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1. SUMMARY OF RESEARCH

During the period January 1, 1988 to December 31, 1990, research carried out by the Nano-
structures Group in the Department of Electrical Engineering at Notre Dame was concerned with a
variety of quantum transport and optical phenomena in mesoscopic structures. This research was
funded by the Air Force Office of Scientific Research under Grant No. AFOSR-88-0096. The
major issues examined included analysis of the scope and performance of velocity modulation
transistors for ultrafast switching applications, novel methods of fabricating quantum wires that
can provide extremely high electron mobility and high optical absorption, the Aharonov-Bohm
effect along with its basic physics and possible applications in quantum interference transistors
with ultra-low power-delay product, a variety of interference phenomena - both optical and
electronic, study of quantum transport in ballistic constrictions and bends with special attention
given to space charge effects and bend resistance, quantum transport in heavily doped structures
with strong elastic scattering as well as magnetotransport theory, accurate treatment of real space
transfer in quantum wells, a critical examination of the scope of quantum devices as both analog
and digital elements either as a discrete device or in integrated circuits, and finally interesting
properties of and phenomena in periodic structures.

The research supported by this grant resulted in twenty one journal papers, ten articles in
books, and thirty four conference presentations. The research contributed to the granting of
five M.S. degrees and have supported two continuing M.S. research and three continuing Ph.D.
research.

Individuals who participated in the grant are Profs. S. Bandyopadhyay, C. S. Lent, W. Porod
and graduate students S. Bhobe, M. Leng, L. Liang, S. Sivaprakasam, H. Harbury, S. Chaudhuri,
V. Deshpande, and S. Subramaniam.




2. RESEARCH DESCRIPTION

2.1 Velocity Modulation Transistors

Velocity Modulation Transistors (VMT) were originally proposed as field effect switching
transistors in which the channel conductance is modulated by modulating the mobility rather
than the concentration of the carriers in the channel by an applied gate voltage. The advantage
is of this is that since the device is not switched by physically moving carriers out of the channel,
the switching speed is not limited by the transit time of electrons; instead, it is limited by the
momentum relaxation time which is typically much shorter than the transit time. This leads to
an ultrafast electronic switch.

We investigated this device in a normally-off (enhancement mode) configuration. Enhancement-
mode operation is important to prevent standby power dissipation in circuits. The relevant struc-
ture consists of a quantum well one half of which is intentionally doped while the other half is
left undoped. In the absence of any external electric field, electrons mostly reside in the doped
half due to the electrostatic attraction it feels from the dopants (ionized donors). In this region,
the electron mobility is low due to strong impurity scattering, so that when the electrons are
mostly in the doped region, the overall mobility of electrons in the well (channel) is low. As a
result, the channel conductance is low and the device is off. Now if an electric field is applied
perpendicular to the well-barrier interface, it skews the electron wavefunction to the undoped
half in which the mobility is much higher because of the absence of in-situ impurity scatterir .
Consequently the channel mobility and conductance goes up dramatically. This switches t 2
device on.

We investigated this switching mechanism using a combination of quantum-mechanical and
semiclassical analysis. Our quantum-mechanical analysis was fully self-consistent in the sense
that we solved the Schrbdinger and Poisson Equations to find the potential and wavefunction
in the well both in the presence and absence of the electric field. From the wavefunction, the
impurity scattering rates were calculated using Fermi’s Golden Rule and used in a Monte Carlo
simulation to evaluate the momentum relaxation times and hence the mobility. Our analysis
revealed that wells with high carrier concentrations are unsuitable for this device since screening
increases the momentum relaxation times dramatically and reduces the switching speed. How-
ever, regardless of the carrier concentration, the field (voltage) required to change the conductance
by 90 % at a temperature of 4.2 K was very small (~ hundreds of millivolts).

Therefore, we found that this device can have extremely large transconductance at liquid
helium temperatures resulting in small RC time constants for switching and large unity gain
frequency.

We also investigated the performance of the device when instead of doping one-half of
the well uniformly, it is delta-doped with a series of planar doped sheets. Delta doping has
been shown to result in improved performance for MESFETs by several groups, but primarily
because of increased carrier concentration. We found that delta doping in a VMT does improve
the switching speed by increasing the momentum relaxation rate dramatically. The physics
underlying this effect is extremely interesting. If the scattering from the various delta doped layers
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are correlated, that is the scattering amplitudes add in phase, then the strength of the scattering
interaction is increased many-fold. On the other hand, if the scatterings are uncorrelated, then
scattering is not enhanced significantly. We expect strong correlations between the delta-doped
layers at low temperatures so that delta-doping may indeed result in better device performance.
Such realizations are extremely useful for the design of VMTs.

Relevant Publications:

e Modulated Interface Roughness Scattering in Quantum Wells and its Device Applications,
Suyog Bhobe, Wolfgang Porod and Supriyo Bandyopadhyay, Surface and Interface Anal-
ysis, 14, 590 (1989).

e Modulation of Impurity Scattering Rates by Wavefunction Engineering and Its Device
Applications, Suyog Bhobe, Wolfgang Porod and Supriyo Bandyopadhyay, Solid State
Electronics, 32, 1651 (1989)

¢ Tailoring Transport Properties By Wavefunction Engineering in Quantum Wells and its
Device Applications, Suyog Bhobe, Wolfgang Porod and Supriyo Bandyopadhyay, Nanos-
tructure Physics and Fabrication, eds. M. A. Reed and W. P. Kirk, (Academic Press,
Boston, 1989), p. 201.

2.2: Quantum Wires and Their Importance

Quantum wire structures are expected to provide extremely high electron mobility at low
enough temperatures due to the drastic suppression of elastic scatterings that dominate at cryo-
genic temperatures. Additionally, they show strong optical non-linearities and high optical
absorption due to extremely large density of states. Moreover, quantum wire structures have
recently found a large number of applications in “waveguide electronics” (or mesoscopic phe-
nomena) where electron transport is analogous to microwave propagation in a waveguide. It has
also been claimed by us that the performance of certain quantum devices improve dramatically
if they are realized from quantum wires rather than quantum wells.

The obvious method for realizing quantum wells is by etching mesas or V-grooves into
quantum wells. This is a challenging process since precise control of etching is required so
as not to deplete the wires of mobile carriers due to Fermi level pinning. We have proposed
an alternate technique where quantum confinement into one-dimensionality is achieved through
space-charge effect rather than using quantum wells. The main feature of our design is that the
confinement of electrons in the quasi 1-d wire is exclusively produced by the internal electric
fields resulting from the conduction band discontinuities at crossing heterointerfaces. The idea is
to use 1-d confinement created at the intersection of two 2-d structures. The quasi 1-d quantum
wire can, in principle, be fabricated by crossing two accumulation layers formed along separate
heterointerfaces, thereby realizing an ‘accumulation wire.” Electron confinement is thus solely
provided by the inherent electric fields associated with heterointerfaces, without the need for
confinement in artificial quantum wells. This feature distinguishes our design of a quantum wire




from earlier proposals where confinement in a quantum well was necessary. Our design of the
quantum wire compares to previous designs in the same manner in which a quasi 2-d system in
an accumulation layer compares to a quasi 2-d system in a quantum well.

In particular, we investigate accumulation wires which are produced at the intersection of
two perpendicular heterointerfaces. We study the electronic states at the intersection by solving
Schrédinger’s and Poisson’s equations self-consistently, taking into account the potential discon-
tinuities at the interfaces. An isolated quantum wire will only be produced if the Fermi energy
is such that the electrons accumulate only at the crossing point, but not at the heterointerfaces
themselves. We study under which doping conditions and for which material combinations such
an isolated accumulation wire can be achieved.

Relevant Publications:

o A Proposed Quantum Wire Structure: An ‘Accumulation Wire’ at Crossing Heterointer-
faces, Henry K. Harbury and Wolfgang Porod, J. Vac. Sci. Technol. B 8, 923 (1990).

e Numerical Study of Electronic States in a Quantum Wire at Crossing Heterointerfaces,

Computational Electronics, Semiconductor Transport and Device Simulation, ed. by
K. Hess, J. P. Leburton, and U. Ravaioli (Kluwer Academic Publishers, 1990), p. 243.

2.3: The Aharonov-Bohm Effect

2.3.1: Aharonov-Bohm Interferometers

The Aharonov-Bohm effect has long been proposed as a quantum interference effect for re-
alizing novel electronic devices with very low power-delay product, multifunctionality and low
threshold voltage. The low threshold voltage is especially attractive since that makes it possible
to switch these devices optically rather than electronically resulting in ultrafast opto-electronic
switches whose switching speed is not limited by any RC time constant.! The major drawback
of these devices however is that switching is accomplished through quantum-mechanical inter-
ference which requires tight control over an electron’s phase throughout the structure. In the
case of ballistic transport, when no elastic or inelastic scattering takes place, there are two ef-
fects that introduce an uncertainty in the phase and thereby dilutes the interference effect - (a).
thermal spread in the longitudinal (along the direction of current flow) momenta of electrons
which increases with increasing temperature, and (b). spread in the transverse momenta in poly-
dimensional structures. In one-dimensional interferometers, the latter cause can be eliminated
so that these structures can operate at higher temperatures. The advantage of one-dimensional
structures is even more pronounced when transport in diffusive rather than ballistic. In that
case, one dimensional confinement can drastically reduce elastic scattering which helps to retain
control over the electron’s transit time which determines the electrostatic Aharonov-Bohm phase
shift.

10ptical switching using virtual charge polarization induced by sub-bandgap optical excitation results in

ultrafst switching since the switching time is neither limited by transit time, nor by RC time constant, nor
by radiative recombination lifetimes.




Based on the above realizations, we have designed new electrostatic Aharonov-Bohm in-
terferometers that could operate at 77 K which is far above the temperature of operation of
conventional interferometers (typically less than 4.2 K). These structures, albeit difficult to fab-
ricate, are realizable with present day technology. They utilize double quantum wires fabricated
by etching a very narrow V-groove (presumably by focussed ion beam etching) in a quantum
well. Our analysis reveals that these structures can provide ~ 90 % modulation of the conduc-
tance at 77 K. We later extended our analysis to examine the performance of both 2-d and 1-d
interferometers in the diffusive regime. This resulted in the determination of temperature-carrier
concentration maps for obtaining various levels of performance for both 1-d and 2-d interfer-
ometers. Such results are extremely useful to device engineers in designing Aharonov-Bohm
devices.

2.3.2: Twin Minima in Electrostatic Aharonov-Bohm Conductance Oscillations

Our research with the electrostatic Ahzronov-Bohm effect also revealed a novel fundamental
feature associated with this effect in 1-d rings that was hitherto unsuspected. We predicted
the existence of two different types of conductance minima in the conductance oscillations
arising from different interference conditions. This doubles the frequency of oscillations making
it twice that predicted by the Aharonov-Bohm effect. This novel feature, which gives rise to
secondary minima, is not inhibited strongly by elastic scattering but is less robust than the primary
Aharonov-Bohm effect so that it can be observed only at low temperatures. The opposite voltage
dependences of the primary and secondary minima helps to distinguish between the two types
and may serve as a fundamental test for the observation of the electrostatic Aharonov-Bohm
effect.

2.3.3: Mode Quenching

We also found that interface roughness scattering can cause a peculiar mode quenching
effect in quasi one dimensional Aharonov-Bohm interferometers whereby a propagating mode
can suddenly become evanescent in a region containing an island disorder. This effect leaves its
fingerprints on the oscillation characteristics in the form of well resolved kinks.

Relevant Publications:

e Double Quantum Wire Aharonov-Bohm Interferometers for Possible LN, Temperature
Operation, S. Bandyopadhyay and W. Porod, Superlattices and Microstructures, 5, 239
(1989).

e Performance of Electrostatic Aharonov-Bohm Interferometers in the Diffusive Regime,
Appl. Phys. Lett., 53, 2323 (1989).

¢ Doubled Frequency of the Conductance Minima in Electrostatic Aharonov-Bohm Oscilla-
tions in One-dimensional Rings, M. Cahay, S. Bandyopadhyay and H. L. Grubin, Nanos-
tructure Physics and Fabrication, eds. M. A. Reed and W. P. Kirk, (Academic Press,
Boston, 1989), p. 407.

e Two Types of Conductance Minima in Electrostatic Aharonov-Bohm Conductance Os-
cillations, M. Cahay, S. Bandyopadhyay and H. L. Grubin, Phys. Rev. B., 39, 12989
(1989).




2.4: Coherence and Interference Phenomena in Mesoscopic Nanostructures

2.4.1: Optical Fluctuations due to Coherence

Fluctuation effects in the conductance of nanostructures arising from quantum interference
of electrons have been studied widely in the context of universal conductance fluctuations.
Recently, we predicted a novel quantum interference phenomenon that gives rise to fluctuations
in the optical spectra of disordered nanostructures when the inelastic scattering time in the
structures exceeds the radiative recombination lifetime. This is the first prediction of quantum
fluctuation effects in the optical (rather than transport) properties of nanostructures. This effect
arises as follows. If the dominant process for the relaxation of the optical dipole moment in
the structure is elastic scattering which preserves phase relationships between the electron and
hole states, then the optical spectrum of the structure will depend on these phase relationships
and change if these phase relationships are altered by an external electric or magnetic field. In
other words, the spectrum will fluctuate randomly but reproducibly in an external field. These
fluctuations will be sample-specific since the phase-relationships in the absence of any field
depends on the exact “configuration” of the elastic scatterers within the sample. Consequently,
the fluctuation pattern will be a fingerprint of the exact locations of the defects (elastic scattering
centers) within a sample. Since the spectrum depends on the configuration of the defects (elastic
scattering centers) within a sample, it will have a unique consequence on the inhomogeneous
broadening of lineshapes in multi quantum well structures or superlattices. In a lateral surface
superlattice, each quantum dot will have a slightly different optical spectrum if the dots merely
have different impurity configurations but are otherwise identical. This phenomenon therefore
sets a fundamental lower limit to the inhomogeneous broadening in a superlattice structure.

Because of the essential similarity between the physics of this effect and that of “universal
conductance fluctuations”, we consider this effect to be an optical analog of the conductance
fluctuations.

This effect will have fundamental implications for optical switching devices in integrated
arrays.

2.4.2: Quantum Interference Effects in Transient Transport.

We also extended the formalism that we used to study the optical fluctuation effect to the study
of transient transport effects in semiconductor nanostructures. We found that if the momentum
relaxation time in a structure is shorter than the transit time which in turn is shorter than the
inelastic scattering time (i.e. the momentum relaxes entirely due to elastic scattering), then
the mobility in a disordered structure (calculated quantum-mechanically) depends not only the
degree of disorder, but also on the precise configuration of the disorder (i.e. the locations
of whe scattering centers). We compared the results of the quantum-mechanical calculation of
mobility with results obtained from the Fermi’s Golden Rule formalism which does not account
for interference between the scatterers. It was found that the quantum-mechanical result depends
on the configuration unlike the Fermi’s Golden Rule result and also the quantum mechanical
result is always smaller in magnitude probably because of the coherent back-scattering effect
that gives rise to Anderson localization.




Relevant Publications:

¢ Fluctuations in the Optical Spectra of Disordered Microstructures Due to Quantum Inter-
ference Effects, S. Bandyopadhyay, Phys. Rev. B., 38, 7466 (1988).

o Quantum Interference Effects in Transient Electronic Transport, D. R. Poole and S. Bandy-
opadhyay, J. Appl. Phys., 66 5422 (1989).

¢ Quantum Phase Coherent Effects in the Photoluminescence Spectra of Disoredered Meso-
scopic Structures, Supriyo Bandyopadhyay, Nanostructure Physics and Fabrication, eds.
M. A. Reed and W. P. Kirk, (Academic Press, Boston, 1989), p. 201.

2.5: Quantum Effects in Real-Space Transfer

2.5.1: Phonon Assisted Transitions From Bound to Unbound States

It is well known that quantum wells, in addition to confined bound states, produce resonant
continuum states. These resonant states are a consequence of the reflections, and the consecu-
tive interference, of the electronic wavefunctions at the edges of the quantum well. While the
existence of these so-called virtual resonant states has been recognized, their influence on elec-
tronic transport has received little attention. We investigated the influence of these continuum
resonances on the transfer of electrons in and out of quantum wells.

We find that the matrix elements which determine scattering rates exhibit structure at the
resonant energies. This leads to suppression of scattering by polar optical phonons relative to
non-polar optical and acoustic phonon scattering. The suppression by the effective matrix element
of small ¢, scattering can be understood from a simple qualitative argument. Resonant continuum
states correspond to states which are orthogonal to bound states inside the well. This condition
of orthogonality implies that for ¢, = 0, the matrix element connecting bound states with
resonant states vanishes. Thus the total scattering rate is dominated by the contribution of those
phonons with larger momentum components normal to the interface. Polar optical scattering is
predominantly small ¢, forward scattering. We conclude, therefore that the polar optical scattering
rate will be suppressed relative to processes not so strongly weighted toward forward scattering.
This implies that it is non-polar optical and acoustic phonons that are primarily responsible for
carriers scattering out of the well and also their capture.

2.5.2: Anisotropy in Real Space Transfer

We have also studied the dependence of the real-space transfer rates upon the shape of the
confining quantum well. We discovered a rather surprising asymmetry in the escape rates from
wells with non-symmetrical potential profiles. Consider, for example, a well has one abrupt edge
(confining wall) and one edge which is smoothly graded. Electrons transferred out of the well
by polar optical phonon scattering will preferentially scatter in the direction of the more abrupt
interface. We explored this asymmetry in several potential profiles. The effect has its origin
in the overlap between the initial-state wavefunction and the final scattered-state wavefunction.
This phenomenon may prove very useful in the design of real-space transfer devices.




Relevant Publications:

o Escape from Quantum Wells by Polar Optical Phonon Scattering, Craig S. Lent, Lie Liang
and Wolfgang Porod, Appl. Phys. Lett. 54, 2315 (1989).

e Real Space Transfer Rates for Polar Optical Phonon Scattering from Asymmetric Quantum
Wells, Craig S. Lent and Lie Liang, Solid State Electronics 32, 1479 (1989).

o Escape from Quantum Wells via Polar Optical Phonon Scattering, Lie Liang and Craig S.
Lent, J. Appl. Phys. 68 1741 (1990).

2.6: The Quantum Transmitting Boundary Method (QTBM)

A long-standing difficulty in computing the solutions to the Schrddinger equat*n for current-
carrying states is the difficulty of expressing the boundary conditions for the wavefunction without
prior knowledge of the transmission and reflection coefficients. We developed a technique for
handling these transmitting boundaries which enables us to solve directly for the wavefunction
of the current-carrying states in two dimensions. This is a very important tool in investigating
ballistic quantum transport. It allows us to efficiently find both the transmission coefficients
necessary for calculating the total current, and the charge density inside the device region,
necessary for including self-consistent effects. Because the complete wavefunction is calculated,
any quantum mechanical observable can be computed. An early benefit of this capability was
the identification of vortices in the current inside a cavity (see discussion in Section 2.5.5).

Relevant Publications:

e Numerical Simulation of Single-Electron Transmission Through Two Dimensional Quan-
tum Device by the Finite Element Method, DJ. Kirkner, Craig S. Lent, and Srinivas
Sivaprakasam, International Journal for Numerical Methods in Engineering 29, 1527
(1990).

e The Quantum Transmitting Boundary Method, Craig S. Lent and D.J. Kirkner, J. Appl.
Phys. 67, 6353 (1990).

2.7: Electron Transport in Coherent Ballistic Channels

2.7.1: Nonlinear Conductance of Ballistic Constrictions

Much attention has focussed on interpreting the first experiments which showed that conduc-
tance through a very small ballistic channel is quantized. This has been confirmed experimentally
and the theory is now well understood. The quantization hold only for the linear response regime,
however, when the voltage drop from one end of the channel to the other is very small. We have
employed the QTBM to calculate the I-V curve for a constriction in a quantum channel when
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the voltage drop is not small — the non-linear response. We chose a simple linear model for the
potential drop down the length of the constriction. The contributions from all the occupied states
were calculated at non-zero temperature. Our results showed a saturation in the current through
the constriction. The saturation current varied nearly linearly with the width of the constriction.
We see a smooth transition to quantized conduction at the constriction vanishes and we recover
the straight-channel results. Since the constriction width can be controlled electrostatically, this
response is very analogous to that of a conventional JFET.

2.7.2: Space-Charge Effects in Ballistic Constrictions

The importance of a built-in potential caused by space charge effect in narrow ballistic
constrictions was investigated using a scattering matrix method coupled with a boundary element
technique. It was found that in the linear response regime, the built in potential does not
cause qualitative changes in the transport characteristics although it certainly causes quantitative
changes.

2.7.3: Transmission Through a Bend in an Electron Waveguide

If ultimately quantum waveguide devices are to be interconnected, it is important to establish
whether bends in waveguides present significant sources of reflection and mode-mixing. We
again employed the QTBM to calculate the transmission through a circular, right-angle bend
in an electron waveguide. We examined an idealized case of infinitely hard walls, and a more
realistic model with softer parabolic walls. The latter allow some leakage around the bend by
tunneling. Our calculation established the the problem of reflection by such a bend can easily
be minimized with modest design considerations. We found that mode-mixing is significant and
may require single-moded operation of waveguide devices.

2.7.4: Electron Waveguide Cavities -

The wave nature of electrons in a ballistic channel implies that localized regions of the channel
which are wider can behave like resonant cavities in microwave theory. One therefore expects
transmission resonances at energies which depend on the cavity geometry. We have explored
geometrical effects in transmission through symmetric cavities. Our numerical approach, using
the QTBM, includes automatically the effects of all evanescent channel modes. Further, we were
able to study cavities with soft walls rather than restricting ourselves to the idealized hard-wall
case. Several device designs have been proposed which exploit the dramatic sensitivity of the
transmission to the cavity geometry. Small changes can be made (electrostatically) to the cavity
dimensions, which result in large changes in the transmitted current. Because all of the theory
of such devices relies on models with infinitely hard cavity walls, it is important to ascertain
whether the rapid variation of the transmission is an artifact of this feature of the model, or
is more robust. We calculated the transmission coefficient through cavities with soft potential
walls and found qualitatively similar abruptness in turn-on and turn-off of the transmission, thus
verifying the robust character of the effect.

2.7.5: Current Vortex Formation

We examined the flow of current in a ballistic waveguide cavity. This is directly accessible
because the QTBM yields the full wavefunction everywhere, Evaluating the current density in
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the cavity region, we found the very surprising result that the current formed vortices. The
center of the vortex is a point where the complex phase of the wavefunction is singular and the
probability density vanishes. At a given energy, many vortices may be formed. If the cavity
is symmetric, the vorticity occurs in vortex-antivortex pairs so the wavefunction as a whole
has no net angular momentum. If the cavity is asymmetric, however, vortices of one sign may
dominate, yielding a net angular momentum. This is possible only because the time-reversal
symmetry of the Hamiltonian is broken by the boundary conditions at the current-carrying leads.
(Note that no magnetic field is imposed here.)

We studied a circular resonant cavity which is connected by a tunnel barrier to one side of
a straight waveguide channel. This structure was designed to maximize vorticity of one sign.
We found that, indeed, a single very strong current vortex is present at nearly all energies.
Resonances associated with the bound states of the circular cavity produce huge increases in
the charge stored in the cavity. Such resonant structures may be useful as quantum capacitors.
Additionally, the ability to couple directly states with non-zero angular momentum to current
carrying states may yield novel opto-electronic coupling.

Relevant Publications:

e A Two-dimensional Hot Carrier Injector for Electron Waveguide Structures, Craig S. Lent,
Srinivas Sivaprakasam and D.J. Kirkner, Solid State Electronics 32, 1137 (1989).

e Calculation of Ballistic Transport in Two-dimensional Quantum Structures using the Finite
Element Method, Craig S. Lent, S. Sivaprakasam and D.J. Kirkner, in Nanostructure
Physics and Fabrication, 279, edited by M. A. Reed and W. P. Kirk, (Academic Press,
Boston, 1989),

e Scattering Matrix Analysis of Electron Transport in Disordered Aharonov-Bohm Interfer-
ometers and Ballistic Constrictions, M. Cahay, S. Bandyopadhyay and H. R. Frohne, J.
Vac. Sci. Technol., 8, 1399 (1990).

e Transmission Through a Bend in a Quantum Waveguide, Craig S. Lent, Appl. Phys. Lett.
56, 2554 (1990).

e Quantum Electron Waveguides: Bends, Constrictions, and Cavities, Craig S. Lent and S.
Sivaprakasam, in Nanostructures and Microstructure Correlation with Physical Proper-
ties of Semiconductors, SPIE Proceedings Vol. 1284, 31, edited by H.G. Craighead and
J.M. Gibson, (SPIE, Bellingham, Washington, 1990).

e Calculation of Transport Through Ballistic Quantum Structures, Craig S. Lent, in Com-
putational Electronics, edited by K. Hess, J.P. Leburton, and U. Ravaioli, 259, (Kluwer,
Boston, 1990).

o Ballistic Current Vortex Excitations in Electron Waveguide Structures, Craig S. Lent, Appl.
Phys. Lett. 57, 1678 (1990).
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2.8: Diffusive Quantum Transport

We developed a scattering matrix method to study diffusive quantum transport in collabo-
ration with Prof. Marc Cahay of the Department of Electrical and Computer Engineering in
the University of Cincinnati. The method is ideally suited to study quantum transport in rel-
atively large and heavily doped structures where other methods such as the recursive Green’s
function formalism will be computationally inefficient. The scattering matrix method has been
successfully applied to reproduce the results of Anderson localization and universal conductance
fluctuations in disordered structures. In particular, we have used this method to study the role of
evanescent states in quantum transport. Many surprising results were found including the fact
that evanescent states have a strong influence on the localization length and on the probability
distribution of conductances and their higher order cumulants.

Relevant Publications:

¢ Influence of Evanescent States on Quantum Transport Through an Array of Elastic Scat-
terers, M. Cahay, S. Bandyopadhyay, M. A. Osman, and H. L. Grubin, Surface Science
228, 301 (1990).

e The Generalized Scattering Matrix Approach: An Efficient Technique for Modeling Quan-
tum Transport in Relatively Large and Heavily Doped Structures, S. Bandyopadhyay and
M. Cahay, Computational Electronics, (Kluwer Academic Press, Norwell, 1990), p. 223

e Numerical Study of the Higher Order Moments in Conductance Fluctuations in Meso-
scopic Structures, P. Marzolf, M. Cahay and S. Bandyopadhyay, Computational Electron-
ics, (Kluwer Academic Press, Norwell, 1990), p. 263.

2.9: Magnetic Edge States

In an applied magnetic field, the electronic states in a confined structure break into two classes:
states localized by the magnetic field (Landau levels), and circulating states which traverse the
edges of the structure (edge states). We studied the formation of these states in a quantum
dot structure as the magnetic field increases. Since the high-field limit produces degenerate
Landau levels, this process is sometimes know as Landau condensation. States initially split by
the presence of the confining potential, become degenerate as they are localized in the interior
of the dot. The edge states corresponding to orbits which skip around the periphery yield a
paramagnetic correction to the free electron diamagnetism. Semiclassical orbit are frequently
invoked to explain edge-state behavior. We compared current densities calculated from the
wavefunction to the semiclassical orbits. We found that a naive picture predicted even the
direction of circulation incorrectly. We formulated a connection between the semiclassical orbits
and the quantum results. The effects of softer confining potentials was also examined.
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Relevant Publication:

e Edge States in a Circular Quantum Dot, Craig S. Lent Phys. Rev. B 43, 4179 (1991).

2.10: Analysis of Quantum Devices — Merits and Drawbacks

In collaboration with Prof. Gary Bernstein, we investigated the scope of lateral quantum
devices utilizing the Aharonov-Bohm effect, quantum diffraction, and stub tuning in T-structure
electron waveguides. With respect to switching speed, we found that contrary to popular belief,
these devices are not necessarily slow. Even though their current carrying capability is small,
the threshold voltages for switching are also small so that the overall RC time constant can be
quite small.

The small threshold voltage also makes it possible to switch the devices optically rather
than electronically thereby eliminating the RC time constant limitation altogether. However,
the major drawback of these devices is the extreme sensitivity of the characteristics to slight
structural variations which may inhibit their applications in integrated circuits. In addition, the
fact that these devices typically operate in the linear response regime also preclude their use in
many conventional applications such as amplification or logic nodes requiring signal restoration.
Overall, we found that the most attractive feature of these devices is their multifunctionality
which makes it possible to use a single device perform the task of many devices.

Relevant Publications:

e Analysis of the Device Performance of Quantum Interference Transistors Utilizing Ultra-
small Semiconductor T-structures, S. Subramaniam, S. Bandyopadhyay and W. Porod, J.
Appl. Phys. 68, 4861 (1990).

e Quantum Devices Based on Phase Coherent Lateral Quantum Transport, S. Bandyopad-
hyay, G. H. Bernstein and W. Porod, Nanostructure Physics and Fabrication, eds. M. A.
Reed and W. P. Kirk, (Academic Press, Boston, 1989), p. 183.

2.11: Landauer Resistance of Finite Repeated Structures

Periodic structures are of interest since they are useful for many device applications and also
for the study of fundamental band structure effects such as Bloch oscillations. We have also
derived many useful theorems pertaining to the Landauer resistance of finite periodic structures.
The Landauer resistance is the quantum-mechanical resistance of a structure in the linear response
regime and is related to the transmission properties of electrons through the structures. These
theorems, along with a sum rule that we derived, can be applied to the calculation of bandstructure
of superlattices and their transmission properties.

Relevant Publications:

e Properties of the Landauer Resistance of Finite Repeated Structures, M. Cahay and S.
Bandyopadhyay, Phys. Rev. B., 42, 5100 (1990).
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Modulated Interfacial Disorder Scattering in
Quantum Wells and its Device Applications
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We investigate the nature of the electronic states and transient transport in a single, selectively doped, GaAs
quantum well where the dopants are confined near one of the interfaces. The electronic states are caiculated from
self-consisteat solutions of the Schrodinger and Poisson equations snd are used to compute the scartering rates for
electrons interacting with the dopants. These scartering rates are then used in a Moute Carlo simulation to study
the time-depeadent decay of the momentum of an ensemble of electrons traveling parailel to the interface.

We aiso investigate the momentum relaxation of electrons injected into the well under different transverse
electric fields that skew the wavefunction towards one of the interfaces. When the wavefunction is skewed away
from the doped interface, the momentum reisxation time (and hence the mobility) increases dramatically by three
orders of magnitude. A device application of this phenomenon. namely the operation of a velocity modulation
transistor (VMT), bas been investigated, with special focus on the transistor’s switching speed.

INTRODUCTION

The progress of microelectronics and computer tech-
nology relies heavily on the continued development of
faster and smaller electronic devices. Over the past
decade, electronic devices have shrunk rapidly in size
and have concomitantly become faster, but this trend
seems to be saturating. It is now realized that classical
devices that operate on the principles of classical
physics, have either reached their limits or are about to
reach them. whereupon entirely new concepts are
required for the next generanon of devices. Future
devices are expected to rely on quantum-mechanical
principles for their operation and utilize quantum-
confined structures such as semiconductor quantum
wells fabricated by molecular beam epitaxy or by
metal-organic chemical vapor deposition.

One such device that has been proposed in the liter-
ature is the velocity modulation transistor (VMT),!
which operates on the basis of ‘wavefunction engineer-
ing’ in a semiconductor quantum well. A velocity modu-
lation transistor is an ultrafast switching device whose
switching time can be smaller than | ps. The concept
that undergirds the operation of this transistor is the
following. Any field effect transistor (FET) is switched
between the ‘on’ and ‘off” states by modulating the con-
ductance of the transistor. The conductance. in
(/7)1 is given by

G=enyu (1

where e is the electronic charge, n, is the carner concen-
tration in the two-dimensional conducting channei
(such as the inversion layer in a conventional
MOSFET) and u is the carrier mobility.

In a conventionai FET, the conductance is modu-
lated by modulating the carrier concentration n,. A

0142-2421/$9/100590-03 303.00
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transverse electric field, applied perpendicular to the
plane of the conducting channel, either depletes the
channel (and the transistor is switched off) or accumu-
lates the channel. in which case the trarsistor 1s turned
on. The problem with this mode of operation is that the
transistor cannot be switched any faster than the time it
takes to move carriers in and out of the channel, which
is typically the transit time of carniers from one contact
(termed ‘source’) to the other (termed ‘drain’). An alter-
native way to realize the switching 1s to modulate the
channel conductance by modulating the mobility u
instead of the concentration n,.. The mobility can
change on timescales of the order of the momentum
relaxation time, which is typically much shorter than
the transit time. Thus, the latter mode of switching is
much faster than the former.

The VMT employs the latter mode of switching. The
mobility is modulated by engineering the electronic
wavefunction inside a quantum well which acts as the
channel. A basic schematic of the VMT is shown in Fig.
1. The quantum well is selectively doped so that one-
half of the well is interspersed with impurntes while the
other half is undoped.

In the absence of any external transverse electric field,
the electronic wavefunction is skewec towards the
doped region in the well where the potential is lower
due to space—charge effects. The application of a trans-
verse electric field (or gate voltage), applied through the
gate terminal in Fig. 1, can lower the potenual on the
undoped side of the well so that the clectrons move
towards the "ndoped side where the mobility 1s higher
due to the absence of in situ impunty scattering. The
gate voitage therefore modulates the mobility of the
electrons by wavefunction engineenng. The transistor is
in the low conductance state (or ‘off* state} when the
gate voltage is zero. and switches on when the gate
voltage 1s turned on. it shall be emphasized that the ‘on’

Recetoed 22 November /988
Accepted 20 Jamuary 1989




-

e

L% T

P v -

| IS U v i P Sl iga s

MODULATED INTERFACIAL DISORDER SCATTERING 591

:

SOURCE

/

DRAIN

HH

g
z

|||— '

Figure 1. Schematc diagram of the velocity modulation tran-
sistor. Only one-haif of the GaAs quantum well is selectively
doped. Cument transport takes place paraliel to the hetero-
interfaces (between the source and drain contacts).

and ‘off” states here refer to high and low conductance
states, as opposed to the customary label for states with
finite and zero current flows. (The wavefunctions inside
the well in the ‘off* and ‘on’ states are depicted in Figs 2
and 3. respectively).

The type of VMT just discussed was proposed by
Hamaguchi and co-workers.?3 It is slightly different
from the original proposal of Sakaki,' where the mobil-
ity was to be moduiated by pushing the wavefunction
closer to the well interface with a transverse electric
field. This increases the interface roughness scattering
and decreases the mobility. The probiem with the orig-
inal design of Ref. 1 is that the transistor is ‘normally
on’ (at zero gate voltage), which causes stand-by power
dissipation in a circuit, whereas in the present design
the transistor is ‘normally off’ so that there is less stand-
by power dissipation. The present design is therefore
analogous to an enhancement mode FET, whereas the
oniginal design is analogous to a depletion mode FET.
Note also that in the onginal design, the channel
current decreases with increasing gate voitage so that
the transconductance of the transistor is negative
whereas in the present design the transconductance is
positive. The opposite sign of the transconductance in
the two cases presents the intriguing possibility of using
the two designs to realize ultrafast compliementary logic.

In the next section we outline our model for analysis
of the VMT, and then we present the computational
scheme for caiculating the seclf-consistent electronic
wavefunctions.

THEORY

The electronic states of a quasi two-dimensional system.,
such as a quantum well, have been studied widely in the
literature.*” Following the usual treatment, we
separate the electronic motion parallel to the interface
from the motion normal to the interface. As long as the
effective mass of the electrons in the weil is spatiaily
invanant, the parallel motion is decoupied from tne per-
pendicular motion. We label the direction perpendicular
to the interfaces as the 2 direction and the piane paraliel
to the interfaces as the -y plane. Since the Hamilto-
nian is invariant in X and j, the wavevectors k, and k,

are ‘good quantum numbers’, so that the wavefunction
1s given by

w(x, y, 2) = explik, x) explik, Y (2) (2)

The eigenstates in the x and y directions are plane
wave states labeled by the wavevector quantum
numbers &, and k,, while the eigenstates in the Z direc-
tion are quantized sub-band states denoted by ¥.(z),
where m is the sub-band index. The normalized
envelope functions for the mth sub-band can be
obtained from the Schrodinger equation

R?* d3y,(2)
— g+ [—ed(d) + V@Wala) = Envuld) ,
(

" The potential V(z) accounts for all external fields. as

well as any band offset. The potential ¢(z) is the electro-
static potential given by the solution of the one-
dimensional Poisson equation

dip(z) e [

dz? e
The concentration Ny *(z) (in units of per unit volume)
denotes the den.ity of ionized background impunties.
Each sub-band with energy E,, contnibutes to the total
electron concentration with N, electrons per umt area
given by

m‘k‘ T (EF - E,‘)
= —_— 5
N, 5 In [l + exp P :] (5)

/

M
Z lewm(z’lz - "VD*(Z)] '4)

m=1

The Fermi energy is denoted by Er and we determune it
here such that the total charge inside the quantum well
is zero (space charge neutrality).

NUMERICAL METHOD

The one-dimensional Schrédinger and Poisson equa-
tions were discretized using the finite eiement method
(FEM).® This technique has recently been applied to the
numerical solution of quantum mechanical problems.’
Linear basis functions were used to interpoiate the
wavefunction and space charge potental between nodal
values. For the purpose of analysis. a 500-A quantum
well was considered. The number of nodal points in the
quantum well was taken to be 2000. Sufficiently con-
verged solutions were obtained with this number of
nodal points. It was assumed that the right half of the
quantum well was doped by donor impurities, so that
all the disorder was confined to near the right interface
of the well rather than being distributed umformly
throughout the well. In ail our analyses, the ambient
temperature was assumed to be 4.2 K.

The eigenvalues E,, and the eigenfunctions y,(2) were
first obtained by solving the Schrédinger equation. For
this, the quantum well was assumed to be infinitely
deep, and homogeneous boundary conditions were
imposed on the eigenfunction. The assumption of an
infinitely deep well greatly simplifies the numencal cal-
culation, and resuits in accurate eigenvalues for enermes
which are not too close to the edge of the quantum
well.? The eigenfunctions thus obtained were used in the
Poisson equation to yield the space charge potential. To
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Figure 2. Seif-consistent resuits of the quasi two-dimensional eiectron gas inside the quantum well for zero external bias. Shown are the
potential profile, the sub-band energies and the square of the corresponding wavefunctions.

solve the Poisson equation, the space charge potential
and its slope were assumed to be zero at the right end of
the quantum well. This boundary condition reflects
overall charge neutrality for the quantum well.

The following procedure was used to solve iteratively
the coupled system of Schrodinger’s and Poisson's
equations. Let ¢4 be the potential input to the Schréd-
inger equation in the nth iteration. The wavefunctions
obtained by solving the Schrédinger equation were used
to caiculate the charge density on the right-hand side of
the Poisson equation. The solution of the Poisson equa-
tion in the nth iteration is denoted by 9,". The next
update for the potential to be used in the (n + 1)th iter-
ation in the Schrodinger equation is then obtained from

7 ="+ (D —ds") - 6
where a is the so-called convergence factor., which is
taken from the interval 0.0-1.0. A high « vaiue can give
rapid convergence, but may cause oscillations. A low «
value. on the other hand. reduces the rate of con-
vergence but eliminates such oscillations. The iterations
were continued until convergence was achieved. Con-
vergence was deemed satisfactory when (¢37! — ¢4")/
¢s" < & where ¢ was set to 0.0001. A lower vaiue of ¢
did not resuit in any significant increase in accuracy.

The squares of the wavefunctions were integrated
over the doped region in the quantum weli to obtain the
‘effective’ number of impurities, N, that interact in situ
with the eiectrons

Ner=2 J‘No(x” Valx)|? dx M

The above integration is performed over the selectively
doped regions of the quantum well. This ‘effective’
number was calculated for various gate voltages that
skew the wavefunctions by different amounts. From the
‘effective’ number, the scattering rates for impurity intes-
action,!® 1/1(E), were calculated using Fermi's Golden
Rule

1 ___Nu m*e*
k) L /i + K

where k is the Fermi wavevector given by k = ¢§n_m.
where n, is the two-dimensional eiectron concentration,

(8)

m* is the effective mass of electrons in GaAs. ¢ is the
dielectric constant and 4 is the screening constant. Since
the quantum well in our model is relatively wide. we
used the bulk Debye screening model to calculate 4

No
T

The screening length 1/4 turns out to be ca. 11 A in
our case. Because of such strong screening (which is
caused by the heavy doping), the scattering rates are
rather small, typically between 2 x 107 and 8 x 10°s™".
The strong screening, however, allows us to neglect the
effects of remote impurity scattering when the wave-
function is skewed away from the doped region of the
well.

The scattering rates obtained from Eqns (7), (8) and
(9) were then used in a Monte Carlo simulation‘® to
extract the momentum decay characteristics of an
ensemble of electrons injected into the quantum weil
with the Fermi velocity. The Monte Carlo simulation
was used to predict the momentum relaxation rate for
various gate voitages. In the simulation, we have con-
sidered only in situ impurity scattering and neglected
remote impurity scattering because of the strong screen-
ing. We have also neglected phonon scattering based on
the premise that at 4.2 K, phonon interactions are sig-
nificantly weaker than impurity interactions. In addi-
tion, since there is no electric field in the direction of
electron motion, the electrons never gain enough energy
to spontancously emit polar optical phonons. Thus,
there is no dissipation in our system. The simulations
were run for sufficiently long times to ensure that the
momentumn relaxes to zero before the simulation is
terminated. Each simulation was performed for an
ensemble of 10000 electrons to obtain statistically reli-
able estimates.

9

A=e

RESULTS

We have performed calculations for a quantum weil
that is 500 A wide. The right haif of the weil, from 250
to 500 A, is selectively doped with donors. We chose a

S R
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Figure 3. Self-consistent resuits of the quasi two-dimensional electron gas inside the quantum well for an external bias of 0.4 V. Shown
are the potentiai profile, the sub-band energies and the square of the corresponding wavefunctions.

doping concentration of Np = 2 x 1023 m ™2, This cor-
responds to a density of n, = 5 x 10'* m~?2 of the quasi
two-dimensional electron gas.

In our calculations, we assume that all donors are
ionized. i.e. that they contribute to the positive back-
ground charge in the right haif of the quantum weii.
This is a reasonable approximation for very shailow-
level donors at 4.2 K. All electrons are assumed to
remain in the quantum well and not to spill over to the
barriers, resuiting in a constant density of the quasi
two-dimensional electron gas.

We show typical resuits of our calculations in the fol-
lowing figures. Figure 2 shows the potential profile
inside the quantum well, with the corresponding wave-
functions for zero gate bias. Figure 3 displays the same
data for a gate bias of 0.4 V. All resuits are valid for a
temperature of 4.2 K.

We see that by increasing the bias, the wavefunctions
are indeed pushed to one side of the well—the undoped
side in this case—which will increase the overail mobil-
ity. The variation of the Fermi level and sub-band ener-
gies with gate bias is also shown in Fig. 4. Note that all
energies are measured with respect to the potential
energy at the night edge of the quantum well, which is
the energy associated with the unscreened externally
applied gate bias (cf. also Figs 2 and 3).

400.00

Table | shows the rates for ionized impurity scat-
tering for various gate biases. These rates were calcu-
lated from Eqns (7), (8) and (9). Note that the vanation
in the scattering rates spans almost three orders of mag-
nitude. This shows the extreme sensitivity of the scat-
tering rate to the gate bias.

The scattering rates given in Table 1 were used in a
Monte Carlo simulation of electron transport to extract
the momentum decay characteristics and the momen-
tum relaxation time. Figure 5 shows the various
momentum decay characteristics for various gate biases.
The momentum relaxation time is defined as the time
that elapses before the momentum decays to 1/e times
its initial value. From the momentum relaxation time,
we can calculate the effective ‘mobility’ in the quantum

-

Table 1. Scartering rates vs. gate voltage

Gate voitage (V) Scatenng rate (8°')
0.0 8 x10°*
0.1 6 x10°
0.2 1 x10°
0.3 2x10°
0.4 2x107

Energy (meV)
N (2]
8 8
8 8

8
8

0.25 0.50

Gate Voltage (V)
Figure 4. Varistion of the sub-band energies with gate biss. The varistion of the Fermi level, comresponding to charge neutrality, is aiso

shown.
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Figure 5. Momentum decay for an ensemble of electrons with initially aligned momenta. Note the large variation in the momentum decay

tumes upon changes of the gate bias.

well by using the well-known formula

u= -f—;-f (10)
Once the mobility is known, the conductance of the
VMT can be caicuiated from Eqn (1). Table 2 lists the
conductances for various gate biases. Note the conduc-
tance can be modulated over approximately three
orders of magnitude (which gives a peak-to-valley ratio
of 1000 for the current through the VMT) by varying
the gate bias over a range of only 400 mV. This modu-
lation can be achieved typically on timescales of the
order of the momentum relaxation time. In our simula-

tion. the momentum relaxation time is rather long. of

the order of 10”7 ' s. which is caused by the fact that the
impurity scattering is strongly screened by the rather
large eiectron concentration. For ultrafast switching, the
conductance modulation must be achieved in timescaies
of the order of a picosecond or less. Thus. our resuits

Table 2. Conductance vs. gate voitage

Gate vohage (V) Conductance (Q/0) '
0.0 0.255
0.1 0.837
0.2 2.126
0.3 19.13
04 191.31

indicate that, for optimum performance. the quantum
well must be refatively lightly doped so that the carner
concentration (and hence the screening) is much lower.

CONCLUSION

We have investigated electronic transport in a quantum
well using the detailed nature of the electronic wave-
functions in the well. The results are self-consistent
insofar as they account for space—charge effects. We
have specifically investigated an intriguing device appli-
cation of wavefunction engineering in a quantum well.
namely the operation of a velocity modulation tran-
sistor. We found that such a transistor can be switched
by a relatively small gate voltage of 400 mV to yieid a
peak-to-valley ratio of the ‘on’ and ‘off’ conductance
approaching a factor of 1000. This gives nse to an
extremely large transconductance, which translates into
an extremely large frequency range of operation for the
VMT that could be orders of magnitude larger than
those achievable with conventional FETs.
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MODULATION OF IMPURITY SCATTERING RATES BY WAVEFUNCTION ENGINEERING
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ABSTRACT

We investigate impurity - scattering - limited electronic transport in a quasi 2-d electronic system. For the
calculation of the impurity scattering rates, we account for the self - consistent dependence of the electronic states
on the precise configuration of the scattering centers. Based on this, we investigate the physical mechanism of
mobility enhancement in delta-doped semiconductor structures.

KEYWORDS

Delta Doping; Impurity Scattering; Wavefunction Engineering; Monte Carlo

INTRODUCTION

Recent advances in epitaxial growth techniques have made it possible to dope semiconductor microstructures

selectively. A major advantage of selective doping, such as delta-doping, is that the mobility of the resuiting
two-dimensional electron gas can be much higher than what can be attained with uniform doping (Gillman et al.,
1988; Schubert et ai., 1989; Hong et al., 1989). Recently, it was pointed out that spatial ordering of the dopant
atoms in the plane of the delta dopants can aiso lead to a further enhancement of the mobility (Levi et al., 1989).

In this paper, we investigate the physical mechanism of mobility enhancement in delta - doped structures. Our
formalism is based on a quantum-mechanical analysis in which we first evaluate the electronic states in a quantum
well sel -consistently by solving the Schrodinger-Poisson equations. From the electronic states, we calculate the
ezact matrix element for impurity interaction and from this the scattering rate, or alternatively the impurity-
scattering-limited mobility. We then use the scattering rate to perform a Monte Carlo simulation of the momentum
decay of electrons in the quantum well. The momentum relaxation time is estimated from the Monte Carlo
simulation from which the mobility and the conductance can be obtained.

The mobility depends on the precise configuration of the impurities (scattering centers) within the structure
for two reasons. Firstly, the electronic wavefunctions depend on the exact shape of the self-consistent potential
(produced by the space-charges) which in turn depends on the precise locations of the impurities within the
structure. The wavefunctions determine the matrix element so that the scattering rate has an indirect dependence
on the impurity coordinates. Secondly, the Coulombic interaction potential, that appears in the matrix element,
is itself an explicit function of the impurity coordinates. This is a direct effect which makes the mobility strongly
configuration-dependent. As a result, the mobility in a structure can be altered significantly by tailoring the
positions of the dopants within the structure,

The so-called velocity modulation transistor (VMT) is a device designed to exploit the modulation of the mobility
by wavefunction engineering (Sakaki, 1982; Hamaguchi et al., 1984). For the study of the switching behavior of
the VMT at low temperatures, the impurity scattering rates have to be known as a function of the applied bias
and the configuration of the impurities. We present here results for the momentum relaxation times for various
gate voltages and various arrangements of delta - doped impurity sheets.

ELECTRONIC STATES

The electronic states of a quasi two-dimensional system have been studied widely in the literature (Stern, 1972
Yokoyama and Hess, 1985). Following the usual treatment, we write the electronic wavefunction, using = (z.,y),

1651
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¥(z,y,2) = ¥ n(2) (1)

where the normalized envelope function m(z) for the mth subband can be obtained from the 1-d Schrédinger
equation, with z denoting the direction perpendicular to the interfaces.

R Pyn(z)

T 2me di?

+ [=ed(2) + V(2)|¥m(2) = Emtm(2) (2)

The potential ¥ (z) in the above equation accounts for all external fields and band offsets. while the patential
#(z) is the seif-consistent space-charge potential obtained from the 1-d Poisson equation.

%ﬁ‘_) = CL[Z Noldm(2) = N3 (2)] (3)
The concentration Nj(z) denotes the density of ionized background impurities. The functional dependence of
Np(z) on the z-coordinate is determined by the nature of the doping. In the case of delta-doping corresponding to
a sheet of charges, N}(z) is a delta-function located at some coordinate z,. For uniform doping. it is a Heaviside
function, and so on. The quantity N, is the contribution to the total electron concentration (per unit area) from
the mth subband. It is given by

m*kgT

Np =
rh?

in[l + ezp( 1)

)

where Ef is the Fermi energy which is determined in every case such that the total charge inside the quaatum
well is zero (space charge neutrality).

IMPURITY SCATTERING RATES

Once the wavefunctions are determined, we compute the impurity scattering rates as follows. The rate for an
electron to be scattered from an initial state & to a final state ¥ by ionized impurities is given by Fermi's Golden

Hule,

- - - = 2
1/r(k,F) = T" =R, / 6m(2)*Vimp(p, 2)d2| 8(Es - Ev) 51

m

where V,,,(p, z) is the impurity interaction potential which is screened Coulombic or Yukawa-type in nature. For
a sheet of charge located at z, it is given by

o2 e-o\\/D’+(l-m)3

4noc‘/pz+(z —-z)?

V""‘?(pvz) = V,,(p,z)= (6)

where ) is the screening constant.

It is important to note that in calculating the matrix element in Equation (5), we considered only intra-subband
transitions. Impurity scattering can cause inter-subband transitions (without involving a change in the total
energy), but the accompanying momentum change is so large that it can only be caused by the short-range (or
large wavevector) components of the scattering potential. Since we consider weakly-screened impurities, this is
not an important process. Finally, the total rate, 1/7(k), is obtained by summing 1/7(k, k") over all final k's,

1/r(k) = 3 1/r(k, ). (7
k

To study the configuration dependence of the impurity scattering rates, we arrange the constant number of dopants
inside the well in several different ways. The case of uniform doping was treated by us in the past (Bhobe and
co - workers, 1989) and will be omitted here. In the present study, we arrange the dopants in a number of delta
- doped sheets whose total number is denoted by Ns. The sheet density of impurities at location z, is denoted
by n,, which is given by n,, = ng/Nj, where ns is the total sheet density of dopants in the quasi 2-d system. As
one can see, the case of uniform doping is a limiting case corresponding to a large number of doped sheets (Vs
— 00) with correspondingly low sheet doping density.

We now distinguish between two different cases for the calculation of the impurity scattering rates. In one case.
which we term the “coherent™ case, the scattering potential Vimg(p, z) is the arithmetic sum of the potentials of
the various delta-spikes
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N
Vl'mp(Pv‘-') = ZV..(ﬂ‘Z) (8)

This corresponds to the situation where the electronic wavefunction is coherently scattered by all delta - doped
sheets. This situation will be realized if ordering in the z-direction exists, yielding correlations of the dopant
location in adjacent impurity sheets. In the second case, which we term the “incoherent” case. the scattering rate
due to all the sheets is the sum of the scattering rates for each individual sheet. This case corresponds to the
situation when there is no correlation or phase coherence between scattering from different sheets.

The scattering rates for the two cases are then

. L Ny ?
7 (R, By = 2-;' | eEH5dp [ nt)l [Z V..(p.z)] dz| §(Ex - Ev) (9)
m =1
and
7 1, \ncoherent 2z il =g 2
1/r(E,F) = ZX | [ FFILp [ (om(2)Vi (0, 2)da] 6(Ew - Ev) (10)
m g=]

~ coherent

It is easy to see that in all cases l/‘r(l?, k")

= - incoheren
> 1/T(k‘k') neohere: t.
Finally, these scaterring rates are used as input to a Monte Carlo computer simulation to study the momentum
decay of an ensemble of electrons subjected to impurity scattering.

RESULTS

We investigate the configuration-dependence of the impurity scattering rates in a GaAs-AlGaAs quantum well
which is 500 A wide. The right half of the weil, from 250 to 500 A, is doped with a fixed concentration of donors
of 5x10'* m~2. For the case of uniform doping, this corresponds to a doping concentration of Np = 2x 10% m~3.
In particular, we consider the cases where this number of dopants are arranged in a discrete number of equally
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Fig. 1. Shown are the self-consistent potential, Fig. 2. Shown are the self-consistent potential,

the lowest two eigenstates and the corresponding the lowest two eigenstates and the corresponding
eigenvalues for a single delta-doped sheet, ¥; = 1. cigenvalues for a single delta-doped sheet, N5 = 1.
No external bias is applied. An external bias of 0.4 V is applied.

spaced delta-doped sheets, V5. We report results for 12 different values of Ns, namely N5 = 1,---10,15,20. All
our calculations are performed for a temperature of 4.2 K.

We assume that all donors are ionized and that all carriers remain inside the quantum well, thus leaving the total
system charge-neutral. This appears justified for shallow donors at 4.2 K. The quasi two-dimensional electron
gas, therefore, has a constant density of ng = 5 x 10'> m~2, independent of the spatial arrangement of the
donors. In Fig. 1 and Fig. 2, we show for two different biases the self-consistent potential and the corresponding
wavefunctions for the case of a single deita-doped sheet, N; = 1. The location of the delta-doped sheet can be
inferred from the cusp in the potential, For the case without external bias, which is depicted in Fig. 1, the
electrons are concentrated at the location of the delta-doped sheet because of the Coulombic attraction of the
ionized donors. The external bias, as can be seen in Fig. 2, has the effect of pushing the carriers into the [eft balf
of the quantum well, which is undoped.

Simnilar behavior is obsetved if several sheets of dopant atoms are placed with equal spacings inside the doped,
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coherent scattering rate for several numbers of coherent and for the incoherent cases as a function
dopant sheets. No external bias is applied. of the number of dopant sheets, N;.

right hand side of the quantum well. We have obtained the self - consistent potentials and wavefunctions for the
12 values of N; and for 5 values of external gate bias, namely V, = 0, 0.1, 0.2, 0.3, and 0.4 V. Larger values of the
bias would lead to a significant leakage of carriers out of the well because of the smaliness of the potential barrier
between GaAs and GaAlAs.

These wavefunctions are now used for the calculation of the coherent and incoherent scattering rates for various
doping conditions. A screening length of 313 A is used. In Fig. 3, we show the energy dependence of the coherent
impurity scattering rate for an unbiased quantum well. We see that the scattering rate increases as the number
of delta-doped sheets increases. A comparison between the coherent and the incoherent rates is shown in Fig. 4.

We see that the coherent rate increases almost linearly as the number of doping sheets N; increases. This is due to
the fact that the square of the matrix element increases as ~ N7 whereas the concentration in each sheet decreases
as ~ 1/N;. Counsequently, the scattering rate increases as ~ N;. In the incoherent case, the main difference is
that the square of the matrix element increases as ~ N; instead of as ~ N7 so that the rate remains relatively
independent of Nj. It therefore appears that in the presence of coherence, the highest mobility is achieved when
Ns =1 or when a single sheet, rather than many sheets. is used to dope the layers.

In comparing our results for the coherent and incoherent cases, we see that coherence, which arises from ordering
in the z-direction, increases the scattering rate. This should be contrasted with the usually found decrease of the
scattering rate for ordering within the delta-doped plane (p plane). We believe that this behavior arises because
of the different character of the electronic states in the directions perpendicular and paralletto the dopant sheet.
In the z-direction the wavefunctions are standing waves which leads to constructive coherent superposition in the
matrix element. Along the sheet, however, the wavefunctions are propagating plane waves and ordering has the
effect of sharpening the Bragg reflection peaks at regions of high momentum in the Brillouin zone which are no
longer occupied by electrons.
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We also investigate the effect of an externally applied electric field on the scattering rates in the quantum well.
Previously, we have seen that by applying an appropriate gate voltage the electronic wavefunction can be shifted
to a region of the quantum well which is free of dopants. As a result, the impurity scattering rate decreases
because the impurity potential is removed from the peak in the electronic wavefunction. We have caiculated the
coherent scattering rates for the full sequence of N; and bias voltages.

These scattering rates then are used to investigate the momentum decay of an ensemble of electrons moving in
the plane of the quantum weil. The Monte Carlo technique is used to simulate the behavior of carriers injected
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with energies at the Fermi energy. The momentum decay for several combinations of bias voltages and numbers
of dopant sheets is shown in Figs. 5 and 6.

We see that momentum relaxation is a strong function of the applied bias. We define a momentum relaxation
time, 7, which is the time after which the momentum of the ensemble of electrons decays to l/e of its initial
value. In Table 1, we shown our resuits for the momentum relaxation time T as a function of the applied bias
and the number of deita - doped sheets.

Table ] Momentum Relaxation Times

V, = 0.0 V, = 0.1 V, =02 V, =03 V, =04

Ny=1 [1392x10° 1480 x10"T1220x 10 | 4.95x 10-17 | 4.25 x 10-10
Ny=2 [[299x 10" 1413 x 10" | 1.34 x 10-'3 | 1.22 x 10-"* | 9.93 x 10-1!
Nyg=3 229 x10°']3.18x10°'5]9.45 x 10~ ] 6.00 x 10-13 | 4.77 x 10~}
Ny=4 ] 193x10°1%]262x1071%]{7.18x10-1413.64 x 10~1? | 2.76 x 10-"
Ny=35 || 1.64 x 107" | 2.30 x 10-* | 5.91 x 10~1¢ | 2.54 x 10~13 | 1.88 x 10~
Ny=06 [139x 1071 | 1.97 x 1075 | 4.94 x 10~ | 1.91 x 10~*7 { 1.46 x 10~
Neg=7 [ 1.23x10°%% | 1.75 x 10°%% | 4.19 x 101 | 1.59 x 10~'? | 1.19 x 10-1
Ns=8 || 1.10x 10=" [ 1.60 x 10~%3 | 3.68 x 104 | 1.31 x 10~'* | 9.58 x 10-?
Nsg=9 [1985x107'%] 1.45 x 10~5 | 3.27 x 10~ | 1.14 x 10~ | 8.36 x 10-'?
Ns =10 888 x 1071 |1.28 x 10~15 | 2.96 x 10-14 1 9.90 x 10-*3 | 7.26 x 10~1?
Ng=154621 x10-'%)904 x10-'%) 1.95x 10-14 ] 6.28 x 10~13 | 4.25 x 10-'?
Ns =20 8477 x107' | 7.00 x 10°'% | 1.46 x 1014 } 4.34 x 10-13 | 2.99 x 10-*?

Our calculations show that application of a gate voltage of 400 mV increases the relaxation time by approximately
5 orders of magnitude when the quantum well is doped with one impurity sheet. However, when the quactum weil
is doped with twenty impurity sheets, application of a 400 mV gate voltage increases the momentum relaxation
time (assuming “coherent” scattering) by only 4 orders of magnitude (see Table 1). This modulation of the
impurity scattering rates translates into a significant modulation of the channel conductance for a VMT.

CONCLUSION

We investigate the dependence of impurity scattering rates in a quantum well on the configuration of the impurities
and on the external bias. Application of an external bias reduces the impurity scattering rate by several orders of
magnitude with be a corresponding increase in electron mobility and channel conductance. One can thus realize
a switching transistor by skewing the wavefunction with an appropriate external electric field. Obviously, the
performance of such a transistor will be influenced by dopant ordering.

We find that selective doping, in which the dopants are confined to a singie plane rather than being distributed
over several planes, has the effect of decreasing the ionized impurity scattering rates for coherent scattering. In the
case of incoherent scattering, i. e. in the absence of correlations between impurity centers, the mobility exhibits
a weak dependence on the impurity configuration. This immediately suggests that a given gate voltage is more
effective in modulating the conductance when the quantum well is doped with a smaller number of dopant sheets.
Thus, the switching performance of the VMT is improved when doping in the quantum well is concentrated into
fewer dopant sheets.
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TAILORING TRANSPORT PROPERTIES BY WAVEFUNCTION
ENGINEERING IN QUANTUM WELLS AND ITS DEVICE APPLICATIONS'
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David J. Kirkner
Department of Civil Engineering
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We investigate a semi-classical mesoscopic phenomenon in which the depen-
dence of a system’s macroscopic transport properties on the microscopic details of
the electronic wavefunction is exploited to realize an ultrafast switching transis-
tor. The conductance of a quantum welil with a selectively-doped region depends
on the precise nature of the wavefunction in the well which can be altered by
an external field that “pushes” the wavefunction in and out of the doped region.
This modulates the conductance of the well (by few orders of magnitude at liquid
helium temperature) on timescales of the order of 100 femtoseconds. We have
investigated this phenomenon using a combination of self-consistent Schrédinger
Equation solution and ensemble Monte Carlo simulation to model transient elec-
tronic transport in the well.

[. INTRODUCTION

It is generally believed that mesoscopic “quantum devices”, whose operations
rely on quantum mechanical phenomena, will be much faster than classical devices
such as an ordinary field-effcct-transistor. The reason for this is that classical
devices are swilched by moving carriers in and out of the device so that the
switching time is limited by the transit time of carriers. Quantum devices, on the
other hand, do not usually require infusion and extraction of carriers. Typically,
they are switched by inducing constructive or destructive interference of electrons
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which does not require physical movement of charges. Therefore, the switching
speed of quantum devices is not likely to be limited by the transit time of carriers®.

Although quantum devices have this inherent advantage, they also have cer-
tain disadvantages. Devices that are based on phase-coherent phenomena (such
as interference) must have dimensions smaller than the phase-breaking length of

electrons which is given by
Ly=+/Drin, (1)

where T;, is the inelastic scattering time and D is the diffusion coefficient of
electrons which depends on the elastic scattering time or “mobility”.

