTalk Silent concept experiments used the 1460 constructed
hypotheses described in Section 5.3.
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increase the size of the Quick-Look sample, with a corresponding increase in processing

time. A variant of this approach is to increase the sample size only for small or highly

dispersed training sets (proposed in Chapter 7). Another approach is to disable hypoth-

esis ordering for relatively small training set sizes. Figure 5.41(a) shows that for training

set sizes less than 200, hypothesis ordering provides speedups of less than 6. Since pre-

dictive accuracy is being sacrificed for only nominal increases in processing efficiency,

the disabling of hypothesis ordering at these lower training set sizes may be appropri-

ate. Investigation of the means to assess dynamically the performance of the hypothesis

ordering and disable the mechanism is also proposed in Chapter 7.

In the Nominal and Breast Cancer domains (Figures 5.37 and 5.38), the knowledge

used to generate the constructed hypotheses does not appear to be appropriate: the gains

in predictive accuracy and conciseness are marginal or nonexistent. The use of hypothesis

ordering neither improved nor worsened the performance relative to the unordered ap-

proach, yet as shown in Figure 5.40 it did remove a substantial amount of the processing

overhead. The conclusion drawn from these experiments is that hypotheses generated

from inappropriate knowledge are quickly removed from OXGate. Hence, hypothesis or-

dering is effective as a filter between the hypothesis generator and evaluator, preventing

poorly applied knowledge from inundating the evaluator with useless hypotheses.

Figures 5.39 and 5.41 demonstrate the balance in performance tradeoffs hypothesis

ordering was intended to achieve. With NetTalk, a complex, real-world domain, the

decision-tiees developed using hypothesis ordering were not as accurate as those pro-

duced with the full set of constructed hypotheses: this was expected (Section 4.2.1.1).

Yet, this small loss in accuracy was incurred while producing a substantial increase in pro-

cessing speed, an acceptable tradeoff. Moreover, not only are the resultant decision-trees

substantially more accurate and concise than those developed fron, ,nly the primitive
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Figure 5.37 Effects of Hypothesis Ordering: Nominal Concept B. The use
of constructed hypotheses (DK) exhibits a smali, albeit inconsistent, improvement in
accuracy and conciseness over the use of -primitive hypotheses alone (Prim). Hypothesis
ordering (DK/NDH) appears to have little detrimental effect on the predictive accuracy.
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Figure 5.38 E ffects of Hypothesis Ordering: Breast Cancer Concept. The
significance curves indicate very little support for concluding that one approach is better
than another.
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Figure 5.39 Effects of Hypothesis Ordering: INetTalk Silent Concept. Repeat
of Figure 5.10, included for completeness. The use of hypothesis ordering (DK/NDH)
causes some loss of predictive accuracy over the non-ordered approach (DK), yet is sub-
stantially better than using no constructed hypotheses at all (Prim).
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Figure 5.40 Processing Times. Key: (a) Boolean 4-term 3*DNF, (b) Nominal
Concept B, (c) Breast Cancer Concept, (d) NetTalk Silent Concept.
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Figure 5.41 Speedup Factors. Comparison of the processing speed improvements
provided by hypothesis ordering (OXGate-DK/NDH in Figures 5.36 through 5.40) over
the unordered use of the constructed hypotheses (OXGate-DK). Key: (a) Boolean 4-term
3*DNF, (b) Nominal Concept B, (c) Breast Cancer Concept, (d) NetTalk Silent Concept.
All data were collected over 10 runs except as noted: (a) used 5 runs with 2048 training
examples, 3 runs with 3072, 1 run with 4096; (b) used 5 runs at 675, 3 runs at 1012, 1
run at 1350; (d) used 3 runs at 1000, 2 runs at 1500, 2 runs at 2000. Where fewer than
10 runs were used, the error bars appear abnormally large relative to the rest.
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hypotheses, but the use of hypothesis ordering was evenfaster than using no constructed

hypotheses, as was shown in Figure 5.11.

T':ese four sets of experiments demonstrate two important characteristics of hypoth-

esis ordering and its use in OXGate:

1. The hypothesis ordering mechanism is quickly able to identify hypotheses con-

structed from properly applicable knowledge and focus the evaluator on them.

2. The hypothesis ordering mechanism is quickly able to identify hypotheses con-

structed from inappropriate knowledge and eliminate them.

5.5.4 System analysis summary

This section analyzed the performance of the non-domination approach to hypoth-

esis ordering in three areas of interest. The first area addressed the robustness of the

tolerance band settings. The tolerance band values selected during early OXGate devel-

opment provided an acceptable balance between processing speed gains and predictive

accuracy for the Nominal concepts. Experiments in the Boolean and NetTalk domains

demonstrated these settings to provide a desirable balance between accuracy and speed,

confirming the robustness of the initial settings and the use of tolerance bands.

The second area of interest examined the utility of post-pruning the resultant decision-

trees with the aim of determining if post-pruning would be a useful addition to or re-

placement for hypothesis ordering. The experiments in all four domains revealed that

post-pruning did not contribute to the quality of the decision-trees produced by OXGate

when a sufficiently enriched description language was used. As a supplement to hypoth-

esis ordering, post-pruning is not needed. Without hypothesis ordering, the decision-tree

assembly could become computationally expensive and post-pruning would only add to
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the burden; therefore, post-pruning is not a suitable replacement for hypothesis ordering

which serves to reduce the computational expense.

The third area of interest investigated the performance of hypothesis ordering in all

four domains. Hypothesis ordering proved to be a powerful method of reducing the

processing burden incurred with massive hypothesis generation, with little or no loss in

predictive accuracy. This heuristic approach was quickly able to exploit the applicable

hypotheses and filter out those developed from inappropriate knowledge. Its behavior

across the diverse domains attests to the robustness of hypothesis ordering in OXGate

and the use of the non-domination approach to multiple-objective e'¢l!uation.

5.6 Summary of Results

This chapter presented a sequence of experiments designed to (a) guide the devel-

opment of an effective hypothesis ordering mechanism, and (b) assess its utility as a

heuristic approach to managing the computational burden of the prolific hypothesis gen-

eration expected with opportunistic constructive induction.

Section 5.2 provided a comparison between the basic inductive operation of OXGate

and the well-established selective induction system ID3 to ascertain whether a repre-

sentational advantage exists for either system. Neither representation proved generally

superior: the representational advantage depended on the concept being considered.

This rough parity supports the use of the binary decision-tree representation necessary

in OXGate for the incorporation of constructed hypotheses. At the same time, it provides

the foundation to assess the incorporation of knowledge in subsequent experiments since

this parity implies that substantial gains in predictive accuracy are not inherent in the

representation but, instead, are the result of applying knowledge.
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Section 5.4 investigated several design choices necessary to guide thc development

of the hypothesis ordering mechanism of OX~ate. The information-gain confirmation

measure proved to be the most effective measure tested, and has been incorporated

in both the hypothesis ordering and hypothesis evaluation components. Two multiple-

objective evaluation approaches to hypothesis ordering, weighted combination and non-

domination, proved superior to the other approaches, including single-objective evalua-

tion with the Quick-Look confirmation measure and single-objective evaluation using sim-

plicity. The weighted combination approach tended to be faster than the non domination

approach in the artificial domains. In the complex, real-world, NetTalk domain, the non-

domination approach produced slightly better decision-trees than the weighted combi-

nation approach, and both approaches were equally fast. For its strengths, particularly

its effectiveness at hypothesis ordering, as well as its uniqueness and appeal, the non-

domination approach was selected as the standard method for hypothesis ordering.

Once the standard method of hypothesis ordering % as established, several approaches

to compensate for concept dispersion were addressed. retaining the primitive hypotheses,

recycling the rejected hypotheses, and artificially balancing the training data. Retain-

ing the primitive hypotheses proved to be an inexpensive and highl effective method

of compensating for the unfavorable interactions of Quick-Look sampling and concept

dispersion. This has been incorporated as a permanent feature of OXate. Recycling

the rejected hypothe.,es provided similar improvements in decision-tree accuracy and sim-

pler decision-trees, but at a high cost in processing time. The accuracy achieved when

recycling rejected hypotheses was no better than that obtained by retaining the primi-

tive hypotheses. This result indicates that the non domination approach to hypothesis

ordering with the retention of primitives is generally effective at selecting the right hy-

potheses to reject. The third approach, artificially balancing the training data when using

hypohesis ordering, provided some improvement in decision-tree accuracy, but since it
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may skew the training data tv b unrepresentati' e of the domain, this approach requires

further study.

Following the system design experiments, t)-_ robustness of the non-domination ap-

proach for hypothesis ordering was investigated. The use of the two tolerance bands to

determine the memberships of +he primary, secondary, and rejected subsets proved to be

well-behaved and robust. The band settings selected to provide a desirable balance be-

tween processing sp.ced and predictive accuracy in the Nominal domain also turned out

to be the most consist 'tly applicable settings for the Boolean and NetTalk domains,

confirming the-robustness of the initial settings and the use of tolerance bands.

Finally, I evalb.ated the performance of hypothesis ordering in all four experimental

domains. Hypothesis ordering, particularly the non-domination approach, proved to be

a powerful method of containing the explosion of computational overhead produced with

.'rolific hypothesis generation, without a significant decrease in the predictive accuracy

and dechion-tree conciseness available with the full sel of constructed hypotheses. In

the complex, rel-world domain of the NetTalk Silent concept, not only did OXGate

with hypothesis ordering produce decisioni-trees with considerably improved accuracy

over that available with only the -primitive hypotheses, but it was able to do so faster.

cN., e heur'.ti, approach, hypothesis ordering behaved as anticipated, providing a good

balance betwezn computing efficiency and decision-tree quality.
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CHAPTER 6

USING KNOWLEDGE:
PRELIMINARY INVESTIGATIONS

The most interesting and certainly the most challenging aspect of opportunistic con-

structive induction is the incorporation of domain knowledge into the hypothesis genera-

tion niechanism in a form suitable to produce useful hypotheses. Section 3.1.1 described

the hypothesis generator and proposed some ways knowledge might be applied. This

chapter presents preliminary investigations on the application of knowledge. These in-

vestigations, particularly the first, are beyond the original scope of this thesis. They are

included for the insight they provide toward future research. Section 6.1 discusses learning

from experience, which is tantamount to constructing hypotheses based on the knowledge

of past successes. Section 6.2 demonstrates the power of applying the right knowledge for

hypothesis construction. The experiments demonstrate that the correct knowledge, even

a very .nall amount, substantially improves the performance of decision-tree induction.

Many researchers throughout the history of machine learning have recognized the

value of adding some form of knowledge to assist their systems through the learning

tasks. Samuel [1967] added several heuristics to guide the adaptation of the scoring func-

tion in his checkers-playing program. Lenat [1983] used problem-solving heuristics to

guide the mathematical learning system AM. Michalski [1983] proposed a methodology

for applying background knowledge to constrain the application of inference and gcner-

alization rule., luring concept induction, and demonstrated its application ;n the system

INDUCE. More -ecently, several other researchers have demonstrated the effectiveness of

applying small amounts of domain-specific knowledge during concept induction. Matheus

(1989, 1990] uses fragments of knowledge in CITRE to constrain the generation of new
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features during experiential learning and explicitly guide the generalization of these new

features (Sections 2.4.3 and 6.1). Specifically, he has demonstrated the efficacy of three

pieces of knowledge in learning tic-tac-toe: 1) piece type is important, 2) piece adjacency

is important, and 3) features constructed from one section of the board may be appli-

cable elsewhere.' MIRO [Drastal and Raatz, 1989] applies domain-specific knowledge

to establish an abstract fra.mework for induction. MIRO begins learning with the most

general description language (as defined by the knowledge) and specializes the language

if necessary to induce the concept description (Section 2.4.4).

Applying small amounts of knowledge to guide concept induction is not unique to

symbolic concept learning; Towell et al. [1990] use nearly correct background knowledge

to establish an initial topology for the neural network system KBANN. The network then

learns from training examples to correct the deficiencies in the background knowledge.

The knowledge provides expectations of the internal (hidden) nodes of the multilayered

network: in essence, it suggests how to construct partial concept descriptions (constructed

hypotheses). The original knowledge, although flawed, provides enough guidance for the

network to learn the concept better than several knowledge-poor approaches. Abstractly,

this approach is similiar to ENIGMA (Section 2.4.6) except that learning is network-based

in KBANN rather than symbolic.

The syterns just described are samples of a myriad of hybrid systems that combine

knowledge and inductive concept learning. They share a common theme: small amounts

of the correct knowledge can greatly enhance the quality of inductive learning. Domain

knowledge has the potential of enriching the concept description language so completely

that substantial components of the target concept, or even the entire concept description,

may be found in the vocabulary. The following experiments support this expectation.

'Matheus implemented a generalization operator for spatial translation that also provided reflection
about the major axes. Rotation about the center and reflection about the diagonals were 'not addressed.
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6.1 Learning from Experience

A common method of generiting hypotheses is chrough experiential learning: creat-

ing a concept description and examining that deszriptkon to develp sot, tidl.y ,1seful

hypotheses for continued conccpt refinement. The-con.tept is the '. using a mod-

ified descriptioai vocabuk.ry consisting of the union (if the newly c'tasrU1ted hypotheses

and all or a port:ou cif the previous vocabulary. This procc- is repeated until a suitably

concise concept descriptio., is obta'ned or until some other nicasue of-deteii iini-g con-

vergence is satisfied (e.g., a lack of improvement in predictive accuracy). The :stems

FRINGE [Pagallo.and Hauisler, 1989] ar.d, CITRE [Matheus, 1989] are two ,-amples of

decision-tree-based experiential learning systems (Section 9.4).

