
RL-TR-91-36, Vol lib (of seven)
Final Technical Report
April 1991

AD-A236 130

ROMULUS: A COMPUTER SECURITY
PROPERTIES MODELING ENVIRONMENT
Mathesis

ORA

Ian Sutherland, Tanya Korelsky, Daryl McCullough,
David Rosenthal, Jonathan Seldin, Marcos Lam,
Carl Eichenlaub, Bruce Esrig, James Hook, Carl Klapper,
Garrel Pottinger, Owen Rambow, Stanley Perlo DTIC

S ELECTE
JUN 19 91U

APPROVED FORpUBICRELE4SE, DISTRIBU770N UNLIMITED.

91-00953
Rome Laboratory illlllIilllilllli

Air Force Systems Command
Griffiss Air Force Base, NY 13441-5700

91 0 Ul o41

This report has been reviewed by the Rome Laboratory Public Affairs
Office (PA) and is releasable to the National Technical Information
Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

RL-TR-91-36, Volume lIb (of seven) has been reviewed and is app .-.ved
for publication.

APPROVED:

JOSEPH W. FRANK
Project Engineer

APPROVED: 4 0M /.*

RAYMOND P. URTZ, JR.
Technical Director
Directorate of Command & Control

J

FOR THE COMMANDER:

RONALD RAPOSO
Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the Rome
Laboratory mailing list, or if the addressee is no longer employed by
your organization, please notify RL (COAC) Griffiss AFB, NY 13441-5700.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or
notices on a specific document require that it be returned.

REPORT DOCUMENTATION PAGE 0MB No. 0704-0188
Pi.,mmqum bj 1w= 1W~m an~td id~m um~m ,t~= w~ ',m-am wmxlg MWt eT.1w ~tnIWU.o mE=wig u~ m =m

gow W ra , -m w Ord 3W -M 0 i 0in o I 0 do ow $ew d Sew w t.alr bu c -W.o w wty cMw mom d ci
d 000oft rc~md W.~ f1r~w rbejd~~w tWt* N.mw.m~acm - 1Wif i n opou""ewpm 1315 JOWw

0MKI SLA 12i. AkrnI VA 20=4= wl t to 0Kf. d Mw e wd &jg. Plvpwu A.mlaon P aim W00 1. W*V=m I

1. AGENCY USE ONLY GAavo Bla) 12. REPORT DATE M REPORT TYPE AND DATES COVERED
April 1991 IFinal Apr 85 - May 90

4. TTE AND SUBTfLE & FUNDN NUMBERS
ROMULUS: A COMPUTER SECURITY PROPERTIES MODELING C - F30602-85-C-0098
ENVIRONMENT, Mathesis PE - 35167G

6AUTIHOR(S) Ian Sutherland, ranya KoreLsxy, uary± ,r-uZiWougn, PR - 1065
David Rosenthal, Jonathan Seldin, Marcos Lam, Carl TA - 01
Eichenlaub, Bruce Esrig, James Hook, Carl Mlapper, WU - 02
Garrel Pottinger. Owen Rainbow. Stanley Perlo

7. PERFORMING ORGANIZATION NAME(S) AND ADORE$S(ES) &. PERFORMING ORGANIZATION
ORA REPORT NUMBER
301A Harris B. Dates Drive
Ithaca NY 14850-1313 N/A

9. SPONSOftNGMONTOR1NG AGENCY NAME(S) AND ADORESSS) 10. aPONSOR1NGjMONTORFNG

Rome Laboratory (COAC) AGENCY REPORT NUMEER

Griffiss AFB NY 13441-5700 RL-TR-91-36, Vol lIb
(of seven)

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: Joseph W. Frank/COAC/C315) 330-2925

12a. DISTRIBU11ON/AVALASIUOY STATEMENT 1 1. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13 ABSTRACT(-,amw'
The Romulus Report describes the Romulus Computer Security Properties Modeling
Environment.-- Romulus is an environment and methodology for the modeling, analysis,
and verification of trusted computer systems, together with supporting tools. The
Romulus methodology is based on a mathematical theory of security developed at
Odyssey Research Associates. The theory formalizes multilevel information flow
security by introducing restrictiveness, a-hookup security property. This means that
a collection of secure restrictive composite system. Because of its composability,
restrictiveness is a useful security property for large, complex, distributed systems.

Volume I presents an overview of the important ideas and tools incorporated into the
Romulus system. Volume II describes the underlying theory of security as well as
Mathesis, the mathematical foundations of Romulus.

NOTE: Rome Laboratory/RL (formerly Rome Air Development Center/RADC)

14. SUBJECT TERMS IS OFPMZS
Computer Security, Romulus, Verification, Multilevel Security, 184

Hookup Security Ia PCE CODE

17. SECURiIY CLASSIFICATION 15SECURITYCLASSIFICATION III SECURIYCLASSIFICATION 20UMITATION OF ABSTRACT
OF REPORT OF THI PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN r5d4" i.stew"Calarm 2" 94.A2-
P b ANS) ZS

Acknowledgments

I would like to thank Richard Platek, Garrel Pottinger, Tatiana Korelsky, and

James Hook for their many helpful comments and suggestions. Garrel Pottinger

was especially helpful in checking carefully the proof of the strong normalization

theorem in Chapter 4. Richard Platek wrote part of the Introduction.
Very special thanks are due to Owen Riambow for his creative work in translating

this work from its original form (written in 1st Word on an Atari ST) into IXTEX,

and to Donna Simmons and Carlos Maymi for helping him.

Jonathan P. Seldin

Ithaca, New York
April 24, 1987

Aooession Fo, r

NTIS ORA&
DTIC TAB
Unannounced

oJustification

Dlstribut on/ "
Availability C (odes

Avail and/or
Speolea.

m-a

Contents

INTRODUCTION 4

1 TYPED LAMBDA-CALCULUS 8
1.1 Type symbols and type structures 9
1.2 The typed A-calculus 12
1.3 The Church-Rosser theorem and pure A-calculus 21

2 EXTENSIONS OF TYPED LAMBDA-CALCULUS 23
2.1 Type assignment 25
2.2 Type variables and principal type scheme 36
2.3 Universal quantification over all types 38
2.4 The power of second order quantification 43
2.5 Generalized type assignment 47
2.6 The need -for conversion rules 49
2.7 Basic generalized type assignment 52
2.8 Extended generaizetlype assignment 55

3 CONSTRUCTIVE LOGIC 62
3.1 The D-calculus 64
3.2 Formulas-as-types 67
3.3 Adding A,V, and I (for -)) 70
3.4 Extension of formulas-as-types 72a
3.5 First order quantifiers 74
3.6 The full theory of types 83

4 THE THEORY OF CONSTRUCTIONS 87
4.1 The theory of constructions: natural deduction formulation 88
4.2 The basic metatheory of the theory of constructions 92
4.3 The strong normalization theorem 114

2

4.4 Consequences of the strong normalization theorem 134
4.5 The theory of constructions: sequent formulation 13 9 a

5 REPRESENTING LOGIC AND MATHEMATICS IN THE THE-
ORY OF CONSTRUCTIONS 146
5.1 Representing logic with equality 147
5.2 Adding axioms to the theory of constructions 153
5.3 Representing arithmetic 157
5.4 Representing sets and functions 162

A LIST OF POSTULATES AND SYSTEMS 166

B SYSTEMS AND THEIR DEFINITIONS 169

3

INTRODUCTION

This work is an introduction to MATHESIS, the underlying mathematical foun-
dation for ROMULUS. In ROMULUS one proves that models, designs and formal
specifications of information processing systems have security properties. For this
to be meaningful it is essential that the underlying automated mathematical foun-
dation itself be sound. It is a known fact that various design and program verifica-
tion environments in widespread use within the computer security community have
faulty logics and implementations; a knowledgeable user of these environments can
exploit these flaws to prove false facts about system. A less malicious user could
inadvertently exploit these flaws and also prove false facts about systems. Machine
certification of proofs is thus called into question when the certification mechanisms
themselves are not appropriately certified.

There are two basic explanations of these flaws. First, the informal theory
which stands logically prior to the theorem prover has not been adequately worked
out. The purpose of this document is to work such a theory for the ROMULUS
mathematical component. In particular, we prove the formal consistency to this
theory.