It is evident that quantum devices will have the following drawbacks. Firsty,
they must be operated well below room temperature so that 7,,, is sufficiently
large. Room temperature operation would require such small feature sizes that
the lithographic capabilities necessary for delineating them are presently unavail-
able. Secondly, the material for the devices must be sufficiently “‘clean” since D
depends on the elastic scattering time and hence the mobility u. This is quite
critical in two- or three~dimensional structures in which elastic scattering 1s far
more frequent than inelastic scattering at cryogenic temperatures. Only in one-
dimensional structures, the cleanness of the material is not that critical because
of the drastic suppression of clastic scattering by one-dimensional confinement®,
But one-dimensional structures (quantum wires) are not easy to fabricate and their
current carrying capability is inherently low which makes them inappropnate for
many applications.

There is however at least one semi-classical device that combines the advan-
tages of both quantum devices (fast switching speed not limited by the transit time)
and classical devices (no requirement of phase coherence and associated compli-
cations). The principle behind the operation of this device is very simple. The
conductance of a two-dimensional structure such as a quantum well is given by

G (in (Q/8)7") = qnu (2)

Instead of modulating G' by modulating n, (as is done traditionally), one can
modulate it by changing u. The advantage is that 4 can be changed on timescales
of the order of the momentum relaxation time so that the switching speed of such
a device is not limited by the transit time.

>There are exceptions however. An example is the electrostatic Aharonov-
Bohm interferometer in which the switching speed is in fact limited by the
transit time of carriers.

3This does not mean that one-dimensional structures can be arbitrarily
“dirty” since many quantum interference effects may not survive in the strong
localization regime.
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The important question now is how 0 modulate x. The mobility depends
on the scattering rates of electrons which (even in the semiclassical formalism of
Fermi’s Golden Rule) depends explicitly on the electronic states (wavefunctions) in
the system. By applying an external field, the wavefunction in a quantum well can
be altered - it can be skewed and pushed in and out of a selectively doped region
within the well - which modulates the scattering rates and the mobility. Such
wavefunction engineering is essentially similar to the quantum-confined Franz-
Keldysh effect. When the wavefunction resides mostly the doped region, the
mobility is low, otherwise it is high. If we neglect the time required for skewing
the wavefunction (which is very small) then the switching time of such a device
is essentially the momentum relaxation time which can be less than a picosecond.

Such a device, termed a velocity modulation transistor (VMT), has been pro-
posed by Hamaguchi and his co-workers [1]. In this paper, we analyze this device
and evaluate the magnitude of the conductance modulation as well as the switching
time.

II. THEORY AND COMPUTATION

The electronic states of a quasi two-dimensional system, such as a quantum
well, have been studied widely in the literature [2]. We have calculated the wave-
functions inside a 500 A GaAs-AlGaAs quantum well, whose right-half [ 250 -
500 A ] is doped with impurities. The wavefunctions are obtained by solving
self-consistently the Schridinger and Poisson equations using the Finite Element
Method. The details of the calculation are presented in Ref. 3. We assume a
carrier concentration of 5 x 10'! cm~? and an impurity concentration of 2 x 1017
cm~3 in the selectively doped region. The wavefunctions and the energy levels
are shown in Fig. 1.

The scattering rate of two-dimensionally confined electrons in the well is
obtained from Fermi's Golden Rule and is given by

1 N,,fm'e“

= , 3
(k)  4h3e2A /A% + 4k? (3)

where k is the Fermi wavevector (k = \/27rn,). n, is the two-dimensional

electron concentration, " is the effective mass of electrons, ¢ is the dielectric
constant and A is the screening constant which was taken as 300 A for GaAs.

The term in the above equation that depends explicitly on the precise details of
the wavefunction is the so-called effective impurity density N, s ¢ which is related
to the “effective” number of impurities that interact in situ with the electrons. This
quantity is obtained as

Neff B ; -/dopcd region ND(J:) |'¢/)m($)|2dx ’ (4)
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where ¥, () is the wavefunction of the mth. subband in the well. The integra-
tion is performed over the selectively doped regions of the quantum well. This
“effective” density was calculated for various electric ficlds applied transverse to
the well interfaces that skew the wavefunctions away from the doped region by
different amounts. It is easy to see now that the scattering rate can be modified

by altering 1, (x) by a transverse field (or equivalently a “gate voltage”) which
alters V.

4m 1 T r' T l T LB l T 1 1T T I L { T T T ]
I Gate Voltage = 0.0 V ]

Self-Consistent Potential (meV)

[

0 0 150 300 450 600 750
Distance (Angstrom)
800 AR ‘rl T 1 l ™1 T 7 l Ty 1 l LR

Gate Voitage = 0.4 V ]

Self-Consistent Potential (meV)

0 150 300 450 600 750
Distance (Angstrom)

Fig. 1. The self-consistent potential and the wavefunctions in the two lowest
occupied subbands in the selectively-doped GaAs-AlGaAs well in the absence (top
figure) and presence (bottom figure) of a gate voltage.
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The scattering rates obtained from Equations (3) and (4) for various gate-
voltage-dependent v, () were used in a two-dimensional Monte Carlo simulation
to model transient electronic transport at 4.2 K. From the simulation results, we
extracted the momentum decay characteristics of an ensemble of electrons injected
parallel to the interfaces of the well with the Fermi velocity. We included only
the impurity scattering mechanism in the simulation and neglected all other kinds
of scattering. The impurity scattering rate was found to be sufficiendy high to
be dominant at 4.2 K. Fig. 2. shows the decay of the initial momentum with
time at various gate voltages. From the decay characteristics, we cvaluated the
momentum relaxation time 7., by defining 7,,, to be the time that elapses before
the ensemble average momentum decays (o f times its initial value. From the
momentum rclaxation time, we calculate the effective “mobility” in the quantum
well using u = er,,/in*, and from this we obtain the conductance G using
Equation (2).

1.00 === T, T RN -I RSN "l r']
- A N 4
0.75 — * —
€ L N\ V=02V .
- L y, Al . 1
] Vy=0.3V :
£ : \ . j
2 i \ ‘
3 0.50 |— \ " V=04V —j
N r \ v
© r \ ' 1
£ s \ ' ;
3 . 5 '
\‘ \
025 — \ " -
B \\ .
s \\ \ p
- \\ .
[ V. - Gate Vohage Y . )
0 bk lJllLl A2 a il T ad o Al\l\-tl e i t*..l Al ) g il
?8 8 10 4 10 13 10 12 10 10 0
Time (Second)

Fig. 2. The decay of the initial momentum of an electron injected parallel 10
the well interfaces at vurious gate voltages. The results are valid for a temperature
of 4.2 K. These curves were obtained from ensemble Monte Carlo simulation.
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Gate voltage | Scattering rate | Conductance
V) sec™h | ((/O)7Y
0.0 3.8 x 1013 55x107°
0.1 3.0 x 1013 6.9 x 107°
0.2 6.5 x 1012 3.2x 1074
0.3 8.0 x 10! 26x1073
0.4 8.3 x 10%° 25x 1072

Table 1: Scattering rates and conductance vs. gate voltage

Table I above lists the conductances for various gate voltages. Note that the
conductance can be modulated over more than three orders of magnitude by varying
the gate bias over a range of only 400 millivolts at 4.2 K. The inoduiation will
certainly decrease significantly at higher temperatures due to phonon scattering, but
the rather small threshold voltage of 0.4 V still indicates a large transconductance
and also a very low power-delay product. In addition, the switching speed, being
of the order of the momentum relaxation time, is about 100 fs which is comparable
to the switching speeds of quantum devices presently extant. In these respects, the
performance of this device is quite comparable to the performance of ultra-high
performance quantum devices.

III. CONCLUSION

In this paper, we have explored a semi-classical device whose performance
is comparable to those of mesoscopic quantum devices but whose fabrication is
much easier. It is an interesting example of a mesoscopic phenomenon where a
macroscopic property, namely the conductance, depends on the microscopic details
of the electronic wavefunction. The advantage here is that there is no requirement
of phase coherence so that the device could operate at elevated temperatures and
the demand on the material quality is not stringent.
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We demonstrate that a quasi-one-dimensional quantum wire can, in principle, be produced at the
crossing point of heterointerfaces. We show that the intersection of two accumulation layers,
which are formed along separate heterointerfaces, realizes an “accumulation wire.”” Our
theoretical analysis yields potential distributions which possess confined electronic states in the
vicinity of the point of intersection. In our design, confinement in the quantum wire is solely
provided by the inherent electric fields associated with heterointerfaces without the need for
additional lithography. In other words, our proposal of the quantum wire compares to previous
designs in the same manner in which a quasi-two-dimensional (2D) system in an accumulation
(or inversion) layer compares to a quasi-2D system in a quantum well.

I. INTRODUCTION

Semiconductor structures with reduced dimensionality have
been the subject of much recent research. These quantum
confined systems are expected to exhibit superior properties
as compared to more conventional semiconductor struc-
tures. Improved optical characteristics'* include larger
electroabsorption and electrorefraction, enhanced optical
nonlinearities, and higher differential optical gain. These
structures are also expected to show unique electrical trans-
port properties and to have extremely high electron mobili-
ties due to suppressed impurity scattering.’

Quasi-one-dimensional (1D) systems, so-called quantum
wires, have been realized using a variety of techniques. Al-
most all of these techniques are based on the principle of
providing additional, lateral confinement for a quasi-two-
dimensional electron gas (2DEG) by lithographic means.
The 2DEG is realized in Si systems at the Si-SiO, interface,
and in the GaAs/GaAlAs material system either at a single
heterointerface or inside a quantum well. Lateral confine-
ment is achieved by additional processing steps, such as etch-
ing and regrowth,** deep mesa etching,> electric field con-
finement,®® shallow etching,'® epitaxial growth on a tilted
substrate,'' and focused ion beam .:aplantation. '

In this paper, we explore the possibility of creating quan-
tum wires by the exclusive use of the internal electric fields
associated with heterointerfaces. Specifically, we investigate
whether quasi-two-dimensional (2D) confinement of elec-
trons can be achieved at crossing heterointerfaces. It is well
known that a heterojunction may provide 1D confinement in
the direction perpendicular to the interface, which is the ba-
sis for the device operation in a high electron mobility tran-
sistor (HEMT). It is then natural to ask whether and under
what conditions a pair of heterointerfaces may provide 2D
confinement. In that case, quasi-2D confinement is achieved
solely by built-in electric fields which distinguishes our pro-
posal of a quantum wire from the earlier designs where litho-
graphic techniques are required. In otner words, our propos-
al of the quantum wire compares to previous designs in the
same manner in which a quasi-2D system in an accumula-
tion (or inversion) layer compares to a quasi-2D systemina
quantum well.
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More specifically, we concentrate on a model system
which consists of perpendicular accumulation layers, and we
investigate if it is possible to produce an '‘accumulation
wire” at their point of intersection. We theoretically study
the potential distributions and electronic states at the inter-
section by solving Poisson’s and Schrodinger’s equation,
taking into account the potential discontinuities at the inter-
faces. An isolated quantum wire will only be produced if the
Fermi energy is such that the electrons accumulate only at
the crossing point, and not at the heterointerfaces them-
selves. We study doping conditions and material combina-
tions forming such an isolated accumulation wire.

The theory of potential distributions and electronic states
in quantum wires has previously been studied. The potential
distributions have been determined for narrow channel'’
geometries. The electronic states have been obtained using
variational wave functions'* and self-consistent solutions to
Schrédinger and Poisson’s equations.'*

We proceed in Sec. II by outlining our model system to
investigate crossing heterointerfaces. In Sec. [II. we detail
the numerical techniques used for this theoretical study. Re-
sults are presented in Sec. [V for the GaAs—-AlGaAs maten-
al system. Finally, we conclude in Sec. V.

Il. CROSSING HETEROINTERFACES

The mode] structure which we consider here for the study
of crossing heterointerfaces is schematically depicted in Fig.
1. The two-dimensional spatial domain with cocrdinates
(x,p) is subdivided into three different regions with inter-
faces between them. Each of these regions, denoted by I, II,
and III, may be occupied by a different material. In general,
we then have three different heterointerfaces, denoted by A,
B, and C, which intersect in the center point, W. It is right at
this center point, where the accumulation wire is expected to
exist.

Such a structure could, in principle, be realized by grow-
ing material II epitaxially onto I, then-polishing the sides,
and epitaxially growing material FI onto the side faces. Al-
ternatively, region III might reptesent a filled-in V groove
etched through the interface betweetrmaterials I and II, al-
though the heterointerfaces would not be perpendicular to

9 1990 American Vacuum Soclety 923
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FIG. 1. A schematic diagram is shown for a geometry of crossing heteroin-
terfaces. Special points along the heterointerfaces and the point of their
intersection are indicated.

each other in this structure. Regions I and II could also be
repeated periodically in the fashion of a superlattice which
would result in an array of parallel wires. Another possibility
for realizing this structure might be to utilize a V groove with
its sidewalls at heterointerfaces A and B. In that case, re-
gions II and III would be identical, and material I would
represent the filled-in groove. A structure similar to the {at-
ter case was realized very recently'® and it was shown that a
quasi-2D electronic system can exist on the sidewalls of the
V groove. Also very recently it was demonstrated that an
optically active quantum wire'” may be realized at the tip of
a V groove which is overgrown with a quantum well struc-
ture.

We will concentrate on the heterointerfaces A and B,
which are the ones along the intersection of regions [-II and
I-III, respectively. We want to study conditions for which
there is no significant accumulation along the heterointer-
faces at locations A and B, i.e., far from the center point, W.
At the same time, however, we would like to achieve quasi-
one-dimensional accumulation in a region close to the point
of intersection.

In the theoretical treatment of this problem, we obtain the
potential distribution for the complete two-dimensional spa-
tial domain. Within a Thomas—Fermi screening model, the
electrostatic potential #(r) determines the charge distribu-
tion, and therefore the band bending. We solve Poisson’s
equation for the geometry shown in Fig. 1. The effects of the
different materials enter through the background doping
and the band discontinuities at the heterointerfaces.

Vid(r) = = -NZ1.
#( py [n(e) 5] (D
The charge term contains the sum of the electron density and
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the background doping. We assume that all dopants are ion-
ized, i.e., N § is constant throughout each region and has the
value of the nominal background doping. The electronic
charge density, for degenerate statistics, is given by the Fer-
mi-Dirac integral of order 1/2, n(r) =N (7/2)F,,, (),
where 7 is the energy separation between the local conduc-
tion band edge E, (r) from the Fermi level, £, measured in
unitsof kK, Tin = — (E, — E;)/kgT.

At the heterointerfaces, the electronic potential has a dis-
continuity which is given by the conduction band offsets.
These quantities have been the subject of numerous investi-
gations and are available for the various heterojunctions.
Here, we are faced with a more complicated situation in that
the conduction band discontinuities along the interfaces
may be a function of the distance to the center point. Lacking
any model for this spatial dependence, we assume the con-
duction band offset to be constant along a particular heter-
ointerface. Concerning the crossing point itself, we assume
that the sum of the potential energies has to be zero along a
path looping around t..- center point. This implies that the
potential discontinuities f. the three heterointerfaces have
to add up to zero. This is consistent with a transitivity prop-
erty of the conduction band offsets for any given combina-
tion of materials.

Of special interest are the electronic states in the vicinity
of the crossing point. We are particularly interested in bound
states which are confined both in the x and y directions.
Quasi-one-dimensional motion is then only possible in the z
direction. We solve Schrédinger’s equation for the potential
which we obtain from Poisson’s equation.

- Vig(r) + [V(r) — ed(r) J¥(r) = E¥(r). (2)
2m*

Here, V(r) includes external potentials and band offsets and
&(r) is the electrostatic potential obtained from Poisson’s
equation.

tll. NUMERICAL METHOD

The determination of the potential distribution and elec-
tronic states at the crossing heterointerfaces represents a
challenging numerical problem since the spatial scales for
the two problems are very different. Poisson's equation has
to be solved on a domain on the order of microns to obtain
accurate potential distributions with the correct asymptotic
behavior. Schrodinger’s equation, however, should yield ac-
curate bound electronic states in the vicinity of the center
point, with spatial scales on the order of hundreds of Ang-
stroms. The difference in the size of the domain for the two
equations implies that the Schrodinger problem has to be
solved on a subset of the domain used to solve Poisson’s
equation.

We employ the finite element method for the numerical
treatment of both the Poisson and Schrodinger equations.
Uniform rectangular elements are used with standard first
order Chapeau basis functions. We typically use a mesh size
of 100X 100 nodal points for both equations. The finite ele-
ment method results in a linear system of equations for the
unknowns at each nodal point. For our mesh size, we have to
solve problems of order 10 000! Fortunately, these matrices
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are sparse, and efficient numerical techniques are available
for their solution.

Poisson’s equation is solved on a spatial domain of typical-
ly 6000 6000 A which we found to be sufficiently large to
satisfy the boundary condition that the potential asymptoti-
cally approaches its value in the buik. The boundary condi-
tions fix the potential at the four corners of the rectangular
domain such that the corresponding electron density is equal
to the background doping of that region, simulating charge
neutrality in the bulk. A standard LU (lower and upper
triangular) decomposition method is used to solve the linear
system of equations after it has been reduced to banded sym-
metric form.

Schrédinger’s equation is solved on a spatial domain of
typically 1000 1000 A surrounding the center point. This
region is sufficiently large to obtain bound states by requir-
ing the wavefunction to be equal to zero at the boundary of
this domain. The potential used as input to Schrodinger’s
equation is a bilinearly interpolated detail around the center
point of the potential obtained from the solution of Poisson’s
equation. The resulting eigenvalue problem can be reduced
to banded symmetric form of typical dimension
10 000 100. Since we are primarily interested in the bound
electronic states, only the lowest eigenvalues and eigenvec-
tors need to be determined. The Lanczos alogorithm'® is
used for the efficient numerical computation of the lowest
eigenvalues and eigenvectors.

Most numerical computations are performed on a Convex
C-2. The solution of Poisson’s equation typically takes 600 s
of CPU time. The solution of the eigenvalue problem for the
first 10 states typically requires 200 s of CPU time. Compu-
tations were also performed on a Cray X-MP 48, with execu-
tion times about an order of magnitude faster.

IV. RESULTS

We concentrate on the GaAs-Al,Ga, _, As matenial sys-
tem because of the good lattice match in these heterostruc-
tures. The various regions (I, II, and III) in Fig. 1 corre-
spond to different Al mole fractions, x,, x;;, and x,;,, and
different background doping concentrations, N;, Ny, and
Ny We linearly interpolate the relevant material param-
eters, like effective masses, dielectric constants, etc. At the
interfaces between regions of different Al content, the poten-
tial energy for electrons will exhibit a discontinuity. For the
values of these conduction band offsets, we use the data giv-
en in Ref. 19.

A typical potential landscape is shown in Fig. 2 from two
different viewing angies to display the location of the heter-
ointerfaces and their point of intersection. The front edge is
highlighted in both graphs to aid spatial perception. Using
the same convention as adopted in Fig. 1, we label the heter-
ointerfaces (A, B, and C) and the crossing point (W). The
top portion of the figure shows the potential as seen from the
top at a viewing angle of + 80°. The heterointerfaces with
their potential discontinuity are clearly discernible. The bot-
tom portion of the figure shows the potential as seen from
below at a viewing angle of — 10°. Clearly visible now is the
dip in the potential at the center point, which provides the
quantizing potential “funnel” for the quantum wire. The
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TOP VIEW

BOTTOM VIEW

F1G. 2. A typical potential landscape is shown from two different viewing
angles. The top part shows the top view from an angle of + 80" and the
bottom part shows the bottom view from an angle of — 10°. Special points
are labeled using the same convention as in Fig. 1.

,/\\
sidefaces show the familiar potential variation across a he-
terointerface.

In order to study accumulation, we choose material I to be
lightly n-type doped GaAs with a doping concentration of
N, = 5x10" cm ~? throughout. We first study the case in
which regions II and III are occupied by the same material
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F1G. 3. Shown is the potential variation at selected locations as a function of
the doping concentration in regions I1 and 111. Note that the center point W
dips below the Fermi level, which is the zero on the energy scale.
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X = x;; with the same background doping concentrations
Ny = Ny;. In Fig. 3, we show the potential energy for elec-
trons, as a function of the doping concentration in regions I1
and III, at points A, B, and C at the heterointerfaces as well
as at the center point, W. A temperature of 300 K is used in
these calculations. The figure shows the value corresponding
to the lower potential at the respective heterojunction. The
zero of potential energy is taken to be the Fermi energy for
convenience. Because of the assumed symmetry in regions II
and III, the potentials at points A and B are the same. We
show resuits for two different mole fractions
x; = xy; = 0.25 indicated by the solid symbols and solid
lines, and x;; = x;;, = 0.35 indicated by the open symbols
and dotted lines. The larger band discontinuity for x = 0.35
lowers the potentials at points W, and A and B. For point C,
the larger effective mass and smaller dielectric constant
leads to the slight increase in the values for x = 0.35. Note
that the center point, W, dips below the Fermi energy, indi-
cating an accumulation of electrons. Also note that the ener-
gies at the heterojunctions far from the intersection do not
dip down as far as the center point This means that accumu-
lation in the 1D wire starts before 2D accumulation layers
form. For doping larger than about 5x 10'7 cm ~* in the
layers II and III, the heterointerfaces themselves begin to
accumulate electrons.

To demonstrate the existence of a confined electronic state

POTENTIAL
PROFILE

BOUND STATE

F1G. 4. The top part shows the potential landscape for the symmetric case in
which regions [l and III are assumed identical. The potential dip in the
center produces a bound electronic state whose wave function 1s displayed
in the lower portion of the figure. For more details refer to the text.
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FIG. 5. Shown is the potential variation at selected locations as a function of
the doping concentration in region [II. with ¥, as a parameter. Note that
the center point W dips below the Fermi level. which is the zero on the
energy scale.

at the center point, we solve Schridinger’s equation for
promising potential profiles, as just determined. As can be
seen from Fig. 3, the case for a doping concentration
N = 1x 10" em ~’ looks promising since point W lies below
the Fermi energy while the other points have positive poten-
tial energies. The top portion of Fig. 4 shows the potential

POTENTIAL
PROFILE

BOUND STATE

FiG. 6. The top part shows the potential landscape for the asymmetnc case
where region Il contains a spacer layer. The potenual dip in the center
produces a bound electronic state whose wave function 1s displayed in the
lower portion of the figure. For more details refer to the text.
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FiG. 7. Shown is the potential variation at selected locations as a function of
the width of the spacer layer as described in the text. Note that the center
point W dips below the Fermi level. which is the zero on the energy scale.

landscape for this case and x = 0.35. Schrédinger’s equation
is solved for this potential and a bound state is found with an
energy of 14.3 meV. The corresponding bound state wave
function is also shown in the bottom part of Fig. 4. The
spatial extent of the bound electronic state is about 150 A in
the direction along the heterointerfaces and about 75 A in
the direction perpendicular to the heterointerfaces.

For realizations of this structure in which region III is
grown epitaxially onto I and II, modulation doping of region
ITI might be desirable. In order to study this case, we now
subdivide region III into two parts. Next to the heterointer-
faces we place a lightly doped *‘spacer layer” of width d,,,,
and the remainder of region III is doped with Ny, as before.
Figure 5 shows the potentials at the center point and heter-
ointerfaces as a function of the doping concentration N,,,.
The spacer layer is assumed to have a width of d;;; = 333 A,
and a doping density equal to Ny, which takes on two differ-
ent values, as shown in the figure. In this case, there is no
symmetry between points A and B and the corresponding
potential values are no longer the same. Note that the center
point W again dips below the Fermi energy while the poten-
tials along the heterointerfaces remain above. A confined
electronic state exists at the center, which is demonstrated in
Fig. 6. The top part of this figure shows the potential land-
scape for the current asymmetric case for N, = 5% 10'®
cm ™~ and x = 0.25. The bottom part of the figure displays
the electronic wave function of the bound state which has an
energy of 26 meV. In addition, we also show the dependence
of the electronic potentials as a function of the width of the
spacer layer, d,,. Figure 7 shows the results for
Ny = 5% 10" cm ™ and x = 0.25. Note again that a poten-
tial funnel is produced at the intersection of the heterointer-
faces which extends below the Fermi energy indicating the
presence of an accumulation wire.

V. CONCLUSIONS

We have demonstrated that a quasi- 1D quantum wire can,
in principle, be produced at the point of intersection of heter-
ointerfaces. By crossing two accumulation layers formed
along separate heterointerfaces, one may thus realize an ac-
cumulation wire. This demonstrates that electron confine-
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ment solely provided by the inherent electric fields associat-
ed with heterointerfaces is sufficiently strong to produce a
bound electronic state in two dimensions.

In our theoretical treatment of the problem we use a semi-
classical approach to calcuiate the amount of charge in the
structure and we then calculate the quantum confined states
from the resulting potential. A shortcoming of the present
approach is that it is not self-consistent. In the future, we
intend to extend our numerical treatment to calculate the
potential and the charge distributions self-consistently. Due
to the lack of self-consistency, we have also refrained in the
present study from reporting the amount of charge residing
in the structure which depends rather sensitively on the ener-
gy levels.”

Our proposed structure does not require lithography to
provide lateral confinement, however, it requires the forma-
tion of a lateral interface for regrowth. This interface can be
realized either by polishing or by etching. It is hard to assess
the relative merits of these two processing steps for the quali-
ty of the resulting interface. Likely, both techniques are ef-
fectively equivalent which makes our proposed structure
similar in feasibility to the ones proposed in Refs. 4 and 5.

The density of the 1D gas in our structure is determined by
the material composition and the doping levels in the differ-
ent regions. We have given results that provide a sample of
the rather large parameter space for the various combina-
tions of material parameters. In its present form, our struc-
ture is without some sort of gate to control the amount of
charge in the wire. Future studies will address the issue of
gaining control over the Fermi level such that it can be
moved through the quasi-1D levels which have been formed.
A related issue is the possible transfer between quasi-two-
dimensional electrons in the accumulation layers and quasi-
one-dimensional electrons in the accumulation wire. Self-
consistent solutions to Schrodinger’s and Poisson’s
equations will then be required to investigate these ques-
tions.
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NUMERICAL STUDY OF ELECTRONIC STATES IN A
QUANTUM WIRE AT CROSSING HETEROINTERFACES
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Abstract

We demonstrate that the confinement produced by the internal electric fields
at crossing heterointerfaces is sufficient to produce a bound electronic state in
two dimensions. The potential profiles and electronic states are obtained by
numerically solving the Poisson and Schrddinger equations using the Finite
Element Method. We also investigate the feasibility of parallelizing the calcu-
lations on the local element level by using a cluster of networked workstations
as a distributed computational tesource.

Introduction

Semiconductor structures with reduced dimensionality have been the sub-
Ject of much recent research. These quantum confined systems are expected to
exhibit superior electrical [1} and optical {2] properties as compared to more
conventional semiconductor structures. Various design ideas for systems with
confinement in 2 dimensions and free propagation in the third, so-called quan-
tum wires, have been proposed (4,5]. Several evaluations of the electronic states
in quantum wires have been reported in the literature. e.g. [5.6].

Ilete, we present calculations of the electronic states in a novel quantum
wire structure, which we recently proposed [7]. This so-called ‘accumulation
wire' is formed at the intersection of two perpendicular accumulation layers.
Electronic confinement is solely provided by the electric fields associated with
the heterointerfaces. We study the potential profiles and electronic wavefunc-
tions by solving Poisson’'s and Schrodinger’s equation, taking into account the
potential discontinuities at the interfaces. The Finite Element Method (FEM)
is employed for the numerical solution of this set of equations (8].

Our calculations are performed in an environment of networked SUN work-
stations in which network daemons can utilize idle CPU’s on the network. These
daemons can also assign computational tasks to available CPU's. We investigate
the possibility of speeding up the code by parallelizing the FEM calculations
at the local element level, using the network as a distributed computational
resource.

Crossing Heterointerfaces

The model geometry of crossing heterointerfaces is schematically depicted
in Fig. 1. The two - dimensional spatial domain with coordinates (x.y) is
subdivided into three different regions. denoted by I, II, and I11. In general,




we then have three different hetercinterfaces. denoted by A, B, and C, which
intersect in the center point, W, where the quantum wire is expected to exist.
The realization of such a structre appears to be within the realm of possibil-
ity, considering recent progress in processing for etching and regrowih {9], and
cleaving and regrowth [10].

Cc

Reglon 11 !

Region il
A Hetovatnigrisce A w

\

Region . Accumuiation
4 [] Wire

Figure I: A schematic diagram is shown for a geometry of crossing heterointerfaces.
Special points along the heterointerfaces and their point of intersection are indicated.

In the theoretical treatment of this problem. we obtain the potential distri-
bution for the complete two - dimensional spatial domain. \Within a Thomas -
Fermi screening model, the electrostatic potential determines the charge distri-
bution, and consequently the band bending. Ve solve Poisson’s equation taking
into account the respective background doping and the band discontinuities at
the heterointerfaces. Of special interest are the electronic states in the vicinity
of the crossing point which we obtain from solving Schrédinger’s equation. For
bound states which are confined both in the x- and y- directions, quasi one -
dimensional motion is possible in the z- direction.

Numerical Method

We employ the Finite Element Method for the numerical treatment of both
the Poisson and Schrodinger equations. Uniform rectangular elements are used
with standard first order Chapeau basis functions. We typically use a mesh
size of 100 x 100 nodal points for both equations. The Finite Element Method
results in a linear system of equations for the unknowns at each nodal point.

Poisson's equation is solved on a spatial domain of typically 6000 x 6000 A
which we found to be sufficient large to satisfy the Dirichlet boundary condition

-




that the potential asymptotically approaches its value in the bulk. The bound-
ary conditions fix the potential at the four corners of the rectangular domain
such that the corresponding electron density is equal to the background doping
of that region, forcing charge neutrality in the bulk. A standard LU decompo-
sition method is used to solve the linear system of equations after it has been
reduced to banded symmetric form, and a Newton-Raphson iteration scheme
implements the nonlinearity due to the Thomas - Fermi screening model.

Schrodinger's equation is soived on a spatial domain of typically 1000 x 1000
A surrounding the center point. This region is sufficiently large to obtain bound
states by requiring the wavefunction to be equal to zero at the boundary of this
domain. The potential used as input to Schrodinger's equation is a bilinearly
interpolated detail around the center point of the potential obtained from the
solution of Poisson’s equation. The resulting eigenvalue problem can be reduced
to banded symmetric form of typical dimension 10.000 x 100. Since we are
primarily interested in the bound electronic states, only the lowest eigenvalues
and eigenvectors need to be determined. The subspace iteration technique
1s used for the efficient numerical computation of the lowest eigenvalues and
eigenvectors.

Figure 2: The left part shows the potential landscape for the case in which regions
I and III are assumed identical. The potential dip in the center produces a bound
electronic state whose wavefunction is displayed in the right half of the figure.

In Fig. 2, we show as a result the potential landscape for a GaAs/Al,Ga;_. As
system with mole fraction xyy = xy;7 = 0.35. Region | is taken to be GaAs
with a doping of Ny = i x 10'% cm~3, and regions Il and 111 are assumed to
be identical with doping Ny = Nyrr = 1 x 10'7 em~3. Schrodinger's equation
is solved for this potential and a bound state is found with an energy of 14.3




meV relative to the Fermi energy. The corresponding bound state wavefunc-
tion is also shown in Fig. 2. The spatial extent of the bound electronic state is
about 150 A in the direction along the heterointerfaces and about 75 A in the
direction perpendicular to the heterointerfaces. More details of our calulations
and results can be found in a forthcoming paper {7].

Most numerical computations are performed on a Convex C-2. The solution
of Poisson’s equation typically takes 600 seconds of CPU time. The solution
of the eigenvalue problem for the first 10 states typically requires 200 seconds
of CPU time. Computations were also performed on a Cray X-MP/48, with
execution times about an order of magnitude faster.

Distributed Computing

We also explored the possibility of utilizing a cluster of networked worksta-
tions for distributed computing. The main idea is to take advantage of the fact
that in the finite element method all calculation on the local element level are
independent and can be done in parallel. Different machines on the computer
network can work on different parts of the problem at the same time.

We have implemented such an algorithin on a cluster of 30 SUN-4 Sparc
workstations. Remote procedure calls are used to execute the local element
calculations on remote machines. So-called network daemons handle the trans-
fer of information between the individual computers. dispatch assignments, and
manage dynamic network CPU loading. The overall performance depends upon
the number of remote machines utilized. and on the number of elements sent to
a particular remote machine at a given time. Detailed performance measures
will be given in a separate paper.
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In this paper, we discuss the design of semiconductor electrostatic and magnetostatic
Aharonov-Bohm interferometers that could operate at liquid nirogen temperature. We
find that for elevated temperature operation, one dimensional structures constructed from
quantum wires are invariably the only choice, especially when transport is diffusive
instead of ballistic. We have proposed such a structure which can be fabricated by
present day technology. It may exhibit large conductance modulation in an electric fieid
at 77 K and is an ideal configuration for “Quantum Interference Transistors” (QUITS)
based on the electrostatic Aharonov-Bohm effect.

Introduction

Semiconductor interferometers based on the magne-
tostatic and electrostatic Aharonov-Bohm effect have re-
ceived widespread attention in recent years because of
their potential application in novel transistors with ex-
cellent power-delay product!. Recently, the electrostatic
Aharonov-Bohm effect has been demonstrated in metal-
lic rings? leading to an upsurge of interest in this area.
In this paper, we discuss various issues pertaining to the
device applications of Aharonov-Bohm interferometers at
clevated temperatures. We discuss both magnetostatic and
electrostatic interferometers but with greater emphasis on
the latter since the electrostatic effect is more pertinent to
transistor applications.

The basic structure for an Aharonov-Bohm quantum in-
terference transistor consists of two conduction paths con-
nected at both ends. Electrons enter at one end and exit at
the other. The quantum-mechanical phase shifts suffered
by an electron in traversing the two paths can be controlled
by an external electric or magnetic field (the Aharonov-
Bohm effect) which controls the interference between the
paths and therefore the total conductance. This realizes the
transistor operation.

0749-6036/89/020239 + 07 $02.00/0

For switching transistor applications. it i1s important
to design the interferometer in such a way as to obun
the largest possible conductance moduiation at the highest
possible temperature. The size of the conductance modu-
lation is critical. It determines the ratio of the maximum
(‘ON’) conductance to the minimum (‘OFF') conductance
and therefore the seperation between the logic levels 1n
digital circuits. This seperation must be sufficiently large
so that the bit error rate (e.g. in digital communications)
is tolerable3.

For interferometers that rely on the magnetostatic
Aharonov-Bohm effect, it is possible, in principle, to make
the conductance modulation approach 100 % (or the ra-
tio of maximum to minimum conductance approach infin-
ity) by making the minimum (OFF) conductance of the
structure almost zero. This can happen under two differ-
ent circumstances*: (1) when transpon is perfectly ballis-
tic, and (2) when both elastic and inelastic scattering are
present, but the scatering potentials in the two interfering
paths are perfectly “correlated”. Perfectly correlated scat-
tering gives rise to identical phase shifts in the two paths,
so that the relative phase shift berween the paths, which
determines the interference, is not affected at all by such
scattering. An example of correlaied elastic scatering is
the case of impurity scattering when the impurity concen-

© 1989 Academic Press Limited
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tration and the impurity configuration (i.c. the locations of
the impurities) in the two paths are identical®. An exam-
ple of partially correlated inelastic scattering is scattering
due to polar optical phonons which is a dominant inelastic
scattering mechanism in most compound semiconductors
at moderate field strengths. For this type of scattering, the
interacuon of electrons is much swonger with long wave-
length phonons than with shont wavelength phonons®. If
the phonon wavelength happens to be much longer than
the center-to-center seperation between the two paths, both
paths are perturbed almost identically by the scattering
event and the relative phase shift between them is not af-
fected at all. Perfect correlation between scattering events
is of course an unlikely situation, but in general, if the two
paths are physically very close, there can be significant
correlation between their scattering potentials, especially
when the potentials have long range such as those due to
weakly screened impurities or long-wavelength phonons.
In any case, it is possible, although not very probable,
to observe ~ 100 % conductance modulation in magne-
tostatic Aharonov-Bohm interferometers under favorable
conditions.

The case of electrostatic Aharonov-Bohm interferom-
cters however is not so fortuitous. It is not necessarily
possible to observe a ~ 100 % conductance modulation
in electrostatic interferometers even if transport is ballis-
tic or all scattering events in the two paths are perfectly
correlated. The basic reason for this is that unlike the mag-
netostatic Aharonov-Bohm phase shift which depends only
on the magnetic flux enclosed by the interfering paths, the
electrostatic phase-shift depends not only on the electro-
static potential difference between the paths but also on
the transit time of electrons through the paths. If there
is a “spread” in the transit time arising from the fact that
different electrons traversing the structure can have differ-
ent transit times, then there will be a corresponding spread
in the phase-shift even when transport is ballistic or scat-
tering events are perfectly correlated. This will dilute the
interference effect because of ensemble averaging and re-
duce the conductance modulation. This deleterious effect
of ensemble averaging can be eliminated in magnetostatic
inteferometers since the magnetostatic phase-shift can be
made unique for all electrons by making the aspect ratio
of the structure (the ratio of the distance between the paths
to the width of the paths) large. For the electrostatic effect
however, the only way to eliminate this deleterious effect
is to reduce the spread in the transit time to zero. As we
shall see shortly, this can be achieved only if the interfer-
ing paths are “strictly single-moded electron waveguides”,
i.c. one-dimensional structures or quantum wires.

In the regime of ballistic transport, the spread in the
transit time of electrons in two or three dimensional struc-
tures can arise from two sources: (1) non-zero temperature
giving rise to a thermal spread in the electron velocity, and
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(2) the large spread in the transverse momenta which is
present even at 0 K. In onc dimensional structures. such
as “quantum wires”, the latter source is absent. In these
structures, there is only one transverse electronic mode (in
either transverse direction) and hence the transverse mo-
mentum is unique. It is therefore possible to make the
spread in the transit time approach zero in I-d structures
by lowering the temperature sufficiently?. Consequentty,
a one dimensional structure can, in principle, exhibit ~
100 % conductance modulation at low enough tempera-
tures which a two or three dimensional structure can never
do even under the most ideal conditions (ballistic ransport
and zero temperature)®.

In the case of diffusive transport, the difference be-
tween one and poly-dimensional structures is even more
pronounced. This is because in diffusive transport, cami-
ers execute a “random walk™ motion due to elastic scat-
tering and consequently the spread in the transit time in
poly-dimensional structures can be very large. But in I-d
structures, the spread is still very small since the random
walk motion is severely restricted. The only permitted ran-
dom walk in 1-d structures is “backwards and forwards™
motion (but no “sideways” motion) since all elastic scatter-
ing events invoive a 180° deflection of the electron which
corresponds to a reflection. Even this reflection is a highly
unlikely occurence, especially for high velocity electrons.
since the accompanying momentum change is so large that
it can only be caused by the short-range (i.c. large wave-
vector) components of the scattering potential. As long as
the scattering potential varies smoothly in space (compared
to the scale of a DeBroglic wavelength), such scatterings
are practically absent and random walk is essentially pro-
hibited.

The suppression of clastic scattering in 1-d structures
also implies that as long as the length of the structure
is shorter than the inelastic mean-free-path, the structure
behaves essentially as a ballistic swucture (no elastic or
inelastic scattering). Consequently, just like in the case of
ballistic transport, the spread in the transit time and phase-
shift can be reduced almost to zero by reducing the temper-
ature sufficiently. Based on this, we have recently shown®
that as electrostatic Aharonov-Bohm interferometers, onc
dimensional structures are vastly superior to two dimen-
sional structures in the diffusive regime. This is especially
true at elevated temperatures. Two dimensional structures
cannot exhibit sufficiently good performance for device
applications at 77 K but one dimensional structures can.
Our analysis showed that the maximum temperature of
operation for GaAs two-dimensional interferometers (for
reasonably fair performance) is ~ 26 K and the maximum
allowed carrier concentration is ~ 6.3 x 10'® em~2. On
the other hand, one dimensional GaAs structures can, in
principle, exhibit excellent performance even at 77 K if
the carrier concentration exceeds 2.5 x 10% cm~!.
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There is another advantage with one-dimensional struc-
tures. In order to be able to observe quantum interference
effects, the length of the structure must be shorter than
the “phase-breaking length”. In poly-dimensional struc-
tures, the phase-breaking length is the inelastic diffusion
length!® which depends on the diffusion coefficient and
hence on the amount of elastic scattering in the sample.
But in one-dimensionai structures since diffusive motion or
random walk is essentially forbidden. the phase-breaking
length is actually the inelastic mean-free-path rather than
the inelastic diffusion length. This means that the phase-
breaking length is longer in 1-d structures (which makes
the lithography easier) and it is also completely indepen-
dent of the degree of disorder or elastic scattering in the
sample.

In view of the above, it seems that one-dimensional
structures are the best choice for clectrostatic Aharonov-
Bohm interferometers, especially in the diffusive regime.
In the next section we present such a one-dimensional
structure. It consists of two closely spaced parallel quan-
tum wires and is derived from a configuration proposed by
Sakaki!l. Such a structure can be fabricated by present-
day technology. Our analysis shows that this structure can
exhibit very large (approaching 100% in principle) conduc-
tance modulation in a magnetic field and can also exhibit
quite large conductance modulation in an electric field at
temperatures as high as 77 K.

Proposed Structure

The proposed structure is shown in Fig. 1. It con-
sists of a single undoped GaAs quantum well ~2ndwiched
between intrinsic AlGaAs layers. After etching a narrow
V-groove through the quantum welil by focussed ion beam
milling or electron beam exposure!2, a n+ AlGaAs layer is
regrown on the etched surface. These steps can ail be per-
formed in ultrahigh vacuum without ever breaking the vac-
uum. The process of “etching and regrowth” is certainly
a difficult step, but it has been demonstrated recently3.
Following successful regrowth, two parallel closely-spaced
“quantum wires” will form as accumulation layers in the
GaAs quantum well if spatial trau.fer of charges from the
n* AlGaAs layer to the GaAs layer takes place. Even if the
spatial transfer does not occur, there may still be enough
carriers in the channel generated by positively charged in-
terface states. The mobility of these carriers will be poor,
but the mobility is not important in this case. The only
major problem nay arise due 1o Fermi level pinning. If
the Fermi level gets pinned inside the bandgap, the wires
will be depleted of carriers. This problem does not arise in
InAs systems. There have been reports of inversion layers
forming under natively-grown oxides on InAs!4. It may

241

- CATE|
P
‘ !
P g ==
SOURCE . |  GROOVE  DRANN
| GATE
TOP VIEW
. /
n’ - AlGaks
1-AlGaAs 1-AiGaAs
i-7 i-GaAs
i-"aAs \\/
1-AlGaks / 1-AlGaAs
4

S| GaAs Substrate ...

B e SIDE VIEW

o Fig. 1. Proposed double quanwum wire sgucture for
electrostatic Aharonov-Bohm interferometer. The figure
shows both the top view and the side view.

be advantageous to replace the GaAs quantum well with
an InAs quantum well since then one merely has to grow
a native oxide on the etched surface of the V-groove w0
generate the carriers. This is much easier than effecting
spatial transfer of charges across the V-groove surface.

Another probiem may arise due to electron localization
effects. It is important to ensure that the device does not
operate ir the regime of strong localization. This can be
ensured by making the length of the structure shorter than
the localization length.

The quantum wires formed at the surface of the V-
groove can be contacted by either Au-Ge alloying or by
Si implantation?3. The latter is preferable since it creates
rather lightly doped contacts and this has an advantage.
This issue is discussed later in the paper. The eler costatc
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o Fig. 2. Schematic representation of the structure in Fig.
1 showing the incident and reflected electron amplitudes.

potential inducing the Aharonov-Bohm effect is applied
between two gate pads (see the top view in Fig. 1).

In order for the structure to exhibit a strong interference
effect, its length must be shorter than the “phase-breaking
length” at the operating temperature. As discussed before,
in quantum wires, this length is the inelastic mean-free-
path which depends on the temperature and carrier con-
centration. The inelastic scattering time in heavily doped
GaAs wires at 4.2 K has been reported to exceed 5 ps?® so
that assuming a T~ % dependence of the inelastic scattering
time on temperature!”, we find that the inelastic mean free
path at 77 K is larger than 0.3 um if the carrier concen-
tration is 10° cm~'. The length of the structure can be
easily made to be 0.25 um or shorter with electron beam
lithography. Our analysis shows that, in principle, such
a structure can exhibit ~ 100 % modulation of the con-
ductance in a magnetic field and ~ 90 % modulation of
the conductance in an electric field even at liquid nitrogen
temperature.

Analysis

For purposes of analysis, the proposed structure is
schematically represented as shown in Fig. 2. The current
I through the structure is given by the Tsu-Esaki formula!8

)
= 2 [UE Tl EF [J(B.T) = J(E+qV.TI] (1)

For a smail applied bias voltage V, this reduces to

[ = 11{_‘1 de [T E |2 [—-1-1—-“ ET ]
= th% f“”; l’r!a(al(E)l2 §€Ch2( ) (_))

which gives the conductance as

1 E - Er

G=v= 2hI\T/dE (oot E)* sech*(~—7= ()3)
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Here Ty, is the amplitude of the total transmission
through the structure from contact to contact, £ is the
electron’s energy, I is the temperature and f is the Fermi-
Dirac distribution function in the contacts. The problem is
now to calculate T,,q.

As discussed before, a one-dimensional structure es-
sentially acts as a ballistic structure if its length is shorter
than the inelastic mean-free-path. Elastic scattening is sup-
pressed by one-dimensional confinement and inclastic scat-
tering is absent since the transit ime through the structure
is smaller than the inverse of the inelastic scattering rate. [n
that case, the transmission amplitude T\, an be found in
a straightforward manner by using the formalism of ballis-
tic ransport. This is done by cascading the three scattering
matrices*? representing propagation from the left contact
region to the interfering paths, propagation along the paths,
and propagation from the paths to the right contact. The
first and the last of these scattering matrices (for junctions
A-B and C-D; see Fig. 2) can, in principle, be found
exactly by matching the wavefunctions and their deriva-
tives along the junction between the contacts and paths20.
However, for simplicity, we will represent these scattering
matrices by the Shapiro matrix?!

by Ve f A*
u 1 BC (1)

b a 3"
(1:%(\/1 - 0 = 1 131
=l){\/l 2e + 11 6}

N
I
+ + !
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——
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The amplitudes A and B are defined in Fig. 2. The
superscript ‘+' refers to waves traveling from left 1o right
and ‘-’ refers to waves traveling in the opposite direction.
In the Shapiro matrix. e represents the probability of trans-
mission from the contact into any one path: ¢ = 0.5 cor-
responds to perfect transmission (no end-retlection). The
Shapiro matrix implicitly assumes that transmission into
the two paths from the contact are equal in both magni-
tude and phase. The latter condition is more difficult to
meet in practice, but if the carrier concentration in the con-
tacts is not too large and the channels are physically very
close so that the seperation between them is comparable
to the DeBroglie wavelength in the contacts, then some
degree of phase coherence in the injection and detection
process can be expected®2. This consideration makes it
necessary to make the V-groove in the proposed structure
very narrow so that the wires are closely spaced and aiso
have the contacts defined by Si implantation rather than
by Au-Ge alloying. The transmission amplitud'zs for prop-
agation from junction B to C arc represented by t*, ; for
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left to right propagation along paths | and 2 and ¢~ , for
reverse propagation along these paths. For single moded
structures, the task of cascading these scattering matrices
is relatively simple and can be performed analytically to
yield analytical expressions for Ty, 2 in the presence of
an external magnetic or electric field.

Magnetostatic Effect

Assuming that the two paths are identical so that in the
absence of any external field ¢t =t*, =tTand t=, =",
=17, Tyouu is given by®

— (14O (1t
fl-t*(-(azobzc")][l—l‘('h'e"+63]]—a")‘t‘*{~‘lc'*+r"§\7

=(l+ t‘-m)T,mml((}- E)

Lo

(7)
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path. The elastic mean-free-path in two-dimensional (dou-
ble quantum well) structures can be quite small, even when
the wells are modulation-doped, since one of the interfaces
of each well will always be an inverted interface. Fabri-
cation of ballistic structures therefore places extreme de-
mands on the lithography. In contrast, for a 1-d structure,
transport does not have to be ballistic; it merely has to be
non-dissipatve, i.e. there should not be any inclastic scat-
tering. Consequently the length has to be mere!- : orter
than the inelastic mean-free-path which can be quite long
at low temperatures. This makes the lithographic delin-
eation of these structures much easier.

Electrostatic Effect

For the ciectrostatic effect, Equation (7) is modified
to?

ett(l + )l -t t"e?)

Ttatal =

[l = t+t=(a ¢ bie)|[1 = trt-(ale® + (Ped@)] — a2bi+it=2eto(] + e0 )t

where 6 is the magnetostatic Aharonov-Bohm phase shift
given by

BA
0= (

[
~——

It is to be noted that ¢ depends only on the magnetic flux
density B and the area A enclosed by the two paths and
does not depend on the electron’s energy. Consequently,
substitution of Equation (7) in Equation (3) gives

tr =1l J-P"a:z 2_;1/_17]‘11[: |T',om‘(0.EH2 ~ech? E,J\IE !
= rosz(%)Go(m
(9
where
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Equation (9) predicts a 100% modulation of the con-
ductance in a magnetic field. The conductance osciilation
however is not necessarily sinusoidal since (,4(0} depends
on the magnetic field through 6. The non-sinusodal shape
is caused by higher harmonics generated from multiple re-
flections of the electron between the contacts. A 100 %
conductance modulation is also possible for a 2-d struc-
ture if transport is perfectly ballistict or if the scattering
events in the two interfering paths are perfectly correiated.
Correlated scattering is difficult to realize in practice and
for ballistic transport, the length of the structure has to
be shorter than both the elastic and inelastic mean free

(1)

where o is the electrostatic Aharonov-Bohm phase shift
given by

e V2mE 2%
==Vr = _— - 12
o=V {1+ - L 12

Here r, is the average (harmonic mean) of the transit imes
through the two paths, L is the length of each path and V" is
the electrostatic potential difference between the two paths.

Since ¢ depends explicitly on the ansit time and hence
on the electrons energy (unlike in the case of the magneto-
static effect), different electrons having different energy (at
clevated temperatures) suffer different phase-shifts so that
the electrostic effect does not escape the deleterious effects
of ensemble averaging unlike its magnetostatic counterpart.
In order to prevent this from happening. the temperature
must be lower than the so-catled Thouless temperature Try,
where kT, is equal to the energy seperation between the
electron modes near the Fermi energy. For a 1-d structure,
kTrs = 2% where vr is the Fermi velocity and L is the
length of the structure.

To examine the conductance modulation in a electric
field, the integral in Equation (3) was performed numen-
cally and the results are shown in Fig. 3 (at T = 77 K) for
various values of ¢, Note that ¢ = 0.5 corresponds to perfect
transmission from the contact into the paths and ¢ = 0.1
corresponds to 10 % transmission probabilty. In the caicu-
lation, we neglected any dependence of ¢ on the eiectron’s
wave-vector. The carrier concentration was assumed (o be
10% cm-!, the length of the structure was 0.25 um and
the material was GaAs. For this structure, the Thouless
temperature is 8 K. For a 1000 Angstroms long structure
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¢ Fig. 4. Conductance vs. potential characteristic for the
same structure at 77 K when the carrier concentration is 4
x 10% cm~! and the length is 1000 Angstroms. In this case
the Thouless temperature is 2 77 K which is the ambient
temperature.

with a carrier concentration of 4 x 10° cm~-#, the Thouless
temperature is about 77 K. For the sake of comparison,
we have also shown the conductance modulation of such
a structure in Fig, 4 for ¢ = 0.5,

Several interesting features are found in Fig. 3. The
conductance modulation (for the first half-cycle) is larger
than 90 % at 77K for all values of ¢. This is promising for
switching transistor applications. For such applications,

Superlattices and Microstructures, Vol. 5, No. 2, 1989

it is only the first half-cycle of the oscillation which is
important since all that is required is to switch the con-
ductance between the ON and OFF states. Consequently
a 90 % conductance modulation over the first half-cycle
is encouraging. Another interesting feature is the decay
of the oscillations with increasing values of the electro-
static potential. This happens because the uncertainty in
the phase-shift for a fixed potential V is given by Jo =
V Ar, and this is proportional to the potential itself. At low
values of the potential, the uncertainty Ao is small and the
conductance modulation is large. At higher values of the
potential, the uncertainty increases thereby decreasing the
conductance modulation.

Perhaps the most interesting feature in Fig. 3 s the
effect of ¢ or the role of multiple retlections. If ¢ is small
(large end-reflections), only the first half-cycle of the oscil-
lation is discernible and the later cycles are not**. This will
make it impossible to detect the presence of the Aharonov-
Bohm oscillations in a direct experiment if the test struc-
ture is not cleverly designed to eliminate such reflections.
An explanation for this role of multipie refiections 1s the
following. If an electron suffers many reflections back and
forth between the contacts before it exits the structure. s
effective tansit time increases®®. This. in twm. increases
the spread in the transit time thereby increasing the un-
certainty in the phase-shift for a given potenual. As a re-
sult, the interference effect “dies off” much more rapidly
in the presence of muitiple reflections. There 1s another
harmful effect of multiple reflections. An increase in the
effective transit time may cause it to exceed the inelastc
scattering time and the interference effect may be sum-
marily destroyed by inelastic scattening. For expenments
designed to demonstrate the electrostatic Aharonov-Bohm
oscillations, it is important to minimize muluple retlec-
tions. This can be achieved by dcsigning the geometry of
the structure in such a way that the contacts are “transpar-
ent” to the electrons. Conventional semiconductor “nng”
structures that have been used for experiments®® are not
ideal in this respect. In such structures, the radius of cur-
vature of the ring may be comparable to the DeBroglie
wavelength of clectrons which will inevitably lead to se-
vere reflections between the leads®?. The present structure
is much better designed in this respect since there are no
sharp curvatures in the geometry to induce reflections.

In conclusion, we have discussed the relative ments
of one dimensional Aharonov-Bohm interferometers over
two and three dimensional interferometers in the regime
of both ballistic and diffusive transpon. We have shown
that cleverly designed double quantum wire structures with
suitable geometries to minimize multiple reflection effects
can exhibit large Aharonov-Bohm interference. We have
proposed such a structure that can be fabricated by present-
day technology. This s‘ructure is espectally suited for de-
vice applications at elevated temperatures (77K).
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In this letter we discuss the performance of semiconductor electrostatic Aharonov-Bohm
interferometers that operate in the diffusive regime. We find that the performance is primarily
determined by temperature and carrier concentration, and we have identified the conditions
for “fair,” *“good,"” and “‘excellent” performance. Our analysis shows that two-dimensional
interferometers cannot operate at elevated temperatures but one-dimensional interferometers
could operate at 77 K if the carrier concentration is sufficiently high and the structure is

cleverly designed to minimize end reflections.

Semiconductor electrostatic Aharonov-Bohm interfer-
ometers have received serious attention in recent years be-
cause of their potential application in novel transistors with
excellent power-delay product.' In this letter we examine the
performance of these interferometers in the diffusive regime,
i.e., when elastic scattering is present, but phase-randomiz-
ing inelastic scattering is absent. In the past, most of the
research dealing with such interferometers has focused on
the ballistic regime where both elastic and inelastic scatter-
ings are absent. Fabrication of ballistic structures, with di-
mensions shorter than the inelastic and elastic mean free
path, places extreme demands on semiconductor technolo-
gy. The demand is twofold. Firstly, modulation doping is
required to eliminate in situ impurity scattering. Secondly,
the lithographic demands can be imposing since the elastic
mean free path can be quite small, even in modulation-doped
quantum well structures, since one of the interfaces of the
well will always be an inverted interface. Structures meant
for the diffusive regime, on the other hand, are much easier
to fabricate. Modulation doping is not required and the lith-
ographic demands are significantly relaxed since the length
of the structure has to be merely shorter than the phase-
breaking length which is typically much longer than the elas-
tic mean free path at low temperatures.

Recently, the electrostatic Aharonov-Bohm effect has
been demonstrated in metallic rings’ in which transport is
diffusive. The observed effect was small and indirect since
metallic rings are not ideal for this purpose. They are not
strictly one-dimensional structures (the diameter of the
wires is much larger than the DeBroglie wavelength of carri-
ers) and this has a deleterious effect. For electrostatic Ahar-
onov-Bohm interferometers, one-dimensional structures
are best. They are inherently superior to two- or three-di-
mensional structures, especially when transport is diffusive
rather than ballistic. This is elucidated below.

The electrostatic Aharonov-Bohm phase shift depends
on the transit time of electrons through a structure. If there is
a “spread” in the transit time, there will be a corresponding
spread in the phase shift and this will dilute the interference
effect as a resuit of ensemble averaging.

In the ballistic regime, the spread in the transit time in
2-d structures can arise from two sources: ( 1) nonzero tem-
perature giving rise to a nonzero spread in the velocity of
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electrons, and (2) the large spread in the transverse mo-
menta which is present even at 0 K. In 1-d structures, the
latter source is absent (since there is only one transverse
mode), and consequently the spread in the transit time can
approach zero at low enough temperatures. As a result, a 1-d
electrostatic Aharonov-Bohm interferometer can exhibit al-
most a 100% conductance modulation at low enough tem-
peratures which a 2-d interferometer can never do even at
zero temperature.’

In the diffusive regime, the difference between 1-d and
2-d structures is even more pronounced. The spread in the
transit time in 2-d structures can be very large since carriers
execute a “random walk” motion due to elastic scattering.
But in 1-d structures, the spread is still very small since the
“random walk™ motion is severely restricted. The only per-
mitted “random walk” in 1-d structures is “backwards and
forwards” motion (but no “‘sideways” motion) since elastic
scattering events involve a 180" deflection of the electron.
Even this is highly unlikely, especially for high-velocity elec-
trons, since the accompanying momentum change is so large
that it can only be caused by the short-range (i.c.. large wave
vector) components of the scattering potential. As long as
the scattering potential in a 1-d structure varies smoothly in
space (compared to the scale of a DeBroglie wavelength)
such scatterings are practically absent.

The suppression of elastic scattering and random walk
in 1-d structures makes the spread in the transit time almost
zero at low enough temperatures. In the next paragraphs, we
focus on the specific issue of phase randomization due to the
spread in the transit time and the resultant performance deg-
radation. We then establish a performance criterion based
on this consideration to evaluate various 2-d and 1-d inter-
ferometers in the diffusive regime under different conditions
of temperature and carrier concentration.

The electrostatic Aharonov-Bohm phase shift between
two interfering paths in an interferometer is given by

= (e/M)V7, (n

where ¥ is the potential difference between the paths and 7,
is the average (harmonic mean) of the transit times through
the two paths. Any spread in the transit time will give rise to
a spread in the phase shift and dilute the interference effect
thereby causing the conductance modulation to decrease.
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For switching transistor application, it is necessary to
ensure that the conductance of the interferometer is close to
zero at the trough of the first haif-cycle of the Aharonov-
Bohm oscillations. This in turn requires that when one elec-
tron is interfering destructively corresponding to an Ahar-
onov-Bohm phase shift § = 7, every other electron in the
ensemble also suffers a phase shift close to 7. If the spread in
the phase shift A4 is also close to , then some electrons will
interfere constructively while others are interfering destruc-
tively and the effect is washed out. In other words, it is neces-
sary to have A¢ < 7. For switching transistor applications, it
is only the first half-cycle of the conductance modulation
that is important. Therefore, we need to have Ad < 7 when
¢ = . This is equivalent to the condition that the ratio Ad/
& < 1. We now adopt this ratio as a “performance index™ (77)
and require that for a sufficiently large conductance modula-
tion (peak-to-valley ratio), 7 be less than unity. We then
calculate this dimensionless quantity 7 for 2-d and 1-d inter-
ferometers.

n=A44/¢ = (A7,)/(7,), (2)

where (A7, ) is the spread in the transit time and (7,) is the
average transit time for the ensemble.

For 2-d structures and in the case of diffusive transport,
(Ar,) can be calculated the same way as is done for the

_l

Shockley-Haynes experiment.*

(Ar,) =4/vyyDL /v,, 3

where D is the diffusion coefficient, v, is the drift velocity,
and L is the length of the structure.

<TI>=L/UJ. (4)
Therefore,

n=4/L (DL 7v,. (5)

For a low electric field €, v, = ue where u is the mobility.
Also €= V,,,/L, where V. is the bias voltage over the
structure. This gives

7 = (16/V,. ) (D /p). (6)

For 2-d interferometers, 17 depends on the bias. The
minimum value of 7 corresponds to the maximum allowed
value for V,,,. The upper limit on ¥V, is the voltage at
which an electron, arriving at one contact from the other,
just reaches sufficient energy to cross the threshold for polar
optical phonon emission (strong inelastic scattering).
Hence from Eq. (6), invoking the generalized Einstein rela-
tion for a carrier concentration #,, we get that for a 2-d inter-
ferometer

Noun = (16KT /€y )In{1 + exp[(E, — E,)/kT |H1 + exp[(E, — E, ) /AT |1, €))

where E,, is the energy of the lowest electronic subband (the
only one presumed to be occupied), E; is the Fermi energy,
and €, is the polar optical phonon energy ( = 36 meV for
GaAs). Equation (7) gives us the limiting values of tem-
perature and carrier concentration for which 7., <1. In
Fig. 1 we show the performance of 2-d GaAs interferometers
as a function of temperature and carrier concentration. The
performance is considered “fair” if 7., <1, “good” if
Noun < 0.5, and “excellent” if ,,,,, <0.1. For 2-d interferom-
eters, there is no visible region of “‘excellent™ performance.
We also find that 2-d interferometers cannot operate at 77 K
which is far outside the range of “fair” performance. In addi-
tion, we find that even for “fair” performance, the maximum
temperature of operation is ~26 K (for the lowest carrier
concentration) and the maximum allowed carrier concen-
tration is ~6.3X 10'° cm~? (at the lowest temperature).
Two-dimensional interferometers are therefore not a judi-
cious choice for device application in the diffusive regime.

We now discuss 1-d interferometers. In such systems,
the oniy source of a spread in the transit time is the thermal
smearing of the electron distribution. Therefore,

n= (AT:)/<7:>z(AUI)/<”l)I (8)
where (v,) is the average transit velocity and (Av,) is the
spread in the electron velocity arising from the thermal
spread in energy.

For degenerate catrier concentrations, (v,) = v, (the
Fermi velocity) and (Av,) = (1/2)JkT/m®. Hence,
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n = JKT78E;. 9)

In contrast to the case of 2-d interferometers, 5 for 1-d inter-
ferometers does not depend on the bias.
In Fig. 2 we show the performance of 1-d interferome-
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Good Performance
Fair Performancs

FI1G. 1. Performance diagram for two-dimensional GaAs eiectrostatic
Aharonov-Bohm interferometers operating in the diffusive repime. Re-
gions of “fair" and ““good” performance are shown in the diagram. Theres
no region of excellent performance.
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FIG. 2. Performance diagram for one-dimensional GaAs electrostatic
Aharonov~Bohm interferometers operating in the diffusive regime. There
are regions of “fair,” 'good,"" and *‘excellent” performance. "Good" to “ex-
cellent™ performance can be expected at 77 K for practical carrier concen-
trations of ~10°cm .

ters for various temperatures and (degenerate) carrier con-
centrations. Unlike in the case of 2-d interferometers, there is
a region of “‘excellent” performance. We find that one can
expect “fair” performance at liquid-nitrogen temperature if
the carrier concentration exceeds 2.5% 10* em ™', “good”
performance if it exceeds 5 10° cm ~', and “exceilent” per-
formance if it exceeds 2.5 X 10° cm ~'. The performance im-
proves with increasing carrier concentration. However, as
the carrier concentration is increased, electron-electron
scattering (which is an inelastic mechanism) also becomes
more frequent and the inelastic mean free path (the phase-
breaking iength) becomes shorter which increases the de-
mands on lithography. Nevertheless, we have found that a
0.25-um-long structure with a carrier concentration of
~ 10" cm ™! can exhibit > 90% conductance modulation at
77 K.’ Realization of such structures is well within the capa-
bility of present day technology.

