AEDC-TSR-91-V12

CON MIL

C.2

CARINA AEROTHERMAL TEST AT MACH 8

M. G. Hammond **Calspan Corporation/AEDC Operations**

July 1991

Final Report for April 16-18, 1991

TECHNICAL REPORTS FILE COPY
PROPERTY OF U.S. AIR FORCE AEDC TECHNICAL LIBRARY

AEDC TECHNICAL LIBRARY

Approved for public release; distribution is unlimited.

ARNOLD ENGINEERING DEVELOPMENT CENTER ARNOLD AIR FORCE BASE, TENNESSEE AIR FORCE SYSTEMS COMMAND UNITED STATES AIR FORCE

NOTICES

When U. S. Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, or in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Qualified users may obtain copies of this report from the Defense Technical Information Center.

References to named commercial products in this report are not to be considered in any sense as an endorsement of the product by the United States Air Force or the Government.

This report has been reviewed by the Office of Public Affairs (PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

APPROVAL STATEMENT

This report has been reviewed and approved.

THOMAS W. GREENMAN, 1 Lt, USAF Reentry Systems Division Dir Aerospace Flt Dyn Test Deputy for Operations

Approved for publication:

FOR THE COMMANDER

RAY B. WILLIAMSON, Major, USAF Chief, Reentry Systems Division Aerospace Flight Dyn Test Deputy for Operations

	Form Approved						
	OMB No. 0704-0188						
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reviewing the burden, to Washington Headquerter Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arilington, VA 22202-4302, and to the Office of Management and Budget. Paperwork Reduction Project (0704-018B). Washington, Dec 20503.							
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE JUJY 1991	3. REPORT TYPE AND Final Report f	DATES COVERED For April 16 - 18, 1991				
4. TITLE AND SUBTITLE	Tash at Mask O		5. FUNDING NUMBERS				
Carina Aerothermai	lest at mach o		PE - 921Z39 PN - CR23VB				
6. AUTHOR(S)	· · · · · · · · · · · · · · · · · · ·	·····					
Hammond, M. G. Calspan Corporation,	/AEDC Operations						
7. PERFORMING ORGANIZATION NA	ME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION				
Arnold Engineering	Development Center/D	10F	AEDO TED OL VI2				
Air Force Systems Co Arnold Air Force Ba	ommand se, TN 37389-5000		AEDC-13R-91-012				
9. SPONSORING/MONITORING AGEN	ICY NAMES(S) AND ADDRESS(ES	;)	10. SPONSORING/MONITORING				
Arnold Engineering I	Development Center/D	IOF	AGENCI REFORT NOWBER				
Air Force Systems Co Arnold Air Force Bas	se, TN 37389-5000						
11. SUPPLEMENTARY NOTES	- ··· · ·	· · · · · · · · · · · · · · · · · · ·					
Available in Defense	e Technical Informat	ion Center (DTIC).					
12a. DISTRIBUTION/AVAILABILITY ST	ATEMENT		125. DISTRIBUTION CODE				
Approved for public							
13. ABSTRACT (Maximum 200 words) .	<u> </u>					
Surface pressure, h visualization data v Recovery Vehicle. Mach 8 and free-stre	eat-transfer, force were acquired on fou The test was conduc am Reynolds number	e and moment, base ur model configura ted in the AEDC Hy of 0.75, 1.0, and	e pressure, and oil flow tions of the Carina Space personic Wind Tunnel B at 2.0 million per foot.				
Angle of attack was	varied from 0 to 20	deg at roll angle	s of -180 to 180 deg.				
14. SUBJECT TERMS	14. SUBJECT TERMS						
wind tunnel test, su gages, reentry vehic	rface pressure, hea le, force and momen	t-transfer, coax t	4/ 16. PRICE CODE				
17. SECURITY CLASSIFICATION 18 OF REPORT UNCLASSIFIED	SECURITY CLASSIFICATION OF THIS PAGE UNCLASS IF IFD	19. SECURITY CLASSIFICATIO OF ABSTRACT UNCLASSIFIFD	DN 20. LIMITATION OF ABSTRACT				
COMPUTER GENERATED Standard Form 298 (Rev. 2-89)							

a

.

 \mathcal{D}

Standard Form 298 (Rev, 2-89 Prescribed by ANSI Std. Z39-18 298-102

CONTENTS

		<u>Page</u>
	NOMENCLATURE	3
1.0	INTRODUCTION	6
2.0	APPARATUS2.1Test Facility2.2Test Articles2.3Test Instrumentation	6 7 7
3.0	TEST DESCRIPTION3.1 Test Conditions3.2 Test Procedures3.3 Data Reduction3.4 Measurement Uncertainties	8 9 10 12
4.0	DATA PACKAGE PRESENTATION	13
5.0	REFERENCES	14

ILLUSTRATIONS

<u>Figures</u>

1.	Tunnel B	15
2.	Model Configuration Details	16
3.	Model Components	17
4.	Carina Installation in Tunnel B	19
5.	Carina Heat-Transfer/Pressure Model Installed in	
	Tunnel B	22
6.	Carina Force Model Base Pressure Orifice	
	Locations	23
7.	Carina Model Configuration 3 in Tunnel B	24
8.	Heat Transfer/Pressure Model Instrumentation	
	Locations	25

TABLES

4

1.	Model Configuration Designation	26
2.	Coefficient Reference Lengths and Areas	26
3.	Estimated Uncertainties	27
4.	Heat-Transfer/Pressure Model Instrumentation	29
5.	Test Run Summary	31
Samp	es	

.

1.	Tabulated	Force	and	Pressure	Data,	English Units		•	- 38
2.	Tabulated	Force	and	Pressure	Data,	SI Units	•	•	41

3.	Tabulated Heat-Transfer and Surface Pressure Data,	
4.	English Units	44
	SI Units	46

<u>Page</u>

Ð

NOMENCLATURE

AB	Model base area (see Table 2)
ALPHA	Model angle of attack, deg
ALPI	Indicated sector pitch angle, deg
CA	Total axial-force coefficient, body axis, axial force/(Q * SREF)
САВ	Axial-force coefficient for model base pressures, -CPBA * AB/SREF
CAF	Forebody axial-force coefficient, body axis, CA - CAB
CCW	Cross-wind coefficient, wind axis
CDW	Drag coefficient, wind axis
CLL	Rolling-moment coefficient, body axis, rolling-moment/(Q * SREF * LREFL)
CLLW	Rolling-moment coefficient, wind axis
CLM	Pitching-moment coefficient, body axis pitching moment/(Q*SREF*LREFM)
CLMW	Pitching-moment coefficient, wind axis
CLN	Yawing-moment coefficient, body axis, yawing moment/(Q*SREF*LREFN)
CLNW	Yawing-moment coefficient, wind axis
CLW	Lift coefficient, wind axis
CN	Normal-force coefficient, body axis, normal force/(Q*SREF)
CONFIGURATION	Model configuration designation (see Table 1)
СР	Pressure coefficient, (PW-P)/Q
СРВА	Average base pressure coefficient, (PBA - P)/Q
C.R.	Center of rotation
СҮ	Side-force coefficient, body axis, side force/(Q*SREF)
FCRN	Flow correction run number

GAGE ID	Gage identification number
H(TT)	Heat-transfer coefficient based on TT, H(TT) = QDOT/(TT-TW), Btu/ft ² -sec-°R or W/M ² -°K
İTT	Enthalpy based on TT, Btu/lbm
ITW	Enthalpy based on TW, Btu/lbm
(L/D)W	Lift-to-drag ratio, wind axis
LM	Model length (see Table 2)
LREFL LREFM LREFN	Model moment reference lengths, (see Table 2)
М	Free-stream Mach number
MODEL PRESSURE	Model pressure identification number
MU	Dynamic viscosity based on free-stream temperature, lbf-sec/ft ² or PA-sec
Ρ	Free-stream static pressure, psia or PA
PB1-4	Model base pressures, psia or PA
РВА	Average model base pressure, (PB1+PB2+PB3+PB4)/4, psia or PA
PHI	Total model roll angle, deg
PHII	Indicated roll angle, deg
PK101 PK116 PK201 PK232	Reference pressure measured by ESP® module 1, channels 1 and 16, and ESP® module 2, channel 1 and 32, psia
PKNOWN 7 PKNOWN 8 PKNOWN S	Reference pressure measured by the standard pressure system and Sonics® transducer, psia
PN	Data point number
РТ	Tunnel stilling chamber total pressure, psia or PA
PT2	Stagnation pressure downstream of a normal shock, psia or PA
PTNK	Installation tank pressure, psia or PA
PW	Calculated model pressure, psia or PA

Q	Free-stream dynamic pressure, psia or PA
QDOT	Measured heat-transfer rate, Btu/ft^2 -sec or W/M^2
RE	Free-stream unit Reynolds number, ft-1 or M-1
RHO	Free-stream density, 1bm/ft ³ or KG/M ³
RUN	Data set identification number
S(TT)	Stanton number based on TT, S(TT) = QDOT/(RHO*V*(ITT-ITW))
S/R	Surface distance to model instrumentation location where $R = 5.0$, $S/R = 0$ at model stagnation point (see Table 4)
SREF	Model reference area, (see Table 2)
т	Free-stream static temperature, °R or °K
ΤΗΕΤΑ, θ	Angular location of model instrumentation, deg (see Table 4)
TIMEINJ	Time of model injection, elapsed time from lift-off to arrival at tunnel centerline, sec
TIMERD	Time from lift-off at which heat-transfer gage data were reduced, sec
TT	Tunnel stilling chamber total temperature, °R or °K
ΤW	Gage surface temperature, °R or °K
۷	Free-stream velocity, ft/sec or M/sec
XCPN	X-coordinate of the pitch-plane center-of-pressure location expressed in terms of LREFM
XMRC	Axial distance from model nose to model moment reference center, (see Table 2)

•

Ģ.