Both FRINGE and CITRE create hypotheses by conjoining pairs of features associ-

ated with branchc leading to positive leaf nodcs. Tki, approach implemers a simple

heuristic: since experience shows that feature A and feature B are botb neeJad to lead

to a particular positive leaf, feature (A AND E) will lead to that leaf and may be useful

elsewhere. Other binary combinations are d)lo posoible, but arc not consideied for the

sake of simplicity. For example, Pagallo [19901 also, describes the construction of new

conjunctive features from branches leading to ngative leaves ia -thc system Symmetric

FRINGE, and Yang et al. [.991] construct features using disjunction in DCFringe.

A second simplification FRINGE uses :.3 to co:isider only the features associated

with adjacent fringe branches in the tree as operands to the conjunction. The two

features composing a fringe pairing are those associated with the two lowest-level branches

leading to a positive leaf. In Figure 6.1, the fringe pairs are (C7 = Y, C3 = S) and

(C5 = R, C4 = 2). This simplification drastically reduces the number of potential new

hypotheses that must be considered.

CITRE also simplifies the number of hypotheses to cc. .. r by applying one of five

user-selectable biases to the operand selection. Selecting the fringe pair is one of those
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04-H All possible pairings (of those shown):

J(C4-.H, C7-Y), (C4-H, C3-S), (C4-1-, C3-P)
C7-Y C5-V (C7-Y, C3-S), (C7-Y, C3-P), (C-R, C4-E)

03-S - C5-R Knowledge-guided pairings:

{(C4-n, c3-s), (C4-1, C3-P), (C5-R, C4-E) }
+ C3-P C4-E Generalization of knowledge-guided pairings:{(C4-H, C3 SP)

+
... ... At each test, True is to tUe left branch.

Figure 6.1 Learning from Experience. This example shows a possible portion cf a
decision-tree for the NetTalk Silent concept to illustrate the search for useful constructs.
Positive tests leading to positive leaves are the operands (pairings) for forming binary
conjunctions. Domain knowledge can be used to constrain the possible combinations.
The effect of applying a domain-independent generalization operator, the merging of
disjunctive regions, is also shown. The decision-tree is learned from a collection of seven-
character windows (Cl through C7) on a dictionary of words. An example of such
a window is from the word "symphony," with the lettei "h" as the center character:
s[ymp(h)ony]. This window corresponds to the pairings (C4=H,C7=Y),(C4=H,C3=P),
and (C7=Y,C3=P), and supports the generalization (C4=H,C3E{S,P}). A word that
provides multiple windows with silent center characters is "haberdashery": [hab(e)rda]
and [asli(e)ry] both support (C5=R,C4=E); and [das(h)ery] supports (C4=H,C7=Y),
(C4=H,C3=S), (C7=Y,C3=S), and the generalization (C4=H,C3E{S,P}).

biases (fringe). Another bias, all, selects all possible pairings. Root selects the two

features associated with the highest-level branches leading to a positive leaf: an example

is (C4 = H, C7 = Y) in Figure 6.1. Root-fringe selects the features corresponding to

the single highest-level and single lowest-level branches leading to a positive leaf, such

as (C4 = H, C3 = P). The fifth bias, adjacent, selects features associated with any two

adjacent branches leading to a positive leaf. The operand pairs selected using the fringe

and root biases are a subset of those selected using the adjacent bias.

The application of these biases restricts the selection of operands from within a subtree

leading from the root node to a positive leaf. Section B.3 defines these restrictions

formally. The biases are implemented as filters that act on the positions of the features
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within the tree. Knowledge may also be applied as filters, but, in addition to being

concerned with the position of features (syntactic filtering), knowledge-based filters may

also be concerned with the meaning of the terms (semantic filtering) or their relationship

to the domain (contextual filtering). When learning from experience, OXGate limits

the number of potential new hypotheses through contextual filtering by the procedural

application of domain knowledge.

Figure 6.1 illustrates a possible portion of a learned decision-tree for the NetTalk

Silent concept. The given attributes are the seven characters Cl through C7. The

knowledge used to guide the pairings in Figure 6.1 can be stated as: the center character

is the focus of attention, and the characters adjacent to the center provide the most

information-gain [Lucassen and Mercer, 1984]. This knowledge focuses the selection of

features for construction on those related to the attribute pairs (C4,C3) and (C4,C5).

The implementation of the experiential learning mechanism in OXGate is through a

post-pocessing procedure called Koala. Koala searches for all pairings of true hypotheses

leading to positive leaf nodes, but keeps only those defined by knowledge as coded in

search patterns. Invocation of the procedure takes the form

(koala tree pattern focus-attributes focus-values

scope-attributes scope-values trivia-tolerance)

where tree is the decision-tree to be learned from,

pattern is the form (template) of the hypotheses being searched for,

focus-attributes are the attributes used as the focus of the search,

focus-values are the values accepted in the focus template,

scope-attributes are the attributes used for the scope of the search,

scope-values are the values accepted in the scope template, and

trivia-tolerance is the number of times a pairing must occur.
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Using the NetTalk example, the search for pairs of characters adjacent in the word

to the center position would- be invoked by

(koala tree '(EQP attribute value) 'C4 '* (adjacent 'C4) '* 1) (6.1)

The pattern "(EQP attribute value)" indicates only primitive hypotheses are to be con-

sidered. It is a test (true or false) to see whether the value of the attribute for the

instance under consideration is. the same as the stated value. The focus-attribute "C4 "

indicates the search is focused on the center window character C4. The focus-value ""

is a wildcard, telling Koala to accept any value for attribute C4. The focus template ib

created from these three parameters, preparing the upcoming search to locate any hy-

potheses of the form (EQP 'C4 any-letter). The scope of the search is defined by the next

two-parameters. The scope-attributes are defined in this case by the function "(adjacent

'C4)," indicating either attribute C3 or C5 is.acceptable. The scope-value "*" indicates

that any value will be accepted in-the scope templates. From these two scope parameters

and the original pattern, Koala creates two scope templates, (EQP '03 any-letter) and

(EQP 'C5 any-letter). The final parameter, trivia-tolerance, is the number of times an

acceptable pairing must occur before being retained (learned from experience). Here, it

is set to one.

These parameters and templates are used by Koala to sort through the space of all

possible pairings defined by the decision-tree. The knowledge-guided pairings will be the

ones containing valid matches to the focus template and a scope template. In addition

to the construction of the new hypotheses, Koala builds generalizations of the pa;ings

as depicted in Figure 6.1. Once all of the acceptable pairings are collected, the focus

template is used to guide the generalization. For each instantiation of the focus template,

the pairings containing the instantiation are collected, and the scope instantiations are
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grouped by scope-attribute to create membership functions as shown in Figure 6.1, for

example,

(AND (EQP 'C4 'H) (MEMBER (WHATIS 'C3) '(S P W G T C)))

meaning "H is silent when it follows S, P, W, G, T, or C."

The operator WHATIS looks up the value of the attribute for the instance under

consideration. It is assigned a cost of one (see Section 4.2.2). MEMBER tests if this

value is a member of the given set, and is also assigned a cost of one. The fundtion

(EQP attribute value) is actually implemented as (EQ value (WHATIS attribute)), testing

if the stated value matches the value found by WHATIS. Thc test for equality has zero

cost, but since WHATIS has a cost of one, EQP also incurs a cost of one. These costs are

used to determine both the simplicity of hypotheses and the complexity of the resultant

decision-trees. Thus, primitive hypotheses have a cost of one, binary constructs have

a cost of two (the Boolean- operators have zero cost), and generalizations such as that

shown above have a cost of three 'simplicity of 1/3).

Another feature of Koala provides constraints on the original collection of :possible

pairings. By setting the global variable *tree-adjacent* true, only physically adjacent

terms in the decision-tree are collected. With minor modification this variable could be

used to select from any of the syntactic filters discussed on pages 155 through 156. For

the experiments of this chapter, *trce-adjacent * was false, corresponding to the syntactic

bias all.

With *tree-adjacent* set false and trivia-tolerance set to one, Koala-limits the selec-

tion of operands for construction based only on their content. The knowledge incorpo-

rated in Equation (6.1) allows only primitive hypotheses involving the named attributes

to be selected. This knowledge can be viewed as e. filter applied by Koala on the set of

all possible constructions derivable from the decision-tree (see Section B.3).
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Koala provides a convenient mechanism for incorporating knowledge to constrain the

extent of experiential learning. This is necessary to avoid overlearning when drawing

upon a single decision-tree. In the example, the setting of a few simple parameters

provides Koala with all the guidance it needs to learn every combination of the center

window character (C4) and its nearest neighbors (C3 and C5) appearing along the way to

a positive leaf. An alternative view is that the experience contained in the decision-tree

constrains the application of domain knowledge by the hypothesis generator. Instead

of generating all possible hypotheses indicated by the knowledge (as was done for the

experiments of Chapter 5), Koala limits the constructed hypotheses to those suggested

by experience to be useful. This combination of expectation and experience defines the

most promising extensions to the concept description language.

6.1.1 Experimentation

One way to judge the efficacy of the knowledge used to guide experiential learning

is by examining the utility of the learned constructions in subsequent induction. This

experiment compares the performance of three sets of constructed hypotheses: two sets

were created using knowledge for guidance, the third was not. Hypothesis ordering

was disabled to isolate the effects of the knowledge itself. The experiment shows that

correct knowledge focuses the experiential learning on those constr.cted hypotheses most

beneficial to subsequent decision-tree assembly.

The first step in the experiment was to create the initial decision-tree and the three

sets of constructed hypotheses. OXGate was run on the 2000 training examples of

the NetTalk Silent concept, using only primitive hypotheses. This decision-tree was

then used as the basis for experiential learning. The first set of knowledge-guided con-

structed hypotheses was created using Koala as shown in Equation (6.1), producing

46 binary conjuncts and 11 generalizations (Learned w/DK in Figure 6.2). The second
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set of knowledge-guided constructed hypotheses (Learned w/DK('-)) is a subset of the

Learned w/DK hypotheses: the 37 binary conjuncts subsumed by the generalizations

were removed, leaving 9 binary conjuncts and 11 generalization hypotheses. To generate

the third set of constiucted hypotheses, the ones created without the guidance of knowl-

edge (Learned wo/DK), Koala was invoked with wildcards for the attributes and values

of both the focus and the scope. This provided all possible pairings and generalizations

(247 binary conjuncts and 97 generalizations).

A OXGate vs. Learned wo/DK
Learned wo/DK vs. w/DK

" 20 0 OXGate - 0 Learned wIDK vs. w/DK(-)
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Figure 6.2 Learning from Experience: NetTalk Silent Concept.

Figure 6.2 presents the effects of a single iteration of experiential learning. A single

iteration consists of assembling an initial decision-tree and constructing hypotheses from

the evidence in the initial tree (as described above), and then measuring the perform-

ance of subsequent decision-trees created with the extended description language. The

lower right graph displays the complexity of the resultant decision-trees. Complexity is
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a modified form of the -measure primitives used in the experiments of Chapter 5. It in-

cludes the number of primitive hypotheses incorporated in the decision-tree and accounts

for the cost of the membership- function MEMBER in the generalizations. Complexity is

the inverse of the measure of simplicity defined in Section 4.2.2. As other operators of

non-zero cost are introduced into OXGate these two measurements will diverge further.

Where no membership functions are included, complexity and primitives are identical

measurements.

The plots labeled OXGate show the baseline performance of the decision-trees created

using only the set of primitive hypotheses. Learned wo/DK shows the marked improve-

ment in predictive accuracy supplied by the addition of the 344 constructed hypotheses to

the description language. Processing time also increased correspondingly. Interestingly,

the complexity of the decision-trees remained nearly the same. The number of decision

nodes decreased with the %.ddition of learned hypotheses, but, in this case, the increased

cost of some nodes offset the reduction in structural complexity.

The plots labeled Learned w/DK present the results of using the knowledge-guided

constructed hypotheses, a subset of those used for Learned wo/DK. Although the addi-

tional knowledge did not appear to improve the predictive -accuracy, the reduction in the

number of hypotheses did have a substantial impact on the processing speed. This indi-

cates that the knowledge served to remove the hypotheses of little or no utility, leaving

what was needed to assemble good decision-trees. Learned w/DK(-) shows the results

with the non-redundant subset of the Learned w/DK hypotheses. This more limited de-

scription language provided powerful generalizations, yet prevented overfitting with the

small sample sizes, resulting in a slight increase in accuracy, more compact decision-trees,

and faster processing.
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6.1.2 Summary: Learning from experience

The approach used in OXGate for experiential learning, the application of Koala, is

similar to that of FRINGE and CITRE: a decision-tree is developed and then evaluated

to determine useful constructions. It is different in that only domain knowledge (contex-

tual information provided by the developer or available in the hypothesis generator) is

used in Koala to constrain the generation of experientially learned hypotheses. FRINGE

uses the positions of the operands in the decision-tree (a syntactic bias) to select com-

ponents for hypothesis construction. CITRE uses a combination of syntactic bias and

user-supplied domain knowledge to guide construction. Like CITRE, Koala uses knowl-

edge to constrain the selection of operands suggested by the decision-tree, and to produce

domain-dependent generalizations. The difference between CITRIE and OXGate/Koala

is primarily one of focus: CITRE's principal mode of operation is the syntactically guided

search for new constructions, while in OXGate the application of contextual kriowledge

is the primary mode of operation. Koala is an extension to OXate for investigating the

application of contextual knowledge and experiential learning in hypothesis generation.