Although 1-d interferometers have the potential for ex-
cellent performance at 77 K, there are other critical design
issues that must be addressed before such performance can
be expected. Perhaps the most critical issue is the role of the
contacts. The contacts must infuse and extract carriers from
the two interfering paths phase coherently and this is achie-
vable to some extent if the interfering paths are closely
spaced and the carrier concentration in the contacts is not
too large.® Lightly doped contacts can be realized by Si im-

2328 Appi. Phys. Lett., Vol. 53, No. 23, 5 December 1968

plantation (for GaAs-AlGaAs structures).” In addition, the
contact geometry must also be such that the contacts are
*“transparent” to the electrons. Otherwise, an electron will
suffer many reflections back and forth between the contacts
before it finally exits the structure. Multiple reflections have
two deleterious effects. Firstly, since the transit time
through the structure increases proportionately with the
number of reflections, the spread in the transit time also in-
creases, which in turn reduces the conductance modulation.
Secondly, the dwell time of an electron within the structure
increases and this enhances its chances of encountering a
phase-randomizing inelastic collision. The geometry of the
structure is therefore a critical consideration in the design.
Semiconductor ring structures, which are conventionally
used for experiments,” are a poor design in this respect since
the radius of curvature of the ring is usually comparable to
the DeBroglie wavelength of carriers so that multiple reflec-
tions between the leads (contacts) can be severe.” Alternate
structures that do not have sharp bends and curvatures are
possibly a better choice. One such structure has been pro-
posed by us in Ref. §.

To summarize, we have shown that weil-designed one-
dimensional interferometers have the potential to operate at
liquid-nitrogen temperature. We have also identified the
temperatures and carrier concentrations required for var-
ious levels of performance.
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DOUBLED FREQUENCY OF THE CONDUCTANCE MINIMA IN
ELECTROSTATIC AHARONOV-BOHM OSCILLATIONS IN
ONE-DIMENSIONAL RINGS!

M. Cahay(®), S. Bandyopadhyay(®) and H. L. Grubin(®)

(3)Scientific Research Associates, Inc.
Glastonbury, Connecticut 06033

(®)Department of Electrical and Computer Engineering
University of Notre Dame
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We predict the existence of two differcnt sets of conductance minima in the conduc-
iance oscillation of a one-dimensional ring due to the electrostatic Aharonov-Bohm
effect. The two sets of minima arise from two different conditions and effecuvely
double the frequency of the conductance troughs in the oscillations. This makes the
frequency of the troughs rwice that predicted by the Aharonov-Bohm effect. We
discuss the origin of this feature along with the effects of temperature and elasuc
scattering. We also compare it with the magnetostatic Aronov-Al'tshuler-Spivak
effect and point out the similarities and differences.

L INTRODUCTION

Oscillatory conductance due to the electrostatic Aharonov-Bohm effect has
been predicted for a variety of ring structures along with potential device applica-
tions of that effect. In this paper, we point out an intriguing feature in the conduc-
tance oscillation of a one-dimensional ring due to the electrostatic Aharonov-Bohm
cffect. Unlike in the magnetostatic effect, the conductance in the electrostatic ef-
fect reaches its minimum under two different conditions which gives rise to (wo-
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was supported by the same agency under grant no. AFOSR-88-0096 and by
an IBM Faculty Development Award.
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distinct and independent sets of conductance minima in the oscillations. One set of
minima arises from the usual destructive interference of transmitted electrons and
the other arises from constructive interference of reflected electrons. The minima
in each individual set recur in the oscillations with the periodicity predicted by the
Aharonov-Bohm effect, but the separation between two adjacent minima (belong-
ing to the two different scts) is smailer than and unrelated to the Aharonov-Bohm
periodicity. In the following Sections, we establish this feature and discuss various
issues related to it.

II. THEORY

The conductance (G of a one-dimensional structure in the linear rcsponse
regime is given by the iwo-probe Landauer or Tsu-Esaki formula [1]

2
_ e 2 ., E — Er
G = gz [dE [T )} sech(=—=5) (1)

where T}, £) is the transmission cocfficient of an electron with incident encrgy
£’ through the entire structure (i.e. from one contact to the other), 7 is the
temperature and £ is the Fermi level.

The problem of calculating the conductance G is essentially the problem of
calculating Ty, The quantity T,o.4; can be found from the overall scattering
matrix for the structure. For a ring structure, the overall scattering matrix is
dctermined by cascading threc scautering matrices {2] represenung propagation
from the left lead of the ring to the two interfering paths, propagation along the
paths, and propagation from the paths to the right lead. For simplicity, we will
represent the first and the last of these scattering matrices by the so-cailed Shapiro
matrix which is defined in Ref. 3.

A. Ballistic Transport

In the case of ballistic transport, cascading the aforementioned three scatiering
matrices (according to the prescription of Ref. 2) yields the overall scauering
matrix and the transmission 7.4 [1,4] as

€l(ty +t2) — (b—a)’tita(ti’ + ty")]

Toa = - ;
P T S h (et + B[ — to(adty + 6%y] — a2bitity(ty + t7')?

t
(2)
where €, a and b are the elements of the Shapiro matrix?, and ¢ and r stand
for transmission and reflection amplitudes within the two interfering paths. The
subscripts ‘1’ and ‘2’ identify the corresponding path and the unprimed and primed
quantities are associated with forward and reverse propagation of the electron.

For a definition of these elements, see Ref. 1, 3 or 4.
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In the presence of an external potential V' inducing the electrostatic Aharonov-
Bohm effect, ¢, ¢y, t,’ and ¢,’ ransform according to the following rule (4]:

tl —)‘\{1 tl’ —)‘ Ell (3)
t'z - t16'¢ tg' b d t',e'¢ ’

where the quantities with the “hats” represent the transmission amplitudcs in the
absence of the external potential V/, and ¢ is the electrostatic Aharonov-Bohm
phase-shift between the two paths induced by V' and given by

¢"—V<T¢>— vem: E[\/ +— - 1]L (4)

Here < 1, > is the harmonic mean of the transit times through the two paths
which depends on V' and the kinetic energy E of the electrons, " is the electron’s
effective mass and L is the length of each path.

Using the transformations given by Equation (3) in Equation (2) and assuming
that in the absence of the extemnal potential V' the two paths are identical in all

respects (i.e. fl = f2 and t;’ = t;'}, we obtain

P

et (1 + ) (1 — (b — a)?t te?)
D(#,a,b,9)

—_—
(1}
~—

Ttotal(¢) =

where the denominator D is a function of £,, a, band @.
We find from the above equation that T;o¢q(( ) vanishes and hence the con-
ductance (see Equation (1)) reaches a minimum whenever

\/— eV

¢=02n+1)r, ie when ———\/l+—= - l|L=(2n+1)r

(6)

This gives the usual conductance minima (which we call the primary minima)
associated with destructive intcrference of transmitted electrons.

However, we find from Equation (5) that Tyoeq:(®) also vanishes whenever

(b—a)*hile® = 1 (7)

From the unitarity of the Shapiro matrix (see Ref. 4) it can be shown that b—a

differs from unity only by a constant phase factor, i.e

b—a=c¢e" (3)




Now since in ballistic transport £; = £, = 'L (where k is the electron’s wavevec-
tor in either path in the absence of the external potential V'), Equation (7) really
corresponds to the condition

2k,L+¢+2u=\—/—2-;:LE[\/I+iEZ + 1L+2=2mr (9)

Whenever Equation (9) is satisfied, another set of conductance minima should
appear in the oscillations since the numerator of Tiosqi(¢) goes to zero and the
conductance should fall to a minimum unless the denominator of T,.,.,($) also
happens to go to zero at the same time. It is easy to see that the denominator of
T'otat (@) vanishes whenever ¢ is an even multiple of 7. Hence, unless Equation
(9) is satisfied only by those values of ¢ that arc even multiples of 7 (which
requires 2(A; L + v) to be also an even multiple of 7), the conductance of the
structure should reach a minimum whenever ¢ satisfies Equation (9). This gives
risc to an additional set of minima which we call the secondary minima. Actually,
the secondary minima always occur unless 2(k; L + v) is an even or an odd
multiple of 7. The latter case is not proved here for the sake of brevity, but is
proved in Ref. 4,

B. Diffusive Transport

In the case of diffusive transport, Ty,¢4(#) can again be found from the
prescription of Ref. 2, except that now we have o0 evaluate it numerically. We
have calculated the conductance (¢ vs. the electrostatic potential |/ for both
ballistic and diffusive transport. The results are displayed in Fig. 1. The secondary
minima arc not washed out by elastic scattering in the weak localization regime.
However, they begin to wash out with the onset of strong localization and with
increasing temperature. The effect of temperature has been discussed in Ref. 4.
Note also the interesting feature exhibited by the secondary minima; they become
more and more pronounced in the higher cycles of oscillations (increasing V)
unlike the primary minima. This implies that in an experimental sitation, even if
the secondary minima cannot be observed in the first few cycles, they could show
up in the later cycles.

III. DISCUSSION

Before concluding this paper, we briefly discuss the origin of the secondary
minima. Equation (9), which predicts the existence of the secondary minima in the
ballistic case, physically represents the condition that an electron reflected around
the ring interferes constructively with itseif at its point of entry into the ring. This
minimizes the conductance by maximizing the reflection. Such a phenomenon can
be viewed as some kind of “coherent backscattering”, but it is not exactly similar
to the magnetosiatic Aronov-Al'tshuler-Spivak (AAS) effect which also involves
backscattering, but specifically involves interference of two backscauered time-
reversed paths. Conductance modulation due to the interference of time-reversed
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Fig. 1. Electrostatic A-B oscillations in a I- d rmg The length of each path
is 5000 A. The carrier concentration is 1.55 x 105 cm™" and the parameter ¢ =
0.35. The solid curve is for ballistic transport and the broken curve is for diffusive
transport. In the latter case, there are 10 elastic scatterers in each path arbitrarily
located. Strong localization would have set in if there were 33 scatterers in either
path. In both ballistic and diffusive transport, the secondary minima are bleached
out much more rapidly than the primary minima as the temperature is increased.

paths cannot occur in the electrostatic case since the time reversed paths always
interfere constructively and an external electrostatic potential cannot change that®,
However, in spite of this basic difference, there is undeniably the superficial sim-
ilarity between the two effects in that they both double the frequency of the con-
ductance troughs in the oscillations.
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Two types of conductance minima in electrostatic Aharonov-Bohm conductance oscillations
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We predict the existence of rwo different types of conductance minima, arising from different
interference conditions, in the conductance oscillation of a one-dimensional ring due to the elec-
trostatic Aharonov-Bohm effect. The occurrence of two types of minima doubles the frequency of
the conductance troughs in the oscillations, making it twice that predicted by the Aharonov-Bohm
effect. This feature, which is not inhibited by elastic scattering in the weak-localization regime,
can, however, be observed only at sufficiently low temperatures. At clevated temperatures, onc of
the two types of minima is bleached out and the normal Aharonov-Bohm frequency is restored.

In this Rapid Communication, we point out an intrigu-
ing feature in the conductance oscillation of a one-
dimensional ring due to the electrostatic Aharonov-Bohm
effect.! Unlike in the magnetostatic effect, the conduc-
tance oscillation of a ring due to the electrostatic effect ex-
hibits two distinct sets of minima arising from two
different interference conditions. One set of minima is
caused by the usual destructive interference of transmit-
ted electrons, and the other arises due to the constructive
interference of an electron traveling completely around
the ring and interfering with itself at its point of entry into
the ring. In the next paragraphs we establish the ex-
istence of this feature and discuss various issues related to
it.

For purposes of analysis, we represent a one-dimen-
sional ring structure as shown in Fig. . We assume that
phase randomization in the two contacts (termed “source”
and “drain”) occur sufficiently far away from the junc-
tions between the contacts and the paths.? The (two-
terminal) conductance of the structure, in the linear-
response regime, is given by>

2 (E-
2 deITml(E)IzsechzlE E’]. (1)

G=2mt 2kT

where T, is the transmission coefficient of an electron
through the entire structure, E is the kinetic energy of the
electron, and Er¢ is the Fermi level.

The conductance G depends on the transmission Tq).
The transmission T, can be found from the overall
scattering matrix for the ring structure determined by cas-
cading three scattering matrices.* They represent propa-
gation from the source to the two paths, propagation
along the paths and propagation from the paths to the
drain, respectively. For simplicity, we represent the first
and the last of these scattering matrices (for junctions
A-B and C-D in Fig. 1) by the so-called Shapiro matrix®
which relates the incident, reflected, and transmitted am-

ki)

plitudes according to (see Fig. 1)

—(a+b) (Ve)* (Ve)*||a+

'

A
B |= Ve a b B |, ()
By Ve b* a By

where the asterisk denotes complex conjugate.

The scattering matrix representing propagation along
the two paths (i.c., across the junction B-C in Fig. 1) is
given by*

B|- r 0 li 0 B;+
By 0r 0 t3|BS
C+ = 6H 0 rnol|C{’ G)
cs 01+ 0 r3|{Cy

where ¢ and r stand for the transmission and reflection
coefficients within the paths. The subscripts 1 and 2 iden-
tify the corresponding path and the unprimed and primed
quantities are associated with forward and reverse propa-
gation of an electron from the source to the drain.

SOURCE DRAIN
s—B C—_.p
=B, Ci-f
Ae— : . |*=—D
‘—Bz Cf—
— (I

FIG. 1. Schematic representation of a one-dimensional xfing-
like structure showing the incident, reflected, and transmitted
clectron amplitudes.
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If we assume ballistic transport in the two paths, in which case 7y =r;=r{ =r; =0, then cascading the three scattering
matrices for the three junctions 4-8, B-C, and C-D yields the overall scattering matrix and thence the transmission

Tl (=D +/A +) as

Tiow™

el +12) — (b —a)t1t2(t] +1¢3)]

The above equation is a perfectly general expression for
the transmission through a ballistic one-dimensional ring.
It may be pointed out that ballistic transport, although
difficult to achieve, is not totally unexpected in strictly
one-dimensional semiconductor microstructures at low
enough temperatures since elastic scattering events are
highly unlikely in one-dimensional structures.’ The case
of diffusive transport, when elastic scattering is present, is
discussed later.

Let us now consider the conductance of the ballistic
ring in a magnetic field. In the presence of a magnetic
flux inducing the magnertostatic Aharonov-Bohm effect,
1\, 22, t1, and ¢; in Eq. (4) transform according to the fol-
J

(L=01@a2; +b45)I —t2(as+ b))l —a2b2 1,0t +23)?

(4)
T
lowing rule:®
t,—1ie —i8/2 t— ;;eio/z
tr—s P16 15— ile ~92 ) (s)

where the quantities with carets represent transmission
amplitudes in the absence of any magnetic flux and 0 is
the magnetostatic Aharonov-Bohm phase shift given by
0= (e/h)®, ® being the flux threaded by the ring. Using
the transformations given by Eq. (5) in Eq. (4) and as-
suming that the two arms of the ring are identical in all
respects so that (in the absence of any flux) i, =7, and
I/'=t,, we get

e1e'?(1+e ~O)[1 - (b —a) 2, f]]

Tioa(6) =

(6)

=fi(a?+b2e "IN =17 (a2 +b2e®) ] —albi}i2 (24 ~i02)2 "

The numerator in T4, (0) goes to zero and hence the
conductance of the ring [see Eq. (1)] reaches a minimum’
whenever

9-%¢-(2n+l)n. )

This gives the usual conductance minima in the magnetos-
tatic Aharonov-Bohm oscillations associated with destruc-
tive interference of transmitted electrons. Note, however,
that the numerator in T, (6) also becomes identically
zero (independent of the magnetic flux) if the following
condition is satisfied,

(b—a)i.fi=]. (8)

[t can be shown from the required unitarity of the
Shapiro matrix that the quantity b —a differs from unity
by a constant phase factor, i.c., b—a =e'". Also, in ballis-
tic transport, £, =f; =e‘*L (where L is the length of each
path and k is the clectron’s wave vector in either path at
zero magnetic flux). Therefore, Eq. (8) really corre-
sponds to the condition,

2kL+2v=2nzx. 9)

It appears that if condition (9) is satisfied [in which
case the numerator in T4, (8) remains identicaily zero
independent of 6], the conductance of the ring should al-
ways remain at its minimum, regardless of the magnetic
flux. However, that is not quite true since the denomina-
tor in Tya1(8) could also become zero at some values of
the magnetic flux. It is easy to see that the denominator
does vanish whenever 6 =2nzx or ®=nh/e (n=0 or an in-
teger) in which case, application of L'Hospital’s rule
shows that | T\ (®=nh/e)| =1. Itis interesting to note

{

that if the ring’s parameters (wave vector and length) are
such that Eq. (9) is satisfied (which actually implies that
the ring is “Fabry-Perot resonant™ at zero magnetic flux),
then | Tiowui(®) | =680.n4se, where the & is a Kronicker 6.
In that case, at a temperature of 0 K, the magnetoconduc-
tance G (®) of the ring will appear as a series of “spikes”
occurring at ®=nh/e; the spikes, however, will broaden
with increasing temperature.

In the case of the electrostatic effect, the transforma-
tions in Eq. (5) are replaced by

t]— 1}
io|

ty— 116" th—1ile

it (10)

where ¢ is the electrostatic Aharonov-Bohm phase shift
between the two paths given by
12

[]
o--;TV(r,)-——v:’:E 1+£E‘i —1lz. an

Here (r,) is the harmonic mean of the transit times
through the two paths which depends on the incident ener-
gy E of the electrons and also the potential difference V
between the paths.®

The difference between the transformations in Egs. (5)
and (10) accrue from the fact that the magnetostatic
Aharonov-Bohm phase shifts suffered by an electron in
traveling along opposite directions (time-reversed paths)
have opposite signs, whereas the electrostatic phase shifts
will have the same sign. This is an important distinction
which ultimately causes two different sets of minima to
appear in the electrostatic effect but not in the magnetos-
tatic effect. Is is also this difference that precludes the ex-
istence of an electrostatic analog of the magnetostatic
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Aronov-Al'tshuler-Spivak effect.
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Using the transformations given by Fq. (10) in Eq. (4), we obtain (for the electrostatic case),

ef,(1+e*)1 = (b—a) 3 \i1e”)

Tion(o) =

a ay

[1=i,fj(a?+b2%®)]1 —1\i|(a’e¥+b2e*)) —a2biii e (1 +e)?

The numerator of T\oau(¢) vanishes and the conduc-
tance reaches a minimum® whenever

o=Q2n+1)r

or (13)
- 1/2

——"2’;’5 1+£EK -1]L-(2n+l)n.

This gives the usual conductance minima (which we
call the primary minima) associated with destructive in-
terference of transmitted electrons. Note, however, that
the numerator of Toai(¢) also vanishes if

(b—a)if\f1e*=1. (14)
In ballistic transport, this corresponds to the condition
- 112
sz+¢+zv-—“2'"hE 42| 41l +2vm2mn.
(15)

It is obvious that whenever condition (15) is satisfied,
the numerator of Tioqa(9) goes to zero and the conduc-
tance should fall to a minimum unless the denominator of
Totai{(9) also happens to go to zero at the same time. The
denominator vanishes whenever ¢ =2nx. Hence, unless
Eq. (15) is satisfied only by those values of ¢ that are even
multiples of # (which requires 2kL + v to be an even mul-
tiple of x or the ring to be Fabry-Pérot resonant at V' =0),
the cond-ctance of the ring should reach a minimum
whenever ¢ satisfies Eq. (15). This gives rise to an addi-
tional set of minima which we call the secondary minima.
The physical origin of the secondary minima is the follow-
ing: Eq. (15) represents the condition that an electron,
entering one of the paths from the left comact, gets
reflected into the other path at the right contact, travels
Sull circle around the ring and interferes constructively
with itself at its point of entry at the left contaci. This
maximizes the reflection and hence minimizes the
transmission and conductance. This phenomenon could
also cause a secondary set of minima to appear in the
magnetostatic oscillations, but there the conditions for the
occurrence of the primary and secondary minima are ex-
actly identical {they occur at exactly the same value of the
magnetic flux), so that they are always indistinguishable.
But in the eclectrostatic case, the two conditions are
different so that the two minima are distinguishable.

Let us now establish the requirements for the distingui-
shability. For this, we first find the difference between the
phase shifts that give rise to the primary and secondary
minima. From Eqs. (13) and (15),

Oprimary — Psecondary ™ 2n+1)r—Qmr=2kL =2v).

(16)

(12)

I

This difference becomes an even muitiple of = (or,
equivalently zero) if 2(kL +v) is an odd multiple of =,
i.c., if the ring happens to be Fabry-Pérot antiresonant at
¥=0. In that case, the primary and secondary minima
will overlap and remain indistinguishable. Barring this
case, and the case of the ring being Fabry-Pérot resonant
at V=0, both types of minima will not only occur in the
oscillations, but also remain distinguishable.

It is clear that the appearance of two different sets of
minima doubles the frequency of the conductance troughs
in the oscil'ations. It is interesting to examine whether
this can ever give rise to exactly half-periodic (h/2e) os-
cillations. For this to happen, the secondary minima must
occur when ¢ =2mx since the primary minima always
occur when ¢=(2n+1)r. But the secondary minima
cannot occur when ¢ =2mx since [from Eq. (15)] that
would require 2(kL +v) to be an even multiple of = in
which case the secondary minima do not even appear.
Hence, exactly half-periodic oscillations can never arise
from this effect in ballistic transport.

We now examine the effect of nonzero temperature on
the two types of minima. Nonzero temperature gives rise
to a thermal spread in the electron’s energy which results
in a bleaching out of the conductance minima due to en-
semble averaging over the electron’s energy. The primary
minima are bleached out when the spread in the quantity
on the left-hand side of Eq. (11) (due to a spread in the
electron’s energy) exceeds n and the secondary minima
are bleached out when the spread ifi the quantity on the
left-hand side of Eq. (15) exceeds n. These two spreads

are
/
m* e 1 1
3 L
2h

JE eV " VE

]kT.

Aprimary ™ [
17)

1 1
———— +— [kT,
VE ¥eV \/E]

where kT is the thermal spread in the energy.

From Eq. (17), we can find two critical temperatures
Trimary and TSecondary above which the primary minima
and the secondary minima, respectively, are bleached out.
These two temperatures are estimated by equating Aprimary
and Asecondary to # Which gives (assuming the electron en-
ergy E to be the Fermi energy Er)

m . 1/2
Asecondary ™ [—2;'2_ ] L

1

n 1 |
L Vam*® [JEF VEr+ev,

. (18)

~c
k7 primary ™

and

' . (19)

krgecondlry"i ! l +
L om* | JEr ErteV,
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where V, is the potential at which the first primary
minimum occurs and ¥, is the potential at which the first
secondary minimum occurs in the oscillations.

Note that both Thrimary and Téecondary increase with in-
creasing Er or carrier concentration and decrease with in-
creasing length of the structure. It is therefore necessary
to have short structures with high-carrier concentration in
order to observe both minima at sufficiently high tempera-
tures.

In Fig. 2, we show the effect of temperature on both
types of minima in the oscillations. While the primary
minima can persist up to rather high temperatures, the
secondary minima bleach out at much lower temperatures
since [as we can see from Eqs. (18) and (19)] Ticondary
< Thrimary- This means that in an experimental situation,
raising the temperature will gradually wash out the secon-
dary minima and the oscillations will gradually revert to
the normal Aharonov-Bohm oscillations with only the pri-
mary minima visible at higher temperatures.

Finally, another interesting feature, which is clearly
visible in the oscillations, is that the primary minima tend
to bleach out more and more in the higher cycles of the os-
cillations whereas the secondary minima exhibit the oppo-
site behavior. This allows one to distinguish between the
two types of minima in experimental data. [t is a very in-
teresting behavior and is easily understood from Eq. (17)
which shows that at a given temperature, Aprimary in-
creases with increasing ¥ while Acondary actually de-
creases with increasing V. The significance of this is that
at clevated temperatures, even if the secondary minima
are not visible in the first few cycles of the oscillations,
they could eventually show up in the later cycles.

Before concluding this Rapid Communication, we
briefly discuss the effect of elastic scattering. We have
carried out an analysis in the presence of elastic scattering
following Ref. 4 and found that elastic scattering does .iot
inhibit the twin-minima feature in the weak localization
regime as long as the temperature is well below Tim,.d.,y."
We have also found that the feature is not completely in-
hibited in multichanneled transport as long as the number
of channels (propagating modes) is not too large.’ It
therefore appears that the feature predicted in this Rapid
Communication is quite robust and should be observable
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FIG. 2. The electrostatic Aharonov-Bohm conductance oscil-
lations in a “ballistic ring’" made or GaAs showing both types of
minima. Each type of minima recur with the usual Aharonov-
Bohm periodicity, but the separation between two adjacent
minima (belonging to the two different types) is smaller than
and unrelated to the Aharonov-Bohm periodicity. Note that the
secondary minima are bleached out at much lower temperatures
than the primary. These curves were obtained by performing
the integral in Eq. (1) numerically. The parameters for the ring
were carrier concentration equals 1.55x10% cm ™', path length
equals 1000 A, €=0.5, and v=0.

in realistic semiconductor structures at sufficiently low
temperatures.

In conclusion, we have established the existence of a
hitherto unsuspected feature in the conductance oscilla-
tion of a one-dimensional ring due to the electrostatic
Aharonov-Bohm effect. We have identified the origin of
this feature and discussed the conditions for its observabil-
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We describe a novel quantum-interference phenomenon that gives rise to fluctuations in the opti-
cal spectra of disordered microstructures when the inelastic scattering time in the structures exceeds
the radiative recombination lifetime. The origin of this phenomenon lies in the fact that an electron
or hole, forming an optical dipole, does not lose its phase memory in the absence of inelastic scatter-
ing. Consequently, when the dominant relaxation process for the optical dipole moment is elastic
impurity scattering, the optical spectra of disordered samples depend sensitively on the phase rela-
tionships between the various electron (hole) states in the system due to quantum interference.
Since these phase relationships themselves depend on the exact locations of the impurities (scatter-
ing centers) within the structure, the optical spectra will also depend on the precise details of the
impurity “configuration” inside the structure. In addition, if the phase relationships are altered
with an external field which perturbs the states, the optical spectrum will exhibit sample-specific
fluctuations. In many ways, this phenomenon is an optical analog of *“universal conductance fluc-
tuations” and indeed has the same physical origin. An important consequence of this phenomenon
is that in a superlattice structure, each quantum well will have a slightly different optical spectrum
if they merely have different impurity configurations but are otherwise identical. Consequently, this
phenomenon will induce a unique type of inhomogeneous broadening in such a structure. This inho-
mogeneous broadening can be quite large and at low enough temperatures can even be the dominant

cause of linewidth broadening.

I. INTRODUCTION

It is now well established that elastic scattering pro-
cesses, such as impurity scattering, do not destroy the
phase memory of electrons, unlike inelastic scattering.'
Recent observations of the Aronov-Al'tshuler-Spivak
effect,? the Aharonov-Bohm effect,’ and universal con-
ductance fluctuations® in disordered mesoscopic struc-
tures (with sample dimensions shorter than the inelastic
diffusion length) bear ample testimony to this fact. A
striking consequence of this phase-memory conservation
in impurity scattering is that certain macroscopic proper-
ties of a disordered sample, such as the conductance, can
depend sensitively on certain microscopic features, such
as the exact locations of the impurities within the sam-
ple.’ If the impurity configuration inside a sample is al-
tered while keeping the total number of impurities the
same, the conductance of the sample also changes. This
is purely a quantum-mechanical effect and arises from the
fact that the conductance depends on the superposition
of the transmission amplitudes of various Feynman paths
inside the sample. Since elastic scattering does not des-
troy the phase memory of electrons, the interference
terms in the superposition do not ensemble average to
zero. Consequently, changing the impurity configuration
(which alters the phase relationships between the various
Feynman paths) changes the conductance. A convenient
way of demonstrating this phenomenon is to use an exter-
nal magnetic field to introduce an additional Aharonov-
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Bohm phase shift between the various electron trajec-
tories. If the field is scanned, the interference conditions
between the trajectories change causing the conductance
to fluctuate. These aperiodic fluctuations are ‘“‘sample-
specific” since the impurity configuration is sample
specific, but the rms value of the fluctuations has a
universal magnitude. This is the essence of universal con-
ductance fluctuations.

In this paper, the primary objective is to study an opti-
cal analog of the above transport phenomenon. Elastic
intraband relaxation processes do not destroy the phase
memory of an electron or a hole forming an optical di-
pole. Consequently the decay of the electron and hole
states in the presence of impurity scattering is influenced
by quantum-interference effects. In particular, since the
impurity configuration determines the phase relationships
between the various states that the electron and hole are
coupled to by the impurity interaction, the configuration
plays an important role in determining the exact nature
of the decay processes for the electronic and hole states
and therefore the optical dipole. The precise details of
how the optical dipole moment decays with time deter-
mines several features of the optical spectrum. Conse-
quently, any influence of the impurity configuration on
this decay process is manifested in the optical spectra. In
other words, the optical spectrum is influenced by the im-
purity configuration.

In order to study this phenomenon, we have developed
a simple quantum-mechanical model to calculate the
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damping of an optical dipole moment with time in the
presence of impurity scattering. The formalism is based
on coupled-mode theory and is derived directly from the
Schrodinger equation. We first compute the time evolu-
tion of an electronic state and a hole state that form an
optical dipole by solving a set of coupled-mode equations.
From this, we obtain the damping characteristics of the
dipole moment. The impurity coordinates appear explic-
itly in the Hamiltonian for the system and affect the de-
cay characteristics directly. Inelastic processes are ex-
cluded from the model based on the premise that at low
enough temperatures, the inelastic scattering time (for
both electrons and holes) can exceed the radiative recom-
bination lifetime of a photogenerated electron-hole pair.
Hence a typical pair may not experience a single inelastic
collision during its lifetime. For instance, the inelastic
scattering time for electrons in GaAs may exceed | nsec
at temperatures lower than 100 mK (Ref. 6) whcreas the
radiative recombination lifetime for typical carrier con-
centrations in GaAs is ~ | nsec. From the decay charac-
teristics of the optical dipole moment, the photolumines-
cence line shape is caiculated and compared for varying
impurity configurations.

In Sec. 11, we describe the theoretical model. In Sec.
ITII we show how the amplitudes of an electronic state
and a light- or heavy-hole state in a disordered two-
dimensional quantum box decay with time due to impuri-
ty scattering. We also show how the decay characteris-
tics are influenced by the precise details of the impurity
configuration. We then show the influence of the impuri-
ty configuration on the decay characteristics of the opti-
cal dipole moments themselves. In Sec. IV we show the
photoluminescence spectra for both electron-light-hole
transitions and electron-heavy-hole transitions and how
each is affected by the details of the impurity
configuration. Finally, in Sec. V, we discuss the analogy
between the optical fluctuations and the universal con-
ductance fluctuations, and present the conclusions.

II. THEORY

We start from the single-particle effective-mass
Schrédinger equation for a two-dimensional quantum
box,

.
‘ﬁax‘

# ,
;’—_—v},wﬂ v, (1

where V7 is the two-dimensional Laplacian and H" is the
impurity interaction Hamiltonian which is time indepen-
dent (elastic scattering).

The wave function ¥ is expanded in a complete ortho-
normal set

b= c,(1), , @)
P

where the ¢’s are the so-cailed *“normal modes” of the
system which are the solutions of the Schrédinger equa-
tion in the absence of impurity interaction. These are
therefore the “‘particle-in-a-box’* states given by
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where W is the lateral dimension of the quantizing
(square) box. Each basis state is labeled by two indices m
and n corresponding to the two-dimensional subbands in
the two-dimensional quantum box.

Substitution of Eq. (2) into (1) yields the matrix equa-
tion which gives the time evolution of the amplitude c,(r)
of any state ¢p,

mﬂ%ﬂl=ﬂo[cm]+7f[cm1 . @

where [c(1)] is a column vector whose elements are the
amplitudes of the various states in the quantum box at
time t, 7, is the unperturbed Hamiltonian (a diagonal
matrix whose elements are the kinetic energies of the
basis states), and ' is the impurity interaction Hamil-
tonian whose matrix elements are given by

, rq’
Hpq:-:g;;((ﬁplé(r—ri)l(tq). (5)

[ is the strength of the interaction, and r, is the two-
dimensional coordinate of the ith impurity. The summa-
tion is carried out over the coordinates of all the impuri-
ties in the quantum box.

For the scattering potential, we use a “delta potential™
rather than the screened Coulomb potential so as to be
able to obtain an analytical expression for the matrix ele-
ments of 7f'. The choice of & scatterers makes impurity
scattering isotropic, but does not change the essential
physics. The interference between the scattered ampli-
tudes enters through the summation over the impunty
coordinates. This underscores the importance of the im-
purity “configuration,” since the exact locations of the
impurities, appearing explicitly in the Hamiltonian,
determine the phase relationships between the various
¢'s. The present formalism, which deals directly with the
scattered amplitudes rather than with the scattering
probabilities, is different from the semiclassical formalism
based on “Fermi’s golden rule,” which deals only with
the probability of scattering so that all interference effects
between the scattered amplitudes are inevitably masked.
Consequently, in the semiclassical formalism, it is only
the net impurity concentration or the total number of im-
purities inside a sample that is important in determining
any physical parameter; the precise details of the
configuration are irrelevant. However, in a quantum-
mechanical treatment, one must take the impurity coor-
dinates explicitly into account since they affect the in-
terference between the scattered amplitudes which in
turn can affect certain macroscopic properties of a sam-
ple.

Equation (4) has the solution

(c(t)}=exp [c(0)], (6)

_ine
#

where # = #,+#'. It may be noted that since #f is Her-
mitian. exp( —i /4t /#) is always unitary, as it must be, in
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order to conserve probability. Equation (4) is a set of
“coupled-mode equations” which are inherently reversi-
ble. Since no inelastic processes are operative, there is no
dissipation and consequently the system described by Eq.
(4) is reversible. As a result of this reversibility, the com-
plex amplitude of any state (both the magnitude and
phase) is completely deterministic at any time and can be
found from Eq. (6). Specifically, since the phase is deter-
ministic at all times, phase memory is never lost. More-
over, since 7' depends explicitly on the impurity coordi-
nates r; [see Eq. (5)], the impurity configuration will have
a direct effect on both the magnitude and phase of any
state at any given time.

Equations (1)-(6) are valid for both electrons and
holes. The amplitude of any conduction-band state or
valence-band state in the presence of impurity scattering
can be found from Eq. (6). The time-dependent optical
dipole moment P(t) associated with transitions between
two quantum states in the valence and conduction bands
of a semiconductor is given by

P(t)=%P(0)ZC,:(t)c,,F(t)-i-c.c. , N
P

where ¢, and ¢, are the complex amplitudes of an elec-
tron and a hole state. Therefore, the damping of the opti-
cal dipole moment P{(¢) can also be calculated from Eq.
(6). The optical line shape F(w), representing the homo-
geneous broadening, is obtained in a straightforward
manner by Fourier transforming the time-dependent di-
pole moment P(¢) into the frequency domain o of the in-
cident photons.” F(w) is thus also affected by the impuri-
ty configuration, insofar as the damping of P(¢) is
influenced by the configuration.

III. DECAY OF THE OPTICAL
DIPOLE MOMENT WITH TIME

In this section we first show how an electronic state
and a hole state decay with time in the presence of elastic
impurity scattering. We choose a two-dimensional GaAs
quantum box of area 1000 1000 A’ which can be fabri-
cated by electron-beam lithography.! The impurity con-
centration is chosen to be 5x 10'' cm~? so that there are
50 impurities in the box. The impurity configuration is
generated by two independent uniform random-number
generators that determine the x and y coordinates. A
typical impurity configuration is shown in Fig. 1. The
various parameters are chosen as =333 A (for both
electrons and holes), m.S=0.06Tm,, mypy=0.45m,
(heavy holes), mg{y;=0.082m, (light holes), and
€=12.9¢,.

The initial photoexcited state for the electron is taken
to be the state | m,n )= |3,3). This state has an energy
10 meV above the conduction-band edge so that both
spontaneous and stimulated polar-optical-phonon emis-
sion from this state are inhibited. Other inelastic mecha-
nisms (such as carrier-carrier scattering, optical-phonon
absorption, and acoustic-phonon interactions) can be
suppressed by lowering the temperature sufficiently. In a
quantum dot, the phonon interactions are weak since
quantum confinement gives rise to only discrete states
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FIG. 1. A 1000% lOOO-f\z quantum box showing a typical
random configuration of impurities.

and it is very difficult to simultaneously conserve both
momentum and energy in even multiple phonon process-
es. In addition, radiative transitions between the subband
states within the conduction band or between the sub-
band states within the valence band are also forbidden be-
cause of the orthogonality of the envelope wave functions
of the subband states. In other words, all intraband in-
elastic processes that could cause the initial electron or
hole state to decay are weak and negligible compared to
elastic interactions at low enough temperatures.

The initial heavy-hole state is also chosen to be the
state | 3,3) since the only radiative transitions between
conduction-band states and valence-band states that are
aliowed are those between subbands with identical in-
dices. The initial heavy-hole state thus has an energy 1.5
meV below the valence-band edge. Similarly, the light-
hole state is also chosen to be the state | 3,3) which has
an energy 8.2 meV below the valence-band edge. It may
be noted that for a given resonant photon energy, either
only a heavy-hole transition or a light-hole transition is
involved (but not both) since quantum confinement lifts
the degeneracy between the heavy- and light-hole bands.

In an actual experimental situation, however, the
choice of the initial electron and hole states will be
governed by the energy of the incident photons. Since
there are only discrete levels (and no continuum states) in
a true “quantum dot” with infinite barriers, photoexcita-
tion or absorption can occur only at discrete frequencies
corresponding to discrete energy separations between the
electron and hole subbands. In fact, by tuning the excita-
tion frequency, one can select either a specific heavy-hole
transition or a specific light-hole transition. Assuming
the band gap of GaAs to be 1.42 eV, the present choice of
initial states for the heavy-hole transition corresponds to
a photon energy of about 1.4315 eV, and for the light-
hole transition it corresponds to a photon energy of
1.4382 eV. We have neglected any strain-induced effects.

A very intriguing question at this point is whether the
initial state {3,3), which is not degenerate in energy with
any other state in the system, can decay at all in the ab-
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sence of inelastic scattering. The only way this state can
decay is if the electron gets coupled to other electronic
states in the quantum box (not at the same energy)
through elastic coupling. Alternately, one may ask if
there can be any homogeneous broadening of the optical
spectrum in the absence of inelastic scattering. Any
homogeneous broadening or nonzero electronic linewidth
indicates that the electron has either gained or lost ener-
gy after it was excited to the conduction band, which it
apparently cannot do without inelastic scattering events.
The same is true of holes. Indeed in the semiclassical pic-
ture, elastic scattering cannot couple an electron between
states that are not isoenergetic so that an electron cannot
gain or lose energy through elastic scattering. In the
Fermi’s-golden-rule formalism, this is ensured by the
energy-conserving & function which, however, is inexact
for short time scales because of the uncertainty principle.
In a strictly quantum-mechanical formalism, coupling be-
tween nondegenerate states is allowed for sufficiently
strong elastic interaction, although it is always much
weaker than coupling between degenerate states. Indeed
in the coupled-mode formalism that we have adopted,
this is a well-known fact in the context of integrated op-
tics.” For instance, it is possible to couple light from one
optical waveguide to another even if the two waveguides
have slightly different characteristic frequencies. By the
same token, an electron can be coupled to a higher or
lower energy state for short times by sufficiently strong
elastic coupling, thereby causing homogeneous broaden-
ing. The efficiency of this coupling, however, decreases
rapidly with increasing energy separation between the
states.

To illustrate this particular point, we have purposely
chosen the initial state as the state {3,3). We have in-
cluded 64 states in the calculation (m =1,2,3,...,8 and
n=1,2,3,...,8) for both electrons and holes. In Fig. 2
we show how the initial electron and hole states decay
with time. The two curves (solid and dashed lines) are for
two different impurity configurations. These curves were
obtained directly from Eq. (6). The initial states decay as
the electron or hole is coupled away to other electron or
hole states in the system. To illustrate this further, we
show in Figs. 3(a) and 3(b) the real and imaginary parts of
the electron “‘density matrix” at time t=275 fs. The elec-
tron density matrix in reciprocal space (momentum rep-
resentation) is defined as

Pogltl=c,(thc (e) (8)

where ¢, and ¢, are the amplitudes of any two electronic
states.

In the labeling scheme that we have adopted, the index
p used to label a state is chosen such that the state |1,1)
(m=1, n=1) has the index p=1, the state |1,2) has the
index p=2, . . ., the state |2,1) has the index p=9, ... .
The initial state |3,3) therefore corresponds to p=19. In
Fig. 3(a), the dominant peak appears at p=19, g=19 (i.e,,
P19.19 is the largest element in the density matrix) which
shows that the initial state is still the dominant state.
Nevertheless states that are close to the initial state in en-
ergy have developed quite large amplitudes which indi-
cates that the electron has been significantly coupled to
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FIG. 2. Decay of the amplitudes of the initial (a} eiectron
state, (b) the light-hole state, and (c) the heavy-hole state with
time due to impurity scattering. The impurity concentration is
$x 10" cm 2. The solid and dashed curves are for two different
impurity configurations.
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FIG. 3. The (a) real and (b) imaginary part of the electron
density matrix p,, in momentum space at time t=275 fs.

these states. This demonstrates the fact that in the pres-
ence of sufficiently strong elastic interaction, significant
coupling may occur even between states that are nonde-
generate in energy. However, states that are farther from
the initial state in energy have correspondingly smaller
amplitudes since coupling to these states is much weaker.
For instance, the state | 8,8) (p=64, g=64) is the state
with the highest energy which has an energy 61 meV
above the energy of the initial state. Consequently the
element pg, ¢4 is almost zero since very little coupling can
take place between this state and the initial state. (This
also shows that 64 was a sufficient number of states to in-
clude in the calculation since states lying above the 64th
state in energy are barely coupled to the initial state for
this interaction strength.)

In Figs. 4 and 5 we also show the real and imaginary
parts of the electron-hole joint density matrices for both
light and heavy holes. The joint density matrix is defined
as

Pr(t)=cy (t)c, (1) , 9)

where ¢, is a light- or heavy-hole state and ¢, is an elec-
tronic state.

There is an obvious difference between Fig. 4(a) and
Fig. 5(a). Comparing the two, it is found that a much
larger fraction of the elements are significantly large for
the electron-heavy-hole joint density matrix than for the
electron -light-hole joint density matrix. This is due to
the fact that since the heavy holes have a larger effective
mass, the heavy-hole subbands are spaced much closer in
energy than the light-hole subbands so that elastic cou-
pling between the heavy-hole states is much more
efficient. Consequently, a much larger fraction of the
heavy-hole states will acquire significant amplitudes after

(b)

FIG. 4. The (a) real and (b) imaginary part of the
electron-light-hole joint density matrix p3,"" at time 1=275 fs.

a given time. This also implies that a heavy-hole state
will damp much more rapidly than a light-hole state in
the presence of elastic scattering which is clearly seen in
Figs. 2(b) and 2(c). Hence, an optical transition involving
a heavy hole wiil have a shorter associated T, time in this
case than a transition involving a light hole.
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FIG. 5. The (a) real and (b} imaginary part of the
electron—heavy-hole joint density matrix p5,*# at time r=275fs.
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The decay characteristics in Figs. 2 have several in-
teresting features. Each characteristic is nonmonotonic.
This is related to the fact that in a dissipationless and re-
versible system, the initial state is never quenched per-
manently and should recur after sufficiently long time in-
tervals. More importantly, the decay characteristic is
distinctly different for two different impurity
configurations (the solid and dashed curves). This is fully
expected in view of the fact that the characteristics in
Fig. 2 can be interpreted as interference patterns. They
are influenced by the interference of the waves scattered
from various impurities and also the interference of the
waves reflected from the walls of the quantum box.
Changing the impurity configuration will alter the phase
relationships between these interfering waves and there-
fore the interference pattern. Consequently, any decay
characteristic has a direct dependence on the impurity
coordinates.

The monotonic parts of the decay characteristics merit
close scrutiny. It is found that over a short interval of
time (¢t <30 fsec) the amplitude decays with time as
1—at’. This parabolic dependence has also been ob-
served in Ref. 7. Over longer time intervals, the decay is
almost linear with time. These features play an impor-
tant role in determining the line shape of the photo-
luminescence spectra.

Finally, in Figs. 6(a) and 6(b) we show the decay
characteristics of the optical dipole moments associated
with an electron-light-hole transition and an
electron-heavy-hole transition. As expected, the dipole
moment involving a heavy-hole transition decays more
rapidly. The so-called T, times (defined as the time that
elapses before the dipole moment decays to 37% of its in-
itial value) are approximately 150 and 250 fs for the
heavy- and light-hole transitions, respectively, if one con-
siders the solid curves. This implies that the homogene-
ous broadening of the optical spectrum will be larger for
heavy-hole transitions than for light-hole transitions.
However, it is interesting to note that the T, times are
extremely sensitive to the impurity configuration. For
the light-hole transition, the difference between the T,
times for the two different impurity configurations is
about 135 fs or the difference between the corresponding
linewidths is about 5 meV which is a significant fraction
(~50%) of the individual linewidths (full width at half
maximum) themselves.

IV. FLUCTUATIONS IN THE LINEWIDTH,
LINE SHAPE, AND “RED SHIFT”
OF OPTICAL SPECTRA

In Figs. 7(a) and 7(b) we show the photoluminescence
spectra obtained by Fourier transforming the decay of
the dipole moment P(¢) into the frequency domain w of
the incident photons for light- and heavy-hole transitions.
Again, the two curves (solid and dashed) are for two
different impurity configurations. There are three salient
features associated with the line shapes that merit discus-
sion. First, the line shape is asymmetric. It is neither
Gaussian, nor Lorentzian as predicted by semiclassical
theory. Second, the spectrum peaks at a frequency

different from the frequency of the incident photons. In
other words, there is a clear red shift. Third, the
linewidth, line shape, and the red shift are distinctly
different for the two different impurity configurations. In
the following paragraphs, we discuss these features.

For a simple two-level system, semiclassical theory
(which invokes only Markovian relaxation processes) pre-
dicts that the optical dipole moment decays with time ex-
ponentially,

P(#)=;P(0)expliwgtlexp _—(.TL)— +c.c. , (10)
2

where (T, ) is an average “relaxation time” and wj is the
resonant photon frequency. Semiclassical theory there-
fore predicts a Lorentzian line shape with no red shift.

In our case, P(¢) can be expressed as [see Eq. (7)]

P(t)=-§-l’(0)cxp(iwot)Eb:’(t)b,,p(t)+c.c. , (1
)
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FIG. 6. Time evolution of (a) the electron-light-hole dipole
moment Pcg. u(t), and (b) the electron-heavy-hole dipole mo-
ment Pcguu(t) in the presence of elastic impurity scattering.
The solid and dashed curves are for two different impunty
configurations. In both cases only the envelope is plotted.
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where
(E,t
b, (t)=exp i c(t) (12)
and
by(t)=exp |i—— |c,(2) . (13)

E, and E, are the subband energies for the initial elec-
tron and hole states and
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FIG. 7. (a) The photoluminescence spectrum for a 2photon
energy corresponding to 1.4315 ¢V in a 1000 1000 A’ GaAs
quantum box. This corresponds to a conduction-band-light-
hole band transition. The solid and dashed curves are for two
different impurity configurations. (b) The photoluminescence
spectrum for a photon energy corresponding to 1.4382 eV. This
corresponds to a conduction-band~heavy hole band transition.
The solid and dashed curves are for two different impurity
configurations.

E,—E, =haw, . (14)

In other words, w, is the resonant angular frequency of

the incident photons corresponding to the effective “band

gap” between the chosen electron and hole subbands.
Equation (11) can now be recast as

P(t)=1P(0)expliwgt) A (t)e ~'#*" tc.c.
=P(0) A4 (t)cos[wot —O(¢)] , (15)

where A(t) is the magnitude and 6(¢) the phase of the
complex product Zb,‘P(t)b,,P(t) representing the decay.

Comparing Eqgs. (10) and (15), one finds two essential
differences. First, the decay A (¢) is not exponential. In
fact, over short time intervals it is parabolic and over
longer time intervals it is linear. Consequently, the opti-
cal line shape is neither Lorentzian nor Gaussian.
Secondly, there is a phase shift 6(¢) associated with the
decay which causes the line shape to be asymmetric
about the center frequency while at the same time giving
rise to a red shift. Physically, the red shift is associated
with the real part of the self-energy correction (for both
electrons and holes) due to the impunty interaction
which renormalizes the effective band gap. Similar
features were observed in Ref. 7 which included non-
Markovian relaxation processes in calculating the optical
line shape.

Figures 7(a)} and 7(b) also show an appreciable
difference between the two line shapes that correspond to
two different impurity configurations. Both the red shift
and the linewidth vary significantly with the impunty
configuration. For this example, the rms values of the
fluctuations in the red shift and linewidth (as the tmpuri-
ty configuration is randomiy charged) are a few meV.
Such fluctuations will give rise to a unique type of inho-
mogeneous broadening of the line shape for a lateral sur-
face superlattice that consists of multiple two-
dimensional quantum boxes with varying mpunty
configuration. From this example it appears that this
homogeneous broadening can be an appreciable fraction
of the total (inhomogeneous plus homogeneous) broaden-
ing Moreover, in this case, the inhomogeneous broaden-
ing is larger than the energy sgacmg between the lower
subbands for the 1000 1000 A’ quantum dot. Conse-
quently, such inhomogeneous broadening can sometimes
make it impossible to resolve the discrete optical spectra
characteristic of quasi zero-dimensional structures.

V. CONCLUSION

In this paper we have discussed an optical analog of
the ‘“‘universal conductance fluctuations.” We have
shown that the line shape, linewidth, and the red shift in
the photoluminescence spectra of a disordered sample de-
pend sensitively on the impurity configuration inside the
sample and fluctuate if the configuration is randomly al-
tered. The practical importance of this phenomenon is
that it can cause significant inhomogeneous broadening
of the line shape for an otherwise ideal superlattice or
multiple-quantum-well structure.
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Physically, both the conductance fluctuations and their
optical analog, the line-shape fluctuations, have the same
origin. They both require coherence of the electronic
(and hole) wave function which is preserved in the pres-
ence of elastic impurity scattering. As a result, there can
be pronounced interference effects between waves scat-
tered from various impurities within a sample which have
a marked influence on macroscopic sample properties. In
the case of conductance fluctuations, this can be demon-
strated indirectly by using an external magnetic field.
The field will introduce an additional Aharonov-Bohm
phase shift between the various Feynman trajectories in-
side the sample so that changing the field will change the
phase relationships between the trajectories and give rise
to aperiodic fluctuations in the magnetoconductance.
The nature of these fluctuations are sample specific since
they depend on the precise details of the impurity
configuration within the sample. By the same token, it is
possible in principle to use a magnetic field to induce the
optical fluctuations. The magnetic field will perturb the
various modes in the system thereby changing the in-
terference conditions between them. The exact nature of
the change would depend on the specific impurity
configuration so that one also expects to find sampie-
specific fluctuations in the optical spectra as the field is
scanned. These fluctuations are optical magnerofinger-
prints since they are signatures of the exact impurity
configuration within the sample. However, the field must
be low enough so that level splitting and other magnetic-
field-induced effects are negligible.

The primary requirement to observe these quantum-
interference-induced fluctuations 1s to inhibit phase-
breaking inelastic scattering events. In the case of con-
ductance fluctuations, this is ensured by having the sam-
ple dimension smaller than the inelastic diffusion length
so that an electron typically does not experience an in-
elastic interaction during its journey from one contact to
the other. In the case of optical fluctuations, the require-
ment is to have the inelastic scattering time (for both
electrons and holes) exceed the radiative recombination

lifetime, so that an electron-hole dipole does not exper.
ence any inelastic scattering event during its lifetime.

There is another important consideration that distin.
guishes the two fluctuation phenomena. For typica|
semiconductor microstructures with dimensions uj.
proaching 1 um, the inelastic diffusion length may exceed
the sample dimensions at temperatures of a few kelvins s
that the conductance fluctuations can become observabic
at temperatures of a few kelvins. On the other hand, the
inelastic scattering time may exceed the radiative recom.
bination lifetime only at temperatures of a few tens of
millikelvins. Hence the optical fluctuations will usually
be more difficult to observe than the conductance fluctua-.
tions. However, this problem is somewhat less serious in
quantum-dot structures where spatial confinement of the
electron and hole can significantly shorten the radiative
recombination lifetime. A radiative lifetime of 20 ps has
been caiculated for CdS quantum dots with dimensions of
100 A.'° Hence the optical fluctuations may become ob-
servable in quasi zero-dimensional structures at tempera-
tures much higher than a few tens of millikelvins.

Finally, in drawing an analogy between the conduc-
tance and optical fluctuations, an important point is
whether there is any “‘universality” associated with the
optical fluctuations. The conductance fluctuations are
universal in the sense that the rms value of the fluctua-
tions is =~e’/h which depends only on universal con-
stants. In the case of the optical fluctuations, no such
universality is evident as yet, but more theoretical as well
as experimental work is necessary to answer this question
satisfactorily.
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Quantum interference effects in transient electronic transport
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A simple quantum-mechanical model is presented for simulating transient electronic transport
in disordered mesoscopic structures in the absence of phase-randomizing inelastic collisions.
We have applied this model to study the time-dependent decay of an electron’s momentum in
ultrasmall GaAs structures with various impurity concentrations. As expected, we find that
the momentum decay rate (and hence effectively the mobility) depends sensitively on the exact
locations of the impurities within the structure because of long-range phase coherence. We aiso
find that the momentum relaxation rate, calculated quantum mechanically, is larger than the
“‘semiclassical” rate calculated from Fermi’s Golden Rule possibly because of coherent
backscattering that gives rise to the Anderson localization effect.

I. INTRODUCTION

Recent advances in nanolithography have made it possi-
ble to realize *mesoscopic structures” in which an electron
can traverse the entire structure without encountering
phase-randomizing inelastic collisions. In these structures,
many new quantume-interference effects that arise from long-
range phase coherence have been observed, with some of
them promising novel device applications. Examples of such
effects are Anderson localization,' the Aronov-Al'tshuler-
Spivak effect,’ the Aharonov-Bohm effect,’ nonlocal volt-
age/current modulation,* and universal conductance fluc-
tuations.’ Recently, quantum-interference effects have also
been predicted to influence not just the transport properties,
but even the optical properties of mesoscopic samples, such
as the photoluminescence spectrum.®

In order to study quantum-interference effects in disor-
dered solids, it is necessary to develop practical, implemen-
table models that can simulate quantum transport in the
presence of elastic scattering. A number of such models have
appeared in the literature. They are mostly based on either
Green's function techniques’ or scattering matrix forma-
lisms." However, almost all of these techniques have treated
exclusively steady-state transport through spatially varying
media. While steady-state transport is important in many
cases, there are situations when transient transport is of in-
terest. For example, transient phenomena (such as velocity
overshoot) determines the operational limit of many mod-
ern ultrasmall devices. Consequently, it is transient trans-
port, rather than steady-state transport, that is quite often of
importance in the study of ultrasmall quantum devices.

In this paper, we have developed a simple but fully
quantum-mechanical technique that can model time varying
or transient transport phenomena in disordered structures.
Using this technique one can extract the time evolution of an
electron’s wave function in a disordered medium (i.e., in the
presence of elastic scattering) and hence calculate any time-
dependent transport property of interest. In Sec. II, we de-
scribe the theoretical framework for this technique which is

' Present address: Ametek/Houston Instrument, Austin, TX 78757,
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derived directly from the time-dependent Schrodinger
Equation. The attractive feature of the technique is its utter
simplicity and computational ease. In addition, it is extreme-
ly illustrative of the role of elastic scattering in quantum
transport. In Sec. I11, we apply this technique to compute the
momentum (or velocity) relaxation of a single electron in-
jected into a field-free region of a disordered two-dimension-
al semiconductor nanostructure. In Sec. IV we show how the
momentum decay characteristics depend sensitively on the
precise details of the impurity *‘configuration” because of
quantum interference between the scatterers. We also com-
pare the momentum decay rates calculated with our tech-
nique to the semiclassical results obtained from Fermi’s
Golden Rule. In Sec. V we discuss these results and finally,
in Sec. VI, we present our conclusions.

. THEORY

In order to model transient electronic transport through
a two-dimensional array of elastic scatterers, we start from
the time-dependent effective mass Schrodinger Equation

w_ _E

at 2m*

where y=y(p,?) is the electron’s wave function, V2 is the
two-dimensional Laplacian, and H ' is the impurity interac-
tion Hamiltonian which is itself time independent since the
scattering mechanism is elastic.

We can in most cases find any time-varying transport
property of interest by simply solving the above equation to
evaluate the time- and space-dependent wave function
¥(p,t). While this can be done by straightforward brute-
force techniques such as finite difference or finite element
methods, there are other techniques that are simpler and at
the same time more illustrative. We describe one such tech-
nique that we adopted. Since the Hamiltonian is time invar-
iant, the wave function ¢ can be expanded in a complete
orthonormal set as follows:

Ypt) =T ¢, (14, (p), (2)
4

where the ¢'s are the so-called “‘normal modes” of the system

Vig+ H'Y, ()

© 1989 American institute of Physics 5422




that are the solutions of the time-independent Schrodinger
equation in the absence of impurity interaction.

The choice of ¢, depends on the situation. If we are
interested in the electron’s momentum, we must use basis
states &, that are eigenstates of the momentum operator. In
that case, the simplest choice will be to use plane-wave basis
states which are momentum eigenstates

6, = (1/J4) e*P=|k) (3)

where 4 is the area of the sample.
Equation (2) now becomes

k

Substituting Eq. (4) into Eq. (1) and using the ortho-
normality of the basis states |k}, we get a differential equa-
tion for the time evolution of the amplitude ¢, (¢) of any state
ik);

., 96, (1) ﬁzlkIZ ,

lﬁT-:—z;’.—cu(”‘f';H “‘Ck-(t), (5)

where

N
H'oo= Y K[V, k). (6)
=l
Here V,, is the scattering potential due to the nth impu-
rity and the sum accounts for the contribution of all the ¥
impurities in the system.
If we now assume the scattering potential ¥, to be a
screened Coulomb potential, we get
N ~Alp el
. . e
Ha= -2 5 | K
dme < |p — pal

_1 Z -q
A2 26l [k —K |7+ A7

The quantity € is the dielectric constant, A is the screen-
ing constant, g is the electronic charge, and p, is the two-
dimensional coordinate of the nth impurity (scattering cen-
ter).

The terms in the summation in Eq. (7) are complex
quantities, i.e., they have phases associated with them which
immediately indicate that the net impurity interaction (ex-
perienced by an electron) depends on interference between
the impurities. The nature of this interference is determined
by the precise locations of the impurities in the sample (or
the impurity “configuration”) since the impurity coordinate
p. appears explicitly in the phase factor &"* =" ** Note that
the sum in Eq. (7), or the net impurity interaction, does not
necessarily increase with the number of terms in the summa-
tion (i.e., the number of impurities in the sample) since the
sum is a phasor sum, not an arithmetic sum. There can be
phase cancellations between the terms so that the sum may
either increase or decrease with an increasing number of im-
purities. Consequently, it is quite possible that an electron
could sometimes experience weaker impurity interaction in
a “‘dirtier”” sample (interspersed with more impurities) than
in a “cleaner” sample (with fewer impurities) if the impurity
configuration is favorable. This means that a dirtier sample
could sometimes exhibit a Aigher “mobility” than a cleaner

ik -kp,
4 .

)]
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sample purely as a result of quantum interference! Recently,
this fact has received some attention tn a slightly different
context’ leading to an investigation into the possibility of
exploiting this feature to realize high mobility in selectively
doped samples.

Returning to Eq. (5), we find that this equation clearly
exposes the role of impurity scattering in electron transport.
Impurity scattering (or for that matter any type of elastic
scattering) does nothing more than simply couple an elec-
tron from an initial state (k) to all the other states |k’) in the
system over time. Equation (5) is valid for any wave-vector
state {k) so that for a finite system with M number of states at
the Fermi level, we can write M coupled differential equa-
tions of the type of equation (5) which together describe the
overall behavior of the system in the linear response regime.
This set of coupled differential equations can be combined
into a matrix form,

iﬁa_[_*(‘;(t'_)l:fo[c(nuzﬂ'[c(r)l, (8)

where [¢(¢) ] is a column vector whose elements are the am-
plitudes ¢, (1) of the various wave-vector states k) at time s,
H is the unperturbed Hamiltonian (a diagonal matrix
whose elements are the kinetic energies ik |2/2m* of the
basis states |k) } and 5 is the impurity interaction Hamilto-
nian whose matrix elements are given by Eq. (7).

Equation (8) is the governing equation for electron
transport in the presence of elastic scattering. Mathematical-
ly, Eq. (8) belongs to the genre of coupled mode equations
that are widely used in the analysis of microwave (or opti-
cal) waveguides and directional couplers.'° It is not surpris-
ing that the governing equation of dissipationless electron
transport should be the same as the governing equations of
microwaves and optics since it is now widely recognized that
in the phase-coherent regime, and in the absence of many-
body effects, the physics of electron transport through a dis-
ordered solid is no different from the physics of microwave
or light propagation through a disordered medium.* In fact,
the one-dimensional (1D) Schrodinger Equation describing
dissipationless “‘propagation” of electrons through a semi-
conductor structure (with spatially varying potential) is
identical in mathematical form to the 1D Maxwell's Equa-
tion that describes propagation of monochromatic light or
microwave through an inhomogeneous medium with a spa-
tially varying refractive index. The potential (including the
elastic scattering potential) plays the role of the refractive
index.

Equation (8) has the general solution

[e()] =exp{ — [{(F" + %)t /fi]}He(®)]. (9

Given the initial condition {c(0)}, the above equation pro-
vides the amplitudes ¢, (¢) of every state |k) at any arbitrary
instant of time ¢. Once these amplitudes are determined from
Eq. (9), the time-dependent wave function W(p.) or
Y(x.p.t) can be found readily from Eq. (4). From the wave-
function, one can calculate any time-dependent transport
variable by simply calculating the expected value of the cor-
responding operator.
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{il. MOMENTUM RELAXATION OF AN ELECTRON IN A
DISORDERED NANOSTRUCTURE

In this section, we have used the above formalism to
study the momentum relaxation of a single electron injected
into a field-free region of a disordered semiconductor nano-
structure. The time-dependent momentum along any chosen
direction in the structure (say, the x direction) can be found
from the usual prescription,

p(e) = <zl/(x.y,t)‘ - iﬁi!w(x.y,t)>. (10)
dx |

where ¥(x.p.t) is obtained from Egs. (4) and (9).

