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1. Engineering Significance of Phase I Study

In comparison with other existing fatigue crack growth models, the

present model offers the following features of engineering significance.

a) The mean fatigue crack growth model is developed based on fundamental

results provided by physical theory. The parameters of the model thus

have physical significance and they provide new insight into the

crack growth process.

b) The model parameters are directly related to the simple harmonic

tensile load and the temperature. Hence, test data under varying

loading conditions and varying temperatures can be used for parameter

estimation. Furthermore, validation of the model using existing test

data shows that the crack growth behavior can be reliably predicted

based on two or at most three suitably chosen tests. Considerable

savings in cost and time associated with testing, data collection and

data analysis can thus be realized.

c) The model indicates that testing time can be shortened by simply

increasing the temperature with the same loads. This procedure

eliminates the load interaction problem when using the standard method

of accelerating fatigue and FCG tests by increasing the loads.

d) Inherent variabilities in material behavior, load, temperature, and

environment can be incorporated into the mean model.

From an engineering viewpoint, these features represent an important

improvement over existing and more phenomenologically based models. It

is proposed that further development of this model and its implementational

issues can be addressed in Phase II.



2

2. Summary of Work Done in Phase I Study

The following tasks were specified in the Phase I Proposal and in

Contract F49620-90-C-0059 funded by AFOSR:

Task i) A deterministic macro model of damage accumulation for fatigue

crack growth (FCG) will be constructed from the micro theory.

Task ii) Identify the parameters in the macro model with physical and

material properties of engineering significance to determine

which must be estimated by testing and which can be estimated

from known material properties.

Task iii) Four sets of existing data on FCG will be used to explore the

parameter estimation problem in order to determine the minimum

amount of testing needed to characterize a component for

prediction purposes.

Task iv) Determine how variability is to be included in the deterministic

engineering model so that the inherent probabilistic distributions

present in the phenomenon can be included.

These tasks and more were completed.
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Let us summarize briefly how these tasks were accomplished, and

what was learned in the process. Details are provided in the references

1 and 2.

Figure 1 shows the crack plane on one-half a thin center crack

panel under axial tensile load; a o is the initial one-half crack length,

a is the current one-half crack length, and C is a generic point in

the intake portion of the one-half crack plane. Let us introduce some

notation.

10

Idj

Fiqure I

aj = 1/2 the jth crack length considered, j = 1 , ... ,

Yv = a./Zo' 2b = 1/2 the panel width,

I aj = aj - aj_, Ayj = aj/ 0

w = panel thickness,

so = far field axial tensile stress,

= So + A.; h( wt) >0
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h(t) = periodic function on (0,2T7), h (T )I < 1, mean h(T) = 0

T = absolute temperature (Kelvin),

tj = mean time to reach aj, At. = t. - tj_.

Yj = (yj+yj_l)/2.

Task i): A deterministic macro model of damage accumulation for fatigue

crack growth (FCG) will be constructed from micro (reaction rate) theory.

A deterministic macro model of FCG in a thin center crack panel of

polycrystaline ductile metal under an axial tensile load with a periodic

time variation is produced from a micro result provided by reaction rate

theory. Specifically, the macro model gives

Atj = f(Ayj, yj, $, z; So ,As, h(T), T; AG+ , B or X./V

where Bj = X./NkT is the growth control parameter, k = Boltzmann's constant,

h = Planck's constant, and v = mean number of bonds per unit area. Only

ine damage accumulation observable, namely y, is present, although other

possibilities exist, E and z are geometrical constants that refer to

the normal stress in distribution s( ) on (a < r < t) and T is assumed

constant. We note that to predict At.

the geometrical quantities Ay, yj E, z

must be selected,

the environmental factors sol As , h(T), T

must be obtained from the operating conditions, and

the material parameters AG+, Sj or Xj/v

must be estimated.

The model is new. It is based upon physical theory, and it explicitly

contains qualities of engineering interest. Details of the derivation
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are given in Sections 2, 3, and 4 in Reference [1] and in Section 2 in

[2]. Thus Task i) is completed for one specimen geometry and load.

Task ii): Identify the parameters in the macro model with physical and

material properties of engineering significance to determine which must

be estimated by testing and which can be estimated from known material

properties.

The macro deterministic model contains explicitly the physical

(environmental) parameters s0 9 As, h(T), and T that are of direct engineer-

ing significance. so' As, and h(T) describe the load considered here, and

are known once the load is specified. T is the temperature of the component

or specimen and is known once the environment is specified. We usually

assume T is constant, although this is not necessary; we also assume

there are no chemical agents in the atmosphere. It turns out from our

studies that h(T) and T are more important in the estimation of Atj than

previously thought.

The macro model also contains the material parameters AG+ and W.

AG+ is a Gibbs free energy; it is a thermodynamic property, and it only

depends on the material composition; it can be estimated for metals from

known information on the heat of sublimation of the metalic elements and

the composition. -3. not only depends on the material composition but

it also depends on how the material is formed (cast, forged, annealed, etc.)

into components. Bj is correlated with microscopic material properties.

6j must be estimate from test data at present. Details are given in

Sections 2, 3, and 4 in [i], and in Section 2 in [2]. Task ii) is thus

accomplished.
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Task iii): Four sets of existing data on FCG will be used to explore the

parameter estimation problem in order to determine the minimum amount of

testing needed to characterize a component for predictive purposes.

Actually, six sets of FCG data were used to explore the parameter

estimation problem. The parameter we estimate is B.s', where so = So+ As.

In each set, it was found that Bjs' could be expressed in terms of a

linear expression in Bo , c and y: ajs= oS (1-cyj). This means there

are three material parameters AG+, Bo , c of which % and c must be estimated

from test data. It was found that $o depends on the load whereas c does

not. Bo depends on T in a known manner but c does not seem to. Tests

at three different loads are the maximum required in order to be able to

estimate o as a function of the load. Then, it is possible to predict

the mean time tj to reach the crack length a. for a range of loads.

We also found that it is possible to accelerate tests by increasing

T. Thus, we have found the minimum amount of testing required to character-

ize a component for predictive purposes.

For details, see Sections 3, 4, and 7 in [2] and Sections 5 and 6

in [I]. We thus have completed Task iii).

Task iv): Determine how variability is to be included in the deterministic

engineering model so that the inherent probabilistic distributions present

in the phenomenon can be included.

We have found that variability can be introduced at the macro level

in the deterministic model by assuming that the work done in bond breaking

on the Ay, interval, 3s, has a random factor Qj. The data sets are

employed to estimate the moments and distributions of the Qj. What is

remarkable is that the distributions of the standardized Q. are very
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close to one another and do not seem to depend on the load or interval

length. We have no explanation for this remarkable fact based on this

macro method for introducing variability. However, this approach to

variability does not enable us to determine if the distributions of the

Qj depend on T. The tests needed for parameter estimation in the

deterministic model suffice to estimate the parameters in the probabil-

istic model for predictive purposes providing T does not change.

See Sections 5 and 6 in [2] for details. Task iv) is thus completed.

Persual of [1] and [2] makes clear that more must be done to validate

the current model, to further develop the current model so that, for

example, it applies to different crack geometries and loads, and to remove

some of the restrictive assumptions employed in the current model.
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CUMULATIVE DAMAGE MODEL FOR MEAN
FATIGUE CRACK GROWTH BASED ON THE

KINETIC THEORY OF THERMALLY
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Abstract-The objective of this paper is to show how the physical concepts due to Tobolsky-Eyring
for the description of atomic (micro) bond fracture can be extended to the macro problem of mean
fatigue crack growth which is of engineering interest. The parameters of the model have physical
meaning. Parameter estimation is studied with the aid of four data sets on fatigue crack growth.
Because of the fundamental physical concepts employed, the model provides new insights into the
fatigue crack growth process.

1. INTRODUCTION

THE PURPOSE of this paper is to present an initial study of a mean fatigue crack growth (FCG) model
based upon the kinetic theory os-thermally activated atomic bond fracture due to Tobolsky-Eyring[l ].

We start from a basic expression for the mean rate of single atomic bond breaking that has
its origin in the statistical theory of thermally activated bond fracture. A brief discussion of the
applicability of the expression is given.

From the basic expression, which applies at the micro level, we derive a differential equation
for mean crack growth in a center crack panel or WOL specimen under tensile load that applies
at the macro level. This is a major contribution of the paper.

Employing certain simplifying assumptions, we then obtain a formula for mean crack growth
whose parameters have physical meaning. Some of these parameters are directly related to the load;
others refer to material properties. One parameter can frequently be estimated from tabulated
physical data; however, the other unknown parameters must be estimated from experimental data.

The statistical analysis available for four sets of high replication data provide the basic
information on mean crack growth as a function of time with which the remaining parameters can
be estimated. These estimates provide new insights into the crack growth process under simple
harmonic tensile loading, including the effect of load shedding. This is a second major contribution.

A third major contribution is the fact that the mean model presented can predict mean fatigue
crack growth behavior in a component under arbitrarily varying simple harmonic tensile loading
at any temperature based on two or at most three suitably chosen tests.

Finally, we discuss the results, and offer suggestions for future study part of which will be
presented in a subsequent paper.

We wish to emphasize at this point that the model we develop is different from other mean
models. We are concerned with cumulative damage in which crack length is a macro observable
and a measure of macro damage accumulation, starting from a basic expression for atomic bond
breaking which applies at the micro level. Earlier models do not have this focus. Further, this model
has no contact with the concepts usually employed in fracture mechanics.

2. BOND BREAKING WITH A SINGLE ENERGY BARRIER AND NO
BOND MENDING

The mean rate, k,. of single atomic bond breaking, when there is only a single energy barrier,
no bond mending, and a tensile external force present, is, according to physical theory as developed
by Tobolosky-Eyring[l] (see also p. 338 in ref. [2]), given by

k T - -, '
K, = T e r (1)

995
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where

k = Boltzmann's constant,
T = absolute temperature,
h = Planck's constant,

AG = free energy of activation,
= average distance over which force acts in bond breaking,

f= average force acting on a single bond during bond breaking.

Let us briefly discuss the meanings of the last three quantities, and the form of the exponent in eq. (1).
AG ' and ;. are material parameters. Tobolsky-Eyring[l, 2] interpret the free energy AG ' as

the height of the single energy barrier that must be overcome in order to break a bond. AG ' also
may be thought of (Zhurkov[3]) as the binding energy of atoms in metals and the energy of
breakage of the chemical bonds in chain macro molecules in polymers.

The atomic bond force f depends on the external tensile force acting. We shall assume below
thatf may be approximated by a term proportional to the stress, as was done in refs [1-3]. Thus,
eq. (1) says, as noted in ref. [4], that "the free energy of activation is, in effect, reduced linearly
(in stress) in a manner identical to that proposed by Eyring[5] for molecular interpretation of liquid
viscosity". Further, the extensive experimental studies of Zhurkov[3] also demonstrate that a linear
dependence on stress in the exponent of eq. (1) is required to describe his data on time to failure
under constant stress.

The second material parameter is A. is the average distance over which the forcef acts during
bond breaking. In ref. [4], it is regarded as the mean separation between the equilibrium positions
of minimum force potential. It is clear from the form of the exponent in eq. (1) that ; is inversely
proportional to the strength of the material. ; will be influenced by how the material is formed
into components, and by work hardening or softening. Zhurkov[3] (replace his y by ;) gives some
very interesting observations on the meaning of this parameter. For example, a direct correlation
has been found between ; and the disorientation of the structure; the more disorientated the
structure in a metal, i.e. the higher the dislocation density at the slip planes, the smaller the strength
coefficient A, and hence the higher the metal strength, etc. Thus, A is an important parameter.

In all events, the form of eq. (1) has substantial support in experiments on a variety of materials
inc,,tdii|g polycrystalline metals and polymers.

Equation (1) applies at the micro scale; i.e. it gives the mean rate of single bond breaking under
the conditions stated. Our concern with failure (fracture) is at the macro level. Thus, it is necessary
to derive from eq. (1) a macro model of failure. It is worth noting at this point that a comparison
of several macro rate reaction models for fracture in solids is given in ref. [4]; this comparison
indicates that the models based on bond breaking rather than on bond slipping[6] are consistent
with experimental results obtained on fracture in polymers and polycrystalline metals. However,
in these models of fracture the growth of a single fatigue crack is not considered, which is of
engineering interest.

Our approach will be different from those in refs [1-3] in that the growth of a single crack
is of major importance, i.e. we are concerned with a cumulative damage process in which there

- .. is an observable.

3. DERIVATION OF A DAMAGE ACCUMULATION MODEL

We take the simplest approach in this initial study. To fix ideas, let us consider a thin
center-crack panel under axial tension. Let w denote the thickness of the panel, 1, the half-width,
and F(t) the axial tensile force.

Consider the cross-section of the panel formed by a plane perpendicular to the axis of the panel
containing the crack which we assume lies in this cross-section. Let a denote the half mean crack
length.t The panel is assumed thin so that we can assume the crack tip is straight and perpendicular
to the panel face. Let I" denote the distance along the axis of the cross-section from the centerline

tWhen we speak of crack length we always mean "mean" crack length from a distribution at time i even when this is
not explicitly stated.
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to a generic point in the portion of the cross-section ahead of the crack tip, i.e. a < 1, (see
Fig. 1). We observe that WOL geometry is the same as one-half a center crack panel. although
stress distributions are different.