The knowledge used in the experiment focused Koala on constructing hypotheses from

primitives involving the target character C4 and those using the contextually adjacent

characters C3 and C5. When multiple pairs were found using a common primitive involv-

ing C4, a generalization was also created. The experiment clearly showed an increase in

predictive accuracy when hypotheses created through experiential learning were added

to the description language. It also demonstrated the focusing effect of correct domain

knowledge: the hypotheses most beneficial to subsequent dccision-tree assembly were

retained, with a substantial improvement in processing speed.
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6.2 Applying the Right Knowledge

The power of applying the right knowledge for hypothesis generation is demonstrated

in this section. The first two experiments show the application of two sets of knowledge

in both the Boolean and Nominal domains. The knowledge was syntactic, specifying an

expectation of the form of components of the concept description. The third experiment

demonstrates the power of a single hypothes., constructed from correct contextual knowl-

edge in the NetTalk domain. In these three experiments, hypothesis ordering was disabled

to isolate the effects of the knowledge. The experiments of Chapter 5 demonstrate the

effects of hypothesis ordering: generally, hypothesis ordering revokes the contributions of

the weaker or less applicable knowledge.

6.2.1 Boolean 3-term 3DNF concepts

The first set of knowledge suggests that negations of the primitives, binary conjuncts,

and binary disjuncts are useful constructions (see Appendix C). This knowledge is ap-

plied procedurally by invoking a handful of special-purpose routines. The overall control

of the procedures has been partially generalized so that subsets of the hypotheses can

be selectively generated by changing the keywords *NOT*, *AND*, and *OR*. For the

-Boolean concepts, the 24 primitive hypotheses yield 24 negations, and these 48 unary

hypotheses are used to generate 1140 binary conjuncts and 1140 binary disjuncts (shown
as DK-typel knowledge in Figure 6.3). The igations of primitives are logically redun-

dant hypotheses in the Boolean domain, and were originally produced to help flood the

hypothesis ordering mechanism for the experiments of Chapter 5. Since the hypothe-

sis ordering mechanism is disabled for the following experiment, the negations simply

serve to illustrate that, although knowledge might suggest generating a certain type of

hypothesis, the knowledge may not be fully applicable to the domain at hand.
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The second set of knowledge suggests that trinary conjunctions of the primitive hy-

potheses might be useful. Again, a special-purpose procedure builds the constructions.

From the 24 primitive hypotheses in the Boolean domain, 264 binary conjuncts and 1760

trinary conjuncts are formed (shown as DK-type2 knowledge in Figure 6.3).
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Figure 6.3 Using Correct Knowledge: Boolean 3-term 3DNF. Note: The
number of training instances shown for the error-rate is truncated after 1024 examples
for clarity of presentation.

Figure 6.3 dramatically illustrates the effect of proper knowledge when learning the

Boolean 3-term 3DNF concepts. The plotb labeled OXGat,. show the baseline perform-

ance using only the 24 primitive hypotheses. DK-typel shows a marked improvement,

mainly from the incorporation of the binary conjuncts in the decision-trees. The pro-

cessing time increases tremendously since the decision-trees still require several levels of

branching, and a large number of hypotheses must be considered at every level.

The plots for DK-type2 show that with trinary conjuncts, the decision-trees perfectly

represent the concepts with only 102 training examples, about 1/10th the number re-

quired for OXGate. The processing time is still much larger than when using only the

primitive hypotheses since the number of hypotheses tu consider is much larger. The pro-

cessing time is substantially smaller than when using the DIC-lypel hypotheses because

convergence to the solution occurs much faster. DK-Iype2 knowledge, particularly the
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use-of trinary conjuncL. , 'vorks well b,cause it perfectly matches the syntactic striucture

of the Boolean 3-term 3DNF concepts:

((trinary-conju net) OR. (trinary-conjunct) OR. (trinary-conjunct))

Comments: 'In alternative approach to- generating and evaluating the sets of con-

structed hypotheses is through the ube --f look-ahead, a common reasoning strategy for

decisionzmaking [Barr and Feigenbaum, 1982]. For decision-tree induction, look-ahead

:nvolves postponing the decision to incorporate a hypothesis until the quality of the po-

tential subtrees can be determined [Hartmann et al., 1982]. A system using look-ahead

performs "what-if" .easoning on each hypothesis: "What is the best subtree available if

hypothesis X is used to split here?" The best hypothesis for the current node is the one

producing the best subtree overall. For example, using a look-ahead of two, a system

Pach as- OXGate would pretend to split on a hypothesis, and then find the best hy:,,the-

ses for splitting at the two nodes (left and right) lower in the -decision-tree. The value of

the hypothesis at the current node of interest is the aggregate information-gain provided

by the three splits (entropy at the current node minus the remaining entropy two levels

down). After considering each hypothesis at the current node, the system would select

the hypothess with the higi.:st value, i.e., the best potential subtree.

The -inary hypotheses constructed from- the DK-typel and DK-typje2 knowledge are

equivlent to porti ns of the subtrees considered vith a look-ahead of two (Figure 6.4).

'nce look-ahead allows an --iductive system to make more informed choices at a node,

the resultant decision-trees are potertially better than those created with no look-ahead.

Similarl,_the binary hypotheses used in this experiment provided an enriched description

language, also leading to more informed decisions and better decision-trees.

One or .he drawbacks of using look-ahead is the potentially large increas in, process-

1nrf tiime with each added level of look-ahead depth, due to the number of additional
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combinations to be investigated. However, as the decision-tree is developed, look-ahead

becomes less expensive because the number of hypotheses to consider is reduced: some

have been incorporated -in the tree and are no longer available. The same effects occur

with hypothesis generation from syntactic knowledge: the more complex:syntactic struc-

tures yield greater numbers of hypotheses, each of which requires evaluation. Syntactic

filtering of hypotheses (Section 3.1.4) can reduce the number of hypotheses considered

at the lower nodes of the decision-tree, providing a similar reduction in computational

expense as that found with look-ahead. In addition, the use of hypothesis ordering pro-

vides a more powerful focusing mechanism to reduce the processing time, by identifying

the most prom:ziaig hypotheses and removing the least promising ones. The analogous

behavioi with look-ahead would be to determine a priori which subtrees to consider filst

and which to avoid.

xi

xi XI X1
X3

X/ X2 X2 2

+ - + - + -

+-

XIX2 XIX2 XI orX2 XIX2X3

[a] (b] [C) (d]

Figure 6.4 Relating Look-Ahead to Hypothesis Construction. Several potential
subtrees -created with a look-ahead of two ([a], [b] and [c]) and three ([d]) are shown. The
equivalent constructed hypotheses are provided below the subtrees.

Using look-ahead does not always incur a significant processing burden. Ragavan ". al.

[19911 demonstrated that with the right level of look-ahead for the target concept, a more

accurate decision-tree can be produced than without look-ahead, yet with little additional-

proc ssing time. This is because the proper, compact decision-tree can be identified and

developed quickly. Without look-ahead, the system tends to assemble large, inaccurate

trees. A similar effect was demonstrated in Figure 6.3- with the hypotheses created using
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the Dh*-type2 knowledge: three of -the trinary conjuncts were all that were needed -to

quickly learn the Boolean 3-term 3DNF concept. For both look-ahead and hypothesis

generation, if the size of the terms in a k4erm IDNF Boolean function is known (i.e., the

xalue of 1), then the optimum depth of look-ahead (1) or width of the syntactic template

(also 1) is specificied.

Determining the correct level of look-ahead. oi the correct syntactic template.for hy-

pothesis gc.itration is problematic. Ragavan and Rendell [19911 propose a measure of

cuncept dispersion that estimates the difficulty of learning the concept with a given-set of

hyputheF.es. They are currently investigating heuristics-for applying this aad other mea-

sures for predicting the proper level of look-ahead [Ragavan et a!., 1991]. When available,

these heuristics should be incorporated into the hypothesis generator of QXGate.

6.2.2 Nominal Concept B

Figurc 6.5 shows the results of applying the same approach used in- Section 6.2.1

to Nominal Coiicept B (Appendix D). The first generation of hypotheses used the 25

primitive hypotheses to create 25 negations, 1225 binary conjuncts, and 1225 binary

disjuncts (DK-typel knowledge in the figure). The second generation produced 229

binary conjuncts and 915 trinary conjuncts (DK-type2 knowledge). In this domain,

inconsistencies such as ((color = red) AND (color = blue)) were not generated. With

this concept, DK-typel performed geneially better for the smaller training set sizes.

The processing time for DK-typel was substantially greater due' to the larger number of

hypotheses to test.

Analysis of the resulta ;t decision-trees reveals that several of the DK-iypel hypothe-

ses were incorporated early in decision-tree development with small training set sizes,

accounting for their improved accuracy. For instance, with 135 training instances, one

decision-tree consisted of -the binary disjunct ((color = green) oit (size = huge)) and
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Figure 6.5 Using Partially Applicable Knowledge: Nominal Concept B.

three binary conjuncts. With the full -set of 1350 training examples, the-decision-trees

were more complex: one consisted of seventeen constructed and three primitive hypothe-

ses. The decision-tree %vas -difficult to decipher because it described anther of the many

logically equivalent decision-tres completely representing Nominal Conc 'pt B.

The DK-type2 knowledge :provided very few useful hypotheses for learning this

concept. The decision~trees developed using small training set sizes were very

similar to their OXGate counteiparts (created using primitive hypotheses only),

with the occasional- inclusion of one or two binary conjuncts. The decision-

trees created with the full set of training data contained one trinary conjunct

((color = blue) AND (taste = bitter) AND (shape = triangle)), four binary conjuncts,

and twenty-three primitive hypotheses.

The syntactic knowledge provided for DK-typel was moderately useful for Nomi-

nal Concept B. Since the structure of the concept does not reflect an obvious syatactic

pattern, large increases in performance should not be expected. The DK-type2 knowl-

edge had little utility for learning this concept. The binary and trinary conjuacts did

not provide the right extensions to the description language and went largely unused.

Generally, the proposed syntactic knowledge was not applicable: the lack of substantial

improvement in performance reflects this.
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The measure of concept dispersion proposed by Ragavan and Rendell [1991] may

predict that these two description languages, although substantially enriched, are not

particularly -useful for learning this concept. This measure, once fully understood and

developed, may be very useful to guide the selection of the proper syntactic structure to

use for hypothesis generation. As Breiman et al. [1984] relate, the development of new and

useful hypotheses "is an art guided by the analyst's intuition and preliminary exploration

of -the data." Measures such as concept dispersion -and the associated- heuristics for

applying them are necessary to- automate hypothesis generation- effectively.

6.2.3 NetTalk Silent concept

The third-experiment uses a piece of contextual knowledge to generate a single -pow-

erful hypothesis: "when a character is repeated, the second is silent." This heuristic is

generally true, with the exception-of words like zoology. Since the NetTalk Silent-concept

is concerned about silence in the center window position (C4), this piece of knowledge

translates to the equality hypothesis (EQP (WHATIS 'C3) (WHATIS 'C4)), a test to de-

termine-if (C3=C4) is true.

Figure 6.6 presents the marked improvement in all three performance measurements

with the addition of the single hypothesis. OXGate shows the -behavior when only the

primitive hypotheses were used for decision-tree assembly. Learned w/DK(-) shows the

performance when the set of 21 empirically learned (non-redundant) hypotheses-described

in Section 6.1 were included. Learned w/DK(+)- presents the performance when the

equality hypothesis was used in addition to-the 21 learned hypotheses.

The equality hypothesis subsumes only three of the nine binary hypotheses -of

Learned w/DK('-) and a portion of -onp of the generalized hypotheses, yet provided -

Ia'ge improvement in the predictive accuracy, produced substantially impler decision-

trees, and allowed Learned w/DK(+) to complete faster than -Learned w/DK((-). This
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Figure 6.6 Adding Correct Knowledge: NetTalk Silent Concept.

simple addition to the description language demonstrates the power available-with even

small amounts of the correct knowledge.

Comments: Other pieces of knowledge could also prove useful for quick and effective

decision-tree induction. Their utility is- directly related-to the amount-of instance space

they cover, i.e., the percentage of -instances- correctly identified by the application of the

knowledge. The reason (C3=C4) is so effective is that it occurs in a -large number of

instances and accounts for a-significant percentage-of all the ways the center character

could-be silent. Another potentially powerful piece of knowledge suggests that the second

vowel-in a diphthon, (e.g., ea, oi, and ou) is generally silent. The hypothesis discovered

in Section 6.1, "h is silent when it follows s, p, w, g, -t, or c" represents highly useful
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semantic knowledge about the behavior of the letter "" that could have been proposed

a priori.

Know ledge that is more specialized is less rele, ant to the concept -in general, but may

be highly useful to uncover portions of the-concept sparsely represented by the training

data. One such piece of semantic knowledge might suggest -that the letter "y" following

a vowel will- generally be silent. Another highly specialized piece of knowledge might

suggest that the "q" in words with "cqu" (e.g., acquaint, lacquer, and racquet) is always

silent. A similar piece of knowledge might suggest that the "u" in- words ending with

"que" (e.g., -unique, torque, and critique) -is always silent. A slight generalization of this

-knowledge, "que" appearing anywhere, is not applicable though. It is sometimes silent

(e.g., bouquet, conquer, -and etiquette) and pronounced at other times (e.g., banquet,

conquest, equestrian, frequent, and eloquent).