æ

.

5

.

The work reported herein was conducted by the Arnold Engineering Development Center (AEDC), Air Force Systems Command (AFSC), under Program Element 921Z39, Control Number 9Z39, at the request of the Directorate of Aerospace Flight Dynamics Test (DOF), AEDC, Arnold AFB, TN 37389, for Science Applications International Corporation (SAIC), 501 Office Center Drive, Suite 420, Fort Washington, PA 19034. The AEDC/DOF project manager was 1LT Thomas Greenman and the SAIC project manager was Mr. Anthony Martellucci. The test results were obtained by Calspan Corporation, operating contractor for the Aerospace Flight Dynamics testing effort at the AEDC, AFSC, Arnold Air Force Base, Tennessee. The test was conducted in the Hypersonic Wind Tunnel B of the von Karman Gas Dynamics Facility (VKF), during the period from April 16, 1991 to April 18, 1991, under AEDC Project Number CR23VB.

The purpose of this test was to determine the effects of corner radius and afterbody angle on surface pressure, heat-transfer rate, and static stability data needed to validate vehicle design/analysis codes and confirm performance of the Carina Space Recovery Vehicle. Carina is a low-cost, recoverable reentry vehicle designed as a microgravity research platform.

Surface pressure and heat-transfer data were acquired on the baseline configuration at Mach 8 and a Reynolds number of 0.75, 1.0, and 2.0 million per foot. Discrete angles of attack were set between 0 and 20 deg, and roll angles were set between -165 and 180 deg. Static stability and base pressure data were acquired on the baseline configuration and three additional configurations at Mach 8 and a Reynolds number of 1.0 and 2.0 million per foot. 0il flow visualization data were obtained on all four configurations at Mach 8 at a Reynolds number of 1.0 million per foot. Angle-of-attack and roll angle variations for each configuration are defined in the Test Run Summary.

The purpose of the report is to document the test and to describe the test parameters. The report provides information to permit use of the data but does not include any data analysis, which is beyond the scope of the report.

The final data from the test have been transmitted to SAIC. Requests for the data should be addressed to AEDC/DOF, Arnold AFB, TN 37389. A copy of the data is on file at the AEDC.

2.0 APPARATUS

2.1 TEST FACILITY

Tunnel B (Fig. 1) is a continuous, closed-circuit, variable density wind tunnel with a 50-in.-diam test section and two interchangeable axisymmetric contoured nozzles to provide Mach numbers of 6 and 8. The tunnel can be operated continuously over a range of pressure from 40 to 300 psia at Mach number 6, and 100 to 900 psia at Mach number 8, with air supplied by the main compressor plant. Stagnation temperatures sufficient to avoid air liquefaction in the test section (up to 1350°R) are obtained through the use of a natural gas-fired combustion heater. The entire tunnel (throat, nozzle, test section, and diffuser) is cooled by integral, external water jackets.

The tunnel is equipped with a model injection system, which allows removal of the model from the test section while the tunnel remains in operation. A description of the tunnel may be found in the <u>Test</u> <u>Facilities Handbook</u> (Ref. 1).

2.2 TEST ARTICLES

The test articles furnished by SAIC were scaled models of the Carina Space Recovery Vehicle. All models were designed and fabricated by Micro Craft, Inc. of Tullahoma, TN. Carina is an axisymmetric model of a blunt, low lift-to-drag reentry vehicle. The baseline configuration consisted of a 0.5-in. corner radius and a 13-deg afterbody angle. Additional model components were used to achieve different corner radii and after body angles. A separate model of the baseline configuration was used during the heat-transfer/pressure phase of the test. Details of the different configurations can be seen in Fig. 2, and a photograph of model components is provided in Fig. 3. The models were constructed of stainless steel (17-4). Boundary-layer trips were Model configuration designations are outlined in Table 1, not used. and coefficient reference lengths and areas are presented in Table 2. Installation sketches are provided in Fig. 4, and an installation photograph is presented in Fig. 5.

Base pressure tubes were aligned 0.05 in. from the model base during the force phase of the test. A windshield assembly was also used at the base of the model to protect the aft portion of the balance and the water cooling lines. A schematic of base pressure locations is presented in Fig. 6. The pressure tubes and windshield assembly can be seen in Fig. 7.

2.3 TEST INSTRUMENTATION

The instrumentation, recording devices, and calibration methods used for all measured parameters are listed in Table 3.

2.3.1 Model Force Instrumentation

Model forces and moments were measured with a six-component, 500-1b strain gage balance (ID No. 4.00-Y-36-043) supplied and calibrated by AEDC.

2.3.2 Pressure Instrumentation

Model base pressures and surface pressures were measured with an Electronically Scanned Pressure (ESP^{\oplus}) module. The module contains 16 fast-response pressure transducers with a range of \pm 1.0 psid. The relatively small size of the pressure module made it possible to mount the instrument in a sting segment downstream of the model base during

the force phase. In addition to the \pm 1.0-psid module, a 48channel, \pm 2.5-psid pressure module was mounted on-board the model during the heat transfer/pressure phase to measure 35 surface pressures. Only base pressures were measured during the force phase.

2.3.3 Heat-Transfer Instrumentation

The heat-transfer/pressure model was instrumented with 9 coax gages and 17 Schmidt-Boelter gages. The coax gage is a surface thermocouple that is comprised of an insulated Chromel wire fixed concentrically within a constantan jacket. The Schmidt-Boelter gage consists of a 0.025-in.-thick anodized aluminum wafer wrapped with a small (0.002-in.-diam) thermocouple wire. One half of the wire-wrapped wafer was copper plated creating a series thermocouple. The wafer was potted into an aluminum heat sink. Each gage also used an iron constantan thermocouple to provide the gage temperature. The thermocouple outputs were used to determine the rate of heat flux and the gage surface temperature using gage calibration factors determined using laboratory techniques traceable to the National Institute of Standards and Technology (formerly National Bureau of Standards). Heat flux and surface temperature were used in calculating the heattransfer coefficient. Figure 8 provides the layout for the heattransfer gages and pressure orifices, and Table 4 gives the actual locations.

2.3.4 Flow Visualization

Model flow-field shadowgraph/schlieren still photographs were obtained on all configurations at selected model attitudes. The photographs were obtained with a single-pass optical flow-visualization system. Color schlieren movies were obtained for selected runs, and 70-mm still photographs were obtained for each oil flow run. Prior to performing the oil flow portion of the test, a dummy balance was installed to avoid oil contamination of the strain gages on the force balance.

3.0 TEST DESCRIPTION

3.1 TEST CONDITIONS

A test summary showing all configurations tested and the variables for each is presented in Table 5. A summary of nominal test conditions is given below:

М	PT, psia	TT, °F	Q, psia	P, psia	T, °F	V, ft/sec	RE, ft ⁻¹
7.98	455.0	850	2.107	0.047	97.4	3859	2.0 x 106
7.93	207.5	785	0.981	0.022	93.1	3753	1.0 x 106
7.88	150.0	760	0.716	0.016	91.5	3712	0.75 x 106

3.2 TEST PROCEDURES

3.2.1 General

In Tunnel B, the model is mounted on a sting support mechanism in an installation tank directly underneath the tunnel test section. The tank is separated from the tunnel by a pair of fairing doors and a safety door. When closed, the fairing doors, except for a slot for the pitch sector, cover the opening to the tank. The safety door seals the tunnel from the tank area. After the model is prepared for a data run, the personnel access door to the installation tank is closed, the tank is vented to the tunnel flow, the safety and fairing doors are opened, the model is injected into the airstream, and the fairing doors After the data are obtained, the model is retracted into are closed. the tank, and the sequence is reversed with the tank being vented to atmosphere to allow access to the model in preparation for the next The sequence is repeated for each configuration or test condition run. change.

3.2.2 Data Acquisition

3.2.2.1 Force Data

Model attitude positioning and data recording were accomplished with the point-pause and continuous-sweep modes of operation, using the Model Attitude Control System (MACS). Model pitch and roll requirements were entered into the controlling computer prior to the test. Model positioning and data recording operations were performed automatically during the test by selecting the list of desired model attitudes and initiating the system.