Let v denote the average number of atomic/nuclear bonds per unit cross-section area. Then

vw d = average number of such bonds in the
interval ( , + d ) in the unbroken portion.

If we assume that no appreciable bond breaking occurs ahead of the crack tip, it follows that

T 2vw d = total average number of unbroken bonds
in the unbroken portion of the cross-section (2)

= 2vw(1 - a).

This is an important step because it connects the macro variable crack length a with the micro bond
breaking process. Since a is the only quantity that changes with time, eq. (2) implies that bond
breaking is concentrated in the region of the crack tip.

Let s(t, ) denote the normal stress at the point in the unbroken cross-section at time t. We
assume s(t, ) = s(t, - ) and that this stress does not vary across the cross-section. We note that
s(t, ) is an average macro concept[18].

The normal force acting on the interval ( , + d ) is

ws (t, ) d .

If we divide this average force by the mean numbers of bonds, wv d , in this interval, we obtain
an approximation for the force f acting on a bond at :

f = s(t,) (3)

We now replace eq. (1) by

kT kThbt (4)

or, with

a TekT' vkT' (5)

Kb(t, ) = a eo ' 4),  (6)

which is the mean rate of single bond breaking at point at time t.

10

-a-

Unbroken

Fig. I. Geometry of one-half of a center crack panel with some notation.
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The macro average rate of bond breaking on the unbroken portion of the cross-section is thus

2 WVKb d = 2wv f ' d (7)

Let us set this equal to the negative derivative with respect to time of the total average number
of bonds, 2vw(10 - a), in the unbroken portion of the cross-section, obtaining

da ') do
T, = Ja ot s . de. (8)

Neglecting dynamical effects, we have from equilibrium at time t,

F(t) = 2w f s(t, 2,) d . (9)

We note that in eqs (8) and (9) s(t, ) occurs under an integral sign with respect to . This means
that the right hand sides of eqs (8) and (9) will not be overly sensitive to how s(t, ) depends on

, since s(t, c) is a bounded function. Further, we note that eq. (8) is not of the form usually
encountered in fracture mechanics; it is new and has been derived from physical theory. Since eqs
(8) and (9) are basic in what follows, it is important at this point to make some comments on their
derivation.

Simply put, to produce eq. (8) we evaluate the mean number of unbroken bonds at time t based
only on geometry (see eq. 2) and equate the negative derivative with respect to time of this number
to an expression for the mean rate at which bonds are being broken, as determined by the kinetic
theory of thermally activated fracture (see eq. 7). The time dependent quantity in eq. (2) is the crack
length a(t); thus damage accumulation in this expression is measured by the macro quantity a(t),
with rate of accumulation proportional to d(t). On the other hand, the rate of damage
accumulation according to eq. (7) depends on s(t, ) as well as on a(t). s(t, I) not only depends
on a(f) but also on other quantities such as plastic zone size, for example. We note that eq. (8)
can allow the possibility that additional macro observables may be present.

As stated, eq. (9) is an equilibrium result. This means that we assume the frequency content
of F(t) is well below the lowest natural frequency of the specimen that can be excited by axial
loading. However, if dynamical results must be included, s(t, c) will be related to F(t) by a more
complex relation than that given by eq. (9).

We have approximatedf (see eq. 3) by means of the average macro quantity s(t, ). Thus. we
are employing a smoothed version off However, in a real material,f as well as ;, will change from
bond to bond due to variability in material properties as noted by Zhurkov[3]. It follows that when
such variability is to be taken into account, we must re-examine our evaluation of ;.f

2 and fl contain the temperature T. In the constant stress tests of Zhurkov[31, the temperature
was held constant. However, T may increase when F(t) is cyclic, as is well known when the
frequency is high. Hence, T may be time dependent.

Next. fl contains the material parameter .. Zhurkov[3] as well as others[l, 2] assumed 2 was
a constant in time to failure under static tests, and this was not contradicted by the experimental
results. However, where damage accumulation is being studied under cyclic load, this may not be
the case.

Finally, we observe that eqs (8) and (9) apply to a particular geometry, i.e. to either a center
crack panel or to a WOL specimen. Other geometries of crack development will require a different
formulation. Such possibilities will not be considered in this initial study.

4. SOME SIMPLE MACRO-MODELS OF DAMAGE ACCUMULATION

At this initial stage in our investigation of what can be learned from eqs (8) and (9), it is
appropriate to confine attention to simple situations. To that end, let us first assume

s(t )= s(t), (10)
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which means that the stress is uniform over the unbroken portion of the panel cross-section. We
first find from eq. (9)

F() t)

2w(lo- a)

From eq. (8), we then obtain

da o

d f e") d =a (Io - a) es(f) (12)

or

da ORO

d = a(lo - a) e ('10 a. (13)

The substitutions

a F(t)
Y = - = s°(t)' (14)

plo 2w?0
where s,(t) is the far field axial stress, change eq. (13) to

dy =_( 4- y) e'--- (15)
dt

Different forms of this equation appear in refs [2, 4], where it is assumed so(t) = constant, i.e. the
constant load case. When the load or stress is constant, eq. (15) can be integrated to yield a time
to failure expression[2], and it is this expression that not only provides an excellent description of
the time to failure data due to Zhurkov3] at different constant loads and different temperatures.
but it also provides an accurate predictor of time to failure where the load and/or temperature are
changed from the values at which a and P are initially estimated.

Zhurkov actually does not start from eq. (15). Rather he employs a time to failure expression
obtained by fitting an exponential formula to the extensive data that he collected. The empirical
expression he obtained can be obtained from the integrated form of eq. (15) by using suitable
approximations. For a discussion of this point, see ref. [5].

In refs [6, 7], s(t) is assumed simple harmonic about a mean value (>0). Equation (8) is then
numerically integrated, and the results compare well, in the example considered, with the single
specimen test result. In ref. [7], they also consider this case employing a different method.

Equation (15) is the simplest form we can obtain from eqs (8) and (9). It has one observable
or measure of damage accumulation, namely y. However, an objection to eq. (15) can be raised.
It stems from the fact that the stress is assumed uniform, i.e. independent of , which means there
is no physical reason why there cannot be significant bond breaking well ahead of the crack tip
although we assumed in eq. (2) the contrary. To partially overcome this objection let us next
assume.

s(1, =s()g(t), (16)

where the stress factor s( ) only depends on and g(t) is a multiplicative time factor. In view of
the fact that the normal stress is high in the irreversible bond breaking region and then decreases to
an elastic stress as we move away from the crack tip, a more realistic assumption for s( ) is either

s()= ap, a < < a + A, (17a)
=a,( < a,,), a+A< </o

or

A + 2a 2Aa
s( ) = ap + A AC----A a < <a+A, (I7b)

=ae, a+A< <1,,

where A < 10 - a and 0 < Aa < ap - a,. Equation (17a) gives two constant stress regions as does
the second region in eq. (17b). However, in the region a < < a + A, eq. (17b) permits the stress
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to vary linearly from ap + Aa to ap- Aa > a, with mean value ar. Thus, in eq. (17b), the stress
at the crack tip is the largest in the unbroken cross-section, which means that the maximum rate
of bond breaking occurs at the crack tip even if Aa is small. If Aa = 0, eqs (17a) and (I7b) are
the same.

We find from eq. (9), using either eq. (17a) or (17b), that the dimensionless time factor is

g(t) = (18)
(I -y - + r.6)'

where 6 = Allo, apca = r, = I + e, and, as before, so(t)= F(t)/2wlo is the far field stress. The
substitution of eqs (18) and (17a) into eq. (8) produces

dy tSmfOU
d = 2 [6 eI -- 6 .,," + (I -y -6)e' -- )"r 6]; (19a)dt

if eq. (17b) is employed, eq. (19a) is replaced by

-;"."- " - t,,,o,,, sinh l-y--6+rq6)... .......... .. d'v O6 e 0

dt (I As(o"xrG
" -y -6 +r/

+ a(1 -y -6 + r,6) e - +-6 '  (19b)

where Aa'= Aa/ae. If 6 =0, both reduce to (15).
Equation (19b) is approximately equal to eq. (19a) for Aa' << 1. Hence, we shall use eq. (19a)

in subsequent work since it is the simpler of the two from the parameter estimation point of view,
and we do not have to consider Au'.

We note that in eq. (19a) there are three observables or measures of damage accumulation.
namely, y, 6 and r. or c. We must either obtain expressions for the joint evolution of y, 6 and C.

or we must assume that 6 and E depend on y in some explicit manner if y is the only one observable.
We shall see, after confronting data, that for these data the major portion of atomic bond breaking
does not occur in the region a + A < < 1, if E > 0.20.

5. APPLICATION OF EQS (15) AND (19) EXPERIMENTAL DATA ON MEAN
CRACK GROWTH

The purpose of this section is to confront the model defined by eqs (15) and (19) with data.
We shall consider four sets of data on FCG under simple harmonically varying tensile load:

(a) ASTM E24.04.01 round robin data, 10Ni-8Co-lMo steel, 24 replications[8].
(b) Virkler, Hillberry, Goel (VHG) data, 2024-T3 aluminum, 68 replications[9, 101.
(c) Ichikawa, Hamaguchi, Nakamura (IHN) data, 2024-T3 aluminum, 30 replications[l I].
(d) Ghonem, Dore (GD) data, 7075-T6 aluminum, 60 replications[10, 12].

Equations (15) and (19) refer to mean crack length a or its dimensionless version y. For
parameter estimation, we require an estimate of how a or), varies with cycle number or time. Mean
crack length is obtained by averaging over the a-values of the sample functions (of a vs time) at
a fixed time. Available data analysis[10] is for mean time to reach a given crack length that is
obtained by averaging over the time-values of the sample functions at a fixed crack length. In either
case a v vs t curve is obtained in which the term "mean" is applied to only y or to t. Examination
of the VHG data presented in ref. [10] reveals that the two curves are close to one another (see
Appendix). Thus. for the y vs t curve, we shall use the mean time vs y curve which is sufficiently
close to the mean v vs t curve for our purposes.

Equations (15) and (19) contain the two physical parameters

kT vkT
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AG - can be estimated in one of two ways. Zhurkov has estimated AG from simple tests on time
to failure under static load, however, Zhurkov[3] has also shown that AG - can be obtained from
the heat of sublimation in metals[ 131: thus, there are two methods for estimating AG - and, hence
for estimating o. /P cannot be estimated from existing physical data since it depends on the test
conditions plus the manufacturing process. It follows that P must be estimated from test data. We
note that Zhurkov's simple tests for estimating / under static load may give values that do not
apply with cyclic loads.

The data in the four cases consist of a vs n (cycles) from which we obtain the values of A,
corresponding to Aa, or Ay,. We shall use (At, Ay,) to estimate 3 in eq. (15) for the first data set
and in eq. (19) for all four data sets. There are several reasons for doing this: firstly, it is important
to determine whether or not # depends on y = a/I or time t; secondly, if P depends on these
quantities, it is important to determine if that dependence can say something about the FCG
process and its modeling; finally, it is important to determine what must be known in order to make
accurate predictions.

(a) ASTM E24.04.01 round robin data[10]
The material is lONi-8Co-l Mo steel. The WOL-type test specimens 0.250 in. thick were cut

from the same sheet of material. The load employed is

F(t) = 605 + 495 sin cut (lb.), (21)

where co = 10 it/s. Tests were conducted at different laboratories. From the results obtained, we
selected 24 specimens as usable for our statistical aiialysis[14]. A load shedding program was
employed to produce the initial crack length, which differed among the laboratories. It is
appropriate, therefore, to take the initial crack length, a0 = 1.0 in. With Aa = 0.05 in. and
10 = 2.55 in. The (t, a) data are available at 20 points for purposes of parameter estimation.

The material is steel. If we regard the material to be iron, then according to ref. [15]
AG + = 94,000 cal/mol. We take T = 300 K as a representative temperature, and find

= 1.9655 x 10-6/s. (22)

The parameter P/3 must be estimated from the (At,, Ayj) data.
Let us approximate eq. (15) by the difference form

+f ie' sn' dr
Ay) = a (I -IT) A 1 f A (23)

where
Ayj = Aa/llo (jth y-increment),

a, + a, *, (mid value for yj,y 1,. ),

Atj = times increase of yj by Ay,

P =T or /-v
vkT vk T'

o= constant far field mean stress,

As = time varying far field stress amplitude,

As'= As/&I, and

" = cot.

For this initial study, we will make the computational simplifications of replacing the sine wave
form by a rectangular wave form:

2
- for0< <7r,

2
-- forir < r < 2t. (24)

it
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Then

2- J ' e  d t 2 e l ->,,(2 5 )

where

'=f(l +-.) (26)

and where the term arising from the second part of eq. (24) is neglected since in the data analysis
it will be found that this term is very small relative to the contribution from the first part of eq. (24).
Equation (23) is thus replaced by

xyj = (I - ,) At, el -,',. (27)

Since Ay, oc, .T and Atj, are known, we can estimate fi0 from this equation.
Figure 2 shows the P;jg estimates as a function of 9T (or j) and tj. When the estimates are

plotted against t) (Fig. 2a) a decreasing nonlinear function is obtained. On the other hand, when
they are plotted against j (Fig. 2b, top line), the straight line character of these estimates is
remarkable. Since it is easier to work with a straight line than a nonlinear function, we prefer the

0"L A, . latalr. The least square linear fit to these estimates is

#,Yo' = 116.921(1 - 0.98788y), (28)

where #,!1 is dimensionless. Before discussing some of the implications of this result, let us use
the form in eq. (19a).