Knowledge can also be used to describe which hypotheses should not be generated,

i.e., hypothesis screening as-described in Section 3.1.1. Many letters-in specific combina-

tions are almost -never silent (e.g., the "k" in "rk"). This semantic knowledge could be

applied as a set of filters to the output of a mechanism that generates all combinations

-of letters, with the net result being a set of "non-disallowed" hypotheses: a superset of

the applicable hypotheses. When both approaches to hypothesis generation are used,

one to generate promising hypotheses and the other to screen out the most useless, the

enriched description language-can be focused to include-only the most potentially useful

hypotheses even before hypothesis ordering is invoked.

6.3 Summary and Comments

This chapter presented some preliminary investigations on the application of knowl-

edge to hypothesis generation. These investigations were beyond the original scope of
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this thesis, but were included for the insight they provide towards future research. The

experiments in this chapter demonstrate the efficacy -of even small amounts of -correctly

applied knowledge and -upport the asbertiun that domain knowledge provides the means

for effective induction of -complex -concepts.

Section 6.1 described the experiential learning addition to OXGate, Koala. Koala

examines an assembled deision-tree, collecting promising decision points (true hypothe-

ses leading to positive leaves) to use as operands for constructing binary conjuncts and

generalization.. ,f those conjuncts. Knowledge is readily incorporated in the invocation

of Koala to constrain the construction of hypotheses to those which are both predicted

useful by the knowledge-and supported by experience. Abstractly, this interaction may

be viewed as applying knowledge to limit the te,.j.ative conclusions -drawn from a single

learning session. Conversely, it may -Ia, - viewed as using experience to guide-and con-

strain prolific hypothesis generation based on what OXGate "thinks it -knows." Either

view sustains the suggestion that experientiallearning is a unique and useful addition to

the set of hypothesis generation mechanisms.

The experiment with the Net-Talk Silent concept clearly showed an increase in pre-

dictive accuracy wnen hypotheses created through exper.:.ntial learning were added to

the description language. It also demonstrated the -focusing effect of correct domain

knowledge: the hypotheses most beneficial to subsequert decision-tree assembly were re-

tained, with a substantial improvement in processing speed. These results are in accord

with those obtained by Matheus [19901 for -the game of tic-tac-toe, where the addition

of knowledge about piece adjacency, piece type, and spatial translation focused feature

construction during experiential learning to produce highly accurate dcision-trees within

relatively low processing times.

The second part of the investigation, Section 6.2, demonstrated the power of applying

the right domain knowledge during hypothesis generation by examining the benefits of
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applying small amounts of correct -knowledge. The knowledge used in the-experiments

on the Boolean 3-term 3DNF concepts and Nominal Concept B-was synlactic, specifying

expectations of the for.n of components of the concept description. Where the expectation

matched the actual form of the concept, such as -the trinary-conjunction form in the

Boolean experiment, the generated hypotheses provided the means for extremely rapid

convergence to the concept description with small sample sizes. Nominal Concept B

is a complex structure with few repeated syntactic forms; consequently, the proposed

knowledge provided only modest improvements in- decision-tree performance.

The success of the trinary-conjunction form of knowledge for the Boolean 3-term

3DNF concepts is directly attributable to the perfect match between the syntactic form

of the hypotheses (trinary conjuncts) and- the-disjoint terms in the concepts. This use of

the correct syntactic template reflects the use of the- correct level of look-ahead, providing

the hypothesis evaluator with the means to make well-informed decisions.

The third experiment of Section-6.2 demonstrated the potency of correct contextual

knowledge with the NetTalk Silent -concept. When the single, well-founded, hypothesis

(C3=C4) was added, which generalized some of the results from experiential learning,

OXate achieved a substantial and consistent improvement in each of the three perform-

ance measurements.

Domain knowledge has the potential of enriching the concept description language

so completely that substantial components of the target concept, or even the entire con-

cept description, may be found in the vocabulary. Clearly, applying the right knowledge

for h3 pothesis construction provides the basis for highly efficient decision-tree induction.

Recognition of the power of background knowledge is the foundation of the entire class

of explanation-based (or analytic) learning systems, which rely heavily on knowledge for

concept induction (Section 2.4.6). There exists a strong synergism between analytic and

empirical (similarity-based) learning: good domain knowledge reduces the amount of
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training data required to learn a concept and provides iapid convergence to a compact

representation (top-down reasoning), and the regularities in the training data can com-

pensate for deficiencies in the domain knowledge (bottom-up reasoning). Hybrid systems

such as MIRO (Section 2.4.4), ENIGMA (Section 2.4.6), and OXGate take advantage of

both approaches as needed to compensate for sparse or noisy data, and incomplete or

inconsistent knowledge. The fact that over thirtv papers addressed- the combination of

empirical and- explanation-based learning at the Sixth International Workshop on Ma-

chine Learning (1989) reflects the importance of integrating both approaches.

175



CHAPTER 7

CONCLUSION

7.1 Thesis Summary

This thesis lays the foundation for the investigation of opportunistic constructive in-

duction: using -fragments of knowledge to propose -potentially useful new termb during

the inductive process. The primary objective of this research effort is to develop a mecha-

nis, -to allow the-use of domain knowledge in an unrestricted, opportunistic fashion- while

maintaining a manageable computational load. This primary objectiv'e was achieved- by

accomplishing the following secondary objectives:

1. Penetration of the mechanics-of induction to incorporatc flexible search guidance,

including an interleaving of deductive and inductive mechanisms. (Chapter 2)

2. Development of a modular system architecture toimlement the four components of

the opportunistic constructive induction process: hypothesis generation, hypothesis

ordering, hypothesis evaluation, and hypothesis incorporation. The prototype op-

portunistic constructive induction system OXGate provides a domain-independent

development and testbed environment for future work in applying domain knowl-

edge to guiding decision-tree construction. (Chapter 3)

3. Development of a robust hypothesis ordering mechanism to manage the poten-

tially enormous computational burden produced by the uninhibited exploration of

hypothesis space. (Chapter 4)

4. Investigation into the development of a robust hypothesis generation mechanism

that uses fragment, of domain knowledge and an assessment of the current state
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of the inductive process to explicitly create new hypotheses intended to enrich the

concept description language for further induction. (Chapters 3 and 6)

The phase of research described in this thesis is a portion of a larger envisioned effort:

so far it has only scratched the surface of the hypothesis generator. Since the hypothesis

generator is expected to produce large numbers of hypotheses, the hypothesis ordering

mechanism was first developed to contain the effects of prolific hypothesis generation

for both tactable experimentation with knowledge and eventual real-world operation.

The current implementation consists of the overall OXGate architecture, baseline hy-

pothesis ordering and hypothesis evaluation modules, and partial implementations of the

hypothesis incorporation and central blackboard mechanisms. The hypothesis ordering

and-hypothesis evaluation components are essentially complete, providing-the fundamen-

tal capability for exploration of the hypothesis generation mechanism and its interaction

with hypothesis incorporation.

The experiments accompanying and supporting the delelopment of OXGate inves-

tigated two major fronts: the costs and benefits of hypothesis ordering, and the effects

of select pieces of domain knowledge. The principal investigations of this thesis concen-

trated on the use of hypothesis ordering; the preliminary investig.ion of the application

of knowledge to hypothesis generation was beyond the original scope of this thesis.

The hypothesis ordering mechanism acts as a fillter between the hypothesis genera-

tion and hypothesis evaluation phases of the constructive induction process. Its function

is to make initial estimates of the utilities of hypot.heses, present the most promising

ones for rigorous evaluation, and reject the seemingly useless hypotheses. For this it

uses a competitive mechanism based in part on small samples of the training data. This

thesis explored several multiple-objective ecaluation functions as the basis of hypothe-

sis ordering, and established the non domination method as a. psychologically satisfying.,

functionally robust, and computationally practical approach. Hypothesis ordering was
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not intended to optimize predictive -accuracy, but rather to serve as a practical approach

to creating a manageable testbed environment and pave the way for operation in the

real world. Hypothesis ordering with the non-domination- method proved to be-an effec-

tive heuristic method that lives up to its expectations: it sacrifices a small amount of

predictive accuracy for large improvements in processing-speed.

The preliminary investigation of the application of knowledge to hypotbesis gener-

ation showed that even small amounts of correct knowledge provide powerful guidance

for constructive induction. The experiments examined several variations on- the typc of

knowledge used for hypothesis generation and the stage of induction in which the knowl-

edge was applied. In Chapter 6, contextual knowledge (knowledge about content) was

used by thb post-processing procedure Koala to constrain the conclusions drawn when

learning fron experience. This combination of expectation and experience produced a

small set of very useful hypotheses for subsequent learning sessions. In other experiments

(Chapters 5 and 6), syntactic (structural) and contextual knowledge was used by proce-

dural mechanisms to generate hypotheses prior to decision-tree induction. Hypotheses

generatea with proper knowledge provided the means for extremely rapid convergence

to the concept description with small sample sizes. This investigation established that

domain knowledge has the potential of enriching the concept description language so

completely ithat substantial components of the target concept or even the entire concept

description may be found in the vocabulary.

Although the limitations of the implementation arnd experiments certainly warrant

conservativism in claims of success and promises of future capabilities, I am confident the

approach presented in this thesis is a robust and effective-mechanism for utilizing domain

knowledge to guide the constructive induction process. Domain knowledge pro,,ides the

means for effective induction of complex concepts, and hypothesis ordering makes the

operation of OXGate practical even with prolific hypothesis generation.
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7.2 Specific Contributions

The novel machine learning aspects and contributions-of this research- are:

* The refinement of a conceptual framework for the inductive process that encour-

ages the incorporation of deductive processes using background knowledge to sug-

gest fragme.its of the concept description. This framework maps directly into-an

implementation architecture-integrating inductive and deductive mechanisms in an

opportunistic fashion.

" The investi&ation of the use of a hypothesis ordering mechanism to act as a filter

between the generation and test phases oF new term creation. Hypothesis ordering is

implemented with a competitive mechanism in which small samples-of the training

data are used to focus the system's attention on the most promising hypotheses and

to reject the most useless. This investigation explored several multiple-objedive

evaluation functions as the basis of the filtering operation, and established the

non-dominance method as a robust and computationally practical approach.

* The establishment of the groundwork for a diverse and flexible hypothesis genera-

tion mechanism. A hypothesis generator-is any mechanism that produces a testable

hypothesis given the current state of the inductive process.

7.3 Suggested Future Wort

This thesis lays the foundation of a much larger research effort. The prototype sys-

tem OXGate provides a. tool for the next stage. the development of the hypothesis gen-

eration -omponent. Two major undertakings are -involved in the implementation of the

hypothesis generator. The first is the development of automated mechanism for hypoth-

esis generation as described in Section 3.1.1. The second is the development of cueing
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mechanisms for the state changes resulting from hypothesis incorporation to trigger the

application of domain knowledge in the hypothesis generator.

The hypothesis generation component was implemented only Lo -the extent necessary

to pel furm controlled experiments on the effectiveness of certain pieces of dorm-in knowl-

edge. The generator was not developed to the degree necessary to become an autonomous

and integral part of OXGate. Since OXGate is incomplete, the full opportunistic capa-

bilities of a completed system architecture have not been demonstrated. Specifically, the

experiments did not require that knowledge be invoked to -generate additional hypothe-

ses based on a partial or tentative concept description. However, the experiments did

examine several variations on the types of knowledge used and- the stage of induction in

which the knowledge was applied. In the experiments of Chapter 5, declarative knowl-

edge was used to create hypotheses before beginning the initial decision-tree induction.

This approach is similar to the situation in which the system generates hypothests based

on the recognition of the problem domain. Another set of experiments (Section 6.1) ap-

plied both declarative and procedural knowledge to a completed decision-tree, to create

hypotheses for future use (learning from experience). These experiments demonstrate

the feasibility and flexibility of applying domain knowledge for hypothesis generation.

Several other areas of future investigation were identified -during the course of this

resealch. They can be divided into three categories: evaluation measures, hypothesis

ordering considerations, and interesting extensions-of the basic operation of OXGate.

Evaluation measures

* An alternative concave measurement of node impurity has been suggested by

Breiman et al. [19841. Instead of using the entropy or information-gain of the

node, they propose the computationally simpler method of forming the product

of the positive and negative purities. Using this approach to estimate the quality
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of a split simply involves calculating the difference of the node impurity and the

weighted sum of the impurities of the branches. The formulas are identical to those

of information-gain presented on page 75. As the basis of a cost-complexity mea-

sure, it may be useful in product combination with simplicity fu, -both hypothesis

evaluation as well as ordering.

" Another area for future work is the development of a practical and syntactically

attractive approach tv opvrator cost assignment for calculating hypothesis com-

plexity/simplicity. In this thesis, the operators AND, OR., and NOT are used with

costs of zero, while WHATIS and MEMBER have costs of one. Preliminary testing

during the evolution of OXGte exhibited no noticeable, consistent benefit from

assigning non-zero costs to the Boolean operators. However, as discussed in Sec-

tion 4.2.2, constructive operators should be assigned costs commensurate with their

computational difficulty.

" Section 3.1.3 discusses the use of the product of confirmation and simplicity as

the basis for hypothesis evaluation. Theoretically, this approach should produce

well-behaved decision-tree induction; however, early empirical investigations con-

tradicted this expectation. This empirical disagreement with well-founded theory

warrants continued investigation.