If we are interested in the time evolution of the momen-
tum along the direction of the initial momentum #k, we can
use Egs. (4) and (10) to obtain

; k'k’ .
ki
We now define the momentum relaxation rate 1/7,, by

calling 7, the time it takes for the momentum to decay o
/e times its initial value, i.e.,

P (8) =7k Y | (1) (1)
c

P (7Y =—:—p..(0), (12)

or equivalently
1 kk” 1

UM
et kP2 e

The superscript QM stands for the quantum-mechani-
cal result. Evidently, 72™ depends on the impurity coordi-
nates since the amplitudes ¢, in Eq. (13) depend on the
coordinates. We have calculated the quantum-mechanical
rates 1/ (using Eq. (12)] in two-dimensional GaAs
structures for various impurity concentrations and configu-
rations. We have then compared these results with the
“semi-classical” results obtained from the usual Fermi's
Golden Rule. The latter result is

(13)

l B lv\m.q.’ w/2 l
TR e Jo Alcosec’ O + 4|k |

deo, (14)

where /. is the impurity concentration per unit area.
Unlike the quantum-mechanical result, the result of Eq.
(14) does not depend on the impurity configuration. This
obviously happens because Fermi’s Golden Rule deals only
with the probability of scattering (and not with the complex
amplitude of scattering) so that it contains no information
about the phase shifts associated with scattering. It is the
phase shifts that depend on the impurity coordinates. In oth-
er words, the Golden Rule does not account for interference
between the scattering events.'' Alternatively, we can say
that using the Golden Rule is equivalent to assuming that a//
the impurities in a sample are located at exactly the same
point within the sample (point doping) in which case there
can be no interference between the scatterers. In contrast,
the quantum-mechanically calculated rate does take into ac-
count the precise configuration of the scatterers and exhibits
strong dependence on the configuration because of quantum
interference between the scatterers. In the next section we
show that the dependence on the impurity configuration can
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be so strong that the standard deviation in the momentum
relaxation rate (arising from a variation in the impunity con-
figuration alone) can become comparable to the mean value
of the rate itself.

IV.RESULTS

For purposes of analysis, we consider two-dimensional
GaAs structures with dimensions of 1000 x 1000 A.- These
structures can be fabricated individually by electron-beam-
lithography or can be viewed as the constituents of a lateral
surface superlattice.'* For the impurity and carrier concen-
trations that we have considered in our simulations, the
average transit time, i.e., the time it takes for an electron to
diffuse across the sample, is always much shorter than the
mean time between inelastic collisions. This condition can be
expressed as

L<\Dr,, (15)

where L is the lateral dimension of the structure, D is the
diffusion coefficient, and 7,, is the mean time between inelas-
tic collisions. The right-hand side is the inelastic diffusion
length L, (also called the*‘phase-breaking length™). Attem-
peratures around 4.2 K, L, in heavily doped GaAs samples
typically exceeds 1 zm,'? so that the condition of Eq. (16) is
overly satisfied in all our simulations up to a temperature of
42 K.

The impurity configuration in our simulations is genera-
ted by two independent uniform random number generators
that provide the x and y coordinates. A typical configuration
is shown in Fig. 1. The initial momentum of the electron
p. (0) is always assumed to be fik where k. is the Fermi
wave vector whose magnitude is given by k.| =, 27n,
with 2, being the two-dimensional carrier concentration. In
the calculations, we have used 64 wave-vector states so that
the matrix 5% has a size 64 X 64. Inclusion of 64 wave-vector
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FIG. 1. A typical random configuration of impunties tn a two-dimensional
disordered structure. The configuration was generated by two independent
uniform random number generators.
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states was always sufficient to obtain convergence of the re-
sults. The 64 states that we have included in the calculation
all have identical magnitudes of the wave vector (and are
hence degenerate in energy), but the directions of the wave
vectors are different. The inclusion of only degenerate states
in the calculation is actually not quite rigorous since strong
elastic scattering can couple an electron between nondegen-
erate states over short periods of time. In a more rigorous
calculation, and also in order to obtain a reliable estimate of
collisional broadening, one should include states with differ-
ent magnitudes of the wave vector. Unfortunately, this taxes
our present computational resources and is therefore left for
future work.

In Fig. 2 we show a typical set of relaxation characteris-
tics, i.e.. how the normalized momentum p(t)/p(0) decays
with time for various impurity configurations and for a fixed
impurity concentration. In this figure, the results are plotted
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FIG. 2. The momentum relaxation charactenstics for an electron 1n a disor-
dered two-dimensional GaAs quantum box. The three different curves are
for three different impurity configurations.
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over a time interval of 1 ps which is shorter than the time it
takes for an electron to diffuse across the sample. The latter
time is given by £,,s = firansa = A /D, where 4 is the sample
area and D is the semiclassical diffusion constant calculated
from D = (1/2)v273C. In these examples, the value of 1 ¢ is
between 1.04 and 10.4 ps.

It appears from Figs. 2(a) and 2(b) that the momentum
at first decays almost monotonically and then fluctuates
around a steady-state value. Actually, this is somewhat de-
ceptive since no real steady-state condition can ever be
achieved in this system. We have a dissipationless (and
hence reversible) finite system with a finite number of states.
Such a system must obey Poincaré recurrence or the so-
called wiederkehr effect.'* That is, after a sufficiently long-
time interval, the system must return to a state arbitrarily
<lose to the initial state and the initial momentum will be
restored. The time that elapses before such a return occurs is
the so-called Poincaré cycle which depends on the number of
states in the system. The larger the number of states, the
larger is the period. In Figs. 2(a) and 2(b) we simply have
not carried out the simulations long enough to observe the
Poincaré recurrence. Nevertheless, the wiederkehr phenom-
enon is an essential feature of dissipationless transport and is
actually implicit in Eqgs. (8) and (9) that describe our sys-
tem. Equation (8) is a set of coupied mode equations that are
inherently reversitle, and has a periodic solution given by
Eq. (9). Consequently, the decay charactenstics evaluated
with Egs. (8) and (9) will also exhibit periodic behavior and
this period is the Poincaré cycle.

Since the decay characteristics are not monotonic over
the entire simulation interval, we had to evaluate the mo-
mentum relaxation time 2™ from the monotonic parts of
the charactenistics (sometimes employing extrapolation).
The monotonic parts were found to converge rapidly with an
increasing number of states. In every case. we obtained suffi-
cient convergence after including 64 states 1n the calculation

In Figs. 3(a) and 3(b) we show histograms of the mo-
mentum relaxation time 72" calculated for various “sam-
ples” with a given impurity concentration. Each “sample™ s
characterized by a particular impunty configurauon. Each
of our histograms is generated from 100 “samples™ and 1n
each histogrum the carrier concentration and the impurnty
concentration are kept fixed.

In Fig. 4, we plot the semiclassical results for the mo-
mentum relaxation time along with the “‘average™ quantum-
mechanical results for various impurity concentrations. The
“average” quantum-mechanical results are obtained by
averaging over 100 different impurity configurations, which
means that they are the mean values of the histograms. Fin-
ally, in Fig. 4, we also show the ratio of the standard devi-
ation in 3™ to the mean value of 7™ for various impurity
concentrations. Both the standard deviations and the mean
values are calculated directly from the histograms.

V. DISCUSSION

The histograms in Figs. 3(a) and 3(b) exemplify the
strong dependence of the momentum relaxation time ™on
the impurity configuration. As can be seen from the histo-
grams, the relaxation time can vary over almoust an order of
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FIG. 3. The histograms showing the dependence of the momentum relaxa-
tion time on impurity configurations. (a) Carrier concentration = 10'?
cm ‘. impurity concentration = 10'* cm °. averags relaxation
time = 39.6 s, standard deviation =8.06 fs. (b) Carrier concentra-
tion = 10'* ecm ‘. impurity concentration = 10" cm 2, average relaxa-
tion time = 458 fs, standard deviation = 251 fs,

magnitude depending on the configuration. Evidently the
momentum relaxation time becomes large when the impuri-
ty configuration is such that the interference between the
impurities [see Eq. (7)] becomes “destructive,” i.e., there
are phase cancellations. In that case, the net impurity inter-
action experienced by an electron is reduced which decreases
the frequency of momentum-randomizing scattering events
and t* - increases the momentum-relaxation time. On the
other hand, when the impurity configuration is “unfavor-
able,” the interference between the impurities becomes
“constructi.<.” In that case. the net impurity interaction is
enhanced which in tumn reduces the momentum relaxation
time. As an extreme case, we have found that the momentum
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FIG. 4. Plots of the semiclassical and (average) q'iantum-mechanical mo-
mentum refaxation times vs impurity concentration. The curve labeled Cis
the semiclassical result and the curve labeled QM is the quantum-mechani-
cal result. The average quantum-mechanical resuits are obtained by averag-
ing over 100 different impurity configurations. The line through the quan-
tum-mechanical results is a guide to the eye. The figure also shows the rauo
of the standard deviation to the mean of the relaxation times (the curve
labeled R).

relaxation times in a few samples with an impurity concen-
tration of 10'! cm?® are actually smaller than those in some
samples with a ten times higher impurity concentration of
10'* cm ~ 2. This is a strong m:. aifestation of quantum-inter-
ference effects and demonstrates that dirtier samples can
sometimes have higher mobilities than cleaner samples de-
pending on the interference between the impurities!

Itis interesting to note that the histogram in Fig. 3(a) is
approximately Gaussian in shape. It has been observed be-
fore by several authors'® that in the case of muitichanneled
diffusive transport, the conductances of samples (with vary-
ing impurity concentrations) exhibit a Gaussian distribu-
tion in the weak localization regime. In our case, we have
two-dimensional samples of square geometry for which the
conductance G is related to the momentum relaxation time
as G = é*r,,n,/m" where n, is the two-dimensional carrier
concentration. For fixed 7, the probability distribution of
72 will be the same as the probability distribution of the
conductance G so that we also expect to observe a Gaussian
profile. The observance of a Gaussian distribution in Fig.
3(a) is therefore in agreement with the observations of Ref.
1S.

The histogram in Fig. 3(b) however is not Gaussian; it
is significantly skewed to the right. We believe that this is due
to the fact that this case corresponds to a very weakly disor-
dered sample (N, = 10'%m %) in which transport is quasi-
ballistic rather than diffusive. The skewing of the distribu-
tion to the right of the mean value is caused by the presence
of ballistic electrons that hardly relax their momenta. It
therefore appears that the deviation from the Gaussian pro-
file is related to quasiballistic transport.

From Fig. 4, we find that the quantum-mechanically
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calculated relaxation times are significantly different from
the semiclassical resuits, especially for low impurity concen-
trations. The difference is as large as a factor of six for an
impurity concentration of 10'° cm ~? which corresponds to
quasiballistic transport. We also find that the quantum-me-
chanical result is always /ess than the semiclassical result for
impurity concentrations less than ~3x 10" cm ~*. This is
probably caused by the well-known coherent backscattering
effect'® which is responsible for Anderson localization. Be-
cause of constructive interference between time-reversed
Feynman paths (Cooperon channels) which gives rise to the
coherent backscattering effect, there is an increased tenden-
cy for an electron to turn around inside a sample and travel
backwards. This is obviously a drastic momentum relaxa-
tion process which will significantly decrease the momen-
tum relaxation time. The phenomenon of backscattering is
purely quantum mechanical in origin and is absent in the
semiclassical picture. That is why the quantum-mechanical-
ly calculated relaxation time turns out to be smaller than the
semiclassically calculated value in our stmulations.

There is however an apparent reversal of this trend at
higher impurity concentrations ( >3X 10'' ¢cm ~?) when
the quantum-mechanical result exceeds the semiclassical re-
sult. The reason for this is the following. In our model, the
randomness associated with the disorder is introduced
through the random locations of the impurities (spatial dis-
order)."”” For N, >3x 10'" cm ~2, the average separation
between impurities is d = (V,L) ~ '<34 A. Consequently,
kd<0.83 < 1. This means that the phase of an electron is
not fully randomized over 27 between two neighboring im-
purities.® In that case, since there is no other source of ran-
domization, the effect of disorder is not felt to the fullest
extent and the quantum-mechanicaily calculated relaxation
time is overestimated. In addition, if k-4 is not much larger
than unity, then evanescent states may also have a strong
influence on transport.'” Randomization of the phase over
21 is an essential ingredient of localization theory'® and also
a necessary condition in the model of Ref. 8. Failure to en-
force this condition may lead to spurious results in quantum-
mechanical modeis. The effect of having k.d<2m has been
discussed in Ref. 8.

Finally, the importance of quantum-interference effects
in dissipationless transport becomes most evident from the
ratio of the standard deviat’ »n to the mean of the relaxation
time as plotted in Fig. 4. The ratio decreases with increasing
impurity concentration which is expected since quantum-
interference effects are more pronounced when transport is
quasiballistic rather than diffusive. But more importantly,
the ratio is quite large—it is larger than 0.5 for the lowest
impurity concentrations—which shows that quantum-inter-
ference effects can introduce a significant spread in the ap-
parent mobility (or diffusion coefficient) of an electron in
the linear response regime. It is therefore important to in-
clude quantum-interference effects in calculating transport
parameters such as the linear response mobility or diffusion
constant when the ambient temperature is low enough that
the phase coherence of the electron is preserved across the
entire sample
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VI. CONCLUSION

In this paper, we have introduced a simple quantum-
mechanical formalism to study transient electronic trans-
port in disordered mesoscopic structures in the absence of
inelastic scattering. Application of this formaitsm te study
the momentum relaxation of an electron in a disordered
structure has revealed strong influences of quantume-inter-
ference effects in both diffusive and quasiballistic transport.
This indicates that in.c-ference effects play an important
rolein transient transy... c and must be accounted for in mod-
eling transient phenomena such as velocity overshoot that
play a crucial role in the operation of many modern ultrafast
devices.
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QUANTUM PHASE COHERENT EFFECTS IN THE
PHOTOLUMINESCENCE SPECTRA OF DISORDERED MESOSCOPIC
STRUCTURES !

S. Bandyopadhyay
Department of Electrical and Computer Engineering
University of Notre Dame
Notre Dame, Indiana 46556

At low enough tcmperatures, when the inelastic scatiering time i a quantum dot
exceeds the radiative recombination lifetime of photoexcited electrons and holes,
the photoluminescence spectrum of the dot becomes sensitive to the cxact locations
of the elastic scatterers within the dot. This is a result of quantum interference
whose nature is determined by the precise configuration of the elastc scatterers
inside the dot. Several features of the photoluminescence spectra are influenced by
the configuration, the most remarkable of which is the fact that the usual rcd-shift
of the peak frequency, associatcd with bandgap renormalization. can change into
a blue-shift depending on the configuration. The dependence of the optical spectra
on the intcrnal configuration is basically the same effect that makes (univcrsal)
conductance fluctuations sample-specific. An important consequence of this effcct
is that different quantum dots in a lateral surface superlattice will exhibit slightly
different spectra if they merely have different impurity configurations, but are
otherwise identical. The resulting inhomogeneous broadening can be comparable
to the energy spacing betwceen the subbands, so that it can sometimes mask the
discreteness of the optical spectra expected of quasi-zero dimensional structures.

I. INTRODUCTION
It is well-known that clastic scauiering docs not destroy an elcctron’s phase-

memory so that quantum interference effects are not inhibited by impurity scat-
tering at low enough temperatures. In a disordered semiconductor nanostructurg,
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if the inelastic scattering times of both electrons and holes exceed the radiative
recombination lifetime of a photoexcited electron-hole pair, then the optical dipole
constituted by the pair never loses its phase-memory during its entire lifetime. In
that case, the time-dependent decay of the optical dipole, duc to impurity scat-
tering, is apt to be influenced by quantum interferences between the electron and
hole states in the system. The decay of the optical dipole moment determines the
lineshape of the optical spectrum - the lineshape is in fact obtained by Fourier
transforming the decay characteristic - and consequently the lineshape will also be
influenced by quantum interference effects and depend on the precise configura-
tion of the elastic scatterers that determines the nature of this interference (1], The
important implication here is that in the presence of phase-coherence, not only are
macroscopic (ransport properties (such as the conductance of a sample) a function
of such microscopic details as the impurity configuration (2], but so are opti-
cal properties likc the photoluminescence spectra. In other words, ‘‘mesoscopic
physics'' includes not only transport phenomena, but also optical phenomena.

A practical consequence of the latter is that different quantum dots in a lat-
eral surface superlattice will exhibit slightly different spectra if they merely have
different impurity configurations but are otherwise identical. This phcnomenon
therefore induces a unique kind of inhomogeneous broadening in the photolumi-
nescence linewidth of a superlattice structure whose origin is purely quantum-
mechanical and specifically arises from phase-coherence. In some instanccs. this
inhomogeneous broadening can be so large that it can even mask the discretencss
of the optical spectra expected of quasi-zero dimensional structurcs.

II. THEORY

The time-dcpendent decay of the optical dipole moment P(1) associated with
transitions between a conduction band state and a valence band stalc in a disordered
quantum dot is given by (1]

<

| —

P(t) = s P(0) Y_coi(t)eny(t) + coc.. (1)
14

where c.,(t) and ch,(t) are the ime-dependent complex amplitudes of the pth
electronic state and the pth hole state that the photoexcited electron and hole couple
lo at time ! via the impurily intcraction, and the summation over p is carried out
to include all such states in the system. The lineshape of the photoluminescence
spectra F(w) is obtained by Fouricr transforming the time-dependent decay of
P(?) into the frequency domain w of the incident photons.
The task here is to evaluate the amplitudes c. () and cx,(t). For both
clectrons and holes, these amplitudes arc found from (1]
(0] = ezp [~ 2] k)] (2

18




where H is the Hamiltonian matrix for the disordered system and {c(¢)] is a
column vector whose elements are the complex amplitudes c,,(t) of the various
electronic or hole states that the photoexcited electron or hole couples to. The
Hamiitonian H can be expressed as

H=Ho+H', (3)

where Hj is the unperturbcd Hamiltonian (a diagonal matrix) whose elements are
the kinetic energies of the various subband states that the photoexcited electron
and hole couple to, and ' is the impurity interaction Hamiltonian whose elements
are given by

A i 6(r—r, =T 5 o)
Pe T " are : < Bp(r)|6(r —1i)|@g(r) >= T ame Op (T4 )OqlT
(4)

In the above equation, ¢,(r) is the wavefunction of the pth subband state
that the electron or hole couples to as a result of the impurity interaction, t.e. it
is the pth eigenfunction of H,. The impurity potentials were assumed to be 0
potentials located at coordinates at ;. The summation is carried out over the
coordinates of all the impurities in the system and the sum obviously depends on
the exact locations of the impurities. The parameter [ is a parameter rcpresenuing
the strength of the interaction. The choice of §-scatterers (instead of screencd
Coulomb scatterers) in our model is merely a matter of convenience: it does not
alter the essential physics.

Since the Hamitonian for the system is now clearly dependent on the coordi-
nates of the impurities, it is obvious that the amplitudes c,(¢) (sce Equauon (2)
and hence the time-dependent optical dipole moment P(t) (seec Equation (1)) will
also depend on the exact locations of the impurities within the system. Conse-
quently, the opucal spectrum of a sample will be a “fingerprint” of thc internal
configuration of the scatierers.

III. EXAMPLE

By way of an example, we have calculated the photoluminescence lineshape

. (corresponding to an electron-light hole transition) for a two-dimensional quanium

dot with a parabolic confining potential. The material was assumed to be GaAs.
The impurity coordinates were generated by random number gencrators and the
concentration was 5 x 10'! cm~2. In our calculation, we included 36 clectronic
states and 36 hole states®. The calculated lineshape is plotted in Fig. 1.

2These states need not be degenerate in energy, since strong impurity
scattering, even though elastic, can couple an electron or hole between states
that are non-degenerate in energy over short periods of time.
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Fig.1 The photoluminescence spectrum (corresponding to an electron-light
hole transition) for a quantum dot with parabolic confining potential. The incident
photon energy hwyq is 1.4623 ev (the bandgap of GaAs is assumed to be 1.42 ev).
The solid and dashed lines are for two different impurity configurations. Note that
for one configuration, the peak frequency is red-shifted and for the other, it is blue-
shifted. The difference corresponds to an energy of ~ 4 mev which is comparable
1o the energy separation between the subband states (~ 6 mev). Consequently. the
inhomogeneous broadening caused by varying impurity configuration, in different
quantum dots in a lateral surface superlattice, may mask the discreteness of the
optical spectra expected of quantum dots.

IV. DISCUSSION

To understand the nature of the photoluminescence lincshape in Fig. 1., we
have 1o first recast Equation (1) in the form

P(t) =

o —

P(O)ea:p(iwot)Zbe;(t)bh,,(t) + c.c., (5)
P

where

t Ent ,
b,,(t)=e.vp[i5,j—]ct,,(t) Cbuy(t) = exp [iZ= | enyl)  (6)

In Equation (6), E, and E), arc the energies of the states to which the clectron
and hole are photoexcited by the incident radiation and wy is the resonant photon
frequency corresponding to this transition, i.c.

hwo = E, — Ey

—_—
-1
~—
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We can now recast Equation (5) as

i

1 |
P(t) 5 P(0)ezpliwot) A(t)e™ " + c.c.

= P(0)A(t)cos [wot — 8(t)] , (3)

where A(t) is the magnitude and 6(t) the phase of the complex product
>, be;(t)bhp(t) representing the decay of the dipole moment. Obviously, both
A(t) and 6(t) depend sensitively on the impurity configuration.
The photoluminescence lineshape F(w) is obtained by Fouricr transforming
P(t)
1
Fw) = -‘—/e'“‘P(t)dt (9)
2T

Hence we see that the phase §(t) in Equation (8) has two effects. Firstly, it
makes the lineshape asymmetric about the peak frequency, and secondly, it shifts
the peak frequency away from the resonant frequency wp. This shift is associated
with the real part of the self-energy correction (for both electrons and holes) due
to impurity interaction which renormalizes the effective bandgap. Ordinarily, one
would expect a shift to lower frequencies, i.e. a red-shift. However, we find
from Equation (8) and (9) that depending on 8(t), or the precisc details of the
impurity configuration, the shift can be either a red-shift or a blue shift! That
means that in the phase-coherent regime, quantum interference cffects influence
cven the bandgap renormalization! This is truly a surprising result and is venfiable
cxperimentally. A change in the sign of the shift is a remarkable effect of quantum
interference and an intriguing case of microscopic features affccting macroscopic
observables in a non-trivial way.

Finally, the only issuc that remains to be discussed is the temperature at which
such an effect could be observed. Inelastic scattering times of ~ 10 ps have been
measured at 4.2 K in GaAs samples [3] with a carrier concentration excecding 7
x 10'' ¢cm~2, whereas a radiative recombination lifetime of ~ 20 ps has been
calculated for quantum dots (4]. Since the only requirement to observe the above
effect is to cnsure that the inelastic scattering time exceeds the radiative recombi-
nation lifetime, it is conceivable that this effect can be observcd at temperatures
not too far below tiquid helium emperature. This makes it practical to verify this
effect in semiconductor quantum dots.
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We calculate the rate at which electrons bound in a semiconductor quantum well are scattered
out of the well by absorption or emission of polar optical phonons. This escape rate is
important in real-space transfer devices and as a loss mechanism in high electron mobility
transistors. Both quantum confinement effects and the two-dimensional (2D) to three-
dimensional (3D) nature of the scattering are included. For all but very shallow wells, the
real-space transfer rate is much smaller than either the bulk (3D) scattering rate or the
confined (2D) scattering rate. Quantum resonances in the final state result in oscillations in

the scattering rate as a function of electron energy.

Electrons bound in a one-dimensional quantum well can
be scattered out of the well if they have sufficient energy.
This real-space transfer effect has been exploited in storage
and switching devices' and may limit performance of high
electron mobility transistors.>* A phonon scattering event
can provide the necessary momentum to transfer the elec-
tron out of the well. This scattering has been treated thus far
using either bulk scattering rates or the two-dimensionai
scattering rates appropriate to electrons confined in the well.
As noted by Brennan and Park’® in reporting recent Monte
Carlo calculations of real-space transfer, one should really
take into account the change in effective dimensionality
between the initial and final states. Scattering from pseudo-
two-dimensional (2D) states into three-dimensional (3D)
states presents some subtleties, particularly in the normali-
zation of the states. We present calculations for these escape
rates for a model system, correctly accounting for both the
quantum confinement and the change in dimensionality of
the states. The resuits reveal that the escape scattering rates
are much smaller than either the bulk or the 2D rates. The
effects of continuum resonances are also apparent.

Our caiculation extends the work of Miiller et al., who
examined the effect of quantum reflections on optical scat-
tering rates in quantum well structures.** They focused par-
ticularly on effective mass discontinuities, which we negiect
here, and the conditions necessary to minimize quantum re-
flections by impedance matching. While noting that the real-
space transfer rate appeared small, they did not actually cal-
culate it. The 2D to 3D nature of the transition was
simulated by placing the finite quantum well inside a much
larger well with infinite barriers. Here we use free, current-
carrying final states explicitly. They also examined scatter-
ing from states with initial momentum perpendicular to the
heterointerfaces, whereas we consider only initial states
bound in the well.

We calculate the escape rates for electrons scattered by
emission or absorption of polar optical phonons using the
Fermi golden rule. We use effective mass wave functions and
a model semiconductor system with spherical energy bands
and an effective mass of m® = 0.063m,. Differences in the
effective masses in the well and boundary material are ne-
glected. For the polar optical phonon energy we use #w,
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=0.036 eV. The initial and final state wave functions are
calculated by solving the onc-dimensional Schridinger
equation for the effective heterostructure potential. The final
state wave functions are chosen to be the scattering states
with current incident from the left or right. Thus, our final
states are truly free 3D states and carry current. We normal-
ize the wave function by “box normalizing” the incoming
plane wave. For the state with current to the right this means

L7 +rte™ ™) if 2<0
Vo (2) ={u*(2) if 0<z<a,
L \t+e if a<z

where the well extends from O to g along the z axis and hasa
depth of ¥,. L, is the (arbitrary) normalization length for
the incoming plane wave.
The escape rate for an electron in a bound state labeled
by n, with total energy E is then
L, (fo,

W(E)=——|—2|N*
(B) (m,(z") (@)

x [ k[ a9 %61, @ 08E - E F oo

(nH
Here w, is the optical phonon frequency, N* () is the
phonon occupation factor, and 1/¢, = 1/¢, — 1/€,. Thein-
tegrations are performed over all k ;'s, the z component of
the final state wave vector, and over all g, the wave vectors of
the absorbed or emitted phonon. The squasc of the effective
matrix element, G/, . (¢, ), is given by

+ o 2

Gl,.(g)= ¥:. ()€Y, (2)dz

Notice that because the final state wave function, ¥; (2) in-
cludes a factor of L [ ', the factor of L, in Eq. (1), which
comes from the final density of states, is exactly canceled. As
a result the rate is manifestly independent of this normaliz-
ing factor, as it should be.

For a very shallow well the phonon scattering rate
should approach the bulk scattering rate. The rate for scat-
tering from a well with 300 A width and 0.005 eV depth is
shown in Fig. 1 for T = 300 K. The rates are shown normal-

(2)
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F1G. 1. Optical phonon scattering rates for a very shallow well. The well has
a width of 300 A and & depth of 0.005 eV. Shown are the bound-to-bound
rate (dot-dashed curve) and the bound-to-unbound (i.e., escape) rate
(dashed curve). The total rate, bound-to-bound plus bound-to-unbound. is
the solid curve. For comparison the bulk scattering rate is shown with a
dotted curve.

SCATTERING RATES W/W,

ized to W,=22a.,w, where a., is the dimensionless
electron-phonon  coupling constant given by a.,
= (e’/4mhe,) (m*/2hw,)'"*. The bulk scattering rate in
these units is of order unity. When the total escape rate is
added to the bound-bound rate, the rate for scattering and
staying in the well, the result is very close to the bulk scatter-
ing rate.*” Notice that even for this very shallow well scatter-
ing in the well is almost as likely as scattering out of the weil.
As the well depth increases, the escape rate decreases, as
is shown in Figs. 2 and 3. These figures show the scattering
rates for escape from the lowest bound state of the well. The
total scattering rate is still comparable to the buik rate but
most of the contribution comes from the bound-bound rate.
Wells of 0.2 eV depth (300 A width) result in an escape rate
which is already an order of magnitude smaller than the bulk
rate. By the time the well depth reaches 1.0 eV, the escape
rates have dropped by nearly a factor of 100 (see Fig. 3).
In addition to the large effect in the magnitude of the
rates there is a change in the energy dependence of the scat-
tering rate as the well deepens. For free carriers in the bulk
the scattering rate rises rapidly to its maximum (roughly
W,) when the initial energy is one or two optical phonon
energies. It then decreases slowly (roughly as £ ~'/?) at

08
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0.2

0.%'
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ENERGY E/Ee

F1Q. 1. Escaps rates for scattering out of a weil by polar optical phonon

scatsering. The well has a width of 300 A and the various depths shown. The

energy scale is the initial electron energy in units of the optical phonon ener-

s(h!h'nan.o.oueV). Initially the electron is in the lowest bound state
the weil.
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FIG. 3. Escape rates for scattering out of a well by polar optical phonon
scattering. The initial state is the lowest bound state of the well. The phys-
ical parameters are the same as in Fig. 2 with the well depth increasing as
indicated. Some continuum resonance effects are apparent at low energies.
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higher energies. This bulk-like behavior is preserved for very
shallow wells. In contrast, for deeper wells the rate increases
monotonically, although slowly, with energy. The transition
from bulk-like behavior to the charactenstic bound-un-
bound behavior takes place when the well depth is compara-
bie to the optical phonon energy, as can be seen in Fig. 2.
This change in the character of the energy dependence has its
origin in the loss of strict momentum conservation in the z
direction, which results in a larger number of allowed elec-
tron and phonon final states.

The dominant feature of the escape rates is their small
magnitude relative to bulk rates. Notice that these greatly
suppressed scattering rates apply even for electrons with en-
ergies significantly larger than the well depth. These elec-
trons have large kinetic energy, with all of their momentum
directed down the weil, parallel to the well walls. It would
seem, at least at first, that all they need to escape is to shift
their momentum slightly so that they have a nonzero z com-
ponent. Why is it so difficult to leave the well?

The full analysis of this behavior requires a careful ex-
amination of the effective matrix element and the range of
final state integration permitted in Eq. (1). This will be pre-
sented in a longer and more detailed treatment than space
limitations here permit.® A simple qualitative argument wiil
suffice to make the major points. Consider the matrix ele-
ment defined in Eq. (2). The initial state is the lowest bound
state in the well, roughly a sine wave with wavelength 24,
and varies slowly across the well width. Consider now a final
state which is just barely free, i.c, k; is small and E;
= (#Mk 2/2m*) is small. Its wavelength outside the well is
very long, but it oscillates more rapidly in the well. The wave
vector associated with this oscillation is

K, = [2m*(E; + Vo)/h
Since the initial state is nearly zero outside the well, the inte-
gral in Eq. (2) is dominated by the well regioa. If the final
state wave function oscillates rapidly in this region, then the
integral will be nearly zero unless the e term from the
phonon cancels out this oscillation. Thus, the dominant con-
tribution to the matrix element will be from phonons with ¢,
= x. Because the electron-phonon coupling has a factor of
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F1G. 4. Escape rates for scattering out of a weil by polar optical phonon
emission for several deep wells. The initial state is the lowest bound state of
the well. The well width is 300 A and the well depth is 0.80 eV (top curve),
0.82, 0.84, 0.86, 0.88, 0.90, 0.92, 0.94, 0.96, and 0.98 ¢V (bottom curve).
Thecurves have the zero offset on the vertical scale for clarity. The enhance-
ment in scattering rates near continuum resonances is clearly evident.

1/ in it, the rate is suppressed accordingly. As the well
becomes deeper, x; increases, requiring larger ¢ phonons to
scatter out of the well, and lowering the scattering rate
further. Thus, aithough only a small perpendicular momen-
tum is needed to transfer an energetic, bound electron out of
the well, only phonons with a sufficiently large wave vector
can contribute to escape.

The quantum mechanical argument has a simple classi-
cal analogue. A classical particle traveling in a square well
trough may have enough kinetic energy due to its high speed
that its total energy is greater than the potential barriers of
the well. Consider a particle with just barely enough total
energy to escape, i.c., one which has a total energy of nearly
zero (the zero of potential energy being at the top of the well
walls). If it is elastically scattered, say by a bump in the weil
floor, it may escape. Energy conservation requires, however,
that its velocity after it escapes is small. Thus, the change in
its momentum must be large—almost all of its previous mo-
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mentum down the trough is now gone. Thus, only scattering
with a large momentum transfer can free the particie from
the well. The 1/¢* factor associated with optical phonon
scattering suppresses large momentum transfer events.

Finally, we consider briefly the effect of continuum re-
sonances on the scattering rate. For shailow wells these are
not important, but as the well strength increases, the effect of
quantum reflections at the well walls becomes significant.
The scattering rates exhibit oscillations at energies where the
final state amplitude is enhanced by being resonant with the
well. Figure 4 shows the rate for escape by phonon emission
from the lowest bound state for a sequence of wells with
increasing depths. The enhancements can be seen to occur
near the resonance conditions. These resonances move down
in energy as the well is deepened. Were the system complete-
ly one dimensional these oscillations would have genuine
maxima and minima.’'® The ability to spread the final state
energy over parallel momentum components smears out
these oscillations. This results in the step-like structure ob-
served.

The work was supported by the Air Force Office of Sci-
entific Research under grant No. AFOSR-88-0096, and the
National Science Foandation under contract No. EET87-
07628.
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REAL SPACE TRANSFER RATES FOR
POLAR OPTICAL PHONON SCATTERING
FROM ASYMMETRIC QUANTUM WELLS

Craig Lent and Lie Liang
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ABSTRACT

We calculate the rate at which clectrons bound in asymmetric semiconductor quantum wells are scattered out of the
well by absorption or emission of polar optical phonons. The 2-D to 3-D naure of the scattering is included. The
final states after scattering are states which carry current either to the right or left. We find that rates for scatening out
of the well can be significantly smalier than bulk scattering rates. We also show that asymmemes in the well shape
result in a directional dependence for the final state current. That is, electrons scatter out preferentially to the left or
10 the right depending on the details of the weli potential.

KEYWORDS

Quantum wells; real-space transfer; phonon scattering; hot electron transport.
INTRODUCTION

Electrons in a quantum well can be heated by applying a field paraliel to the well walls. Such electrons can gain
energy sufficient to escape the well. This real space transfer phenomena has been studied extensively by Hess and
others (Hess, 1981), and is exploited in the CHINT and NERFET devices (Kastalsky, 1984; Luryi, 1984). Extensive
analysis of these structures has been done using semiclassical Monte Carlo techniques (Brennan and Park, 1989). A
necessary input to such calculations is the scattering rate from the confined electron states 1o the free states out of the
well. Currently, approximations are used which neglect the 2-D to 3-D nature of the transition. We calculate the rates
for scattering from the bound 2-D states of a quanwum well into free 3-D states by emission or absorption of polar
optical phonons. We focus here on the effects of well shape on the scattering-out process. In particular, we investigate
‘the effect of asymmerrically shaped wells on the symmetry of the scattering.
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Fig. 1. Potential energy profiles for some asymmetric quan-
tum wells
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THEORY

We calculate polar optical phonon scattering rates using the Fermi Golden rule,
2r
W= T/' < ¥/ Hopulw' > [%6(E, - E;) dS;, (L

where the integral is over all finai states. Initial and final wavefunctions are solutions to the single-band effective mass
Schrodinger equation. We assume a parabolic band with effective mass m* = 0.063m,. Differences in the effective
mass in the well and barrier materials are neglected. For the optical phonon energy we use Aw = 0.036 eV. The
quantum well is in the z-direction, extending from z = 0 0 z = a. The initial bound-state wavefunction consists
of a product of plane waves in the r and y directions and a function ,(z) which is calculated numerically for each
potential. Our approach is similar to Milller and coworkers (1988).

The final state wavefunctions are chosen to be eigenfunctions of the current operator which carry current either to the
right (+=) or to the left (—2z).

Ly (e"‘" + rne""") ifz<0

Wi (z) =< up(z) ifo<z<a » (2)
L7V tpe*s: ifa<z
L7V? tpethes ifz<0

wE (2) = ¢ uelz) if0<z<a . (3)

Ly (c""" + rLe'“") ifa<z

We normalize the wavefunction by “box-normalizing” the incoming plane wave with L, being the (arbirary) normal-
ization length. The final state wavevector, k,, is always taken to be positive. The functions ug(z) and u.(z) are found
by numerically solving the Schrédinger equation in the well region and matching to the form of the solution outside
the well. The complete final-state wavefunctions can be written

Y, ki (20y.2) = Aekertibeny, (3)
where the final state energy is
, K ' ,
E' = m(k} + k4 kD).

-

The rate for an electron to escape from a bound state labeled by n, with total energy E, into a state with current to
the right (R) or left (L) is given by (Ridley,1982; Lent, Liang and Porod, 1989)

L! 2 fad ’ l '
WINE(E) = 5 (E‘"—") N*(o) [k, [ a9 IGUE (@ 6(E = E % o). 4
P

The upper and lower sign denote phonon emission absorption respectively. The phonon occupation factor is given by
3 1 1
ezplhan/kaT) 1 T2 57

and 1/¢;, = 1/ex ~ 1/¢o. The integrations are performed over all positive &’ and over all q, the wavevector of the
absorbed or emirtted phonon. The square of the effective matrix element is given by

N (wp) =

40 2
IGM @) = | [P e 5

Because the final state wavefunction includes the normalizing factor of L'/?, the factor of L, in Equation (4), which
comes from the final density of states, is exactly canceled. As a result, the rate is manifestly independent of this
normalizing factor, as it must be.

RESULTS

We examine optical phonon scattering out of several asymmetric quantum well saructures. Figure 1a shows the profile
of a well with one abrupt interface and one linearly graded interface. The length of the well is 300 A and the maximum
depth is 0.2 eV. We assume a temperature T = 300 K. Figure 2 shows the total rate (phonon emission plus absorption)
for escape from the well by polar optical phonon scattering. The initial state is taken to be the lowest bound state of
the well. The rate is plotted as a function of the initial kinetic energy, in units of the optical phonon energy. Note that
this energy can be much larger than the weil depth because the bound electron can have a large momentum parallel
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Fig. 2. The normalized escape rates for the
potential profile shown in Figure la. The

Ek/ﬁwo

Fig. 3 The normalized escape rates for the
potential profile shown in Figure 1b.

rates are shown for scattering into final state
with current going to the right (W#) and o
the left (WE).

10 the well walls. The rate is shown for scattering out of the well into states with current in the positive z direction
(WR) and in the negative z direction (W5).

An important feature of this result is the magnitude of the rates. The rates are shown normalized to Wy = 2aepwo,
where a., is the dimensionless electron-phonon coupling constant given by e, = (¢?/4he,)(m”/2hwo J'/?. The bulk
scattering rate in these units is of order unity, as is the bound-bound scattering rate. The rate for mransfer out of the
well is an order of magnitude smaller. We have discussed this suppression of the real-space transfer rates elsewhere
(Lent and Porod, 1988; Lent, Liang, and Porod, 1989) and shown that it grows (0 a factor of 100 for a 1.0 eV well.
The reason for this can be seen by considering the quantity £, = E — A/2m"(k} + k3). In the initial state E, is
negative, roughly —0.2 V. The final state has an £, which is positive, although it may be very small if the final-state
electron is just barely free. Since the total energy, E can change only by Awo, most of the additional energy comes
at the expense of momentum in the z and y directions. Since momentum parailel o the well walls is conserved, this
implies a phonon scattering event that has a large q = Va2 +4q2 The l /q* factor in the scattering rate, which is
characteristic of polar optical scartering, suppresses large momentum transfer events. Thus the rate of transfer out of
the well is small compared to bulk rates or bound-bound scattering rates.

Here we focus on the other obvious feature of Figure 2, the difference in the scattering rate for scattering to the right
and 10 the left (i.c.. into states with current in the +z and ~z directions). The scattering out of the well is preferentially
10 states with current going in the direction from the graded interface to the abrupt interface. We can define the relative
difference of the two rates,
WL E) - WR(E)

WR(E)

AW/W varies with energy between 20% and 40% . Since the ramp in the potential energy corresponds to a classical
force in the negative direction it is tempting (but incotrect) to conclude that this is the source of the preference for
scanering into that direction. In an effort to understand the physical origin of this asymmerry in escape rates we have
calculated the the phonon scattering escape rates for a number of other well shapes.

AW(E)/W =
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Fig. 4. The normalized escape rates for the
potential profile shown in Figure lc.

siope a (meV/nm)
Fig. 5. The percent difference between the
escape rates for scattering to the right and left
for wells with profiles as shown in Figure 1d.
The difference is plotied as a function of the
slope of the graded interface.
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Figure 1b shows a well with one large potential step on the left and two smaller potenual steps on the right, a very
crude approximation to a graded junction. We take V = 0.2 eV, d = 150A, and D = 300 A, so that a reasonable
comparison can be make t0 the previous linearly graded potential. The potenual is reduced by one half on the shallew
end of the well. The corresponding scattering rates are shown in Figure 3. Again, a clear preference for final states
with current moving from the “graded’ interface to the abrupt interface is cvident. AW(E)/W is about 5%, somewhat
less than the previous potential. That the effect persists at all is evidence that an explanation based on the classical
force in the well is inadequate.

Figure Ic illustrates a well with a very soft grading of the potential on one side. The maximum well depth remains 0.2
¢V and the width (measured to the point of inflection) is again 300 A. The two escape rates are shown in Figure 4. The
difference in escape rates AW(E)/W is very comparabie to the lincarly graded well shown in Figure 2. Evidently,
the precise form of the grading is not crucially important.

To examine the effect of the steepness of the potential grading on the rate asymmetry we calculate the escape rate
for a family of curves :nown in Figure 1d. The left wall of the potential well is always abrupt, with a depth of 0.2
e¢V. The total width of the weil is held constant at 300 A. The length of the fiat portion of the well d is varied and
correspondingly, the slope a of the right side of the weil. We want to examine the effect of the changing slope on
the diffe.ence in the scattering rates. Figure 5 shows AIV/W, evaluated at £y = 10hwy, as a function of « for this
family of potential wells. Note that the asymmetry in the escape rates vanishes smoothly as the slope of the right
wall becomes large. In the limit a — =0, the well becomes a symmetric square weil and any asymmetry must vanish.
For small values of the siope there are two sharp peaks in AW/W. These correspond to resonance conditions which
occur when the number of bound states in the well changes from 4 to 5 and from 5 to 6. They are caused by the
presence of a continuum resonance, which will become the new bound state, just above the well. A full meatment of
these resonance effects will not be presented here.

DISCUSSION

We tum to a discussion of the origin of the asymmetry in the escape rates. Four basic ingredients go into the calculation
of the the rates via Equation (1): the initial state wavefunctions, the final state wavefunctions, the perturbing potential,
and the density of final states. For the two processes we are considering, scattering into positive and negative current
states, the initial state wavefunctions are identical. The perturbing potential, the electron-phonon interacuion, is also
clearly the same. Both positive and negative current states have the same density of states. The asymmetries 11 the
escape rates are due to differences ir. the final-state wavefunctions.

Figure 6 shows the absolute square of the final state wavefunctions in the well region for a well as shown in Figure
1d with d = 60 A. The final states have £/ = .01 eV. Such “barely free” states have a dominant conmbution to the
scattering rates because of the 1/¢* suppression of high momentum transfers. The state wl has a considerably larger
amplitude in the well region than the state w?. Since the initial bound-state wavefunction is only large appreciable in
the well region, it is this region that contributes most to the integral in Equation (5). We define £ and Fjg to be the
integral over the well region of the final state probability density.

F = /o ok (2)dzf?

Fr = /o"hp,ﬁ(z)dzv

1.2 r

@ L] /\\ p L= 1w dz

Z / & sl Fu=] WM dz

:. / \ { |\‘P." L

¥ /\ fo / Y

< / A & o4t

-130 'lm -§U 0 30 1156 150 0.0 ) %
z (Angstroms) Slope a (meV/nm)
Fig. 6. The probability density for two pos- Fig. 7. The difference between the inte-
sible unbound final states. Both states have grated probability densities for final states
the same energy but one cames current to with current in opposite directions. The dif-
the right and the other carries current to the ference is piotted as a function of the slope
left. of the graded side of the well (shown in Fig-
ure 1d).
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Note that these are equal to the effective square matrix elements IG‘,,’_‘,{,'R’(q,)l2 if we make the (very rough) approxi-

mation that ¢, = 0 and w,(z) =constant. Figure 7 showns the percent difference between F; and Fgr as a function
of the slope a for the family of lincarly graded potential wells (Figure 1d). These are all evaluated at an £, of 0.0l
¢V. Clearly the basic structure of the rate asymmetry shown in Figure 5 has as its origin this difference in final state
amplitudes.

The importance of the potential graging on one side of the well now becomes clear and we can offer the following
qualitative explanation for the asymmetry in the escape rates. Consider again the potental shown in Figure la. A
plane wave incident from the left, as in w?, reflects first off of the abrupt interface. That part of the wave which
is reflected, contributes nothing to the effective matrix element in Equation (5). There is some additional reflecuon
at the second interface, but it is weak because that interface is graded. By contrast, a plane wave incident from the
right, as in wE, is reflected minimally by the first (graded) interface it encounters. Most of the reflection occurs at the
second, abrupt interface. Reflection there increases the amplitude of the wavefunction in the well region, and thus its
contribution to the matrix element. The total reflection coefficient is. of course, equal for v® and vt. Yet because
one is reflected before it gets to the well region and one is reflected over the well, a difference in amplitudes in the
well region resuits. The matrix element for scattering to the left (into w) is therefore larger than the matrix element
for scatiering to the right (into ¥®). It is this difference which is at the root of the asymmetries in the scauenng rates.

CONCLUSIONS

We have reported calculations of the real-space transter rates for electrons being scattered out of asymmetric quantum
wells by polar optical phonon emission and absorption. I[ncluding the correct form for the final state wavefuncuons
(calculated numerically) and the explicit!y 2-D to 3-D naturs of the scattering yielded two new results. The magnutude
of the real-space tansfer rate is sigrificantl smaller than the bulk or bound-bound scatterng rates. Additonally.
we fina that asymmetric welis result in carriers scattering preferentially into states which carry current a parucular
direction which depends on shape of the well. 1he magnitude of the asymmeuy is in the 20 — 40'% range for wells
with one lincarly graded interface and one abrupt interface. We have shown that the asymmetry in the scattenng rates
is due to an asymmetry in the amplitude of the final state wavefunctions over the well region.
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We calculate the rate for electrons confined in a quantum well to escape to unbound, current-
carrying states by polar optical phonon scattering. We explicitly include the two-dimensional
to three-dimensional nature of the transition and choose final state wave functions which are
genuinely unbound. We find that the escape rate decreases dramatically as the well depth
increases, even for electrons with more than enough energy to surmount the well walls. The
real-space transfer rate is much smaller than either the bulk scattering rate or the confined
bound-to-bound scattering rate. We explore this phenomenon and give a detailed explanation
of the rate depression. We also show that the electron escape rates have a strong directional

dependence in asymmetric wells. Electrons scatter out preferentially in the direction of the

more abrupt interface.

I. INTRODUCTION

Electrons confined in a quantum well which are heated
by an applied field can gain enough energy to escape from the
well. The momentum necessary for getting out of the well
may be provided by electron-phonon scattering. This real-
space transfer effect has been studied by Hess and the others'
and exploited in some device applications.>* The Monte
Carlo technique has been widely used to analyze electron
dynamics in such device structures.® A necessary input to
Monte Carlo calculations is the transition rate for electrons
confined in the quantum well to scatter into free states out of
the well. Previously this scattering rate has been approxi-
mately taken as either the three-dimensional (3D) bulk scat-
tering rate or the two-dimensional (2D ) bound-bound scat-
tering rate.* The 2D to 3D nature of the transition has been
neglected. Recently, we reported a calculation of this real-
space transfer rate which fully includes the 2D to 3D charac-
ter of the transition.’ Our results show that by choosing the
final states as free, current-carrying states explicitly, one ob-
tains real-space transfer rates which are much smaller than
either the bulk scattering rate or the 2D confined scattering
rate. Here we present the detailed calculation and explana-
tion of this phenomenon and include an additional extension
of the calculation to more general quantum well structures
which include wells which have an asymmetric potential
profile.®

Our calculation extends the work of Miiller er al.,®
who were primarily concerned with impedance-matching
conditions which minimize the effect of quantum reflec-
tions. They focused on the consequences of effective mass
differences in the well and barrier materials, a difference we
neglect. In their treatment, the unbound three-dimensional
states were approximated by the bound states of a very large
well.

Section II below develops the theory of polar optical
phonon scattering out of quantum wells. In Sec. III we dis-
cuss our results for escape from square-well potentials. Sec-
tion IV focuses on the directional preference which occurs in
scattering out of potentials which are not symmetric. Our
conclusions are summarized in Sec. V.
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Il. THEORY

We calculate polar optical phonon scattering rates using
the Fermi Golden rule,

- f (W (Hoon W) 1?(E, ~ Ej)dS;, (D)

where the integral is over all final states. The perturbation
Hamiltonian describing the coupling of electrons to polar
optical phonons is,”

=1 e Y —L— (iQ " +cc) (2)
"N Ve T P
where e is the electron charge, e* is the magnitude of effec-
tive charge on the atoms in the unit cell, ¥, is the volume of a
unit cell, & is the number of unit cells, q is the phonon wave
vector, Q, is the normal coordinate, and c.c. stands for com-
plex conjugate. It is welil established that polar optical
phonon scattering is the dominant scattering mechanism in
II1-V materials over a wide temperature range.'

We consider electrons which absorb or emit a phonon
through the perturbation represented by Eq. (2). In so do-
ing, an electron may transfer from a state which is bound in
one direction by a potential well to a state which is complete-
ly free. We consider an electron which has made such a tran-
sition to have escaped from the well. In order to caiculate the
rate for an electron to escape from a bound state in the well to
unbound states out of the well using Eq. (1), it is necessary
to calculate the initial and final eigenstate wave functions.
We assume a single-band, spherical, effective-mass modei
and neglect the difference between the effective masses in the
well and boundary materials. The quantum well is in the z
direction, extending from z = 0 to a. Both initial and final
states consist of a product of plane waves in the x and y
directions and a function of z, which is the solution of the
one-dimensional Schrodinger equation for the effective het-
erostructure potential. .

The initial state wave function is labeled by bound-state
index n and a vector k in x-y plane, and written as

Goix (x0.2) = 4™ Y (2). (3

H,.
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The final state wave function is written
—- 1k X+ ik Ly
Y, ki (XPZ) = Ae lﬁk;(z)' (4)

where ¥, . (2) is chosen to be a scattering state which carries

current either to the right ( + z) orto the left ( — z). Inboth
cases 4 is an overall normalization factor which depends on
the current and carrier density. The z-dependent part of the
wavefunction for the unbound states which carry current to
the right (left) is denoted ¥(*'“’(2):

(L -2 (% +rge ™) ifz<0

Ue (2) = Jup(2) if0<z<a, (5)
L' tpe™? ifa<z
(L7 e ifz<0

¥ (2) = qu(2) if0<z<a. (6)
L (e™ ™ +re") ifa<z

We normalize the wave function by “*box normalizing” the
incoming plane wave part of the wave function. Here L, is
the (arbitrary) normalization length in which there is unit
probability of finding an incoming particle. The final state
wave vector, K ,, is always taken to be positive. The functions
ug (z) and u, (2), and the reflection and transmission coeffi-
cients,rg,tg,7,, and t,, are all calculated by numerically
solving the Schrodinger equation in the well region and
matching to the solution outside the well.

The rate for an electron to escape from a bound state to
an unbound state with current to the right (R) orleft (L) is
then given by

W R (kK n) =ZTWI\M§;R/U\25(E

KAk
b Ek‘.kv.n t ﬁa’)ds,, (7)
where the square of the matrix element, |M #/2|2, is
fimge® |
M}R/L)2= —Nt(a) )Mf(k/“ 2_ (8)
M= S = b

The upper and lower sign are for absorption and emission
respectively. The phonon occupation factor is given by

1 1 1

+ - by
exp(fiwg/kgT) —1 2 * 2

and 1/e,=1/6, — 1/€,. M®’V, the electronic part of

matrix element, is given by

2 3E“"'(kn tq —kj)G .\ (9.) (9
L, L at

Here the Dirac delta function represents conservation of mo-
mentum in the (x,y) plane. The momentum uncertainty per-
pendicular to the interfaces due to the localization inside the
quantum well is represented by the effective matrix element

G12" (g, ), which is given by

N £ (w,) =

IMff(R/L)lz _

G/ (4 =

+ > 2
J' [',lz:'t/m(z)]oe""w" (z)dzt . (10)

The integration over the all final states involves the wave
vector q of the absorbed or emitted phonon and final electron
wave vector k', that is
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bl v

27 27w 2w (2m)
The rate for an electron to escape from a bound state labeled
by n, with total energy E, into a state with curren: ¢c the right
(R) or left (L) is therefore,

L, (dw = 1
WE.R/L) E) = z ( O)Nt J‘ dk’ st -
B =Gy 2, (@o) ), ks 7

d’q (1H

XGUE/M (q,)8(E' — E Fhwy).  (12)

Notice that because the final state wavefunction includes the
normalizing factor of L, '/, the factor of L, in Eq. (12),
which comes from the final density of states, is exactly can-
celed. As a result, the rate is manifestly independent of this
normalizing factor, as it must be.

In order to carry out numerical calculations, the & func-
tion and integral limits in Eq. (12) must be reexpressed. The
integral over phonon wave vector q can be expressed in cylin-
drical coordinate system, that is d °q = ¢, dq, d6, dq,. Here
6,, is the angle between q, and k,. Changing the integral
variables & ; and g, to E;,E, , which are defined as

E, =#k}2/2m*, (13)

E, =#q/2m*, (14)
and denoting the integral over g, by
2(R/L)
af,””"’(E;,Eq“)EJ-+”dq, (LG, 2 (qzz) ' (15)
- 2m*E, /# +q;
we have
WR/L(EY = 1 (eza)o)N £ (W) m* dE_'
! (2m)*\ 2¢, ) [E;
xfﬂq,,dequbi‘”“(sg,lsq )
E, -
X8(E' — E Ffiw,). (16)
We rewrite the delta-function in terms of 4, ,E';,
O(E' — E T fiwy) =6(a £ Bcosb, ) an
where
a=E; —E, +E, T, (18)
B=2[(E-E,)E,. (19)

The integral over 6, of the delta function will yield a factor
of 2/JB7 — a?. Then the scattering rate becomes

1 (o m*
Wf,R/L) E . ( O)N + )_
B =i\, )Y ™ wm

XJ'“ dE JE;MII dE;
o "Jew  JE!

xa:(R/L)(E;.Eq“) 2

B-a
(20)

where the integral range (E o,E ;... ) over E; is deter-
mined by the restrictions
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~-1<Z<1, E:xo. 21
3 (21)

Further manipulations yield

(R/L) _ m*(fiwy)'?
W,' (E) = WO ((2_,,-50)2)1\, t ((00)

b E ; mas
x f dE,,"f dE;
0 Ey

az(R/L)(E:E )
n zr™q.

x ’
\/E;\/(E; _E.:mm )(E;mnx —E;)
(22)

where

E;mlx 2 (E - En )Eq\ + En - Eq” * ﬁa)()v

(23)
E;.mm = =2 (E_ En)EqH +En _Eq‘ _'tﬁm()v (24)

Ey =max(0.E; . ), (25)
and W, is the unit of basic rate, which is given by
W, =2a,,w,. (26)
Here
e m‘ )I/2
a, = 27
? arhe, ( 2w, N

is the dimensionless electron-phonon coupling constant
(a,=0.07, wo=5X10"Hz, and W,=7x10'*Hz for
GaAs).

Our procedure is then as follows. We first solve the one-
dimensional effective-mass Schrodinger equation numeri-
cally, using an Airy function technique,'’ to obtain the
bound-state wavefunctions ¥, (z) and the final state wave
functions ¥ /"’ (z). We then calculate the effective matrix
element G if[;/ L'(q,) from Eq. (10). The scattering rate is

then calculated using Eqs. (15) and (22). Similarly, by tak-
ing initial and final states to be both bound we can calculate
the bound-bound scattering rate. Throughout we use an ef-
fective mass of m* = 0.063 m, and fiw, = 0.036 eV for the
optical phonon energy. All the calculations are at 7= 300
K.

Il. SQUARE WELL POTENTIALS

We consider first escape of electrons bound in a square
well potential. Because of symmetry, the electron escape
rates (and effective matrix elements) to final states with cur-
rent to the right and left are identical and we simply sum the
two contributions.

W,(E)=WZ}E)+ WEE). (28)

A. The weakly bound limit

In the limit of a very shallow quantum well, the scatter-
ing rate should approach the rate in bulk material. Since at
least one bound state always exists, we calculate the escape
rate from a shallow well and the bound-bound scattering
which leaves the electron in the well. We examine a well with
300-A width and 0.005-¢V depth for which only one bound
state exists. The electron, initially in the bound state, is scat-
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tered by emitting or absorbing a polar optical phonon. The
final state after scattering may be either a free state out of the
well (escape) or bound state in the well with a different par-
alle] momentum (bound-bound scattering). We calculate
the total rate, which includes the escape rate and the bound-
bound rate using Eq. (10), (15), and (22). The results are
shown in Fig. 1. Also plotted (dotted line) is the bulk rate for
polar optical phonon scattering given by’

- 172 72
W(E)=Wo(ﬁf) ) ’ [n(q)sinh "(ﬁwi)'

0

172
+[n(q)+l]sinh"(ﬁi —1) ] (29)

0

Here the first and the second terms in the square brackets are
absorption and emission rates, respectively, and it is under-
stood that the second term is zero if E < fiw,. The rates are
shown in unit of basic rate W,,. Figure | illustrates that, as
expected, the total rate is very close to the bulk rate. This
serves as a check on the calculation. Notice that even for this
very shallow well, scattering within in the well is almost as
likely as scattering out of the well.

B. Depth dependence

We examine the dependence of the escape rate on well
depth by considering quantum wells with 300-A width but
various depths from 0.005 to 1.0 eV. For simplicity we al-
ways choose initial states which are in the lowest energy
bound state of the well. We calculate W, ( E) using Eq. (22).
We will denote this rate as simply W(E). The total escape
rates (emission and absorption) for this series of wells of
different depths are shown in Figs. 2 and 3. These rates are
also normalized to W, as in Fig. 1.

As these figures illustrate, the escape rates decrease dra-
matically as the well depth increases. The rate for the well of
0.2-eV depth has already become an order of magnitude
smaller than the bulk rate. When the well depth increases to
1.0 eV, the escape rate drops by almost a factor of 100. How-
ever, if the escape rate is added to the bound-bound rates

S 150 :

A

% 100

o

S

E 0.50

E

S %o 50 100 5.0
@ Ex /h ®,

FIG. 1. Optical phonon scattering rates for a very shallow well. The well has
a width of 300 A and a depth of 0.005 eV. Shown are the bound-to-bound
rate (dot-dashed curve), the bound-to-unbound (1.¢., escape) rate (dashed
curve). The total rate, bound-to-bound plus bound-to-unbound. s the solhid
curve. For comparison the bulk scattening rate is shown with adotted curve
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FIG. 2. Escape rates for scattering out of a well by polar optical phonon
scattering. The weil has a width of 300 A and the various depths shown. The
energy scale is the initial electron energy in units of the optical phonon ener-
gy (in this case, 0.036 eV). Initially the electron is in the lowest bound state
of the well.

which includes the rates from the lowest bound state to ail
other bound states, the total rate is still very close to the buik
rate (see Fig. 4). The total rate does exhibit a sawtooth
structure due to the separation of bound state energy levels.
This feature of the bound-bound rate has been discussed by
Ridley and Riddoch.'®!" From Fig. 4, it is clear that most of
the contnbution to the total rate comes from the bound-
bound transitions.

Note that the escape rate is small even for electrons with
more than enough energy to surmount the well walls. An
electron energy of E = 15%iw, corresponds to 0.54 eV. Figure
3 illustrates that the escape rate for such an electron in a well
0.4 eV deep is still more than an order of magnitude smaller
than the bulk or bound-bound scattering rates. We discuss
the explanation for this rapid decrease in the escape rate with
increasing well depth below.

C. Magnitude of the escape rates

The most obvious feature of the escape rates from quan-
tum wells is that they are so much smailer than either bulk
scattering rates or bound-bound scattering. The escape rate

§ 0.12
7
E 008}
= [
2
é 0.04 |-
S %%
7

FIG. 3. Escape rates for scattering out of a well by polar optical phonon
scattering. The initial state is the lowest bound state of the weil. The phys-
ical parameters are the same as in Fig. 2 with the well depth increasing as
indicated. Some continuum resonance effects are apparent at low energies.
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FIG. 4. Optical phonon scattering rate for a deep well. The weli is 300-A
wide and 0.2 eV deep. Shown are the bound-to-bound rate (dot-dashed
curve), the bound-to-unbound (i.e. escape} rate (dashed curve). The total
rate, bound-to-bound plus bound-to-unbound, is the solid curve. For com-
parison the bulk scattering rate is shown with a dotted curve.

is smail even when the electron initially has a much larger
energy than the well depth. This suppression of the escape
rates can be understood as the consequence of two facts: (1)
only phonons with momenta larger than a critical value can
contribute to escape from the quantum well, and (2) the
nature of the electron-phonon coupling results in a 1/¢* de-
pendence of the scattering rate on the phonon wave vector g.

Consider the effective matrix element defined in Eq.
(10), for the case of an electron initially in the ground state
of the well:

+ oo 2
Gf,k;(qt) = , f v*(2)e"“ Y, (2)dz| . (30)

The initial state ¢,(z) we can treat approximately as a sine
wave with wavelength 2a inside the well and neglect the ex-
ponential tail which penetrates the well walls (this approxi-
mation is for purposes of discussion only — in the calcula-
tion we use the exact wavefunction). The final state
Y571 (2) consists of a combination of reflected and trans-

mitted plane waves. If we consider a final state which is just
barely free, x; will be small. This corresponds to a plane
wave with a long wavelength outside the well region. How-
ever, the contribution to the integral in (30) will be dominat-
ed by ¢, , evaluated inside the well because the initial-state
wave function is almost zero outside the well. In this region
the final-state wave function is a combination of plane waves
with wave vector

K, = 2m*(E. + Vo) /%, (31)

which corresponds to a much smaller wavelength if ¥V, is
non-negligible. The integrand in (30) is therefore the prod-
uct of the slowly varying initial state wave function with

oscillating plane waves e * “** and “*. This rapidly oscillat-
ing product will make the whole integral nearly vanish un-
less

If the well depth ¥, is large «; is large even for small £}, i.e.,
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FIG. 5. The effective m~trix element G, .(g.) as a function of ¢, and
E: = (fik 1)*/2m* for the potential well with a depth of 0.005 ¢V.