Equation (19a) contains the two additional parameters r, and 6. Let us replace r, by I + c.
We know the plastic region increases in length as the crack grows. In this initial study, we make
the simple assumption that 6 = zy, 0 < z < 1, recognizing that this is an assumption of importance
and it will be discussed below. Thus, we introduce the constraint

r, = l + c, 6 = zy, (29)

where c and z constant. We follow the same procedure as we employed in obtaining (27) to find
from (19a)

y - zAte7- -,)y + [1 - (I + z). Ate (30)

40f-

0 
] 
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t/10
5

" *"*"'* ~*-. (1)5"1'50 W0

"" 'S•.... t.

0 "-.--. ".-

Is z

2.55y

Fig. 2. (a) 0,; estimate from the ASTM data plotted against time t,; (b) 0, io estimates plotted against
y, based on eqs (15) and (19). Ay, = 0.05/2.55.
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Fig. 3- Comparison of estimated and observed v vs t points for ASTM data, where estimated curve
employs eq. (27) and uses l,1; from eq. (32) rather than data.

Let us take c = I and z = 0.25 as representative for our present purposes. We quickly find on
confronting the data that the second term is orders of magnitude smaller than the first term on
the right hand side of eq. (30). Hence, eq. (30) becomes in practice

A 0. 125a At, el -0.. (31)

Figure 2(b) (see lower line) also shows the estimates Pfi; vs .The straight line character
of these estimates still obtains. The least squares estimate of this line obtained from the estimates
is

0j; = 59.2759 (1 - 0.73625y). (32)

Thus, regardless of whether we use eqs (15) or (19a) the fl A estimates vs .9s can be accurately
approximated by a straight line. What does this result say?

Consider ft;g = (2IU/vkT) ; is a constant as are v, k and by assumption T. Thus, if fP§;
decreases with y, this means that 2 decreases with y also. 2 determines the strength of the material,
where, as discussed in connection with eq. (1), when 2 is high means that the material is weaker
than when 2 is low. Figure 2 shows that 2 is decreasing linearly with y; this means the material
(just ahead of the crack tip) is getting stronger as the crack length increases; this, in turn, means
that, since there is no external source acting to produce a material change, the material is work
hardening at a constart rate as y increases. What we learn from this model is that the rate at which
work hardening is taking place is constant as a function of y, and this is a new way to demonstrate
that fact. The same results hold whether we use eq. (15) or (19a) which is also remarkable.

Further comments will be delayed until remaining data sets are examined.
Figure 3 plots the mean crack growth curve as observed and one predicted from (27) with /3jo

estimated from (32) rather than from the data. The agreement is all one could expect.

(b) VHG data[9,10.14)

The material is 2024-T3 aluminum alloy. The specimen is a center crack panel 558.8 mm long
with a half-width 10 = 76.2 mm and thickness of 2.54 mm. The load is

F(t) = 3150 + 2110 sin cot (lb.) (33)

with w = 40 t rad, s, 68 replications were used. Data were recorded as cycles to reach a given crack
length. A load shedding program was employed to produce the initial crack of a, = 9 mm; the
maximum crack length employed was 49.8 mm. Three crack length intervals Aa were employed.
namely. 0.2 mm. 0.4 mm and 0.8 mm, 10 = 76.2 mm and (t, a) is available at different numbers of
points.

tHere we use AG = 93.040 cal mol which takes into account the fact that the material is not all iron. This gives
2 = 1.94547 x 10 "- s.
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.- - Fig. 4. (a) #,j; estimates from VHG data plotted against time t.. (b) #j; estimates plotted against -v,
Ay - 1/76.2.

The data analysis in refs [10, 14] estimated the mean time to reach a specified crack length.
As mentioned earlier, we shall use these available data to estimate mean crack length at a specified
time since the difference is small between the two cases.

Zhurkov[3] found from experimental data that AG += 53,000 cal/mol for polycrystalline
aluminum, whereas (141 gives 55,000cal/mol for aluminum; we shall use Zhurkov's value which
gives, with T = 300 Kt

a = 1.4878 x 10-6/s. (34)

We shall only use eq. (19a) from this point on since it is in better agreement with the facts on stress
distribution than eq. (15).

We again use E = 1, z = 0.25 which means we use eq. (31). Figure 4(a) shows the /,g0 estimates
plotted against time t, and Fig. 4(b) plots the same estimates vs y. These graphs are similar in form
to those shown in Fig. 2 for steel. The first figure indicates that . is decreasing in a nonlinear manner
with time; i.e. work hardening is a nonlinear increasing function of time. Figure 4(b) again shows
that, except in the initial portion, the P, 9 estimates are remarkably close to a straight line. Let
us examine this initial portion in greater detail.

The Aa, = 1 mm (or Ay, = 1/76.2) in the initial portion of Fig. 4(b). Let us use now
Aa = 0.20 mm. The results are plotted in Fig. 5(a) for 9 < a < 13.2 mm. It is clear that there is a
departure from a straight line in this interval. On the other hand, if we examine the interval
15 < a < 17.2 mm, with Aa = 0.20 mm, we obtain the results shown in Fig. 5(b) where the straight
line approximation is excellent. We did not encounter this departure from a straight line in the
initial portion of Fig. 2 for steel. What might cause this departure from a straight line?

It is our opinion that in the interval 9 < a < 15 mm the effect of the load shedding program
is still present. The reason we did not see this feature in Fig. 2 is that the data considered started
at a0 = 1.0 in. which may have eliminated the effect of the load shedding program that might have
been present if we used an a0 < 1.0 in. The interesting point to observe is that we now have a method
for detecting when the effect of load shedding ceases.

We see from Fig. 4(b) that if we start at 15 mm, the P, 9, estimated when plotted against 1'/

are essentially on a straight line. The least squares estimate for this line is

3) 1o = 26.20280 (I - 0.72878y). (35)

(c) IHN data[16]

The material is 2024-T3 aluminum alloy. The specimen is a center crack panel 400 mm long,
70 mm wide, and I mm thick. The load is

F(t) = 706 + 468 sin wt (lbs) (36)

tActually T = 307 K but this is sufficiently close to 300 K for our purposes.
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Fig. 5. J, estimates from VHG data plotted against y. Ay, = 0.20/76.2. Two y-intervals are shown.

with co = 36.8 it rad/s, 30 replications were used. Data were recorded as crack length to reach a
given number of cycles. A load shedding program was employed to produce the initial average
crack length of d0 = 7.0302 mm, 10 = 35 mm. T is assumed to be 300 K, and we use Of from eq. (34).
The (t, y) data are available at 8 points for purposes of parameter estimation.

The data analysis[10] estimated the mean time to reach a specified crack length which we use
as in the above. We use (19a) with e = I and z = 0.25. After the first point, Ay, = 2/35.

Figure 6 plots the gfo estimates vs 9j. After the first point, the estimates lie on a straight line
with excellent accuracy. The least square estimate of the line is

fly ; = 26.124396(1 - 0. 72293y) (37)

where the first point is ignored. The first point does not lie on the line due to the effect of the load
shedding program.

The material in these data and the Virkler data is 2024-T3 aluminum alloy. However, the
specimen thicknesses are 1 mm and 2.54 mm, respectively. This means that the material prep-
arations are different. Thus, the parameters in eq. (37) will be different from those in eq. (35).

(d) GD data
The material is aluminum 7075-T6 alloy. The specimen is a center crack panel 320.67 mm long,

101.6 mm wide, and 3.175 mm thick; thus 10 = 50.8 mm. Three load conditions are involved:

Test* 1, F(t) = 4099 + 1024 sin wt (lb.),

Test*2, F(t) = 3752 + 1250 sin wt (lb.),

Test*3, F(t) = 2391 + 1024 sin cot (lb.), (38)

20-

SI I

7 1 1 15 19
35y

Fig. 6. #j.; estimates plotted against y, for the IHN data. Ay, = 235 after first interval.

EFM4 3 S--
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with w = 20 it rad's, 60 replications were used in each test. A load shedding program was employed
to produce an initial crack length a0 = 9 mm. The (t. y) data are available at 6 points for purposes
of parameter estimation.

These available data analysis uses three A v:

Test* 1, Ay, = 0.0360827,

Test*2, Av, =0.0393708,

Test*3, Ayj = 0.0328150. (39)

The data analysis estimates the mean time to reach 6 crack lengths starting at ao = 9 mm. With
T = 300 K,

,2 = 1.4878 x 10-26/s

as in the case for data sets (b) and (c). Again we use c = 1, z = 0.25, which thus makes eq. (31)
applicable. Figure 7(a) shows the Pjl . estimates plotted against y as abscissa for each of the three
test conditions. Except for the first point, the remainder can be accurately approximated by a
straight line for each condition. A few comments are in order.

First, the residual effect of the load shedding program explains why the first point is below
the straight line for each condition; the same residual effect was noted for the data sets (b) and (c).

While it is no longer remarkable to obtain these straight lines, it is remarkable that the three

lines are almost parallel. The least square fit of a straight line to these estimates, excluding the first
point, is

Test' 1: ft, ; = fi0 i(l - 0.71978y), flAg = 25.9862,

Test 2: #Y = fl o(1 - O.72546y), f0 ; = 26.1707,

Test 3: fif; = fl0 .;(l - 0.71895y), &Y; = 25.6854, (40)

the slopes being respectively - 18.7044, - 18.9858, - 18.4665. These slopes are slightly different
but the differences will not show up on a graph. We also note that the coefficient of y in the
parentheses are very close in value in the three cases; the average is 0.72140 with a maximum
difference of 0.56%. In view of the fact that the currently available data analysis only provides 5
points with which to estimate each line, these numerical values cannot be viewed as final although
they are interesting.

Third, we know j;.k in each case; thus we find

Test* 1: §, I = 9560 psi, P,., = 0.002718/psi,

Test*2: .2 = 9150 psi, 102 = 0.002860/psi,

Test 3: i.3 = 6120 psi, t0.3 = 0.004197/psi. (41)

00

000 3

6 ;/103 0

10 t5 2o

50.8y

Fig. 7. (a) fi , estimates plotted against y, for the these load conditions of the GD data. Ay, variable;
(b) PO estimates plotted against j; for these load conditions.
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The 3o., estimates are plotted against ,; in Fig. 7(b). We note these estimates lie close to a straight
line, although the points are not well spaced. The least square linear fit obtained from eq. (41) is

fl, = 0.006838 - 4.32535 x 10-'§,. (42)

Thus, (42) suggest that given any §, we can calculate , for this go. Since all coefficients of v in
(39) are close to 0.72140, this further suggests that prediction of mean crack growth at g different
from those tested might be possible. More will be said about this below.

Finally, we observe in eq. (41) that the l, are different for different .;. Since

,0 = vk' (43)

the results in eq. (41) say that , depends on the loading through ;,.This means that the work
hardening process depends on the loading as well as on the dimensionless crack length 1 as
indicated by eq. (40). We thus see that fl, Y; depends on the two fixed material parameters ,81 or
.o and the coefficient of 'v in eq. (40), of which #,o depends strongly on the loading through ;,;

whereas the coefficient of y does not seem to do so.
The GD data are the most interesting of the four sets (a), (b), (c) and (d) considered in this

section. because of the three sets of loads employed. However, a data analysis with more than 15
points in each of the three crack length intervals is needed to improve the accuracy of the values
given in eqs (40) and (41).

Let us next discuss what can be said when the four data sets are considered together.

6. DISCUSSION

The consistency of the character of the estimates of flg §; from four data sets involving different
metals, load means and amplitudes, and laboratories is certainly remarkable. We have already
discussed in the previous section some of the physical inferences that can be drawn from these
consistent results on mean behavior in metals where geometry of the crack development is
essentially the same. There are many points that merit further discussion. However, in this initial
paper, we only can take up a few.

Equations (8) and (9) are the starting point for this study at the macro or engineering level.
Equation (9) is a force balance equation and requires no further comment here. Equation (8) says
that two ways of evaluating the macro mean rate of bond breaking are equal, and relates a(t) to the
bond breaking process in the unbroken portion of the cross-section. It is important to realize that the
left-hand side of eq. (8) implies that all the bond breaking takes place at the crack tip or at least
in a small region just ahead of the crack tip. Obviously, the right hand side must say the same thing.

We approximatedfin eq. (3) by means of the normal stress s(t, c). Stress is an average concept.
Love[16] has pointed out that it is a "macroscopic or large-scale" concept, which means we are
using a smooth version off. While this is the simplest method of approximatingf for the geometry
and loading under consideration, it may not be the only possibility that merits attention[17].
Further, with different specimens geometry and method of applying the load, the normal stress
s(t, 5,) will not be appropriate, and we leave this point to another time. Let us next focus attention
on the normal stress.