Hypothesis ordering considerations

9 In the -current implementation of hypothesis ordering, three dimensions were

used for multiple-objective evaluation: confimation, simplicity, and primitiveness.

Other measures are also- possible, such as the degree of confidence ascribed to a

hypothesis by its domain knowledge-based generator, or the amount of combined

support that disjoint -knowledge sources provide a hypothesis. Past behavior is

also a promising evaluation measure, using the history of the hypothesis on similar

181



concepts or domains, the behitviur of the faoily of hypotheses to which it belongs,

or the past utility of the operator(s) used to construct the hypothesis.

9 Four methods of combining the evaluatio,- measures were investigated in -Chapters 4

and 5. The linearl3 weighted combination approach and the application of a mod-

ified non-domination method were the bust-behaved. Other combination methods

also warrant examination, such as model-based decision analysis, the use of fuzzy

sets. or the Dempster-Schaeffer method of uncertain reasoning.

* Section 4.2.1.1 described several approaches to resolving the problem of the Quick-

Look sample not adequately representing highly disjunctive concepts. Increasing

the size of the sample improves the likelihood of representing the islands, but at

a significant computational cost. One possible approach to avoid maintaining too

large a Quick-Look sample is to adjust the sample size according to the concept

dispersion or concept variation [Rendell and Seshu, 19903. Such an approach re-

quires the development of inecharism- for assessing the complexity of concept and

dynamically scoping the sample size.

* Another approach for handling highly disjunctive concepts is to balance the training

data (Section 5.4.4.3). While this approach appears to be an effective addition to

hypothesis ordering, the effects of intentionally skewing the training data need

further investigation

* Even Aith concepts of low complexity, when using small sets of training examples,

hypothesis ordering become* very sensitive to the particular examples randomly

selected (Sections 5.3-and 5.5-3). A mechanism to assess the behavior of hypothesis

ordering and disable it for smaller training sets would alleviate this sensitivity.
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* Section 5.4.4.1 derronst:ated the benefit of retaining the full set of primitive hy-

potheses during induction. However, for a complex concept with a very rich initial

description languag, after several useful hypotheses have been constructed, there

may be no need to retain many of the primitive hypotheses any longer. It may be

beneficial to identify and eliminate the unneeded primitives.

Extensions of OXGate

" When selecting a hypothesis -for incorporation, sometimes it is necessary to choose

from among several equally or near equally credible hypotheses. This choice may

have a substantial impact on the ability of OXGate to generate the proper hy-

potheses for good concept induction. One approach to avoid this sensitivity is to

instill OXGate with the ability to entertain multiple world-views. Each world-view

represents the state of the system after incorporating one of the hypotheses. After

the hypothesis generation has proposed more hypotheses and induction has pro-

ceeded further, OXGate can commit to one of the world-views and discard the rest.

This approach is a form of look-ahead: it is computationally expensive, but coul-

potentially pioduce better decision-trees.

" The experiential learning program Koala (Chapter 6) is currently relatively inflex-

ible with respect to the choice of patterns. The template building mechanism used

by Koala does not allow structural "wildcarding" in -the pattern: only content wild-

cards are allowed. It does not have CITRE's flexibility to pick a node for use as an

operand regardless of its structure. Such a capability would provide OXGate with

the ability to construct hypotheses of any level of complexity during experiential

learning.

" The experiments of Section 5.4.4.2 show that retaining and reintroducing some

of the hypotheses rejected by the hypothesis ordering mechanism may be
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advantageous for creating accuiate decision-trees. A promising alt, rnative to recov-

ering the rejected hypotheses is to rely on the hypothesis generatir to regenerate

certain ones when there is sufficient reason to do so. The hypothesis generator

should be made intelligent enough to recognize when the decision-tiee assembly

has reached an impasse, and attempt alternative approaches to hypothesis genera-

tion such-as the selective regeneration of previously rejected hypotheses.

* A user or developer interface to the hypothesis generator would -provide the abil-

ity to modify easily the knowledge- available to OXGate. The user could readily

experiment with the effects of particular pieces of knowledge, apply knowledge in-

crerdentally to-guide OXGate through induction of a particularly difficult concept,

or provide other types of guidance to the system such as dynamically modifying the

evaluation method and parameters. This interface would be a powerful addition to

the capabilities of OXGate as a flexible development environment.
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APPENDIX A

DEFINITIONS

Abduction: The act of producing a new hypothesis. The extralogical production of a

general statement in the presence of concrete instances. [Watanabe, 1985]

Accuracy: The measure of predictive performance of the resultant classifier on a set of

test data independent of the training data. It is the number of correctly identified

examples divided by the total number of examples-in the test set. [Breiman et al.,

19841 (See also Resubstitution Accuracy.)

Attribute: A variable describing a measurable property of an instance. An attribute

may be Boolean (binary), integer, real, or nominal valued. (See also Feature.)

Bias: A preference for certain areas of hypothesis space over others [Mitchell, 1980,

Utgoff, 1986]. Biases are necessary for effectively searching for a concept descrip-

tion. They can be context-insensitive, context-independent, or context-sensitive

(Section 2.2.2).

Binarization: The process of converting a non-binary attribute to a single feature.

The possible values of the attribute are grouped into two distinct subsets, thereby

converting an n-way decision into a binary one. [Cestrik et al., 1987]

Concept: An intensional description of a class of objects, i.e., a condensed (nonenumer-

ated) description intended to identify members of a particular class and discriminate

them from non-members. [Hunt et al., 1966, Matheus, 1989]

Concept Dispersion: The degree of disjunction inherent in the representation of the

concept in instance space. A complex concept has several distinct areas of positive
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examples of the concept spread throughout instance space, making it difficult-or

impc.sible for a selective induction algorithm to -learn the concept.

Confirmation: The degree of -confidence placed in a hypothesis on the grounds of the

empirical-evidence.

Constructive Induction: A form of inductive concept learning in which new termb are

generated to enhance the instance description language. [Dietterich and Michalski,

1983]

Credibility: The quality or inductive probability-of a hypothesis, defined as the product

of its confirmation and- plausibility, divided by the prior probability of the evidence.

[Watanabe, 1985]

Deduction: The act of drawing a conclusion from a set of declarations through logical

reasoning.

Evidential, Extra-Evidential/Extralogical: Factors affecting the evaluation of a hy-

pothesis. Evidential factors are based on empirical evidence (training data). Extra-

evidential/extralogical factors are based- on aspects other than evidence, including

simplicity, elegance, harmony with a larger theoretical structure, and relationship

to other competing hypotheses. [Watanabe, 1985]

Feature: According to Breiman et al. [1984], a feature is a real-valued variable manu-

factured from the function of the measured variables. Matheus [1989], Michalski

[1983] and other sources use feature loosely, equating it to attribute as a variable

with many possible values. In this thesis, a feature is defined as a special case of

attribute whose value can be only true or false, i.e., limited to a Boolean-valued

variable (Section B.2).
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Feature Construction: The application of constructive operators to existing features

resulting in the definition of one or more new features. [Matheus, 1989]

Generalization: The modification-of a featuie or hypothesis to make it less specific to

the training instances, with the intent of -making it more applicable to the true

concept.

Hypothesis: A statement-of arbitrary complexity, defined as a function of terms from

the original instance description language. A hypothesis must be testable: it can be

determined to be "true" or "false" for a given instance by instantiatin6 the ground

attributes in the hypothesis description with the values present in the inst.tnce data.

(See also Primitive Hypothesis.)

Hypothesis Evaluation: Determination of the credibility of a hypothesis by testing

against the full set of available training data.

Hypothesis Generation: The creation and proposition of candidate hypotheses for use

in inductive learning, i.e., the proposition of the original set of primitive hypotheses,

and the construction of new terms.

Hypothesis Incorporation: Acceptance of a hypothesis as a portion of the concept de-

scription. In decision-tree induction, incorporation involves adding the hypothesis

as a decision node in the tree, sorting the training data according to the hypothe-

sis, making the new state of the decision-tree available to the rest of OXGate, and

determining if the learning task has been satisfactorily completed.

Hypothesis Ordering: The heuristic means of constraining the number of hypotheses

passed along for hypothesis evaluation. 1-ypothesis ordering is used to identify the

most promising of the candidate hypotheses, and to reject or suppress those deemed

useless.
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Induction: The act of proposing a gerieral conclusion from a limited set of evidence.

Inductive Concept Learning, Inductive Learning: Learning a concept description

from a set of training example,. with the intent of finding a sufficiently general

description -to effectively predict the classification of previously unseen examples.

Incomplete Instance Description Language: A language is incomplete when the set

of attributes is insufficient to completely -discriminate between noise-free cases with

different outcomes [Michalski et al., 19861. In this situation, attributes constructed

from this language would also be insufficient to overcome the deficiency.

Koala: The experiential learning procedure used in OXGate. Koala peruses a completed

decision-tree looking for hypotheses with which to construct new hypotheses. The

name Koala reflects the behax ior if the procedure: it climbs the entire tree, but is

particular about selecting only certain branches leading to the choicest leaves.

Multiple-Objective Evaluation/Multiple-Criteria Decision Making: The act of

formulating a decision based on several evaluation measures or criteria. [Yu, 1985]

Non-Dominance, Non-Dominated Hypotheses: A modified method of multiple-

criteria decision making applied to hypothesib ordering in which the preferred hy-

potheses are those not substantially surpassed in every evaluation dimension by

another hypothesis.

Opportunistic: Taking advantage of the current situation to further an existing goal.

In a system that reasons opportunisticall, the determination of which knowledge

to apply is made dynamically, one step at a time, resulting in the incremental

generation of partial solutions. The choice of the knowledge to apply is based on

the current state of the solution. [Barr et al., 1989]
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Opportunistic Constructive Induction: Concept induction that applies knowledge

at any opportune time during the inductive process to create new terms for the

description language. (See also Opportunistic and Constructive Induction.)

OXGate: OXGate is the name of the implementation develope;d for this thesis. The

name is derived from a term used in the science fiction novel The Jesus Incident

by Larry Niven and Jerry Pournelle. In the novel, the Ox gate is a mysterious

port in a shipboard computer system from where deeply archived information and

well-kept secrets periodically emerge. From the point of view of the hypothesis

evaluation mechanism in OXGate, generally useful hypotheses simply appear on

the blackboard with no indication of their origin; hence, they emerge from the 'Ox

gate."

Parity Problem: The general situation exemplified by the exclusive-or (xon.) operator:

no attribute involved in the parity situation provides a means of discriminating

between positive and negative examples. Either blind guessing, look-ahead, or

feature construction is required to proceed with concept induction. [Seshu, 19891

Post-Pruning: A method of gencralizing a completed decision- tree by removing decision

nodes which are statistically only weakly supported by the training data. [Breiman

et al., 1984]

Predictive Accuracy: (See Accuracy)

Pre-Pruning: A method of generalizing a decision-tree during assembly by performing

a statistical evaluation of the expected error of adding a particular decision node,

comparing it to the estimated error of not adding the decision node, and adding

the node if appropriate. [Breiman el al., 19841
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Primary Subset: An output of the hypothesis ordering component: the portion of

the pool of currently available hypotheses appearing to be the most promising for

further decision-tree induction.

Primitive Hypothesis: A primitive hypothesis is an attribute-value pair in which the

attribute is a member of the original instance description language. Only the

primitive hypotheses are operational. they are the only hypotheses directly testable

against the data.

Prior Probability: The prior (a priori) probability of a hypothesis is interpreted as

the extra-evidential likelihood of the hypothesis. It is the degree of confidence

attached to the hypothesis on the grounds of considerations outside the empirical

data. [Watanabe, 19851

Quick-Look: A heuristic method of estimating the confirmation of hypotheses b% testing

against a small random subset of the training examples. It is related to hypothesis

filtering [Etzioni, 1988] and, very loosely, the use of windowing in ID3 [Wirth and

Catlett, 1988].

Rejected Subset: An output of the hypothesis ordering component: the portion of the

pool of currently available hypotheses appearing to be useless for current and fixture

decision-tree induction.

Replication Problem: The recurrence of portions of the concept description (subtrees)

throughout the decision-tree (Figure 2.8). When these subtrees are identified, they
can be added to the description language as constructed hypotheses, yielding a more

concise and accurate decision-tree in subsequent induction. [Pagallo and Ilaussler;

19891
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Resubstitution, Resubstitution Accuracy: Resubstitulion referm to testing the clas-

sifier on the training data. The resubstitution accdracyj is the percentage of training

instances classified properly. Maximal resubstitution accuracy implies that 100%

correct classification of the training data is not always possible due to a noisy data

set or an incomplete instance description language. [Breiman et aL, 19841

Secondary Subset: An output of the hypthesis ordering component. the portion of

the pool of currently available hypotkcses left over after removal of the primary and

rejected subsets. it represents the set of hypotheses potentially useful later during

the decision-tree assembly.

Selective Induction: Inductive concept learning using only the original instance dc

scription language to formulate the concept description, without the benefit of

constructive operators.
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APPENDIX B

HYPOTHESIS REPRESENTATION

The decision-tree construction process underlying OXGate proceeds by the-selection

and piecewise incorporation of testable hypotheses, statements which when tested against

an instance are either "true" or "false."1 Regardless of how complex constructed hy-

potheses become, as long as their evaluation on an instance results in the determination

of their truth or falsehood, they can be used-by OXate for assembly of the decision-tree.

Therefore, the decision-tree produced by OXGate is always a binary tree.