A second source of error occurs during implementation. Many automated math-
ematical components and theorem provers evolve incrementally; new features are
continually added to make the theorem prover ever more powerful. Also specific
algorithms are replaced by more efficient ones. This maintenance, like most soft-
ware maintenance, is usually done in an ad hoc manner. Logical flaws have a way of
slipping in during such improvements. Our approach to this problem is to provide a
mathematical foundation which in principal is much stronger than presently needed.
The underlying logic is a true mathematical foundation in that the usual mathe-
matical entities, viz. sets, sequences, functions, relations, etc., are all definable in
terms of our ground entities. Future extensions of the theorem prover consist in
adding definitions to the basic logic. The standard basic theorems about the new
entities (what are usually called axioms) are then provable in the basic logic.

We thus have two requirements for a mathematical foundation for verification:

4

the informal theory needs to be worked out prior to implementation; the foun-
dational theory should be strong enough to support definitional extensions which
will encompass a significant amount of mathematics. Several approaches to foun-
dations satisfy these requircments. Our specific choice was determined by several
further requirements. First, in order to add confidence to the correctness of the
implementation it would be desirable that the underlying foundations have as few
moving parts as possible; i.e. the number of basic entities, constructors, axioms,
etc. be small. Second, it would be desirable for the foundation to have computa-
tional content. That is, within the logic mechanically decidable statements should
be distinguishable from undecidable ones and when statements are decidable the
decision procedures encoded in their proofs should be available as computer pro-
grams. Logicians with a strictly mathematical background have not required this
distinction; in computer science it separates the possible from the impossible. The
natural logic for such computable entities is called constructive logic. There are
cases where classical logic differs from constructive logic; namely some classically
valid proofs cannot be made in constructive logic. On the other hand, there is an
important sense in which constructive logic is stronger than classical logic since the
latter can be interpreted in the former.

Since constructive logic is not well-known outside of certain subfields of mathe-
matics and computer science, a few words about it may be in order. If one proves in
constructive logic that something exists, then one must either give an explicit con-
struction of that thing or else give a set of directions for constructing it. It follows
from this that although in classical logic one is concerned only with truth and not
how that truth is established, in constructive logic one is concerned with provability
and one takes nothing to be true unless one actually has or can obtain access to a
proof of it. This requires the denial of the law of excluded middle: A or not A. For
if A is a statement that something exists, then A or not A means that either there is
a set of directions for constructing that thing, or else there is a proof that there can
be no such set of directions; this is clearly not true. This makes constructive logic
seem a bit strange to those who are not used to it. Since constructive logic was first
used in mathematics as one reaction to the paradoxes of set theory and logic which
were discovered at the turn of the century, most examples of the difference between
constructive and classical logic have generally been mathematical examples. Such
examples can be found, among other places, at the beginning of [Bee85], which also
has other references.

It might be worthwhile here to look at a nonmathematical example. The law of
excluded middle might well lead a legislator to propose a criminal law in which there
is one penalty for a crime if A is true of the particular case and a different penalty if
A is false. In classical logic, one is justified in concluding that if the crime covered

5

by the law is committed and there is a conviction, then one of the two penalties
would be applied. But in practice this does not follow. For suppose it turns out to
be extremely difficult for the court system to decide whether or not A is true in a
particular case. Then the case may be appealed all the way to the Supreme Court,
a process which can take years (even more than a decade). During this time, neither
penalty will be applied. And the courts may wind up deciding that A is so difficult
to decide that the courts cannot do so constitutionally (as they might, for example,
if they conclude as a matter of fact that trying to decide A is so difficult that it is
impossible to do so in a way that does not treat people arbitrarily); in this case, the
original law would be unconstitutional, and so no penalty would be applied (even
if it were not in dispute that the defendant had committed the crime). Here is a
nonmathematical case in which the law of excluded middle can be doubted.

Note the relationship between the use of constructive logic and the need to
consider how a decision can be made. Constructive logic is often thought of as
the logic of what can actually be done by computations if there are no limitations
of time and space, and this makes it particularly appropriate for reasoning about
computing in a general setting. In fact, this connection is the basis of Constable's
Nuprl proof development system, in which executable programs are generated by
proving mathematical theorems[C*86].

Because we are interested in a proof system, we are especially interested in re-
ferring to proofs. A good system of constructive logic in which proofs are mentioned
explicitly is the theory of constructions of Coquand [Coq85]2. This is a system of
type assignment to A-terms; the proofs are (roughly) represented by the terms and
the formulas by the types. Although the rules of the system are easy to state, the
system is, in fact, the result of a considerable evolution through a number of other
systems of typed A-calculus, and is best understood in the light of those systems.

For this reason we shall not take up the theory of constructions itself until Chap-
ter 4. In Chapter 1 we shall take a look at typed A-calculus. In Chap'er 2 we shall
consider deductive systems which assign types to A-terms without types. We shall
consider the basic system and and several of its generalizations. These generaliza-
tions include the second-order polymorphic typed A-calculus 2 , Martin-LUf's theory
of types 3, and generalized type assignment in the style of [HS86] Chapter 16. The
theory of constructions is a form of generalized type assignment, and so readers will
be in a position at the end of Chapter 2 to proceed directly to the theory itself in
Chapter 4.

'See also [CH84], [CH86], [CH], [Coq86a], [CoqS6b], and [Coq].
2This system was introduced independently by Girard (Gir7l] and Reynolds [Rey74] and studied

extensively by a number of people, including [FL083].
"See (Mar75], [Mar82], [Mar84], Chapter XI of (Bee85], and [C*86].

6

However, to fully appreciate the theory of constructions, it is desirable to con-
sider both constructive logic and the idea of interpreting terms as proofs and types
as formulas. This idea, which is often called the Curmj-Howard isomorphism, was
introduced by a number of people independently, including [How80], who based the
idea on an observation of Curry [CF58], §9E. We take up this subject in Chapter
3. We begin in Sections 3.1-3.2 with a simple calculus of constructive logic for im-
plication formulas, and show its relation to the simple system of type assignment.
We then proceed in Sections 3.3-3.4 to extend the system to the other proposi-
tional connectives, and show that the law of excluded middle falls in this calculus of
constructive logic. This is enough of the chapter for a basic understanding of both
constructive logic and the Curry-Howard isomorphism, and many readers may want
to proceed directly from the end of section 3.4 to Chapter 4. However, some readers
may want to see a treatment of predicate logic, and in Sections 3.4 and 3.5, we
present versions of (constructive) first-order predicate logic and higher-order pred-
icate logic which illustrate the Curry-Howard isomorphism and look toward one of
Coquand's motivations for creating the theory of constructions.

In Chapter 4, we come to the theory of constructions itself. We give its rules in
a natural deduction formulation, which is a bit different from the form in which Co-
quand gave them but is more closely associated with the systems of type assignment
mentioned in Chapter 2. We then proceed to prove the main consistency theorem
for the system, the strong normalization theorem. We next show the relationship
between the natural deduction formulation given here and the original formulation
of Coquand.

Finally, in Chapter 5, we take up the representation of logic and mathematics
in the theory of constructions. This is clearly necessary if this theory is to serve as
the mathematical basis for MATHESIS and the rest of the ROMULUS project. We
show how to represent logic, both constructive and classical, natural numbers, sets,
and functions. The representation of natural numbers includes a representation of
the principle of mathematical induction, and the methok' of doing this can easily be
extended to other inductively defined free algebras. As an example of this, we show
how to represent lists (finite sequences); this representation has direct application
to the formulation of the hook-up security theory which is used in ROMULUS. The
material of this chapter is all based on the work of Coquand and Huet4 , but in
addition to the definitions and examples of the papers of Coquand and Huet, we
feel a need to use the strong normalization theorem to give some proofs that the
representations of logical and mathematical concepts really behave correctly.

'See [CH86] and [CH] in particular.

7

Chapter 1

TYPED
LAMBDA-CALCULUS

The A-calculus is a fundamental prototype for functional programming languages,
and the typed A-calculus is the natural typed version. Here we shall consider as
much of the typed A-calculus as we will need for the rest of the work. A general
introduction to both the A-calculus and the typed A-calculus can be found in Hindley
& Seldin [HS86].

Most of the systems we will consider will not have models in the usual set-
theoretic -nse of that term. However, ordinary typed A-calculus does have such
models, and so we shall begin with them.