{or electrons which are barely free.
The above argument is supported by Figs. 5 and 6, in
which the effective matrix element G f «:(g:) isplotted as a

function of ¢, and £ ; for well potentials ¥;, = 0.005 and 0.8
eV. It is apparent that the matrix element peaks at larger
values of ¢, in the deeper welil.

An electron initially bound in the well has no momen-
tum in the z direction ({,) = 0). To be free it needs to
acquire only a vanishingly small z component of momen-
tum. Nevertheless, to escape from the well, it must emit or
absorb a large-momentum phonon — one with wavevector
roughly equal to «. Because the electron-phonon coupling is

FIG. 6. The eflective matrix element G, .(g,) as a function of ¢, and
E; = (#k ;)*/2m* for the potential well with a depth of 0.8 V.
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inversely proportional to g, as seen in Eq. (2), the golden-
rule scattering rate (1) suppresses large-g phonon scattering
events. Whereas in bulk scattering the smalil-g phonons
dominate, scattering out of a well relies on large-g phonons
and so is correspondingly reduced in magnitude.

D. Energy dependence

Another important feature of the escape rate is the de-
pendence on initial electron energy. There is a significant
change in this energy dependence with different well depths.
In bulk material the total scattering rate reaches a maximum
value when the initial electron energy is around two optical
phonon energies. It then drops roughiy as £ ~'/? at higher
energies. From Fig. 4, it can be seen that the scattering rates
in the shallow quantum well have a similar behavior. There
is a transition to qualitatively different behavior as the well
depth increase to a value comparable to the optical phonon
energy. For weils deep compared with #w,, the escape scat-
tering rate increases monotonically wich electron energy.
The increase is fairly slow after the initial jump in which
phonon emission becomes possible.

This change in energy dependence is due to an increase
in the number of phonons which can participate in the scat-
tering proces. In bulk scattering the matrix element between
initial and final electrons states yield a delta function which
enforces momentum conservation. In scattering from a well,
the momentum conservation in the z direction is relaxed be-
cause of the Heisenberg Uncertainty associated with the lo-
calization of the electron in the well. This is reflected in the
effective matrix element G2, :(g:) defined in Eq. (10,

which would be a delta function if the initial state were a
completely delocalized plane wave. Figures 5 and 6 show
plots of G 2 for a shallow and deep well. The deep well results
in a considerable broadening both as a function of ¢, and
E; = (#ik ;)*/2m*. This broadening represents the relaxa-
tion of momentum conservation in the z direction and results
in many more phonons being able to contribute to the scat-
tering into a particular final electron state. The final-state
integration includes the integration over all values of g, and
values of E ! up to a maximum given by energy conservation
(Eq. 23). For the shallow well, because G * is much more
sharply peaked, this contribution increases only linearly as
the range of final-state integration is increased. The other
factors in Eq. (22) reduce the linear increase to a slow de-
crease. For the deep well, however, the very broad peaks
yield a rapidly increasing contribution to the integral with
higher energy (see Figs. 5 and 6). Note that the magnitude
of the matrix element is much larger for the shallow well
than for the deep well, as discussed in the previous section.
The broadening of the momentum-conserving peaks in the
matrix element explains the change in the energy depen-
dence of the escape scattering rates.

E. Resonance effects

In addition to confined bound states, a quantum well
also produces resonances in the continuum of states with
energies above the well walls. These resonances are the con-
sequence of interference in the well region due to reflections
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FIG. 7. Escape rates for scattering out of the wells by polar optical phonon
emussion. The well widths are 300 A and the depths are 0.80 eV (top curve),
0.82. 0.84. 0.86. 0.88, 0.90, 0.92. 0.94, 0.96, and 0.98 eV (bottom curve),
respectively. The curves have the zeros offset on the vertical scale for ciarity.
The enhancement in scattering rates near continuum resonances is clearly
evident.

at the well boundaries. In a square well the resonance condi-
tion occurs when
A .

n ?—:-n (m/x)y =a. n=123,.., (33)
where a is the well width, 4 is the deBroglie wavelength in
the well region, and «; is given by Eq. (31).

The matrix element is influenced by these resonant
states and is enhanced at values of E | corresponding to this
condition. Because the wave function amplitude is enhanced
by being resonant with the well, oscillations of the matrix
element with genuine maxima and minima are observed. '*'*
These can be seen in the plot of the effective matrix element
in Fig. 6. The scattering rates should also exhibit oscillatory
structure when additional resonant states are inciuded in the
set of accessible final states. For shallow wells, these reso-
nance effects are weak, but as the well becomes deeper, the
resonance effects become stronger. The escape rates of elec-
trons scattered from the lowest bound state of a quantum
well by polar optical phonon emission are shown in Fig. 7 for

2
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Z /
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FIG. 8. Escape rates for scattering out of the weils by polar optical phonon
emission. The well widths are 100 A (top curve), 150, 200, 250, 300, 350,
400, 450, 500, and 550 A (bottom curve), respectively. Each well is 1.0-eV
deep. The curves have the zeros offset on the vertical scale for clarity.
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a sequence of wells with increasing depths. The wells are ail
300-A wide and have depths from 0.82 to 0.9 eV. We choose
rather large well depths to make more obvious the resonance
effects. Rate enhancements occur near the resonance condi-
tion. Since the maxima and minima of the matrix element are
smeared out by the integration of final state over parailel
momentum components, the scattering rates exhibit the
steplike structures shown rather than true maxima and mini-
ma. The energy of the resonant enhancements decreases as
the well is deepened, in agreement with Eq. (33).

If the well depth, ¥, is fixed, changing the well width a
also changes the energy for resonance with the well. Figure 8
shows the escape rate for scattering from the lowest bound
state of the well via polar optical phonon emission for a
group of wells with the same depth of 1.0 eV but increasing
well width from 100 to 550 A. The oscillation associated
with transitions to continuum resonances is evident.

IV. ASYMMETRIC WELLS

We now consider escape from quantum wells with an
asymmetric potential profile. Several asymmetric quantum
wells shown in Figs. 9(a)-9(d) are investigated. All of these
potential wells have the same total width of D = 300 A and
maximum depth of ¥ = 0.2 eV. The left side of each well is
always an abrupt barrier but the right wall has a different
form in each case. We focus on the effect of the asymmetric
potentials on the escape rate due to polar optical phonon
scattering. Again, for simplicity we always choose initial
states which are in the lowest energy bound-state of the well.
We calculate W {R/%(E) using Eq. (22). We will denote
this rate as simply W */%'(E). Of course, the . <symmetry in
the potential means that W #(E) and W*(E) r -ed no longer
be equal.

Figure 10 depicts the escape rates W “ and W * for the
triangular potential shown in Fig. 9(a). At every energy the
scattering rate out of the well to the left is greater than the
corresponding rate to the right. Recall that “'to the right”
here means “into an eigenstate with a well-defined net cur-
rent in the positive z direction.” The asymmetry in the es-
cape rates is in this case quite substantial. At some energiesit
is greater than 50%, and it is at least 20%. The question

= D =P
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v | ,—'
¥

_—<
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c) d)

FIG. 9. Potential energy profiles for several asymmetric quantutm wells.
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FIG. 10. The normalized escape rates for the potental profile shown in Fig.
9(a). The rates are shown for scattering into final state with current going
to the right ( W *) and to the left (W *).

raised by this result is whether the asymmetry in the escape
rate is caused by the geometrical asymmetry in the well
shape itself, or by the difference in abruptness of the two
walls.

The stepped potential profile shown in Fig. 9(b) shares
the asymmetric nature of the triangular profile but retains
some of the abruptness of the barriers in the original square
well. The corresponding escape rates for this structure are
shown in Fig. 11. Clearly the asymmetry in the escape rates,
while still present, has been considerably reduced. This sug-
gests that it is the difference in the abruptness of the inter-
faces which is the key to the preferential scattering out of the
well in one direction over the other.

The potential profile in Fig. 9(c) has a very gentle inter-
face on the right edge of the well and an abrupt interface on
the left. The gradual interface is modeled by a Fermi-type
function,

V(z) = 2Vo{lexp( —2/D) + 1] ="' = 1}.

The resulting escape rates, shown in Fig. 12, display a large
asymmetry. This would seem to confirm the connection
between the abruptness of the interfaces and the preferred
direction for escape.

In order to investigate this hypothesis, we examine a
series of potential wells, shown in Fig. 9(d), with the left
wall abrupt and the right wall gradual. The overall width D
is kept constant at 300 A while the width of the weil bottom d

0.08
oo} LT
2 o]
002+
o o
0 4 8 12 16 20

Ek/‘hmo

FIG. 11. The normalized escape rates for the potential profile shown in Fig.
9(b).
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FIG. 12. The normalized escape rates for the potentiai profile shown in Fig.
9(c).

is varied, thus changing the slope a of the right side of the
well. The slope a represents the steepness of the interface.
Because wells with different a’s have different ground-state
energies we calculate the scattering rate as a function of the
initial kinetic energy of the electron, £,. We quantify the
asymmetry in the escape rates by defining, somewhat arbi-
trarily,

AW _ WHE) — WRE)
w WHR(E)

We calculate the escape rates for this family of wells and plot
AW /W as a function of the slope a in Fig. 13. After some
initial structure ( having to do with continuum resonances)
AW /W decreases smoothly as the steepness of the right in-
terface increases. As a goes to infinity, the bottom width d
approaches the top width D, the well becomes a square well,
and any asymmetry must disappear.

We would like to understand the origin of the direction-
al preference illustrated in Fig. 13. The process of scattering
out of the well to the right has the same initial state as the
process of scattering out to the left. The scattering Hamilto-
nians are the same for the two processes also. The difference
in the rates must be due to the difference in final state wave
functions.

We can make the following simple argument for why
one would expect the amplitude of the final “left-going™

(34)

E = 10,

50
~ 40} <\
2l -
%
10
|
0 50 100 150 200

slope o (meV/nm)

FIG. 13. The percent difference between the escape rates for scattering to
the right and left for wells with profiles as shown in Fig. 9(d). The differ-
ence is plotted as a function of the slope of the graded interface. The total
well width is 300 A, and the maximum depth is 0.2 eV.
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b)

FIG. 14. Schematic iilustration of the origin of the directional dependeice
of the escape rates. The final, unbound state is illustrated for the case of net
current in the positive direction (a), and net current in the negative direc-
tion (b). Because of the stronger reflections at the abrupt interface, the -
nal-state amplitude in the well region is greater in (b). This e ..unces the
matrix element for scattering into states with current to the left.

wave function to be larger than the amplitude of the final
*“right-going” wave function in the well region. The final
state wave functions are defined by Egs. (5) and (6). y* can
be thought of as resulting from a plane wave incident from
the right on the weil structure. The wave first hits the gentle,
graded interface which reflects only a small amount of the
incoming wave. Most of the wave is reflected at the abrupt
interface on the left side of the well. This results in a fairly
large amplitude in the well region itself. By contrast, ¥* con-
sists of a wave incident from the left, which is strongly re-
flected by the abrupt interface which it encounters first.
Thus, a smaller amplitude is expected over the well region.
This is illustrated in Fig. 14. In each case, the total reflected
amplitude is the same (one can show rigorously that
T, = T, and R, = Ry'®). The difference is whether the
incoming wave is reflected before or after it reaches the in-
side of the well.

In Fig. 15, we show an example of the absolute square of

|\*ll.|2i

~ : R

Arb. Units

1150 <100 50 0 30 100 150
z (Angstroms)

FIG. 15. The absolute square of wavefunctions for two possible unbound
final states for the potential shown in Fig. 9(d). Both states have the same
energy but one carries current to the right and the other carries current to
the left.
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FIG. 16. Theintegral over the well region of probability density as functions
of the slope a of the graded intertace.

two final states, ¥* and ¢, in the well region for the well
shown in Fig. 9(d) withd = 60 A and an energy of 0.01 eV.
We can see that " indeed has a much larger amplitude than
v

Because the wavefunction of the initial bound state de-
cays very fast outside the well region, the integral over the
well region dominates the matrix element. The rate asymme-
try can therefore be characterized by the difference in the
final state amplitude over the well region.

To explore further the effect of the well asymmetry on
final state wavefunction ¢* and ¥#, we define F, and Fy as

F, =f llli,““(z)dz|2
o

and

Fp= f' Y2 (2)dz|2.
Q

These correspond to the effective matrix elements [Eq.
(10) ] in the rather crude approximation that the initial state
wavefunction is a constant in the well region and zero else-
where, and that the phonon momentum g, is zero. We calcu-
late F, and F, for the family of the weils depicted in Fig.
9(d). These wavefunctions are all evaluated at energy
E’ =001 eV.Figure 16 shows £, and Fy asafunctionof a,
the slope of the graded interface. Figure 17 shows the rela-
tive difference between F, and Fj as a function of a. The
clear similarity between Figs. 17 and 13 indicates that, in-

(35)

(36)

12 . ]
« F.=/IWH dz
S sl Fo=)I¥Mdz |
.
© oaf ]
0.05 20 80 120
Slope o (meV/nm)

FIG. 17. The reiative difference between the integrated probability densities
for final states with current in opposite directions as a function ui the stope
of the graded interface of the weil shown in Fig. 9(d).
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deed, the asymmetry in scattering rates can be explained as a
final-state amplitude effect. This makes it clear why the elec-
trons are scattered preferentially in the direction of the more
abrupt well barrier.

V. CONCLUSION

We have calculated the real-space transfer rate at which
electrons are scattered out of a quantum well by absorbing or
emitting a polar optical phonon. We use genuinely free.
three-dimensional final states with a well-defined current.
Our results indicate that the magnitude of this escape rate is
much smaller than the three-dimensional bulk rate or the
two-dimensional bound-bound scattering rate. The rate
depression is primarily due to the large phonon momenta
required in these processes. We also find that in asymmetric
wells, electrons are scattered out of the wells preferentially
into states which carry current in the direction from the less
abrupt interface to the more abrupt interface. We show that
itis the asymmetry in the amplitudes of final state wavefunc-
tions that is the origin of the directional dependence in the
escape scattering.
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THE NUMERICAL SIMULATION OF ELECTRON
TRANSMISSION THROUGH A TWO-DIMENSIONAL
QUANTUM DEVICE BY THE FINITE ELEMENT METHOD

DAVID J. KIRKNFR.* CRAIG S. LENT' AND SRINIVAS SIVAPRAKASAM'
Universitv of Notre Dume, Notre Dame. IN 46556 U.S.A.

SUMMARY

In this paper we present a method for numerically soiving the Schrodinger equation for the problem of
clectron transmisston through a quantum device defined on a two-dimensional domain. An important
aspect of our formutation 1s the treatment of the boundary conditions at the contact-device interfaces,
allowing the problem to be discreuzed on the device domain only. With the FEM aproach that we empioy,

the nature of the potenual field does not etfect the computational expense tfor smoothly varying ficlds). We
¢xamine a sample problem of a symmetric cavity in a wave-guide structure.

INTRODUCTION

Techniques for numerical simulation of electronic devices governed by semiclassical transport
theory are well developed.! However. a great deal of contemporary research is directed toward
the development of a class of semiconductor devices fabricated at a scale where quantum effccts
dominate.® In this regime the wave-like nature of the electron must be accounted for, and
simulations must be based on solutions of the time-independent Schrddinger’s equation:

2

h .
S VW y,2) + Vxy, 2 (x y2) = Edx p, 2)

The compiex wavefunction ¢ specifies the state of the electron and |y|* is interpreted as
a probability density.® The Schrédinger equation describes an clectron with an cifective mass m*
which moves in 2 potential V.

The solutions to the Schrddinger equation are of two types, bound or unbound. depending on
whether the electron s localized in a particular region of space (bound), or delocalized with
a non-zero probability density arbitrarily far away {from the structure (unbound). This distinction
is reflected in the boundary conditions for the Schrodinger equation. Bound electrons are
described by a waveifunction which vanishes at infinite distances. The wavefunction for an
unbound electron. by contrast, does not vanish at infinite distances but typically assumes the
form of a travelling wave which carries current. The unbound states are sometimes called
scattering states because they correspond to an electron beam impinging on a potential and being
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scattered outward. For the bound-state problem. the Schrodinger equation becomes an
cigenvalue equation and the numerical solution scheme 1s fairly straightforward. Both bound and
unbound electron states occur in quantum devices. The bound states represent charge trapped in
the device and the unbound states represent the current passing through the device. We focus here
on the unbound states both because they have the key role of carrying current in devices and
because bound-state solutions present fewer numericai difficulties.

Semiconductor device fabrication technology has until rccently been limited to creating
structures with features that are smail in one spatial dimension. This has nevertheless produced
an explosion of new device ideas and interest in electronic behaviour of quantum-scale structures.
This development of ultra-smail devices has been greatly facilitated by the insight provided by
solutions to the one-dimensionai Schrédinger equation. The solution for the case of a simple
trapezotdal-shaped potentiai subject to incident plane waves is easily found 1n terms of Airy
functions. If a potentiai barrier of arbitrary shape is approximated as piecewise linear. the Airy
function solution along with a transfer matnx approach can be used to find an approximate
solution very efticientiv.* Transmussion coetficients and currents are then readily determined. This
solution approach. however, is limited to one-dimensional problems.

Recent advances in fabrication and crystal growth techniques®:® are now making feasible the
creation of structures quantized in two and three spatial dimensions. This has created the need for
more sophisticated modelling capabilities. both to understand device behaviour and to guide the
invention of new devices. For the current carrying (unbound) states, the use of standard numerical
solution procedurcs. such as finite differences or finite elements which are commonly empioyed in
problems of higher spatial dimensions, is hampered by the extended nature of the wavefuntion.”
This is a reflection of the fact that a quantum device is an open system. i.e. 2 problem with at jeast
some of the boundary conditions at infinity. In this paper we give particular attention to the
treatment of the conditions at the interface of the device and the contacts. Boundary conditions
are developed which account properiy for reflection and transmussion of waves. Thus, we are able
to cast the problem as a boundary value probiem on the domain described by the boundary of the
device. We then develop a finite eclement solution strategy for the problem of electron
transmission through a potential of arbitrary shape. We give resuits for the case of a resonant

cavity. and examine the behaviour of the transmission coetficient versus energy curve as we vary
the device geometry.

PROBLEM STATEMENT

In this paper we consider the transmission of electrons through a quantum structure defined by
a two-dimensional domain. as shown schematically in Figure 1. We call Q the device domain and
Q" and QR the left and right contacts respectively. For simplicity in presentation both contacts
have width d and lie on the x, axis. The analysis following is not restricted to this gecometry,
however.

Since Q2" extends to x, = — « and QR cxtends to x, = + 0 we have a so-called open probiem.
The form of the compiex wavefunction is known in Q' and Qf, however. and thus we wiil reduce
the problem to a boundary value problem on the device domain Q. Following the determination
of the wavefunction on €, the transmission coefficient can be calculated at the device-right
contact interfacc.

Since we anucipate a finite element method (FEM) solution we find it convenient to consider
the complex wavefunction as a real-valued vector quantity, ¥ = (¢, ¥, )", where ¢, and ¥, are
the real and imagiary parts of the wavefunction respectively. We first give the classic or strong
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,—1
Q
Y Q- o QR g
. r '
0 L

Figure . Geometry of the transmission problem. Within the region £2 U QQF the potenual ¥ is inite. Qutside this rezion
the potenuai is infinue

statement of the governing equations: Find Ye C*(Q), Yy~ e CHQL), YR e CH(QR) such that
— V2P(x) + Vx)P(x) = EP(x), xeQ
- Vip(x) = EYL(X), xeQt
- VAPR(x) = EPRix), xeQ®

w‘:""l- :
. . —on M, = xx, =0.0 € x, = d}{
‘:l“’:"n‘l’l—,‘ ' k - (
b=

. . on I,={x:x,=L0<x,s<d}
R 2 = e ;

=0 on I, =/Q—-(F, +T1,)
Yr=0 on x,=0,x,=d,x, <0
Yr=0 on x,=0.x,=d.x, 2L
Yy, bounded as x, = -0
Y®, bounded as x, =+

In the above Y*, Y* are the complex wavefunctions in Q% and QR respectively, x = (x,. x,)" is
a vector containing the Cartesian co-ordinates of a pownt. V(x) is the rcai-valued potenuai
assumed to be a continuous. bounded function on €2, £ is the total energy and ¢ is the boundary
of Q. Also. for convenience the factor A°/2m?* is subsumed 1n the definitions of }(x) and E.
The soiunon of Schrodinger's cquation in the contacts sausfying the boundedness conditions
above consists of traveiling harmonic waves and standing, exponentially decaying waves. These
latter modes are herein referred to as evanescent modes. We assume a singie incoming mode from
x, = — and no incoming waves from x, = + ~0. Again, this latter assumption is primanly for
simplicity in presentation and the analysis is easily extended to allow muitiple mode input trom

either direction. The solution of Schrodinger’s equation in the contacts satisfying the conditions
above has the following form:

, v . .
Yhix) = R (x,JA,, sin(m:;x’) 4y Rl(x,)b,sin <n—7:;2) + ) bet= sin<fx—7§ﬁ) !

\ n=1 LES. R}

v N P \
VA(x) = ¥ R,(x,)a, sin (ﬁ) + Y aet sin(mx:) (2)

n= d AsN+| d
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where
costk,x,) - stk x,)
R = nvt
A1) [sin(k,xl) cos(k,x,):l 3)
2
k= I|E- (i’f) @
\Yi d

an = (anl’ anl)r {S)
bn = (bnl' bnz)r (6)
= (A, Amz)r (N

The sotutions are combinations of traveiling waves which are osciilatory in x, and evanescent
modes which decay exponenually away from the device region. We choose to define the
wavevector k, so that it is a real quantity for both osciilatory and exponential waves. The number
of modes which represent travelling waves is given by

2
N = max n, such that E > (’i}) . t9]

Thus the total energy as well as the contact geometry determines the number of current carrying
modes reflected and transmitted. As the energy increases. more modes become travelling modes
which carry current.

The vector A,, represents the amplitude of the incoming mode. Specifying A,, is equivalent to
specifying the amplitude and compiex phase of the incoming wave.

We now use the continuity of the wavefunctions at the interfaces I',, I', and the orthogonality

of the sine functions to express the constants, b,, a, in terms of the wavefunction ¢ on [, and Iy,
re.

2 A0 4]
b, = EL $(, xz)sm< ) )dxz mOma
a, = %J' RI(LWI(L, x, )sm( dind: )dx-.. n<N (10
a}, d
rak (4
a,-z—erj \II(L.x,)sm(: )dx,. n2N (1)

where 5,,, is the Kronecker delta and we have used R,(0) = /, the identity matnix. Taking the
derivative of equations (1) and (3) with respect to x, and using the continuity of the normal
derivative of  at the interfaces yiclds

0,1 ¥0, x3) = ~ k, Q. (0)A,, sm( ’; ) Z k, Q,(0)'b, sm( ’;x')

o

+ 3 ' kb, sm(”?') (12)

naN+

D WL xq) = = Z k,Q.(L) a, sm('mx')- i k,a,e" "t sin("—“‘-lx—’-) (13

A=y d neN e
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where

sin(k X,} costk,x,)
Qn(xl) = [ ! ! ]

— cosik,x,) sintk,x,)
Now. using equations (9) to (11) in equations (12) and (13) allows us to write formalily,
6,1“’(0‘ x:)=fL(‘b(0‘ x‘.')v xz) “4)

Qo WL, xy ) = [R(Y(L, x4), X,) (15)
where

fL(‘y(O‘ xl)‘ xz) == kan(O)Am Sin <M1;xz>

¥ 2 (¢ . . . [ nmx,
- E" k,Q,(0)° [(7 L ¥(0, x,) sin (%) dx, - Amé,,,] sm(—d—>

. 2 . (nnx, . (nmx,
d —— , = 16
+ ";N k"[d.[) q/(o.x:)sm( y )dx_}sm( y ) (16)

v r

d
PR W(Loxohxe) = — 5 kQLT| 2 R:(L)ML.x,)sin<ﬁ)dx,]sin<nnx_>
nA:I d 0 d d

o kel (4 .
- ¥ k,[zcd J.\V(L,xz)sin<"—1:‘—’-)dx2]e‘*""sin(#*) (n
n=N+1t Q

Equations (14) and (15) are the boundary conditions at the device-contact interfaces which allow
us to restate the boundary vaiue problem on the device domain oniy. Note that these boundary
conditions are a generalization of the usual mixed or third-type boundary condition relating the
primary unknown to its normal derivative on the boundary. The normal derivative of ¥ is not
directly related to , but rather to a superposition of Fourier components of . The boundary
condition has a non-locali character in that to apply it at any one point on the boundary requires
a knowledge of the wavefunction over the entire boundary.

We can now restate the boundary value problem on the domain € Find ¥ e C*(Q) such that
= V2d(x) + V(x)(x) = Ed(x), xeQ

and such that the boundary conditions given by equations (14) and (15) are sausfied.
Prior to stating a variational equivalent of the above problem we define some notation. Let

2 2
H5(0)={U:J- [(a—v) +<£‘-’-) +(V—-E)v’]dA<oo.v=Oon F,}
a L\%x, 0x,

and we say we(H Q) if ¢,, v, e H}(Q). Also, let

and

d/dx, 0
0 d/ox, {,1,! }
VY=
v 0/ dx, 0 V2

O l"/axz
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We now give a weak variationai problem equivaient to the above problem: Find Ve (H 1 Q)?
such that

(Y, V) + (B, (V = EW) = (9, %), — (W, fD)r,, Y e(H3(Q)? (18)
where

.
(VO, V) = | ViTVidA
J0

~

(P, (V = EN) (V - E)YW'¥da

J
d

(W 0, = | WL x2)7 TROW(L. x,) x4)dXy
Q

(d

(b, 50, = | WO, x5)" FHOP(0, x,). x;)dx,

JO

The equivalence of the two problems is shown by integrating the gradient term. (Vi V{). by
parts and then using the fact that  is an arbitrary element of (H H (o))

FEM SOLUTION ALGORITHM
Given a regular discretization of . we express the FEM approximation to ¥ on this mesh as

V(x) = N(x)u

where
u = (,(x,), ¥a(x,), w.(xz),wz(xz% e g (Xpg), "'z(xu))r
N(x) is the 2 x 2M matrix of global shape functions,
[dn(x). 0. ¢,(x), 0, ... dyulx) 0]
N(X) =
0, ¢1(‘)» Q, ¢2(X). e 0, ¢u(x)

x, means the co-ordinates of the jth nodal point. ¢,(x) is the global shape function associated with
node i and M is the number of nodes in QU I, U T,.
We can express the gradient of { as

V¢ = B(x)u,
where B(x) is a matrix containing derivatives of the shape functions. Thus the left hand side of the
variational equation can be written

(V6. V) + (W (V- E) ) = -‘n‘(f (B'B + (V¥ ~ E)N'N)dA)u
e}

=a'Au (19)

This relation defines the ‘stiffness’ matrix 4. We now give a fairly detailed treatment of the
boundary contributions. Assume that there are M, nodes on I'y and M, nodes on [,. Letu be
the vector of length 2M, which is the restriction of u to I, and let N,(x,) be the 2 x 2M, matnx of
shape functions such that

(0, x;) = N,(x;)u, (20)
Y(L, x5) = N,(x;)u, 20
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Using the FEM approximation to ¢ with equauon (10), (11) and (13) allows us to write
F N

- / 2k L 2k,
i, = -at( T ZanpourwN s T NN o,

n=1 J naN+1t
where

I.J o)
R NTX
N,, = N.(x,)sm(——‘)dx:
o  d
Note that the totai number of modes is truncated at a tinite number, /. The requircd value of

[ must be determined experimentally. In generai we have found that six or seven modes above
N are sufficient. Now note that

0 1
QN(XI)R:(Xl)=DE[ ]

-1 0
therefore,
: X 2% L%
“l" fk)r1=—f|§ Z '—"NgnDNZn+ ? _"'N;nNZn)uZ
LN d . u=7+| d
= - aiC,u,
Likewise,—

_ N 1 Zk
(\pv fL)rl = ﬁ{<kmN {MDrAm + ( Z Z—SEN-{"DNln + Z —EanNln)ul>

d
n=] n=N+L
= ﬁ{(Pu + Clul) ]

We now define 2M x 2M matrices C,, C, and a vector j,, of length M such that
afCu, =a"Cu (22)
afp, =i'p, 23)
Thus the discrete form of the variational problem is
@TAu = a’(p, — (C, + C.))
or since the elements of @ are arbitrary,
A+C, +Cu=p, (24)

Note that the matrices C, and C, are not explicitly formed: equations (22) and (23) simply
represent the assembly process. Also note that the reai and imaginary parts of the wavefunction
are coupled only through the boundary conditions, equations (14) and (15), which. in the FEM

procedure are effected by the matrices C, and C,. These matrices are not symmetric and thus the
final system to be solved is unsymmetric.

TRANSMISSION COEFFICIENT

The current in 2% or Q* due to electron transmission is (ignoring a muitiplicative constant which
does not effect the transmission coefficient)

4
J=j<w¢w-wnwwwn
0
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where y 1s the complex wave function. ¢ = ¥, + i¥,.and ¥* is the complex conjugate of . Using
equation (3) we can express the current in the region Q* as foilows:

N
JA=Y k,aqa,
n=|
Note that the evanescent modes in the contacts do not contribute to the current. {f we caiculate
the incoming current (i.e. ignoring the reflected modes) in Q- we get from equation (1)

Jo =k, ATA,,
Therefore the transmission coefficient is
l l N
T{E)———-—— Z k,ala
‘IO QO =}
where T'(E) indicates the energy E is used as a parameter. Using equations (10) and (21) we can
express 7(E) in terms of the nodal values of ¢ on the interface I, i.c.

T(E) = (ﬁ) u{( Z k,N{.N,,,)uz (25)

Thus after the wavefunction is determined on the device domain, i.e. after equation (24) is solved.
the transmission coefficient is readily computed from equation (25).

Note that it only requires a modification of the vector p to inciude a superposition of incoming
modes, which involves only minor computation.

SAMPLE PROBLEM

To iliustratc our solution procedure we will analyse the resonant cavity shown in Figure 2.
Although inciusion of an arbitrary potentiai in the device is an easy matter. we present the
resonant cavity resuits simply to restrict the number of parameters. We assume only mode one is
incoming from the left and we take 4,, = i, A,, = 0. For ail simulations the effective mass. m*. is
taken 1o be 005 m,,. Furthcrmore, grids for cuch simulation were generated using squarc. bilinear
clements. 5 A on a side. We found all results were sufficiently converged using this mesh for
graphical purposes.

Figure 3 shows transmission coefficient versus energy curves for a family of devices. For all
cases the width of the contacts, d, and the length of the device, L, are taken to be 100 A. The
transmission coefficient curves shown are for device widths, D, varying from 200 to 250 A. The
minima in these curves correspond to bound states in the cavity. For this simple device gcometry
the device bound-state energies are easily determined. At these energies the electron is trapped in
the device and this explains the resulting reduction in the value of the transmission coefficient. As
the device width. D, is increased we expect the energy levels of the bound states in the cavity to
decrease. We see this effect exhibited by a shift to the left of the minima. In general. the more
separated the bound state energies the broader the band over which full transmission. or close to
full transmission, occurs.

It shouid be noted that the occurrence of minima at energies of bound states is a unique feature.
of the two-dimensional problem. In one dimension, it is more typical to see transmission maxima
associated with bound-state, or more precisely, quasibound-state resonances. The characteristic

sharp minima and broad peaks have been noted by Sols and co-workers? in their work on the
stub-tuner transistor.
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Figure 2. Geometry for the sampie problem of the resonant cavity
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Figure 3. The transmussion coctficient versus energy for the resonant cavity shown in Figure 2

Figure 4 shows a plot of the real or the imaginary part of the wavefunction, for the 200 A wide
cavity at an energy of 0-43 eV, which corresponds to the first excited bound state of the cawty.
For energics corresponding to the bound states of the cavity the real and the imaginary parts of
the wavefunction arc identical in shape and simply scale: thus we show only onc piot for this casc.
The wavefuntion at this energy is essentially a standing wave corresponding to the bound-state
eigenfunction.

It is interesting 10 note the shape of the wavefunction at the exit boundary. This tells us the
form of the wavefunction in the contact. Since there is basically no transmission at 043 eV. the
solution shouid contain almost no participation of the travelling modes in the contact. For this
simulation the first evanescent mode is the third mode (since N =1 and the problem 1s
symmetrick and the third mode is precisely the shape which is predominant at this boundary.
Thus the wavefunction is essentially an evanescent mode in the contact. Higher modes have little
participation. Although we infer the shape of the wavefunction in the contact from its shape at the
exit boundary, we could easily determine the explicit expression for ¥ in the contact since the
amplitudes of the wave forms are easily computed as shown in equation (25). However, we are
primarily interested in its behaviour in the device and at the contact interface.

Figures 5 and 6 show the reat and imaginary parts respectively of the wavefunction at an cnergy
of 0-31 eV. This energy corresponds to almost (ull transmission (T(E) = 0-90). Note that the
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03l eV

Iigure 6. The imaginary part of the wavefunction for transmusion through the resonant cavity with D = 200A st an
energy of 031 eV
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wavefunctions are basicaly travelling wavcs in the cavity. We also see in this case that the shape of
mode one. a travelling wave, is predominant at the boundary. Thus in the contact we have a mode
one traveiling wave with little effect of the evanescent modes close to the device for this case of
near full transmission. The rofe of the evanescent modes in the contacts bccomes important in
multiple devices if the devices are “close’ together.

CONCLUSION

In this paper we have presented a method for numericaily soiving the problem of clectron
transmission through a two-dimensional quantum device. The boundary conditions at the
ccnact-device interfaces given by equations (14)—(17) are important in that they allow the
problem to be discretized on the device domain only. With the FEM approach that we employ,
the nature of the potential field does not affect the computational expense (for smoothly varying
fields). Also we can incorporate more contacts and muitiple mode inputs with little additional
expense. Such studies are presently underway. An extension of our formulation to allow an
efficient analysis of multiple devices is also being studied.

This work was supported by the Air Force Office of Scientific Research under grant number
AFOSR-88-0096.
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A numerical algorithm for the solution of the two-dimensional effective mass Schrodinger
equation for current-carrying states is developed. Boundary conditions appropriate for such
states are developed and a solution algorithm constructed that is based on the finite element
method. The utility of the technique is illustrated by solving problems relevant to submicron

semiconductor quantum device structures.

i. INTRODUCTION

Recent advances in submicron lithography have made it
possible to create very small structures in which electrons in
the two-dimensional electron gas formed at a semiconductor
heterostructure interface are further confined by metal
gates. A negative voltage applied to the gate depletes elec-
trons in the region beneath the gate. Several device struc-
tures have been proposed and realized using this scheme.'"®
For sufficiently small scales, electrons in such structures are
ballistic and coherent over the entire device region. For
many purposes. electronic transport in this regime is gov-
erned by the effective-mass Schrodinger equation. Under-
standing and modeling the performance of these device
structures requires solving the two-dimensional Schrédinger
equation.

Several well-established techniques have been employed
for obtaining numerical solutions of the two-dimensional
Schridinger equation for bound states. Bound-state solu-
tions, however, are not of primary interest in understanding
quantum devices. States which carry current, sometimes
called *‘scattering states’’ are more important in understand-
ing current flow through small coherent regions. In one di-
mension, the current carrying states can be solved for rather
straightforwardly because the Schrodinger equation can be
>imply integrated from one side of the device to the other. In
two dimensions the problem is more difficult.

Current-carrying states are composed of solutions in a
device region (the scattering region) and solutions that ex-
tend to infinity along the input and output leads. Because of
the regularity of the potential in the leads, the form of the
solution is known in the lead regions. This can usuaily be
expressed as a sum of traveling and evanescent modes in the
leads. The complex amplitudes of each of these modes is
unknown, however. The ampitudes are a resuit of the prob-
lem’s solutions, commonly expressed in terms of transmis-
sion and reflection coefficients. Therefore, although the
asymptotic form of the solution may be known, the values of
the wave function and its derivative on a boundary region are
only known in terms of coefficients which are to be deter-
mined. Numerical solution requires knowledge of the wave
function or its derivative on some boundary region. In one
dimension, this boundary value problem can be treated as an
initial value problem using Numerov-type methods. In two
dimensions it cannot.

8353 J. Appl. Phys. 67 (10), 15 May 1980

0021-8979/80/106353-07503.00

We formulate the boundary conditions appropriate for
the numerical solution of the Schrodinger equation for cur-
rent-carrying states on a two-dimensional domain. We em-
ploy these boundary conditions in developing a numerical
solution algorithm based on the finite element method. We
call this the quantum transmitting boundary method
(QTBM). In Ref. 6, we formulated the technique for the
rather restricted case of two colinear leads with infinite
square-well cross sections and identical widths. Here we de-
velop the completely general formulation, capable of solving
the general problem of the transmission and reflection prop-
erties of a region with an arbitrary potential, including mul-
tiple muitimoded input leads of arbitrary cross section and
orientation. The QTBM yields not only the transmission and
reflection coefficients, but the full wave function in the de-
vice region.

Section II contains the formal statement of thc problem
and the development of the boundary conditions for each
lead. This section is quite general and does not depend on
any particular numerical technique. The numerical algo-
rithm is developed in Sec. I1I. Section III C contains a de-
scription of the basic features of the QTBM algorithm and a
comparison with other techniques. In Sec. IV we present a
few short examples of the application of the QTBM to some
interesting geometries for quantum structures. Section v
states our conclusions.

iI. FORMULATION OF THE BOUNDARY CONDITIONS
A. Problem statement

The region of interest is partitioned into a “device” re-
gion £, and several lead regions, {3;, Qy....04» which ex-
tend to infinity. We want to solve the two-dimensional effec-
tiveemass Schrédinger equation on 1=(,UQ,
uRQ,...UN,. The boundary of the region {}, we denote .
The boundary between a lead region, £2,, and the device re-
gion, 0, we call T',. This lead boundary can, without loss of
generality, be taken to be a straight line. The rest of the
boundary I", which is not a lead boundary, is denoted I (see
Fig. 1).

’ The problem we wish to solve can be stated as follows:

Given: The total energy E, the potential energy in each
region, ¥,(x,y), i = 0,1,2...,n, and the complex amplitudes
of each incoming mode in each lead,
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FIG. 1. The problem geometry.

Find:

YoeC *(Q),¢,€C*()),..., and ¥,€ C* (R, ),
such that

— (B/2m*) VY, (x,p) + V. (x.0) ¥, (x,)

= E¢,(xp), (xp)EQ,, (n
and

Yo=19y, on I, (2)

Vipite, = Vot on T, (3)

Yo=0 on roEaQO—ZF,, (4)

¥, =0o0on I'p=0Q,-T,, (5)

¥, bounded as yx% + y°— . (6)

We will develop a solution algorithm valid for any po-
tential ¥,(x, y) in the device region. The condition that ¢,
vanish on the boundary I", need not be restrictive in that the
boundary can always be placed far enough from the active
device region that the wave function has vanishingly small
amplitude on the boundary. The device region must, in this
sense, contain the wave function within (2, except along the
lead boundaries.

We require that the potential ¥, (x, y) in each lead be
independent of the distance along the lead. This is what we
mean by leads—channels that contain no longitudinal struc-
ture, although they may have a compiicated cross section. In
the next section we consider the form of the solutions in the
leads themseives. Our goal is to formulate a boundary condi-
tion on the lead boundaries I, that will allow us to specify
the incoming flux in each lead and solve the Schridinger
equation oniy in the device region .

B. Solution in the leads

By requiring the leads to be uniform along their lengths
we can separate the problem in the lead regions into coupled
one-dimensional problems. We define a local coordinate sys-
tem in each lead i,

(77,‘,51) = [ﬂi(x,J’).gl(ny)]. N

such that ), is parallel to the lead walls and points down the
lead in the direction away from 2, (see Fig. 2). Theé’ direc-
tion is perpendicular to ) and the boundary between 2, and
1, can be written

= {(ﬂlrgl)lgle(ovdl)’nl = 0}. (8)
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FIG. 2. Local coordinate system for lead i.

Here d, is the perpendicular width of the lead. The potential
in the lead is assumed to vary only across the lead:

Vi(n.,6:) = Vi(§,). (9
For the simple case of square-well leads, V;(£,) =0.

Because the potential in the leads is independent of 7,
the Schrodinger equation in the leads separates and we can
write the general solution in lead / as

N

6mb) = S Guim()e 4 bluxi (£ )

+ 3 bLyh(Eoe (10)

m=N' 41

where y., (£,) is the mth eigenstate of the one-dimensional
Schrédinger equation,
— (B/2m*) [, (E)/FEE) + V(£ xm (£)
=E,xm(£) (1
The al,’s are the coefficients of the incoming traveling-wave
states and are an input to the problem. V' is the number of
traveling-wave modes aliowed in lead i. The b ;,,’s in the first
sum are the coefficients of outgoing traveling-wave states.
The 6!,’s in the second sum are coefficients of evanescent
(exponentially decaying) states. The coefficients b, are

unknowns that must be caiculated as part of the problem
solution. We can choose the eigenstates y to be orthonormal:

J:' (X (6 )X (6)dE, = 61 (12)
For infinite square-well leads,

Y (&) = J2/d; sin] (mm/d)E,). (13)
The wave vector for the mth mode in the ith lead is given by

ki, =\J|2m*/#)(E-E)|. (14)

The number of traveling waves N ' is the maximum m such
that E>E',.

C. Boundary conditions at the lead interfaces

At the boundary between the device region and lead i we
require both continuity of the wave function and the normal
derivative [ Egs. (2) and (3) ]. The condition on the deriva-
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tive can be written

Vl/lo(l')'ftrl = V'ﬁ,-(l‘)';lrl on r,

d
— ¥ (1.,§,) : (15)
an, N =0

We calculate the normal derivative from the known form of
the wave function given by Eq. (10):

av,
an;

e

= Y =@ kw5 +iblk (£

n =4y m=1

kel
m=N"'+1

We can evaluate the 6, ’s by using the orthogonality of
the y’'satyp, =0:

KonbomXm (6, (16)

d,
b, =f Xm(§)¥:(n, =0,6)dE, —a,. (an
0
So
Y, X -
il = ki, yi (&)
377,~ n,=0 m2=| X (é-

o,
x((= 2+ [ neon =004
(4]

@

iy

mm N4+ |

X(J: Xm (§:)¥: (7, =0'§.-)d§,)- (18)
The derivative boundary condition then becomes

v'/’o(l')’;'r., =/ [gi'¢i(”i = 0'51)]
N

=Y ikLxm(£)

me |

K onXm(£)

x( -2, + J;d’xﬂ. ()% (n; =04, )d§:)

©

- 2

mm=N'+1

X(J: Xm(E i (7, =0v§l)d§1)' (19)

We can now employ Eq. (2), the continuity of the wave
function itself, and replace ¥, s on the right-hand side by y,'s
since they are evaluated only on the boundary. We then ob-
tain a boundary condition on ¥, and its normal derivative:
vd’o(r)""r,, =/ [gu'/’o("ll =04,) ]

ha

= Y ikxm(£)

m=|

d;
x(— e+ [ ot =088

- 2

mmN' &1

x(j: X ED Vo, = 0.5,)45,).

komXm(§))

kinXm(£)

(20)
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Equation (20) defines the functional f; and is the
boundary condition we require in order to formulate the
problem for the current-carrying states as a boundary-value
problem. Note that Eq. (20) relates the value of the wave
function’s normal derivative at a particular point to the val-
ues of the wave function at all the other points along the
boundary.

D. Weak variational form of the Schrédinger equation

In this section we develop the weak variational form’ of
the Schrédinger equation in a way suitable for numerical
discretization. Our goal is to discretize the wave function
only in the device region ,, and apply suitable boundary
conditions to match wave function and derivative to the so-
lution in the leads. We begin with the time-independent
Schrodinger equation for the wave function ¢, in the device
region:

— (72/2m*)V2o(x, y) + V(x, ¥)o(x, ¥) = Ev(x, y).
20

This is multiplied by an arbitrary test function ¥ and inte-
grated over {1,

ﬁz

2m*

f ,Zvlwodlr+f WV —E¢dr=0. (22)
o, aQ,

The test function is chosen so that it obeys the same essential
boundary conditions as does ¢, i.e., ¥ =0on [,
Using Green’s first identity we have,

f Vi dir= _J‘ v¢-v¢d2r+§ & (Vi )dl,
n Q T

(23)
so the Schrodinger equation becomes
7 7 2 7 2
— | VVYodir+ | ¢(V—E)pd’r
2m® Ja, .
# < .
= Y(V¢yh)dl. (24)
2m* Jr

The integration around the boundary I” must be performed
in a counterclockwise direction. Since ¢ is zero on [, the
right-hand side can be rewritten as an explicit sum over these
contact regions:

7 va-vwodzr+f $(V—E)od?r
2m* Jn, Q.
#

2m*

(25)

s [ #vweiar.

E. The reformulated problem

The original problem statement can now be cast in the
form of a weak variational statement with the boundary con-
ditions given by Eq. (20). The geometry is the same illustrat-
ed in Fig. 1.

Given: The energy E, the potential energy ¥(r), and the
set {a’,}, where each a., is the complex amplitude of the
incoming wave in the mth mode of the ith lead,
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Find: ¢,(r) for r € Q, such that

i V-J/'vwodzr'.‘f J(V—E)wod:r
2m* Jo, .
#? -
- ZL, U, [€.65]dT, (26)
where

s

Lil§otbel = Y ki xm(E)

m=

d,
X( —2a, + J- Yom (&) Wo(7m;, = 0,8, )dgi)
o

0

>

m=N'+1

d,
XU Xm(ED Yol = 0’§i)d§i> , (27)
o

and ¥ is an arbitrary test function which is zero on [,

Ko Xm (€D

I1l. NUMERICAL SOLUTION
A. Finite element discretization

The discretization is on a mesh with m nodal points,
rfy....T . Associated with each nodal point, r,, is a global
shape function ¢, (r) which has the property that

¢i(rj) =5i.j' (28)

The wave function can be approximately expanded in the
basis of these shape functions,

Yo(x) = z Y(r)é,(r) = 2 u;$,(r) (29)
or

Yo(x) = N(r)-u, (30)
where N(r) is the (1 X m) matrix of global shape functions,

N(r) = [¢,(r),4,(r),85(r),....4,. (1) ], 3D

and u is the (m X 1) matrix of the (unknown) nodal values

of ¢. Similarly, we can approximate the gradient of the wave

function by an expansion on this basis set,

()
ax
Vipo(r) = = B(r)-u, 32
'ﬁo r % ( )
dy
where

7

i ma |

N
m e
=
- X
mmN' 41
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ax¢l(r)ax¢l(r) " 'a;¢m (l'))
(33)

By = (ayas.(r)am(r)---a_r¢m<r>
is the (2 X m) matrix of derivatives of the global shape func-
thﬂS\-Ne can make similar approximate expansions for the
test function ¥:

d=a""N7 (34)

V¢ =a"-B’, (35)
where i is the vector of nodal values of .

Inserting these approximate expansions into the Schro-
dinger equation yields,

ﬁr( Eﬁ%B"(r)B(r)dzr)u+iir
a, 2m

X(J‘ [V(r) — E]N"(r)N(r)dlr)u
a,

#

=3 (L OVA ¢f<o,§.>ldfl-)- (36)

For the moment we leave the right-hand side in an un-
discretized form. We define the (m X m) matrices K, T, and
V as follows:

2
Tsf A BBy, (37)
a, 2m*

st [V(r) — EINT(r)N(r)d*r. (38)
.,

The (partially) discretized Schrodinger equation is then,

zﬁ- by (L B [690(0 )]dl“i) ,

(39)

The discretization of the right-hand-side boundary term
proceeds as follows.

Let u, be the projection of u onto I',. Let the length of u,
be M, the number of nodal points on the boundary (see Fig.
3). Let N, (£,) be the (1 X M,) matrix of global shape func-
tions, such that

i(T+Viu=

Yo(rel’;) = ¢o(n, = 0.,) = N, (§,)u,. (40)
Further, definea (1 X M,) matrix N, ,, by
Nim Er'xf..(é’f)N,- (§,)d8,. (41)
(1]

The boundary term then can be written,

iy} ﬁz o N (] i ‘ i
Zyr Z( . ¢(r)ﬁ(r.u)dl",) =g z a’| Y —2ia,k,, J: N7 (&) i () dE,
+ 3 ik 'M(J: NI €045 ) f N € €0dE ) v
] (4]

k:,.(f’ ,’(54)Xf..(f:)dé’,)(J:‘N,(E,)xf..(5,-)d§,)u,]. (42)
o
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FIG. 3. Discretization of the interior region in the neighborhood of lead :.

Now using the definition of N, ., we obtain,

Zit > (f -Z(r)ﬁ(r,u)dr,)
i r,

ﬁz

=—S i

2m* <

A .
:<[ > - 2.k, N/, +( i ik NI N,_,,,)u,

m = |

m=1

—( z k‘,,,N,T,,,N,_,,,)u,] . (43)
m=N'+1
Define a vector P, and matrix C, as
=_ 7 & s
P= —EF".; 2a, k' NI (44)
and
N 'r
C=-— o mz=.| ik, N/.N, .,
2 ks -
+ k!Nl N,,.
2m* =§’ w1 R )
The boundary term can then be written as
Z a’(P, - Cu,). (46)

This can be further simplified if we define the embedded
matrices C and P by

S @Cu, =i'Cu (47)
and

S P, =’ P. (48)
The discretized Schrodinger equation then becomes

@(T+Viu=i"P -’ Cu (49)
or

i(T+V+Cu=a"P. (50)
Since il is arbitrary, this reduces to simply

(T+V+Cu=P. (51)

This is simply a set of m algebraic equations for the m un-
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known nodal values of ¢ in terms of the known quantities T,
V.C, and P.

8. Aigorithm summary

We summarize the numerical solution algorithm as fol-
lows.

(i) Discretize the device region ), on a mesh r,
i = 1,2,...,m. The potential energy ¥(x, y) shouid be known
at least on these nodal points.

(i) Choose a set of basis functions, &, (x. y)]. which
obey Eq. (28).

(iii) Construct the (m X m) matrix T using Eq. (37) or
T

1,

2
= fn‘f [8.8,(r)d.8,(r) — 3,8,(r)3,,(r)d .
o,
(52)

(iv) Construct the (m X m) matrix V using Eq. (38) or

2

Vv, =j (V(r) — E 16,()8, (1)d *r. (53)
Qo

(v) For each lead /, calculate the transverse eigenfunc-
tions y., (£,). Using the basis functions associated with M,
nodal points on the lead boundary I',, calculate the vector
N, .. using Eq. (41).

(vi) Using N, ,,,, the given values of the a.,,’s, and k ., s
from Eq. (14) calculate the M,-by-M, matrix C. and the
vector P; for each lead using Egs. (45) and (44). Embed
these into the (m X m) matrix C and the vector P (this is
usually done automatically in the assembly process).

(vii) Solve the system of linear equations

(T+V+Clu=P (54)
for the unknown nodal values of the wave function
U ='/’o(rj)- (55)

BecauseT + V + Cisa sparse banded matrix, it is not neces-
sary to store the entire (m X m) complex array. We have
used both band-storage and profile-storage schemes. Solu-
tion routines are also available which take advantage of the
sparse character of the matrix.’

(viii)) From the calculated wave function, compute
transmission coefficients, currents, or other quantities of in-
terest.

Equation (45) contains an infinite sum over all possible
evanescent modes. In practice this sum must be truncated to
a value less than half the number of nodal points on the lead
boundary. Usually a much smaller number of modes is suffi-
cient for convergence. No general rule applies, however, be-
cause the number of evanescent modes excited depends on
the details of ¥(x, y) in the device region. If ¥ varies rapidly,
more evanescent modes need to be included in the sum.

C. Features of the algorithm

The principle features of the QTBM are as follows:

(i) The current-carrying states are solved for directly,
yielding the wave function over the entire problem domain.
Any other physical quantities of interest, ¢.g., the electron
density, current distribution, or transmission coefficients,
can then be extracted from the knowledge of the wave func-
tion. In particular, because the electron density is immedi-
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ately available, extension of the method to include Poisson
self-consistency should be straightforward.

(i) Solution times are independent of the shape of
V(x.y) in the device region. Other than tabulating the val-
ues of the potential at nodal points, no additional computa-
tions are required to handle an arbitrary V(x.y) than to
handle a flat potential.

(iii) Multiple input and output leads are included nat-
urally. Leads can have any size and extend away from the
device region in any direction. Nonsquare-well leads are also
handled simply.

(iv) For a device region with N, nodal points. the algo-
rithm requires the solution of one 2.V, X 2N, sysiem of linear
equations for the 2V, unknown nodal values of the real and
imaginary parts of the wave function.

(v) The algorithm is easy to implement using standard
finite element programs. The current-carrying boundaries
can be included as simply another element type. The new
element subroutine associated with a boundary element
computes C and P. The normal assembly process then per-
forms the embedding of these into Cand P.

Presently, the most popular way of dealing with cur-
rent-carrying states is to solve the Dyson equation on a tight-
binding lattice for the real-space Green function.! This
method is easiest to employ if the soiution domains are very
regular and the exact Green function is known in each of
several connected regions. It is considerably more costly for
arbitrary shapes and potentials. More important, it does not
yield the wave function itself in the device region. The con-
siderable physical insight which can be gained by having the
full function is lost. Because of this, it may prove difficult to
develop self-consistent solutions of the Schrodinger and
Poisson equations. It should be noted that the Green func-
tion’s may have an advantage in extending the current meth-
ods to include dissipation, techniques based on the Schré-
dinger equation will probably never be able to accomplish.

Recently Frohne, McLennan, and Datta developed a
solution algorithm based on the boundary element method.®
Like the QTBM. this method is based on the real-space
Schrodinger equation and yields the full wave function over
the entire device domain. Its most important limitation is
that it requires that the full set of eigenfunctions be known
for a region which includes the device region, but may be
larger and have more regular boundaries. It is particularly
iil-equipped to handle vanations of the potential within the
device region, i.e., situations with ¥(x, y) #0over the device
region because exact eigenfunctions are then difficult to ob-
tain at the outset.

V. EXAMPLES

We present two exampies of the QTBM applied to fairly
simple two-dimensional geometries. The first is a resonant
cavity in a quantum waveguide. The geometry is illustrated
in Fig. 4(b). For simplicity we assume here that the poten-
tial is zero inside the leads and in the interior of the cavity.
Qutside the leads and cavity the potential is taken to be infi-
nite. The cavity has width W and length (in the direction of
current flow) L. The width of both leads is d. The wave
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FIG. 4. Transmission through a rectangular cavity in a quantum wave-
guide. The real part of a typical wavefunction in a region with high trans-
mission isshown in (a) The scattering geometry is shown in (b) which also
illustrates the region (dark) over which the wave function is calculated.
The transmission coefficient as a function of energy for the case of current
incident in the lowest mode of the waveguide is shown in (¢). The energy ts
normalized to E,. the minimum energy for traveling waves to exist in the
leads.

function for a state with an incident wave coming from the
left, in the lowest mode of the waveguide, is solved for over
the region of the cavity (the device region in this case) for
various values of the energy £. In this example we take L /
d = 1and W/d = 2. Figure 4(a) shows a typical wave func-
tion obtained from the QTBM calculation. The transmission
coefficient as a function of energy is shown in Fig. 5(c). The
energy scale is normalized to E,, the lowest transverse exci-
tation of the waveguide. For energies lower the E,, only
evanescent states can occur in the channel. The minima in
the transmission coefficient occur near the energies of bound
states of the cavity. Transmission maxima are also observed.
A discussion of the precise nature of these resonances will be
given elsewhere.’

As a second example we consider transmission through
a circular arc in a quantum waveguide. This problem is of
interest if true quantum-waveguide devices are to be con-
nected in more than a linear arrangement. The width of the
waveguide is d and the central radius of curvature is .

C. S. Lentand D. J. Kirkner 6358
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FIG. 5. A circular bend in a quantum channel. The geometry 1s shown tn
(a). The transmussion coefficient for current incident in the lowest mode of
the channel is displayed in (b) when r/d = 0.7. The transmission from the
first mode into the first three modes is plotted vs kd /wwhere k = y2mE /%,

Again, for simplicity the potential is assumed o be zero in-
side the waveguide and infinite outside. The a.: is a fuli
right-angle turn. The geometry of the waveguide is shown in
Fig. 5(a). Unless the r is quite small the transmission is es-
sentially unity for all values of the energy. However, the
incoming wave in the first mode may be trausmitted as a
combination of higher-order modes. This mode mixing is the
essential feature of such an arc. Figure 5(b) illustrates the
mode-to-mode transmussion coefficient 7", for i =1 (the
incoming mode) and several outgoing modes when r/
d = 0.7. This example illustrates the utility of the QTBM in
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nonrectilinear geometries. The elements used in this calcuia-
tion are not rectangular but are formed by generating a regu-
lar mesh in p and 6, the cylindrical coordinates natural for
this problem.

Both the resonant cavity and the circular arc problems
will be treated at greater length eisewhere.” Transmission
through a double cavity is discussed in Ref. 10. The exam-
ples here serve to illustrate the power of the QTBM ap-
proach. The circular arc geometry illustrates how easily
nonrectilinear boundaries can be handled. In each case, a
more compiicated interior potential can easily be added.

V. CONCLUSIONS

We have developed a new technique for calculating nu-
mericaily the solutions of the two-dimensional Schrodinger
equation for current-carrying states. The quantum transmit-
ting boundary method is based on our formuiation of the
boundary conditions appropriate for such states and an im-
plementation of the finite element method. The technique is
general enough to handle arbitrarily shaped device regions
with complicated internal potentials. No a priori assump-
tions about the solution in the device region are required.
Multiple contact leads with differing widths and various di-
rections are handled naturally by the technique. We have
demonstrated its utility in two cases of interest for quantum-
waveguide devices.
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ABSTRACT

The current-voltage characlenstics for a Consmcton in a quaniam waveguide channel are caicuisied. The constncuon forms an effective
barmier which can be employed as a wnneiing injectar. We find that such a structure may be useful in providing high-energy eiectrons in a
single mode of the waveguide. We also examine the current m the far-from-linear response regime. Away from the linear region the current
through the constnction saturates and the conductance falls to zero,

KEYWORDS
Hot camers; Electron waveguides: Two-dimensionai electron gas

INTRODUCTION

Improvements 1n epitaxial growth techniques have made possibic a large bumber of quantum devices which are one-dimensional in the sense
that carmiers are confined in anly one spatial dimension. Recent sdvances wn lithography have begun 1 produce stuctures which are quanuzed
In two and three spauial dimensions. Of particular interest are quantum waveguide devices in which camers are confined 10 narrow channels
which act analogously (0 microwave channels.

We invesugate the batlistic transport properues of a constnction in a two-dimensional elecoon waveguide channel which can be used as 8
hot-electron injector. Electrons are confined in a channel of width d which narows abrupdy 0 a width d, in the consmcuon usell. The
constricuon 1S a low conductivity region that forms an effective barrier between the contacts on exther skie. A voltage 1s applicd across the
constncuon resulung in ballistic injecaon of camers into the ouigong channel.

The behavior of the waveguide constrichon 13 consilered 1n two regimes. First. we examine a very smali geomewry for which only a few
transverse modes are accessibic. The constricuon acis like 8 potential barrier. We compare the transmission charactenisucs of such a structre
with a more convenuonal unnel barrier. The focus here 13 on the utility of such a strucwre as a singie-mode hot-eiectron injector. The
ability 10 inject electrons &t high energies in a single mode 1s an important first $wep 1n the development of a new class of quantum waveguiie
devices. The first wave of such devices includes the swb-wner transisiors proposed by Sols and coworkers (1989) and Daua (1989). We also
examine a larger geomexy tn which more tncoming modes are tmporiant. We find & surpnsing result for voitages beyond the hinear response
regime. The current through the conscuon saturales at a vaiue which is roughly linesrly dependent on the constncuon width. This current
SaWrauon resuits in 8 current-voitage characterisuc remarkably simiiar to an FET. We discuss device possibilities briefly.

The geometnes we examme are not directly anaiogous 1 the constnctions explored expernmentally by Van Wees and coworkers (1988)

T 1Y

a q, q
L= e |
» »

Fig. 1. The geometry of the quantum waveguide consTnCuon is shown
in 8). A waveguide with no consinction, but & potenual barrier 13
illustrased in b).
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Fig. 2. The energy band disgram for the constriction. a), and the
bamner, b), shown i Figure 1.

and theoreucally by others (Kirzcenow. 1989; Szafer and Swone. 1989). We connder a case i which the width of the constncaon 1 not
smailer than a tenth the width of the incoming ieads and both are assumed 10 be narrow in that only 3 few transverse modes are accessibie.
Funhermare. tn our geometry the CONSTICUON 18 rectanguisr and abrupt. This resembies rather more the expenmental geometry of Brown and
COWOTKers.

THEORY

The constnction geomerry 1 shown in Figure la. The incomng and outgoing leads are semi-infinite and the walls are assumed [0 be intnute
rammers. The z dwecuon 13 the direction of current flow and the waveguide is narrowed i the y directon. We suppose that quanuzation in
:he = direction, perpendicular to the plane of the figure, 13 compicts and that only one bound state 1 the z dwection 1s occupied. Note thag
.t the potential 1s inacpendent of =, the index of the bound state 1n the Z direction 18 a conserved quanmum number and cur analysis would
be cofrect 1or each bound state separately. A geometry such as that in Figure 1s can be reaized by creaung a high-mobiisty two-dimensionai
clectron gas (2DEG) at a heterojunction inleriace. We envision the confining polenuais on the lead walls and the constncuoft onginaung
clecurostaucally from metal layers above the hetero' .actuon (Sols, 1989; Data, 1989).

Figure 2a shows an energy band diagram for the constncuon. A conduction band edge 1S shown as a reference level and (o indicate the
varnation in the elecuostauc poienual across the constricion. The confinement 1 the y direcuon rases the mimmum energy of any elecaon
above s level 1o £, the energy of the first transverse mode. The Fermi energies. as measured (rom the conduction band edge, are assumed
10 be equal 1n the left and nght leads. The value of the Ferms energy 13 deterrined by the density 1n the leads. We assume ail the applied
vollage appears as a potenual drop across the lower conductance constncton. This assumpuon must be checked for consistency with the tinal
cesults. Note that uniike the USUAL ONE-AUTENSIONAL heterostruciure barners. the COMact regions here are highly conducung 2DEG's. Therefore,
very hittle band bending 1n the contacts 1§ expecied. The potenual is further assumed 10 vary lineasty 1n the consincuon region. An improved
analysis would include the effect of the injecied charge density, both in the constncuon and in the CONtaCts.

The waveiuncuon tor an incoming wave (0 the contact can be writen,

vak(Z.y) = Ae™*Fsininry/d). )
The toal energy 1 given by ,
A nr
L PP LA
Eln.ky) = 5= [2 4 (57

and the minimum energy of each transverse mode 13 the infinite square well resuit,
E, =2 (z)"
2m* \ d

Figure 2a shows the energies of each mods in the contacts and in the consenction. The first mode in the constnction 1s higher than the first
mode in the left contact, creating an effective bamer. The effective bamner differs from a real potennal barner m that it blocks highcr modes
from propsgating more than lower modes. Aithough loosely speaking the barmer can be saxd 10 be higher for higher modes. &t is not possible,
1n general, o define a singie numbder which is an effective barrier height for & particular mode. Because mode number 1$ not 3 conserved
guanaty, a ugher mode in the lead can coupie 10 & lower mode in the consmriction. [a Figure 2, for exampie, the eiectrons in the third mode
in the lead cannot traved o the third mode @ the constnction but can coupls 10 the first constncted mode. The differences m energy for modes
in the two regions cannot alone account for the differences in the conmbutions of each mode W conduction. The ransrussion coefficients,
which couple modes together must be included. For convemence we can defins the effective barmier height for the first mode (which cannot
coupie t0 any lower modes) as simply the difference between the rst mode energy in the constnction and in the incoming lead. Note that
because (he sguctire 15 Symmewic, panty is 4 good quantum number, and even modes cannot coupie 10 0dd modes.