ID3 Assistant OXGate
fd, blue, / blackA'

red green to Y \11 hita red (not red)

{e' }buo bluc not blue)
blue/ White red d-

e

black green (not green)/ .. blue green

Figure B.1 Contrast of Three Representations. For nominal or discretized numer-
ical-scales, such as the attribute color, ID3 performs n-way splitting across an attribute,
Assistant performs binarization, and OXGate produces a strictly binary decision-tree
representation.

The binary tree of OXGate is an alternative representation to the n-ary trees produced

by ID3 (Figure B.1). In the case of binary attributes, the resultant trees will be identical.

1In OXGate the "don't know" condition on a tested attribute is treated as false. Other approaches

could be used, such as assigning conditional probabilities to each possible value of the attribute (Assis-
tant86 [Cestrik el al., 1987]) or simply selecting the most probable value (CN2 [Clark ar.d Niblett, 1987]).
In addition, if an instance cannot be identified as a positive example of the concept, OXGate considers
it to be a negati'e example. Other approaches such as the Bayesian classification in Assistant86 could
be incorporated into OXate, but the exact treatment of unknowns is not germane to the theme of this
research and is not addressed. See [Quinlan, 1989] for a discussion of approaches.
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For nominal attributes of arity greater than two, the preference of one representation over

the other is a function of the particular concept being described (Section B.1). For other

attribute scales, such as real numbers, the superiority of one representation over the other

is subject to interpretation: to use these scales, ID3 must receive from somne external

source a translation of the scales in a discretized (nominal) form. OXGate can use the

real-valued scales directly by postulating ranges over the values or other mathematical

functions, but, in essence, this requires the same process of finding suitable breakpoints in

the original scale and transforming the representation to a usable form. In both systems,

this change of representation clouds direct comparisons between OXGateand ID3 on the

strengths of the decision-tree representations alone.

Assistant and its descendant Assistant86 [Cestrik el al., 19873, derivatives of the 1D3

family of decision-tree learning systems, also use a binary decision-tree representation.

Assistant uses a process called binarization to group the possible values of the attribute

being considered at a particular decision point into two distinct subsets, thereby con-

verting an n-way decision into a binary one (Figure B.1). For rea.l-valued attributes,

Assistant preprocesses the scales into-a finite number-of subinternais and uses-a heuristic

method to avoid testing all possible groupings. This approach is abstractly equivalent

to that of OXGate, although OXGate retains the distinct advantage of being able to

accept suggestions by the knowledge souirces on possible approaches to the partitioning

and grouping functions. With norainal scales, Assistant always performs binarization,

heuristically seeking the most useful subset' of values. In OXGate, the nominal val-

ues could be grouped into subsets provided some knowledge or impetus exists to do so,

but its basic mode of operation is to use simple attribute-value pairs as individ ual de-

cision points. This type of "fine-grained binarization" used by OXGate is also found

in CITRE [Matheus, 19891, STAGGER [Schlimmer, 1987], and the original family of

Concept Learning Systems (CLS) [Hunt et al., 19661.
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B.1 fwnctional Equivalence and Justification

One of -thc obx ious criticisms OXGate faces is the claim that attributes may need to be

e'aluatcd moic than once during the-classification of a test instance while ID3 evaluates

each attribute at most once. While on the surface this seems a valid criticism, it loses

its potency as an argument against OXGate when one considers the implementation

details involved in acquiring the value of an attribute for a specific instance, storing the

value in a readily dccessible location, and- comparing the value against the decision point

Lounditionals until-the match is found. It would be a simple matter to equip OXGate with

the ability to cache the test results for future use if speed was a primary concern.

For the attribute color in Figure B.1, ID3 tests the five values for the attribute and

is finished with it. Assistant tests five attribute-value pairs at the top level, three at

the second level and two at the third level for a total of ten tests. OXGate tests five

attribute-alue pairs at the top level, four at the second level, and three at the third level

for a total of twelve tests. Although the binary representation of Assistant results in

fewer tests than in OXGate, Assistant must consider fifteen unique subset combinations

of the tested values at the top level, seven combinations at the second level, and three

combinations at the third. The computational complexity of determining the best subsets

may outweigh the cost of the additional tests incurred by OXGate.

Although the representation used in ID3 appears superior to the binary representa-

tions in the previous example, the algorithmic and decision-tree complexities of the three

approaches vary N ith the concept. At times, the binary decision-tree representation is

superior to the ID3 decision-tree. In the example shown in Figure B.2, the Assistant and

OXGate representations are equivalent, and neither suffers the problem of the replication

of subtrees shown by ID3 or its associated lack of understandability [Pagallo and Iaus-

sler, 1989]. The average number of tests needed to classify an example (2.167), as well

as the worst-case number of tests (3), is identical across representations.
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ID3 Assistant OXGate

large { .large (not large)

l a rg e + irc le. o v a l, +
squar e square (not square)

r+ ~ ~ red- (ord

+ +-+

Figure B.2 Comparison of Decision-Trees. The structured splitting method of
ID3 (mandatory n-way splitting) puts it at a distinct disadvantage for the concept
((color = red) oR (size = large) on (shape = square)).

The preference of one decision-tree representatk(n over another depends on the com-

plexity of the concept and domain being considered, as wcll as tht., choice of metrics

for evaluating tree quality (e.g., comprehensibility, lack of replication, average number of

tests during classification). Section 5.2 presents experiments to ascertain if either the ID3

or OXGate decision-tree representations possess an intrinsic representational advantage

over the other. Several artificial and two real-world concepts were used for the tests. The

binary representation used in OXGate provides neither generally bettet nor worse intrin-

sic performance than the ID3 representation, yet, in allowing the flexible incorporation

of generated hypotheses, it provides the foundation for the opportunistic use of domain

knowledge.

B.2 Representation Formalism

In this section, a formalism-and notation is presented to establish a framnc of reference

for describing the application of biases and knowledge in Section 6.1. This section presents

the development of a feature-based description language from an original attribute-babed

language, and concludes with a description of decision-trees as a set of binary relations.
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B-2.1 Attributes and features

Let 7(Q) be defined as a test on Q (anl attribute, feature, class, or leaf node) to

determine the value of its instantiation. The original attribute-based description-Aanguage

A is a set -of original or gro-und attributes, and is defined by

attribute ai, i =1, 2,. -

attribute- based- description language A ja}

jLA value of attribute aj : v 4, -2,)..

and the set~ of -values -of attribute ai : {V ) (ie. H ~~ I

'Ib-convelt the attribute-based description, language to a feature-based language suit-

able for the assembly of -the finc-grainedt binary decision-trees used by OX~ate, create for

each nominal att-ribute a, a set of primitive features (primitive hypotheses) X, =~j

such that there is a primitive feature xj for every possible attribute-value pair:

S(7-(ai) = tI ))-, where r- (x( )) E IT, F)

F~or numerical-valued attributes (real or integer), ii. is usually disadvantageous to

attempt to create a -feature for each possible value of the attribute. Binarization is

accomnplsiied b3 selecting ranges of values, and the feature becomeE a test whether thle

instantiation of the attribute falls -within the range. For these attributes a,, create a set

of primitive features Xi = xi(k)}

primni ti ve feature x(") - (r (ai) E gi.(Vi)), where

gk(V;) C Vi (defined with <, <, >; etc.),

Ukgl-(Vi) = Vi, r(x(")) E IT, F)}, and

VImVn [(in 0 n) =~(g.m(Vi) nlgn (Vi)=
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This binarization of the attributcs defines a feature-based description language

X = UX,. Essentially, a feature is -defined as a test (true or false) to determine whether

the instantiation of a particular attribute is a member of a particular subset of possible

values. This approach also applies to the binarization method of Assistant on nominal-

valued attiibutes with two exceptions: the relational operators defining which subsets of

V, constitute gk(V,) are not applicable to nominal-alued attributes, and the requirement

for disjoint subsets is unnecessary.

B.2.2 Decision-trees

For inductive concept learning of a decision-tree, a set -of training instances 1, is pro-

vided, where each instance 17, E T,, is described by an attribute vector d = (a,, a2,..., a,,),

corresponding to the attribute-based description language A = {ai,a 2,...,a,J. The

vector d can be recast as a-feature vector . = (x~l), , x() , x(1 ) . x,)

corresponding to the feature-based description language X = { 4i),.. .,x)}. To sim-

plify the notation, {x~1),...,xn I)} shall be mapped one-to-one onto {Xl,...,x} with

the understanding that this description language X = {xi,... , x" is derived from the

original attribute language in the manner presented in the previous section.

Each instance 1p can then be described by a tuple (gp, rop) in which 4p is the instan-

tiation of the feature vector :F for I,, and , is its classification, i.e., op E {+, -}.

The result of inductive concept learning under the conditions described above is a

binary decision-tree T(X) over the feature-based language X. To describe the tree, first

let X. be the subset of features used as decision points in the construction of T(X) for

the training instances 1":

X, C X such that T(,Y) = T(X)
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An individual feature x, E X,, may be used multiple times in the tree. Let a node be

defined by using a feature as a decision, and let A/, be the set of nodes forming the tree

T(X0). The mapping from AC to X, -is surjective, and not-injective: a node maps to a

single feature, but a feature may be -mapped onto by multiple nodes. The relationship

between a node na and its associated feature xi is depicted as

n.- * xi

Also, let Z be the set of termini (leaf nodes) in T(X,):

Z, = {z 1 ,z 2 , -) and r(zi) E {+,-}

Then, the tree T(X,) may be described by the set of nodes Y. = X U Z0 and a set of

binary relations (edges)- R over Y,, providing directed coniections between the nodes.

B.2.3 Feature construction

Section 6.1 describes the use of learned decision-trees as the basis for feature construc-

tion when learning from experience. FRINGE and CITRE both construct new features

as binary conjunctions of operands formed from existing features, described below. The

selection of the features to use for construction is addressed in Section B.3.
Typically, the notation used for a relation in 7ZC is (,na7 . 1 2.. indicating that

a directed edge exists from node na to nb. For the purpost, ot using the information

contained in the structure of the decision-tree T(X ) to se' .t features for use in feature

construction, it is necessary to distinguish between the left and. right branches emanating

from a decision node. The relations in R., cannot be described simply as ((na,nb) E IZ,)

without taking into account the result of the test of the feature at that node. Therefore,
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define R, = R4 U R., (union of the left and right branches), such that for n, t x,

((fla,flb) E RI)=: (-r(Xa) T)

((fla,flZb) E 'IZ,) => (r (X, =F

and ' znlR7Z =0

Also, define Q(Xa) to be an operand for the c -.ruction of a new featui - under

the conditions (na, nb) E R?, and na 1 Xa. Where tl r,-1' ion is a left branch from the

decision, the operand is the feature X.. Where the r. . is arght branch, the negation

of the feature, -, is used as the operand.

f2(Xa) = Xa for (nafnb) E 1, (B)
xa for (na, nb) E R.,

General feature construction [Matheus, 1989] consists of the application of a - nstruc-

tive operator Oi to a set of operands to create a new feature x*:

x* = Oi ( (x1 ), ... ) (B.2)

The applications discussed in Section 6.1 (FRINGE, CITRE, and OX~ate/Koala) use

a learned decision-tree as the basis for selection of operands for feature construction.

Binary conjunction is the only constructive operator (0,) considered. As Matheus 119891

points out, the iterative application of binary conjunction in concert with the negation

implicit in the nodes of a binar, decision-tree (and incorporated into the operands) yields

a complete Boolean representational cpabil'.y. Generalization operators are also applied

in CITRE and OX~ate, but only after the binaiy conjunctions are created. T- zefore,

for these applications, the set of new features X, derivable from the decision-tree T(XY)
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in a single iteration is

lye = f ( x,) A Q(xb)) IT(Xc), X, E XYe, Xb E X~, a 0 b}

An additional general limitation used by these applications is that -not all possible

combinations of operands are used for new feature construction. Instead, operands are

selected only fro. paths in the decision-tree leading from the root node no -to positive

leaf nodes. The root node no is defined as the only node in T(X,) that 3 not on the

subordinate end of a relationship with any other node in the tree. The fe J.ure ,-D used

at the-root node (no i-p xo) is defined by

4O (xi I -3xi [ ((n;. n1 ) E R,~) fl (ni i-, xi) r (n1 F- 4 x1 ) nl (xi E YX,) nl (xj E X)

The set of all positive-leaves (+ -termini) in T(XY) is

{zi I zi P Zo, -(zi) = +1

A single path leading from the root xo to a positive leaf zq is a subtree T(Xq) U.