8

1.1 Type symbols and type structures.

Types are used for various kinds of data structures in different programming lan-
guages. Here, we will be concerned with certain particular compound type struc-
tures which are fairly common. They are: 1) the function space type a --- P of
functions with arguments in a and values in #, 2) the cartesian product a x 3 of
two types a and 0, and 3) the disjoint sum a + 8 of two types a and P.

For some purposes, the only kind of compound type we will be interested in will
be the function space type. In other cases we will be interested in all three kinds
of compound types. This leads to the two kinds of type symbols in the following
definition:

Definition 1.1 (Typ symbol) Assume that we have (finitely or countably
many) atomic type symbols 01,...,On,.... Then basic type symbols are defined
as follows:

(a) Every atomic type symbol is a type symbol; and

(b, I a and 3 are type symbols, then so is (a -, /).
Extended type symbols are defined by (a) and:

(c) If a and / are type symbols, then so are (a -- /), (a x P) and (a + /).

Remark It might appear that the basic type symbols limit us to functions of one
variable. This appearance is false, for functions of several variables can by reduced
to functions of one variable by a process known as currying (after H. B. Curry, who
used it extensively; actually the process was used by others before Curry). To see
how currying works, consider the example

h(x,y) = x - y.

Let h* be the one-place function whose value h*(a) at an argument a is defined to
be the function

f(y) = a - y = h(a,y).

Then we have
h*(a)(y) h(x, y),

and we have replaced our original two-place function by a new function of one
variable. Our notation will reflect the process of currying, since

Oil --+ a2 -- ,n-1 - an

will be an abbreveation for

Additional notation. In extended type symbols, unnecessary parentheses will be
omitted. The infixes x and + will have a smaller scope than -..

As a semantics for these type symbols, we associate with each type symbol a a
set D.:

Definition 1.2 (Type structures) Assume that for each atomic type 0 there is
a set Do. Then we define Da for each compound type symbol a as follows:
(a) D,-. is the set of all functions with arguments in D0, and values in Dp;
(b) Daxp is the cartesian product Dax DO of D, and Dp; and
(c) D,+# is the disjoint sum Da+Dp of Da and DO.
A basic type structure is then defined to be the set

{DaIa is a basic type symbol}.

An extended type structure is defined to be the set

{D.I a is an extended type symbol}.

It is usual in set theory to take for the cartesian product A x B the set of
all ordered pairs (a,b) where a E A and b E B. This is not strictly necessary
here: all we really need is an operator dA,B : A -* B -+ A x B and two operators
IstA,B : A x B --+ A and sndA,B : A x B --+ B such that fstA,B(dAB(a, b)) = a and
sndA,B(dAB(a, b)) = b. It is not strictly necessary that dA,B(a,b) be the pair (a,b),
but we will usually think of it that way, and so we will call it a pairing operator.
The operators fstA,B and sndAB will be called projection functions. If A and B are
sets D, and D# respectively, then instead of dAB, etc., we shall write da,,, etc.

The disjoint sum A + B is formed from A and B by making a copy inlA,B(a)
of each element a E A and a copy inrA,B(b) of each b E B in such a way that each
inlA,B(a) is distinct from each inrAB(b), and then letting A + B be the union of all
the copies. In other words,

A + B = {inIAB(a)Ia E A} U {inrA,B(b)b E B}.

Given any element of this disjoint union, it is possible to tell which of the sets it
originally came from. It follows that there is, for any set C, a function

caeA,, A A+ B --, (A ---+ C) .-- (B .-C) -.. C,

10

such that if f: A - C,g: B -+ C,a E A, and b E B, then

caseA,B,O(inIAB(a), f,g) = f(a)

and
caseA,B,C(inrA,B (b), f, g) = g(b).

As before, we shall use the notation casea,.y etc.
Often there is an interest in a type which is empty. This type will be called void,

and will, for now, be taken as an atomic type. Dyed will be the empty set.
In some cases, we will want the type N of the natural numbers. This will also be

an atomic type, and DN will simply be the set of natural numbers. The successor
function will be denoted by a.

Note that a type structure does not include any set of pairs in which there are
pairs in which the first elements are in the same type but the second elements are
in different types. Thus, there is no nontrivial way in a type structure to make the
type of the second element depend on the first element rather than on the type of
the first element. In particular, in a set of pairs whose first elements are natural
numbers, all of the second elements must be of the same type. (Of course, sets
with pairs whose first elements have the same type but whose second elements have
different types can be formed by taking arbitrary unions, but they are not part of
a type structure as defined by Definition 1.2.)

11

1.2 The typed A-calculus.

So far, we have talked about structures consisting of sets and some functions as-
sociated with them. Except for these functions and the natural numbers, we have
not talked about any of the elements of the sets. Here, we introduce a formalism
of terms which will represent these objects. The formalism we will use is the typed
A-calculus.

The basic idea behind the A-calculus is the A-notation of Alonzo Church. The
idea is really simple: we are used to saying that if f represents the squaring function,
so that f(z) = x2 then f(2) = 22 = 4. We also sometimes say that this function f
is given by z i-+ z 2. We might well ask why we do not write

(Xi z2)(2) = 22 = 4.

The reason is that in the 1930s, Alonzo Church proposed writing

(AX.: 2)(2) = 22 = 4. (1.1)

This is the basis of the A-calculus.
In the A-calculus, we use complete currying. In this notation, the term repre-

senting the function h* of §1 is

Az.Ay.h(z, y).

Since we are interested in terms representing objects in the sets of type struc-
tures, we are really interested in the typed A- calculus. There are a number of forms
of this system, depending on which types we are using. Let us begin with the basic
type symbols.

Definition 1.3 (Basic typed A-terms) Assume that we have infinitely many in-
dividual term variables, where each variable is assigned a type symbol in such a way
that there are an infinite number of variables assigned to each type, and suppose
that zx indicates a vaiable of type (symbol) a. Then basic typed A-terms are de-
fined as follows:
(a) each typed variable xa is a typed term of type a;
(b) if Ma-'* and NO are typed terms of types a -+ ,0 and a respectively, then
(M"*ONa)P is a typed term of type P; and
(c) if x* is a variable of type a and M~is a term of type P, then (Az.Mi)a is a
term of type a --. P.
A term of the form given by (b) is called an application term. A term of the form
given by (c) is called an abstraction term.

12

Notation Parentheses will be omitted when no confusion results. For compound

application terms, parentheses will be omitted by association to the left, so that

M a -+ - -+ 6Nap#Q-

is an abbreviation for

(((M - Na)# "Y SPP' -)7 QY)6

Superscripts indicating types will sometimes be omitted when the type is clear from
the context.

The notation
M-N

will mean that "M" and "N" are names for the same term. This notation will be
especially used in definitions, such as Definition 1.5 below.
Examples
(a) (Aza.za)' " represents the identity function of type a.

(b) If F6- " and GO-0 are terms of types P3 -+- 7 and a --+ P respectively, then
Az.F"'(Ga*za) represents the composition of the functions represented by
F'-w and G
(c) A -- which is a term of type (/ - 7) - (a -)
-- a -- 7, represents the operation of composition of functions of types a -, / and
/3-* 7.

(d) If M'is a term of type a and zAis a variable of type P which does not occur
free in Ma(in the sense of Definition 1.4 below), then (Ax.Ma)P' *" represents a
constant function whose value for each argument is the object represented by Ma.
(e) Azx.AyO.za, which is a term of type a -. P --.. represents the operator which
forms constant functions with arguments in P and value in a.

Definition 1.4 (Free and bound variables) An occurrence of a variable za in
a term M is bound if it is in a part of M of the form Az0N.; otherwise it is free.
If za has at least one free occurrence in M, it is called a free variable of M. The set
of all free variables of M is called FV(M). A closed term is a term without any free
variables.

If one of the atomic types is void, then by Definition 1.3 there will be variables
of this type. However, it is the intention that there be no closed term of type void.
A proof that there is no dosed term of type void is a kind of consistency result for
typed A-calculus.