The choice of s(t, ) in eqs (8) and (9) is basic to what follows. As noted earlier, s(t, ) always
occurs under an integral sign with respect to , and this means that the broad features of its form
as a function of *, are important but not the details. When a macro crack is present, a uniform
normal stress is not realistic. Equation (17) does contain the broad features that s(t, ) must
possess. and this is the simplest choice that can be made possessing these features (see ref [18] for
a different approach). However, this choice requires the addition of the two new quantities A or
6 and r, when eq. (17a) is employed. At this time, there are no experimental data to suggest how
these two quantities behave. Qualitatively, we know that the plastic zone increases in length and
work hardening increases as time or crack length increases for the materials considered. However,
we have no quantitative information on how y, 6, and r, jointly evolve with time or if they may
be regarded as a state vector[10]. To circumvent this current lack of information and get on with
a preliminary parameter estimation study, we assume the constraint eq. (29), which is at least
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physically plausible. Clearly, it is important to obtain experimental data on how Y. 5 and r, jointly
evolve with time in order to refine and, or expand the scope of this model.

We employ the same s(t, ,-) for center crack panel and WOL specimens under tensile loading.
This choice can be questioned. However, we see from the data analysis with c = I and : = 0.25.
that the high stress region produces the overwhelming fraction of bond breaking that takes place.
This would still be the case if c > 0.20. Thus, the precise form of s(t, ,) in the low stress region,
which will differ between the specimen types, is not important.

The crack growth process is more complex than failure under constant stress[3]. To see this.
let us write

= flo(l - cv). (44)

which conforms to all cases considered. The substitution of eq. (44) into the first term of eq. (30)
gives

0J0(I -. (}li -¢1

Ayj=- Ate (45)

which implies c > 0.20. Instead of the two constant material parameters 2 and 3 employed in refs
[2, 3], we now have three, namely, ./ f, and c. The parameter Ot depends on the material but not
on the load; /fl depends on the material and the load; and c depends on the material but not strongly
on the load. Thus, the parameter estimation problem and the model defined by eq. (45), which uses
eq. (29), is more complex than the models considered by previous investigators. This fact has been
established with the aid of four high replication sets of FCG data.

The presence of T in an explicit manner, in a and fl, is important. Its presence indicates that
it should be measured during tests. Further, since relatively small changes in T can produce
substantial changes in fatigue life, lack of knowledge of how T may be changing can introduce a
source of life variability that may produce incomprehensible results as well as unwanted
consequences. Thus, having T explicitly present, is a source of strength for the current model.

The purpose of the load shedding program in FCG tests is to eliminate the transient material
behavior that is induced when the initial crack length is rapidly produced. Consider the upper graph
in Fig. 5 which refers to the 15 to 17mm crack length interval. The #,Y; estimates essentially lie
on a straight line, indicating in our view, that the rate of work hardening is constant. We interpret
this to mean material behavior has reached a steady state. The lower graph, which is for the 9 to
13 mm interval, shows an initial departure from steady state material behavior. We believe this
effect is due to the lingering effect of the load shedding program. This appears to be the first model
that can. from a data analysis, detect this lingering effect. Hence, this is a remarkable feature of
the model. There is another point worthy of comment.

Consider the lower graph in Fig. 4, which is for the 9 to 49 mm crack length interval. The
straight line character of the estimates persists to the largest a-values employed, where the crack
tip is coming close to the panel edge. The same feature is observed in Figs 2, 6 and 7. It is reasonable
to expect that the close proximity of the crack tip to the specimen edge would disturb the constant
rate of work hardening in view of the fact that the lingering effect of load shedding does change
the rate. Thus, it is a surprise that there is no change in the rate due to the edge effect, even in
Fig. 2 where the crack tip comes to within 0.55 in. of the specimen edge.

Numerous approximations were made in obtaining eqs (27) and (31). For example, the varying
y-value on a A v, interval was replaced by the constant .Pj; sin r was replaced by a square wave
function; and because of the numerical values of the parameter being estimated and our choice
c = I. certain terms became negligible and were dropped. In a preliminary study, these approxi-
mations are acceptable. However, now that we have found that the model is interesting, it becomes
necessary to refine our parameter estimation study by eliminating these approximations, and this
will be done in a future study.

The model presented is for mean behavior. However, we mentioned earlier that if variability
is to be included, we must re-examine our evaluation of the term .f, although this term may not
be the only source of variability. What makes this term of interest is thatf and ;. vary from bond
to bond due to variability in the atomic structure of the material. Further, due to the polycrystalline
nature of the material, different crystals and grain boundaries will be stronger than others providing
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possible correlation in ,:.-values over intervals of varying lengths. These possibilities are some that
will be of interest when variability is taken into account, which we also leave to a future paper.

7. CONCLUSION

The model presented for mean fatigue crack growth is based on fundamental results provided
by physical theory. The starting point for the derivation of the model is the basic expression for
the mean rate of single atomic bond breaking provided by the kinetic theory of thermally activated
bond fracture. Based on this expression, which applies at the micro level, a macro model is derived
for mean fatigue crack growth, as a function of time, in a center crack panel and WOL test
specimen under (simple harmonically varying) tensile load. The parameters in the model have
physical meaning due to either the time varying load or material properties. In this paper, only
the simplest version is considered.

The ideas employed here differ in a fundamental manner from those employed in fracture
mechanics. In this paper, basic ideas from physics are brought in at the atomic level at the outset.
This is different from the traditional approach and offers a basic approach that has not been
previously studied. The model is not phenomenological.

The most significant point of the macro equations and paramete- estimates that have been
developed is their engineering importance. The most important feature for the engineer is that for
a specific component only two or at most three tests are required to predict mean fatigue growth
for an arbitrarily varying simple harmonic tensile load.

We see from eq. (45) that there are three parameters. namely, 1, fl, and c that must be estimated
in order to use this equation for prediction of mean fatigue life behavior. The parameter 2 can be
estimated from tabulated data. The parameters fl3 and c must be estimated from tests. While f3
depends on go and As through To, c does not seem to depend on these quantities. We observe from
the GD-data analysis that two or at most three suitably chosen tests are required to estimate the
dependence of fl on the load; c is then estimated as the average of the test estimates. Once this
is done, we can, on selecting suitable values for E and z, employ eq. (45) for predictive purposes
for an arbitrarily varying simple harmonic tensile load at any temperature. This predictive
capability based on limited testing is a significant feature of engineering importance.

Many interesting points concerning the mean model merit exploration and discussion. Further,
the variability inherent in the phenomenon must be brought into a model. We leave these matters
for future papers.
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APPENDIX

In Fig. Al, we plot points from EN vs a and from EA vs n. These points come from the data analysis given in [101.
We observe that for all practical purposes the curves these sets of points lie on are the same curve. This justifies the use
of EN vs a in the above data analysis instead of the EA vs n curve.

9 EA vs n
2 EN vs a x

x

a A*
19 -

x

x N

0 100 200

n/ts
Fig. Al. A comparison of EN vs a points and EA vs n points for VH-I data.
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Abstract

A study is continued of a macro model of FCG that is based upon a micro result from

reaction rate theory. The previously presented deterministic (mean) model is examined further,

and a probabilistic model is introduced. Analysis of fatigue crack growth (FCG) data for

periodic tensile loads reveals that three material parameters are required. The model also

explicitly contains the load and the temperature T. It is shown that T and the form of the

periodic load are important quantities of which the former has interesting implications for

accelerated testing. The minimum amount of testing required for predictive purposes is also

discussed.
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1. Introduction

We present in [1]' the derivation of a deterministic macro model of fatigue crack growth

(FCG) based on a micro result from reaction rate theory along with an initial study of some of its

properties. This presentation provides a brief survey of some of the interesting features of the

FCG process and its modeling by this approach.

The purpose of the present paper is threefold: First, further studies of the deterministic

(mean) model for the evolution of the dimensionless crack length are presented and discussed.

We use for this purpose a data analysis of six sets of FCG in which the specimens are under

simple harmonically varying tensile load. The studies indicate the importance of the model

having three material parameters, one of which depends on the load. The model's explicit

dependence on the temperature T and the wave form of the periodic load also indicates the

importance of these two quantities in the evolution of the crack length.

Second, and initial study is made of how the ever present variability in FCG might be

incorporated into the macro mean or deterministic model by means of random material behavior.

A data analysis of the variability present in the data sets is employed to estimate the distributions

of random material behavior, such distributions then producing the distributions of the time to

reach a given crack length. The closeness of the standardized distributions of the random

material behavior is discussed and suggests that there might be an underlying micro random

material behavior that merits study.

Finally, we consider the minimum amount of testing required to estimate the macro mode!

parameters for predictive purposes, and the most expeditious method for accelerating tests.

Since only one material parameter depends on the load, it turns out that two or three tests at

suitably chosen loads are needed for parameter estimation; then it is possible to predict the time

* Hereinafter referred to as Part I or simply as I.
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to reach a given crack length over a wide range of loads. A standard method for accelerating

fatigue and FCG tests is to increase the loads, which introduces the question of the effect of

changed load interaction. The model indicates that testing time can be shortened by the simple

expedient of increasing the temperature T with the same loads, which eliminates the load

interaction question.

We begin by giving a short review of the derivation of the deterministic model.

We close with a conclusion section that summarizes the results of the study.
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2. Brief Review of Deterministic Model

The basic specimen geometry under consideration is a thin center crack panel under axial

tensile load F(t) (See Figure 1 of I). We start from the macro equations (81) and (91):

da = , d(-U- = Ia d 1

F(t) = 2wjf' s(t,)d4, (2)

where

a = 1/2 crack length,

lo = 1/2 panel width,

w = panel thickness,

= distance from panel center line to a

generic point in unbroken portion of crack plane,

AG'

X = e , T = absolute temperature,h T k 1 vkT

k = Boltzmann's constant, h = Planck's constant,

(3)

= average distance over which force acts in bond breaking,

v = mean number of atomic bonds per unit area.

s(t, ) is the normal stress on the unbroken portion of the crack plane at time t and location ; it

is a bounded function. AG' is a material parameter that can usually be estimated from existing

information. The growth control parameter 3 or X/io depends on the material and how it is

formed into components; it must be estimated from data.
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Neglecting dynamical effects in the specimen, we can assume (see (161))

s(t, ) = s()g(t) , (4)

where the stress factor s(. ) only depends on and g(t) is a dimensionless multiplicative time

factor depending on t and crack length.

The normal stress is high in the region of irreversible bond breaking just ahead of the

crack tip and then decreases to an elastic stress as we move away from the crack tip in the crack

plane. A realistic assumption for s( ,) is

s(!:) =(YV a_,*-< a +A,

(5)

=T cr(< cyp ), a + A < < I,,

(see (171)). Other assumptions are possible (see (17b13), but (5) is the simplest in view of the

fact that (1) and (2) are not overly sensitive to the precise form of s(!).

The substitution of (4) and (5) into (1) and (2) yields

So (t)/O3eg t)- 
(6)

l -- 6+r 0 6
t~r,so(t) S(t)(7

dy C e ±S +(1-y-6)e (Iy (7)
dt

where s,(t) = F(t)/2wl/ is the far field axial tensile stress, y = a/l is the dimensionless crack

length, 6 = -VAl is the dimensionless length of the high stress region in the crack plane, and

= r, = 1 + E is the ratio of the high stress to the elastic stress and is greater than one. Of

course, 1 -y-5+r 8>0and0 <y< 1.

Given x, 03 and so(t), (7) must be integrated to yield y as a function of time. Howe,,er, for

the specific form of so(t) we shall assume, a difference form of (7) is satisfactory for our

purposes.
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Let the far field axial stress s0 (t) acting on the specimen be

So (t) = .go + As sin cot, or (8)

= T, + Ash(t),

where r = cot, h(:) is continuous and periodic with period 2-., I h(r) I _ 1, it is odd with respect to

.c, so its mean value is zero, and g and As > 0. Let us discretize the crack length

a. <a, < ... < a, </1, and time 0<t, < ... < t, where tj is the mean time to reach aj.

Further, let us set

yj = aj//o

yj = (Yj-1 + yj)/2

(9)

Ayi = Yj - Yj-1

At = t - ti I ,

where Ati in the time required for y to increase by Ay_ 1. The difference form of (7) that we

employ here is

yJ = aAJ [jevr , 1  e & + (I - - -j)e e viAsh(T)dc (10)

where vj = D3j/(l - Yj - 5j + r0 6 j), co converts cycles Anj to time Atj.

The parameters r. and 5 describe how the assumed form of the normal stress on the crack

plane evolves with time. It is possible that y, ra, and 5 form a state vector if we have differential

equations describing the joint evolution of y, T, and 5. This would imply that y is history

dependent. However, at this time, we have no such evolutionary equations for these quantities.

Therefore, to proceed with a study of (10) in conjunction with data we introduce the constraints
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r =  e, E = constant > 0,

(11)

5j= z ,z=constantwith0<z< 1.

The first constraint says that as cye increases with increasing y ap also increases at the same

rate. The second constraint savs that the length of the high stress region of irreversible bond

breaking in the crack plane increases as y increases. These statements are consistent with the

qualitative behavior of a work hardening material. Eq. (11) are among the simplest that can be

introduced but can be changed if necessary. More will be said about (11) when confronting data.

If e > .20, parameter estimation studies reported in I and reported here indicate that the

second term in the square bracket of (10) is negligibly small in comparison with the first term.