The curent 13 calculatod at each value of the voltage by a modified Esaki farmuia (Datta, 1989).
2
1V) = (3) [U(E = Er = eV) = J(E = Er)| LT (E.VME 2)
w
The wransmussion coetficient T | is the rauo of the outgoung curront i mOds 7 10 the INCOMING CrTent in MOds 3 (Duke. 1969). This formuls

reduces «© the Buctiker-Landsser formuia (for 8 review ses Sions and Szafer, 1988) if the difference in the Perm functons is expanded 0 Arst
order 1 ¢V and evalumeed st 2er0 mparsame. The uee of equation (2) cxmnds the Weatrment of Szafer and Swone (1989) beyond the linsar
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Fig. 3. The current-votage relanonship for a 200 A
channel with a 60 A consmcuon. The (ol cusrent
and the components injected Into e tirst and third
mode are shown.

Fig. 4. The cumrent-voliage relauonstup for a 200 A
channel with a 200 meV bamer. The total current
and the components njected 1o the Lirst and second
mode are shown.

response regime. For each value of the appiied voltage, the mansmission coefficients are calculated by soiving the effecuve-mass Schrodinger
<guauon tn the region of the constcuon. We use a Finite Element discretnzauon scheme. The probiem of inciuding current-carrving bounaanes
15 reated by the Quantum Transmiwng Boundary techmque (Kirkner, Lent. and Sivaprakasam, 1989).

SINGLE-MODE WAVEGUIDE INJECTOR

The 1dea of using the waveguwide coNSNCUON as a singic-mode N)ector 13 1o expioit two (eatures ot the consincted region. First. the efecuve
barner tormed by the constncion can be empioyed as a tunneiing berner and used to 1nject hot electrons nto the outgong lead. Secona.
because 1t blocks fugher modes. the constncuon acts as a mode filter. Together the effect is 0 enhance singie-mode injecuon.

We choose a geometry with d./d = 3/10 and and L/d = 1/4. The Ferma energy Er = E,. the energy of the second mode 1n the wide
coniact leads. Only the first Two incoming modes are appreciably occupied. The temperamre 13 taken t0 be 77 K and we use an eifecuve
mass m* = ).05mq. f we ake d = 200 A, then the the effective first-mode bamer height for ths constnction s 200 meV. The current
1s calculated as a tuncuon of voitage using Equauon (2). The resuits are shown n Figure 3. The (otal current 1s ploued. as well as the
components of the current in modes 1 and 3 1n the outgoing lead. Higher modes cannot propagase at these energies. Mode 2 cannat propagate
in the constncuon and 1s totally reflected. There 1 no component of mode 2 in the outgoing lead because mode L in the consancuon can only
coupie 10 symmemncal modes in the leads.

For companson we caiculaie the current-voltage relauon for a square potential bamer in 3 200 A channel with the same hesght (200 mev)
as the effecuve bamer of the constncuon. The geomexry 13 shown 1n Figure 1b and an energy level diagram for this real bamer 1s shown in
Figure 2b. For the real bamer mode number ts conserved-so the-current can be broken into components in mode | and mode 2, which are
the same m ail regions.

Companng Figures 3 and 4. several observauons can be made. The current 1s higher 1n magnatude (or the real bamer. This is parualiy because
the mode 2 component m the incomng lead is compiesely refiected by the constncuon. in addition, the fracuon of the current through he
constncuon 18 limued by sumply the geometncal factor of the rano of the channel widths, Roughly speaking, that fracuon of the incomng
wave that hits the ifimte bamery on either side of the entance 10 the constnction is compieely reflected. On the other hand, because
the constncuon effectively blocks the second made £rom propagating. the tranesuaed cusront 13 nearly compietely singie-moded below 100
mV. After that. there 13 a growing sdmuxture of the third mode. For some device applications. the abudity 0 mnject essennaily single-moded
elecrons. with a high energy (100 meV), may be worth the somewhat lower current output.

INJECTED CURRENT SATURATION

For strucuures of the s1z¢ discussed above. the current is 8 rapudly increasing function of voltage st ail reasonabie values of the appited voltage.
righes values would tend (0 transfer electrons IO other valieys m the underiying bandstructure. if we scaie up e size, however, we can
observe the (ar-from linear response regime 2t accessible voltages.

Figure § shows the cusrent-voluage charactensuc for a constnction with d./d = 0.3 and L /d = 0.25. The towl cusrent 1s shown broken
down 1o the components due (0 each incommng mode. The Ferms level for tis case 13 chosen 10 be 33 £, (where £ 15 whe first mode
the contact channels). Five incoming modes are occuped, although the contnbution 10 the current of the fifth mode 13 very smail. The current
13 nearly linear with voliage for small voltages, rolls off in a wanntion region, and SaMraes © a constant value. As the figure shows, each
mode saturatss at & sugitly different voltage. Saturation occurs (or the most inportant modes at about the pount where the apphed voitage
resches Eg/e.

To undersand thig behavior, congider first the current. a3 given by Equation (2), for smail voitages (less than E'r/e). The voluge dependence
occurs i both the transmussion coefficients and in the difference of Fermi factors. There are some oscillations in the Tansmission coefficients.
but thess 1end (0 be smesred out by the sum over all the modes. The dominant voltage depeadence is from the differencs i Fermi factors.
This difference 13 Jinear 1 the voltage 10 first order (the |inear respomss resuit), and the resuiting linear behavior 13 seen 1n the current-volage
characiensucs shown m Figure S,

When the powential drop acToss the channsi is grosesr tham the Fermu voltags the currem from the right lead back 10 the left becomes
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Fig. 5. The current-voiage characteristic for a 30% Fig. 6. Transmission coefficients for the first incom-
consgriction (d./d = 0.3). The wtai current and ing mode at vanous values of applied voltage.
the comnbution of the first four incoming modes is

shown,

insignificant. Considering Equation (2), this means thal the second Fermi factor n the wiegrand becomes negligible. The integral then
exiends from the conduction band edge in the left lead up to several kgT's above the Fermi energy 1n the left lead. The Ferm factor term
looses any dependence on the voltage and only the voltage dependence of the Tansmussion coefficients remain. The transmussion coetticients
are wncreasing as e effective bamer is bent down lower and lower. Because the effective bamer 1s smail, and now thin, the ransmission
coefficients saturate. The transmussion coefficients for the first incoming mode, T ¢ are shown as a function of energy in Figure 6 for four
values of applicd voltage. For eV = Er/e the ansmussion is still changmg with apphed voitage, albeit weakly. For voiages of 2. 3.
and 4 umes the Fermi voitage, the transmussion coefficients are nearly identical funcuions of energy. They saturate, for this first mode, & a
value of abous one half. This value 15 roughly the fraction of the incoming flux that “hits” the constcuon wnsiead of the walls on euther side.
Higher modes saturate at different values. It is this ssurstnon of the ransmission aftes the Fermi funcuon term becomes voliage wdependent
that is behind the curtent saturaion.

mm—wmmmdvammmﬁmlmmc\mtmumvlmv;mu\
the consmction width. We also show in Figure 8 the result for d./d = 1, no constriction & ail. This curve is only physically valid st
smail values of the potential but it does serve as an importans check on the validity of our initial assumpuons. At a value of the current
wgmmmmumm.mmmnmamwmuwwunmmngm. Consider
the 30% consinction. At the saturanou current of the constriction. sbout 3 1A, the voltage across the leads would be about Ve /5. This is
only 5 ~ 10% of the apped voitage scross the cONSYICHON in the saturation refume. Within these limits, we are jusufied in assuming that
the applied voltage appears across the constrction. Note that we are careful not 0 implicitly invoke Ohm's law here. but use the calculated
I{V') funcrions.

The low-voliage conductance of the unconstricted channel should correspond 10 the linear response resuit. Conductances are shown in Figure
9 for the vanous values of the consmcuion. The conductance of the unconstricted channel, in which S modes can propagaung. 1 5 umes the
fundamental conductance, 2¢3/ h, confirming the agreement with lincar response theory for small voluges.

At very low temperature, the injected current actually diminishes after a saturanon peak. Figure 10 shows a region of negauve differentni
resistance which occurs in the low temperauwe case. Here we take d = 1400 A.d. =280 A. L =350 A.and E¢ = 10 meV. This
ngnelqmmauvelymmmMmmmodelymnmemuo(Bmwmwwm.

The family of curves shown in Figure 7 nlwmmwewmdmhncawudmbeymdnmofnhot-elecmm;ecu.

eV/E,

Fig. 7. The cureni-vollage charactenistic for vanous
size constrcuons.
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Fig. 8. The currem-voltage characiensiic for a chan-
nel with nO CONSEICLION is shown for companson with

Figure 6.




A two-dimensional hot carner injector

114}

5 0.3
ab 1 J / ~———
- 02} d./d=02 A
&
¥ 2 05 04 - 3-
g 4 {02 0.1 8
1L RN 4
o5 33 5 1.5 X —r 10 T3 70
eV/E,s eV/E,

Fig. 9. The conductance as a funcuon of applied
voltage for a channel and vanous constncuons. The
value of d./d is shown for each curve. There are
five propagaung modes m the incoming wavegwde.

Fig. 10. The current-voltage charactensuc for a nar-
row channel at very low temperature (77 = 100 mK).

It 15 possible to construct a gcometry 1n which a gate voltage vanes the width of the channei in a manner sumiiar 10 the wning stub in the
quantum the stub-tuner transistor (Sols, 1989: Datta 1989). It wouid then be possible 10 gate the samuration current with a third ermmal.

We note finaily that the transmatted currents mvoived here in the saturstion regime are quue large. it is likely that the limits of strict vatidity
of Equation (2) are being exceeded. In particular, the derivation of this equation assumes that the transmutted and reflected currents do
not aiter occupauon staustics or the Fermi levels in the leads. In the saturanon region, a large fraction of clectrons which impinge on the
consthcuion from the left are transmitied (0 the right 30 this assumpuon undoubtedly needs comrecting. The very recent work of Bandara and
Coon (Bandara and Coon, 1989) proposes just such a correction for the three-dimensional electron gas case.

CONCLUSIONS

We have examned (he current-voltage relationship for a CoNstniction in a quantum waveguide. We find that for small geometries the constncton
may have advaniages over baImier siructures as a singie-mode hot-electron mjecior 10 be used 1n conjuncuon with other wave-guide devices.
We also exanuned the far-from-linear response regime for larger scructures and find a surpnsing, and possibly useful current saturauon effect.
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I. INTRODUCTION

Current fabrication technology permits the construction of ultra-small semi-
conductor structures in one dimension, usually the direction of crystal growth. This
capability has spawned a wealth of experiments and theory describing transport
in the ballistic regime. This development has been aided greatly by the fact that
ballistic transport can be understood, qualitatively at least, by simply solving the
one-particle Schrédinger equation. The one-dimensional form of the Schrddinger
equation is fairly easily solved so that transmission coefficients and currents can
be calculated.

Fabrication technology is becoming increasingly sophisticated and is now be-
ginning to create structures quantized in two and three spatial dimensions. The
leap to two dimensions makes the solution of the Schridinger equation consider-
ably more challenging. Analytic textbook solutions become inadequate for guiding
intuition and design. Unbound states which carry current require particularly care-
ful analysis in two dimensions. It is important in improving our understanding of
ballistic transport in two-dimensional electron wave-guide devices that sufficiently
powerful and flexible numerical methods be developed.

We have used the Finite Element Method (FEM) to solve the single-particle
Schridinger equation for two-dimensional potentials. While calculations of bound
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state wavefunctions have been done previously (3], this represents the first method
to yield wavefunctions for states which carry current. We present solutions for
the transmission coefficients of double-cavity electron wave-guide structures. The
FEM provides a very flexible, elegant way of handling boundary conditions for
very complex structures. Ultimately self-consistent solutions, at least in the Hartree
approximation, are required. The method presented here lends itself well to such
an extension because it yields the wavefunctions directly. As demonstrated in the
double-barrier resonant tunncling problem, single-particle solutions can neverthe-
less reveal most of the important transport features.

II. THEORY

There are several ways in which two-dimensional electron waveguide struc-
tures might be fabricated. A metal pauern dcposited on an AlGaAs-GaAs het-
crojunction can be used to crcate channels in the two-dimensional electron gas
formed at the heterojunction interface. This technique has bcen used by Bernstein
and Ferry in making very fine grid structures on a FET gate (1]. The technique
might be refined by using a quantum well instead of the heterojunction potential to
confine carriers in the plane. Another technique which may prove useful involves
etching and regrowth of lithographically defined pattems in quantum well layers.
We do not concern oursclves here with the exact method used, but look instead
for the basic transport fcatures such structures would exhibit.

We consider a system in which electrons arc confined in the xy-plane by
some potential which is such that only the ground state z-cigenfunction is ever
occupied. The potential in the zy-plane, defined by some lithographic means,
1s assumed to take the form of rectangular waveguides which act as input and
output lcads, connected o a device region. The gecometry for the double-cavity
structurc is shown in Figure 1. In this case the device rcgion is simply the two
rcctangular cavities and the short channel which connects them. For simplicity
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Figure 1. Geometry for the double resonant cavity. The two cavities arc here
assumed to have the same width D and length L,.
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IFigure 2: The transmission coefficient versus energy for the doublc cavity shown
in Figurc 1 with d = 100 Angswoms, L, = 100 Angstroms, L, = 50
Angstroms, and various values of D.

we assume the rectangular waveguides of width d have infinite potential walls so
the wavefunctions in the leads consist of plane waves in the z-direction and sine
functons in the y-direction. We assume an incoming planc wave from the left,
which produces a reflected wave and a transmitted plane wave. The wavetunction
in the left (z < 0) comact is then,

w”(r.y) = A,e*%sin (m;ry) (1)
N 0
— . nry k . nwy
e in (B ¢ ein (22
+n=l " o d +n=N+l e o d

In the right contact the wavefunction is

N 20
op - [NTY —knr - [MTY
'/)R(J..y) = Z anezknrszn (T) + z an€ fnZfoin <—) )

n=1
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Figure 3: The real part of the wavefunction for an encrgy of 0.23 eV, for
the double cavity problem. The geometry is the same as for Figure 2 with

= 200A.

where

- 12~ 5o ()1

The incoming wave has amplitude A,, and represents an excitation of the m-th
transversec mode of the input waveguide. /V is the number of traveling modes
possible in thc waveguide leads. The modes with n > /V are evanescent modes
with complex wavenumber and carry no current.

We solve the two-dimensional effective-mass Schrdinger equation in the de-
vice region using the Finite Element Method (FEM). The detils of the method
are presented elscwhere {4]. The FEM enables us to straightforwardly include the
condition that the wavefunction and its normal derivative match the analytical form
of equations (1) and (2) as an additional set of constraint equations. The region
is discretized into small elements on which the wavefunction is approximated by
bilinear shape functions. This discretization yields a set of algebraic equations
for the values of the wavefunction at the nodal points. For simplicity we assume
infinite potential barriers at boundary walls. The boundary conditions are the that
the wavefunction be zero on the cavity walls and that the wavefunction and its
first dcrivative match those for the analytical cxpressions given in equations (1)
and (2) above at the interface between the leads and the device region. The in-
coming and outgoing current are calculated directly from the wavefunction and
the transmission coefficient is obtained from their ratio.

III. RESULTS

The transmission coefficicnt as a function of energy is shown for the double-
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Figure 4: The real pant of the wavefunction for an energy of 0.27 eV, for
the zouble cavity problem. The geometry is the same as for Figure 2 with
s = 200A.

cavity structure in Figure 2. It has been calculated for several values of [, the
cavity width. The input and output channels are 100 A wide and each cavity
is 100 A in length with a 50 A long channel connecting them. The FEM

discretization is accomplished on square 5 A elements. Results were sufficiently
converged at this mesh size that further refinements had no significant effect on
the results.

The two main minima, at energies slightly above (0.2 eV and (.4 eV, are due to
excitations of bound states of a single cavity. The real part of the wavefunction near
such a minimum is shown in Figure 3. The plateau regions of high transmission
between these minima owe their shape to the coupling between the two cavities.
The maxima at the high-energy and low-energy ends of these plateaus are due to
states which excite both wells. A sample wavefunction is shown in Figure 4.

It is interesting (0 note that the shape of the transmission coefficient vs. energy
curves is quite different for cavity structures than for constrictions. In a constricted
geometry, one observes sharp peaks, corresponding to the modes allowed in the
narrow region, and broad valleys. In the cavity resonance case examined here, the
transmission dips sharply at resonances and is generally high between them.

The energy dependence of the transmission coefficients shown in Figure
2 suggests possible applications of such cavities in waveguide devices. For
some implementations of lithographically defined structures, such as the metal-
on-heterojunction technique, the cavity dimensions can be changed dynamically
by applying voltages to the metal overlayers and shrinking or enlarging depleted
regions, This effectively would sweep the transmission characteristic through a
family of curves such as those shown in the figure. This presents the possibility
of transistor action in such devices {2]. In addition, as the cavity width increases,

283




a large region of negative differential resistance occurs as the high-transmission
platcaus slope downward. This region, while not especially steep, has the advan-
tages of being broad and tunable (through changes in D).
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We present a fully quantum-mechanical analysis of phase-coherent electron transport in
disordered semiconductor nanostructures. The analysis is based on a scattering matrix formalism
which allows us to simulate the effects of interface roughness scattering, as well as scattering from
point defects and defect clusters. Using this technique, we have studied quantum conduction in
electrostatic Aharonov-Bohm interferometers and narrow ballistic constrictions of submicron

dimensions.

I. INTRODUCTION

Recent advances in nanolithography have made it possible
to fabricate ‘‘mesoscopic structures” with dimensions
smaller than the phase-breaking length of electrons at cryo-
genic temperatures.' In these structures, many novel quan-
tum interference effects have been observed:; they include the
Aharonov-Bohm effect,” universal conductance fluctu-
ations,’ nonlocal voltage fluctuations,* quantized conduc-
tance of narrow ballistic constrictions,” and *stub-tuning”
in electron waveguides.® In all of these effects, the quantum-
mechanical wave nature of electrons plays a critical role so
that the analysis of these phenomena require a full quantum-
mechanical description of electron transport.

In this paper, we have used a fully quantum-mechanical
formalism—termed the “generalized scattering matrix ap-
proach”—to study electron transport in electrostatic Ahar-
onov-Bohm interferometers and narrow ballistic constric-
tions. The generalized scattering matrix approach was
discussed by us earlier.” It has been shown to be highly suc-
cessful in reproducing several results of the theory of weak
and strong localization, as well as universal conductance
fluctuations.® The advantages of this technique are that un-
like in the case of most other techniques, it is easy to inciude
the effect of evanescent states in the analysis. These states
have a significant influence on transport if the structure un-
der study is severely disordered.”® Moreover, the scattering
matrix method is ideal for treating quantum conduction
through semiconductor nanostructures that have large-scale
disorder™® and offer an alternative approach to the more
widely used Green’s function and transfer matrix techniques
to study mesoscopic systems. \°

The organization of this paper is as follows. In Sec. II we
describe the theoretical formalism. We then present results
from our study of electrostatic Aharonov-Bohm interfer-
ometers and ballistic constrictions in Sec. II1. Finally, Sect.
IV contains concluding remarks.

1399 J. Vac. 8cl. Technol. B 8 (8), Nav/Dec 1990  0734-21 1X/90/081399-058$01.00

Il. THEORETICAL FORMALISM

In analyzing quantum conduction through a semiconduc-
tor nanostructure, we are essentially interested in the current
response of the structure to a vanishingly small bias. In other
words, we are interested in the linear response conductance
which is given by the finite-temperature multichannel Lan-
dauer formula

AR

G_zhkadEz.»:E,-:lt”l e\ P
where ¢, is the transmission amplitude for an electron inci-
dent from the left contact in mode / and exiting at the right
contact in mode j, M is the total number of occupied modes
in the contacts, E is the energy of the electron, and £ is the
Fermi energy.

The easiest way to evaluate the transmission amplitudesz,,
is to obtain them directly from the scattering matrix that
describes the entire structure, including the contacts. The
scattering matrix relates the amplitudes of all incoming elec-
tron waves to those of the outgoing electron waves. One can
construct the overall scattering matrix for any arbitrary
structure by cascading three scattering matrices—the first
describing infusion of electrons from the left contact, the
second describing propagation through the structure, and
the third describing exit into the right contact. The elements
of the first and the last scattering matrices that describe the
entry and exit can be found by matching the electronic wave
function and its first derivative along the boundaries
between the structure and the contacts. For the case of nar-
row ballistic constrictions, we have calculated these two ma-
trices exactly by using the so-called boundary element meth-
od described in Ref. 11. For the case of an Aharonov-Bohm
interferometer (which is a doubly connected structure), the
calculation of these matrices is somewhat complicated.
Therefore, for the sake of simplicity, we have replaced them
by the so-called Shapiro matrix'? which has been widely
used to describe a three-way splitter. The Shapiro matrix
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relates the amplitudes of the incoming and outgoing waves
according to (see Fig. 1)

A~ —(a+b) e e\ [A~
B |= VE* a b B |, (2)
B vE* b* a4 By

where A4 and B are column vectors whose elements are the
amplitudes of the incoming and outgoing waves in various
modes as shown in Fig. 1. The superscript ** + " refers to
waves traveling to the right and ** — " refers to waves travel-
ing to the left. The superscript * denotes Hermitean conju-
gate. If there are M occupied modes in the contacts, then
each element of the Shapiro matrix isa M X M compiex ma-
trix.

Because of the unitarity of the Shapiro matrix, the follow-
ing relations hold:

a={(l-2~-1), (3)
b=i(J1 =2+ 1). (4)

The Shapiro matrix therefore has only one free parameter
for every mode. namely the parameter €. This parameter is a
measure of the transmittivity ot the mode from a contact into
the structure. or from the structure into a contact. In other
words, the higher the value of € (its maximum value is 0.5},
the more is the transmission coefficient for the mode.

.- The scattering matrix that describes propagation through
the structure is constructed as follows.” The structure to be
simulated is first broken up into a number of sections along
its length such that each section either contains one elastic
scatterer or is a region of ballistic propagation between two
adjacent scatterers. For each such section, a scattering ma-
trix can be calculated analytically. In the case of a point
scatterer, we assume the scattering potential to be a delta
function which approximates a heavily screened Coulomb
potential for an ionized impurity. The prescription for con-
structing the scattering matrix for a delta potential has been
given in Ref. 8.

FiG. 1. (a) The incoming and
outgoing waves at the junction
between a contact and a doubly
connected structure such as an
Aharonov-Bohm interferome-
ter. (b) A possible realization of
an Aharonov-Bohm interferom-
eter utilizing a GaAs-AlGaAs
split quantum well. (c) A ballis-
tic constnction and the bulk con-
(b) duction-band-edge profile £,
along the length of the constric-

_I__——r—_ tion. The built-in potential is de-
couvacry Cosmrissien comvaet noted by V.
8
e v/

(c)
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For simulating interface roughness scattering in a quan-
tum well, or the effect of a defect cluster, we utilize the fol-
lowing procedure. Interface roughness can be viewed as a
random variation of well width on a monolayer scale. This
variation causes a variation in the potential energies in the
well. Sudden discrete changes in the well width therefore
causes a sudden discrete potential step. It may be noted that
a defect cluster would also produce the same effect. There-
fore, the scattering potential for either interface roughness
scattering, or a defect cluster. is simulated by a constant step
potential of finite but varying extent.

In Fig. 2 we elucidate the effect of interface roughness or a
defect cluster. This figure shows the dispersion curves
E(k,,k,) for the mode or subband closest to the Fermi level.
The left curves corresponds to a region of ballistic propaga-
tion (defect-free region) and the right curve corresponds to
region containing a potential barrier due to a defect cluster.
Note that the mode which was propagating (i.e., the bottom
of the corresponding subband was below the local quasi-
Fermi level) becomes evanescent when it enters the region
with the defect cluster. In that case, this mode can no longer
travel through the structure and contribute to current, un-
less it does so by tunneling. Since evanescent states cannot
exhibit the electrostatic Aharonov-Bohm effect, it is con-
ceivable then that such regions may have a dramatc effect
on the characteristics of an Aharonov-Bohm interferome-
ter. We shall examine such effects later in Sec. IIL.

Once the scattering matrices describing the individual sec-
tions have been evaluated, they are then cascaded according
to the law of composition of scattering matrices'® to yield
the composite scattering matrix for the structure. Finally,
the three scattering matrices—two for the contacts and one
for the structure proper—are cascaded to yield the overall
scattering matrix for the entire structure from whose ele-
ments the transmission amplitudes ¢, are obtained directly.
From these amplitudes, the linear response conductance is
calculated using Eq. (1)."*

ll. RESULTS

In this section, we first present results from our study of
Aharonov—-Bohm interferometers. An Aharonov-Bohm in-

JBv,

Reglon containing
a detect

Detect-tree
region

FiG. 2. Energy dispersion parabola for the subband closest to the quasi-
Fermi level in a structure containing a potential step due to a defect cluster
or interface roughness. Note that the bottom of the parabola goes above the
quasi-Fermi level Fin the region containing the defect so that the mode goes
from propagating to evanescent. This figure elucidates the mode quenching
effect.
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terferometer is depicted schematically in Fig. 1(a) while
Fig. 1(b) shows a possible realization utilizing a GaAs-
AlGaAs double quantum well. The interferometer is basical-
ly adoubly connected structure consisting of two contiguous
conducting paths connected at both ends. Electrons enter at
one end and leave at the other. The quantum-mechanical
phase shifts in the two paths can be controlled by an electro-
static potential impressed between the paths. Changing the
potential modulates the interference between the two paths
and therefore the net transmission through the structure.
This is turn modulates the conductance causing it to oscillate
as the potential is varied.

The feastbility of electrostatic Aharonov-Bohm interfer-
ometers have been investigated quite widely both theoreti-
cally*'*'® and experimentally.'”'® In this paper, we study
the conductance oscillations of these interferometers in the
presence of interface roughness scattering or defect clusters.
The conductance is calculated using Eq. (1) with the trans-
mission amplitudes obtained from the overall scattering ma-
trix as described in Sec. II. The scattering matrix for electro-
static Aharonov-Bohm interferometers has been described
in Refs. 16 and 19.

In Fig. 3(a) we present the conductance oscillations in an
ideal interferometer with no defect or interface roughness in
etther arm. The results are shown for various ambient tem-
peratures. The two arms of the inteiferometer are each | um
long and the quantum wells constituting them are 50 A wide,
the material is GaAs, and the carrier concentration is
1.2 10°/cm. Ten subbands are occupied in either arm at a
temperature of 0 K. For this calculation, the elements of the
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F1G. 3. (a) The electrostatic Aharonov-Bohm conductance oscillations at
two different temperatures when the two arms of the interferometer are
defect-free. (b) When there are two potential islands in one arm due to two
regions of interface roughness.
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Shapiro matrix were assumed to be different for different
modes. We have assumed ¢, = 0.5 — 0.01/, where ¢, is the
free parameter in the Shapiro matrix for the ith mode or the
ith subband. A higher value of € for lower subbands mimics
the fact that electrons with lower transverse energy and
therefore higher momentum along the direction of current
flow have a higher probability of transmitting through the
structure.

In Fig. 3(b) we show the conductance oscillations when
there are two potential islands in one of the two arms. The
islands are each 200 A long and are situated 2500 and 3500 A
from the left contact. They represent the situation that in
these regions, the width of the well has decreased by a mono-
layer thickness (2.8 A). This simulates interface roughness.

In Fig. 3(b) we find that the conductance oscillation ex-
hibits sudden bumps at low temperatures. We believe that
these are due to an interesting effect caused by the defect
clusters. In Sec. II we discussed how a propagating mode
could become evanescent and thus get quenched upon enter-
ing a region containing a defect cluster. The reverse effect
can also occur in an Aharonov-Bohm interferometer. When
a potential difference is applied between the two arms by
holding the potential of one arm constant and lowering that
of the other, an evanescent mode couid become propagating
as the bottom of the corresponding subband dips below the
local quasi-Fermi level. Every such “mode regeneration”
adds an amount 2¢?/h to the conductance and causes a
bump in the oscillation characteristics. The exact position of
these bumps in the oscillations will depend on the precise
nature and locations of the defect clusters. These bumps can
therefore be viewed as fingerprints of the defect configura-
tion in much the same way as universal conductance fluctu-
ations. The occurrence of these bumps will also be sampie
specific like universal conductance fluctuations since the de-
fect configuration is sample specific.

In addition to the bumps, the conductance oscillations
exhibit many kinks and glitches that smear out at elevated
temperatures. We believe that this feature has the following
origin. The conductance oscillation of a ring due to the elec-
trostatic Aharanov—Bohm effect exhibits two distinct sets of
minima arising from two different interference conditions.'®
One set of minima is caused by the usual destructive interfer-
ence of transmitted electrons and the other arises due to the
constructive interference of an electron traveling completely
around the ring and interfering with itself at its point of entry
into the ring.'® The positions of the secondary minima in the
oscillations are strongly mode dependent. In a multimoded
structure, such as the one that we have studied, the varying
positions of the secondary minima (for the different modes)
impart to the oscillation pattern a random speckled nature
that create the appearance of glitches. The secondary mini-
ma however bleach out very quickly with increasing tem-
perature'® so that the glitches disappear at elevated tem-
perature.

It is obvious from Figs. 3(a) and 3(b) that interface
roughness can almost wash out the oscillations and make
them indiscernible. This is a serious deleterious effect which
is somewhat mitigated at elevated temperatures. However,
this does not mean that the performance of Aharonov—
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Bohm interferometers with interface roughness will improve
with increasing temperature, since the conductance modula-
tion also decreases rapidly with increasing temperature.

We now proceed to discuss electron transport in narrow
ballistic constrictions. Such a structure is depicted schemati-
cally in Fig. 1(c). The structure is usually patterned by elec-
tron-beam lithography on a two-dimensional electron gas
such as an inversion layer or an accumulation layer. The
layer width is assumed to be 100 A and the background im-
purity concentration is 1.2 10'%/cm’ everywhere. The
width of the constoriction is 1250 A and the wider contact
regions are 5000 A wide. The Fermi energy is 1.43 meV.
Eleven subbands are occupied in the contact regions and two
in the constriction.

In Figs. 4(a) and 4(b) we show the conductance of the
constriction as a function of its length normalized to the
deBroglie wavelength of the lowest-lying transverse mode in
the wider contact region. This wavelength is approximately
1250 A. Figures 4(a) and 4(b) show non-self-consistent and
self-consistent results, respectively, where self-consistent re-
sults are those that account for space-charge effects or the
Hartree correction. We have accounted for self-consistence
approximately by incorporating a built-in potential (caused
by space-charge effects) at the interface of the contact re-
gions and the constriction. The built-in potential was calcu-
lated by requiring that the Fermi level be flat at equilibrium
and the bulk carrier concentration (or the Fermi energy) be
the same - verywhere. The built-in potential was found to
be — 0.10251 meV, which is ~ 7% of the Fermi energy. The
bulk conduction-band profile including the built-in potential
is shown in Fig. 1(c).

conductance (e¥/h)
§

® lgl

-
[}

conductance(e’h)

1 i 1 I
L)
L] t 2 3 4

LA

. F1G: 4. Conductance of a ballistic constriction as a function of its length

normalized to the deBroglie wavelength of the lowest transverse mode in

the wide contact region. (a) Non-self-consistent result; (b) self-consistent
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The broken lines in Figs. 4(a) and 4(b) are the resuits of a
classical calculation obtained by cascading probability scat-
tering matrices rather than amplitude scattering matrices.®
The classical conductance is found to be independent of the
length of the constriction instead of being inversely propor-
tional to the length since transport within the constriction is
purely ballistic. The only scattering (which gives the con-
ductance the finite value of 7.37 €%/k ) is the scattering that
takes place at the interface between the wide and narrow
regions. The classical conductance is therefore purely a re-
sult (and a measure) of the contact resistance.

There are several interesting features in Figs. 4. First, the
conductance calculated quantum mechanically is less than
the classical result, and second, it oscillates as a function of
the length of the constriction. These are both due to the fact
that the constriction acts as a potential barrier to electrons
impinging from the wider contact regions. Classically, every
electron that arrives with a kinetic energy larger than the
barrier height can transcend the barrier and contribute to
current, but quantum mechanically there is a nonzero prob-
ability of reflection. Because of this reflection, the quantum-
mechanically calculated current (or conductance) is always
less than the classical resuit. In addition, the conductance
oscillates because of continuum resonances.’*?' Changing
the length of the constriction is equivalent to changing the
extent of the barrier which causes the transmission probabil-
ity to oscillate. Finally, another significant feature to note in
these plots is the importance of space-charge effects. It can
be seen from Figs. 4(a) and 4(b) that the number of oscilla-
tion cycles within the period shown are different depending
on whether space-charge effects are included or neglected.
The difference is due to the built-in potential discussed be-
fore. This potential alters the energy and hence the wave
vector of the incoming electrons thereby affecting the period
of the oscillations.

V. CONCLUSIONS

In this paper we have analyzed phase-coherent electron
transport through disordered Aharonov-Bohm interferom-
eters in the presence of interface roughness scattering and
defect clusters. We pointed out the phenomenon of mode
quenching and mode regeneration in these structures that
give rise to well-resolved sample-specific bumps in the con-
ductance oscillations. These bumps act as fingerprints of the
internal defect configuration. We have aiso analyzed elec-
tron transport through ballistic constrictions and found that
space-charge effects may be important in these structures.
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Transmission through a bend in an electron waveguide
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The transmission properties of a circular, right-angle bend in a two-dimensional electron
waveguide are calculated. Significant reflections from such a bend would have serious
consequences for the development of a quantum electron waveguide technology. The resuits
show nearly perfect transmission around the bend, except for energies very close to the
threshold for propagation in the channel. This is true even for rather sharp bends. A significant
amount of mode mixing is found, however, for bends with a smalil radius of curvature.

Interest in the creation of nanometer-scale quantum de-
vices has focused attention on the problem of the conduction
properties of quantum channels in which electrons are con-
fined in two spatial dimensions. Typically electrons are con-
fined in one dimension by the self-consistent potential at a
single semiconductor heterojunction interface or by the
quantum well potential formed by two interfaces. The resuit-
ing two-dimensional electron gas (2DEG) can be confined
further by imposing a potential variation in the plane of the
electrons. This is often done by depositing a patterned metal
gate to which a negative voltage is applied. The gate elec-
trodes depiete the area beneath them, leaving only conduct-
ing channels in the 2DEG.'?

Such constricted geometries are often thought of as elec-
tron waveguide structures in analogy with microwave de-
vices. If the active region is small enough, electron scattering
can be neglected and electronic transport in the region be-
comes completely ballistic and coherent. In this regime,
steady-state transport can be described simply by the time-
independent effective-mass Schrodinger equation.

The possibility of transistor action by purely coherent
electron interference effects in waveguide structures has
been pointed out by Sols et a/.> They examined the properties
of a stub-tuner type transistor, a variation of which has been
fabricated by Datta and co-workers.? The author has point-
ed out the existence of transistor action in transmission
through a constriction in a quantum waveguide.® Barker®
has discussed many interesting electron waveguide geome-
tries and their possible uses in novel device structures. Al-
though exploration of this area is very new and many obsta-
cles remain, it may prove possible to construct an integrated
circuit technology based on the interference properties of
electrons confined in these waveguide structures.

In contemplating a quantum device technology in
which many nanoscale devices are interconnected, one is led
to consider the feasibility of interconnections in which a
quantum channel bends around a curve to connect two de-
vices. If such a bend were to cause significant reflections, the
interconnections would have to be considered as part of the
devices themselves, greatly complicating the design and un-
derstanding of nanocircuits. In the worst case, one would be
forced to avoid bends entirely, limiting the design to linear
arrays only. Clearly, a bend with a sufficiently large radius of
curvature would be expected to cause very little trouble. If
the required radius were very large, however, the integrated
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designs would be severely constrained. This would be par-
ticularly problematic given that the entire active region (or
subregion) of the structure must be smaller than an electron
mean free path.

I report here a calculation of the transmission properties
of circular, right-angie bends in quantum channels. The re-
sults are encouraging in that for even very tight corners very
little reflection is seen. A close analysis reveals that mode
mixing can be important.

The quantum waveguide problem is formally similar to
the problem of microwave propagation in conducting wave-
guides. For a straight channel, both can be reduced to a sca-
lar Helmholtz equation. However, the boundary conditions
for the quantum wave function are analogous to those of TM
modes in rectangular waveguides whereas it is the TE o elec-
tromagnetic mode (which corresponds to different bound-
ary conditions) which is the dominant mode. The electro-
magnetic problem of transmission around a circular bend is
further complicated by the vector nature of the electric and
magnetic fields.

The quantum calculation is done within a parabolic sin-
gle-band effective-mass model with m* = 0.05m,. Electrons
are assumed to be compietely confined in the plane of the
2 DEG with only the ground-state wave function in the per-
pendicular direction accessible. The potential energy profile
of the quantum channel depends on exactly how it is realized
and is usually assumed to be either parabolic or a square
well.® Here it is taken to be a square well of width d, with
¥ =0 inside the channel and ¥ infinite outside. The bend
itself is a circular arc with central radius 7.

I consider here only waves incident on the bend which
are in the fundamental mode of the channel. Reflected and
transmitted waves may be in higher modes.

The wave function is calculated numerically by discre-
tizing the Schrodinger equation in the region of the wave-
guide bend. A 41 X 41 nonrectangular mesh is used here. The
boundary conditions are given by the requirements that the
wave function vanish at the waveguide walls and that it
match the allowed solutions in the leads at the input and
output boundaries. Since the reflection and transmission co-
efficients are unknowns which depend on the solution in the
interior region this is not a trivial procedure. Inclusion of
these kinds of boundary conditions is accomplished using
the quantum transmitting boundary method (QTBM) of
Lent and Kirkner, described in detail elsewhere.” The com-
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Transmission

FIG. 1. Transmission coefficients for circular bends in a quantum wave-
guide with differing radii of curvature. The transmission is shown for r/
d =20 (a), 1.0 (b), 0.75 (c), 0.65 (d), and 0.5 (e). The inset shows the
problem geometry.

plete solution yields the wave function in the region of the
arc, and the transmission coefficients 7', ;, the ratio of the
outgoing current in the /" mode to the incoming current in
the first mode.

Figure 1 shows the transmission coefficient T, ; for en-
ergies just above the threshold where the fundamental mode
can propagate. The transmission is shown as a function of

kd /m, where k = J2m*E /#. Since all quantities in the
problem scale with the de Broglie wavelength of the electron,
plotting the transmission coefficients in this way gives re-
sults which are independent of the channel width 4 and de-
pend only on r/d. The first mode of the channel can propa-
gatefor kd /7 > 1, thesecond mode propagates for kd /7> 2,
and so forth. Figure | shows the transmission coefficient for
r/d = 0.5, 0.65, 0.75, 1.0, and 2.0.

The most striking feature of Fig. 1 is how rapidly the
transmission function approaches unity, even for bends with
a very small radius of curvature. Transmission is greater
than 90% at values of kd /7 only very slightly above the
threshold for transmission. Notice that r/d = 0.5 corre-
sponds to a bend with inner radius of zero, i.e., a sharp right
angle. Even this abrupt turn produces little reflection except
at energies just above the threshold. As is evident in the fig-
ure, a central radius of twice the channet width produces a

Transmission
(-]
8
T

FIG. 2. Transmission coefficients of the circular bend with r/d = 0.65 for
an incident wave in the fundamental mode of the waveguide.

2558 Appi, Phiys. Lett., Vol. 86, No. 25, 18 June 1990

100 = AR <C
i | T,
o OB -
=)
- -y
(72
2
£ oso - .
g
St
ooxsf .
T., ]
ol ) xm
0'0%00 030 1.00 1.50 2.00 2350 3.00 350
kdew/Rt

FIG. 3. Transmission coefficients of the circular bend with r/d = 2.0{oran
incident wave in the fundamental mode of the waveguide. The solid line
corresponds to the case of infinite potential barriers forming the channel
walls. The dotted line corresponds to finite barriers of height 48E,, where £,
is the energy of the fundamental channet mode. For the finite barrier case,
and effective width d,,, is defined by the condition that kd.q/7 = | at the
cutoff energy.

very sharp transmission rise to essentially unity over a very
small energy range. For design considerations, this seems
encouraging.

At energies well above the threshold for the first mode,
transport in higher order modes becomes possibie. At these
higher energies, an incoming wave which is purely in the first
mode can be mixed into higher modes by the bend. Figure 2
shows the transmission coefficients from the first mode into
the first three modes for r/d = 0.65. Clearly a significant
amount of mode mixing is possible at energies which allow
multimode transport. As one would expect, at larger radii of
curvature, the mixing diminishes. Figure 3 shows the trans-
mission from the fundamental mode into the first two modes
for a bend with r/d = 2.0. Transmission into the second
mode is greatly reduced and transmission into the third
mode, while possible at the energies shown, is negligible.

Real waveguide bends would have a more complicated
potential than the infinite square well assumed in this model.
The channel walls would allow some penetration of the wave
function into the potential barrier. The simplest model
which includes this softening is a square weil channel with
finite barriers. Figure 3 also shows the results for transmis-
sion around a circular bend with »/d = 2.0 and a confining
potential of 48 E,, where £, is the energy of the lowest trans-
verse mode. These results suggest that softening of the walls
reduces reflection and mode mixing.

In summary, the transmission properties of a circular
bend in an electron quantum waveguide have been calculat-
ed. Reflections from the bend, which could make the design
of integrated quantum waveguide devices difficult, are found
to be negligible except in an energy region very close to the
threshold for traveling waves in the channel. At energies
high enough for muitimode transport, a bend can introduce
significant mode mixing. This can be minimized by choosing
bends with radii a few times the channel width.

The work was supported by the Air Force Office of Sci-
entific Research under grant number AFOSR-88-0096. This
work was partially supported by National Science Founda-
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Note added in proof: We have recently learned of a simi-
lar study by Sols and Macucci to appear in Physical Review
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ABSTRACT

We examine transport through severai quantum electron waveguide geometries. Reflection and mode-mixing
in transmission through.bends in quantum waveguides are caiculated and the impact on interconnections between
devices discussed. We calculate the current-voltage relationship for s copstriction in a quantum waveguide for applied
voltages beyond linear-response regime. Strong resonance effects in waveguide cavities are found to persist even when
cavity geometry is non-abrupt. We demonstrate the existence of current vortices in resonant cavities.

1. Introduction

There 1s ampie experimental evidence that a two-dimensional electron gas (2DEG), created at a heterojunction
interface can be further confined electrostatically by depositing a metal gate pattern above the interface (1,2]. The
electrons are apparently ballistic and coberent over regions as iarge as a micron or mare. By lithographically
patterning the metal gate, electrons can be confined to travel in narrow quantum channeis which act much like
microwave waveguides. Since the nanometer-scale confinement geometry can be controlled by the voitage applied to
the gate, many device applications are possible for such structures.

We expiore some of these possibilities by calculating the transmission properties of several waveguide structures.
Our approach is to soive the two-dimensional effective-mass Schrodinger equation directly in real space. Throughout
we use an effective mass of m* = 0.05 mo and assume that the confinement in the direction perpendicular to the
plane of the 2DEG is complete. We use a Finite Element discretization scheme and current-carrying boundaries are
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Fig. 1. Geometry of a right-angie circular bend in Fig. 2. Transmission coefficients for circular bends
a quantum waveguide. in & quantum waveguide with differing radii of cur-
vature. The transmission is shown for r/d = 2.0
(»), 1.0 (b), 0.75 (c), 0.65 (d), and 0.5 (e).




‘nciuded using the Quantum Transmutting Boundary Method [3].

[n the next section we discuss transmussion througn bends in quantum waveguides. a question reievant for the
problem of making interconnections between eiectron waveguide devices. Section 3 expiores the transport througn
1 constriction n a waveguide when a finite voitage 1s appiied. Section 4 examines resonant cavities in quaptum
vaveguides and the appearance of vortex excitations of the current througn a cavity.

2. Bends

The construction of large-scaie integrated nanoeiectronics will require a basic circuit element. the roie piayed
by field-effect and bipoiar junction transistors presentiy, and an architecture for connecting the basic elements m a
useful way. While the choice for neither of these is ciear today, it is certain that nanometer-scaie devices wiil neea to
be connected to each other. The question of the transmission properties of bends in quantum waveguides becomes
immediately important. If the physics of ballistic transport causes significant refiections in all but the moss gendg of
bends. design of an integrated technology wiil be seriousiy constrained. Most proposed quantum interference devices

require singie-moded transport in the channeis for optimal effectiveness. Mode-mixing caused by bends aiso becomes
an important consideration.

With this in mind. we nave examined the transmussion characteristics of circular bends in quantum waveguides
4]. The geometry of the bend is shown in Figure i. The waveguide has a width d. which is mantained around the
bend. The wails are taken to be infinite potential barriers with no potential in the channei itself. The radius of
curvature of the center of the channei is r. We plot the transmission coeficient for the fundamental mode of severai
waveguide bends as a function of the the scaied energy in Figure 2. The plot is independent of d if we plot the
transmussion versus £d/x where £ = v2m* £/h. The m** traveiing mode of the waveguide becomes accessible at an
energies corresponding to kd/x > m. The piot shows the energy region just above the cutoff for the first mode. The
transmission coefficient is shown for several values of r/d ranging from 2.0 to 0.5. The case of r/d = 0.5 corresponds
to a bend with an inner radius of curvature of 0, and therefore represents the most abrupt limit of a circular bend.
Even for this extreme case, the transmission rises rather rapidly, reaching nearly 90% when £d/x = 1.06. For more

gentle curves, of course. the turn-on is more rapid. For the case when r/d = 2.0, the transmission is essentially unity
for kd/= just 2% above the cut-off.
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Fig. 3. The transmission coefficients of the circu- Fig. 4. Geometry of constriction in an electron

lar bend with r/d = 0.65 for an incident wave in waveguide.
the fundamental mode of the waveguide.




As the energy increases to the point where the second waveguide mode becomes accessible. mode-mixing begins
:0 occur as the wave traverses the bend. Figure 3 illustrates che transmission irom mode 1 in the incoming channei

:nto the first three modes of the outgoing channei for the r/d = 0.65 case. Mixing into the second mode is reduced
to about 10% for r/d = 2.0

Our resuits indicate that circuiar bends in waveguides probably do not impose serious constraints on interconnec-
tions. Clearly, some care has to be taken to avoid mode-mixing if singie-moded operation is desirable. That would
most easiiy be achieved by keeping the injected electrons below the energy threshoid for muiti-moded transport.

3. Constrictions

Ballistic transmission through structures narrow enough to be called electron waveguides was first observed and
has been widely studied in the “split-gate’ geometry {1,2}. A narrow quantized channel connects two regions which
are both two-dimensionai in character. We focus our attention here on a related. but different geometry, a constriction
in the narrow channei itseif [6]. This is aiso referred to as the “wide-narrow-wide” geometry and bas recently been
studied experimentaily {5]. The problem geometry is shown in Figure 4. The channei of width d is narrowed to
d. < d for a length L and then widens again to its original width. For simplicity we take the transition from wide to
narrow regions to be abrupt. We aiso have assumed infinitely hard side-wail barriers.

The consiricted region presents a larger ballistic resistance to current flow. It is possible. therefore to maintain a
relatively large voitage difference between the two sides of the constriction. If the voitage drop across the constriction
is large compared to £T'/e, the transport can no longer be described by linear response theory. Landauer theories in
which the conductance is proportional to the transmission coefficient evaluated at the Fermi energy {7,8,9] are not
appropriate in this regime. To calculate the current-voitage relationship we use a modified Esaki formuia.

(vy= (ZE) / {f(E - EF —eV) =~ J(E - EF)} zn,,(E,V)dE. (1)
W

In this equation T; ;(E, V) is the transmission coefficient from mode i in the left channei into mode j in the right
channel at an energy £, when a voitage difference of V is applied between the two wider regions. The functions
f(E) are Fermi-Dirac distribution functions. We approximate the effect of the applied voitage by assuming a
linear potential drop across the constriction. No bending of the bands in the wider lead regions is included. This
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Fig. 5. The current-voltage characteristic for var- Fig. 6. Idealized cavity in a quantum waveguide.
ious constrictions sizes.




approximation is reasonabie because the resistance of the narrow regions is much higher than che the unconscricted
channeis.

We examine a geometry for which L/d=0.25 and we vary d./d between 0.2 and 0.5. We choose the Fermi level
in the leads to be Ef = 35 E,, where E, is the energy of the lowest channei mode. Five incoming mode, are then
occupied. although the contribution of the fifth mode is very smail. At energies corresponding to occupied states.
we caiculate the transmission coefficients required in equation(l) and integrate to obtain the current. The current
voltage relationship obtained for various constriction widths is shown in Figure 5.

The most dramatic feature of these resuits is the saturation of the injected current at voitages greater than the
Fermi voitage. This can be understood by examining Equation (1). At low voitages the dominant energy dependence
in the integrai is the difference of the Fermi functions. Variations in the transmission coefiicients t.ex.xd to be sm
out by the sum over the modes. For smail voltages, the difference in the Fermi functions is a linear f\fnct.mn of
the voitage. This is simply the linear-response resuit. As the voitage increases beyond Vr, the contribution of the
second Fermi function becomes negiigible and the first term in the integrai becomes independent of voitage. The
voltage dependence is then due primarily to the transmission coefficients. However, as the voitage drop becomes
steeper, the transmission coefficients tend to saturate at values proportionai to the geometrical ratio d.,/d: Thus the
total current saturates at a value determined by the constricted width. Since the width of the constriction can be
ontroiled electrostaticaily, this geometry may have potential device applications.

4. Cavities

Two nanometer-scale quantum interference transistors have been proposed which are both based on the anaiogy
between microwave waveguides and electron waveguides. The microwave stub-tuner design has been adapted to
electron waveguide structures in somewhat different ways by Sols et al. [12], and Datts (10]. Realisation of the
structure proposed by Datta has recently been reported [11] Each device empioys a resonant cavtt.y.whxch m“l“”
the transmission through a waveguide channei. For abrupt potentials with infinitely hard walls (like the PM“_'"
discussed above), the transmission coefficient vanishes for certain energies {10,12]. By electrostatically controlling
the dimensions of the resonant cavity, transistor action is obtained.
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Fig. 7. Transmission coefficient for the first Fig. 8. Model potential for a resonant cavity in

waveguide mode through the cavity depicted in an electron waveguide.
Figure 6. The transmission is shown as & function
of kd/x where & = v2m* £/A.




In this context. we examine the phenomenon of transmission through resonant cavities in quantum eiectron
waveguides. We consider a symmetric structure. the geometry of which is illustrated in Figure 6. The transmussion

coefficient 15 shown for a cavity with hard walls in Figure 7. We focus here on three questions concerning transport
n such structures.

1. Does transmission through more reaiistic. rounded potentials dispiay the same sharp vanishing of the trans-
mission coetficient at resonances as is obtained in the idealized structure?

2. How does the charge in the cavity change as the electron wave moves on and off resonance?

3. How does the presence of the cavity affect the flow of current in the cavity region?

Figure 8 illustrates a symmetric cavity with a less abrupt geometry than the idealized case {14]. In the incoming
leads the potential is zero across a width ¢ and then increases quadraticaily. This form of the potential profile across
a waveguide was suggested by the calculations of Stern, Frank and Laux {15}, and the experiments of Wharam et al.
(16]. In the cavity itseif. the potential is zero in the center region and has quadratically increasing wails. The corners

have aiso been rounded. This potential is not the resuit of a seif-consistent caiculation. but is rather a model which
mirrors the important features of the actual potential.

The Schrédinger equation is solved first in the leads to obtain the lead eigenfunctions. Tbue are then used in
the construction of the boundary conditions for the problem of transmission through the cavity using the QTBM.
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Fig. 9. The upper graph is the transmission coefficient for the first nvc.:gnide mode
through the cavity depicted in Figure 8. The lower graph shows Q, the integral over
the cavity of the electron probability density as a function of the scaled energy.




Ve choose cavity dimensions such that L = 2t. D/t = 3. The lowest mode in the channei is localized to a width of
1pproxumateiy 1.4t which we cail d. the etfective channei width (which now varies for different modes). The caiculated
‘ransmussion coefficient for the m = | mode incident on the cavity is shown in Figure 9(a). The features are certainiy
qua._ht.atxveny simiiar to the hard-wail case shown in Figure 7. At resonance conditions the transmission coefficient
vanishes. The answer to the question (1) above is that the phenomenon of compiete quantum refection at certain
resonance conditions is preserved. even when the corners of the cavity are rounded and the wails are softened.

At eacn injection energy, we calculate a quantity Q defined by

Q= [ |(zwyiPdzdy (2
cavsty

which is proportional to the total electronic charge in the cavity. Figure 9(b) shows the Q for various injection
energies. At resonance conditions the charge in the cavity is enhanced. The extent of the enhancement is different
for different resonance states. Over the range shown, the greatest increase in Q occurs at a transmission peak. Such
~aks are're!a.zec.l to the peaks in transmission over a one-dimensional well. at which energies the probability density
... (D€ we}l also increases. Further discussion of the nature of the resonances is presented elsewhere {18]. From this
>xample it is clear that modulation of the charge in the cavity accompanies modulation in the transmission through
‘he cavity. If ‘the magnitude of the charge stored in the cavity is sufficient. it may be able to provide electrostatic

mnodulation of nearby quantum structures. thus permutting a direct coupiing between nanometer-scaie devices.

Since we solve the Schrédinger equation for the wavefunction in the cavity region, we can calculate the current
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Fig. 10. The current density in the cavity for an
energy such that &d = 1.478. This corresponds to

the first gero in the transmission shown in Figure
9.

Fig. 11. The current density in the cavity for an
energy such that kd = 2.187. This corresponds to
a maximum in the transmission shown in Figure
9.




density directly from the wavetunction. The electron particle current densicy is given by,

iz = 5= (9l )P4 (2, 9) = 0" (2. 0) T2, 9) ®)

Figure 10 shows the current density in the cavity for an energy corresponding to the first minimum (zero) in the
transmussion. Figure 11 illustrates the current density in the cavity for the maximum in transmission which occurs at
kd = 2.187. Current vortices are excited in the cavity by the incoming wave. The vorticity observed here is distinct
from hydrodvnamic vortex formation in that there are no interparticle interactions in the model. Vortex formation

in this system occurs in the context of a one-electron model. Perhaps the closest analogy is with vortex formation
in superfiuids {17)].

The examples of vortex formation shown in Figures i0 and 11 display some features unique to this ballistic
electron system. Note that for the case shown in Figure 10 the transmission coefficient is zero. The net current in
both input and output leads is zero. The incoming wave is totally refiected by the cavity. The current enters f.he
cavity, swiris around. and exits through the input lead. The vortices could not be excited if there were no incoming
wave, of course, but the wave may be totally reflected. The case depicted in Figure 11 shows a situation where
reflections by the cavity are minimal. Note. however, that at the center of the cavity the current is actually gomng

:n the reverse direction — toward the input lead. The primary current paths spiit on either side of the cavity center
ind merge again on the output side.

The excitation of current vortices in the cavity region is a feature of ballistic transport not limited to specfnl
resonance conditions. The rounded features of this model potential enhance vortex formation but are not easegth.l
- the abrupt, hard-wall pctentials also show vortex excitations. Vortices need not occur in vonex-a.nuvongx pairs if
the potential is not symmetric. Very generai arguments can be made to show vortex excitations are a basic feature

of the two-dimensional electron gas system. A breaking of the time-reversal symmetry, in this case provided by the
injected current, is required to expose them {18].

This work was supported by the Air Force Office of Scientific Research and by the N§tional Scifu.zce Foundation
under grant number ECS890025 through the Nationai Center for Computational Electronics. and ut‘xhzed the Cray-2
at the National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign.
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STRUCTURES
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Abstract

Coherent bailistic transport through a circular resonant cavity in a quan-
lum electron wavegude is examined. The circular cavity is weakly
coupled to a rectanguiar channel. The current density in the cavity re-
gion 1s calculated from the soiution to the etfective-mass Schridinger
cquamon. Current voriex rormauon in the cavity and a reiated increase
in provability density in the the cavity occur at Certain resonant energies.

Electrons can be trapped in the narrow quantum weil formed at the heterojunction
intertace between two semiconductors with differing bandgaps. The resulting two-
dimensional electron gas (2DEG) can have a very high mobility. [t is possible
to contine the eiectrons further by making some areas of the plane have a higher
patenaal than others. A common technique for imposing this additional potenual is to
deposit a lithographically defined metal pattern on the surface of the semiconductor.
When a negative voltage is applied to the metal, the regions immediately beneath
the metal become potennal barriers for the electrons and are depleted of carmers.
Electron channets which funcuon as electron waveguides. in analogy with microwave

Figure 1: Geometry for the circular resonant cavity.




waveguides. can be formed in this way. More compiicated potentiais in the plane of
the 2DEG can be created by suitably patterning the metai gate layer.

Two designs for creating a quantum-interference based transistor have recently
been proposed. Sols et al. proposed a stub-tuner transistor consisting of a rectan-
gular stub on a straight electron channel {1]. The wave traveling down the channei
resonates with the stub cavity and produces strong maxima and minima in the trans-
mission through the device. The moduiations in the ransmission become modula-
tions in the current through the device. Since the length of the stub can be controlled
electrostatically, it can act as a gate. Datta has discussed a variant of this design {2].

The namre of the resonances in such devices has not been fully investigated.
The energies at which the resonances occur are not simply related to the resonances
of bound states of the stub region. Elsewhere we have shown that essential in
understanding these resonance effects is the recognition that they are associated with
the formaton of ballistic current vortices in the cavity (stub regions) {3]. Here we
examine a resonant structure which is designed to maximize these vortex effects.
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We consider transmission through a recranguiar quanmm channet which is cou-
pled through a bamer region to a circular cavity. The geomewry 1s illustratea in
Figure i. The cnannel has width d and first-mode energy £,. The potenual is zero
inside the channet and in the center section of the cavity. The walls of the cavity
increase quadraticaily from zero at the inner radius r 10 26E, at the outer radius.
A. The channei edge truncates this potential and a finite potential barrier 15 formed
between the channel and the circular cavity. Electrons are incident from one end of
the channel in the fundamental channei mode. For the range of energes considered
here. only one propagaung mode can exist in the channel.

The esfective-mass Schrodinger equation is solved numerically over the device re-
gion using the Finite Element Method. Boundary conditions appropnate (o traveling-
wave states are included using the Quantum Transmiting Boundary Method {4). This
technique has been employed in the swudy of other quanmm structures {5,6]. The
calculated transmission coefficient 1s shown in Figure 2. To examine the buiid-up of
charge 1n the cavuy itseif. we define a quantity Q which is proportionat to the total
cavity charge.

Q= witde dy. 1)
cavity
Figure 3 shows the increase in () by more than two orders of magmude which
accompanues the resonances. Because of this charging of the cavity, further invesu-
ganons wiil need 10 include seif-consistent effects.

More information about the nature of the resonances can be gained by considering
the current density. From the wavefunction, the ballistic probability current density
can be computed using the relation

7= 5 (w6t - Fy]. (2)
Both the current density and the probability density are shown i1n Figures 4 and 5
for the second resonance. The third resonance is depicted in Figure 6 and 7. The
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large current vortex formed in the cavity is apparent. The direction of current flow
in the cavity is the same for all energies.

In the cavity, the wavetuncuon at these resonances is approximately that of the
cavity in isolation. The resonances can be iabeled by quanwum numbers n and m
which denote the number of radial nodes and the orbital angular momentum respec-
tively. For higher energies, resonances occur which are associated with coupled
cavity-lead excitations. These are not directly reiated to the cavity modes and are
typicaily composed of many smail vortices in the cavity and channel.
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IBM Facuity Development Award, and by the National Science Foundation under
grant number ECS890025 through the Nationai Center for Computational Electronics.
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University of [llinois at Urbana-Champaign.
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Ballistic current vortex excitations in electron waveguide structures
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Coherent ballistic transport through a cavity in a quantum electron waveguide is examined.
Electrons passing through the cavity excite vortices in the current density in the cavity.

The circulating currents may be larger than the current in the waveguide leads. Vortex
excitations are possible even when the incoming current is totally reflected and no net current

passes through the cavity.

Quantum electron waveguide structures can be fabri-
cated by further confining electrons in the two-dimensional
clectron gas  (2DEG) formed at a semiconductor hetero-
structure interface. The additional confinement is usually
accomplished by means of a metal pattern deposited on the
surface and held at a negative potential, depleting the re-
gion immediately below it of carriers. With this technique,
as well as others, it is possible to create channels with
dimensions comparable to the de Broglie wavelength of the
electrons. These channeis then act as electron waveguides,
in analogy with microwave waveguides.' Quantum reso-
nant cavities can be formed by creating a small region in
which the channel widens substantially. If the dimensions
of the cavity are small compared with the electron mean
free path, electron transport through the structure is both
ballistic and coherent. Resonance effects strongly modulate
the transmission through the cavity. This phenomenon
provides the basis for proposed quantum interference
transistors.?™

The exact nature of these resonances has not been fully
explored. The energies at which the resonances occur are
not simply the bound-state energies of the cavity. The pos-
sible role of currents in the cavity has not been addressed.
In this letter, resonance effects in a symmetric rectanguiar
electron waveguide cavity will be examined and attention
will be focused on the current density in the cavity itself.

Confinement in the plane of the 2DEG is assumed to
be complete so that no perpendicular degrees of freedom
are accessible. Transport through the cavity is calculated
by solving the two-dimensional effective mass Schridinger
equation

— (R/2m*)7(xp) + V(xp)9(xp) =Ed(x.p).
1)

Equation (1) is solved numerically for the wave function
¥(x,y). The two-dimensional electron particle current den-
sity is calculated directly from the wave function through
the relation

xp)=(—#/m*)Im[¢(xpy)7¥*(xp)]. (2)

An effective mass of m* = 0.05 m, is assumed throughout.
Since the electron motion is confined in the plane of the
heterojunction interface, discontinuities in the effective
mass need not be considered.

Figure 1 shows the problem geometry. Electrons in a
long channel of width d are incident from the left on a

cavity of width D and length L. Electrons traveling
through the cavity exit on the right into a channel of the
same width as the input lead. The calculations discussed
here are for the case when D/d = 3 and L = d. The poten-
tial is assumed to be zero inside the cavity and the chan-
nels. Outside, the potential is infinite and the wave function
is zero.

Quantum resonance effects are strongest if only one
mode of the waveguide channel is excited. Most of the
device structures proposed are designed to operate in this
low-current, single-mode regime. The calculation here as-
sumes that the wave incident from the left is in the first
channel mode. Reflection and transmission into all other
modes are included.