13

Definition 1.5 (Substitution) For a term MP, a variable za, and another term
NO of the same type as the variable, the result of substituting NO for z' in MP,
denoted

[N*/x*]MP,

is the result of substituting NO for each free occurrence of za in MP and changing
bound variables to avoid clashes. The precise definition, by induction on the struc-
ture of MP, is as follows, where some type superscripts are omitted:
(a) [Na/zaiza NO;
(b) [NI/zx]y/ -Y for all variables yP distinct from Za;
(c) [l *] ^' , QY)_ (N 1 x] 7 -P (N 1 * Q)
(d) =N1*(x.P7 x.7
(e) [Na/zJ(Av. 6) A=e[N 1/zjP5
if y7 za and #7 FV(NG) or za% FV(P6); and

(f) [Ns/zaj(Ae.P6) = Az' [Na/:aJ[zIY1]P6
if 10 0 za, e(Y E FV(Na), za E FV(P6), and za is the first variable with the
same type as y' in a standard enumeration of variables which is not in FV(N*) or
FV(P 6).

If the type of N differs from the type of z, then [N/z]M is not defined.

We are now in a position to introduce a relation which corresponds to the process
of calculating values, as in (1.1) above. This relation is called reduction. The main
idea behind reduction is the instruction we always give beginners for evaluating
f(z). For example, if f(z) = X2, the instruction for evaluating f(2) is to replace :
by 2, thus getting 22 = 4. This idea gives us the essential relation between a redez
and its contractum in the next definition.

Definition 1.6 (Reduction) A (one-step) change of bound variable consists of
the replacement of a subterm of a term P1 of the form

Aza.M0

by
AYa.[/zaIM",

where y' FV(M"). A redez is a term of the form (Aza.MA)N*; its contractum is
[Na/za]M. A contraction is the replacement of a redex by its contractum in a term
(where the redex before the contraction and the contractum after the contraction
are subterms of the term being contracted). A reduction is a (possibly empty)
sequence of contractions and changes of bound variable.

14

If M reduces to N, we write
MN.

Definition 1.7 (Conversion) An ezpanion is the reverse of a contraction; i.e.,
M expands to N if and only if N contracts to M. A term M is said to convert to
N if N can be obtained from M by a (possibly empty) sequence of contractions,
expansions, and changes of bound variable.

If M converts to N, we write

M=.N.

Let us now turn our attention to the other type-forming operators, x and +.
For terms of type a x P, we need a pairing operator Dp of type a -+ P -* a x 8.
We will also want terms representing the projection functions: we want fstap and
snd,,,,p of types a x ,8 --+ a and a x ,8 -,/3 respectively such that

fst,,(Da,M*NP)Ma and snd.,#(Da,#Ma NP)NP.

To deal with terms of type a+/3, we need terms inI,, inra,,., and case,,,#.y of types
a --+ a + a + P and a + -- (a --+ -) --* (8 --+ y) --* -y respectively such that

casea,,,.y(ini,M)fo"yg " ft".Ma

and

We will also want to have natural numbers represented. This can be accom-
plished by taking one of the atomic type symbols to be N and postulating atomic
terms 0 No type N, aN-Nof type N -+ N, and, to represent primitive recursive func-
tions, Rof type a --+ (N - a - a) --+ N -- 4a such that

RmMONN"-OtON M,

and
RtMatN

N
-

-b ' a (o "N ' +N n N) N
N-*ta--+an N (RtMa" NN' ot'- anN),

where nN is the term representing the natural number n, that is, is the term

o'N-"N(o'N-"4N (... (o'N"N oN)..) (1.2)

where there are n occurrences of aN-N.
We are now ready to define extended typed A-terms.

15

Definition 1.8 (Extended typed -terms) Assume that one of the atomic
types is N. Assume that we have individual term variables as in Definition 1.3
and .that, in addition, we have the following atomic constants for any types a,
P, and 7:Da., of type a -+/8 --+ a x×P, fsta 3 of type a x - a, sndaJ3 of type
a X3--3, inla,p of type a-- a + , inr0 of type --* a +, caseag,,p of type
C +'0 (a _+ -/) -+ (fl -/) y 7, ONof type N, oN-Nof type N -* N, and R, of type
a -. (N --. a --+ a) -. N --+ a. An atomic term is a variable or an atomic constant.
Extended typed terms are defined as in Definition 3 except that any atomic terms
may occur in (a).

Definitions 1.4 and 1.5 hold for extended typed terms as well as for basic typed
terms. For reduction, we need some new kinds of redexes. The redexes of Defi-
nition 1.6 are called /-redexes to distinguish them from the other redexes needed
here. (On the significance of this name, see Hindley & Seldin [HS86] Chapter 7)

Definition 1.9 (Reduction) Reduction is defined as in Definition 1.6 except that
in addition to fl-redexes we now have the following additional redexes (given with
their contracta):

Redex Contractum

(fst) fst,,j(D,,pM*NO) M a

(snd) - -snda,O,,(DM*N#) NP
(case,) casec,,.v,(inl,,pMcl)f"-' gP-' - fa-"lM a

(case 2) case,p,. (inrc,,pNP)fa'- gP-- gP-"' NP
(RI) RMaNN'a'a0N M a

(R2) RaMaNNa"-a(.N-'NnN) NN--"-a-nN (RaMaNNa-+nN)

where nNIs the term given in (1.2) above.
Definition 1.7 now holds as before.

16

sectionThe basic theory of typed A-calculus
Let us begin with the theory of basic typed A-terms of Definition 1.3.

Lemma 1.1 (Replacement) If an occurrence of a typed term P* in a typed term
MO is replaced by another term with type a, then the result is a typed term of type
/3.

Proof By induction on the structure of MP. a

Theorem 1.1 (Invariance of reduction) If MON, then N has type a.

Proof By Lemma 1.1, it is sufficient to prove that types are preserved by changes
of bound variable and that a contractum has the same type as its redex. This will
follow in both cases from the fact that [Na/x]Ma is a term of type /, and this
latter fact can be seen by applying Lemma 1.1 to the cases of Definitionl.5. M

We noted in Section 1.2 above that reduction corresponds to the process of
evaluating the result of applying a function to an argument. Since there are many
well-known calculations that never come to an end, we might expect to find typed
A-terms that can begin reductions continuing forever. In a trivial sense, most typed
A-terms begin such a reduction, since bound variables can be changed whenever they
occur. But changing bound variables does not really correspond to a calculation
step; what we really want to know is whether there is a typed terms with the
property that every term to which it reduces contains an occurrence of a redex. It
turns out that the answer is no.

Definition 1.10 (Normal form) A term is said to be in normal form if there is
no occurrence of a redex in it. If MO NO, where NO is in normal form, then NO is
said to be a normal form of MO.

Theorem 1.2 (Normal form theorem) Every basic typed term has a normal
form; i.e., every basic typed term can be reduced to a term in normal form.

Proof Define the degree of a type-symbol to be the number of occurrences of the
symbol -- in it, and define the degree of a redex (Aza.Ma)Na to be the degree of
the type a -+ P of the abstraction part of the redex. The proof is by an induction on
the pair (d, n), where d is the maximum degree of any redex in the given term and
n is the number of occurrences in the term of redexes with degree d. The pairs are
ordered by specifying that (d, n) < (d, n') if and only if either d < d' or else d = d'
and n < n'. Since changing bound variables does not change the pair associated

17

with a given term, it is sufficient to concentrate on the contraction of redexes. At
each stage a redex (Aza.MP)N* is chosen which has degree d and is such there is
no occurrence in NO of a redex of degree d. The only redexes of degree d in the
contractum [Na/za]MO are substitution instances of those occurring in MO; hence,
if the pair associated with the original term is (d, n), then the pair associated with
the term obtained by carrying out the contraction is (d, n - 1) if n > 1 and is (d', m)
for d' < d if n = 1. (Note that n can never be 0.) Hence, each such contraction
leads to a new term with a pair lower in the ordering than the original term, and
since the pairs under this ordering are well founded, it follows that the reduction
process must terminate in a term in normal form. U

Corollary 1.2.1 There is no closed basic typed A-term in normal form with an
atomic type.

Proof Let PO be a closed term in normal form of type 0, where 0 is an atomic type.
Then PO is not a variable, and since 0 is atomic, it is not an abstraction term. It
follows that PO is an application term. Suppose it has the form POP 1... Pmo, where
Po is not an application term and type superscripts are omitted for convenience.
(Every application term can be written in this form.) If Po were an abstraction
term, then P would not be in normal form. It follows that Po is a variable, and
hence PO is not a closed term, contrary to hypothesis. 0

This corollary shows that the normalization theorem gives us a kind of consis-
tency result. For if void is one of the atomic types, then it shows that there is no
closed term in normal form of type void. Since, as can be easily proved, reduction
never introduces any new free variables into a term, it follows that there is no closed
term in any atomic type, and hence there is none in void.