Thus, (10), when combined with I I .) can be written as

A-- I -(l+E)o I e2 " vj(1+E)Ash(-) d(A y = C z j' t e! e d r ( 1 2 )

We cor'.,ider two forms of h(z), namely

h(-:) = sin T ,

2-r
h(T)= - 0 , _: x/2,

(13)

- - , 7r/1_ < 3T/2,

= -4 + -- , 31/2 !< ": 27r,

The second form is a "saw-tooth" version of the first each having amplitude 1. First, consider

the first of' 1-); then
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lj xsi d'= I.(x) (14)

where 1,o(x) is the modified Bessel function of order zero. For the data studied, x is large; thus

we can employ the approximation [2]

Xe. ( + F-)Djys
1(x)- e ,x= (15)"v_ ~ ~ 1 1- )Yj

Hence, we can approximate (12) by means of

Ayj = axzyjAtj(2ujAs') e' , or Atj = (azj)-1Ayj(7ujAs') eu (16)

when As is not too small (e.g. x _ 10), and

(1 + e)f3jA
ui =

1 - (1 - z E)-j

S= + 'As, (17)

As = As/To

Next, consider the second form of h(r) given in (13). Then, under the same type of

approximation we find

Ay Y Atj (ujAs,)_'eU '  (18)

where (17) still holds. We assume in Part I that h(t) = rectangular wave form with the area

under the half-wave equal to the area under sin t for 0 t:5 it. The equation corresponding to

(16) and (18) then becomes

Ayj- 2 e , (19)

which is (31I) ifz = 1/4, and 0 ' =so + 4As,e = 1. In (18) and (19), As is not too small
IT
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Equations (16), (18), and (19) are based on the step distribution for the stress s(") given by

(5). Another possible choice is given by (17bI); still other reasonable possibilities exist.

However, at this point in the study, use of (5) is appropriate because of its simplicity.

The material parameters in (16), (18), and (19) are cc and 3; E and z are geometrical

parameters connected with (5). We have already stated that the parameter o (or AG') can be

estimated from known results (See Zhurkov [3]). However, the 3i must be estimated from data.

The selection of values for E and z will be discussed below.

Let us consider how P3jo7 will be estimated from data, using (16). From the data, we can

find for each Ayj Atj = E{ATj }, where ATj is a random variable representing the time for the

crack to increase by Ayn in dimensionless length. Then, write (16) as

- U (20)

On taking logarithms, we obtain

1Ayj I
bj = log 2r + ogu -og ujAs (21)- ~cczvjAtj -

Set

Uj = bj + di (22)

It follows from (21) that

-log bAs + 1 dj

2 = b -- , 0 + - (23)

and since d3/bj is small for the data considered

dj---(I - )- 1log biAs" (24)
2bj 2
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Thus, we have an estimate for uj. We then find an estimate for Pj-o by employing the first of

(17)

S1-(-z) (25)~~~1 + E u,(5

once z and c- are selected. Similar results can be obtained for (18). We easily find from (19)

that

2Ayj
uj = log- (26)

azj At

which gives an estimate for uj in this case; estimates for P3jTo again follow from (25).

Eq. (7) is the basic contribution in this paper (and 1). It contains the significant quantities

of engineering interest. Comparison with two other models of FCG based on reaction rate

theory will be commented upon in Section 4.
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3. Parameter Estimates for Deterministic Model

We employ th~e same experimental data on FCG that is considered in I, namely

a) ASTM E24.04.01 Round Robin Data [4]

The material is lONi8ColMo steel, 24 replications, co = 107t rad/sec.

b) VHG Data [51

The material is 2024-T3 al alloy, 68 replications, o = 407c rad/sec.

c) I-LN Data [6]

The material is 2024-T3 al alloy, 30 replications, co = 36.8it rad/sec.

d) GD Data [7], 3 load conditions, co = 207c rad/sec.

The material is 7075-T6 al alloy, 60 replications for each load condition.

Let tjik be the time to reach crack length aj for sample k in one experiment, where k = 1, , n.

Then, with

Atj,k = tj.k - tjl,k  (27)

we employ

1n

Atj = Z=Atj.k (28)

as the (mean) time required for the crack length to increase from aj- 1 to aj or to increase by

amount Aaj = aj - aj-1. Thus, for each load condition, we have Atj and Av at a number of crack

length.

We employ (16) for parameter estimation since in all experiments h(t) = sin t. In b), the

controlled ambient air temperature is 2970K and we assume a 10'C rise in specimen temperature

due to material hysteresis at 20 Hz, producing an assumed steady state T = 3070K. In a), c), and

d), we assume as a reasonable value the temperature T = 3000 K.
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The AG- value in each experiment is given in Part I. Thus, for each experiment, we have

an estimate for a from the formula given in (3), and needed in (16).

The quantities s, and As are obtained from the load condition and specimen geometry

for each experiment by means of the second and third of (17); these quantities are also needed in

(16).

It follows that given the (Atj, Ayj) (16) provides the estimates for the parameters Pjs', for

the selected values of z and E; then, we get the Pj from these estimates.

WOL specimens are employed in data set a), whereas in the other data sets the specimens

are center crack panels. Since significant bond breaking only occurs in the high stress region, we

will employ the results in Section 2 for this case even though r. and ae must be viewed in a

different manner than for center crack panel specimens.

The general nature of the parameter estimates Pj-g found here is of the same as found in

Part I, where we assumed h(t-) = rectangular wave form. That is, in the data sets of b), c), and d),

there is an initial deviation of the 3j"O from a straight line with negative slope, which we

ascribed in I to transient material behavior, no such deviation from a straight line occurs in data

set a). Thus, only a few of the graphs presented in I will be repeated here. Instead, we confine

attention to the expression for the straight line approximation to the estimates.
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a) E24.04.01 Data

Figure 1 shows the parameter estimates Pjo' from Part I where h(r) = rectangular and the

estimates from (18), both with G = 1 and z = 1/4. The crack length increases from 1 in. to 2 in.

and, with Aaj = .05 in., this produces twenty aj; 1, = 2.55 in. and we assume T = 300 0 K. The

straight line approximations differ by a significant amount. The mean square (ms) approximate

lines obtained with the use of (18) for estimating the Pjs' is

P3yTo =5 9 .5 3 4265 (1 -. 7 2 3 4 60 y), (29)

where , = 1725.49 psi and As =.450000. The corresponding equation from I is

yTo'= 59.2759 (1 -. 73625 y) (30)

As noted above, there is no deviation of the estimates from a straight line when starting at

a = 1 in. and ending at a, = 2 in. even though at the end point the crack tip is close to the

specimen boundary.
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b) VHG Data

The straight portion of the estimates is from crack length 16 mm. - 37 mm. (Aaj = 1 mm.),

37 m. - 44.2 mm. (Aaj = 1.2 mm.), 44.2 mm. - 49 mm. (Aaj = 1.6 mm.), and 49mm-49.8mm

(Aaj .8 mm.), giving 31 values for -fj, l = 76.2 mm. so that j =YJ/76.2 and

Ayj = Aa;/76.2, T = 3070 K. The ms. approximate line is

j3y 1- =25.952791 (1 -. 725106 y), (31)

where 7o = 8,766.67 psi, As = .401141, r = 1, and z = 1/4. The initial portion from 9 mm. - 16

mm. provides estimates that deviate from a straight line in the same manner as shown in

Figure -. and 5 in Part I. The equation from I corresponding to (31), when h(tc) has a rectangular

wave form, is

P3yT =26.20280 (1 -. 72878y) (32)

Thus, there is no reason for graphing the estimates.

In the first crack length interval 16 mm. - 37 mm., we use Aaj = 1mm.. However, the data

in that interval are given at Aaj = .2 mm.. This provides an opportunity for checking on whether

or not use of smaller Ayj produces a significant difference in the ms. approximate line. On

comparing the ms. approximate lines in the interal 16 mm. - 36 mm., using Aaj = 1 mm. and .2

mm., we find that the numerical values in the ms. approximate lines differ by a maximum of

.04%. It thus appears that using smaller Ayj does not produce a significant difference in the

parameter estimates. However, a bigger difference in parameter values appears when the Aaj

were changed from 1.0 mm. to 2 mm. Thus, the magnitude of Aaj should not be too large.
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c) 1-LN Data

The straight portion of the estimated D3j7o is for gj = 9 mm., 11 mm., , 21 mm., with

Aaj = 2 mm., giving 7 points. 10 = 35 mm. and T = 300°K. The ms. approximate straight line is

,,o = 2 6.6 6 7 67 8 (1 -. 723869 y), (33)

where 7 = 10,814 psi, As = .397633, e = 1, z = 1/4. The estimates are obtained using (16) and

the (Ayj, Atj) are obtained from the data. The estimates at 'j = 7.5 mm. deviates from the

straight line (33) as is the case in I (See Figure 6 of 1).



18

d) GD Data

We assume r = l and z = 1/4. In Part I (see Figure 7 1), we employ six j. Here we use

24 ij covering the same range of crack lengths for the three load conditions as in

1. l = 50.8 mm. and T = 3000 K. The 24 3j7o, estimates are obtained using (16). Figure 2

shows the 1jso estimates for the three load conditions.

The first five estimates show transient material behavior in each case. The ms.

approximate straight lines for the straight position are, using 19 ij in each case,

GD1 I 13yS'o = 26.712158 (1 - .722287 y),

GD'2 : f3yT' = 26.954427 (1 - .727481 y), (34)

GD#3 : 13y-o = 26.518554 (1 - .722104 y),

where

GD#1 :7o" = 10,246 psi , As =.199883,

GD#2 :-' = 10,004 psi , As' = .249900, (35)

GD#3 :7o" = 6,830 psi , As' =.299854.

Equations (34) and (35) produce

GD 13o =.00260708,

GD#: . = .00269436, (36)

GD#3 = f3o - .00388265.

The form of (34) is

NT" '=13g (1 - cy) (37)

The average value of c is .723957, with a maximum deviation of .4867%. It appears that c does

not depend strongly on the load condition. This same observation was noted in I where h(tC)=

rectangular wave form.
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We observe from (36) that P3o does depend on the load condition, as it does in I. Figure 3

shows P, plotted against 7o,'. With this location of the points it is not possible to determine the

precise nature of the functional dependence. However, with test conditions that provide well

spaced points on the 7o this should be possible.

It follows that with two or three suitably chosen test load conditions we can find the

average value of c and obtain a graph for 3o as a function of ". Then, with (9) and (20), we

can predict Atj, as a function of (Ayj,Yj) for other load conditions for h(r) = sin r, c = 1, z = 1/4,

and constant or variable T, and also find tj = At, + + Atji 1 as a function of yj.

We now take up a number of interesting points not previously considered. First, using the

I-LN Data, let us consider the effect on the PjTo estimates when r takes different values with

the same 5 = .25 y. We orly consider the straight portion of the Figure 4 shows the

results for r = up/ae - 1 equal to .25, .50, and 1.0. The straight line character of the estimates

still obtains in each case. Reducing e causes the numerical values of the .O ' to increase. Our

assumption throughout the data analysis that r = 1 is reasonable, although a closer connection

with how the form of s(t, ) evolves with time, based on experimental evidence, is certainly

needed.

Next, let us hold c constant and change 8. Figure 5 assumes I = and 5 is changed. As

long as we assume 8 = zy, we see that the straight line character of the estimates still obtains.

However, if 8 = constant, the straight line approximation is no longer satisfactory. We know

that the length of the high stress zone in the crack plane increases for materials that work harden.

Thus, the choice 5 = zy is reasonable in this study. Again, experimental evidence on how s(t, {)

evolves with time is needed.

Equations (16), (18), and (19) contain the temperature T explicitly. Let us consider how T

influences the results predicted by the model. We employ the VIIG Data for this purpose.

We have from (3)
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kT T ,kT 0 (38)
h 'ikT

T, = 3070 K for the d.ta. We assume E = 1 and z = 1/4 and employ the same numerical values

for the other quantities as previously used when making parameter estimates in b).

Let T1 = 312'K and T, = 3020K. We find using (31) and (38) that

T, = 312'K: c=4.73250 x 10-2 , ' = 25.5369 (1 -.725106j)

T0 
= 307K: ct= 1.15670x 10

-  , P3o' =25.9528(1 - 7 25 106y), (39)

T- = 302K :c = 2.69906 x 10-26 , {o'=26.3826 (1 -.725106 7j).

Notice that we assume the coefficient of y inside parenthesis and also Xo do not depend on T.

We use (16) and D3jTo from (39) to predict Atj as a function of Ayj or j, starting at crack length

16 mm with Aaj = 1 mm and ending at crack length 36 mm. This interval 16 mm. - 36 mm. is in

the straight portion of the j1 s0, estimates. We could have started at 9 mm. if we were wiling to

employ graphical results instead of (32).

The solid curves in Figure 6 are from prediction at the indicated temperatures, and the

solid "dots" are from the data. Two points are worth noting. First, as we expect, the model

predictions at T = 307'K are in excellent agreement with the data. Second, the predicted Atj at

T= _ 02 0K and 312 0 K are substantially different from the data even though the temperature

difference is only ± 50K; this is due to the fact that while the temperature difference is small and

the change in the [3o' is small, small differences in the 13o' produce large differences in

predicted Ati because I3oTo appears in the exponent. We do not have data with which to

validate either prediction. However, the experiments of Zhurkov [3] on time to failure under

static load do indicate that these times are sensitive to small temperature changes. The results in

Figure 6 imply that unless the temperature is carefully controlled at a constant value or is

accurately measured throughout the experiment the data will be of little value for model

validation. Further, prediction of life behavior in a component (regardless of which model is

employed) must account for temperature if accurate results are to be expected. There is another
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possible aspect of temperature behavior that we must consider when experiments are performed.