Point-pause data were obtained for selected values of ALPHA and PHI. Each data point for this mode of operation represents the result of a Kaiser-Bessel digital filter utilizing 16 samples taken over a span of 0.50 sec. Continuous-sweep data were obtained for a fixed value of PHII with a pitch rate of 1.0 deg/sec. A data sample was recorded every 0.0320 sec and a sliding Kaiser-Bessel digital filter was applied to 16 samples to produce a data point every 0.48 deg in pitch. The data were then interpolated to obtain the data desired for the requested model attitudes.

3.2.2.2 Heat-Transfer/Pressure Data

Model attitude positioning was performed manually before each inject. Each inject was performed at discrete pitch and roll angles, and the angles were constant throughout the run. The data acquisition sequence was started just prior to injection while the model was still in the tank and continued until the model was retracted into the tank.

3.2.2.3 Oil Flow Visualization

Each oil flow run was performed at discrete pitch and roll angles. Prior to each run, oil was blotted on the model surface with a corrugated sponge. The model was then injected into the tunnel where 70-mm still photographs were taken every 4 sec until the flow pattern had established. The model was then retracted.

3.3 DATA REDUCTION

3.3.1 Force Data

Model static force and base pressure data were obtained simultaneously utilizing the data acquisition procedures as described in Section 3.2. The force and moment measurements were reduced to coefficient form using the digitally filtered data points and correcting for first- and second-order balance interaction effects, model tare weight, and balance-sting deflections. Model attitude and tunnel stilling chamber pressure were also calculated from digitally filtered values.

Model force and moment coefficients are presented in the body and wind axis systems. The static stability and total axial-force coefficients were corrected for small tunnel flow nonuniformities. Wind axis system coefficients were calculated using the forebody axial-force coefficient (CAF). Reference lengths and areas for model aerodynamic coefficients are given in Table 2 for each configuration.

3.3.2 Coax Gage Data

The coax gage provides a measurement of the surface temperature of the test panel material, which is assumed to be a homogenous, one-dimensional, semi-infinite solid. For this reason it is important that the thermophysical properties of the gage parts and the test panel material be closely matched. The coax gage heat flux at each instrumented location was computed for each time point (t_n) from the measured surface temperature by the following equation derived from semi-infinite solid considerations

$$QDOT(tn) = \frac{2C\left(t_{n}\right)}{\sqrt{\pi}} \sum_{j=1}^{n} \frac{TW\left(t_{j}\right) - TW\left(t_{j-1}\right)}{\sqrt{t_{n} - t_{j}} + \sqrt{t_{n} - t_{j-1}}}$$
(1)

The coax gage surface temperature, TW (t_j) , was computed using a curve fit of voltage versus temperature published by the National Institute of Standards and Technology (formerly National Bureau of Standards) (1974). The value of $C(t_n)$ for the coax gages was calculated from

$$C(t_n) = 5.26 x 10^{-4} \left[\frac{TW(t_n) + TW(t_1)}{2} \right] + 0.12688$$
⁽²⁾

)

To reduce the effects of any noise in the gage output, the values of QDOT were averaged for fifteen consecutive readings after the test article reached the tunnel centerline. The gage surface temperature was also averaged.

The heat-transfer coefficient, H(TT), for each coax gage was computed from

$$H(TT) = \frac{QDOT}{(TT - TW)}$$

(3)

3.3.3 Model Surface Pressures

Prior to the operating shift the ESP pressure modules were calibrated by applying known and zero pressure differentials across the modules. From this data, scale factors were calculated for each port of each module. Model pressure (PW) for each orifice was calculated with a second-order curve fit,

$$PW = A_0 + A_1 \left[Reading - CZ \right] + A_2 \left[Reading - CZ \right]^2 + Reference Pressure$$
(4)

where $A_0,\ A_1,\ \text{and}\ A_2$ are calibration coefficients, and CZ is the corrected zero calculated by

$$CZ = Updated zero reading - Zero reading at calibration$$
 (5)

Reference pressure was measured using a miniature vacuum gage.

A pressure coefficient (CP) was calculated for each orifice

$$CP = (PW - P)/Q \tag{6}$$

The known pressure measurement was calculated using

$$PKNOWN = (Reading - Zero Reading)(SF) + Reference Pressure$$

where SF is the calibration scale factor.

3.3.4 Schmidt-Boelter Gage Data

Measurements obtained from the Schmidt-Boelter gages are gage output (E) and gage temperature (TGE). The gage output is converted to heating rate via a laboratory calibrated gage scale factor (CSF):

$$QDOT = (E) (CSF) \tag{8}$$

The gage wall temperature used in computing the gage heat-transfer coefficient is obtained from the output of the gage thermocouple (TGE) and the temperature difference (TGDEL) across the gage wafer. TGDEL is proportional to the gage output, E, and is calculated by:

$$TGDEL = (KG) (E) \tag{9}$$

where KG is the gage temperature calibration factor. The gage wall temperature is:

$$TW = TGE + TGDEL \tag{10}$$

The heat-transfer coefficient for each gage was computed using Eq. (3).

3.3.5 Oil Flow Data

Tunnel conditions were the only data tabulated for oil flow runs.

3.4 MEASUREMENT UNCERTAINTIES

In general, instrumentation calibrations and data uncertainty estimates were made using methods described in Ref. 2. Measurement uncertainty is a combination of bias and precision errors defined as:

$$U = \pm \left(B + t_{95} S \right) \tag{11}$$

(7)

1-1

where B is the bias limit, S is the sample standard deviation and t_{95} is the 95th percentile point for the two-tailed Student's "t" distribution (95-percent confidence interval) which for sample sizes greater than 30 is taken equal to 2.

Estimates of the measured data uncertainties are given in Static load hangings on the force and moment balance Table 3a. simulated the range of loads and center-of-pressure locations anticipated during the test, and measurement errors were based on differences between applied loads and corresponding values calculated from the balance equations used in the data reduction. Load hangings to verify each balance calibration are made in place on the assembled model. Data uncertainties for the coax and Schmidt-Boelter gages were determined from laboratory calibrations. Other data uncertainties were determined from in-place calibrations through the data recording system and data reduction program. Propagation of the bias and precision errors of measured data through the calculated data was made in accordance with Ref. 2 and results are given in Table 3b.

4.0 DATA PACKAGE PRESENTATION

The data package contains tabulated data presented in English and SI units. The force data included coefficients in the body and wind axes. Sample tabulations of heat-transfer/pressure data, force data, and tunnel conditions are presented in Samples 1-4. All photographic data, including model installation and shadowgraph/schlieren photographs, were a part of the data package.

5.0 REFERENCES

- 1. <u>Test Facilities Handbook</u> (Twelfth Edition). "von Karman Gas Dynamics Facility, Vol. 3." Arnold Engineering Development Center, March 1984.
- Abernethy, R. B. et al. and Thompson, J. W. "Handbook Uncertainty in Gas Turbine Measurements." AEDC-TR-73-5 (AD755356), February 1973.

a. Tunnel assembly

63

b. Tunnel test section Fig. 1. Tunnel B

CONFIGURATION	R _c ,in.	A, deg	D, in.	B, in.
1	0.50	13	9.860	5.812
2	0.25	13	9.968	5.812
3	1.00	13	9.659	5.812
4	0.50	8	9.860	7.492

a. Force Model Figure 3. Model Components

Figure 3. Concluded.

廠

a. Heat-Transfer/Pressure Installation

ů O

b. Force Installation

Tunnel Wall

Figure 4. Concluded

c. Oil Flow Installation

Figure 5. Carina heat-transfer/pressure model installed in Tunnel B

Figure 6. Carina Force Model Base Pressure Orifice Locations

Figure 7. Carina model configuration 3 in Tunnel B

Figure 8. Heat-Transfer/Pressure Model Instrumentation Locations

25

- 7

Configuration	Corner Radius, in.	Afterbody Angle, deg
#1	0.50	13
#2	0.25	13
#3	1.00	13
#4	0.50	. 8

Table 1. Model Configuration Designation

Table 2. Coefficient Reference Lengths and Areas

a. English Units

Configuration	#1	#2	#3	#4
SREF, in. ²	76.356	78.038	73.275	76.356
AB, in. ²	26.530	26.530	26.530	44.084
LM, in.	11.83	11.83	11.83	11.83
XMRC, in.	0.0	0.0	0.0	0.0
LREFL, LREFM, LREFN, in.	9.860	9.968	9.659	9.860

b. SI Units

Configuration	#1	#2	#3	#4
SREF, m ²	0.0493	0.0503	0.0473	0.0493
AB, m ²	0.0171	0.0171	0.0171	0.0284
LM, m	0.3005	0.3005	0.3005	0.3005
XMRC, m	0.0	0.0	0.0	0.0
LREFL, LREFM, LREFN, m	0.2504	0.2532	0.2453	0.2504