T(X,) defined by nodes A, where

Ar IXq, Xq C 2 (includes xo), Yq = rq U {zq),

'Rq, C 7Zi, 1 ?qr C TR, and R.q = R7 , Ul Zqr

The set of features X is the subset of features from X that are ,ised as decision

points along the path from the root node to the positive leaf zq. Therefore, the set

of new features possible th.ough construction using the operands presented in subtree

T(xq) is

X; { (Sx.) A £(Xb)) 1 Yq), Xc, E Xq, a -74- b} (B-3)
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The complete set of new features is the union of new features constructed from each of

the paths: T(Xc) is

q

B.2.4 Hypothesis construction

The construction of general features defined in Equation (B.2) is a limited form of

construction. Each of the operands can return only the value of "true" or "false" when

tested, limiting the types of operator and the power of the construction. When the

original attributes are themselves Boolean features, this restriction is not an issue. Con-

structions using nominal-valued attributes Are also not limited by this restriction- since

the nature of the attribute limits the types of operators applicable. However, this ap-

proach to construction severely limits the potential available with real- and integer-valued

attributes. For example, using the illustration shown in Figure 1.1 (page 3), no amount

of feature construction could create the feature (P x V = C) fron, the initial feature set

{PP2, ... ,pn, v, v2 ,..., V,} where the features p, and vj represent tests for ranges of

pressure and volume, respectively. The attributes themselves must be combined into a

r.ew attribute, and then a useful hypothesis (in this case the true concept description)

can be created testing the new attribute against a set or ,range of values. Hypothesis

construction of this form can be described as creating a new attribute a* and a new

hypothesis h- by

a-E 7 (A'), and h- A ((a) E ( )))

where .A' is the set of all attributes including previously construct(A ones, F is a function

o set of opcrat,."s applied to A', and Y (V) is the possible range of values corresponding

Ito the new attribute (typically k is the samc :',.nr ;":. ?- o , Inut is applied to the ranges

of the attributes). Each new at'ribute a* is oie oi several at"r"utes potentially created
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by applying the set of operators T to-the set of existing attributes A'. A new hypothesis

is a test to determine if the instantiation of the new attribute (the test r on a') is an

element of a subset of the new values.

A constructed hypothesis is essentially a feature of arbitrary complexity. Hypotlesis

construction subsumes feature construction (Equation (B.2)) since features are simply

Boolean-valued attributes. The general form of a constructed hypothesis is a test whether

the instantiatioL Ir a certain function of attributes is -related in some-fashion to a specific

subset of values, and can be defined by

Equation (B.4) is very general and necessarily noncommittal. It encompasses a wide

variety cf statements: in fact, any statement that is ultimately a function of only the

ground attributes. The reason it needs to be so general is illustrated below with a few

short examples. For ease of understanding the examples here and throughout the thesis,

the form (A = B) will be used as shorthand for (r(A) = B), both meaning "test if

attribute A has value B."

1. Let two features be xi = (width = 10) and x2 = (length = 10), corresponding to

a, = width, v, = 10, a2 = length, and V2 = 10. One possible construction would

be the application of the additio.: operator, resulting in a new attribute a3 =

(a, + a2) = (width + length), and a new hypothesis h3 = ((width + length) = 20).

This hypothesis has the form (r-((ai, a-2)) = Fj(v,V2)).

2. Using the same two features with their corresponding attributes and values, an-

other reasonable construction would be h3 = ((width = length) = T) entailing a
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new Boolean attribute a3 = (width = length).2 This hypothesis has the form

(,r (F(a,,a,)) = Tor more simply, .F(al, a2).

3. Now consider two features x4 = (color = red) and: x5 = (shape = oval). In this

case it would not make sense -to combine the attributes color and shape.

Construction involves combinations of the features, such as the hypothesis

h6 = ((color = red) AND- (shape = oval)). This hypothesis-has the form .F(X4 , xS),

equivalent to (HF(X4 , X5)) = T). This approach to hypothesis construction is

equivalent to the non-generalizing feature construction used in FRINGE, CITRE,

and- Koala.

4. From the preceding components, a more complex hypothesis can be constructed:

h7= ((color = red) AND (shape = oval) AND ((width + length) = 20)) This

hypothesis takes the general form of Equation (B.4) where a complex function

of the ground attributes is related in some fashion to a complex function of values.

5. Another type of hypothesis that takes the form of Equation (B.4) is the gen-

eralization created through the collection of disjoint terms. For example, the

hypothesis ((shape = rect.) AND (color E f{red, white, blue)l)) is a generalization

of ((shzape = rect.) AND (color = red)); ((shape = rect.) AND (color = white)),

and ((shapc = rect.) AND (color = blue)). This approach to generalization is im-

plemented in Koala through the use of the MEMBER operator.

2Nutc the equivalence of ((width = length) = T) and (width = length). Both are statements with
identical meanings. This example illustrates vne of the difficulties of describing exactly what a feature
is, for if A is a Boolean attribute, then A, (A = T), ((A = T) = T), (((A = T) = T) = T),... are all
equivalent statements. By the definitions used herein, all are hypotheses, but only A is a feature.
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B.3 Applying Biases and Knowledge

Section 6.1 describes the application of biases and knowledge to select operands for

constructing new features -(FRINGE and CITRE) or hypotheses (OXGate/Koala) from

a learned decision-tree. The biases incorporated in FRINGE and CITRE provide syn-

tactic -guidance, specifying locations in the tree from which to choose operands. CITRE

and Koala use knowledge to impose other constraints, specifying the nature of allowed

operands. This section parallels Section 6.1 and presents the application of biases and

knowledge as constraints on the set of constructions possible from the decision-tree.

FRINGE uses -a single -bias for operand selection: fringe. CITRE is able to use one

of five biases: fringe, root, root-fringe, adjacent, and none. These biases are described

in Section- 6.1. Using -the -notation developed in Section B.2, it is easy to show how the

application of these biases refines the selection of operands from within a subtree T(Xq),

the path from the root node no to positive leaf zq. Each bias can be viewed as a filtering

operation by the imposition of additional constraints on the construction of a new feature

X; (defined in Equation (B.3) and repeated here)

X; {M~x') A ft(xb)) IT(Xq), x. E Xq, ;rb E X., a b} (13-5)

where Xa and Xb are the two features used at tile selected decision points in the path,

and .Q(Xa) and fl(Xb) are the two operands derived from those features according to

Equation (B.1).

One example of this filtering operation is the application of the fringe bias, imposing

the additional constraints of

(ha-fnb) E l"q, (nbzq) E I"q, na ' Xa, nb 1-4 Xb.

with Zq E Z+ n 3. (i.e., the only positive leaf node in T(Xq))
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to those aheady incorporated in the subtree. This results in the full definition of new

feature X;as

[(-Q(X,.) A fI(xb)) -T(X),X E Xq, xb E X., a
fringe 

b

Similarly, the adjacent bias imposes additional constraints to ;o

(ti.,ntb) E Rfq, (-nb .Yi) E l?.q. and yi E _11

In addition. the root bias is identical to the adjacent bias with the restriction that

the most superior node of the two relations be nD:

(n. . E ?Zq. (ntzyt) E R. and Y.. E Yq

Finally, the root-fzinge bias demands that

(fl-:fan) E lZq, (flb .zq) E R-4, nb# 4~ fl 6, n.z. and z. E Yq

The biases just described are implemented as filters that act on the positions of the

features within the tree. Knowledge may also be applied as fWters, but in addition to-being-

concerned with the position of -features (,%yntactic filtering), knowledge-based filters may

also be concerned with the meaning of the terms (semantic filtering) or their relationship

to the domain (contextual filtering.

Figure 6.1 (page 1.56) illustrates a, possible portion of a learned decision-tree for the

NetTalk Silent conccpl. The given attributes are the seven characters (Cp1 through C;.,
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in order)3 composing the window used to-examine a word fragment. In accordance with

the notation of Section B.2.1, this domain is described by

A = {C, C2,C3,c, Cs, C6, C),

V ={a,-b,c,...y,z,_} for i=1...7,

4k) (r(C) = )X r T i -V

and Xi = {x4 k)} for all k

The knowledge used to guide the pairings in Figure 6.1 can be stated as: the center

character is-the focus of attention, and the characters adjacent to the center provide the

most information-gain [Lucassen and Mercei, 19841. This knowledge focuses the-selection

of features for construction on those related to the attribute pairs (C4, C3) and (C4, C.).

The knowledge can be described as additional constraints on X* (Equation (B.3)) of

Xa E X 4 , Xb E X3 n XS,

(nb,y6) E Rtq, nb 1-4 Xb,

y-1 E Yq, and y6 E Yq

resulting in new -hypotheses of the form found in Example 3 on page 203.

The -implementation-of the experiential learning mechanism in OXGatc is the proce-

dure Koala. Koala searches for -all pairings of -true hypotheb, leading to positive leaf

nodes, but keeps only those defined by knowledge (such as that described above) as

coded in search patterns. The ac,eptance of true hypotheses only, as opposed to their
negations, embodies the-additional constraints on- Xq of (nayy) E Rq, and (nb,y6)

which define the-operartd S (x) -to equal xi for all i.

3For notational -convenienc- ir-rclating -to the other discussions of NetTalk throughout this thesis,
-the terms CX and Cx are assumed synonymous, i.e., C1 is identical to C1, and so forth.
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APPENDIX C

ARTIFICIAL BcJOLEAN FUNCTIONS

CONCEPT: (COND ((AND (EQP 'X1O IT)
(rQP 'X5 IT)
(EQP 'Xli IT)))

((AND (EQP 'X2 'F)
(FwQ, 'X7 'T)
(ECZ 'X6 'F)))

((A N-D (EQP 'X1 IT)
(EQP 'X3 IF)

DOMAIN: (XI (T F)), (X2 (T V)), (X3- (T F)), (X4 (T-F)),
(X5 (T -F)), (".6 (T r,)),,(X7-(T -F)), (X8-(T F)),5-
(X9 (T F)),-(XlOz(T F)), (Xli1 (kT F)), (X12 (-T F))

M EAN I 11 : ((X1O A X5 A X11) v ( A X7 A X66 V (X1 A X3 A MX2)

instance space size = 4096 istances
-Coverage = 33% positive
24 primitive hypotheses available

Figure C.-I T-ypical Boolean, 3-teirm 3DNF Concept.

This appendix presents the artificially created concepts with JBoolean-valued at-

tributes. In the- experiments of Chapter 5, thetAmining ddat used- are random- subsets- of

the istance-space-and the test- Aata comprise-the set cf-all-examples in the instance space.

Each run within -an experiment uses a different -raindornly generatcd concept. Figure- C.].

describes' a -typical 3-term 3DNF concept: a-concept with threte terms joined together

-by disj uncts, vi th~cach -termn consisting of the-conj uactioii of three pr imitive hypothes!3s.

'1n -the figures. the cvacepts are descrtibed in CornmonLisp wh(.xe COND- represents theJ
"if then-else-if" function atid BQP is a test of whether the value of the attrbtte for a considered
instance equals the given value.
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Figure C.2 describes a typical 4-term 3*DNF concept: a disjunction of four terms, where

three of the teinis are conjunctions of three primitive hypotheses, and the fourth term is a

binary cunjunction. For the experiments of this thesis, the concept generation algor;thm

produces only "clean" concepts, where a particular feature is used at most once in -the

concept.

CONCEPT: (COND ((AND (EQP 'XI10 'T)
(EQP 'X5 'T)
(EQP 'xli 'T)))

((AND (EQP 'X2 'F)
(EQP 'X7 'T)
(EQP 'X6 'F)))

((AND (EQP 'XI 'T)
(EQP 'X3 'F)
(PQp 'X12 'T))))

((AND (EQP 'X9 'F)
(EQP 'X8 'T))))

DOMAIN: (X1 (T F)), (X2 (T F)), (X3 (T F)), (X4 (T F)),
(X5 (T F)), (X6 (T F)), (X7 (T F)), (X8 (T F)),
(X9 (T F)), (X10 (T F)), (X11 (T r)),(X12 (T F))

MEANING: ((X10 A X5 A Xli) V (- A X7 A 76) V
(Xl A X3- A X12) v (9 A X8))

Instance space size = 4096 instances
Coverage = 50% positive
24 primitive hypotheses available

Figure C.2 Typical Boolean 4-term 3*DNF Concept.

The primitive hypotheses are of the form (X1 = T), or as implemented, (EQP 'Xl 'T).

In the experiments of Chapters 5 and 6, sets of constructed hypotheses are used to

exercise the hypothesis ordering mechanism of OXGate. The knowledge used to generate

hypotheses in this domain is weak, syntactic knowledge and anticipates only the form of

elements of the decision-trees. Two sets of constructed hypotheses are used, described

below.
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In one set of constructed hypotheses, the negations of all of the primitives are first

created, e.g., (NOT (XI = T)). Although this is logically equivalent to (X1 = F), the

negations are included to help flood OXGate with constructed hypotheses. The primitive

-hypotheseb and their negations are then used as operands to create binary conjuncts and

binary disjuncts. An example of a binary conjunct is ((Xl = T) AND (X2 = F)). An

example of a binary disjunct is ((X1 = T) OR (NOT (X3 = F))). This last example

would be represented in OXGate as ((EQP 'X1 'T) OR (NOT (EQP 'X3 'F))). In this 12-

featured Boolean domain, 24 primitive hypotheses are available. From- these, 24 negations

can be created. Using these 48 hypotheses as operands, 1128 binary conjuncts and 1128

binary disjuncts can be created for a total of 2280 constructed -hypotheses. The other

set of constructed hypotheses consists of 264 binary and 1760 trinary conjuncts created

from the 24 primitive hypotheses, for a total of 2024 constructed hypotheses.
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APPENDIX D

ARTIFICIAL NOMINAL FUNCTIONS

This appendix presents three artificially created concepts with nominal-valued at-

tributes. In the experiments of Chapter 5, the training data used are random subsets

of the instance space and the test data comprise the set of all examples in the instance

space. Figure D.1 describes Concept A, a concept of medium complexity, Figure D.2

describes Concept B, a more complex structure, and Figure D.3 describes Concept C, a

very simple construct, but one difficult for ID3 to represent. The concepts are described

in CommonLisp where COND repiesents the "if-then-else-if" function and EQP is a test

of whether the value of the attribute for a considered instance equals the given value.