We speculated in Part I that the transient behavior observed at the start of the Pis,

estimates, shown for example in Figure 2 might be due solely to material behavior. However,

examinaton of [51 suggests this may not be the case.

Considerable care was taken in the VHG experiments mean of by a suitable load shedding

pro-ram to eliminate the effect of transient material behavior due to the rapid starting of the
crack. Thus, this type of transient material behavior is not likely the source of the transient J3Jso

estimate behavior observed.

We note that in the VHG experiments desiccated air was employed and the room

temperatue was controlled at 240C. At a frequency of 20 Hz, we know the specimen

temperature will rise above 24'C until a steady value is reached, and we assume this rise is

100C. giving T = 3070K. It follows that in the VHG Data the observed transient behavior of the

3" estimates is most likely due to the transient temperature behavior, this also is most likely

the case for the IHN Data and the GD Data. However, to definitely confirm this view it is

necessary to measure the specimen temperature at several points, particular by just ahead of the

crack tip in future experiments.

Figure 7 is concerned with the effect of the form of the periodic function h(t) on the Atj.

To study this effect, we again employ the VHG Data with T = 3070 K. The solid curve on the

left is for h(:) = sin z, and is the same as the middle curve in Figure 6. We have no experimental

evidence to support the assumption that the numerical values in (32) are independent of the wave

form in h(T). However, let us assume this assumption is correct. Let us assume h(tC) is given by

the second of (13). Then, we must employ (18), and predict Atj for the Ayj from

Atj ' (ujAs')eUi , (40)

with = I, z = 1/4, and the Pj-s, from (32). The lower solid curve in Figure 7 is predicted. The

difference in the two curves is substantial. However, since
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Isin-c 1-1h(r) ,

where h(r) is the "sawtooth" form, the difference is to be expected. Again we have no

experimental data with which to validate the prediction shown in Figure 7.

We have already observed that small changes in 13 o due to small temperature changes

produce much larger changes in the predicted Atj because this term appears in the exponent.

Actually, we see from (40) that any change in the uj given by the first of (17), even by small

amounts, produces substantial changes in the predicted Atj. This is one source of sensitivity in

the model. On the other hand, when the form of h(-r) is changed from sin t to "sawtooth," uj

does not change; rather the coefficient ofeu changes. At T h VH da

in the 16 mm. - 36 mm. range with Aaj = 1 mm.

(Atj)saWtooh
= .797884 ujA7s, (41)

and, with As = .401141, and uj = 52.5, this ratio equals 3.66. Thus, the predicted Atj also are

sensitive to the reasonably small change in the wave form.

Next. let us observe how we must proceed if we wish to predict tj with different ' and As.

Consider the GD Data. It is clear from (37) that we must estimate P,, and c. We take for c the

average value .723957, since c does not appear to depend on To and As > 0. To estimate P. for

the selected 7, As, and T, =7So + As, we assume that it suffices to approximate the 30 values in

(36) by the curve

6.714138 .442001 _ .00401678 ')2
103  106 109

For the selected o , we estimate 3o from this equation assuming 'so is either in or not to far

outside the interval (6830, 10246) given in (35). We then employ (16) in the form
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Ayj . .
Atj - (2AJ [ujAs) e-U, (16)

azyj

and uj from (17) and (37) with E = 1, z = 1/4 to predict the tj since all quantities are now known.

If As (or As) is small, the approximation (15) will not be satisfactory. Then, we replace

(16) by

= Ayje-U {,, }_'
axj-ezj r 1 -(1 - e z)yj '

or, more generally,

A I h l)
Atj _ __Ayj e d1 (43)

v 2" 'c J: e d 't

where uj = 3rj./( 1 - c- z)V}. We note that if As = 0, i.e. a constant stress, (43) because
Sty)"je u

- , (44)

which predicts the time At~s) required for the crack to increase by the dimensionless amount Ayj

under a static far field tensile stress T,. Clearly, the At(') in (44) will be much larger than the Atj

in (16) if As is appreciably greater than zero. We observe that the second factor on the right of

(43) represents the effect of As in reducing At(s) to Atj. Since we know Pj depends on T. and As

according to the GD Data, and since we have no data for the static load case, we cannot say how

the Pj in (16) relate to the 3i in (44).

It follows from the material presented in this Section that the data analysis and study

conducted reveal useful information about the model and its predictive capabilities, and the FCG

process. It also is clear that there are gaps in the data base needed to validate the proposed
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deterministic model.
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-. Discussion of Deterministic Model

We consider FCG as a chemical process in which irreversible atomic bond breakage is

responsible for the growth of the macro observable crack length and for which rate reaction

theory provides the basis for macro modeling starting at the micro level. The problem we face is

how to proceed from the micro level to the macro level when there is at least one observable.

Given the specimen geometry, a periodic tensile load F(t), and this point of view, let us consider

the bond breaking on the crack plane in order to review how we approach this problem.

The atomic bond breaking process on the crack plane is complex. An elementary picture

of this process is as follows: In the immediate region to the right of the crack tip at a,

irreversible atomic bond breaking due to the external load is the dominant process. In the next

region on the right, bonds are broken by the external load, but an equivalent number of new

bonds are established producing plastic deformation as the dominate process. Only the thermal

type of bond breaking and healing occurs in the next region on the right; this is the region of

elastic material behavior. We model this elementary picture in the following simple manner.

First, we assume we can approximate the mean bond force f by employing the average

macro concept of normal stress s(t, 4) = s(",)g(t), where g(t) is a dimensionless time factor

depending on F(t) and the crack plane geometry, and s(:) and g(t) are bounded functions.

Second, we elect to divide the atomic bond breaking process into a region just to the right of the

crack tip in which there is only irreversible bond breakage, and a region to the right of the first

region in which the amount of irreversible bond breakage is negligible, disregarding all other

types of bond behavior. Based on the micro result (II) from reaction rate theory for the mean

rate

kT -k

b = -e T , f = s(t, )/u. (45)
h

of single bond breakage, we can achieve this picture of the process by taking the stress factor

s() on the crack plane to have the form given by (5), where cy > (', and ('p/(T, = r. > 1.2. The
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expression for -b assumes there is only a single energy barrier that must be crossed for atomic

bond breakage and there is no bond healing. Clearly, other more complex .'..,rzpons can be

adooted to achieve the above picture of the bond breaking process; further, the simplified picture

of the bond breaking process can be enriched in various ways.

The form (4) assumes there are no dynamical effects induced bv the testing procedure, and

this is usually the case.

The macro equations (1) and (2) are based only on our picture of the bond breaking

process for the situation under consideration. On combining these equations with (3), (4) and

(5), we obtain (6) and (7). Equation (7) is one of our major contributions, and is a different form

for FCG than provided by other approaches; this equation is interesting for several reasons.

First, it is based on physica.l principles and the assumption that the mean bond force f can

be approximated by employing the normal stress s(t, ) on the crack plane.

Second, besides the dimensionless crack length y, the quantities 6 and r. from (5) evolve

with time. This opens up the possibility that y, 6, and r, may constitute a state vector if we can

find their joint evolutionary equations. This possibility has not previously been considered. We

do not have such joint evolutionary equations at this time, however. Thus this interesting

possibility cannot be considered further.

Third. (7) contains explicitly the temperature T, and the load F(t) through the far field

tensile stress s0 (t). Thus, (7) contains quantities of direct engineering interest that help define

the environment.

Fourth, (7) contains explicitly the material parameters o: (or AG+) and 13 as defined by (3).

AG- is a free energy; it is a thermodynamic quantity whose value either can be estimated once

for all for the material from tabulated data on the heat of sublimation (see Zhurkov [3] and

Krausz-Evring [8]) or it can be estimated from simple static tests (see Zhurkov [3]). On the

other hand, the growth control material parameter 3, which we find depends on y, defines the

strength of the material; it depends on how the material is formed into components and must be

estimated by means of appropriate test data. Thus, (7) contains material parameters of direct
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engineering interest.

Fifth, the alternative form of s(-) given in (17bI) admits the possibility that the highest

stress is at the crack tip. This means that even if AT is small the maximum rate of bond

breakage will occur at the crack tip, which is physically appealing. This point is discussed in

Part I (see eq. (19b!)), where we note that if Aa/o', is small, the form , F (7) remains unchanged.

Thus, (7) still applies in this more general and physically appealing situation.

Sixth, inspection of the integral in (12) suggests that there might be different h(T) that will

give the same value to the integral; i.e. different wave forms will produce the same damage

accumulation process if

is the same for different h(tr) and all x > 0. Given the conditions assumed for h(t) plus the

continuity conditions imposed by the fact that it is a physical load, it can be shown this is not

possible, if, in addition, h(-r) is monotone increasing (or decreasing) on the interval (-7 2 , -) as
-2

is the case when h(t) is given by (13). If this monoticity condition is not satisfied, however,

different h('t) will produce the same value for the integral; while this situation has interesting

implications, we will not discuss it here.

Finally, if there is a chemical reaction involved, such as corrosion, it will enter (7) through

the growth control parameter 0. Now let us turn to how (7) is employed in conjunction with

FCG data.

The integration of (7) requires that we assume a specific form for s0 (t); we take so(t) to be

tensile and periodic in t as specified in (8). Further, since we do not have joint evolutionary

equations for y, 6, and r,, at this time, we assume the constraint equations (11) for 8 and r.. The

combination of (7), (8), and (11) produces
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Sr(C-s shkox))dv 1-( 1- z)y
,----- = zve , (46)

dt

since if ra > 1.2, the second term on the right of (7) can be ignored. Even with these choices, the

exact integration of (46) is difficult. However, the use of different forms for the periodic

element h(rc) in (8), for example (13), makes possible the approximate integration of (46) in the

difference forms (16), (18), and (19) for the deterministic development of FCG in discretized t

and y; this step is reasonable since y only changes by small amounts for all Atj involved.

The selection of the constraint equations is based on what we know about the general

behavior of FCG in ductile polycrystaline metals, as already noted, and simplicity.

Experimental evidence must ultimately be employed to determine if the choice is consistent with

the facts. Further, if (11) is a reasonable choice, it is then necessary to determine on the same

basis if our choice e = 1 and z = 1/4 is reasonable. Such experiments would be different from

those usually conducted in FCG. In addition, these experiments would have to measure the

temperature T as we have found it to be important parameter.

We now wish to comment on two other models of FCG that originate in reaction rate

theory. Yokobori and co-workers [10] have since the mid 1950's applied reaction rate theory to

fracture, fatigue, and FCG, producing many interesting results; we note in particular [11].

Another effort in this direction for FCG is given in [12]. Each introduces crack length and load

in a different manner than we do. In [12], for example, fracture mechanics based quantities are

introduced in place of the Xf-term in the exponent of (11) or (45) which is physical questionable.

Each contains one material parameter equivalent to our a. Each contains a second material

parameter similar to our P; however, neither goup investigated to determine if this parameter

depends on crack length. We have found in our formulation that 3 depends on y and this

dependence is essential for predictive accuracy. It therefore appears that our method for

introducing crack length and load (stress) has advantageous not possessed by these two models.

We assume the periodic form (8) for so(t) because this is the case for the available data.

However, it is clear that in (7) there is no mathematical restriction on sj(t) beyond being a
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positive bounded contin, )us function, oscillatory or not. For example, so(t) can be an

oscillatory non-periodic function such as provided by a sample function from spectrum loading.

But, we must then confront the possibility that hi-lo vs. lo-hi loads may produce different

amounts of physical damage accumulation than predicted mathematically by (7) due to the load

history dependence in the material [9]. Put another way, the growth control parameter 3 may

depend on load order. Without experimental evidence to lend support, predictions of FCG based

on (7) for any such s0 (t) must be viewed with caution.

The model consider so far is deterministic. The data analysis employs the pair of

quantities Ayj and Atj. Ayj is specified by the choice of the division aj of the crack length

employed. The time tj to reach aj depends on the sample selected in a test, and these times vary

in a random manner. Let the random variable Tj denote this random time. We assume for a

deterministic model that Atj = E{(ATj }; i.e. the deterministic model only applies to mean time

behavior. Even with the sample sizes employed, the E{ATj} do not decrease in a smooth

manner. Thus, there is a fog imposed by the finite sample size and the experimental technique

through which we must examine results obtained in the data analysis, the smaller the sample size

and the poorer the experimental technique the denser the fog.

Equation (16) is used to estimate the Pjo. In data sets b), c), and d), the estimates

approximate a straight line except for the first few initial points; thus transient behavior is

initially present before regular behavior is observed. We have already indicated that this

transient behavior is most likelv due to the small gradual rise in specimen temperature resulting

from internal material hysteresis before a constant temperature slightly above the ambient air

temperature is reached.

We also observe that the straight line character of the Pjs'o estimates persists to the end of

the crack length generated even though in some cases the final crack length is close to the

specimen boundary. Thus, the effect of the boundary does not seem to be significant.