Table 3. Estimated Uncertainties a. Measured Parameters

3

-5

2

17

1		STEADY	STAT	E ESTIMA	TED MEASE	IREMENT*					
PARAMETER DESIGNATION	PR	ECISION (S)		B) (IAS B)	UNCER ±(B+	TAINTY t ₉₅ S)	RANGE	TYPE OF MEASURING DEVICE	TYPE OF RECORDING DEVICE	METHOD OF SYSTEM CALIBRATION
1	Percent	Unit of	DF	Percent	Unit of	Percent	Unit of				
	Reading			Reading		Reading			1		
PT		0.1	>30		0.1		0.3	0-900 psia	Parcecientific Digiquartz Pressure Traneducer	Digital Data Acquisition System	In place application of multiple pressure levels measured with a pressure measuring device calibrated in the standards laboratory
TT		1.0 1.0	>30 >30	0.375	2.0	2.0+0	4.0 0.375%	32-530*F 530-2300*F	Cr-Al Thermocouples	Microprocessor Averaged Digital Thermometer	Thermocouple verification of NITS conformity/voltage substitution calibration
ALPI		0.025	> 30		0+		0.05	±15 deg	Rotary	Digital Data Acquisition	Multiple comparisons with
PHII		0_:15	> 30		0+		0.30	±180 deg	Potenticmeters	System/Analog to Digital Converter	a digital inclinemeter calibrated in the standards laboratory
Reference pressure for PWi		0.0004	10		0.001		0.002	0 to 0.015 psia	VKF Miniature Vacuum Gage (MVG)	Digital Data Acquisition System/Analog to Digital Converter	In place application of nultiple pressure levels measured with a pressure measuring device calibrated in the standards laboratory
PW1, 1 = 10, 12, 14, 16, 10, 20, 21, 24, 26, 27, 29, 31, 33, 35 PB1, 1 = 1-4		0.001	30		0.002		0.004	±1 psid	Electronically Scanned Pressure transducer (ESP)	Digital Data Acquisition System/Analog to Digital Converter	In place application of multiple pressure levels measured with a pressure measuring device calibrated in the standards laboratory
PW1, 1 = 2-9, 11, 13, 15, 17, 19, 22, 23, 25, 28, 30, 32, 34, 36		. 0.002	30		0.003		0.007	±2.5 peid	Electronically Scanned Pressure transducer (ESP)	Digital Data Acquisition System/Analog to Digital Converter	In place application of multiple pressure levels measured with a pressure neasuring device calibrated in the standards laboratory
Reference Pressure for PTNK		25	>30	10		50	+10%	0~1000µHg	DV-3 Hastings Gage	Digital Data Acquisition System/Analog to Digital Converter	Comparisons to facility reference gage
PINK		0.00075 0.00200	30 30	1.0 0.1		0.001	15+1.0X 10+0.1X	0.00-0.15 0.15-1.50 peid	Tunnel B/C Mech NUX System(flpsid Druck@)	Digital Data Acquisition System/Analog to Digital Converter	In place application of multiple pressure levels measured with a pressure measuring devices calibrated in the standards laboratory
QDOT (Schmidt-Boelter gages)	з	0.03	30 30	3 3		0.0	06+3% 9%	0-1 1-10 Btu/ft ² eec	Schmidt-Boelter Gage	Digital Data Acquisition System/Analog to Digital Converter	Radiant Heat Source / Secondary Standard
TO (Schwidt-Boelter gages)		1	> 90		, ²			32-530*F	Schmidt-Boelter Gage (Fe-Cn Thermocouple)	Digital Data Acquisition System/Analog to Digital Converter	Thermocouple verification of NITS conformity/voltage substitution celibration
IW (COar Gages)		1	>30	·	2	l	4	80-300*F	Coaxial Gage (Cr-Cn Thermocouple)	Digital Data Acquisition System/Analog to Digital Converter	Thermocouple verification of NITS conformity/voltage substitution calibration
in.	1	0.0025	1,30	1	0+	1	0.005	1	Precision height	Manual	Calibrated in the
Normal Force	1	0.594	95	1	0.063		1.251	±500 1b	Six component strain	Digital Data Acquisition	Static Loadings
Pitching Moment	1	2.176	95		0.274		4.625	±1850 in1h	gage balance	System/Analog to Digital	
Side Force	1	0.303	95		0.019		0.625	±250 1b	(3.00-1-30-043)	CORVETTOR	
Yawing Moment		1.113	95	1	0.086	1	2.313	±925 in1b]	1
Rolling moment	1	0.109	95	1	0.033		0.250	±100 in1b	1	1	
Axial Force		0.275	95		0.218		0.768	±300 1b			
Beference: Abernethy	D R G	had all and	Thor	In the second second	W "Hand	book of I	lo or mit o o o o	A Contraction	1 Martin Martin Martin		.1

Reference: Abernethy, R. B. et al and Thompson, J. W. "Handbook of Uncertainty in Cas Turbine Measurements" AEDC-TR-73-5, Feb 1973

.

t) ô

Table 3. Concluded

.

b. Calculated Parameters

	Steady-State Estimated Measurement*							
	Pred	sion Index		Bias	Unc	ertainty		
Parameter		(S)		(B)	±(B	+195*S)	Nominal	Nominal
Designation	Percent	Unit	Percent	Unit	Percent	Unit	Reynolds	Parameter
	of	of	of	of	of	of .	Number	Value
<u></u>	Reading	Measurement	Reading	Measurement	Reading	Measurement		
м		0.010		0+		0.020	1.004E+6	7.93
		0.010		0+		0.020	2.006E+6	7.98
Р	0.819		0.048		1.686		1.004E+6	0.022
	0.814		0.022		1.650		2.006E+6	0.047
Q	0.687		0.048		1.183		1.004E+6	0.981
	0.563		0.022		1.149		2.006E+6	2.107
RE		3.7E+3		3.6E+3		1.1E+4	1.004E+6	1.004E+8
		7.2E+3		7.3E+3		2.2E+4	2.006E+6	2.008E+6
CN		0.0080		0.0008		0.0168	1.004E+6	0.1887
		0.0038		0.0004		0.0081	2.008E+8	0.1851
CLM		0.00635		0.00070		0.01341	1.004E+8	0.12970
		0.00304		0.00033		0.00641	2.006E+6	0.12730
CY		0.0040		0.0003		0.0083	1.004E+8	0.0125
		0.0019		0.0001		0.0039	2.006E+6	0.0077
CLN		0.00324		0.00021		0.00669	1.004E+6	0.00791
1		0.00154		0.00010		0.00319	2.006E+6	0.00473
CLL		0.00015		0.00004	1	0.00035	1.004E+8	0.00258
		0.00008		0.00002		0.00018	2.006E+6	0.00169
CAF		0.0097		0.0032		0.0226	1.004E+6	1.5610
		0.0091		0.0015		0.0197	2.006E+6	1.5680
CA		0.0096		0.0030		0.0222	1.004E+6	1.6690
		0.0090		0.0014		0.0194	2.006E+6	1.5690
H(TT)					10~		- 1	-
S(TT)		I			10**		-	-
ALPHA					1	0.2~	-	±15
PHI		1			1	0.1**	-	±180

Reference: Abernethy, R.B. et al and Thompson, J.W. "Handbook of Uncertainty in Gas Turbine Measurements AEDC-TR-73-6, 5 Feb 73.
 Estimated value.
 + Assumed to be zero.

3

17

ž,

5

r

ē

Table 4. Heat Transfer/ Pressure Model Instrumentation Locations

a. Heat Transfer Gages

ų

GAGE	THETA	S/R
	deg	
C1	0	0
C2	Ð	0.200
C3	0	0.401
C4	0	0.602
C5	0	0.807
C6	0	0,960
C7	30	0.999
C8	60	1.028
C9	30	1.059
SB10	0	1.089
SB11	0	1.150
SB12	0	1.253
SB13	0	1.356
SB14	0	1.458
SB15	0	1.664
SB16	0	1.865
SB17	0	2.070
SB18	0	2.275
SB19	0	2.481
SB20	0	2.686
SB21	0	2.891
SB22	0	2.991
SB23	180	3.041
SB24	0	3.091
SB25	180	3.141
SB26	0	3.191

Theta= 0

`View Looking Aft

29

.

Table 4. Concluded

b. Surface Pressure Orifices

PRESSURE ORIFICE	THETA	S/R
PW2	180	0.200
PW3	180	0.401
PW4	180	0.602
PW5	180	0.807
PW6	180	0.960
PW7	210	0.999
PW8	180	1.028
PW9	210	1.059
PW10	180	1.089
PW11	180	1.150
PW12	180	1.253
PW13	180	1.356
PW14	180	1.458
PW15	180	1.664
PW16	180	1.865
PW17	180	2.070
PW18	180	2.275
PW19	180	2.481
PW20	180	2.686
PW21	210	2.891
PW22	210	2.991
PW23	30	3.041
PW24	210	3.091
PW25	30	3.141
PW26	210	3.191
PW27	165	2.788
PW28	165	2.839
PW29	165	2.891
PW30	165	2.941
PW31	165	2.991
PW32	165	3.041
PW33	165	3.091
PW34	165	3.141
PW35	165	3.191
PW36	165	3.242

Table 5. Test Run Summary

12

é

¢

Q

/

٠

a.	Heat/Pressure	Runs

RUN	CONFIGURATION	ALPHA (deg)	PHI (deg)	RE x 10 ⁻⁶ (ft ⁻¹)
2001	#1 0.50 in. Corner Radius, 13 Deg Body	0	0	2
2002		2	0	2
2003		5	0	2
2004		10	0	2
2005		15	0	2
, 2006		20	0	2.
2007		0	-30	2
2008		2	-30	2
2009		5	-30	2
2010		10	-30	2
2011		15	-30	2
2012		20	-30	2
2013		0	30	2
2014		5	30	2
2015		5	60	2
2016		5	180	2
2017		0	0	1
2018		0	0	1
2019		2	0	1
2020		5	0	1
2021		10	0	1
2022		15	0	1
2023		20	0	1
2024		0	0	1

.