Equation (1) was discretized on the interior of the
cavity region using the fizite element method. A 4949
mesh of nodal points was used. The boundary conditions at
the input and output leads are established using the quan-
tum transmitting boundary method (QTBM).® The
QTBM permits the automatic inclusion of all reflected and
transmitted modes, including evanescent modes, without
requiring any discretization of the lead regions. Solution of
the discretized Schrodinger equation yields the values of
the wave function at the nodal points. The current into the
right lead is calculated from the wave function directly and
the transmission coefficient 7, obtained as the ratio of the
current transmitted to the incident current.

Figure 2 shows the transmission coefficient for the first

FIO. 1. Geometry of a resonant cavity in an electron waveguide. The
hatched area indicates the region over which the Schridinger equation is
solved and for which the current density is displayed in Figs. 3 and 4.
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For experiments in which the voltage across the device
is small enough for linear response theory to hold, the
transmission coefficient plotted in Fig. 2 is proportional to
the conductance of the cavity.”*

From the wave function in the cavity, the electron
particle current is calculated using Eq. (2). Figure 3 shows
the current density in the cavity region for an energy cor-
responding to kd/w = 1.315, the position of the first zero
of the transmission coefficient. The appearance of ballistic
current vortices is clear. At this energy a vortex-antivortex
pair forms in the cavity. Figure 4 illustrates the current
density in the cavity at the transmission maxima which
occurs when kd/w = 1.855. Four vortices of alternating
sign appear across the width of the cavity. Transmission at
this energy is greater than 97%. Notice that in the center
of the cavity, current flow changes sign and electrons ac-
tually flow back toward the input. The primary forward
current path is split between two symmetric paths around
the center of the cavity. At other energies different patterns
of vortex excitations occur. Even in the limited energy
range shown, excitations with up to eight vortices in the
cavity appear. Excitation of the current vortices is not lim-
ited to special resonance energies. However, the magnitude
of the vortex current is much larger at resonances.

The appearance of the strong vortex excitations is par-
ticularly interesting at the zeros of the transmission coef-
ficient when the conductance of the cavity vanishes. The
current flows in from the input lead, circulates in the vor-
tex patterns, and then returns via the same lead. The trans-
mitted current is zero and the net current in the input lead
is zero. The incoming current is totally reflected, but drives
circulating currents in the cavity. This type of excitation
clearly has no hydrodynamic analogue. One might expect
that the total charge in the cavity would increase due to the
presence of the vortex currents. Indeed, it is shown else-
where that the charge in the cavity increases significantly
at the resonance conditions. '°

Because the wave function can be muitiplied by an
arbitrary normalization factor, the magnitude of the cur-
rents in the cavity cannot be caiculated directly without
making some additional assumptions. However, the mag-
nitude of the vortex current densities can be assessed by
comparison to current densities in the input and output
channels. Consider the case of unity transmission through
the cavity (or equivalently, no cavity at ail). Let the peak
current density in the single-mode channel be J, The total
current in the channel is then / = — e/yd/2. The current
density across the center of the cavity, normalized to Jy, is
shown in Fig. § for the same energy as depicted in Fig. 4.
Across the center line of the cavity the component of the
current in the y direction is zero. The figure shows the
positive and negative values of j, associated with opposite
sides of the vortices. The magnitude of the current density
around a vortex is clearly comparable or larger than the
maximum in the leads. The total electron current across

1680 Appl. Phys. Lett, Vol. 57, No. 18, 15 October 1990

the cavity, computed by finding the area under the curve in
Fig. 5, was calculated to be JyD/6, in agreement with the
requirement of current conservation.

A rough estimate of the magnetic field associated with
a vortex can be made. Because of the large intrinsic resis-
tance of a single-mode channel (h/¢* =25 k), the chan-
nel current is typically 0.5 A or less. If the vortex current
were comparable and the current flow were approximated
by a ring with a diameter as smail as 5 nm, the associated
magnetic field would be roughly 5 10 =3 T. Thus, under
rather optimistic assumptions the magnetic field generated
by the current vortices is very small.

Hydrodynamic vortices occur because of interactions
between particles. In this one-electron Schridinger model,
electron-electron interactions have been neglected. An im-
proved theory would include electron-electron interactions
at least in the Hartree sense, to account for the accumula-
tion of charge in the cavity. Because current densities are
so low in these systems, such an improvement is unlikely to
alter the basic resuits.

The simple model of the confining potential used here
is sufficient to illustrate the important features of current
vortex formation. More realistic potentiais involve less
abrupt corners and walls with quadratic, rather than infi-
nite, potentials.'’ The formation of current vortices per-
sists, indeed is even enhanced, in softer and roundar po-
tentials. A detailed comparison will be given elsewhere.

In summary, current transport through a cavity in a
quantum electron waveguide has been examined. Current
in the cavity circulates to form vortices. Vortex formation
occurs even when the conductance of the cavity vanishes
and all current is reflected.
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The problems of Anderson localization and universal conductance fluctuations have been treated in the past with theoretical
techniques that did not usually include evanescent states in the analysis. [n this paper. we have examined the effect of evanescent
states on electron transport through a disordered structure using a novel generalized scattering matrix formalism. We find that
evanescent states have a significant influence on the resistance of a disordered sample. especially when the degree of disorder is large.
We also find that neglecting evanescent states in theoretical calculations can lead to a substantial error in the estimation of the

localization length in realistic semiconductor structures.

1. Introduction

Electron transport in disordered mesoscopic
systems has been modeled in the past with a
variety of techniques that explicitly took into
account the quantum-mechanical wave nature of
electrons. They include the Anderson tight-bind-
ing Hamiltonian formalism [1]}, various Green's
function methods (2] and scattering matrix ap-
proaches [3]. Most of these techniques however
have neglected to inciude evanescent states in the
analysis. even though these siates are valid solu-
tions of the Schrddinger equation governing trans-
port. The rationale for this has been twofold:
firstly, the evanescent states do not themselves
carry current: therefore they are unlikely to affect
a sample’s conductance in a significant manner.

* Permanent address: Department of Electrical and Computer
Engineering. University of Cincinnati. Cincinnau, OH 45221,
USA.

~ 0039-6028 /90 /303.50 © Elsevier Science Publishers B.V.
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Secondly. their amplitudes decay exponentially
with distance. characteristically as e "*. Conse-
quently, their influence on the overall electronic
wavefunction inside any disordered structure is
expected to be negligibly small if xd > 1 (where «
is the imaginary part of the electron’s wavevector
and d is the average spacing between elastic
scatterers along the direction of current flow).
While the second rationale certainly holds true for
structures that are modulation doped (in which
xd > 1 even for the lowest lying evanescent states),
it is unlikely to hold for either metallic structures,
or Si MOSFET's. or even intentionally doped
GaAs structures in which most of the pertinent
experiments of quantum transport have been per-
formed [4]. In the latter structures. it is quite likely
that xd < 1. Therefore. in the analysis of such
structures, it is imperative to include evanescent
states in the theoretical model. These states may
not themselves carry current. but they can still
influence the conductance of a sample by affecting
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the phase-relationships between the various cur-
rent-carrying states.

Recently. the inclusion of evanescent states in
quantum transport models has been reported in
the literature for both ballistic {5] and diffusive
transport {6]. In this paper, we report an alternate
technique for including evanescent states in trans-
port calculations. Our approach is based on a
generalized scattering matrix formalism which is
an extension of the method reported in ref. [3]. In
the next section. we describe our method which is
generally applicable to any arbitrary structure.

2. Theory

We consider a quasi one-dimensional dis-
ordered resistor with an infinite confining poten-
tial in the y-direction (see fig. 1). The current
flows in the x-direction. The quantum confine-
ment in the y-direction gives rise to a set of
transverse subbands in the left and right contacts
whose wavefunctions are given by

Yol X, po 1) =@, (y) e'emx e 8170, (1)
where m is the subband index and the + or —
sign refers to electron propagation to the right or
left. The wavefunctions ¢,,()) are “ particle-in-a-
box™ states for this problem.

We assume a parabolic dispersion relation for
each subband
E=c¢,+hk%/2m*, (2)
where ¢, is the energy at the bottom of the mth
subband. Any state at a given energy E is labeled
by its wavevector k,, which can be either real or
imaginary depending on whether the state is
" propagating” ( £ > ¢,,) or “evanescent” (E <¢,,).

At low enough temperatures and in the linear
response regime, the 2- and 4-probe Landauer
resistances of the structure are given by

[ 2 M M -1
R probe = LZT Z Z [t m(E=Eg)|?
m=lm =l

(3)

R = 2e_2 i et |t m( E=Eg)|? -
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Fig. 1. A quasi-1D resistor with a random distribution of

impurities. The transverse subbands are shown in the figure.

The subbands that give rise to evanescent states at the Fermi
level are denoted by dashed lines.

where 1. . ( E = E¢) is the amplitude of transmis-
sion and r,, ,(E = Eg) is the amplitude of reflec-
tion for an electron at the Fermi level Eg, travel-
ing from a left subband with index m to a right
subband with index m’. The quantity M in egs.
(3) and (4) is the total number of propa'gating
states at the Fermi level. The summations over m
and m’ are carried out only over the propagating
states. The evanescent states are not included in
the sum since they do not themselves carry current
and hence do not contribute directly to the con-
ductance (or resistance). However these states are
taken into account when calculating ¢, ,,(E = E¢)
and r, ,(E = E.). They affect the transmission
and reflection coefficients of the propagating
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states, i.e. ¢, (£ =Eg)and r, . (E=Eg) and
hence influence the conductance or resistance n-
directlv. As we shall see later. this indirect in-
fluence can be quite significant.

In order to calculate the resistance R. we sim-
ply need to calculate ¢, ,(E¢) and r, . (Eg).
For this purpose. we adopt the basic approach
presented in ref. [3]. The transmission and reflec-
tion amplitudes ¢,,- ,, and r,,,- ,, can be found from
the overall scattering matrix [S] describing propa-
gation through the entire structure. The matrix [S)
is determined as follows. The structure is first
decomposed into a number of spatial sections
along the x-direction. Each section contains either
an impurity (scattering center) or a region of free
propagation between two adjacent impurities (see
fig. 1). The scattering matrix for each section can
be found analytically [3]. The overall scattering
matrix [S] is then found by cascading the scatter-
ing matrices for the individual sections according
to the recipe presented in ref. {3]:

(SI=[ple[s]®[p;]®[s:]®---. (5)

where {s,] is the scattering matrix associated with
the ith scatterer along the x-direction and [p,] is
the scattering matrix for the region of free-propa-
gation between the ith and (i + 1)th scatterer.
Both [s,] and [p,] are 2(M +N)X2AM+ N)
matrices where M is the number ol propagating
modes and N is the number of evanescent modes
at the Fermi level that are included in the analysis.

Ref. (3] gives explicit forms for the matrices s, ]
and [p,]. These forms are perfectly general and
valid for both propagating and evanescent states.
We have used the same forms in this paper.

Once the overall matrix [S] is determined.
tw' m(Eg) and v, (Eg¢) are found from ap-
propriate elements of the matrix [S]). From these
coefficients, one can evaluate the resistance R of
the structure using egs. (3) and (4). It should be
noted that when evanescent states are included.
the matrix [S] is no longer unitary; however.
current conservation still required that

M
Lltw m(E) 17+ 11 m(Eg) | =1 (6)

for every value of m < M where M is the number
of propagating states.

In the next section we present some numerical
results to illustrate the influence of evanescent
states on the 2- and 4-probe resistances of quasi
one-dimensional disordered sampies in the strong
and weak localization regimes.

3. Numerical example

We examine the length dependences of the
resistances of two disordered GaAs samples in
connection with the scaling theory of localization
[7]). Each sample is 300 A wide. with impurity
concentrations of N, = 10''"/cm* and N, =
10'2 /cm’, respectively. In both samples. the Fermi
energy £p is made equal to the polar optical
phonon energy in GaAs (= 36 meV). This makes
the carrier concentration equal to 2.4 X 10'?/cm’
and the number of propagating states at the Fermi
level M = 2.

Fig. 2 shows the dependences of the 2- and
4-probe resistances on the sample length. For the
sample with the lower impurity concentration of
10" /cm?, we had to include 40 evanescent states
in the calculation to achieve convergence of the
results; while for the sample with the higher im-
purity concentration of 10'2/cm", we needed 100
evanescent states. In both cases, the number of
evanescent states required to achieve convergence
exceeded by far the number of propagating states.
In both samples, the imaginary part of the wave-
vector k for the lowest evanescent state is 1.537 X
10%/cm. For the first sample with impurity con-
centration N,, the average spacing between the
impurities is d, =(N,W)~' =333 A whereas in
the second sample, the average spacing is d, =
(N;W)~! = 33 A. Therefore xd, = 5 and xd = 0.5.
In neither case is the condition xd > 1 satisfied.
so that we had to include a large number of
evanescent states in both cases to achieve conver-
gence. These two examples illustrate uniquely the
importance of including evanescent states in theo-
retical calculations.

From fig. 2, we find that evanescent states have
two effects on the resistance. Firstly, the fluctua-
tions in the resistance are somewhat reduced - at
least in the weak localization regime - which
immediately implies that it is important to include
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Fig. 2. Resistance versus length for a disordered quasi-1D GaAs structure. The fluctuations in the resistance are fingerprints of the

impurity configuration and arise for the same reason as “universal conductance fluctuations”. The number n is the number of

evanescent states that were included in calculating the results. The curve Jabeled C is the classical result (Ohm’s Law) which was

calculated by cascading “probability scattering matrices” rather than “amplitude scattering matrices™ as described in ref. [3]. The
non-zero value of Rj .ope at L =0 is the “contact resistance”™.

evanescent states in calculating the rms value of
“universal conductance fluctuations”. Secondly,
on the average, the absolute value of the resistance
is also reduced. We believe that this reduction is
caused by tunneling between the impurity sites
whose overall effect is 1o enhance the transmission
probability and reduce the reflection probability
thereby decreasing the resistance. The involvement
of tunneling is further sugegested by the fact that
in the weakly disordered sampie (N, = 10! /cm?),
the quantum-mechanically calculated resistance is
actually lower than the classical resistance at smail
lengths. Usually the quantum-mechanically calcu-

lated resistance is expected to be higher because of
the Anderson localization effect or the so-called
coherent backscattering effect (8]. But in the
“quasi-ballistic” regime, the effect of Anderson
localization is weak enough that tunneling can
offset it and make the quantum-mechanically
calculated resistance lower. A more detailed ex-
amination of this effect will be presented in a
forthcoming publication.

Finally, another important issue that merits
discussion is the effect of including evanescent
states in estimating the localization length in dis-
ordered samples. We have estimated the localiza-
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tion length L,,. for both samples by following the
prescription of Thouless [9]. For the first sample,
the value of L, was estimated to be ~4 um
before including evanescent states and —~ 14 pm
after including evanescent states: whereas for the
second sample, these two values were ~ 7000 A
and ~ 1.6 um respectively. This shows that exclu-
sion of evanescent states can lead to a significant
error in the estimation of L.

In the above two examples, we demonstrated
the importance of including evanescent states in
modeling electron transport through disordered
structures. Further work is now in progress to
examine the effect of evanescent states on the
Aharonov-Bohm effect and universal conduc-
tance fluctuations.
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Over the past few years, a number of theoretical techniques have appeared in the
literature for simulating phase-coherent electron transport through disordered meso-
scopic structures. Notable among these are the Green’s function methods (1] and
transfer matrix approaches {2). In this paper, we discuss an alternate technique -
the generalized scattering matrix approach - which is ideal for stdying transport
through relatively large and heavily doped structures. Unlike the Green's functior:
method which has a computational cost proportional to (N L)* and a storage re-
quirement proportional to (N L) (N is the number of dopants or scautering centers
in the structure and L is the structure's len:Fth , the scattering matrix technique has
a computational cost proportional to (N L)” and a storage requirement proportional
to (VL) [3]. The reduced storage requirement is a highly desirable feature in a
supercomputing environment since it decreases the number of small page faults and
input/output operations which then reduces the real time of computation:. Conse-
quently, the scattering matrix technique is optimal for treating those problems that
require simulating transport in reiatively large and heavily doped structures.

In the next section, we first briefly describe the scattering matrix technique. We
then present resuits from our study of the scaling theory of 4-probe Landauer resis-
tances of disordered mesoscopic structures which we have studied using this tech-
nique. Finally, we compare the scauering matrix technique with other computationai
techniques that are currently in vogue.

Scattering Matrix Technique: The details of this technique have been presented
elsewhere {4). We report here only the basic features. In this method, a disordered
structure is first broken up into a number of sections along its length such that each
section either contains an impurity (elastic scattering center) or is a region of ballistic
propagation between two successive impurities. For each section, a scattering matrix
is then constructed which relates the amplitudes of the incoming to the outgoing
waves for every mode. It is possible to construct such a scauering matrix for any
aribitrary shape of the impurity potential. These matrices are then cascaded according

! The transfer matrix technique aiso has a computational cost proportional to (NL)® and
a storage requirement proportional to (/N L), but it is unfortunately numerically singular for
all but the smallest structures (with dimensions a few times the DeBroglie waveiength).




to the law of composition of scattering matrices (4] to yieid the overall scauering
matrix for the entire structure. From this overall scattering matrix, oné immediately
obtains the transmission amplitudes for all the propagating modes which can then
be used in either the muitichannel Landauer formula to obtain the resistance of the
structure in the linear response regime, or in the Tsu-Esaki formuia to obtain the
current in the non-linear (but phase-coherent) regime.

In the next section, we present results from our study of the length dependence
of the 4-probe Landauer resistances of GaAs mesas in the threshold regime cor-
responding to the transition from weak 1o strong localization. The mesas are 300
A wide with an impurity concentration of 10!2 cm=2 and a carrier concentration of
also 10'2 cm~2. The impurities are assumed 0 be delta-scatterers. Two subbands
are occupied in these structures at a temperature of 0 K.

Anderson localization in quasi one-dimensional structures: In Fig. 1 we pilot the
resistance of the structure as a function of its length. The solid lines are the results of a
classical calculation (obtained by cascading probability scauering matrices rather than
amplitude scattering matrices) and essentially reproduce Ohm’s Law. The two broken
lines in each figure are quantum-mechanical resuits obtained by cascading amplitude
scauering matrices. The longdashed line corresponds to the case when no evanescent
modes were included in the calcuiation and the shortdashed line corresponds to
the case when 100 evanescent modes were included. In all cases, including 100
evanescent modes was sufficient to achieve convergence. Fig. 1(a) represents the
case when the scattering potential is attractive while 1(b) represents the case when
the potential is repulsive. In n-type GaAs structures, it is common to find both
attractive and repulsive scatterers arising from donors and background acceptors {5].

From Fig. 1 we find that when the scauering potential is attractive, the localiza-
tion length? is ~ 1550 A whereas for a repulsive scattering potential (of the same
magnitude but opposite sign), it is ~ 5500 A. In localization theory, the elastic mean-
free-path is given by the localization length divided by the number of propagatng
modes, so that the elastic mean-free-paths in the case of attractive and repulsive
scanerers are 775 A and 2750 A respectively. The dependence of the elastic
mean-free-path (and hence the mobility) on the sign of the scauering potental is
an interesting result since it is not predicted by such formatisms as Fermi’s Golden
Rule3d,

One of the most important features in Fig. 1 is the effect of evanescent modes
on the quanum-mechanically calculated resistances. The importance of these modes
has been previously discussed by Bagwell {6] and us (7). Note that for auractive
potentials, the inclusion of evanescent modes increases the resistance; whereas for
repulsive potentials, the resistance is decreased. It was shown in Ref. 6 that the effect
of evanescent states is to renormalize the coupling between the propagating states in
such a way as to increase the overall transmission in the case of repuisive scauering
potentials and decrease it for attractive potentials. Consequently, evanescent modes
increase the resistance and decrease the localization length for attractive scauerers
while doing the opposite for repulsive scatterers.

2This is the length at which the resistance crosses the value h/e? and the length dependence
changes from linear to exponential.

3This may have important implications for the mobilities of highly compensated structures
that have both d - and ptor-type impurities




Comparison of the computational costs for the study of Anderson localization
in wide structures: Before concluding this paper, we will discuss the computa-
tional costs involved in swdying problems such as the scaling theory of Anderson
localization in relatively wide structures. In doing so, we will compare the Green's
function method with the scattering matrix method in terms of their reiative compu-
tational efficiency. In the Green's function technique, one would soive the perunent
Schridinger equation on a nearest-neighbor tight-binding lattice which requires the
inversion of a N x N matrix for every impurity, N being the number of grid points
along the width of the structure. The number of grid points is proportional o the
width W so that one has to invert a matrix of size proportional to W (at a com-
putational cost ~ W3) as many times as there are impurities in the system. The
number of impurities in the system is proportional to W2. To see this, consider the
fact that the localization length increases linearly with the number of propagating
modes in the system which means that it is approximately proportional to the width.
Therefore, the length of the structure that one needs to simulate in order to observe
the onset of strong localization is also approximately proportionai to W, and conse-
quently the area (and hence the number of impurities) is proportional o W?2. The
net computational cost is therefore proportional to W3 x W2 = W3,

Let us now consider the scattering matrix technique. Here one has also to invert
a matrix of size ¥ x N as many times as there are impurities in the system, but in
this case, the number N is the total number of modes (propagating + evanescent)
required o achieve convergence. We will show that this number is independent of
the width W. To see this, consider the fact that the convergence criterion is given
by (6]
m*y

Kn =Q Wh2 (1)

where Q is a number much larger than unity, x, is the (imaginary) wavevector of the
nth (highest lying) evanescent state included in the calculation and v is the strength
of the impurity interaction potential. We therefore have

’12 T2 hz ,12 Qm.‘f 2
e = = —rp? N T— p
" ome (w) Er+ o B o ( Wh? ) )
This gives
n = N = Integer [Qm21] +1 (3)
rh

which is independent of the width W. Consequently, the size of the matrix is
independent of the width W (although the number of impurities is still proportionai to
W?), so that the net computational cost is ~ W 2. The scauering matrix technique is
therefore far superior tc Green's function techniques for simuiating transport through
relatively wide structures.
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It is well-known that the conductance of a disordered mesoscopic structure ex-
hibits sampie-specific fluctuations in a magneuc field due to quantum interference
effects [1]. The magnetic field changes the phase-relationships between the various
Feynman trajectories in the structure thereby causing the conductance to fluctuate. in
this paper, we have performed a numerical study of conductance fluctuations. Instead
of using a magnetic field, we have induced the fluctuations by randomily altering the
impurity configuration within the structure. Changing the impurity configuration has
the same effect as applying a magnetic ficld since both alter the phase-relationships
between the various Feynman paths which causes the conductance to fluctuate!. In
addition to studying the fluctuations, we have also examined the probability distri-
bution of the 2-probe Landauer conductances and caicuiated various moments of
the distribution. As expected, we find that the second moment of the distribution
(the standard dcviation or the rms value of the fluctuations) is close to the claimed
universal vaiue of e2/h (2], but its exact magnitude is somewhat affected by the
presence of evanescent states.

In the next section, we first describe our simulation procedure. We then present
results, and finally conclude with discussions about the probability distribution and
ils various moments.

Simulation Procedure: For calculating the conductance of a disordered structure, we
have empioyed the scattering matrix technique {3]. The structure that was simulated
is a 1.2 um long and 2000 A wide GaAs mesa. The Fermi energy is 36 mev and
the impurity concentration is 10'2 cm~2. The impurities are assumed to be delta
scauterers. Fifteen suubands are occupied in this structure at a temperature of 0 K.
For purposes of simulating sampies with different impurity configurations, we
have adopted the following numerically efficient scheme. Instead of varying the
configuration throughout the entire structure, we first break up the structure into six
cqually long sections. We then cascade the scauering matrices for these six sections
in all possible permutations. This procedure gives us a total of 6! = 720 different
impurity configurations, or equivalently, 720 different samples to simulate. We have

! The fluctuations caused by a varying magnetic field and by a randomly changing impu-
rity configuration are statistically equivalent in all respects. This is known as the “ergodic
hypothesis”.




then constructed histograms from these 720 samples for the 2-probe Landauer con-
ductances of the enure strucwre. From these histograms we have finaily calculated
the first six moments of the conductance distribution.

Resuits: Figs. 1(a) - 1(b) show the histograms of the 2-probe Landauer conduc-
tances when the scauering potential is autractive. The first figure corresponds to the
case when no evanescent modes were included in the simulation and the second
corresponds to the situation when 30 evanescent modes were included. Figs. 1(c) -
1(d) show the corresponding histograms for the case when the scauering potentiai is
repuisive.

Discussion: The histograms are all approximately Gaussian. The table in the last
page lists the various moments of the distribution. The moments are defined by
the retation M, = (|(G™ - (G)") I)‘/", where M, is the nth moment, G is the
conductance, and the angular brackets denote ensembie average. Note that the effect
of evanescent states is 10 decrease all the moments when the scauering potential
is auractive. On the other hand, if the potential is repuisive, the odd moments
are increased while the even moments are decreased. The origin of this feature 1s
currenuy under investigation.

The second moment of the distribution has a value ~ O (e?/h) which agrees
qualitatively with the universality theory {2]. It is interesting to note however that
the exact value is somewhat affected by the presence of evanescent states. To our
knowiedge, this is the first systematic study of the higher order moments of the
conductance fluctuations in reaiistic semiconductor structures.
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Fig 1: Histograms showing the probability distribution of 2-probe Landauer conduc-
tances. (a) and (b): the scattering potential is auractive; (c) and (d): the scattering

potential is repulsive,

Table showing the moments of the conductance distribution

Scat. potenuai Attracuve | Atracuve | Repuisive | Repuisive
No. ot prop. modes 15 15 15 15
No. of ev. modes 0 30 0 30
<G> 1884 ¢Z/h | 12.86 e2/h | 17.90 e2/h | 21.30 e2/h
2nd. moment 0.50 e?/h | 0.63 e2/h | 045 ¢%/h | 043 e%/h
3rd. moment 0.14 2/h | 031e3/h | 0.16 e*/h | 0.18 e2/h
4th. moment 0.65 ¢2/h | 083 ¢%/h | 0.60 e3/h | 0.56 e*/h
Sth. moment 029 ¢2/h | 064 ¢3/h | 029 e3/h | 043 ¢2/h
6th. moment 0.76 e3/h | 098 e2/h | 0.70 e3/h | 0.66 e2/h
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The wave functions and currents in a circuiar quantum dot in a perpendicular magnetic field are
calculated. The current in condensed (high-field) eigenstates is composed of concentric rings of
current flowing in opposite directions. The current flow near the dot center flows in the direction
opposite that expected from the Lorentz force. It is this inner circulation that is responsible for the
“reverse” current flow associated with edge states. The correspondence between the quantum-
mechanical currents and classical-particle trajectories is examined.

I. INTRODUCTION

Under a perpendicular applied magnetic field, the
unconfined states of a two-dimensional electron gas
(2DEG) form infinitely degenerate Landau levels whose
energy increases linearly with the applied field. The
Landau-level eigenstates can be thought of as localized
states corresponding to the cyclotron orbits of classical
electrons. If the 2DEG is confined further in the plane
by a potential barrier, the energy of the states near the
boundary will be altered. Further, it has long been recog-
nized that states near the boundary produce a current
which flows in a direction opposite to the circulation of
inner orbits. These edge states, and their importance as a
paramagnetic correction to the Landau diamagnetism,
were discussed by Darwin,' who considered electrons in a
parabolic confinir. ; potential for which analytic solutions
exist. Further investigation of the effects of the edge
states was done "y Dingle,’ and more recently, by Rob-
nik.}

Interest in the behavior of small systems which are
confined in three dimensions has been stimulated by the
fabrication of individuai dots and quantum-dot arrays in
semiconductors.’” ' Kumar. Laux. and Stern have solved
the Schrodinger and Poisson equations self-consistently
in three dimensions to obtain the electronic states for a
quantum dot in a magnetic field.® Maksym and Chakra-
borty have exan ned the effects of electron-electron in-
teractions in paravolic dots.”

In this paper we examine the one-electron states of a
circular dot in a magnetic field. We take a simpler ap-
proach than Ku- .ar, Laux, and Stern, using a fixed no-
tential and assum .ng compliete confinement in the plane
of the 2DEG. Attention is focused here on tne currents
induced by the applied field and the correspondence be-
tween the quantum-mechanical resuits and classical cy-
clotron orbits. Our aim is to establish the precise nature
of edge states and their relationship to the classical *'skip-
ping” orbits. The seif-consistent potential obtained by
Kumar, Laux, and Stern can be approximated by a flat
potential with parabolic walls. After examining the
hard-wall boundary case, we consider the effect of such
soft walls. The numerical approach used here is similar
to that of Stikova, Smrcka, and Isihara,'® and Weisz and
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Berggren.!! The calculation is performed in the frame-

work of a single-band effective-mass model, neglecting
electron-electron interactions and ignoring spin effects.
Resuits for the circular dot which is completely confined
in the plane are applicable directly to a cylindrical quan-
tum wire. Fabrication of such structures has been report-
ed by Reed and co-workers.’

II. THEORY

We consider the bound states of a particle in a two-
dimensional circular quantum dot with an applied mag-
netic field described by a vector potential A. The canoni-
cal momentum is given by

P=m*V+qA . (1)

The effective-mass Hamiltonian for such a particle bound
in an axially symmetric potential ¥, is

=-2—17(P—-q AR+V, . @
m

A completely unconstrained 2DEG in an appiied magnet-
ic field is described by the Landau Hamiltonian H,,

1 2
H,=——(P—qA)°. (3)
L m* q

We examine the case of a perpendicular magnetic field
B=VX A=B,Z and use the symmetric gauge for the
vector potential:

A=(—B.y/2,Byx/2,0) . @)

The Hamiltonian can then be written in the form

. 2

1 msw‘(X2+Y2)+V,,

W,

2

H= (PI+PH+—L,+
2

(5)

where L, is the operator associated with the z component
of angular momentum

L,=XP,—YP,, 6)

and

4179 ©1991 The American Physical Society
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_ —qB,

.=

7
m*

1s the cyclotron tfrequency defined so that an electron has
a positive w, corresponding to a counterclockwise orbit
in the plane.

The bound states of the quantum dot (for any field) can
be labeled by the radial quantum number #, and the an-
gular quantum number m. At zero magnetic field, the
Hamiltonian 1s symmetric under time reversal so that
E(n,,m)=E(n_,mi). The application of the magnetic
field breaks this symmetry and the energy of positive-m
states increase while negative-m states are lowered. The
perturbation is dominated for low fields by the term
linear in the field. The resulting splitting 1s due to the fa-
miliar paramagnetic interaction between a magnetic di-
pole and the applied field. As the field increases the (di-
amagnetic) quadratic term in (5), due to the induced
current, becomes significant. Negative-m states which in-
itially were reduced in energy, begin to increase and com-
bine together. undergoing a transition from paramagnetic
states to diamagnetic states at a field strength which de-
pends on m. The negative-m states which have under-
gone this transition combine with n, + 1 states with posi-
tive or zero m (states that are always diamagnetic) to
form the degenerate Landau levels (labeled by quantum
number n, ). We refer to the coalescence of these energy
levels as **Landau condensation™ after Robnik.’

III. NUMERICAL RESULTS

A. Energy levels

We begin by examining the quantum dot with infinite
hard walls. The potential V, is zero if r <R and infinite
otherwise. The effective-mass Schrodinger equation for
the Hamiltonian given by (2) was solved numerically us-
ing the finite element method. An effective mass of
0.05m, was used. The symmetric gauge given by Eq. (4)
was used. The discretization was performed on a square
49X 49 node mesh. Eigenfunctions and eigenvalues were
calculated using the subspace iteration technique for the
lowest 20 eigenstates.

Figure | shows the eigenvalue spectrum as a function
of applied magnetic field for the first 20 eigenstates. The
calculation was performed for a dot with radius R =500
A. Because all of the resuits scale with the de Broglie
wavelength of the electron, they can be represented in a
dimensionless form by appropriately scaling the energies
and magnetic fields. The eigenenergies are scaled to £,
the energy of the zero-field ground state. The magnetic
field is plotted as the dimensionless quantity

_eBnR’
h

For the 500-A dot, =35 corresponds to 9.21 T and
E,=1.8 meV.

The condensation of the bound states of the dot into
degenerate Landau levels is cleatly evident in the figure.
At every value of the applied field, n, and m remain good
quantum numbers. The components which merge to

B (8)

E/Eg

4

FIG. 1. Bound-state energy levels of a circular quantum dot
as a function of applied magnetic field, B=eBmR*/7#fi. The en-
crgies are in units of E,. the zero-field ground-state energy.

form the first three Landau levels are enumerated below:

n,=1, m=0,—1—-2,...,—»; (9)

n,=2, m=0,—1,-2,...,~o.

The condensation seen here does not occur in confining
potentials which are parabolic. In such a potential the
magnetic localization is never sufficient to isolate the
clectron from the walls. Parabolic potentials may be
more appropriate for some dot structures examined ex-
perimentally.'>!> Further, Demel et al."’ have measured
anticrossing of the energy levels in contrast to the cross-
ing behavior in Fig. 1. They interpret these results as due
to electron-electron interactions which are absent in our
model.

B. Current flow

For each eigenstate, the particle (probability) current is
calculated from the computed wave functions ¥ix,y), us-
ing the relations,

i=jotia (10)

jo=—L 1wyt —ur v, (an
2m*

jA=_l':eA|w|2 : (12)
m

These relations are for electrons and the symbol e
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represents the magnitude of the electronic charge. Writ-
ing the current this way separates the contribution of the
wave function from that of the vector potential. This
division, though gauge dependent, is helpful in under-
standing the nature of the eigenstates.

Figures 2-6 show the calcuiated current density in the
dot and the probability density .¢:* across the dot center
for several eigenstates at a tield of B =5 T (B=19). Fig-
ures 2 and 3 show the current for the m =0 and m = —2
states of the first Landau level. At this field, these states
have already condensed (i.e., become degenerate with
other states at the energy of a Landau level). Figure 4
shows the uncondensed m = —7, n, =0 level. The un-
condensed n;, =1, m =0, and m = —3 states are shown
in Figs. 5 and 6.

The current flows depicted in the figures are not all
easily explained by appealing to the usual classical-orbit
notions. The condensed m =0 state shown in Fig. 2 cor-
responds to the classical picture of counterclockwise or-
bit caused by the Lorenz force on the electron. The
negative-m state shown in Fig. 3 is somewhat more
surprising. Rather than a central, counterclockwise
current, we see a clockwise circulation in the center, sur-
rounded by a counterclockwise outer current. This is
characteristic of ail the condensed negative-m states. The
literature has frequentiy invoked the concept of “‘edge
states” which corresponds to classical orbits that skip
along the perimeter and thus carry the (particle) current
clockwise, opposite that of the counterclockwise current
induced in the bulklike central region. One might expect
to see these edge states characterized by a clockwise
current in the perimeter {edge) region of the dot. The
n, =0, m = —7 state depicted in Fig. 4 corresponds to
this idea. The uncondensed n, =1, m = —3 state in Fig.
6 should also be an edge state. Yet it has a weak perime-
ter current which is counterclockwise (bulklike) and an

probabihity

nL=0 m=0

FIG. 2. Probability currents for the n, =0, m =0 eigenstate
of a circular quantum dot. The magnetic field corresponds to
B=19.0 (B =5 T for a dot with 500-A radius). The probability
density across the dot center is shown in the upper portion of
the figure.

probability

n=0 m=-2
L

FIG. 3. Probability currents for the n, =0, m = —2 eigen-
state of a circular quantum dot. The magnetic field corresponds
to B=19.0. The probability density across the dot center is
shown in the upper portion of the figure.

interior current which is clockwise. Below, we examine
the quantum-mechanical argument for these, at first
surprising, current-flow patterns. We then discuss the
correspondence between the quantum wave functions and
the classical orbits.

The current j, can be written in terms of ¢, the com-
plex phase of the wave function, and the probability den-
sity n(r)=1{9|2,

n(r)

joln =2 AVd(r) . (13)

m.

Since each eigenstate of H is an eigenstate of L, with ei-

probability

NN - .

FIG. 4. Probability currents for the n, =0, m = —7 eigen-
state of a circular quantum dot. The magnetic field corresponds
to f=19.0. The probability density across the dot center is
shown in the upper portion of the figure.
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g? For states with m >0, both j, and j , are positive, i.e.,
2 the current flows in the counterclockwise direction. This
g is the direction in which a classical electron would circu-

L
NS P

FIG. 5. Probability currents for the n, =1, m =0 eigenstate
of a circular quantum dot. The magnetic field corresponds to
B=19.0. The probability density across the dot center is shown
in the upper portion of the figure.

genvalue m#, we can write the complex phase in polar
coordinates as &(r,9)=m¢6. Therefore,

n(r)ﬁma ' (14)

Jolr)=—;
where @ is the unit vector in the 6 direction. The zero-
field current of the eigenstate is simply a circulation
around the origin which is proportional to the angular
momentum. In polar coordinates, the explicitly field-
dependent part of the current can be written,

jalr= - eBorf . (15)

probability

FIG. 6. Probability currents for the n, =1, m =—3 eigen-
state of a circular quantum dot. The magnetic field corresponds
to B=19.0. The probability density across the dot center is
shown in the upper portion of the figure.

late in response i0 the Lorentz force from the magnetic
field. For states with negative m, however, j, circulates
in the clockwise direction. The nonzero j, is in the op-
posite direction and increases with radial distance . The
competition between these two terms resuits in the con-
centric rings of current moving in opposite senses as seen
in Figs. 3, 5, and 6. The r dependence in (15) means that
the current always flows counterclockwise at large
enough r, provided the probability density has not van-
ished. At small values of 7, the j, term must always dom-
inate and leads to the current circulating in a clockwise
sense near the dot center.

If the wall boundary at the dot perimeter were not
present, all the negative-m states would look similar to
the condensed states—a counterclockwise circulating
outer ring and a clockwise inner ring. The presence of
the wall reduces the probability density near the perime-
ter and effectively blocks the outer ring, leaving only the
clockwise inner ring. At a high enough field, the magnet-
ic field localizes the state closer to the dot center. This
“restores’ the outer ring of current by moving it inward
from the wall region and resuits in bulklike behavior.
The transition between edge states and bulk states does
not occur by shrinking a current ring going the “wrong”
direction'* and then reversing it as it comes near the dot
center. Rather it occurs by restoring a ring of current go-
ing the *“‘right” direction which has been suppressed by
its proximity to the outer edge. The circulation going the
“wrong” direction is in the center and remains there in
the condensed bulklike states.

C. Connection to classical orbits

In order to make clear the correspondence between the
quantum-mechanical current flows and classical orbits,
let us return to the case of unbound Landau levels de-
scribed by the Hamiltonian H; [Eq. (3) above]. We can
define operators X, and Y, which correspond to the clas-
sical centers of the cyclotron orbits, '’

Xo=X——l‘V,. (16)

(3

Yo=Y+, . (a7
wc

The operators ¥V, and ¥V, are defined by Eq. (1). The
operator ['? is then defined to be the operator corre-
sponding to the square of the distance from the origin to
the orbit center,

r=xi+vd. (18)

If we take the Landau-level wave functions |n; ,m)
which are eigenvalues of L,

ln,m)=yn,m) , (19)
y¥n,,m)=[2n,—m)+1]L} , (20)

where ¥ is the eigenvalue of ['? and L, =V'#/eB is the
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FIG. 7. The relationship between o, the cyclotron radius,
and v, the radius of the orbit guide center. The origin is chosen
to be the center of the quantum dot. The dot radius is R.

magnetic length. The classical cyclotron radius is
represented by the operator

SI=(X - X, P +H(Y =Y, 21
2m*
=L?,‘—;2—HL , (22)

so the eigenvalues are given by
2n,,m)=cn,,m) , (23)

*
az(n,_,m)=L,‘,2%(nL+§)ﬁwc. 24)
Figure 7 illustrates the relationship between y, o, and the
origin at the dot center. The angular momentum opera-

tor L, is related to I'? and 22 by

fi

—(22-r?), (25)
Ly

L.=

which is true classically as weil.

In the unconfined Landau system, states with negative
angular momentum correspond to classical orbits with
centers displaced from the origin. Quantum mechanical-
ly, the position of the orbit center is not well defined since
one cannot construct states which are simultaneously
eigenstates of the operators X,, Y, and H. The distance
y between the orbit center and the origin is a constant of
the motion both classically and quantum mechanically.
The cyclotron radius o 1s also a good quantum number.
The quantum wave function for a state with negative an-
gular momentum corresponds, then, to all possible classi-
cal orbits of radius o, which centers a distance y from
the origin. A circle of radius v, centered on the origin,
acts as the “‘guide center” for the classical orbits. As the
magnetic field increases, both ¥ and ¢ become smaller.
Another consequence of Eq. (20) is that states with
m =0,1,2,...,n, will also correspond to classical orbits
with displaced orbit centers.

For the confined system, H=H, +V,, and Egs. (20)
and (24) are no longer strictly valid. For states which are
already condensed and localized in the interior of the
quantum dot, they will be very nearly true. We can ap-
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(a) (b)

(© (d)

FIG. 8. Classical orbits for four increasing values of the mag-
netic field. The orbits (arrows), guide center (dotted), and dot
wall (solid) are shown. In (a) the guide-center radius is equal to
the dot radius and only a clockwise current results. As the field
increases [(b)-(d)] the guide-center radius shrinks and a coun-
terclockwise current develops around the dot perimeter, while
the clockwise current becomes localized near the dot center.
Orbits are chosen to correspond to specular reflection from the
walls.

proximate the value of the cyclotron radius for a particu-
lar eigenstate |n,,m ) of H by using Eq. (22) to define

' (E)=L}V2m*E/#, (26)

where we use for E the calculated energy E{(n,,m). The
guide-center radius can then be obtained by using (25) to
construct an approximate value,

Y(E,m)=V o'YE)-2mL} , Q@n

where again we use the calculated value of the energy.
The effect of the dot walls is then included in the raising

FIG. 9. Probability current for the n, =0, m = —4 eigenstate
of a circular quantum dot. The magnetic field corresponds to
B=11.4 (B=3T for a dot with 500-A radius). Classical orbits
calculated using Egs. (37) and (38) are superimposed on the nu-
merical solution.
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FIG. 10. Probability current for the n, =0, m = —4 eigen-
state of a circuiar quantum dot. The magnetic field corresponds
to f=15.2 (B =4 T for a dot with 500-A radius). Classical or-
bits calculated using Eqgs. (37) and (38) are superimposed on the
numerical solution.

of the eigenenergies for states which are not yet con-
densed in the center. Equations (26) and (27) reduce to
(24) and (20) with the substitution £ =(n, + L fiw..

The classical orbits for the circular dot corresponding
to quantum-mechanical eigenstates of L, are illustrated
in Fig. 8 at various stages of Landau condensation. In
Fig. 8(a), the field is low and the guide-center radius
y=R. The orbits shown correspond to specuiar
reflection off the dot walis. The current is dominantly
clockwise and characteristic of a pure edge state. The
guide circle (dotted) in Fig. 8(b) is inside the dot, but the
orbit still corresponds to a skipping orbit, reflecting off
the perimeter wall. Notice, however, that a counter-
clockwise current exist in the outer region between the
guide circle and the dot wall. The clockwise current as-
sociated with the edge state in Fig. 8(a) has moved into
the center of the dot. Figures 8(c) and 8(d) show the or-
bits as the magnetic field increases and the state becomes
more localized and condensed. The state shown in Fig.

FIG. 11. Probability current for the n, =0, m = —4 eigen-
state of a circular quantum dot. The magnetic field corresponds
to B=19.0 (B =5 T for a dot with 500-A radius). Classical or-
bits calculating using Egs. (37) and (38) are superimposed on the
numerical solution.

FIG. 12. Probability current for the n; =0, m = —4 eigen-
state of a circular quantum dot. The magnetic field corresponds
to $=30.4 (B =8 T for a dot with 500-A radius). Classical or-
bits calculated using Egs. (37) and (38) are superimposed on the
numerical solution.

8(c) is not necessarily condensed. since its energy may
still be elevated by proximity to the dot walil.

Figures 9-12 show the computed particle current for
the n, =0, m = —4 state at increasing magnetic fields.
The values of the field are B =3, 4, 5, and 8 T corre-
sponding to f=11.4, 15.2, 19.0, and 30.4. Across this
range, the magnetic field transforms the state from purely
edge-type, Fig. 9, to the nearly completely condensed
bulk-type state shown in Fig. 12. Superimposed on the
results of the Schrodinger solution are the classical orbits
calculated using Eqgs. (26) and (27). The relation between
the classical current flows due to the orbits and the quan-
tum results verifies the explanation above and demon-
strates the utility of the quantities o’ and ¥’ in describing
the confined states. Orbits computed using the
unconfined 2DEG values 0 and y yield a much worse
comparison with the calculated current patterns.

IV. SOFT BOUNDARIES

Actual quantum dots or wires would not have abrupt
hard-wall boundaries. The confining potential would be
the result of the seif-consistent solution of the Poisson
equation for the band bending inside the semiconductor.

Vi(r)

v

FIG. 13. Radial potential profile of quantum dot with para-
bolic walls.
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We present a theoretical study of a recently proposed class of quantum interfererce transistors
that utilize quantum interference effects in ultrasmall semiconductor 7 structures. Jur
analysis reveals that the attractive features of these transistors are the very low power-delay
product and muitifunctionality; whereas the major drawbacks are extreme sensitivity of the
device characteristics to slight structural variations, low gain, and low extrinsic switching
speed in digital circuits caused by a large resistance-capacitance (RC) time constant arising
from an inherently low current-carrying capability. The low switching speed of the transistors
can however be improved dramatically by switching the device opticaily rather than
electronically, using virtual charge polarization caused by optical excitation. This mode of
switching (which is possible because of the small value of the threshold voltage) eliminates the
RC time constant limitation on the switching time and resuits in an ultrafast optoelectronic

switch.

I. INTRODUCTION

Recent advances in nanolithography have made it possi-
ble to fabricate *“‘mesoscopic’’ structures with dimensions
smaller than the phase-coherence length of electrons at cryo-
genic temperatures.' In such structures, electron transport is
identicai to microwave propagation through a waveguide so
that these structures behave more like microwave or optical
networks than ordinary circuit elements obeying Kirchoff’s
laws.” Recently, this feature of electron transport has found
widespread applications in novel electronic devices that
mimic the operation of well-known optical or microwave de-
vices. One example of such a device is the recently proposed
“*‘quantum interference transistor’” or ‘‘quantum reflection
transistor’>* which mimics the operation of a stub-tuned
microwave T network.

The archetypal quantum interference transistor consists
of a T-shaped semiconductor structure, with three termi-
nals, in which the current between two terminals is varied by
a volitage at the third terminal. Figure | shows a schematic
representation of the structure. It can be delineated lithogra-
phically by patterning a 7-sha~ed mesa (on a modulation-
doped heterostructure or a quantum well) with longitudinal
dimensions (i.e., dimenstons along current flow) smaller
than the phase-coherence length of electrons, and transverse
dimensions smaller than the Fermi DeBroglie wavelength of
electrons. At low enough temperatures, only the lowest sub-
band is occupied everywhere tn the structure so that each
limb behzves as a true quantum wire or a “single-moded
electron waveguide.” Its operation as a transistor is elucidat-
ed below.

The T-shaped waveguide has three ports which we term
(in conventional device parlance) the source (), the drain
(D), and the gate (G). A negative dc potential applied at the
gate port will deplete a portion of the semiconductor under
the gate-terminal thereby effectively controiling the con-
ducting [ength of the gate arm. This is equivalent to inserting

or withdrawing a “‘stub” (stub tuning) in a microwave T’
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junction which modulates the transmission between the oth-
er two ports, namely, the source and the drain. It has been
shown in Refs. 3 and 4 that modulating the potential at the
gate indeed modulates the transmission (and hence the cur-
rent) from the source to the drain which realizes the transis-
tor action. Recently, the quantum interference effect under-
lying the operation of this transistor has aiso been
demonstrated experimentally in a modulation-doped GaAs-
AlGaAs heterostructure.’

In this paper, we have examined the device performance
of this transistor using a scattering matrix approach. Our
analysis assumes truly ballistic transport within the struc-
ture, with no scattering whatsoever—elastic or inelastic. Ab-
sence of inelastic scattering is required to preserve an elec-
tron’s phase memory so that the interference effects are not
destroyed. Absence of elastic scattering is also required in
one-dimensional structures for two reasons. Firstly, the lo-
calization length in 1d structures is the elastic mean-free-
path® so that any elastic scattering signals the onset of strong
localization which renders the device inoperable. Secondly,
even if strong localization does not set in, the presence of
elastic scatterers will cause the conductance of the structure
to exhibit sample-specific fluctuations with an rms value of
~¢*/h—the so-called universal conductance fluctuations.’
Since the maximum conductance of a one-dimensional
structure is 2e*/h, universal conductance fluctuations will
render the signal-to-noise ratio of a one-dimensional device
too poor for practical applications.” Ballistic transport is
therefore almost mandatory for the operation of one-dimen-
sional devices. It may be pointed out that this may not be too
difficult to attain at cryogenic temperatures in one-dimen-
sional structures since elastic mean-free paths can become
very long due to the one-dimensional confinement.’

Il. ANALYSIS

The T structures that we have chosen to analyze are
depicted schematically in Figs. 2(a) and 2(b). They are un-
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FIG. 1. Schematic representation of a T-structure transistor showing the
incident and reflected waves at the three terminals. The figure also shows
the two pnmary Feynman paths (dashed lines) whose interference resuits
in the modulation of the source-to-drain current.

conventional transistor structures; the source is interposed
between the gate and drain rather than having the gate in-
between the source and drain as is conventional. Moreover,
the source is much closer to the gate than to the drain for
reasons that will be clarified later. In Fig. 2(b), the gate
voltage which modulates the drain current is not applied to

— X

: :
: :
: |
| ,)
1E.(x) 4
| |

(a)

(b)

FIG. 2. (a) A single gate T-structure transistor adapted from Fig. |. The
depletion width under the gate terminai (and hence the phase-shift of an
clectron in traversing the gate arm) is varied by the gate potential. (b) A
double-gate T-structure transistor. The purpose of gate { (maintained at a
fixed potential) is to reflect an electron arriving at gate 1. The purpose of
gate 2 is to create a localized potential barrier of variable height along the
path of an electron in the gate ar n. The figures also show the conduction
band-edge profiles seen by an ele tron that probes the gate arm.
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the gate termination as in Fig. 2(a), but instead is applied to
a gate strip which creates a potential barrier of variable
height underneath the strip. This particular structure does
not operate as a conventional stub tuner. Instead, modulat-
ing the height of the barrier underneath the gate strip by a
negative gate voltage modulates the electron’s wave vector in
that region and hence the phase-shift in traveling under the
gate strip which controls the interference effect.’ This latter
structure is a modification of the original stub tuning version
of Fig. 2(a) and could provide a much lower threshold vol-
tage for turn-on and turn-off which translates into a signifi-
cant advantage in terms of switching speed and power-delay
product as we shall see later. We believe that the structures
in Figs. 2(a) and 2(b) are optimal for the quantum interfer-
ence transistor because of the following reason. It was point-
ed out in Ref. 3 that the modulation of the source-to-drain
current is primarily due to the interference of two Feynman
paths—one going directly from the source to the drain and
the other going via the gate. These two paths are shown in
Fig. 1. It is advantageous to make the magnitudes of the
transmission coefficients of these two paths as equal as possi-
ble (over a wide range of electron wave vector) in order to
obtain the best interference effect.'” This can only be
achieved by making the two paths as identical as possible.
Note that in both Figs. 2(a) and 2(b), the two Feynman
paths have almost the same path length (which was achieved
by placing the source much closer to the gate than to the
drain) and both paths have to bend around *‘corners™ so that
the transmission probabilities of these two paths will be ap-
proximately equal over a wide range of wave vectors.'! This
ensures the strongest possible interference effect.

To analyze the structures, we start with the scattering
matrix for a three-port network. We assume that the trans-
mission probabilities of **.e two Feynman paths discussed in
the previous paragraph are equal. This is equivalent to as-
suming that the source-to-urain transmission is equal to the
source-to-gate transmission, if the gate is perfectly reflect-
ing. If this assumption holds, then without any loss of gener-
ality we can represent the scattering matrix of the structure
by the so-called Shapiro matrix.'? The Shapiro matrix re-
lates the incident and reflected electron wave amplitudes at
the source, gate and drain ports according to (see Fig. 1).

S- —(@a+b) Je* Je*'\fs*+
D- = VrE a b. D* y (l)
G_ \/—E- b a G+

where the asterisk denotes complex conjugate.

The requircments of current conservation and time-re-
versal symmetry mandate that the Shapiro matrix be uni-
tary. This gives rise to the following relations between the
elements of the matrix

b—a=¢e" (2)

v=m-~ sin"'[sina

x(l — lel —‘fl — ilej — |€|zt8n7a)°'5]

3)
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where a 1s the phase of the element g in the Shapiro matrix
and obeys the inequality

1 —2lel — 1€" tan” @ >0. (5)
We have derived Egs. (3)~(5) in the Appendix using only
the unitarity of the Shapiro matnx.

If the wave amplitudes G = and G ~ at the gate port are
related according to

G =RG ", (6)

where R is the reflection at the gate, then the transmission ¢
from the source to the drain (which determines the source-
to-drain current) is given by’

t=Je +b[R/(1 - Ra))|e. (7
Using Eq. (2) to relate b to a, we obtain
t=ye [(1 + Re™)/(1 — Ra)). (8)

We assume that the reflection coefficient R has a magni-
tude of unity. This will be true if the gate impedance is infi-
nitely high. The gate impedance will be infinitely large if the
depletion layer underneath the gate in Fig. 2(a) [or the gate
termunation in Fig. 2(b)] is wide enough that tunneling
through the layer is negligible. The variable phase of the
reflection coefficient R is denoted by 8 which is controllable
by the gate potential. For the structure in Fig. 2(a), 8 is
given by’

6=2k [Ld(O) - Ld(V(,‘)]
= 2(y2m*E /R) [L,(0) — L, (V()), (9

where L,(V;) ‘s the gate-voltage-dependent depletion
width under the gate. For a Schottky gate, it is given by"?

Lr/(V(;)z\»[ZK(Vm+V(;)/€N.-, (10)

where ¥, is the Schottky barr..r height at the gate, N, is the
carrier concentration, « is the dielectric constant and ¥ is
the gate potential

For the structure in Fig, 2(b),

0=2[k(0) —k(V;)]L;

I E (ImE—Vg)
=z( 2'";“5’ S i (ﬁ “))LG, (n

where L ; 1s the width o .ne gate strip and kK ( V;) is the gate
voltage dependent electron wave vector under the gate strip.

Substituting R = ¢ in Eq. (8), we finally obtain an
expression for the total transmission ¢ through the structure

l=v@[(l+e"”"’)/(1—|a|e""”")]. (12)

Note that the transmission 7 is a function of the electron
energy £ as well as the gate voitage V; since @is a function of
both these quantities.

From the transmission ¢, we can calculate the source-to-
drain current [;, as a function of the gate voltage ¥ for
various source-to-drain voltages ¥, . We use the Tsu~Esuki
formuia'* which gives
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Iy = Zh—edelt(E,VG)Iz[f(E) ~E +eVip)],
(13)

where f is the Fermi-Dirac factor. The Fermi energy E, is
obtained by assuming that the Fermi wave vector & is relat-
ed to the volume carrier concentration N, as k. = 7n,;/2
=1wN.A./2, where n, is the carrier concentration per unit
length and A, is the cross-sectional areas of the quantum
wires constituting the 7 structure. In all our simulations, the
area A is assumed to be 100 A X 100 A.

At low enough temperatures and for small source-to-
drain biases, Eq. (13) reduces to the familiar single-channel
2-probe Landauer formula

Gsp = (26/M)|H(EV ;)|

_ Bee? cos’[ (8 + v)/2]

T h 1-2alcos(8 +a) + la}?’
where G, is the source-to~-drain conductance in the linear
response regime. In deriving the last equality, we have used
Eq. (12) to substitute for the transmission .

Equation (14) shows explicitly that G, is an oscilla-
tory function of 4. By varying @ with a gate voitage we can
make the conductance oscillate as the gate voitage is
scanned. This realizes the transistor action. Figure 3 shows
Gsp as a function of &; the device is “on"” when 6 is an even
multiple of 7 and it is *‘off”” when 8 is an odd muitiple of 7.

(14)

lil. SENSITIVITY OF THE DEVICE CHARACTERISTICS
TO SLIGHT STRUCTURAL VARIATIONS—
IMPLICATIONS FOR INTEGRATED CIRCUITS
APPLICATION

In this section, we examine the dependence of the
source-to-drain conductance G on various elements of the
Shapiro matrix that characterize the structure. From Eqgs.
(14). (3), and (4), we find that Gsp, at any value of 6,
depends on two basic parameters: € and a. Note that € is
indicative of the transmission probability from the source to
either the gate or the drain. Its maximum value of 0.5 corre-
sponds to perfect transmission from the source to the drain
and to the gate (i.e., a perfectly “‘transparent’” source) and

Gsole®)

0 B N S § L
‘°%.oo 2% $.00 7.0 10.00 12.80

Gate voitage-dependent phase shift, @ (rad)

FIG. 3. The linear response source-to-drain conductance G, as a function
of the gate voltage-dependent phase-shift 6. This curve was obtained from
Eq. (14). The parameter € was 0.5 and a was #.
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its minimum value of O corresponds to no transmission from
the source (i.e.. a pertectly “opaque” source). The param-
eter a, on the other hand. is the phase of the internal reflec-
tion within the gate or the drain arm.

Both € and a depend on the electron’s wave vector or
energy (which, in turn, depend primarily on the doping) as
well as the precise dimensions and geometry of the structure.
In other words, they are structural parameters characteriz-
ing the given structure. They can be calculated exactly by
solving coupled Schrodinger-Poisson equations and calcu-
lations of this type have been performed in Ref. 3, 4, and 15.
In this paper, instead of calculating these parameters exact-
ly, we demonstrate instead how sensitive the device charac-
teristics are to these parameters. This has implications for
integrated circuits applications.

In Fig. 4, we show the amplitude of the source-to-drain
conductance oscillation (which is the maximum “‘on-con-
ductance” of the device) as a function of & and €. A curious
feature that emerges from Fig. 4 is that, contrary to intuitive
reasoning, the maximum amplitude of the conductance
modulation (or the maximum on-conductance) is not ob-
tained with a perfectly transparent source (i.e., when
€ = 0.5). Instead, 1t is obtained when € = 0.445. This is more
evident from the inset of Fig. 4 which shows Gsp(max)asa
function of € for @ = 7. Since it is always desirable to have
the “on-conductance” of the structure as large as possible in

= 2
&~
AN
e 15 } 1
5o | |
0.5 4
g
0
3
0 € 05

Gsp (max) (e%h)

o

FIG. 4. The maximum source-to-drain conductance Gepy (max) (or the
*‘on” conductance of the transistor as a function of ¢, the transmission prob-
ability from the source to either the gate or the drain, and a, the phase of the
internal reflection within the gate or the drain arm. The inset shows
Gsp (Mmax) asa function of € for @ = n., The plateau region in this plot corre-

sponds to those values of a and € that are forbidden by the condition in Eq.
(5). This plot is symmetnc about the a = 7/2 piane.
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order to achieve the largest current carrying capability,'® it
appears that a perfectly transmitting source does not opti-
mize the device performance. Instead, some amount of re-
flection at the source is desirable.

A much more important feature to glean from Fig. 4 is
the extreme sensitivity of G, to the structural parameter a.
The on-conductance G, varies by almost 1009% when a
varies over a range of 7/2. This can have a catastrophic ef-
fect in integrated circuits. The parameter @, which depends
on the precise dimensions of the T'structure and the electron
wave vector, can vary significantly across a wafer. Conse-
quently, different devices on a wafer will exhibit widely dif-
ferent behavior. For a typical carrier concentration of
1 X 10°/cm, the Fermi wavevector is 1.57 X 10°/cm, so thata
variation of just ~50 A in the dimensions of the structure
alone can cause & to vary by + 7/2. This then causes the on-
conductance Gsp, (and hence the output current for individ-
ual devices) to vary by almost 100% which renders integrat-
ed circuit implementation impossible. Suffice it to say then
that the quantum interference transistor would be difficuit
to implement in integrated circuits where a ~ 50-A variation
in feature size from device to device is expected, even when
the entire wafer is patterned by sophisticated techniques
such as electron-beam or x-ray lithography.'’

The extreme sensitivity of device characteristics to
structural parameters is a serious drawback for some quan-
tum devices and may at present preciude their application in
integrated circuits.'® It is probably true that quantum de-
vices are not ideally suited for applications in integrated cir-
cuits given the present state of fabrication technology; how-
ever, “integrated circuits” do not constitute the only
application of electronic devices. Some quantum devices are
capable of performing exceedingly well as discrete elements
for specific applications. In these applications, their perfor-
mance can sometimes supercede the performance of more
traditional classical devices. In the next sections, we examine
the performance of a quantum interference transistor as a
discrete circuit element by first studying its device character-
istics and then identifying some promising applications.

IV. DEVICE CHARACTERISTICS OF THE TRANSISTOR

In this section, we examine the device characteristics of
a quantum interference transistor. Figures 5(a) and 5(b)
show the transfer characteristics (drain current versus gate
voltage) for the structures in Figs. 2(a) and 2(b), respec-
tively. The ambient temperature is assumed to be 4.2 K and
the material is GaAs. These curves were obtained directly
from Eq. (13). We assumed the drain bias ¥, tobe 10 mV.
At this bias, a ballistic electron arriving at the drain has an
excess kinetic energy of 10 meV, which, although weli below
the threshold for polar optical phonon emission, will still
raise the electron temperature to ~ 115 K. At this tempera-
ture, significant electron-electron scattering (which is the
dominant phase-randomizing inelastic process in these
structures ) can occur. The mean time between electron-elec-
tron collisions in one-dimensional structures depends in-
versely on the square-root of temperature.'’ Electron-elec-
tron scattering times of ~1 ps have been measured in
relatively heavily doped GaAs structures at 4.2 K.?° We
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FIG. 5. The transfer charactenstics (drain current vs. gate voltage) for (a) the structure in Fig. 2(a), and (b) the structure in Fig. 2(b). The characteristics
in Fig. 2(a) are plotted for three different carrier concentrations. The ambient temperature is assumed to be 4.2 K and the source-to-drain voitageis 10 mV.

For these plots, the parameter € was assumed 10 be 0.5 and the phase @ = .

therefore expect the scattering time at a temperature of 115
K tobe ~ 10" s. For a carrier concentration of 10’ cm “ ',
the Fermi velocity is ~ 10* cm/s, which gives an electron-
electron scattering mean free path of ~ 1000 A at a drain
bias of 10 mV. This feature size is at the limit of present day
lithographic capability, so that realisticaily, 10 mV is about
the largest drain bias that can be applied in these structures.