In all events, we find for each of the six data sets considered the straight line form
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[3j = (t - C~j) (47)

P3yVo =3o1-(1 - cy) (48)

where = .o/,ukT. With crack length as the only macro observable, we find there are three

material parameters present, namely a or AG', 3, or Xo/,, and c. Zhurkov and Krausz-Eyring,

employ only two constant material parameters in their model of time to failure under constant

load, and static load data support their parameter assumptions. In some fatigue life models (no

observable) [14,15], two constant material parameters also are employed. Further, the models of

FCG presented in [11,12], where there is an observable, also assume two constant material
parameters; however, these investigators did not perform the same type of evolutionary (Yj, 5)

data analysis as we employ, and thus it is not possible to determine if their parameters depend on

y. In the model of FCG presented here, it is essential for evolutionary predictive accuracy that

there be three material parameters. To see this, let us write (e = 1, z = 1/4, h(tc) = sin r)

uj - - 2,(- (49)
1-.75 I-.75h

which is the only quantity involving the two material parameters f3o and c. If ]3j does not depend

of y, then

2P-u= (50)
1 - .75 yj

Let us calculate Atj from (16) using these equations and the VHG Data. At = .216535

(5a = 16.5 mm.), let us fix the [o- in (50) so that the (Atj) 2 obtained using (16) is the same as

the (Atj) 1 obtained using (49) in (16). Then, at -j = .464878 (5j = 35.5 mm.), we find that the

ratio
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(Atj~X
- 6.135490 x 10-6 . (51)

(Atj)2

It follows that if we neglect the dependence of 1jgo" on yj, as is done in (50), we will predict tj

that are much smaller than observed. Thus, we see that if only time to failure is of interest, then

two constant material parameters appear to suffice, but if evolution of crack growth is of interest

three constant material parameter must be used.

We know from Part I that a decrease in . means an increase in material strength. Since

from (37) .y = Xo(1 - cy), it is clear that the material is increasing in strength at a constant rate

with respect to y, which implies the materials employed show work hardening. This implication

is consistent with what is known about the behavior of such materials. What do we currently

know about what 3, or X,- and c are dependent upon?

First, let us note some information provided by other investigators. The data in [3] suggest

that Xo and c do not depend on T. Further, [16] suggests that X0 and c depend on how the

material is formed into components. We shall assume both hold. However, direct experimental

evidence is needed to verify these assumptions.

3 is related to X, through the second of (38); i.e. Po depends on T although we are

assuming -o does not. We shall confine attention to P3, in what follows.

The analysis of the GD Data shows, by means of (36) and Figure 4, that 3o depend on '

or go and As, assuming E = 1, z = 1/4, 1 h(t) = sin t. Figures 5 and 6 and their ms.

approximate straight lines reveal that 3o also depends on r and z when h(t) = sin "r. Thus, given

the data analyzed and the material employed, we know that % depends on T, As, T, e, and z

when h(r) = sin -. However, we do not have data with which to determine if 0', depends on the

periodic wave form h() for fixed T, As, (, z, and T.

Actually, in (42) we assume 0,o depends on just so '. This is a reasonable assumption since

the dependence of 3o on As', is relatively weak in comparison to its dependence on -o" for As

not small. Even so, the values of ', employed in (42), and by implication the values of T. and

As, should not be too far outside the range of values employed in the GD Data. Next, consider
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what we have learned about c.

The adjacent table has been complied from results given in the previous section.

Table 1

Material S c

Al. alloy 2024-T3 8767 .00296039 .725106

Al. alloy 2024-T3 10820 .00246603 .723869

Al. alloy 7075-T6 10246 .00260708 .722287

Al. alloy 7075-T6 10004 .00269365 .727481

Al. alloy 7075-T6 6830 .00388267 .722 104

The remarkable point suggested by this table is that irrespective of the aluminum alloy,

specimen thickness, and the "0 considered, c remains essentially the same with an average value

.724051 and a maximum deviation of .47% for E = 1, Z = 1/4, different temperatures, and

h(z) = sin z. More data are needed to investigate this point.

We know from Figures 5 and 6 and the associated m.s. approximate straight lines that c

depends on e and z. Other conditions being the same, we have no data on how c might vary

with h(r). Thus, based on the specimen geometry and material considered, c depends on e and z

and possibly h(-c), but does not depend on "So and T. These observations have implication

concerning the amount of testing required for accurate prediction.

Accurate evolutionary prediction under different load conditions and temperature requires

that we have accurate estimates of 5,, and c as a function ofs'( for a given component geometry,

T, E, z, and wave form h(tc), and assuming no transient material behavior. If we have three

reasonably high replication sets of FCG tests with the T. substantially different but with the

other quantities fixed, we can estimate Po or X, and c for each test T. We plot % or X, and c

against so and put a smooth curve through these points. At any other 7o (not too far out of the

range of the test values), we can obtain appropriate values for o or XAo and c. Then, employing

(16), we can predict mean tt tor this ; and T if different from the test values. While these tests
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are not likely required for obtaining c, we know they are for estimating %o or Xt, assuming

and c do not depend on T.

Equation (-44) merits a few comments. First, as must be the case, we obtain this equation

when using the other two wave forms provided we correct the right based side of (18) and of

(19) so that As 0 can be small. Second, let us rewrite (44) as

=o o (-- .j)
Ayj _ zyje1 (44)

We can now compare (44') with (3) and (10) in [13], on taking into account differences in

notation. We observe in this static load case the results differ because we are following the

evolution of an observable with a nonuniform stress distribution and they do not do this.

Let us rewrite (19) as

Ati_ Ayj e 1 -(1--E z) , (19")

2 azyj

which is the same form as (44), except for a factor two, even though in (19) we have a periodic

load and As is not small. It is clear that when h(tr) has a rectangular wave form and-o =o , the

static load produces the same evolutionary result in half the time provided the Pj remain the

same. This possibility was noted by Regel and Leksovsky [15] although their approach to the

fatigue problem is very different from ours but similar to that employed in [14].

Finally, we note that it is possible to use the deterministic model for accelerated testing in

useful ways. One way to accelerate a test is to either increase T, or As, or both by constant

amounts over the condition at which a prediction is required. We next estimate % and c at the

accelerated test condition. If we assume these estimates will apply at the ' and As for which

prediction is required, then we can employ them to produce the predicted behavior. However,

we know that % depends on To and As; i.e. the load interaction will be different at the two load

conditions. The same problem was noted in [20]. Hence, the accuracy of the predicted behavior
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is open to question when 7'o and As are changed to accelerate the test. However, since (X and

depend on T in a known manner, another way to accelerate a test is to increase T. The second

way has some advantages.

We already know from Figure 7 and from [3, 16] that a small change in T produces a

significant change in mean life behavior. Suppose we want to predict mean life behavior at

0

To 302 K with specified 70, As, r, z, and h(t) = sin t. Let us test at T2 = 312°K with the same

specified quantities. Figure 7 indicates that the time of specimen testing is reduced by a factor of

about 3. If we test instead at T 3 = 322 K, the time the specimens are under load is reduced by a

factor of about 10. This method of accelerating testing has the advantage of eliminating

questions that may arise concerning the effect on mean life behavior due to load interaction

when changing To and As with T held constant. The second way of accelerating a test thus has

advantages over the first way.
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5. Probabilistic Model

The model discussed so far is deterministic. However, the FCG phenomena is statistical.

Even with controlled temperature T, load F(t), and humidity, as in the VHG-experiments,

variability among the results for different test specimens is significant; the variability in this case

is primarily due to variability in material behavior. A second and different source of variability

in FCG is the variability always present in the load, temperature, and environment; i.e. in

experimental technique. These are the sources of the statistical nature of the FCG phenomenon.

Inspection of the sample function graphs of the data sets of crack growth in [17] indicates that

the VHG Data has the least scatter. This implies that the noise due to experimental technique is

least for these data. Thus, we expect the least scatter in the moment estimates and edf's

(empirical distribution functions) of the ATj and Qj (see below) in the VHG Data, and this is the

case. In this paper, we employ an elementary approach in our first attempt to model material

variability.

Consider (16):

Ayvj 1 i 7- _U.

Atj = E(ATj= ujAs e (52)
azyj

where we specifically note h(r) = sin z, As is not small, and

AG,
kT - kT

ax= -e
h

uj=

1- (1 - z)Tj

= __

We assume s0 , As, T, and the environment are controlled to be constant. We have already

assumed in these equations that the mean bond force f is specified by the deterministic

expression f = s(t, )/N. Thus, the only sources of material variability lie in AG' and SO'.
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AG- is a free energy, for such a thermodynamic quantity, the variability is small so that in

this initial stage of modeling variability we will neglect it even though a is sensitive to changes

in AG'. Thus, Pj7"o is the only source of variability that we will consider at this time.

Let

zj = - -jA e- uj ;(53)

it follows from (52) that

Atj =E {ATj} Ayj 2-nZi 54
= -zj. (54)

aZyj

Next, let

Ayi

ATj- Z,

where Z, ( + Pj)zj and E {Pj} =0. Then, from (54),

E(ATj) = - zyj ,

which is (52).

Now let Uj and Qj be two additional rvs with

uj =uj G + Qj),

and let

We= U-T e = uj( + Qj)As eu1(l + Q) (55)

We now have
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E UjAs e- Ui =zi

E{ uj(1+Qj)As e- uj( l Q  j ,

and hence it follows that

E {(1 + Qj)" e-uQj}= 1. (56)

The quantity uj is of the order of 50 for Al.. This means that the Qjare small. Then with

1

log ZJ/zj= log( Qj) - ujQj

- 1

it follows that

-uj-TLAZj /zj = e 2

log Zj/zj
Qj- 17)

ujT

At the sample function level

q log zj,n/zj (58)
uj-

where

Atj.n (59)
SE (ATj (
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Further,

pQj <qj p log Z/z
uj-

--(uj- 1 qj
=p {/zj _e , or

FQi (qj)= - Fzz.{ e 2 (60)

This method of introducing the Qi avoids addressing the joint problems of how to assign

variability at the micro material level, and how to convert such a variability into macro

stochastic FCG equations in a physically satisfactory manner. We defer addressing these two

problems at present, and go on to determine what a data analysis says about the statistical

properties of the Qj. We first consider the VHG Data which has the highest replication number

(sixty-eight) and the variability at the sample level is small. We assume r = 1, z = 1/4, and

h(r) - sin T.

First, consider the four crack length intervals of different lengths centered as closely as the

data permits on the crack length 26 mm:

(25.8 mm., 26.2 mm.), (25.6 mm., 26.6 mm.), (25 mm., 27 mm.), and (24.6 mm., 27.6 mm.);

(61)

The crack lengths of these intervals are respectively. .4 mm., 1 mm., 2 mm., and 3 mm.. We

find from the data in each case the sample times Atj,, required to cross these intervals, where

n = 1, , 68 and j = 1, , 4 refers to the above intervals. We next estimate the E{ATj ) and

compute the sample qj1 r from (58). The estimated moments of the Qi are given in
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Table 2

j mQ y mQ/'Q Y1j

1 256.265 x 10-6  9.324534 x 10-6  .083922 -.45514

2 168.294 x 10-6 6.099563 x 10-6 .068143 -.355644

3 123.985 x10 6  4.521016 x 10-6  .058313 -.631304

4 98.6324 x 10-6 3.535632 x 10- 6  .052455 -.909978

The smoothed edf's of the standardized variable qj.n = (qj.n- mj)/(j are plotted in Figure 8.

These smoothed edf's ar- obtained from the smoothed edf's of the ATJ employing (60). The qjn,

range from approximately -8 x 10- 3 to 7 x 10- 3 .

The means are small and decrease as the crack leng-th interval increases. The variances

decrease as the crack length interval increases. These results, particularly the last, suggest that

the Qj are the result of some type of smoothing operation over increasing crack lengths at the

micro level.

The skewness coefficients /I.j are all negative with average; -.588110 and not close to

zero. This results indicates that the Qj are not normal random variables.

That the smoothed edf's are close is not surprising in view of the fact that this is the case

for the smoothed edf's of the Atj (see [16]).

Next consider the four crack length intervals

(21 mm., 22 mm.), (26 mam., 27 mm.), (31 mm., 32 mm.), and (36 mm., 37 mm.),

(62)

each having Aaj = 1 mm.. The estimated moments of these Qjare given in
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Table 3

m Q mQ/arQ

1 189.706 x 10-6  6.200268 x 10- 6  .076186 -.07860

2 89.9706 x 10-6 5.088137 x 10- 6 .038556 -.372504

3 190.265 x0 6  7.719240 x106  .068481 -.547555

4 181.074 x 10- 9.981985 x 10-6  .057312 -.284855

The correlation coefficients Pjk are estimated and given in

Table 4

j,j+I j,j+2 j,j+3

.154233

.132162

Pjk = .370998

.173791
.240113

.470985

The smoothed edf's of the standardized qjn are shown in Figure 9, with the same approximate

range for the qj.n as in the previous case.

The estimated means, variances, and skewness coefficients fluctuate about a constant

values; the averages of these estimates are 162.004 x 10-, 7.247 408 x 10", and -.320879,

respectively. Again the nonzero skewness coefficients, which are negative, indicates that these

Qj are also not normal random variables. The correlation coefficients are all positive; thus, the

Qj are statistically dependent. The smoothed edf's of the standardized random variables are also

close to one another and the set of edf's in Figure 8 is close to the set in Figure 9. These results

are for one T. and As with different crack length intervals.

Next, let us consider the GD Data where there are three load conditions (s,, As), and there

are sixty replications for each condition. We consider three crack length intervals:
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(16 rm. - 17 mam.), (17 mm. - 18 mm.), (16 mm - 18 mm.)

The results presented here are for different loads but for each of the indicated crack length

intervals.