.

a. Continued

RUN	CONFIGURATION	ALPHA (deg)	PHI (deg)	RE x 10 ⁻⁶ (ft ⁻¹)
2025	#1 0.50 in. Corner Radius, 13 Deg Body	2	-30	1
2026		5	-30	1
2027		10	-30	1
2028		15	-30	1
2029		20	-30	1
2030	<i>t</i>	0	30	1
2031		2	30	1
2032		5	30	1
2033		10	30	1
2034		15	30	1
2035		20	30	1
2036		0	60	1
2037		2	60	1
2038		5	60	1
2039		10	60	1
2040		15	60	1
2041		20	60	1
2042		0	90	1
2043		2	90	1
2044		5	90	1
2045		10	90	1
2046		15	90	1
2047		20	90	1

a. Continued

¢

 $\widetilde{\mathcal{L}}$

RUN	CONFIGURATION	ALPHA (deg)	PHI (deg)	RE x 10 ⁻⁶ (ft ⁻¹)
2048	#1 0.50 in. Corner Radius, 13 Deg Body	0	120	1
2049		2	120	1
2050		5	120	1
2051	•	10	120	1
2052		. 15	120	1
2053		20	120	1
2054		0	150	1
2055		2	150	1
2056		5	150	1
2057		10	150	1
2058		15	150	1
2059		20	150	1
2060		0	180	1
2061		2	180	1
2062		5	180	1
2063		10	180	1
2064		15	180	1
2065		20	180	1
2066		0	-165	1
2067		2	-165	1
2068		5	-165	1
2069		10	-165	1
2070		15	-165	1
2071		20	-165	1
2072		20	-120	1

.

a. Concluded

.

đ,

RUN	CONFIGURATION	ALPHA (deg)	PHI (deg)	RE x 10 ⁻⁶ (ft ⁻¹)
2073	#1 0.50 in. Corner Radius, 13 Deg Body	0	0	0.5
2074		5	0	0.5
2075		0	0	0.75
2076		5	0	0.75
2077		5	-30	0.75
2078		5	30	0.75
2079		5	60	0.75
2080		5	90	0.75
2081		5	120	0.75
2082		5	150	0.75
2083		5	180	0.75
2084		5	-165	0.75
2085		5	-120	0.75
2086		10	0	0.75
2087		10	-30	0.75
2088		10	30	0.75
2089		10	60	0.75
2090		10	90	0.75
2091		10	120	0.75
2092		10	150	0.75
2093		10	180	0.75
2094		10	-165	0.75

b. Force Runs

RUN	CONFIGURATION	ALPHA (deg)	PHI (deg)	RE x 10 ⁻⁶ (ft ⁻¹)
2095	#1 0.50 in. Corner Radius, 13 Deg Body	0 to 20	0	2
2096		20 to 0	0	2
2097		0 to 20	0	2
2098		20 to 0	-180	2
2099	#2 0.25 in. Corner Radius, 13 Deg Body	0 to 20	0	2
, 2100		20 to 0	0	2
2101		0 to 20	0	2
2102		20 to 0	-180	2
2103	#3 1.00 in. Corner Radius, 13 Deg Body	0 to 20	0	2
2104		20 to 0	0	2
2105		0 to 20	· 0:	2
2106		20 to 0	-180	2
2107	#4 0.50 in. Corner Radius, 8 Deg Body	0 to 20	0	2
2108		20 to 0	0	2
2109		0 to 20	0	2
2110		20 to 0	-180	2
2111	#4 0.50 in. Corner Radius, 8 Deg Body	0 to 20	0	1
2112		20 to 0	0	1
2113		0 to 20	0	1
2114		20 to 0	-180	1
2115	#1 0.50 in. Corner Radius, 13 Deg Body	0 to 20	0	1
2116		20 to 0	0	1
2117	· · ·	0 to 20	0	1
2118		20 to 0	-180	1

b. Concluded

RUN	CONFIGURATION	ALPHA (deg)	PHI (deg)	RE x 10-6 (ft-1)
2119	#2 0.25 in. Corner Radius, 13 Deg Body	0 to 20	• • 0	1
2120		20 to 0	0	1
2121		0 to 20	0	1
2122		20 to 0	-180	1
2123	#3 1.00 in. Corner Radius, 13 Deg Body	0 to 20	0	1
2124	- ,	20 to 0	0	1
2125		0 to 20	0	1
2126		20 to 0.	-180	1

Table 5. Concluded

c. Oil Flow	Runs
-------------	------

RUN	CONFIGURATION	ALPHA (deg)	PHI (deg)	RE x 10 ⁻⁶ (ft ⁻¹)
2128	#1 0.50 in. Corner Radius, 13 Deg Body	0	0	1 .
2129		5	0	1
2130		. 2	0	1
2131		3.5	0	1.
2132	#3 1.00 in. Corner Radius, 13 Deg Body	3.5	0	1
2133		2	. 0,	, 1
2134	#2 0.25 in. Corner Radius, 13 Deg Body	0	0	1
2135	#1 0.50 in. Corner Radius, 13 Deg Body	2	0	1
2136		0	0 `	1
2137	#4 0.50 in. Corner Radius, 8 Deg Body	0	0	1
2138		2	0	1
2139		5	0	1

Notes: 1. Runs 2xxx are in English units.

Runs 3xxx are the same as runs 2xxx except the tabulated values are in SI units.

- 2. There is no run 2127.
- 3. Runs 2073, 2074 were taken with unsteady flow.

CARINA AE	ROTHERMA	Ĺ								DA TI DA TI	TE COMPUTE ME COMPUTE TE RECORDE ME RECORDE	D: 9-MAY-91 D: 10:34:38 D: 18-APR-91 D: 0:58:38 .000011037
PAGE 1												
ENGLISH U	JNITS											
RUN 2097	0.5	CONFIGURATIO ORC 13 DEG	ON BODY		SREF, IN2 76.356	LRE 9.860	F (M, N, 9.860	L), IN 9.860	XMRC 0.000	FCRN 5095	PTNK 0.323	AB, IN2 26.53
M 7.98	PT PSIA 455.2	TT DEG R 1293.7	T DEG R 96.1	P PSIA 0.0473	PT2 PSIA 3.914	Q PSIA 2.11 3	V FT/SEC 833.59	RHO LBM/FT3 0.133E-02	MU LBF-SEC/FT2 0.773E-07	RE FT-1 0.20 <u>5</u> E+	07	

 \mathbf{x}

	*	TUNNEL CON	DITIONS	AND BAS	E PRESSU	RES ——			
PN ALPI PHI 1 -12.03 0.0 2 -11.03 0.0 3 -10.02 0.0 4 -7.02 0.0 5 -2.02 0.0 6 3.01 0.0 7 8.00 0.0	I PT TT 0 455.24 1293.7 0 455.60 1292.7 0 455.63 1293.7 0 455.71 1293.7 0 455.79 1293.7 0 455.58 1294.7	Q 2.109 2.110 2.111 2.111 2.111 2.110 2.110	P 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047	PB1 0.0553 0.0553 0.0553 0.0575 0.0591 0.0500 0.0387	PB2 0.0504 0.0505 0.0513 0.0522 0.0518 0.0435 0.0435	PB3 0.0537 0.0509 0.0521 0.0548 0.0592 0.0543 0.0543 0.0461	PB4 0.0494 0.0500 0.0504 0.0505 0.0471 0.0374 0.0290	PBA 0.0522 0.0516 0.0523 0.0537 0.0543 0.0463 0.0463	CPBA 0.0023 0.0020 0.0023 0.0030 0.0033 -0.0005 -0.0050

-33

Sample 1. Tabulated Force and Pressure Data, English Units

~

CARINA	AEROTHERMA	L								DAT TIM DAT TIM	E COMPUTED: E COMPUTED: E RECORDED: E RECORDED:	9-MAY-91 10:34:38 18-APR-91 0:58:38 600001038
PAGE	2											
ENGLIS	H UNITS											
RUN 2097	0.5	CONFIGURATI ØRC 13 DEG	ON BODY	. .	SREF, IN2 76, 356	LREF 9.860	(м. м. 9.860	L).IN 9.860	XMRC 0.000	FCRN 5095	PTNK 0.323	AB, IN2 26.53
м 7.98	PT PSIA 455.2	TT DEG R 1293.7	T DEG R 96.1	P PSIA 0.0473	PT2 PSIA 3.914	Q PSIA F 2.11 38	V T/SEC 33.59	RHO LBM/FT3 0.133E-02	MU LBF-SEC/FT2 0.773E-07	RE FT-1 0.205E+0	7	