There is no problem about extending Lemma 1.1 and Theorem 1.1 to extended
typed terms. Furthermore, Theorem 1.2 can be extended to extended typed terms
involving (fst), (snd), (case 1), (case2), and (R1) redexes. But as soon as (R2) redexes
are allowed, there is a problem, for it is possible to have a subterm of the form
ROM0NN"a'* PN which is not a redex but which becomes a redex after contractions
are carried out in pN on redexes of lower degree. However, there is an alternative
method of proof, which is more complicated, which proves Theorem 1.1 for extended
typed terms with (R2) redexes. In fact, this stronger method of proof actually proves
a stronger result for both the basic and extended systems.

Theorem 1.3 (Strong normalization theorem) Every sequence of contrac-
tions starting with a typed A-term terminates in a term in normal form.

18

For the proof, see Hindley & Seldin [HS861 Appendix 2.

Corollary 1.2.1 is clearly not true in the extended system with terms for the
natural numbers, since ON is a dosed term in normal form with atomic type N.
However, it is possible to prove that there is no closed term in void. The proof
begins like the proof of Corollary 1.2.1, but becomes more complicated at the point
of analyzing Po, for now P0 might be an atomic constant, and we need a case for each
one. For example, we have to consider the possibility that it is fstcp. Furthermore,
P1 has type a x P. Since P is in normal form and is closed, it must be of the
form DaM*NP, contradicting the assumption that PO is in normal form. Similar
arguments work for the other atomic constants. This proves:

Corollary 1.3.1 If one of the atomic types is void, then there is no closed term of
type void.

We can also obtain a result concerning type N.

Corollary 1.3.2 Every closed term of type N reduces to a numeral; i.e., to a term
of the form

a N--N(oNN(.(uNNON).)).

Proof Given a dosed term of type N, let pN be its normal form. The proof is
by induction on the structure of the term pN. Follow the proof of Corollary 1.3.1
through the analysis of P0 ; there are now additional cases in which it may be 0 N,

aN ' N , or Ra. If it is 0 N, we are done. Otherwise, the second or third argument must
be a numeral by the induction hypothesis, and so we either have another numeral
or an (R) redex. m

We would now like to prove that the type structures introduced in section 1
form a model of the extended typed A- terms.

Definition 1.11 (Valuation) A valuation for a given type structure is a function
which assigns to each variable xaof type a an element p(z") of D,. If p is a
valuation, then [d/zJ]p, where d E D., is the valuation " with the property that
T'(z") = d and, for each variable ydistinct from xc, '(y#) = p(y#).

Definition 1.12 (Assignment) For each valuation p and for each extended typed
A-term M, an object IMIp, called the assignment of M determined by the valuation
p, or, when no confusion results, the assignment of M, is defined as follows, where
the notation IMI is used when no confusion results:

19

(a) ID=,,I is the function which, given di E D, and d2 E D# as arguments, returns

the value dcgj(dl, d2);

(b) Ifstl fst.,,O : Daxa --* Da;

(c) Isnd0 3l = snd,,, : Dcxa - D- ;
(d) JinI,I - in ,,,,: Da D-+. ;
(e) inro ,a - inr0 , : Da -D,+#;

(f) Icase,,#-I - case.,,, : Da+# -, D,. --, Dp-.., D-1;

(g) 10 "1 = 0;

(h) loN,'"I =

(i) IRal is the function which, given an element d E D, and a function h
DN -- Dc --, Dc, returns as a value the function f : DN --I D, with the property
that f(O) = d and f(n + 1) = h(n, f(n));

() IMc"'ON* = IMa"PI(IN1I) if this makes sense (i.e., if IM'"I is a function
and INOI is an object in its domain);
(k) I Aza.MO3 ,, is the function f :D. --* D~which, for each element d E Da, returns
IM0I?, where r is [d/zx]p.

Theorem 1.4 For each extended typed A-term M~of type a, and for each valuation
p, IM01 E Dc. Furthermore, if M" =. NI, then 1M01 = I1N*.

Proof The first part is proved by induction on the structure of M0 . The second
part is proved by showing that assignment is invariant of changes of bound variable
and that the assignment of any redex is equal to that of its contractum; this follows
from Definition 1.12. u

20

1.3 The Church-Rosser theorem and pure A-calculus.

As we have seen, every reduction sequence starting with a typed A-term terminates
in a normal form. But we might well wonder if different reduction sequences termi-
nate in different normal forms. In a trivial sense they do, since a change of bound
variable applied to a normal form leads to a distinct normal form. But normal forms
which differ only in their bound variables are really essentially the same. What we
would like to know is whether or not there are any typed terms which have two or
more truly distinct normal forms. The answer turns out to be no: all normal forms
of a given typed A-term differ by only changes of bound variables. This result is a
consequence of a theorem due originally to Church & Rosser [CR36].

Theorem 1.5 (Church-Rosser Theorem) If M, N, and P are typed terms such
that PM and PN, then there is a term Q such that MQ and NQ.

All known proofs of this theorem are too long and complicated to be given here.
The most readable proof is probably that of Rosser [Ros84] pp. 342-343. What is
perhaps most interesting about this proof (and almost all other published proofs)
is that it makes no reference to the type structure; it remains valid if all of the type
superscripts are deleted. In fact, the theorem is not really as much a theorem about
the typed A-calculus as it is a theorem about the A-calculus. This makes it worth
taking a brief look at the pure A-calculus.

Definition 1.13 (Pure A-terms) Assume that we have infinitely many variables
and perhaps some constants. Then the (pure) A-terms are defined as follows:

(a) Variables and constants are A-terms;

(b) If M and N are A-terms, then (MN) is a A-term; and
(c) If z is a variable and M is a A-term, then (Az.M) is a A-term.

Free and bound variables, substitution, reduction, and conversion are defined
much as for typed A-terms; the main difference is that typechecking is not needed
in substitution or in forming application terms. Clearly, any typed A-term can be
transformed into a pure A-term by deleting the type superscripts. On the other
hand, there are pure A-terms to which no typed A- terms correspond. For example,
the term

Ax.::

does not correspond to any typed term, since there is no typed variable z' with a
type a that permits the formation of zx x. Furthermore, the term

21

contracts to itself, and so dearly has no normal form. The term

(Az.zcz)(A:.zzz)

contracts to
(Az.zzz)(Az.zzz)(Axzzzx),

and so clearly has no normal form. These last two terms represent computations
that do not terminate; the first one represents an infinite loop, and the second
represents an expanding infinite loop. Nonterminating computations cannot be
represented by typed terms.

The pure A-calculus differs from the typed A-calculus in another respect. The
typed A-terms have type structures as models. But the pure A-calculus does not
have such simple models in terms of set theory. The reason for this is that in the
pure A-calculus, any term can be applied to itself: if M is a term, then so is (MM).
But the standard axioms of set theory prevent a set-theoretic function (in the usual
sense of a set of ordered pairs) from being applied to itself. The typechecking
required for the formation of typed application terms is a sufficient restriction to
ensure that the terms can be modelled as functions in the ordinary set-theoretic
sense.

22

Chapter 2

EXTENSIONS OF TYPED
LAMBDA-CALCULUS

Although the typed A-calculus, which we saw in Chapter 1, is in an important
sense the basis of the theory of constructions, the theory of constructions is not
exactly a form of typed A-calculus; it is actually a form of deductive system for
assigning types to A-terms. There axe a number of such deductive systems, and we
will look at a several of them in this chapter. The ones at which. we will look will
approximate a sequence of systems leading from the weakest, basic type assignment,
to the strongest, which is the theory of constructions itself.

We begin with a basic system of type assignment, TA, which is equivalent to
the ordinary typed A-calculus. This system is much weaker than the theory of
constructions, but its theory illustrates very well what we will want later for the
theory of constructions itself. This system and its theory are considered in the first
two sections. We then proceed, in the next two sections, to consider the second
order polymorhpic typed A-calculus, which is one of the best known generalizations
of ordinary type assignment and is of considerable interest to computer scientists
in connection with polymorphism in programming languages. We will see some of
the strength of this system.