Returning to Fig. 5(a), we find two salient features.
Firstly, the gate voltage required to induce one cycle of the
oscillation decreases with increasing carrier concentration
N.. This is easily understood from Egs. (9) and (10). To
induce one cycle of the oscillation, the phase-shift @ has to be
changed by 27. We find from Eqgs. (9) and (10) that the
quantity 30 /¥ increases as ~ [N, since the wave vector
k increases linearly with N, while L,(V;) decreases as
~1/{N_. Consequently, a smaller gate voitage is required
to induce a change in @ by 27 if N, is larger. The second and
perhaps the more important feature in Fig. 5(a) is that the
peak-to-valley ratio of the drain current increases with in-
creasing carrier concentration. Although not shown in Fig.
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5(b), this is actually true of Fig. 5(b) as weil. This can be
understood as follows.

The current modulation in this structure is due to quan-
tum interference and therefore depends critically on how
tightly the phase-shift @ can be controlled. The phase-shift 8
depends on the electron’s energy. At nonzero temperatures,
the thermal spread in the electron’s energy introduces a
spread A@ in the phase-shift. If A8 is large, the interference
effect is washed out by thermal ensembie averaging. The
smaller the value of A at a given temperature, the stronger
is the interference effect and the larger is the conductance
modulation or the transconductance.

From Eq. (9), we find that for the structure in Fig. 2(a)

AG =24k [L,(0) — L, (V)]

]
=2 ’:;sz [L(0) = Ly(Vo)]
L ]
=2 2;"”:,7 (L) — L (V)] (15)
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where AE is the thermal spread in energy (=~k7T) and n, is
the electron concentration per unit length.
For the structure in Fig. 2(b)

A0 = VZm"kT( 1 1 )L
- — T G
2 V‘EF \Er —eVg

bl 3
= 2mkT (1 Y
mhn,

From Egs. (15) and ( 16), we can see that for both struc-
tures, A9 decreases with increasing carrier concentration
n,.*' A larger carrier concentration therefore gives rise to a
smaller A6 at a given temperature and provides a larger cur-
rent modulation or a larger peak-to-valley ratio of the drain
current. This, combined with the fact that the gate voitage
required to induce one cycle of the oscillation also decreases
with increasing carrier concentration, means that the trans-
conductance g, ( = dlsp/dV;) increases with increasing
carrier concentration. It appears from Fig. 5 that an operat-
ing temperature of 4.2 K, we require a volume carrier con-
centration of 10'°cm * (which corresponds to a linear car-
rier concentration of 10’ cm ' assuming the cross-sectional
areaof the structure to be 100 A X 100 A ) in order to obtain a
sufficiently large transconductance. However, even at this
large carrier concentration and low temperature, the actual
value of the transconductance is rather smalil; it is only about
10~° Siemens. This obviously has a deleterious effect on
device performance and lowers both the smail-signal gain
and the bandwidth significantly. We will examine the cause
for the small value of the transconductance Jater.

In Figs. 6(a) and 6(b), we plot the drain characteristics
(drain current versus drain voltage) for the structures in
Figs. 2(a) and 2(b) for various gate voltages. The most im-
portant feature to note here is that the drain characteristics
do not saturate up to the maximum ailowed drain voltage of
10 mV. This has very serious implications for device applica-
tion. Because of this feature, 1t may be argued that it is not
even meaningful to specify a transconductance for this de-
vice, since the transconductance is not constant over any
appreciable range of the drain voltage or output voltage
swing. More importantly, it also implies that this transistor
is not suitable for conventional applications requiring signal
amplification, since it is not possible to provide a constant
amplification over any range of the input signal. This is a
pathological problem with quantum devices that are con-
strained to operate in the linear response regime in order to
avoid carrier heating. For signal amplification, a device must
operate in the nonlinear response regime in the sense that the
drain current must saturate. This can be achieved by lower-
ing the carrier concentration in this structure (the drain
characteristics do tend to saturate if the carrier concentra-
tion is less than 10'” cm ), but this aiso lowers the trans-
conductance drasticaily. This means that even if the drain
current can be made to saturate so that the differential drain
resistance 7, ( = d¥,p/dlyy ) is large, the transconductance
8., would still be very small so that the overall small-signal
voltage gain a,( =g, 7,) will not be sufficiently large for
signal amplification. In summary, this transistor is not suit-
able for applications requiring signal amplification.
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FIG. 6. The drain current vs drain voltage charactenstics for various gate
voltages plotted for (a) the structure in Fig. 2(a). and (b) the structure in
Fig. 2(b). The ambient temperature s 4.2 K and the carner concentration is
10"*cm . For these plots, the parameter € was assumed to be 0.5 and the
phasea = .

V. ANALOG APPLICATIONS

Even though the T-structure transistor is not suitable
for application as an analog amplifier, there are other appli-
cations for which it may be ideal. One obvious application is
in frequency muitiplication. Since the gate voitage swing re-
quired to make the drain current go through one cycle of
oscillation is rather small, this transistor can be used as a
single-stage frequency multiplier in the following way. If we
apply a sinusoidal voltage of peak-to-zero amplitude ¥ and
frequency f at the gate, and the gate voitage swing required
for one cycle of drain current osciilation is ¥,, then the fre-
quency of the drain current oscillation willbe (¥ /¥, )f. This
can be understood by referring to Fig. 7 where one cycle of
the gate voltage swing results in three cycles of the drain
current oscillation. The frequency multiplication factor N is
simply given by

N=V/V,. (17)

For a carrier concentration of 10'° cm ~*, ¥, =300 mV for
the structure of Fig. 2(a) and 540 mV for the structure of
Fig. 2(b) if the gate width is 100 A. Hence for a gate voltage
amplitude of 10 V, the frequency multiplication factor is
~20-30. Note that ¥, scales inversely as the gate width for
the structure in Fig. 2(b), so that we can decrease ¥, and
hence increase the frequency multiplication factor by mak-
ing the gate width larger. However, this will make the entire
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structure larger which will then necessitate decreasing the
source-to-drain voltage in order to increase the electron
mean-free-path.

Of course, there 1s a maximum limit on the frequency of
the input signal that can be applied at the gate. The gate
charges up in a time determined by the RC time constant
associated with the charging of the gate capacitor so that the
maximum input frequency is

-/"Illlll = l/(Z”RC)’ (18)

The RC time constant should be interpreted as the time
required to charge the gate capacitor to a voltage ¥ with a
current /, i.e.,

1 RC
V=— f ldr (19)
G b
If we assume the current / to be time-independent, then
RC=CVv/I (20)
with C, being the gate capacitance given by
C,=A.exN./2V,, . 20

The current / in Egs. (19) and (20) is the gate current. For
calculating the unity gain bandwidth, we set it equal to the
dratin current so that maximum value of / is

I = (2¢*/h)V,(max). (22)
Combining Egs. (18), (20), (21),and (22), we obtain
& 2V, Vy(max)
e = : 23
/i mhA exN. 14 (23)

Finally, from Eqgs. (17) and (23), we find that the maxi-
mum output frequency of the device (for unity current gain)
is

fT =fmu = Nﬁimn = ( V/Vp )/;imn' (24)

Using Eqgs. (9), (10), and (11) to substitute for ¥, in the
above equation, we find that for the structure in Fig. 2(b), fr
is given by

im*e’L; 2V, A,

= fon = V,(max), (25)
fr=f Th A(n,)>? ex o (
whereas for the structure in Fig. 2(a), f; is given by
e At ,\*D(max)
=Jman = —V ax) ~ —————, 26
fr=t. 2ok A Pl e (26)

where A, is the cross-sectional area of the 7T structure.
Assuming L; = 100 A, 4 = 100 A X 100 A, 4, = 100
AX100A,V, =0.6V,n, =10"cm 'and ¥,(max) = 10
mYV, we obtain a value of /.. = 100 GHz for the structure in
Fig. 2(b) and =400 GHz for the structure in Fig. 2(a).
These figures are certainly impressive, but not significantly
larger than the largest bandwidths that have been obtained
with more conventional devices such as InAlAs-InGaAs
HBTs.?? pseudomorphic InGaAs HEMTs,?* GaAs MES-
FETs,** GaAs Gunn oscillators*® and resonant tunneling
diodes.’® What limits the maximum frequency of the 7-
structure transistor ultimately is the low current carrying
capability. This can be seen directly from Eq. (26). The low
current carrying capability is caused by the rather low con-
ductance of 2¢’/h ( = 7.8 X 10~ * S) along with the rather
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low limit on the maximum drain voitage of ~ 10 mV. In
addition to decreasing the bandwidth of the transistor. the
low current carrying capability also lowers the transconduc-
tance g,, and hence the transistor gain.

Although the bandwidth of this transistor is not specta-
cularly high, what is impressive about the device is the multi-
Junctionality implicit in its use as a single-stage frequency
muitiplier. Conventional frequency muitipliers require more
than one active element, whereas this transistor provides fre-
quency multiplication in a single stage thereby replacing an
entire circuit by a single element. This muiti-functionality,
which is exhibited by many quantum devices,”” is a very
important attribute and has serious implications for the ulti-
mate viability of these devices. Since quantum devices are
not ideally suited for use in integrated circuits or circuits
with many active elements, one can exploit this kind of
multi-functionality to realize the function of 2 muiti-element
circuit without using more than one element. It is this multi-
functionality that appears to be the most attractive feature of
quantum devices at present.

VI. DIGITAL APPLICATIONS

We now examine the performance of the T-structure
transistor for discrete iogic applications. The non-saturating
behavior of the drain characteristics poses a problem here as
well since signal restoration at logic nodes, sufficient noise
margin and sharp transitions between logic levels all require
saturating (nonlinear) devices with preferably high trans-
conductance. However, for very low-power logic and under
rather low-noise operating conditions (low temperature), it
may be possible to use the T-structure transistor as a discrete
logic switch for digital applications. There are three basic
requirements that such a switch has to satisfy: (1) The ratio
of the “on" to “off’ conductance must be sufficiently large
so that there are well-defined logic levels. (2) The switching

Drain Curtent

Gaie Voltage Swing

FIG. 7. Figure elucidating the application of a T-structure transistor as a
single-stage (requency multiplier. A singie swing of the gate voltage causes
the drain current to swing over J cycles resulting in a multiplication of the
input frequency by a factor of 3.
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speed must be high. (3) The power-delay product must be
low.

From Fig. 5 we find that in order to sausty the first
requirement, the carner concentration must be at least 10'°
cm “°. We have therefore used this value of the carrier con-
centration to calculate the switching speed and power-delay
product.

In calculating the switching speed, we first recognize
that there are three time constants involved in switching.
The gate charges up to the threshold voltage in a time deter-
mined by the RC time constant. the barrier in the device
responds to the gate potential in the dielectnc response time
and the drain (output) current responds on timescales of the
order of the transit time through the device. Of these three
time constants, the dielectric response time is much smaller
than the other two, so that the switching time is determined
primarily by the other two time constants.

The transit time through the structure is essentially the
time required to traverse the longer of the two Feynman
paths in Fig.1. Assuming this path length L to be ~ 1000 A,
we obtain

Trranm = L /0 =0.1 ps, (27)

where we assumed the Fermi velocity v, to be ~10*cm !
which is the limit set by Bragg reflection in GaAs.

The RC time constant is obtained as in the previous
section

TRC=C3V,/1. (28)

[tis important to note that the RC time constant depends on
the threshold voltage V,. The lower the valueof ¥, the lower
is the value of the RC time constant. The low values of
threshold voltages in quantum devices partially offset the
low values of the current / that can be sustained in these
devices to yield a small enough RC time constant. From
Figs. S(a) and 5(b) we find that the drain current can be
changed by more than 90% if the gate voltage is changed by
= 100 mV. Hence the threshold voltage ¥, ~ 100 mV. Using
this value of ¥, along with the values of / and C, from the
previous section, we obtaina RC time constant 7, of ~0.15
ps. The overall intrinsic switching delay of the transistor is
therefore ~0.1 ps. This is faster than the switching speeds of
the fastest electronic devices that currently exist.**

The small value of the switching delay accrues primarily
from the small threshold voltage and the small gate capaci-
tance. The gate capacitance was calculated from Eq. (21) to
be ~10~'® F. While such small discrete capacitors have
been realized in Coulomb blockade experiments,? it is un-
likely that when interconnects are attached to the device, the
overall gate capacitance (including that due to the intercon-
nects) will be that small. A more realistic estimate for the
overall capacitance (including the effect of interconnects) is
~10-'"* F. We therefore estimate that while the intrinsic
switching delay is smaller than 1 ps, the extrinsic switching
delay may actually exceed 100 ps. What limits the extrinsic
switching speed in this case is the extrinsic RC time constant
of the gate interconnects. In the next section, we propose a
way to overcome this limitation by switching the device opti-
cally rather than electronically, thereby eliminating the RC
time constant limitation associated with gate charging. This
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scheme of switching cun provide an ultrafast optoelectronic
switch.

Before concluding this section, we briefly examine the
power-delay product of the T-structure transistor. The pow-
er-delay product is estimated as

PDP=C, V. (29)

For the structure of Fig. 2(b), this gives an intrinsic vaiue of
5x 107 ' J. Even if we include the effects of interconnects
and raise the value of the gate capacitance to | fF, we still
obtain a value of 5X 10~ '® J which is undoubtedly impres-
sive and i1s comparable to that of Josephson junctions. This
extremely low power-delay product accrues primarily from
the small value of the threshold voltage. We therefore con-
clude that the T-structure transistor, despite its low switch-
ing speed, can still exhibit a power-delay product lower than
that of most electronic devices that currently exist.

VII. OPTOELECTRONIC APPLICATIONS

In this section, we examine the viability of switching the
T-structure transistor optically, rather than electronically,
in order to eliminate the RC time constant limitation on
switching and realize an ultrafast optoelectronic switch. Re-
cently, it was pointed out that an optical radiation field, with
a frequency lower than the band-gap irequency, can induce
virtual charge polarization due to virtual transitions
between electron and hole states in a quantum confined
structure.’® The field associated with this charge polariza-
tion may be sufficiently large to generate the smail voltage
required for switching a T-structure transistor. [t is impor-
tant to note that this voltage is not generated electronically,
sothat thereis no RC time constant limitation on the switch-
ing.’! Instead, the voltage is generated on time scales deter-
mined by the pulse width of the optical pulse and inherent
time response of the virtual charge polarization mechanism
which is expected to be ~ 100 fs.*” This time scale is compar-
able to or smaller than the transit time through the 7 struc-
ture, so that the overall switching speed will be of the order
of the transit time which can be made small enough ( ~ 1 ps)
by making the structure short.Using this scheme, one can
therefore realize an ultrafast optoeiectronic switch.

We now examine any modifications that would be nec-
essary to convert the T-structure transistor into an optoelec-
tronic switch. It was calculated in Ref. 30 that for a reasona-
ble laser pump power density of 10* W cm -, the screening
field generated by virtual charge polarization is ~0.5
kV/cm for an optical detuning energy of SO meV, when the
structure is biased with a dc field of 10° V/cm along the
direction in which the screening field is created. Since a laser
spot can be focused to an area of | um-, the required pump
power can be provided by a 1.W laser. For a T-structure with
a vertical dimension of 200 A, the required dc bias of 10°
V/cm can be obtained by applying a constant voltage of 200
mYV across the vertical dimension. With this arrangement,
the voitage generated by the screening field will be 0.5
kV/cmx 200 A = | mV, If the threshold voltage for switch-
ing can be lowered to this value, it will be possible to switch
the transistor optically and realize an ultrafast optoelec-
tronic switch.

Subramaniam, Bandyopadhyay, and Porod 4868




To attain a threshold voltage of | mV while maintaining
a carrier concentration of 10'*cm “*, we need to increase the
width of the gate strip in the structure of Fig. 2(b) to ~4000
A [see Eq. (11)]. This will of course also necessitate increas-
ing the source-to-drain separation, to about | gm, which in
turn would necessitate reducing the drain voltage to about |
mYV in order to increase the mean-free-path for electron-elec-
tron scattering. This low value of the source-to-drain voltage
does not present any special problems for switching applica-
tions since even with this small drain voltage, the drain cur-
rent can swing over a range of ~ (e°/h) V5, = 40 nA which
can be detected by sensing amplifiers.

We therefore conclude that it is possible to use a T-struc-
ture transistor to realize an ultrafast optoelectronic switch.
A prototypical structure for such a device will consist of the
configuration shown in Fig. 2(b) with the entire top surface
covered with an optically opaque material leaving a trans-
port slit of width ~4000 A in the place of the gate strip.
Since the vertical dimension of the structure is only about
200 A, we can neglect the effect of diffraction through the slit
and assume that incident radiation absorbed through the slit
will create a localized potential barrier underneath the slit
which can switch the transistor from an “‘on” to an “off”
state or vice versa. The effective switching speed will be of
the order of the transit time through the structure, which, for
a 1-um-long structure is ~ | ps. This is an attractively high
switching speed.

VIIl. CONCLUSION

In this paper, we examined the device performance of
quantum interference transistors utilizing ultrasmall semi-
conductor T structures. OQur analysis revealed both the
shortcomings and the attractive features of these transistors.
On the negative side, the major hurdle appears to be the lack
of control over device characteristics (or their irreproducibi-
lity ) which accrues from the extreme sensitivity of the device
characteristics to small structural vanations. At presen.,
this may preciude the use of these devices in integrated cir-
cuits. However, this is a technological problem and newly
emerging technologies such as scanning tunneling micros-
copy tools for lithography may make it possibie in the future
to exercise tighter control over device dimensions which wiil
mitigate this problem to a large extent.

On the positive side, quantum devices exhibit muiti-
functionality and in some instances are capable of pertorm-
ing the functions of an entire circuit within a single element.
This is a major advantage-—both in terms of circuit size and
speed—and needs to be investigated further. The power-de-
lay product for these transistors can aiso be very low due to
the small threshold voltages. Finally, the small value of the
threshold voltage opens up the intriguing possibility of
switching these devices optically rather than electronically
thereby eliminating the RC time constant limitation on
switching. In view of all these, it appears that although there
are some serious drawbacks, there is still enough promise in
quantum interference transistors to warrant serious consi-
deration.
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APPENDIX

In this appendix. we derive the relationships between
the various elements of the Shapiro matrix using only the
unitarity of the matrix. The Shapiro matrix is given by

—(a +b) vg €*

V€ a b*
Je b a
From orthogonality of the various columns,
l€| + ab + ba* =0. (Al)
Using the relation
b=a+e", (A2)
we obtain from Eq. (A1)
€| +a(a +¢€") +a*(a +¢") =0. (Ad)
Let a = |a|e'. This reduces the above equation to
l€| + la|*(1 + e?*) + |lg|e"2 cosa =0, (A4)
or
l€] + |a]*[1 + cos(2a) + isin(2a) ]
+ {a|2 cos a(cos v + isin v) =0. (AS)

Equating real and imaginary parts to zero, we obtain
|a|sin @ cos a + sin vcos a =0,
|€] + 2la)®cos® @ + 2|a|cos @ cos v = 0. (A6)

Assuming a # 7/2, the first of the above two equations gives
— |a|sin a@ = sin v, (A7)

and the second gives
l€] + 2|a)? cos® @ + 2|ajcos ayl — [a[*sin"a=0. (A8)
Transposing and squaring Eq. (A8), we get
l€]? + 41a]* cos® a + 4|€}|a|® cos* a

= 4laj? cos? a(l — |a|’sin’ a), (A9)
or

la]* + |a|>(Je!' = 1) + |€]*/4 cos’ a = 0. (A10)
The solution of the last equation is

1~ le] + V1 + |€]” = 2[¢] — |e|*sec" a
> .
Since |a| cannot be greater than 0.5 (otherwise ihe uni-
tarity of the Shapiro matrix will be violated), we can admit
only the root with the negative value of the radical. There-
fore,

la|? = (All)

1—|e|—-\/l—22|e|—|e|‘tan:a . (A12)
Combining Eqs. (A7) and (A12), we get

la|* =
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L - . ~ as
o t—tlei =yl =2 — e tan"a .
v = sin sina [,

3
(Al3)

or

v=1r—sin"[sina

| — el =T ——r—T—\0$
X( l€] — + 22ld €/° tan a) ] (A14)

The second solution for v is the one that preserves the unitar-
ity of the Shapiro matrix, so that v is given by Eq. (A14).

Referring back to Eq. {A12), we find that |a| (which is
the “magnitude” of a quantity) has to be real, the phase a
cannot be chosen arbitrarily. We therefore have to enforce
the condition that the discriminant in Eqs. (A12) be posi-
tive, i.e.,

1 — 2le| — |€j* tan® a>O0. (A15)

The three pertinent relations relating the elements of the
Shapiro matrix are therefore

1 — le] — 1 —2]e] — le” tan®
!a|2= 'l v 7[, 6‘ an a' (Al6)

A

v=1r—sin"[sina

l— _ — _ 4 T 0.5
x( le] — yT = 2[e] = [€]” tan a) ] (ALT)
2
1 — 2|e| — |€]* tan® @>0. (A18)
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QUANTUM DEVICES BASED ON PHASE COHERENT LATERAL
QUANTUM TRANSPORT!
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Phase-coherent lateral transport phenomena hold the promise for many new types
of “quantum devices” with vastly improved performance over conventional de-
vices. In this paper, we address the performance of lateral quantum devices in
which current flows parallel to the interfaces of a heterostructure. In particular, we
focus on two specific devices, namely the Aharonov-Bohm interferometer and the
recently proposed Quantum Diffraction Transistor, which have ultrafast extrinsic
switching speed and a tremendous potential for multi-functionality.

[. INTRODUCTION

Over the past few years, numerous novel electronic devices have been pro-
posed or demonstrated whose operations rely entirely on quantum transport phe-
nomena. The most widely studied member of this class is the resonant tunneling
diode in which electron transport occurs perpendicular to the interfaces of a het-
erostructure and the current depends on the interference of waves multiply reflected
by heterobarriers. More recently, a different genre of devices has emerged (which
we refer to as lateral quantum devices) in which current flows parallel to het-
erointerfaces. The inherent advantage of these devices is that the current levels in
them can be much higher, which translates into a significant advantage in switch-
ing speed when the device is used in an integrated circuit. In “vertical quantum
devices”, such as the resonant tunneling diode, the current levels are typically low
since the current is predominantly due to tunneling through large potential barri-
ers caused by band-edge discontinuities. In contrast, there are no large potential
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barriers in lateral quantum devices so that the current levels are generally much
higher.

In an integrated circuit chip, the switching speed of a device is determined
not so much by the intrinsic speed of the device, but rather by the time it takes to
charge and discharge the interconnect and device capacitances. This time depends
on the current that can be supplied to the capacitances and the (threshold) voltage
levels to which the capacitances must be charged. Roughly speaking, the extrinsic
switching time T, is given by

__C%
s - I )

where C) is the total circuit capacitance, V; is the threshold voltage and [ is the
current?.

It is advantageous to employ such quantum devices in integrated circuit chips
that have very low threshold voitages and can carry relatively large currents so that
the extrinsic switching speed is high. Lateral quantum devices, whose operations
depend on phase-coherent lateral transport, are superior in this respect. They
not only exbhibit larger current carrying capability, but can also have very small
threshold voltages®. Consequently, the extrinsic switching speed of lateral quantum
devices is usually much higher than that of vertical quantum devices.

In the following Sections, we discuss the performance of two different classes
of lateral quantum devices. They are the Aharonov-Bohm interferometer and the
recently proposed Quantum Diffraction Field Effect Transistor {1].

(1)

A. The Aharonov-Bohm interferometer

In the Aharonov-Bohm interferometer, electrons in two contiguous paths are
made to interfere by an external electrostatic potential which modulates the cur-
rent. If the interferometer is two-dimensional, which means that each path is a
two-dimensional structure (viz. a quantum well), then the current can be made
arbitrarily large by increasing the transverse width of the structure. This may result
in certain advantages, but not necessarily in the extrinsic switching speed, since
increasing the width of the structure to increase current also increases the circuit
capacitance. Besides, a more crucial drawback of two-dimensional interferometers
is that they do not perform sufficiently well for device applications unless trans-
port is truly ballistic {2]. Ballistic transport is not easy to achieve in devices with

2This limitation on the switching speed does not arise if an electronic
device can be switched optically. An intriguing scheme for switching an
Aharonov-Bohm interferometer optically (based on virtual charge polariza-
tion), instead of electronically, has been proposed by M. Yamanishi. (Proc.
of the 4th. Intl. Conf. on Superlattices, Microstructures and Microdevices).
3An example is the Aharonov-Bohm interferometer (see Ref. 3).
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present-day capability. It therefore behooves us to consider realistic disordered
structures and examine device performance in the diffusive regime.

In diffusive transport, two-dimensional interferometers do not work well but
one-dimensional interferometers (in which the interfering paths are quantum wires)
work sufficiently well [2). The primary reason for this is that in 2-d interferometers,
there is a two-fold ensemble averaging - over the electron’s energy F and the
transverse wavevector k, - whereas in 1-d interferometers, the averaging over k,
is absent. The latter averaging has disastrous results when elastic scattering is
operative. Therefore, for real device applications, 1-d interferometers appear to be
the inevitable choice, at feast for the present.

In Fig. 1, we show the current modulation (due to the electrostatic Aharonov-
Bohm effect) in a disordered 1-d GaAs interferometer in the weak localization
regime at 77 K. The length of the structure is 1000 A , the carrier concentration
is 1.55 x 10° / cm and the impurity concentration is 10° / cm. The model for this
calculation is the same as that employed in Ref. 4. The voltage over the structure
1s 36 meV which is the threshold for polar optical phonon emission (onset of strong
ineleriic scautering) in GaAs. Again, a ~ 70 % modulation of the conductance is
found at LN, temperature, which may be good enough for device applications.

From Fig. 1, we find that the maximum value of the current is 2.1 gA. This
is very large for single-moded quantum devices whose typical cross-sectional area
is 100 AX 100 A. The current level of 2.1 zZA translates into an effective current
density of more than 106 A/cm? which is about an order of magnitude higher
than what can be achieved in resonant tunneling diodes. In addition, the threshold
voltage for switching of such devices is also very low. The threshold voltage is ~
7 mV. Therefore, using Equation (1) and assuming that the total circuit capacitance
is about 1 fF*, we find that the extrinsic switching time T, is ~ 3 ps. (The intrinsic
switching speed of the device is the wransit time of electrons which in this case is
~ 230 fs). The 3 ps switching speed is comparable to that of the fastest GaAs
and Silicon devices or even Josephson junctions.

Apart from a fast switching speed, Aharonov-Bohm quantum devices have the
additional advantage of having high transconductance (even for nanometer feature
sizes) which is advantageous for analog applications. For our prototypical struc-
ture, the maximum absolute transconductance was 0.45 mS. This is comparable
to the highest transconductance that one could obtain with a 100 nm wide GaAs
MODFET whose transconductance would rarely exceed 1 S/mm. For such a MOD-
FET with a feature size of 1000 A, the absolute transconductance will be 0.1 mS
which is slightly lower than the transconductance obtainable with Aharonov-Bohm
devices.

The most striking feature of the Aharonov-Bohm device however is its ex-

4The estimate of 1 {F is optimistic, but certainly realizable. Capacitances
ot 10='7 F have been obtained in “Coulomb Blockade” experiments.
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tremely low power-delay product. This quantity is approximately given by
PDP =~ CV;? (2)

which gives a value of 5 x 10~2° Joules for a device with C, = 1fF and V =
7 meV. This power delay product is a few orders of magnitude lower than what
could be obtained with even Josephson junctions.

Needless to say, the above performance figures that we have calculated are the-
oretical projections and one must wait for the realization of actual prototype devices
to see if the predicted performance is approached. But more importantly, these
devices have another intriguing characteristic; they exhibit multi-functionality. For
instance, they can be used to realize unipolar complementary operations, single
transistor static latches and single-stage differential amplifiers (3]. It is this multi-
functionality that is the most attractive feature of quantum devices, especially in
view of its impact on alternate architectures such as neural networks or cellular
automata.

B. The Quantum Diffraction Field Effect Transistor

Another lateral quantum device that promises extraordinary multi-functionality
s the recently proposed Quantum Diffraction Field Effect Transistor (QUADFET!.
ts schematic is depicted in Fig. 2.

The QUADFET is basically a MODFET where the gate has a narrow slit
efined by electron-beam exposure. Electrons incident from the source can diffract
wough the slit, and the diffraction pattern is viewed as the currents collected at
arious fingers in a “drain” consisting of closely spaced fingers. Just like in an
rdinary diffraction experiment, the diffraction pattern (and hence the currents
sllected at the fingers) can be changed by modulating the width of the slit. An
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Fig. 1. The transfer characieristic of a disordered 1-d A-B interferometer
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analog voltage applied between the gate pads constricts the slit by extending the
depletion layer surrounding the slit. This changes the slit width and alters the
diffraction pattern so that the current levels in the fingers are changed. The current
level in each finger can be made to represent a “bit” so that one can effectively
transduce an analog signal between the gate pads into a bit pattern or a digital
signal at the drain fingers. This suggests the operation of an A/D converter. The
potential multi-functionality of this device exists in the replacement of an entire
A/D circuit by a single transistor.

The problem with the QUADFET however is that it is inherently two-
dimensional and therefore requires strictly ballistic transport>. In that sense, this
device is somewhat futuristic, but assuming that future technology wiil routinely
yield ballistic structures, we can examine the performance of this device, particu-
larly to see if it can be operated at sufficiently high temperatures.

The condition for obtaining a minimum in the diffraction pattem, at any finger
in the drain of the QUADFET, is expressed as

akp . . 1
o sind=n+ 5 (3)
where a is the slit-width. FINGERS
GATE;P /
SOURCE
éﬁ_ —

R

N

Fig. 2. Schematic of a Quantum Diffraction Field Effect Transistor

5The QUADFET requires ballistic transport for the same reason that a
2-d Aharonov-Bohm interferometer requires ballistic transport, namely the
ensemble averaging over the electron’s transverse wavevector.




In a 2-d structure, the spread in the transverse wavevector introduces a spread
in @, and the thermal spread in energy introduces a spread in the Fermi wavevector
k. which together tend to make a minimum shallow. For a minimum to be clearly
discemible, we require

akp . akp 1 . a . 1
—. — _— - 4
A( 2 smn ) 5 A d(szn9)+ 2 szn@/dkp < 3 ( )

or
akg a m*kT 1

L 5
or T 2r hkp 2 (5)

where kT is the thermal spread in the Fermi energy and m* is the effective mass
of electrons. We have replaced siné by its maximum value of unity.
The minimum value of the left-hand-side is obtained when

kT 2rkTm*

Ep=-2—; or n,=-—h2—, (6)
where n, is the carrier concentration. The surprising fact is that for a given carrier
concentration, there is an optimum operating temperature.

It turns out coincidentally that in GaAs, for a typical carrier concentration of
~ 10! ¢cm~2, the optimum temperature is ~ 77 K! Of course, for 77 K operation,
it is necessary that the device dimensions be smaller than the mean-free-path at
LN, temperature, but this is alrcady not too far outside the capability of x-ray or
electron-beam lithography. Also, for this temperature and carrier concentration,
Equation (4) is satisfied with a slit-width @ < 200 A and this is achievable with
present lithographic capabilities. It thercfore appears that the QUADFET will
become a viable device for electronic applications in the future.

In conclusion, lateral quantum devices are still in their infancy. But they are
likely to play an increasingly important role in electronic circuits of the future.
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Several properties of the Landauer resistance of finite repeated structures are derived. A theorem
relating the energies of unity transmission through a finite repeated structure to the band structure
of an infinite superlattice formed by periodic repetition of the finite structure [Vezzetti and Cahay,
J. Phys. D 19, L53 (1986)] is generalized to the case of structures with spatially varying effective
mass. We also establish a sum rule for the Landauer resistances of periodic structures formed by
periodically repeating a basic subunit. Finally, we derive an analytical expression for the “boundary
resistance” of a structure, as introduced by Azbel and Rubinstein in connection with pseudolocali-
zation, and prove several properties of this quantity.

1. INTRODUCTION

The Landauer formula' for calculating the resistance
of a dissipationless mesoscopic structure has been used
quite widely in the study of quantum transport phenome-
na. The formula relates in a simpie way the resistance of
a structure {in the linear-response regime) to the probabil-
ity of transmission of an electron through the structure.
The usefulness of the formula lies in the fact that it
reduces the problem of quantum mechanically calculat-
ing resistance—a rather difficult problem—to a much
simpler problem of calculating just the transmission
probability. In this paper, we prove several interesting
properties of the Landauer resistance (i.e., the resistance
in the linear-response regime) of a finite repeated struc-
ture such as a semiconductor superlattice. These proper-
ties are all derived from the properties of the transmis-
sion coefficient of an electron through a periodic poten-
tial of finite spatial extent.? 3

In Sec. II of this paper, we first employ a transfer-
matrix technique to derive a general expression for the
transmission probability of an electron through an arbi-
trary potential profile. We then extend this result in Sec.
111 to calculate the transmission probability | T |? of an
electron through N subunits of a finite repeated structure.
Using this expression, we extend an earlier result’ relat-
ing the energies of unity transmission through a finite re-
peated structure to the energy-wave-vector relation for
an infinite structure formed by periodically repeating the
basic subunit of the finite structure. In Sec. IV, we prove
a set of theorems that establish interesting and useful re-
lationships between the transmission probabilities (and
hence the Landauer resistances) associated with the sub-
units of a finite repeated structure. These theorems are
all illustrated with numerical examples dealing with com-
positional and effective-mass superiattices. In Sec. V, we
establish a sum rule for the Landauer resistances of
periodic structures formed by successively repeating a

Q

basic subunit, and in Sec. VI, we derive an exact analyti-
cal expression for the “boundary resistance” of a struc-
ture as introduced by Azbel and Rubinstein in connection
with pseudolocalization. Finally, in Sec. VII, we summa-
rize our conclusions.

II. TRANSMISSION OF AN ELECTRON
THROUGH AN ARBITRARY POTENTIAL

In this section, we first derive an expression for the
transmission coefficient of an electron through an arbi-
trary one-dimensional potential of finite spatial extent.
For the sake of generality, we allow for spatial variation
of the electron's effective mass but assume it varies only
in one direction. The time-independent Schrodinger
equation describing the steady-state (ballistic) motion of
an electron through such a potential is

__f ¥y R % #d|_ 1 ¥
2m*(z) 3x* 2m*®(z) dy? 2 9z |m*(z) Oz

+E(2)=E¥, (1)

where E.(2) is the one-dimensional potential that varies
in the z direction and m*(z) is the spatially varying
effective mass. In a semiconductor heterostructure, £ (2)
is the conduction-band edge profile which incorporates
any band bending due to space charges, variations due to
compositional inhomogeneity, and also variations due to
any external electric field.

Because the Hamiltonian in Eq. (1) is invariant in the x
and y directions, the transverse wave vector k, is a good
quantum number. Furthermore, since the z component
of the electron's motion is decoupled from the transverse
motion in the x-y plane, the wave function ¥ can be writ-
ten as

v=dlz)e™?” @
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where k, =(k,,k,) and p=(x,y).
The z component of the wave function &(z) now
satisfies the Schriidinger equation

da|_1 _dé _ .

dz | y(z) dz z iE +E[1-y()7"]
—E.(2)}¢(2)=0, (3

where m is the effective mass of the electrons in the

“‘contacts” sandwiching the region of interest (m is spa-
tially invariant within the contacts and isotropic),
v(z)=m?*(2)/m?, E,=#k}/2m?, and E, is the kinetic
energy associated with the z component of the motion in
the contacts (E, =#k}/2m2).

The above equation cannot be solved exactly for an ar-
bitrary potential E .(z). However, an approximate solu-
tion can be found by approxlmatmg the potential profile
by a series of potential steps® (see Fig. 1) or by using a
piecewise linear approximation for the potential.” In the
former scheme, the region over which the potential varies
is broken down into a finite number of intervals. Within
each interval the potential and the effective mass are as-
sumed to be constant. In that case, the wave function and
its first derivative at the left and right edges of an interval
are related through a so-called “transfer matrix,” charac-
teristic of that interval, whose elements do not depend on
the z coordinate and can be determined analytically.

The transfer matrix for the nth interval [z,_,,z,] is
defined according to

1 d¢., - — 1 d$.+
y(z,") dz " meun Y(Zn+—|) dz "
¢‘2;) W(ll)w(n) ¢(zn+—l ) ’

4)

where W,‘," ! are the elements of the transfer matrix, and
z,., and z, stand for z,_,+¢€ and z, —¢, respectively,
with € being a vanishingly small positive quantity. Expli-
cit expressions for the elements of the transfer matrix are
given in the Appendix.

Assuming continuity of &(z) and [1/y(2))/(d¢/dz)
everywhere in the structure, the overall transfer matrix
W't describing the entire region [0, L] (see Fig. 1) can be
found by simply cascading (multiplying) the individual

E.
contact

contact

"
[
.
.
]
'
.
’
’
]
.
.
.

0 z cooZny Zn Tney ooy

FIG. 1. An arbitrary potential profile approximated by a
series of potential steps. Within each interval, the potential and
effective mass are assumed to be spatially invariant.
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transfer matrices for the individual intervals:

Wiot= Nt ..ot (5

where W' is the transfer matrix for the nth interval as
defined in Eq. (4).

The overall transfer matrix W' relates the wave func-
tions and their first derivatives at the left and right con-
tacts:

y(L™) dz y(07) dz
L) $(07)

In Eq. (6), #(07) and &(L ¥) are the electronic states
inside the left and right contacts. They are given by'¢™1°
lkoz

(07)
tot

(6)

+Re ik°z, z<0

Telko(z L), z>L M
where ko [=(2m2E,/#)'/?] is the z component of the
electron’s wave vector in the contact and R and T are the
overall reflection and transmission coefficients through
the region [0,L]. Using these scattering states for the
wave functions at z=0" and z =L * and noting that, by
definition, ¥(L *)=y(07)=1, we obtain from Eq. (6)

ik ikg{1—R)
1 1+R

o(z)=

T = ot (8)

Equation (8) finally gives us the two equations for the
two unknowns T and R. From these two equations T"and
R can be found by straightforward algebra. Eliminating
R gives

ZIko( Wlloll Wlol (0( W(ol )

7 = ko qu xol ) 4( wakz Wi , 9)

where W/ are the elements of the matrix W' that are
found from Eq. (5).

Since W' is a unimodular matrix,’ the term within
parentheses in the numerator of Eq. (9) is unity. In addi-
tion (see the Appendix), W' is always purely real.
Therefore Eq. (9) gives

4k}

|T12= . (10)
(Wto( (ot )2+ ( Wtotkz (lz;t )2

The above equation gives us a general expression for
the transmission probability of an electron through an ar-
bitrary potential. The transmission probability ITIz is, of
course, related to the reflection probability {R|? accord-
ing to the relation |712+|R|*=1 as required by current
conservation.

1II. TRANSMISSION OF AN ELECTRON
THROUGH A FINITE REPEATED STRUCTURE

Having found a general expression for |T1%, we now
proceed to evaluate the transmission probability (and
hence the Landauer resistance) associated with a finite re-
peated structure formed by the periodic repetition of a
structure with arbitrarily varying potential.

Consider the potential profile in Fig. 2 formed by the
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FIG. 2. The potential profile for a finite repeated structure
formed by peniodic repetition of a region with arbitrarily vary-
ing potential.

periodic repetition of an arbitrary potential. Every
*“period” in this structure has the same transfer matrix
(say W) characterizing that period and the grand overall
transfer matrix W' describing the entire structure is, as
before, obtained by cascading the transfer matrices for
the individual periods. It is easy to see that for a struc-
ture with N periods with each period identical,

&/lot=(!{)N (1)

As shown in Ref. 10, the elements of the matrix W'

can be expressed in terms of the elements of the matrix
w:

sin(N @) -1 sin{(N —1)0]
sin@ sinf

we=w : 12)

where [ is a 2 X2 identity matrix and € depends on the ei-
genvalues of the matrix W and is given by

_ T

expli@)=A,=A;"' 5

2

Tel W) ]2_l ]"2
(13)

where A, ; are the eigenvalues of the 2 X2 matrix W and
the second equality follows from the fact that the matrix
W is unimodaular.

We can now find the overall transmission probability
ITy|? through a periodic structure with N periods. For
this, we use Eq. (10) with the elements of W' now given
by Eq. (12). This gives

-1
af

(14)

kiWy =W, !
2= lfein? b R T R
[Tyl ([sm (NG)]{ ‘ 2K 5B 1

which is our main result.

The two- and four-probe (2-p and 4-p) Landauer resis-
tances for a strictly one-dimensional repeated structure
can now be found easily by substituting Eq. (14) for the
transmission probability | Ty|? in the singie-channel Lan-
dauer formulia:
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h 1
RIP=—e——
Lo2e? Tyl
[ o 2
h ) koW, 12
= {[sin(NO)) | | —=2—— | =1 |+11,
21 1[5““ g [ 2kosind l !
T2 (15)
Z‘P: —h--.__l N =R£'P-—_,.,_ ,
2er |Tyl? 2e?

where k, is the wave vector of the incident electron.

IV. TRANSMISSION THEOREMS FOR A FINITE
REPEATED STRUCTURE

We now prove a set of theorems related to transmission
through finite repeated structures. First, we prove a
theorem that relates the energies of unit transmission
(i.e., the values of the incident energy for which the
transmission coefficient is exactly unity) through a finite
repeated one-dimensional structure, to the band structure
of the associated infinite lattice formed by periodic repeti-
tion of the one-dimensional structure. This theorem was
stated for the first time in Ref. 5. A more detailed proof
is given here with generalization to the case of a structure
with a variable effective mass.

Theorem I. The transmission coefficient of a particle
through a periodic structure, formed by N repetitions of a
basic subunit, reaches unity at the following encrgies: (a)
energies at which the transmission through the basic sub-
unit is unity, and (b) N —1 energies in each energy band
of the lattice formed by infinite periodic repetition of the
basic subunit, where these N —1 energies are given by
E=E(k=xnw/NL)Xn=1,23,...,N—1,and L is the
length of a period). Here E,(k) is the energy-wave-
vector relation (or the dispersion relation) for the ith
band of the infinite lattice.

Part (a) of the theorem is actually fairly obvious. All it
states is that by connecting identical structures of
transmission unity, one always obtains unit transmission
through the composite structure Although this is intui-
tive, we prove it nevertheless or the sake of complete-
ness. For this, we first note from Eq. (14) that the
transmission | Ty |2 through N periods reaches unity when
the term within the large square brackets vanishes. The
term within the large square brackets vanishes when

k(z)Wu -W, ’
o7n" e (16
Zkosin9 ! )

We now show that this corresponds to the condition that
|T1? (i.e., the transmission through one period, or the
basic subunit) is unity. Substituting N =1 in Eq. (14), we
get that the condition for unit transmission through one
subunit is given by
-1
" ] ,

1”m

2
k{,W,, -W, -1
2kqsind

1=|T,|}= '[sinz(e)]‘
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which, after simplification, reduces exactly to Eq. (16).
This proves the first part of the theorem, viz., that the en-
ergies of unit transmission through one period are also
the energies of unit transmission through all the N
periods.

To prove the second part of the theorem, we note from
Eq. (14) that the transmission | Ty |? also reaches unity for
those values of @ that satisfy the condiions

sin({N8)=0, sin(8)¥0 ; (18)
ie.,

=+ T 27 37 N =D

] Nt N"'N""’I N . (19)

We now have to prove that the above values of @ also cor-
respond to the wave vectors k =+nm/NL where L is the
period. For this, we first apply the Bloch theorem to the
infinite structure. The Bloch theorem gives.

&z +L)=¢(2)expl(ikL) ,
where k satisfies the relation'

(20)

21

In the above equation, W; is the ijth element of the
transfer matrix W describing one period and 6, is a
Kronecker delta. From Eq. (21) we immediately see that
exp(ikL) is the eigenvalue of the 2 X2 unimodular matrix

W and hence

_ Tl W) v

+
2

explikL)=A,=A;" 5

2
TH W) ] -

22)

The right-hand sides of Egs. (13) and (22) are identical
so that their left-hand sides must also be identical.
Therefore

explikL)=exp(if) , (23)
or

kL =6(mod2w) . (24)

Consequently whenever k =tnw/NL, the quantity
6=xtnn/N. Thus the energies corresponding to
k=tm/NL,+27/NL,+3w/NL, ..., £[(N -1 }w)/NL
are the energies corresponding to 6@=t#n/N,
+27/N,£37/N, ..., x[(N —1)7]/N, which, in turn,
are the energies corresponding to unity transmission
through the finite repeated structure with N periods as
previously noted. Stated in other words, this means that
the energies associated with unity transmission through
an N-period structure are the band energies E(k, ) corre-
sponding to the wave vectors k, =+nm/NL in an infinite
repeated structure. This gives us the E(k, )-versus-k, re-
lation and proves the theorem.

The usefulness of theorem I lies in the fact that by
evaluating the energies of unit transmission through a
Jfinite structure [which we can do from Eq. (14)), we can
calculate the band structure of an infinite superlattice
formed by the periodic repetition of the finite structure.
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The locations of the band edges can be found directly
from the following property, which we prove: The states
characterized by wave vectors k for which |Tr(W)|>2
are the evanescent states corresponding to the ‘*‘stop
band” of a finite repeated structure. The states charac-
terized by wave vectors k for which [Tr( )| <2 are the
propagating states corresponding to the *“pass band” of
the finite repeated structure.

To prove the property, we invoke Eq. (22). If
|Tr( )| > 2, then the right-hand side of Eq. (22) is purely
real and greater than unity. In that case, the wave vector
k must be purely imaginary which means that the state is
an evanescent state corresponding to the “stop band” of
the finite repeated structure. On the other hand, if
|Tr(W)| <2, the right-hand side of Eq. (22) becomes
complex which permits k to be real. In the latter case,
the state is a propagating state corresponding to the
‘“pass band” of the structure. The values of wave vector
k for which |Tr[W]|=2 evidently correspond to the
edges between the pass bands and the stop bands.

Theorem II. At the energies of unity transmission
through a finite repeated structure with N periods, the
following equality holds: |1',,,'lz=|r,.,2|2 whenever
N,+N,=N. Here lT,.,ll2 and IT,‘,II2 are the transmis-

sion probabilities through two subsections with N, and
N, periods respectively.

As stated in the proof of theorem I, the transmission
| Ty|? through N periods reaches unity under two condi-
tions: (a) when the transmission through each of the N
periods is unity, and (b) when

0=t% (n=123,...,N=1).

In case (a), the proof of theorem II is trivial. If the

transmission through each period is unity, then, of

course, the transmission through any arbitrary number of
periods is also unity. In that case, obviously,

‘T~||2=‘T~z|2=‘ ’

(25)

(26

regardless of what N, and N, might be. This proves the
theorem for case (a).

The proof for case (b) proceeds as follows. We first
note that

sinV,0=sin(N —N,)0=sin(tnT—N,0)

=(~1)"""*sinN,0, X))

where we used Eq. (25) to obtain the second equality. Us-
ing the above equality in Eq. (14), we immediately see
that

| Ty 1>=1Ty,I* (28)

which proves case (b).

Theorem III. At the energies of unity transmission
(ITyl*=1) through a finite repeated structure with N
periods, the following equality holds: [Ty, l?
=|Ty_pi’forall Msuchthat 1 SM <N.
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The proof of this theorem is very similar to that of
theorem II and is therefore not presented.

A. Numerical examples

To illustrate theorem I, we show in Fig. 3 the construc-
tion of the energy-band diagram of an infinitely repeated
structure whose basic subunit is shown in the inset. The
points Q,Q’ are the two lowest energies at which the
transmission through two subunits is unity, whereas the
points P,P' and R,R’' are the two lowest energies for
which the transmission through three subunits. is unity.
These points are on the two lowest-energy bands. Other
points on the energy-band diagram can be found similarly
by steadily increasing the number of periods and search-
ing for the energies of unit transmission. Finally, the
points P,,P, and Q,,Q, correspond to the band edges
and are found from the condition |Tr( )| =2.

To illustrate theorems [I and III, we pravide the fol-
lowing numerical exampies.

Example 1. We have calculated the transmission | T |2
fusing Eq. (14)] through a compositional superlattice con-

b~ : :
> ih=w2L :
@ 0.2} P e :
€ . ; :
w : : :
| K=m/dl | ot}
cP1 P : : !
0.05 ; : :

0 00070 00157 00236 00314 womt
BLOCH WAVE NUMBER (A"')

FI1G. 3. Energy-band diagram of an infinitely repeated struc-
ture whose basic subunit is shown in the inset. The conduction
band is constructed by numerically evaluating the energies at
which the transmission through increasing number of periods
go to unity. The points Q, Q' correspond to the two lowest ener-
gies at which transmission through two subunits is unity,
whereas the points P,P’ and R,R’ correspond to the lowest en-
ergies for which transmission through three subunits is unity.
The points P,,P. and Q,,Q, correspond to the band edges and
are found from the condition Tr({ W ]=2.

sisting of rectangular wells and barriers in which the bar-
rier and well thicknesses are 50 A. The effective mass
was assumed to be 0.067m, everywhere and the barrier
height was taken to be 0.3 eV. Figure 4 shows the
transmission coefficient through one, two, and three bar-
riers in the vicinity of the lowest resonant energy through
two barriers. (Resonant transmission through two bar-
riers has been studied extensively in connection with the
double-barrier resonant tunneling diode.®'?) Figure 4 is
a clear illustration of theorem III. It shows that when
the transmission through two barriers is unity, the
transmission through three barriers is equal to the
transmission through one barrier, i.e., [Tyl
=|Ty_p!? with N=2 and M =1. Figure 4 also shows
that whenever |T;|*=1, |T,[*=|T,|? illustrating
theorem II for the case Ny =1, N, =2.

Example 2. In Fig. 5 we show the transmission
through an effective-mass superlattice’’ in which the
conduction-band edges in the different layers are assumed
to be aligned but the effective masses are different. We
assume effective masses of 0.039m and 0.073m,, respec-
tively, in two alternating layers. (These correspond to the
effective masses of Ing 1,Gag 33AS 3oPo 14 and InP.'*) The
transmissions through one, two, and three layers were
calculated from Eq. (14) at the resonant energy through
three layers. Clearly, when |T,|*=1, |T,|*=|T,|% This
illustrates theorem II. Also when |T,1?=1, |T,|*=|T,/|?
as stated in theorem III.

Theorem IV. If the Fermi energy of a finite repeated
one-dimenstonal structure lies at the boundary between a
“pass band"” and a “stop band,” then the four-probe Lan-
dauer resistance of N periods of the structure is equal to
N? times the four-probe Landauer resistance of one
period. This means that the four-probe Landauer resis-
tance increases with the structure’s length as L? instead

0.15 e -
;' "
i Wl A
. ikl
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& 0" e ®
Q " n
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w [ 3
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& by
D i [
3 [ 1t
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é Pt [
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FIG. 4. Transmission coefficients through a periodic struc-
ture formed by repeating the subunit shown in the inset. The
subunit consists of a GaAs well and an Al,..Ga, As barrier
both SO A thick. The barrier height is 0.3 eV and the effective
mass is assumed to be 0.067m, everywhere. Note that when
!lezs 1, |T||==lT2|l. Also whenever iT;‘2=|. |T|lz=‘|T:P.
These illustrate theorems I and i1, respectively.
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FIG. 5. Transmission coefficient through an effective-mass
superlattice. The inset shows the superlattice composed of al-
ternating layers of InP with effective mass m; =0.073m, and
Ing 17Gag 28Asq 36Po 14 With effective mass m+ =0.039m,. Each
layer is S5O A thick. These figures also illustrate theorems 1 and
II. Note that as stated in theorem II, when IT,|’=1.
T, 1*={T,|>. Also when iT,|*=1, |T,}*=IT\{? illustrating
theorem (Il

of as L in violation of Ohm’s law.

To prove the theorem, we first show that the energies at
the boundaries between the pass bands and stop bands of
a structure correspond to 0= +nmw, where 0 is defined
from Eq. (13).

To show this, we first recast Eq. (13) as

Tre(W)

exp(i@)=cosf+i sinf= 5

2

oy 1]

2

+ijl- 29

Recalling that at the boundaries (band edges) (Tr( W)l
=2, we see from the above equation that at the band
edges, sind=0 so that 8=*n1r.

We now obtain a general expression for the four-probe
Landauer resistance of one period. Using Eq. (10) for the
transmission | 712 through one period, we obtain

— 2
REP(1=-1=1T]

2¢? |T)?
| W+ Wy R KW, — W)}
T 2e? ak? - ]
k| 4k%cos’@+(kiW, — W)
T 2e? ak? - l
h | (kiW, — W )} — a8k sin®0
=3e7 e . (30)

where we used Eq. (29) to substitute for (W, + W,,) in
terms of cosé.

From Eq. (15) we also find that the Landauer resistance
of N periods is

At the band edges when 6= *n, the above expression
becomes

) 2
sin(N ) RIP(H=NRIP(Y, (32)

4-p = |j
R/ PN)= lim S0

99—~ tnw

which proves theorem IV. It also shows that since the
resistance of N periods is N2 times (instead of N times)
the resistance of one period, the four-probe Landauer
resistance increases with the square of the structure’s
length instead of with its length. This deviation from
Ohmic behavior was pointed out in Ref. 15 where it was
demonstrated for a periodic array of “5 potentials.” In
the present treatment, we have generalized it to any arbi-
trary potential profile.

The L? dependence of the resistance is an interesting
feature. It is well known that in the pass band, where the
states are extended, the resistance should be Ohmic and
increase linearly with L, while in the stop band, where
the states are localized, it should increase exponentially
with L. The fact, that at the boundaries between the pass
bands and stop bands the resistance increases as the
square of L, can be used to identify the onset of metal-
insulator transition'® which occurs when the Fermi ener-
gy of a system crosses the boundary between a pass band
and stop band.

It is also interesting to note from Eq. (31) that the Lan-
dauer resistance at the band edges goes to zero when

kW, —W,;=0. (33)

The above condition is in general not satisfied for any
arbitrary potential. Specific cases when this condition is
satisfied are discussed in Ref. 17.

V. SUM RULE FOR FOUR-PROBE
LANDAUER RESISTANCES

In this section, we prove the following *‘sum rule” for
the four-probe Landauer resistances associated with the
subunits of a repeated one-dimensional structure.

The four-probe Landauer resistances of the various
subunits of a repeated one-dimensional structure obey the
following equality when evaluated at the energies of unit
transmission through the structure corresponding to case
{b) of theorem I:

n=N=1 REM()

=1, (34)
"t 3 RMm)

m=|

where R{"'(m) is the four-probe Landauer resistance of a
subunit with m periods evaluated at the nth resonant en-
ergy (energy of unit transmission). The summation is car-
ried out over all the N —1 resonant energies correspond-
ing to case (b) of theorem I.
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To prove the sum rule, we make use of Eq. (31). This
equation is valid for ail N. Replacing ¥ by a running in-
dex m and then summing over m, we obtain

m=N o m=N L(m) S
S sinf(imo)= 3 sin“@ . (35)
ol may Re(D

Note that in the above equation we dropped the super-

script “4-p” from R}P for the sake of brevity. We will

follow this convention in all following equations with the

tacit understanding that the resistance being referred to is

the four-probe rather than the two-probe resistance.
Making use of the trigonometric identity'®

_ 1 sintN@)cos{(N +1)9]
2 sind

AN
> sin3(m9)=-%l- , (36

m =i

and recalling from Eq. (18) that at the energies of unity
transmission through N periods (i.e., at the resonant ener-
gies), sin{N@)=0, we get from the above iden*ity that at
any resonant energy

m =\ S N
3 sint(m8,)= 5 (37
m =1\
where 0, is a resonant value of 8, i.e., 8, =nw/N where
n=1,23... N—1.

Using the above result to substitute for the left-hand
side in Eq. (35) we obtain

m=N
S R;M(m)

m =
RI™(1)
m=y-1

S RMm)

m=|
R;™1)

m=N-1

3 R{Mm)
. m=1 s 2
TRy

% = sin%(6,)

sin%(@,)

n

N | (38)

where, in deriving the second equality above, we used the
fact that at the energy of unity traasmission through N
periods, the Landauer resistance of N periods is zero, i.e.,
R"(N)=0.

From Eq. (38), we obtain (by summing over the index
n)

n=N-1 RI™(1) n=N-1
1 —-—_L = 2 sin2 ﬂ
2 m=N~-1 N
n=i 2 R,'_"’(m) n=I
m=
n=N
=3 sin’ ”T:,r- —sin(m)
a=|
naN
= ¥ sini(nd,,), 39
n=|

where 6,, is the value of 0, at the first resonance, i.c.,
8, =m/N.
Comparing Eqgs. (37) and (39), we finally obtain Eq. (34)

TABLE 1. The sum of the three 4's is unity, which satisfies
Eq. (34) and, hence, the "sum rule.” Note that the energies in
the first column correspond to points R, @', and P’ in Fig. 3.
As=U1—=|T /=T I =IT,| *=IT\i"%).

Energy (eV)
for which IT,}2=1 T {2 T2 T A
0.2798 0.1751 0.09595 0.1751 0.2499
0.3009 0.02357 10 002357 0.5
0.3304 0.3477 0.2105 0.3477

0.2499

which is the sum rule.

In Table I we provide a numerical example of the sum
rule for the case N =4 and for the potential profile shown
in the inset of Fig. 3. The right-hand side of Eq. (34) does
become equal to unity within the numerical accuracy
available.

VI. BOUNDARY RESISTANCE OF A FINITE
REPEATED ONE-DIMENSIONAL STRUCTURE

While studying pseudolocalization, Azbel and Rubin-
stein'® introduced the concept of the “boundary resis-
tance” of a finite repeated one-dimensional structure.
The “boundary resistance” of a structure with M periods
is the limiting value of the “‘average resistance” of the
structure defined as

1 m=M ap
o 3 R;Pm), (40)

m=1

R¥=

where R}"P(m) is the four-probe Landauer resistance of a
section composed of m subunits.

Reference 19 showed that in the case of uniformly
spaced & scatterers, the average resistance evaluated at
the resonant energies of the structure converges to a
nonzero constant value independent of the number of
periods M (or the length of the structure), provided M is
sufficiently large. This constant value was termed the
“boundary resistance” since it arises from the effects of
the boundaries that break the transiational invariance of
the structure. In this section we derive, for the first time,
an analytical expression for the boundary resistance. We
then prove two properties—one associated with the
boundary resistance, and the other associated with the
average resistance evaluated at the energies correspond-
ing to the edges between the pass bands and stop bands of
an infinitely periodic structure.

Property 1. The boundary resistance of a periodic
structure is indeed independent of the number of periods
M (or the iength of the structure) and depends only on
the potential profile within any one period.

The above result was demonstrated from numerical simu-
lations (but not proved analytically) in Ref. 19 for the
specific case of a periodic array of “5-potentials.” In this
paper, we provide an analytical proof of this property
which is valid for any arbitrary shape of the periodic po-
tential.

Property 2. The average resistance of a periodic struc-
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ture, evaluated at the edges between the “pass bands”
and “‘stop bands' increases with the square of the length
of the structure if the number of periods is large.

We first derive an analytical expression for the bound-
ary resistance.

At the resonant energies [for case (b) of theorem I] we
have from Eq. (38),

(M/2)R,(1)
m=M . (41)
S R (m)

m =1

sin’(0,)=

Therefore using Eq. (41) in Eq. (40) we obtain

1

R }{(resonance)= ————
2sin“(6,)

R,(1). (42)

Finally, using Eq. (30) to replace R, (1) in the above
equation, we obtain

R M(resonance)=

2
szz\_Wn l —l}
resonance ’

et | | 2k sin(®)

43)

where the quantity in the right-hand side is evaluated at
any one of the resonant energies for a structure with M
periods.

We now have to prove that the right-hand side is in-
dependent of M if M is sufficiently large, i.e., if M >>1.
This will prove property I.

Referring back to Eq. (14), we see that resonance con-
ditions (T, =1) are reached when ecither the term within
the square brackets in the equation above reaches zero®®
or when sin(N8)=0.

Case ]. For the former case, i.e., when the term within
the square brackets is zero in Eq. (14), R ¥(resonance) is
identically zero as seen from Eq. (43) and hence obviously
independent of M. Thus, we have proved property 1 for
this special case.

Case 2. When sin(N@)=0 but the term within the
large curly braces is nonzero, the value of R M(resonance)
is not zero. The dependence of this nonzero value on the
number of periods M enters through only four
quantities—the matrix elements W,; and W,, and also
kM (=nm/ML) and 8™ (=nm/M), where the last two
quantities are the resonant values of the wave vector and
the corresponding resonant values of 8 for a structure
with M periods. To prove property 1, we have to merely
show that (1) the matrix elements W,; and W, are con-
tinuous functions of energy, and (2) the difference be-
tween kM and kM *', and also 6% and 6 *', and hence
R M(resonance) and R Y *'(resonance), decreases continu-
ously with increasing value of M. The former fact, name-
ly that the matrix elements are continuous functions of
energy, is obvious from the derivation of these elements
given in the Appendix. The latter fact follows from the
inequality

, ! { 1
MM S -_, 44
’ L M M| S ML (44)
1 1 T
M1 _ M= I O s
% PR IM L M| S 43

Hence the differences go to zero as | /M which proves
property 1.

We now proceed to prove property 2. When the Lan-
dauer resistances are evaluated at the edges between a
pass band and a stop band,

‘ m

=M

m=|
LS mor, (1)
= — m
Mm=| ¢
_(MHDQM+1)
6

R ¥(band edges)=

R, (1)

MZ
E

where we used theorem IV to arrive at the second equali-
ty.

Hence the average resistance, evaluated at the band
edges, increases as the square of the length of the struc-
ture when the number of periods in the structure is large.
This proves property 2.

R,(1) if M>1, (46)

VII. CONCLUSION

In this paper we have proved several theorems related
to the Landauer resistances of finite repeated structures.
Of particular importance is the theorem that relates the
energies of unity transmission through 2 finite, repeated
one-dimensional structure to the energy-wave-vector
dispersion relation for the associated infinite lattice
formed by periodic repetition of the structure. This
theorem is valid even for a structure with spatiaily vary-
ing effective mass and is therefore very useful in calculat-
ing the energy-wave-vector dispersion relation for any
infinitely repeated structure.
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APPENDIX

In a region where both E, and y are constant {spatially
invariant), the Schrodinger equation becomes [see Eq. (3)]

2m? E
d11dé |, T \p—-=t_E |s21=0. (AD
dz |y dz #? Y

To define the transfer matrix through a section of
length L where both E, and y are constant, we look at
solutions u(z) of Eq. (A1) which satisfy the boundary
conditions
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u, {0)=0, u\j(0)=1, (A2) The explicit forms for u, ,(z) are the following.
and Casea. IfE>E,/y+E,,
uy(0)=1, u}(0)=0, (A3) ul(z)=——s";fz : (A7)
where the prime denotes first derivative with respect to uy(z)=cosBz , (A8)
space. The solutions u,,(z) are linearly independent
solutions (their Wronskian is unity) and a general solu- Where
tion of Eq. (A1) can be written as
2 2m * . Er
$(2)= A, u(2)+ Ayuy(2) . (Ad) F=G |E-7 & (A9)
The transfer matrix W is defined as follows: Caseb. fE <E,/y+E,,
9 (L) ¢’ sinh(xz)
—(0+) =
v w7y s u,(z) » ) (A10)
¢(L) ¢lo+) |- u,(z)=cosh(xz) , (A1)
Using Equations (A2)—(AS), we obtain
l where
(L) (L)
W= 1 y , m . E(
yuL) uyL) |- (A6) = —y—-+Ec—E . (A12)
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