•

G

ź

:

0

---- BODY AXES FORCE AND MOMENT COEFFICIENTS ----

PN	ALPHA	PHI	CN	CLM	CY	CLN	CLL	CA	CAB	CAF	XCPN
1	0.05	-0.08	-0.0001	0.0002	0.0063	-0.0035	0.0007	1.5021	-0,0008	1.5029	0.6514
2	1.06	-0.08	0.0066	-0.0050	0.0064	-0.0036	0.0007	1.5014	-0.0007	1.5021	0.6517
3	2.07	-0.08	0.0138	-0.0106	0.0064	-0.0036	0.0007	1.5017	-0.0008	1.5025	0.6384
4	5.09	-0.08	0.0349	-0.0272	0.0065	-0.0038	0.0006	1.4972	-0.0010	1.4983	0.6512
5	10.15	-0.08	0.0686	-0.0536	0.0064	-0.0037	0.0006	1.4784	-0.0011	1.4796	0.6516
6	15.24	-0.08	0.1023	-0.0765	0.0065	-0.0036	0.0006	1.4466	0.0002	1.4464	0.6233
7	20.32	-0.08	0.1378	-0.0974	0.0067	-0.0037	0.0006	1.3964	0.0017	1.3947	0.5888

0

÷.

Sample 1. continued

0

£

.

DATE TIME DATE TIME	COMPUTED: COMPUTED: RECORDED: RECORDED:	9-MAY-91 10:34:38 18-APR-91 0:58:38 000001039

:

Č.

CARINA ALROTHERMAL

12

PAGE 3

 $\mathbb{M}_{k^{k}}$

Ĵ.

ENGLISH UNITS

RUN 2097	CONFIGURATION 0.50RC 13 DEG BODY				SREF, IN2 76.356	۱ 9.8	REF (M, N 60 9.860	. L).IN 9.860	XMRC 0.000	FCRN 5095	PTNK 0.323	AB, IN2 26.53
м	PT	II o	T DEC D	P	PT2	9.0	ET V	RHO	MU	_RE		
7.98	455.2	1293.7	96.1	0.0473	3.914	2.11	3833.59	0.133E-02	0.773E-07	0.205E+0	7	

40

---- WIND AXES FORCE AND MOMENT COEFFICIENTS -----

0

PN	ALPHA	PHI	CLW	CLMW	CCW	CLNW	CLLW	CDW	(L/D)W
1	0.05	-0.08	-0.0014	0.0002	0.0050	-0.0035	0.0007	1.5029	-0.0009
2	1.06	-0.08	-0.0211	-0.0050	0.0050	-0.0036	0.0006	1.5020	-0.0140
3	2.07	-0.08	-0.0406	-0.0106	0.0049	-0.0036	0.0005	1.5020	-0.0270
4	5.09	-0.08	-0.0983	-0.0272	0.0050	-0.0038	0.0003	1.4955	-0.0657
5	10.15	-0.08	-0.1932	-0.0536	0.0048	-0.0037	0.0000	1.4685	-0.1315
6	15.24	-0.08	-0.2815	-0.0765	0.0048	-0.0036	-0.0003	1.4224	-0.1979
7	20.32	-0.08	-0.3550	-0.0974	0.0049	-0.0036	-0.0006	1.3558	-0.2618

Sample 1. concluded

CARINA	AEROTHE	RMAL									DATE COMPUTED TIME COMPUTED DATE RECORDED TIME RECORDED	: 13-MAY-91 : 08:32:15 : 18-APR-91 : 1:21:11
PAGE	1											000001380
SI UNI	TS			1								
RUN 3099		CO 0 . 25R	NFIGURATI C 13 DEG	on Body		SREF,M2 0.050	LREF 0.253	(M, N, L),M 0.253 0.253	XMRC 0.000	FCRN 5096	PTNK 2123.259	AB.M2 0.02
М 7.98	PT PA 3147143.	5	ТТ DEG к 723.7	Т DEG К 53.8	P PA 327.2614	PT2 PA 27055.648	Q PA 14576.86	V M/SEC 1172.77 0.	RHO KG/M3 212E-01	MU PA-SEC 0.373E-05	RE M-1 0.619E+06	
					TUNNEL CON	DITIONS AND	BASE PRESS	URES				,
PN 1 2 3 4 5 6 7 8 9 10 11 12 13 14	ALPI -13.52 -13.67 -12.07 -11.08 -9.09 -7.11 -5.12 -2.15 -0.17 2.80 4.77 3.01	PHI -0.00.00 -00.00.00 -00.00.00 -00.00.00 -00.00.00 -00.00.00 -00.00.00 -00.00.00 -00.00.00	1 2 3147143 2 3147036 2 3147036 2 3148308 3 314835 314835 3148224 4 3148736 314823 4 3148759 7 3148435 7 3148435 7 3148435 7 3148435 7 3148559 7 314559 7 31 31 31 31 31 31 31 31 31 31	PT T .50 72: .50 72: .25 72: .00 72	T 4576.30 3.7 14576.30 3.7 14578.34 3.7 14578.34 3.7 14579.21 3.7 14584.85 3.7 14584.85 3.7 14584.85 3.7 14582.7 3.7 14584.01 3.7 14581.71 3.7 14581.71 3.7 14584.21 3.7 14582.7	P 53 327.261 13 327.251 149 327.294 15 327.375 169 327.375 163 327.430 163 327.430 163 327.430 163 327.420 167 327.320 167 327.320 167 327.320 177 327 320 177 320	PB1 360.830 361.549 360.330 359.237 358.497 356.061 350.475 348.610 339.488 326.245 302.139 284.585 260.719 253.351	PB2 9 352.1942 352.5143 10 350.0336 3 348.1014 0 347.8506 0 349.7874 14 348.7693 19 343.3849 17 328.2872 15 311.7387 17 267.5067 14 245.0279 0 230.9219	PB3 348.2056 348.1625 346.3342 344.9819 345.9180 347.7143 353.7958 346.7191 332.0927 300.2831 276.3543 243.3575 232.3455	PB4 338.7666 339.3936 340.9316 343.1852 345.4202 346.9590 348.3854 349.37700 334.2329 313.8080 278.4179 254.9335 222.8162 213.9320	PBA C 349.9993 6 350.4049 6 349.4073 6 348.8764 6 350.1304 6 349.2534 6 349.2534 6 349.2534 6 349.2534 6 349.2534 6 347.1820 6 320.9712 6 291.5576 6 242.9803 6 232.6376 6	PBA .0016 .0015 .0015 .0015 .0015 .0015 .0015 .0015 .0015 .0005 .0004 .0025 .0025 .0039 .0058 .0058 .0058

MODEL FLOWFIELD PHOTOGRAPHS TAKEN AT ALPHA = 0.19, 2.17, 5.10, 10.24, 15.36, 20.26,

 \odot

Sample 2. Tabulated Force and Pressure Data, SI Units

x.

.

CAR I PAGE	NA AEROTH	ERMAL									DATE COMPUTED: TIME COMPUTED: DATE RECORDED: TIME RECORDED:	13-MAY-91 08:32:15 18-APR-91 1:21:11 000001381
SIL	INITS	CONE				112	1855 (M N 1) M	VUBC	ECON	DTNK	AR M2
3099		0.25RC	13 DEG BOD	Y	0.0	50 0	. 253 Ø.	253 0.25	3 0.000	5096	2123.259	0.02
M 7 c	PT PA 9 31 47 1 43	5 7	TT EGKD	T EG K	P PA 614 2785	PT2 PA	Q PA 576 86 1	W M/SEC	RHO KG/M3	MU PA-SEC	RE M-1	
7.5 F	N ALPHA 1 -1.46 2 -1.00 3 0.00 4 1.00 5 2.00 6 3.00 9 10.00 10.00 10.00 10.00 2.00 115.00 2.00 2 17.00 3 20.00 4 20.28	PHI -0.09 -0.09 -0.09 -0.09 -0.09 -0.11 -0.13 -0.11 -0.15 -0.12 -0.12 -0.14 -0.14	CN -0.0096 -0.0068 -0.0068 -0.0058 0.0122 0.0184 0.0309 0.0429 0.0429 0.0429 0.0429 0.06721 0.0894 0.1204 0.1226	CLM 0.0077 0.0053 0.0052 -0.0105 -0.0105 -0.0105 -0.0105 -0.0105 -0.0157 -0.0264 -0.0372 -0.0518 -0.0518 -0.0518 -0.052 -0.0194 -0.0928	AXES FOR CY 0.0045 0.0046 0.0046 0.0046 0.0046 0.0046 0.0046 0.0048 0.0048 0.0048 0.0048 0.0049 0.0049 0.0049 0.0050	CE AND MC CLN -0.0026 -0.0027 -0.0027 -0.0027 -0.0027 -0.0029 -0.0029 -0.0028 -0.0028 -0.0028 -0.0027 -0.0027 -0.0027	DMENT COEF CLL 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007	FICIENTS - CA 1.5634 1.5653 1.5655 1.5655 1.5640 1.5599 1.5531 1.5531 1.5014 1.4819 1.4429	CAB C -0.0005 1. -0.0005 1. -0.00	AF XCPN 5639 0.713 5643 0.710 5656 0.703 5658 0.700 5660 0.705 5646 0.718 5604 0.718 5604 0.719 5536 0.731 5384 0.720 5253 0.707 5206 0.684 4806 0.666 4450 0.637	4 3 6 3 0 2 6 1 3 3 2 0 4 7	 :

Sample 2. continued

1.9

ίę.