The theory of constructions is a form of what is usually called generalized type
assignment, which we will consider in the last four sections of the chaper. We begin
first with a general description of the sort of generalization that is involved (Section
2.5), and we then see (Section 2.6) why systems of this sort require conversion on
the types. We look at the basic system of generalized type assignment in Section
2.7, and we see that it is, in a sense, a conservative extension of ordinary type
assignment. Finally, in Section 2.8, we look at some stronger systems that point

23

the way to the theory of constructions; the most important of these is the universal
fragment of the type theory of Martin-L6f, but, as we shall see, this system is not
even strong enough to interpret the second order polymorphic typed -calculus,
and we look at how the former sysem would have to be strengthened to interpret
the latter. We end with some limitations on the system which results from this
strengthening and which are overcome in the theory of constructions itself.

It is worth mentioning that it is desirable to interpret the second order poly-
morphic typed -calculus in systems of generalized type assignment because of the
strength of the former, which we will see in Section 2.4, and the fact that we have
a method for proving the consistency of the latter. In general, when we have a sys-
tem which can be proved consistent and in which we can interpret other systems,
the latter systems are shown to be consistent. As we shall see in Chapter 5, the
consistency proof for the theory of constructions leads to consistency results for the
interpretations of a number of useful theories from mathematics and logic.

24

2.1 Type assignment

In the typed A-calculus as defined above, terms without types cannot be formed.
But in most programming languages with type discipline, types play a different
role: instead of preventing terms from being formed, they pick out of a set of terms
that already exist those terms that are acceptable to a programming context (such
as a compiler). The terms exist independently of the types, and the relationship
between the types and the terms is established by a process of assigning types to
terms.

It turns out to be easy to apply this approach to the A-calculus. We need only
assume that we are dealing with the pure A-terms of Definition 1.13 and give a
systemmatic procedure for assigning types to them.

This procedure will take the form of a deductive theory or system. The formulas
of the system will all have the form

M: a,

where M is a term and a is a type. The azioms will be formulas assigning types to
the atomic constants if there are any. (For the moment, let us make things simpler
by assuming that there are no atomic constants.) We also need to assign types to
the variables. In the definition of basic typed terms (Definition 1.3), we postulated
that each variable came with a type. Here, we do not postulate this. Instead, we
will postulate that in any particular assignment, types are assigned to the variables
by assumption. In general, r will be a set of such assumptions; i.e., r will be a set
of formulas of the form

X1 : 01l, X2 : a2, Xn : an,

where X1 , X2 ,..., z, are distinct variables and a,, a2, ... , a, are types. Thus, in
general, an assignment of a type to a term is a deduction whose assumptions assign
types to the free variables in the term. The statement that M : a can be deduced
from a set of assumptions r will be written

r F M :a.

If we look at the definition of pure A-terms, we will see that we have taken care
of assigning types to the atomic terms (constants and variables). To assign types to
compound terms, we need rules. These rules will have to correspond to the clauses
assigning types to application terms and abstraction terms in the definition of basic
typed A-terms, Definition 1.3. They are as follows:

(-e) fr I- M:a- 3and r I- N:a, thenr I- (MN):,8.

25

(--i) If r, z:a I- M:(, where z does not occur free in r, then
r - Aa.M :a--+/#.

Note in the case of (-+ i), the conclusion of the rule does not depend on the
assumption z : a, whereas the premise does. We say that the assumption is dis-
charged by the rule. This notion of discharging an assumption is quite common in
natural deduction formulations of systems of logic, which were introduced originally
by Jas'kowski [Jas34] and Gentzen [Gen34] and were extensively studied by Prawitz
[PraS5]. In these systems, the above rules would usually be written as follows:

e) : a:

MN: Az.M :a

where in (-- i), z does not occur free in any undischarged assumption, and where
the square brackets indicate the discharging of the assumption z : a by the rule.

Writing the rules this way is associated with writing deductions as trees, as the
following examples indicate:

Example 2.1 Xz.x : a --, a for each type a.

Proof
1

[:a]

Az.z : a - a)

Here the brackets indicate the discharged assumption, and the number "l" is used
to indicate the location of the discharge. The importance of keeping track of the
places at which assumptions are discharged is shown in the following example:

Example 2.2 For any types a, 0, and 7, we have

A.Ay.Az.xz(yz) : (a - y) -+ (a - a -- y.

26

Proof

3 1 2 1

(--e) (--e)Xz :--+,y YZ :.a
(-ye)

zz(yz)
:Y

e

(-4i-1)

-(-..i-2)
,\.z.z/z) : a a -7 ,

(-- , i - 3)

Ax.Ay.Az.zz(yz) : (a -) -* (a -.) - -y.

It is important to note that an assumption which is discharged need not actually
be used. Consider the following example:

Example 2.3 For any types a and/3, Axz.y.z: a - - .

Proof
1

[X a]
(--i- v) (- -)

Az.Ay.X : a --+/3 -, a

Here, the assumption discharged at the first step is y : /, which does not actually
appear in the deduction. The "- v" indicates this fact.

This method of writing deductions and proofs is common in logic and is ap-
propriate for theoretical purposes, as we shall see. But many non-logicians may
be uncomfortable with writing deductions as trees. An alternative is to write the
deductions as tables. The three examples given above can be written as follows:

27

Formula Rule Assumptions

Example 2.1'
1. z:a Hyp 1
2. \Az.z : a 1(-. i)

Example 2.2'

1. z:a 03 7 Hyp 1
2. y:a Hyp 2
3. z:a Hyp 3
4. zz:/3-.'y 1,3(--*e) 1,3
5. yz:/3 2,3 (-e) 2,3
6. zz(yz) -t 4,5 (- e) 1,2,3
7. Az.z(yz) : a -- y 6 (-i) 1,2
8. Ay.Az.xz(yz) : (a-)- a -,y 7(--i) 1
9. Az.\y.\z.zz(yz) : 8 (-, i)

(a -* 0 -+ -* (a - /3) -

Example 2.3'

1. z : a Hyp 1
2. Ay.x /- a I (--+*i 1
3. Ax.Ay.z : a --+ P --+ a 2 (-* i)

Note that here the discharge of an assumption is indicated by the removal of its
number from the last column, and that if (--. i) is used without a change in the last
column, then the discharge is vacuous.

One feature of this kind of system is that these proofs can all be obtained by
working backwards. Let us see this for each of the three examples:

Example 2.1" We want to prove

I- Az.z : a-- a.

The only rule of which this can be the conclusion is (--+ i), and the premise must be

z: a i- z:a.

28

But this is a trivial deduction consisting of an assumption. 0

Example 2.2" We want to prove

I" Ax.V.z.zyz), ./,. 7) --,. -. c-. a .

This must be the conclusion of (--, i), and the premise must be

: a*/--..7 - \y.\z.z(z) :(-+'-.

This must also be the conclusion of (--. i) with the premise

X : a -+ P -+ -, y : a P F A- y.Az.xz(yz) : a -- 7y.

This must also be the conclusion of (.- i), and the premise must be

X :a-+ -7, y:a+, z:a I- xz(yz):7.

Now this must be the conclusion of (--. e), and the premises must be

z:a+/-*'Y, y:a--f3, z:a I- xz:6--*7 (2.1)

and
X:a- -- Y, y:a , z:a I- yz:6 (2.2)

for some type 6. Now each of these must also be the conclusion of an inference by
(- e). The premises for (2.1) must be

:a f-7, y:a-- , z:a I- X:C- ,y

and
X: a -, y: a , z: a F- z: e

for some type c, and it is clear that these deductions are trivial if 6 is 3 and e is a.
Then (2.2) must be

X :a -+', Y: a- Z: a- yz:

and its premises must be

and
X : a -- I.Y, y:a -+,0, z:a a z:C.

29

These two deductions also become trivial if C is a.E

Example 2.3" We need to prove

I- AX.Ay.X : a - 0 *c.

This must be the conclusion of an inference by (- i), and the premise must be

z:a - Ay.X : #-c.

This must also be the conclusion of an inference by (--, i), and the premise must be

X:a,y:,3 - X:a,

which is a trivial deduction. a

This style of finding deductions is called the refinement style, and is close to the
usual method of implementing on a computer procedures for constructing proofs in
this kind of system.