CONCEPT: (COND ((EQP 'color 'green))
((EQP 'color 'blue)
(OR. (EQP 'shape 'circle)

(EQP 'shape 'square)))
((EQP 'color 'red)
(COND ((NOT (EQP 'size 'medium))

(ot-(EQP 'shape 'triangle)
(EQP 'shape 'oval))))))

DOMAIN: (color (red white blue blac reen)),
(shape (oval circle triangle square)),
(size (siall medium large)),
(flavor (tart sweet salty bad))

MEANING: An object is Aitiwqr green, a blue circle, a blue square,
a red non-medum triaangle, or a red non-medium oval.

Instance space size = 240 instances
Coverage = 37% positive
16 primitive hypotheses available

Figure D.1 Nominal Coinc,-t A.
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CONCEPT: (COND ((EQP "color 'green))
((EQP 'color 'blue)-
(COND ((EQP 'shape 'circle)

(o. (EQP 'flavor 'sweet)
(EQP 'flavor 'salty)
(EQP 'flavor 'tart)))

((EQP 'shape 'triangle) (EQP 'flavor 'bitter))))
((EQP 'color 'red)
(COND ((EQP 'shape 'triangle)

(COND ((EQP 'size 'large)
(on. (EQP 'flavor 'sweet)

(EQP 'flavor 'salty)
(EQP 'flavor 'tart)))

((OR. (EQP 'size 'small)

(EQP 'size 'medium))

(EQP 'flavor 'bitter))))
((EQP 'shape 'oval) (NOT (EQP 'size 'huge)))
((AND (EQP 'flavor 'spicy)

(EQP 'size 'large)))))
-((EQP 'size 'huge)))

DOMAIN: (color (red white blue black green orange purple aqua gray)),
(shape (oval circle triangle square diamond crescent)),
(size-(tiny small medium large huge)),
(flavor (tart sweet salty spicy bitter))

MEANING: An object is-either green, a sweet blue circle, a salty
blue circle, a tart blue circle, a bitter blue triangle,
a large sweet red triangle, a large-salty red -triangle,
a large tart red triangle, a small bitter red triangle,
a medium bitter red triangle, a non-huge red oval,
a large spicy red anything, or huge if it isn't green,
blue, or red.

Instance space size = 1350 instances
Coverage = 28% positive
25 primitive hypotheses available

Figure D.2 Nominal Concept B.

211



CONCEPT: (COND ((EQP 'color 'red))
((EQP 'size 'large))
((EQP 'shape 'circle)))

DOMAIN: (color (red white blue black green)),
(shape (oval circle triangle square)),
(size (small medium large)),
(flavor (tart sweet salty bad))

MEANING: An object is either red, large, or a circle.

Instance space size = 240 instances
Coverage = 60% positive
16 primitive hypotheses available

Figure D.3 Nominal Concept C.

The primitive hypotheses are of the form (color-= green), or as implemented,

(EQP 'color 'green). In the experiments of Chapters 5 and 6, sets of constructed hy-

potheses are used to exercise the hypothesis ordering mechanism of OXGate. The

knowledge used to generate hypotheses in this domain is weak, syntactic knowledge

and only anticipates the form of elements of the decision-trees. To construct hypothe-

ses, the negations of all the primitives are first created, e.g., (NOT (color = green)).

The primitive hypotheses and their negations are then used as operands to cre-

ate binary conjuncts and binary disjuncts. An example of a binary conjunct

is ((color = green) AND (shape = oval)). An example of a binary disjunct is

((color = green) OR (NOT (taste = tart))). This last example would be represented in

OXGate as ((EQP 'color 'green) OR (NOT (-QP 'taste 'tart))).

For Concepts A and C, 16 primitive hypotheses are available with the given domain

list. From thebe, 16 negations can be created. Using these 32:hypotheses as operands, 496

binary conjuncts and 496 binary disjuncts can be created for a total of 1008 constructed

hypotheses. For Concept B, the 25 primitive hypotheses yield 25 negations, 1225 binary

conjuncts, and 1225 binary disjuncts, for a total of 2475 constructed hypotheses.
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APPENDIX E

NETTALK DOMAIN

The NetTalk domain database' is an updated version of the data set used by Se-

jnowski and Rosenberg in their study of speech generation using a neural network [Se-

jnowski and Rosenberg, 1987]. It is available for academic use ftr;. the Repository of

Machine Learning Domains maintained by the University of California at Irvine. The

database contains a list of 20,008 English words, along with a phonetic transcription

for each character position of each word. The trans-riptions include 51 -phoneme repre-

sentations, 5 stress/syllabic markers, and a marker for a silent character position. An

additional -marker is used for foreign/irregulai words, 'providing a total of 58 distinct

concepts explicitly represented-in the-database.

The original use of the data was to- train a neural'network to produce the proper

phonemcb, given a string of letters as input. The inIout to the network was a series

of seven consecutivc letteis from- one of the training words. The central letter in this

sequer.ce was the "current" one for which the phoneiic output was to be produced.

Three letters on either side of this central letter provide'context that helps to determine

the pronunciation. (A few words exist in English for which this local seven-letter window

is not sufficient to determine the proper output.) For the study using this dictionary

corpus, individual words were moved through the window so that each letter in the word

was seen in the central position. Blanks were added before and after the word as needed.

In the network training task, 29 input units were provided to the network for each

of the seven characters in the window. The output side of the network used a dis-

tributed representation for the phonemes. There were 21 output units representing

'Copyright ®1988 by Terrence .. Sejnow,.ki.
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various articulatory features such -as %oicing and vowel height. Each phoneme was repre-

sented-by a distinct binai3 vector-over this set of 21 units. In addition, there-were-5 output

units that encoded the stress and byllable boundaries. This 26-bit string represented the

input vector to a speech generation unit (DecTalk). The network was trained by sliding

the words in the dictionary across the seven-character window. Several iterations were

run using the entire dictionary before learning was declared complete. [Sejnowski and

Rosenberg, 19871

In this thesis, the NetTalk database was used differently. Comparisons between the

effectiveness of the neural network approach and OXGate are neither possible nor rele-

vant. For OXGate, a single concept (described below) was selected from the-58 explicitly

represented concepts in the database. The output of OXGate was a decision-tree de-

scription of this concept while the neural network atotempted to simultaneously learn all

58 concepts in the 26-bit vector representation. The mapping of the 26-bit string pro-

duced by the network to the phonemic representations was not provided in the NetTalk

database, making direct comparisons between the two approaches impossible. In addi-

tion, the neural network input consisted of the entire dictionary database while OXGate

used subsets of the data for training and testing.

The NetTalk Silent Concept Each of the seven character positions in the presen-

tation window is an attribute (Cl through C7). The focus of learning is the center

position, C4. Each attribute may-take on one of 27 values: the 26 letters of the alphabet

and the blank. " This domain defines a potential instance space of 27r (> 10'0) unique

examples. The actual instance space is much sparser since the English language excludes

many letter combinations. This set of attributes also defines 27 x 7 = i9 primitive

hypotheses.

'Attribute C4 is also allowed to become "blank," although this situation never occurs in practice due
to the nature of the windowing process.
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Th.; single concept of "silence in the center window position," known in this thesis

as the NetTalk Silent concept, was chosen for its ease of understanding, potential for

application of domain knowicdge, and prevalence. Positive examples of this concept

associate the "silent" phoneme marker with window position 4, or character C4. Of

the more than 143,000 seven-character windows possible from the 20,008 words in the

NetTalk database, a random set of 2000 instances was drawn for training and a separate

set of 6000 instances was randomly drawn for testing. The training set consisted of

13.55% positive examples; the test set was 15.3% positive.

Two forms of potentially useful domain knowledge, both involving the characters on

either side of position C4, provided the set of constructed hypotheses used to exercise

OXGate. The first form of knowledge was the conjecture that the characters adjacent

to the center position might be important. This conjecture is strongly supported by

the data of Lucassen and Mercer [19841, where the mutual information between the cen-

ter window position and neighboring letters is shown to be greatest with the adjacent

positions, and decreases with the distance ,.-i n the center. This knowledge wa p;rocedu-

rally applied to exhaustively generate ( -unants of pairs of adjacent charo.-.ters focused

on C, i.e., ((C3 = a) AND (C4 = a)),.....((C4 = z) AND (C5 = z)), including those

using blanks. This application yieldd '-58 constructed hypotheses. T5e-sec.ondform of

knowledge was more general, subsuri.ing some of the first constructed terms, and conjec-

tured that when the adjacent characters were the same, one of them would be silent. This

was used to create two additional constructed hypotheses, (C3 = C4) and (C4 = C5),

for a total of 1460. Other obvious forms of knowledge were not used, such as omitting

occurrences of the "blank" in C4 and other impossible structures (e.g., C5 is blank when

both C4 and C6 are not), and using knowledge about legal letter combinations to filter

out hypotheses such as ((C3 = q) AND (C4 =x)).
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APPENDIX F

BREAST CANCER DOMAIN

The Breast Cancer database consists of medical data collected on 286 patients that

have undergone an operation to treat breast cancer. Of those, approximately 30% had

the condition recur within five years. The database was provided for academic use by

M. Zwitter and M. Soklic of the University Medical Centre, Institute of Oncology, Ljubl-

jana, Yugoslavia. The Breast Cancer domain is one of three medical domains provided by

the Oncology Institute fthat have repeatedly appeared in -iachine learning literature; lym-

phography and primary-tumor are the other two. The database is available for academic

use from the Repository of Machine Learning Domains maintained by the University of

California at Irvine.

The instances are described by nine attributes. Five of the attributes are integer-

valued and were discretized into ranges (converted to nominal attributes) by the authors.

Two attributes are nominal-valued, and the remaining two are binary (Boolean). The

attributes and their possible values are described in Table F.1.

The data (286 instances) are divided into two classes: 201 instances of no-recurrence-

events, the positive examples of the concept; and 85 instances of recurrence-events, the

negative examples. In the experiments, a set of training data is 70% of the database

(200 instances), drawn randomly without replacement. OXGate is trained on subsets of

the training data and tested on the remaining 86 instances of the database. Different

experimental runs use different random training sets. This approach is typical of machine

learning research projects involving the Breast Cancer database.

Several efforts have investigated the Breast Cancer domain, with varying degrees of

classification success. Chance, always saying the cancer will not recur, is 70% accurate.
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Table F.1 Breast Cancer Domain Attribute Descriptions

Age: the patient's age at the time of treatment [integer]
values: 10-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70-79, 80-89, 90-99

Menopause: the age of the patient at the beginning of menopause [integer]
values: 1t40- (less than 40), ge40 (greater than or equal to 40),

premeno (has not had menopause)
Tumor-size: (Note: The unit of measure was not provided) [integer]

values: 0-4, 5-9, 10-14, 15-19, 20-24, 25-29, 30-34, 35-39, 40-44,
45-49, 50-54, 55-59

Inv-nodes: the number of lymph nodes involved [integer]
values: 0-2, 3-5, 6-8, 9-11, 12-14, 15-17, 18-20, 21-23, 24-26, 27-29,

30-32, 33-35, 36-39
Node-caps: (Note: The meaning of this attribute was not provided) [binary]

values: yes, no
Deg-malig: the degree of malignancy of the tumor [integer]

values: 1, 2, 3
Breast: which breast the tumor was in [nominal]

values: left, right
Breast-quad: the tumor location in the affected breast [nominal]

values: left-up, left-low, right-up, right-low, center
Irradiat: whether radiation treatment was used [binary]

values: yes, no

Various reports of the testing of oncologist specialists and internist non-specialists show

they correctly predict the prognosis in 64-65% of the cases. Michalski et al. [1986]

achieved accuracies over four runs of 66-68% with their system AQ15. They also tested

an early version of Assistant and obtained accuracies of 67-72% depending on the prun-

ing method. Clark and Niblett [1987] present several systems and configurations, with

accuracies ranging from 65-72%. Cestnik et al. [1987] show an accuracy of 78% in Assis-

tant86 with post pruning. Tan and Eshelman's system IWN boasts an accuracy of 73%

[Tan and Eshelman, 19881. Finally, Spackman [19881 claims accuracies as high as 85%

for both his CRLS system and Michalski's AQ15. Since Michalski does not claim such a

high accuracy in later publications, his results must be assumed to be questionable and

await confirmation or refutation.
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As indicated above, various methods have been tried, yet the general result is not

much better than chance and often worse. The set of attributes in the Brast Cancer

database appears to be inadequate to properly classify the data. It appears that a

- andom 70% of the database is simply not representative of the remaining 30%. Two

factors could contribute to this lack of success. noisy data and an inadequate description

language [Clark and Niblett, 1987].

The database contains thirteen examples that could be considered obviously noisy.

In these cases, one instance is a positive example of the concept and another instance

with an identical description -is a negative example. These thirteen anomalous examples

account for an error-rate of only 2-3%. Other noise could exist in the database, but

since the data are culled from existing -medical records, and the data were verified after

collection, it seems unlikely that the magnitude of the inherent error would be bo large.

A more realistic cause is an-inadequacy- in the description language [Cestrik et al., 1987,

Clark and Niblett, 1987, Michalski et al., 1986].

An inadequate description language implies that the given attributes provide insuf-

ficient information. Constructive induction may enrich the language sufficiently to form

an accurate classifier, but if the original attributes are simply the wrong measurements,

then no amount of construction can compensate. It is quite possible that other attributes

such as tissue type, condition of the immune system, and response of the particular tis-

sue type t( radiation treatment are also important. Even the patient's state of mind has

a significant bearing on her recovery and continued health. It is my opiniop that this

particular database requires enrichment of its description language beyond tha. .vailable

with constructive induction.
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