୍ର

T.

đ.

CARINA	AEROTHERMA	L									DATE COMPUTED: TIME COMPUTED: DATE RECORDED: TIME RECORDED:	13-MAY-91 08:32:15 18-APR-91 1:21:11 000001382
PAGE 3												00,000,0002
SI UNIT	S					•						
RUN 3099	0.2	CONFIGURAT 5RC 13 DEG	ION BODY		SREF,M2 0.050	LREF 0.253	(M, N, L 0.253 0),M 2 .253 0	(MRC 3.000	FCRN 5096	PTNK 2123.259	AB.M2 0.02
M 7.98 J	PT PA 147143.5	ТТ DEG к 723.7	Т DEG К 53.8	Р РА 327.2614	PT2 PA 27055.648	Q PA 14576.86	V M/SEC 1172.77	RHO KG/M3 0.212E-0	I 0.	MU PA-SEC 373E-05	RE M-1 0.619E+06	

10

¢

:

.

			WIN	ID AXES FOR	CE AND MON	AENT COEFF	ICIENTS	-	
PN	ALPHA	PHI	CLW	CLMW	CCW	CLNW	CLLW	CDW	(L/D)W
1	-1.46	-0.09	0.0302	0.0077	0.0032	-0.0025	0.0008	1.5636	0.0193
2	-1.00	-0.09	0.0205	0.0053	0.0033	-0.0027	0.0008	1.5642	0.0131
3	0.00	-0.09	-0.0006	0.0001	0.0033	-0.0027	0.0007	1.5656	-0.0004
- 4	1.00	-0.09	-0.0215	-0.0052	0.0033	-0.0028	0.0007	1.5657	-0.0138
5	2.00	-0.09	-0.0424	-0.0105	0.0032	-0.0027	0.0006	1.5655	-0.0271
ĕ	3.00	-0.11	-0.0635	-0.0157	0.0033	-0.0028	0.0006	1.5634	-0.0406
7	5.00	-0.09	-0.1052	-0.0264	0.0031	-0.0028	0.0005	1.5571	-0.0676
8	7.00	-0.13	-0.1468	-0.0372	0.0031	-0.0029	0.0004	1.5472	-0.0949
- 9	10.00	-0.11	-0.2075	-0.0518	0.0029	-0.0029	0.0003	1.5256	-0.1360
10	12.00	-0.15	-0.2466	-0.0606	0.0028	-0.0029	0.0002	1.5070	-0.1636
11	15,00	-0.12	-0.3020	-0.0726	0.0027	-0.0027	0.0001	1.4726	-0.2051
12	17.00	-0.13	-0.3358	-0.0802	0.0028	-0.0028	0.0000	1.4455	-0.2323
13	20,00	-0.14	-0.3811	-0.0914	0.0027	-0.0028	-0.0002	1.3991	-0.2724
14	20.28	-0.14	-0.3844	-0.0928	0.0027	-0.0028	-0.0002	1.3938	-0.2758

୍

c

Sample 2. concluded

43

.

.

.

£

. .

.-

DATE COMPUTED:	22-APR-91
TIME COMPUTED:	08:46:33
DATE RECORDED:	17-APR-91
TIME RECORDED:	2:55:40
	000001475

 $33^{\rm e}_{\rm c}$

Ċ

RE FT-1 2.012E+06

							i.		
PAGE	1								
ENGLI	SH UNITS	6							
RUN	AL	PHA	PH]		CONFIGURA	TION	TIME	RD	TIMFINJ
2013)EG) 1920	(DEG)	41	50 CORNE	R RADIUS	(SEC)	(SEC)
	•	0T	TT			0	J.U	03	2.790
M 7 0 0	F	SIA	DEG R	DEGR	PSIA	PSIA	FT/SEC	LBM/FT3	LBF-SEC/FT2
7.98	4:	56.1	1309.7	97.4	0.0474	2.11	3858.59	1.315E-03	7.836E-08
					HEAT TR	ANSFER GAGE	DATA	·	
GAGE ID	S/R	THETA DEG	TW DEG R	(BTU/	QDOT FT2-SEC)	H(TT) (BTU/FT2-SI	EC-R)	S(TT)	
C 1	0.000	0.0	574.4	4.1	85E+00	5.691E-	03	4.507E-03	
Č Š	0.401	0.0	568.9	5.3	91E+00	7.309E-0 6.737E-0	03 03	5.788E-03 5.337E-93	
ČŠ	0.807	0.0	560.4	4.5	95E+00 26E+00	5.908E-0	03 03	4.886E-03 4.682E-03	
C 6 C 7	0.999	0.0 30.0	556.8 553.4	3.8 1.9	24E+00 10E+00	5.079E-0 2.526E-0	03 03	4.026E-03 2.002E-03	
C 8 C 9	1.028	60.0 30.0	556.3 547.1	8.7 3.4	97E-01 99E-01	1.168E-0 4.588E-0	03 04	9.256E-04 3.639E-04	
S810 S811	1.089	0.0	542.4 542.2	1.1	12E-01 21E-01	1.449E-0	04 04	1.150E-04	
SB12	1.253	0.0	541.5	1.1	15E-01	1.451E-	04	1.152E-04	
SB14	1.458	0.0	543.4		65E-01	1.521E-	84	1.206E-04	
SB16	1.865	0.0	545.2	1.3	45E-01	1.759E-	04 04	1.235E-04 1.395E-04	
SB18	2.275	0.0	546.5	1.6	25E-01 90E-01	2.129E-0 2.084E-0	04 04	1.689E-04 1.653E-04	
SB19 SB20	2.481 2.686	0.0 0.0	547.0 547.1	1.6	87E-01 31E-01	2.212E-0 2.401E-0	04 04	1.754E-04 1.904F-04	
SB21 SB22	2.891	0.0	550.8 557.0	5.8	95E-01 35E-01	7.769E-	04 03	6.160E-04	
SB23	3.041	180.0	564.1	1.2	21E+00	1.638E-	03	1.298E-03	
SB25	3.141	180.0	566.0	1.3	77E+00	1.851E-	03	1.467E-03	
3020	7.131	0.0	30∠.4	1.4	JIE+00	1.915E-0	03	1.517E-03	