Let us give this system a name. Note that for technical reasons, we need one
additional rule which has not been needed in the above examples.

Definition 2.1 (The type-assignment system TA) The system TA is a nat-
ural deduction system. Its formulas, called type- assignment formulas, are the
expressions of the form

M " a,

where M is a pure term and a is a (basic) type symbol. There are no axioms. The
rules are as follows:

(-e) M :a-- N:a

MN :1

(-* i) [z : a] Condition: z : a is the

M :1 only undischarged as-
sumption in which z oc-

AX.M : a -, curs free.

30

() M :'3 Condition: N
is obtained from M by

N:/3 change of bound vari-
ables and M:/0 is not
the conclusion of a rule.

Note that rule (-) cannot occur in a deduction if all assumptions axe of the form
x : a, where z is a variable. The rule is included to allow assumptions of other forms
and because we will need it in systems we will take up later.

There axe several things to note about this system. The first is that deductions
invariably follow the construction of the term to which a type is assigned by the
conclusion. This fact, which is easy to see, is difficult to write out as a formal
theorem. It is known as the subject-construction theorem; see Curry, Hindley &
Seldin [CHS72] Theorem 14D1, p. 310. (The name comes from the fact that the
term M in a formula M : a is called the subject of the formula.) Nevertheless, it
should be obvious from the above examples. One result of this theorem is that it
is fairly easy to determine the type of any bound variable. Another is that it is
decidable whether or not a given term has a type. See the discussion in Elindley &
Seldin [HS86] Chapter 15.

By using the subject-construction theorem, we can obtain results for deductions
in TA corresponding to the results of Section 1.3 above for basic terms. First, we
need to define a basis as a set of assumptions of the form

M1 : Clt...,vMn: Cin.

A variables-only basis is a basis in which each Mi is a variable. Then, we have the

following analogue of Lemma 1.1:

Lemma 2.1 (Replacement) Let rl be any basis, and let D) be a deduction giving

ri -TA M :a.

Let P be a term occurrence in M, and let Az , ... , Axz, be those A's whose scope
contains P. Let P contain a formula P : "y in the same position that P has in the
construction tree of M, and let

31

be the assumptions above P : y that are discharged by applications of (--+ i) below it.
Assume that P : y is not in r 1 Let Q be a term such that FV(Q) C FV(P), and
let r 2 be a basis in which xL,... , x, do not occur free such that

r2, XI 61,... , X, : 6 . FTA Q : '.

Let M* be the result of replacing P by Q in M. Then

'1 u r 2 I-TA M* : a.

Proof See Hindley & Seldin [HS86] Lemma 15.16. m

Using this lemma and the subject-construction theorem, it is easy to prove the
following theorem:

Theorem 2.1 (Subject-reduction theorem) Let r be a variables-only basis. If

r -TA M: a

and MN, then -

r FTA N a.

Proof See Hindley & Seldin [HS86] Theorem 15.17. 0

From these results, we can see that deductions in TA correspond to typed terms
in the sense of Definition 1.3.

Definition 2.2 (Correspondence between deductions and terms) For each
deduction V of TA, a typed term IDI in the sense of Definition 1.3 whose type is
the type of the conclusion of D, is defined as follows:

(a) If M : a is an assumption, then IM : al is a typed variable z' of type a. This
variable must be so chosen that it is not assigned to any other assumption which is
not also of the form Mca ; but if M : a is a discharged assumption then the same
variable must be assigned to any other assumptions of the form M : a which axe
discharged at the same inference by (--+ i);
(b) If V is

Di D2

M:a--i N :a

MN: #e)

32

then IVI -*1zIV21;

(c) If V is
1

[x a]

M:,8
(-..i-1)AX.M : a

then *1)= Avr.III where v" - Ix al.

(This is not quite a one-to-one correspondence because the condition on typed vari-
ables in (a) is almost impossible to satisfy with one definition for all deductions
in a way that is consistent with the changes of bound variables required to de-
fine substitution. But for any small set of deductions, it is locally a one-to-one
correspondence.)

This correspondence suggests that we define reduction steps for deductions as
well as for terms. These reduction steps turn out to be similar to the D-reduction
steps of Prawitz [Pra65] (see Section 3.3):

Definition 2.3 (#-reduction steps for deductions) A deduction of the form

1

x-:a]

V1(x)

(-+i1)

Ax.M : a-/ N:a
(-be)

(Ax.M)N : /

V3

33

reduces to
V2

N)

[N/x]M :

Vp3

where V3 is obtained from V3 by replacing appropriate occurrences of (Az.M)N by
[N/z]M according to Lemma 2.1.

Using Definition 2.3 , we can prove the following result:

Theorem 2.2 (Normalization theorem for deductions) Every deduction in
TA can be reduced to a deduction which cannot be reduced further.

This can also be proved directly; see Hindley & Seldin [HS86] Theorem 15.31.
By the subject-construction theorem, it follows that if there is a deduction D of

M : a from a variables-only basis, and if there is a /-redex in M, then V) can be
reduced by a -reduction step for deductions. This gives us the following corollary.

Corollary 2.2.1 (Normalization theorem for terms) Let r be a variables
only basis. If

r -TA M:a,

then M has a normal form.

(See Hindley & Seldin [HS86] Corollary 15.31.1.)

A deduction which cannot be further reduced, which is usually called a normal
deduction, has the property that there is no inference by (--. i) whose conclusion is
the major (left) premise for an inference by (--+ e). It follows from this that if one
takes a normal deduction (in tree form) and starts with any assumption, whether
discharged or not, then, as one proceeds down the tree, one cannot come to a major
premise for an inference by (-+ e) below an inference by (--4 i) unless one passes
through a minor (right) premise for an inference by (-. e) in between. Let us define
a branch of a deduction to be a sequence A,, A2,. A, of formula occurrences such
that A1 is a (discharged or undischarged) assumption, for each i < n, A, is the
premise for an inference (but not the right premise for an inference by (-+ e)) and
Ai+i is the conclusion, and A,, is either the conclusion of the deduction or else

34

the right premise for an inference by (-+ e). Then each branch consists of zero or
more left premises for inferences by (-- e) followed by premises for inferences by
(--+ i). (Under certain circumstances, a branch may begin with the premise for an
inference by (-).) It follows that any deduction proceeds by breaking the types of
the assumptions down into their constituent parts and then putting the parts back
together to get the type of the conclusion. There are a number of consequences of
this fact, among them the following:

Corollary 2.2.2 (Subtype property) In any normal deduction in TA, every type
appearing in a formula of the deduction is a subtype of the type of one of the as-
sumptions or else of the conclusion.

Another consequence of this structure of normal deductions is the following:

Corollary 2.2.3 If the type of the conclusion of a normal deduction is atomic, then
there is no inference by (--, i) in the leftmost branch (i.e., the branch that begins with
the top left assumption and ends with the conclusion of the deduction).

Remark It is not hard to extend this theory to extended typed \-terms. All we
need to do is to add some new constants and assign them new types using axiom
schemes as follows:

(D) D,,, : a--+ P -+a x,
(fst) fstcO : of x 0 -+a ,

(snd) sndc,, : a x 8-* P,
(inl) inlc,,# : a a + 0,
(inr) inr,, : ,3- a + ,

(case) case.,#,. : a + - (a -- +) - ((- ') -) 7,
(0) o: N,
(or) t7 : N--* N,

and
(Rc) R, : a--+ (N - a-+ a) - N -9a.

We also assume that these constants satisfy the contractions obtained from the
first four of Definition 1.9 by dropping type superscripts. For some purposes, as we
shall see in Section 3.4, we are not interested in the constants 0, a, and t,. The
system without the constants 0, a, and Ra(and without the atomic type N) will
be called extended TA. The system with N, 0, c, and RwiU be called extended TA
with arithmetic.

35

2.2 Type variables and principal type scheme

As we saw in Example 2.1 above,

AXz.Z : a -- a

for every type a. It follows that if 0 is any atomic type, then

A:.X :0-+0.

It seems clear that any other type assigned to Ax.x can be obtained from the type
0 -- 0 by "substituting" some other type for 0. It would be nice to formalize and
generalize this property of type-assignment.