Figures 10, 11, 12 display the edf's of the standardized Q's for the three load conditions at

the indicated crack length intervals. These edf's are obtained from the edf's of the ATj by

employing (55) and (60). We see from the figures that the edf's of the standardized Qj are close

to one another for different 7o and As. However, we see from Tables 5, 6, and 7 that some of the

y's are positive; this is likely due either to sample size variability or to variability in the

experimental program or to both, and occurs when the positive yi 's of the ATj are much less

than one.

Tables 5, 6, and 7 also give estimated moment results for Q's at the same crack length

intervals. We observe that the moments of the Q's not only depend on the crack length interval

but also on the load. The Q's for the intervals (16 mm., 17 mm.) and (17 mm., IS mm.) are

correlated as is the case for all non-overlapping intervals, which is not surprising since we

already know the AT, on non-overlapping intervals are positively correlated. We observe from

these tables that the mean mQ, the variance oQ, and the signal to noise ratio mQ/cyQ increase in

all cases as So decreases. However, since the 7, are not well spaced, we cannot form a firm

idea of how these quantities depend on T ; this point must be taken up at a later time when data

are available at more than three points or when there is better spacing in the 7,, values.

Table 5

Q, (16 mm., 17 mm.)

mQ GQ mQ/,JQ Y1 S'o

SI .292595 x 10-3  .1088 16 x 10-  .0886993 -.294657 10246

S2 .398630 x 10-3  .146009 x 10-4 .104323 -.430016 10004

S3 .984548 x 10-3 .374576 < 10-4 .160867 -.0755493 6830
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Table 6

Q, (17 mm., 18 mm.)

mQ aQ rnQ/IFQ 71 So

Si .222031 x 10-3  .851427 x 10- 5  .0760923 .210108 10246

S2 .363674 x 10- 3  .135120 x 10- 4  .0989356 -.249759 10004

S3 .942224 x 10-3  .383306 x 10-4 .156321 .00992309 6830

Table 7

Q, (16 mm. - 18 mm.)

mrQ mQ/,UQ Y

Si .229298 x 10- 3  .876723 x 10- 5  .0776100 .111876 10246

S2 .356154 x 10-3  .130594 x 10.' .098554 -.426007 10004

S3 .880428 x 10-' .340063 x 10-4 .150975 .0728710 6830
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6. Discussion of Probabilistic Model

We have introduced randomness into the macro deterministic difference form (16) of the

FCG process by the expedient of assuming the growth control parameter is multiplied by a

random factor. We have already commented on the fact that this method of introducing the ever

present variability may have short-comings when the physics of the random micro material

behavior is the starring point for introducing randomness. The behavior of mean and variance of

the Q,, when the crack length intervals (61) are employed in the VI--G Data, suggests that these

Q are the result of the some smoothing operation at the micro level over the intervals, which

indicates the micro starting point merits attention. Further investigation on this approach is

required.

The closeness of the smoothed edfs of standardized Q's in Figures 8 and 9 for different

crack length intervals but the same T, and As is similar to what was reported earlier [17, 18] for

the ANj (ATj in present paper). What is of interest is that the edfs of the standardized Qj are

close to one another for the same crack length interval but with different 's and As, as is clear

from Figures 10, 11 and 12 obtained from the GD Data; further, if one compares the results in

this set of figures, we observe that these edf's are close to one another even though the crack

length intervals are different. All of this suggests that the standardized Q appear to be the same,

having a negative skewness, in spite of the fact we are viewing them through the fog imposed by

the finite sample size and experimental variability.

The correlation coefficients in Table 4 are not large but are positive. Since the intervals in

(62) are well separated, this results is not surprising, especially in view of the results on the

correlation coefficients of the ANj given in Table 3 of [17] and first reported and modeled by us

in [18]. Thus, the statistical dependence of the Qj is to be expected. This means, of course, that

the Qj form a family of dependent random variables indexed on the interval Ayj; i.e. they

constitute a random function.

The non normal character of the Qj can be explained as follows: in virture of the fact that
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(I + )(1 + Q)j)[ ,o
(I + Qj)uj =-

S- (1- z)j

we observe that the (I + Qj)P3jTo represent the random nature of the dimensionless work done in

breaking a bond. Since this work depends on the variability inherent in the bond force f and in

the distance X a bond is extended in breaking, the variability in the work done in breaking a bond

is dependent on the joint distribution of these two random elements. Thus, the non normal

character of the Qj is not unexpected. We also note that the negative skewness of the Qj or

1 + Qi suggests the possibility that the origin of these rv's might be associated with a "weakest

link" concept. In the present context, this suggest that the underlying bond breaking process

might be associated with (governed by) a mechanism based on steps determined by the least

work in the breaking process.

It is clear from (60) that the distributions of the Qj depend on the uj. We know the uj

depend on e, z, T, T, or T, and As, and h('t). It follows that the distributions of the Qj depend

on the same quantities. Thus, it is possible to study how changes in these quantities influence

the distributions of the Qj. However, we will not attempt a study of this point in this paper..

There are a number of additional parameters that must be estimated if the model is to

account for the random nature of the or Zj. It appears that the same high replication tests

needed to estimate the material parameters in the deterministic model will suffice to supply

estimates for these additional parameters. Thus, the same set of tests, at the same e, z, and h(rt),

is all that is needed to render the model a predictive tool whether or not randomness is included.

Finally, we mention that [221 contains some of our initial thoughts on how reaction rate

theory might be applied to the FCG problem.
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7. Conclusion

We present a deterministic macro model of FCG based upon a micro result provided by

reaction rate theory. A center crack panel under periodic tensile load is the basic physical

situation considered. The model contains explicitly the stress distribution s(t,:) on the unbroken

portion of the crack plane, the far field stress s0 (t), the absolute temperature T, and two material

parameters AG- and 13 of which AG can be estimated from available information, but the

growth control parameter 3 must be estimated from test data since it depends on how the

material is formed into specimens/components and the environment.

For a reasonable choice of s(t,-) that assumes no dynamical effects present in the

specimen/component, we find an evolutionary equation in the dimensionless crack length y and

two other quantities 5 and r. that describe aspects of the evolution of the stress distribution Joint

evolutionary equations for these quantities are needed to determine y, 6, and r. as functions of

time, and to determine if they form a state vector. We conclude from this approach that the FCG

process is more complex than can be described by y alone.

At the present time, no such joint evolutionary equations are available. To proceed with a

study of some of the capabilities of the model based upon a statistical analysis of currently

available data, we introduce constraint equations for 5 and r. that reflect general properties of

polycrystaline ductile metals in fatigue, and use the resulting deterministic constrained equation

to describe the evolution of y, containing the two constraint parameters e and z in addition to

AG', 3, T, and the far field tensile load so(t) =3o + As h(wt), where h(t) is the periodic wave

form. An equation of this type only can apply to the mean behavior of the crack growth.

Available reasonably high replication FCG data are for simple harmonic tensile load

variation and specimens of polycrystaline ductile metals. For a load of this type, the constrained

equation for the evolution of y can be useful approximated by a difference equation in discrete

time and discrete crack length that not only makes parameter estimation of 3 straight forward,

but also permits us to study the effect of changes in T, h(r), T, As, and 3 on the FCG process.
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We conclude from a parameter estimation study based upon these data and the mean

model that

a) there can be transient behavior in the P3j5o estimates due to a temperature change or a load

change,

b) the growth control parameter Py depends on the crack length through the relation

3y = 3 0o(I-cy) once the transient effect of the initial temperature change ceases,

c) there are three material parameters AG', Po, and c when there is only one observable y and

a fixed set of constraint parameters e and z,

d) the relation [3, = 130(1-cy) is due to the work hardening properties of the material,

e) 3o depends on 7o and As but c does not appear to do so, both depend on C and z, P,0

depends on T but '-, and c do not appear to do so, Po and c may depend on h(t), and

f) two or three suitable tests are needed to estimate 30 and c so that the model can predict

crack growth behavior over a reasonable range of-T, and As values.

Further, we conclude from e) that when so(t) is oscillatory but not periodic, transient material

behavior may occur.

The constrained model or difference equation in Ayj and Atj contains explicitly the wave

form h(r), T, go and As. We conclude that predicted Atj for a given Ayj is sensitive to changes

T,s and As, and the predicted Atj can change substantially for changes in h(t) with the same

7,, As, and T. Thus, we conclude that when conducting experiments and when predicting crack

growth in service these quantities, particularly T and h(t), play a significant role.

The possibility of increasing only T to accelerate a test is a useful observation since such a

procedure appears to eliminate load interaction problems that may arise when T0 or As are

changed with T constant, as is usually done. In addition, we note that this method of
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accelerating a test can be used with profit when conducting the two or three tests needed to

determine how %3 and possibly c depend on the load which, as we have remarked above, are

needed to predict life under different 7' and As than employed in these tests. We conclude that

the explicit presence of T in the model is an important feature of this model.

The constrained model with one observable y contains explicitly the far field stress

variation s0 (t). Thus, by means of numerical integration, we can predict crack growth behavior

for any tensile s0 (t), including static load. However, we conclude from a) and e) above that

transient material behavior may put accurate prediction based on this model into question when

so (t) is oscillazory but not periodic. We conclude that for accurate prediction for any oscillatory

non periodic % (t) it may be necessary to have the joint evolutionary equations for y, 8, and r.

for it is only by such a model that we may be able to take into account the load history

dependence of the material.

The u,'it-jump B-model [191 contains the probability transition matrix P with elements

pi, qj, (pj + 1= ) on the jth line. Since (bj- bj-1 )/qj =E{ATj}, we conclude that it is now

possible rela:e the (bJ - bj- )/qj to T, 7 , As, and h(:). This is an important point.

The r,;,odel assumes that the rate of single bond breaking Kb is determined by a single

energy barri-'r and there is no bond healing. It is clear that it is possible to relax our assumptions

in order to a,.commodate other possibilities. We conclude that the simple model presented here

permits exteaision in a number of directions of this type. Bond healing can be accommodated in

B-models b-, assuming nonzero elements below the main diagonal in P.

The sjecimen geometry and loading can be changed. A new model would have to be

created for ecch new situation. This constitutes another area into which this type of model can

be extended.

If there are dynamical effects in the specimen, s(t,") cannot have the simple form we have

assumed. It may be possible to include this feature although we have not considered it.

Variability in material behavior is introduced into the deterministic difference equations

by the simple expedient of multiplying the growth control parameter 3j by (1 + Qj), where the
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Qj are a familv of random variables indexed on (Yj-,, yj); Atj is then replaced by the random

variable ATJ. We already know from previous work [17,18] and also from the statistical analysis

conducted here that the ATj are dependent and non-normal with positive skewness. We

conclude from the analysis of the VHG and GD Data presented above that the Qj are dependent

and non normal with negative skewness. We also conclude that the distribution of the Qj and

their moments depend on To , As, and T for given c and z, although given the database it is not

possible at this time to determine the nature of this dependence on go and As. For the same

reason, we can not determine the nature of this dependence on h(-r).

The closeness of the standardized edf's of the Atj and of the Qj requires explanation, since

it suggests that there is an underlying random material process present. It is possible, as

mentioned earlier, that if we introduce material randomness at the micro level and develop a

stochastic macro model from this starting point. We can find an explanation for this interesting

experimental fact.

Parameter estimation for the above stochastic model can be handled from data needed to

estimate the parameters of the deterministic model.

Based upon the above, we conclude that the model appears capable of illuminating many

of the complexities that are experimentally observed in the FCG process, it has useful predictive

possibilities, and it suggests a simple method for accelerating FCG tests.
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Figure Captions

Figure 1: E-2-.04.01 Round Robin Data. Estimates of j70 vs. crack length a.

a = 2.55 y, E = 1, z = 0.25

Figure 2: GD Data. Estimates of Pj70 vs. crack length a. h(z)= sin -, 21 points,

a= 50.S y, - = 1, z = 0.25.

Figure 3: GD Data. Estimates of Po vs. T . h(r) = sin r, e = 1, z = 0.25.

Figure 4: IIL"N Data. Estimates of P3j7o vs. crack length a, for variable E and fixed

z = 0.25. h(-) = sin T, a = 35 y.

Figure 5: UI-.N Data. Estimates of 3jsO vs. crack length a for variable 5 and fixed

= 1.0. h() = sin tc, a = 35 y.

Figure 6: VHG Data. Effect of changing T on a vs. t curve. h(r) = sin r, a = 76.2 y,

E= 1, z = 0.25.

Figure 7: VHG Data. Effect of changing h(t) on a vs. t curve, a = 76.2 y, r = 1,

z = 0.25.

Figure 8: VHG Data. Smoothed edf's of standardized qj for variable Aa and fixed

load. h(:) = sin z, a = 76.2 y, r = i, z = 0.25.

Figure 9: VHG DATA. Smoothed edf's of standardized qj for fixed Aa and fixed

load. h(r) = sin z, a = 76.2 y, e = 1, z = 0.25.
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Fi-gure 10: GD Data. Edf's of standardized qj for fixed Aa and variable load.

h(t) =sin:, e = 1, z=0.25, 16 -17 mm.

Figure 11: GD Data. Edf's of standardized qj for ffixed Aa and variable load.

h(t) = sin -c, E = 1, z = 0.25, 17 - 18 mm.

Figure 12: GD Data. Edf's of standardized qj for fixed Aa and variable load.

h(r) = sin -c, e = 1, z = 0.25, 16 - 18mm.
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