RUN2013

3

¢

5

Sample 3. Tabulated Heat-Transfer and Surface Pressure Data, English Units

 $\overline{V}_{i,j}^{\lambda, \nu}$

44

. -

CARINA AEROTHERMAL

 α

	· · ·	
DATE	COMPU.	22-APR-91
TIME	COMPUTED:	08:46:34
DATE	RECORDED:	17-APR-91
TIME	RECORDED :	2:55:40
		000001477

÷.,

CAPINA AEROTHERMAL

PAGE 3

. 2

ENGLISH UNITS

¢

	ALPHA (DEG)	PHI (DEG)		CONFIGURAT	ION	TIMERD		TIMEINJ (SEC)	
2013 M 7.98	-0.020 PT PSIA 456.1	29.99 TI DEG R 1309.7	T DEG R 97.4	.50 CURNER PSIA 0.0474	Q PSIA 2.11	3.809 V FT/SEC 3858.59	RHO LBM/FT3 1.315E-03	2.796 MU LBF-SEC/FT2 7.836E-08	RE FT-1 2.012E+06
MODEL PRESURE PW 2 PW 3 PW 5 PW 5 PW 5 PW 7 PW 8 PW 7 PW 8 PW 9 PW10 PW11 PW12 PW13 PW14 PW15 PW16 PW15 PW16 PW17 PW16 PW17 PW16 PW17 PW20 PW21 PW22 PW23 PW22 PW225 PW225 PW226 PW225 PW226 PW225 PW226 PW226 PW225 PW226 PW227 PW226 PW226 PW226 PW226 PW226 PW226 PW226 PW226 PW226 PW226 PW226 PW226 PW226 PW226 PW226 PW226 PW226 PW226 PW226 PW227 PW226 PW226 PW226 PW226 PW226 PW226 PW226 PW226 PW226 PW226 PW226 PW226 PW226 PW226 PW226 PW226 PW226 PW226 PW227 PW226 PW226 PW227 PW226 PW226 PW226 PW227 PW226 PW227 PW226 PW226 PW226 PW227 PW226 PW227 PW226 PW227 PW226 PW226 PW226 PW226 PW227 PW226 PW226 PW227 PW226 PW226 PW226 PW226 PW226 PW226 PW226 PW226 PW226 PW36 PW36 PW36 PW36 PW36 PW36 PW36 PW3	S 2 4 6 8 99 9 6 6 8 99 9 6 6 8 99 9 6 6 8 99 9 6 6 8 99 9 6 6 8 99 9 6 6 1 1 2 2 2 4 6 8 99 6 6 1 1 1 2 2 2 2 2 2 2 3 3 3 3 2 2 2 2 2 9 9 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2	/R THET 00 180 01 180 02 180 032 180 040 180 050 180 050 180 180 180 180 180 180 180 180 180 180 180 180 180 180 180 180 180 180 180 181 180 185 180 181 180 181 180 181 180 181 180 181 180 181 180 181 180 181 180 182 165 191 210 191 210 191 165 191 165 191 165 191	A (PS 0033. 0001. 000000000000000000000000000	PW IA) IA) IA) 848 848 690 7. 234 2.340 7.340 234 2.341 6.0035 0035 0035 0034 07.0031 0622 1.00622 1.00622 1.0091 1.1305 2.1135 2.1137 2.118 4.1200 2.118 4.1160 2.118 4.2215 4.2215 4.2215 4.2215 4.2215 4.2213 4.2200 2.23 4.2220 2.23	SURE DATA PW /P 222E+01 112E+01 042E+01 042E+01 042E+01 042E+01 042E+00 245E+00 245E+00 245E+00 245E-01 037E-01 319E-00 512E+00 536E+00 536E+00 536E+00 537E+00 53	CP 1.824E+00 1.729E+00 1.729E+00 1.559E+00 5.618E-01 1.902E-01 5.434E-02 5.506E-03 -6.019E-03 -6.019E-03 -6.289E-03 2.005E-03 1.149E-02 2.061E-02 2.061E-02 2.061E-02 2.061E-02 2.061E-02 3.227E-02 3.255E-02 3.355E-02 3.35			

٠,

Sample 3. concluded

DATE	COMPUTED:	13-MAY-91
TIME	COMPUTED:	08:13:49
DATE	RECORDED:	17-APR-91
TIME	RECORDED:	1:41:22
		000002228

:

-

٠

CARINA AEROTHERMAL

PAGE 2

SI UNITS

RUN		PHI		CONFIGURA	TION	TIMER	D	TIMEINJ	
3004	9.998	0.16	i	1 .50 CORNE	R RADIUS	3.80	9.	2.796	
м	PT PA	TT DEG K		P	Q	V M/SEC	RHO KG (M3		RE
7.98	3.152Ê+06	728.1	54.1	3.278E+02	1.460E+04	1176.58	2.109E-02	3.755E-06	6.140E+05

HEAT TRANSFER GAGE DATA

GAGE ID	S/R	THETA DEG	TW DEG K	QDOT W/M2	Н(ТТ) ₩/м2-к	S(TT)
10 C 1 2 C 2 3 C C 5 C C 5 C C 7 C C 9 SB10 SB11 SB112	0.000 0.200 0.401 0.602 0.960 0.999 1.028 1.059 1.059 1.150 1.253	DEG 0.0 0.0 0.0 0.0 0.0 0.0 30.0 50.0 30.0 0.0 0.0 0.0	DEG K 313.7 312.4 310.9 310.9 310.6 309.0 306.0 306.1 302.9 302.9 302.8	W/W2 4.385E+04 4.212E+04 3.966E+04 3.925E+04 3.925E+04 1.533E+04 6.892E+03 2.788E+03 5.087E-01 5.561E-01 7.436E-01	W/W2-K 1.058E+02 1.013E+02 9.836E+01 9.506E+01 9.400E+01 3.631E+01 1.633E+01 6.566E+00 1.196E-03 1.308E-03 1.308E-03	4.093E-03 3.919E-03 3.806E-03 3.678E-03 3.638E-03 1.406E-03 6.322E-04 4.6322E-04 4.652-05 5.064E-05 6.742E-05
SB13 SB14 SB15 SB16 SB17 SB18	1.356 1.458 1.664 1.865 2.070 2.275	0.0 0.0 0.0 0.0 0.0 0.0	303.3 303.4 302.8 302.9 303.5 303.6	7.365E-01 7.365E-01 7.348E-01 7.583E-01 9.226E-01 1.398E+00 1.757E+00	1.710E-03 1.730E-03 1.783E-03 2.170E-03 3.293E-03 4.140E-03	6.7/0E-05 6.621E-05 6.699E-05 6.904E-05 8.402E-05 1.275E-04 1.603E-04
SB19 SB20 SB21 SB22 SB23 SB24 SB25 SB26	2.481 2.686 2.891 3.041 3.091 3.141 3.191	0.0 0.0 0.0 180.0 0.0 180.0 180.0	304.5 305.2 306.2 309.7 306.2 309.7 306.2 310.2	2.345E+00 2.946E+00 3.700E+00 4.015E+00 1.299E+01 5.254E+00 1.368E+01 6.293E+00	5.534E-03 6.961E-03 8.747E-03 9.516E-03 3.104E-02 1.245E-02 3.272E-02 1.445E-02	2.143E-04 2.695E-04 3.386E-04 3.684E-04 1.201E-03 4.821E-04 1.266E-03

RUN3004

r

Sample 4. Tabulated Heat-Transfer and Surface Pressure Data, SI Units

 ~ 4

DATE	COMPUTED:	13-MAY-91
TIME	COMPUTED:	08:13:50
DATE	RECORDED:	17-APR-91
TIME	RECORDED:	1:41:22
		000002230

CARINA AEROTHERMAL

i

t

. ...**.**)

SI UNITS

RUN 3004	ALPHA (DEG) 9.998	PH (DEG) 0.16	CONF1G	JRATION RNER RADIUS	TIMERD (SEC) 3.809		TIMEINJ (SEC) 2.796	
м	PT		T J	9 _9	V	RHO	MU	RE
7.98	3.152E+06	DEG K DE 728.1 5	.GК Р/ 14.1 3.278Е+6	A PA 02 1.460E+04	M/SEC 1176.58	KG/M3 2.109E-02	PA-SEC 3.755E-06	M-1 6.140E+05
			MODEL I	PRESSURE DATA				
MODEL	S/R	THETA	₽₩.	PW	СР			
PRESSURE	A 200	(DEG)	27322 350	/P	1 8405-00			
PW 3	0.401	180.0	27650.576	8.436E+01	1.872E+00			
PW 4	0.602	180.0	26977.176	8.230E+01	1.826E+00			
PW 5	0.807	180.0	25361.871	7.738E+01	1.715E+00			
PW 6	0.960	180.0	12279.588	3.746E+01	8.187E-01			
PW 8	1 828	180.0	2382 567	7 2695100	J. 2426-01 1 4085-01			
PW 9	1.059	210.0	805.417	2.457E+00	3 2726-02			
PW10	1.089	180.0	586.909	1.791E+00	1.775E-02			
PW11	1.150	180.0	682.165	2.081E+00	2.428E-02			
PW12	1.253	180.0	761.272	2.323E+00	2.970E-02			
PHI3 DW14	1.330	180.0	808.309	2.4001+00	3.292E-02			
PW15	1.664	180.0	1023 765	123E+00	4.321E-02 4.768E-02			
PW16	1.865	180.0	1113.551	3.397E+00	5.383F-02			
PW17	2.070	180.0	1123.217	3.427E+00	5.449E-02			
PW18	2.275	180.0	1073.799	3.276E+00	5.111E-02			
PW19 PW20	2.481	180.0	986.880	3.011E+00	4.515E-02			
PW21	2.000	210.0	10/0.409	J. 290E+00	5.142E-02			
PW22	2.991	210.0	1632.793	4 9815+00	8 940F-02			
PW23	3.041	30.0	665.254	2.030E+00	2.312E-02			
PW24	3.091	210.0	1796.005	5.479E+00	1.006E-01			
PW25 PW26	3.141	30.0	834.349	2.546E+00	3.470E-02			
Pw27	2 788	210.0	1773.274	5.410E+00	9.902E-02			
PW28	2.839	165 0	1215 337	3.730E+00 3.708E±00	0.142E-02			
PW29	2.891	165.0	1281.617	3 910F+00	6 534F-02			
PW30	2.941	165.0	1609.535	4.910E+00	8.781E-02			
PW31	2.991	165.0	1749.336	5.337E+00	9.738E-02			
PW33	5.041	165.0	1798.329	5.486E+00	1.007E-01			
PW34	3 141	165 0	1900.484	5.813E+00	1.081E-01			
. PW35	3,191	165 0	1879 371	5 734F+00	1.0011-01			
PW36	3.242	165.0	1865.391	5.691E+00	1.053E-01			

RUN 3004

.

Sample 4. concluded