The notion of "substitution" into a type would make more sense if we had type
variables. Hence, we extend Definition 2.1 as follows:

Definition 2.4 (Type schemes) The atomic type constants or type constants will
be the atomic type symbols of Definition 1.1. We assume that we have infinitely
many type variables, which will be denoted a, b, etc. Then type schemes axe defined
as follows:

(a) Type constants and type variables axe (atomic) type schemes;

(b) If a and P are type schemes, then so is (a -- 8)-
A type is a type scheme in which no type variables occur. A type scheme 0 is a
substitution instance of a type scheme a if P is obtained from a by substituting
types for type variables; i.e., if there are type variables a,, a2, ... , an and type
schemes 7y1, 72, ... , -yn such that

3- [y1/al, y2/a2, ... ,

From now on, we will assume that TA is defined using type schemes instead of
types.

Now the property of type assignment that we noted at the beginning of this
section can be formulated by saying that any type or type scheme assigned to Ax.:
is a substitution instance of a -- a. We are interested in knowing which terms axe
assigned a type scheme with the property that any other type scheme assigned to the
term is a substitution instance of the given one. A type scheme with this property
deserves a special name.

'We are ignoring for the moment types a x .8 and a +,6. The reasons for this will become
apparent in Section 2.4 below.

36

Definition 2.5 (Principal type scheme) Let M be a dosed term. Then a type

scheme a is called a principal type scheme (p.t.s.) of M if and only if

i-TA M : '

holds for a type scheme a' when and only when a' is a substitution instance of a.

This definition dearly works only for closed terms; i.e., for terms with no free
variables. For terms with free variables, we need to generalize this definition. First,
we define an FV(M)-basis for a term M to be a basis of the form

M1 : al, M2: a 2 , ... , Mn :an,

in which each Mi is a variable which occurs free in M.

Definition 2.6 (Principal pair) Let M be a term whose free variables are
X1 , X2, ... , zn. Then a pair (r,a) is called a principal pair (p.p.) of M, and
a a p.t.s. of M, if and only if r is an FV(M)-basis and

r' 1 'TA m : a

holds for an FV(M)-basis r' and a type scheme a' when and only when r' and a'
are obtained from r and a respectively by the same substitution.

Example 2.4 Ax.x has p.t.s. a -* a.

Example 2.5 Ax.xx is not assigned any type by TA.

These examples should make it clear that the following theorem holds; its proof,
although simple in principle, is complicated to write out and will not be given here.
(See Hindley & Seldin [HS86] Theorem 15.26 and Theorem 14.40.)

Theorem 2.3 (P.t.s. theorem) Every pure A-term M to which a type scheme is
assigned by TA using only FV(M)-bases has a p.t.s. and a p.p.

It is worth noting that the use of type variables makes it possible to make general
assertions. The fact that Ax.x has as a p.t.s. a -- a means that it has type a -+ a
for all types a. Thus, a statement such as

F-TA Ax.z : a -+ a

makes a statement about all types a. This same method of making general state-
ments about types is used in the programming language ML (see Gordon et al.
[GMW79] and Milner [Mi185] and (Mil78]).

37

2.3 Universal quantification over all types

We have seen how to use type variables to make statements about all types. But
the system we have above is still not what is usually needed for making and using
such statements in a programming language. For example, in a language such as
FORTRAN or PASCAL, programs that differ only in the types of their variables
need to be duplicated and compiled separately. A language such as ML avoids this
problem by using type variables and having a rule of substitution for them. We
could easily imitate ML by adding a rule such as

M: a

M : [0/]a ,

but this seems to be in some ways incompatible with the subject-construction theo-
rem. The alternative which suggests itself is to add an explicit universal quantifier.

A system with this explicit universal quantifier is already known; it was intro-
duced independently by Girard [Gir7l] and Reynolds [Rey74. The definition of
type is extended by specifying that if a is a type variable and a is a type, then
(Va)a is a type. For this to make complete sense, we need to keep track of the
types of bound variables; thus, if the type of x is a, then we shall write A:a . M
instead of A.M. For example, the identity function on type a will now be written

x:a . z. If we take the type to be the type variable a, then we have A: a. z, which
has type a - a. Obviously, some term related to this one should be in the type
(Va)(a --+ a), and the fact that the term has this type should express the fact that
in TA a p.t.s. of Az.x is a - a. To construct the term we need, we add a new
abstraction operator, from a type variable a and a term M. In our example, the
term in (Va)(a --+ a) is Aa . A: a. x. To go with this new abstraction operator, we
need a new application: the result of applying a term M to a type-scheme / will
be M3. In our example, we will have the term (Aa. Ax:a. x)#3, which we expect
to be assigned type # -, 0 and to reduce to Az:/#. x. In general, we expect to have
the ",3"-contraction of (Aa.M)3 to [P3/a]M. We also have the following new type
assignment rules:

(Ve) M : (Va)a Condition: 3 is a type.

M# : [//ala

(Y) M : a Condition: a does not
Aa.M :(Va)a occur free in any undis-

charged assumption.

38

One effect of these rules is to give us functions which take types as arguments.
Such functions cannot be represented in the type structures of Section 2.1. See the
second note before Example 2.6 below.

Note that with our new notation, rule (-' i) is now written as follows:

1

[:a]

M:

Az:a . M :a e

The system defined this way is called the second-order polymorphic typed A-calculus,
or, for short, second-order A-calculus. To define it, we have the following formal
definitions:

Definition 2.7 (Second-order polymorphic types and type schemes)
Assume that we have some type constants and infinitely many type variables as
in Definition 2.4. Then second-order polymorphic type schemes are defined as fol-
lows:
(a) all type constants and type variables are type schemes;
(b) if a and 0 are type schemes, then so is (a -- 1,); and
(c) if a is a type scheme and a is a type variable, then (Va)a is a type scheme. An
occurrence of a type variable a in a type scheme a is said to be bound if it is inside a
subtype scheme of the form (Va)a; otherwise it is free. A second-order polymorphic
type is a second-order polymorphic type scheme in which every occurrence of a type
variable is bound. The set of all type variables free in a is called FV(a).

Definition 2.8 (Second-order polymorphic A-terms) Assume that we have
infinitely many term variables, distinct from the type variables, and perhaps some
constants, each constant having a type scheme assigned to it. Then second-order
polymorphic A-terms are defined as follows:
(a) every constant and variable is a term;
(b) if M and N are terms, then so is (MN);
(c) if z is a variable, a a type scheme, and M a term, then (z:a . M) is a term;
(d) if M is a term and a is a type scheme, then Ma is a term; and
(e) if a is a type variable and M is a term, then (Aa.M) is a term.
An occurrence of a term variable z in a term P is said to be bound if it is inside a

39

subterm of the form Az:a. M; otherwise it is free. An occurrence of a type variable
a in a term P is bound if it is inside a subterm of the form Aa.M; otherwise it is
free. The set of all term and type variables free in M is called FV(M).

Definition 2.9 (Substitution) Substitution of terms for term variables and type
schemes for type variables is defined much as in Definition 2.6; in particular, bound
term and type variables are automatically changed to avoid conflicts.

Definition 2.10 (Change of bound variables) A change of bound variables in
a type scheme or term is any of the following replacements:
(a) (Va)/3 by (Vb)[b/a]p if b 0 FV(3);
(b) \a.Mby Ab.[b/a]M if b g FV(M);
(c) \z:,O . M by \y:p . [y/z]M if yo FV(M).

Definition 2.11 (6l-reduction) For terms P and Q, we say that Pf/-reduces to
Q (P p Q, or PQ) if and only if Q is obtained from P by a finite (perhaps empty)
series of changes of bound variables and the following kinds of contractions:

(fl2) (Aa.M)a # [a/a]M.

Conversion is defined from this reduction as in Definition 1.7.

Definition 2.12 (The type assignment system TAP)
TAP (second-order polymorphic type assignment) is a natural deduction system.
Its formulas are the type assignment formulas

M : a,

where M is a second-order polymorphic term (Definition 2.8) and a is a second-
order polymorphic type scheme (Definition 2.7). TAP has axioms which assign
types to atomic constants if there are any; otherwise it has no axioms. Its rules are

40

as follows:

(-*e) M:a-*13 N:a

MN :,8

(- i) [X: a] Condition: x is a term

M :# variable which is not
free in any undischarged

Aa:a. M : a -* 3 assumption.

(Ve) M: (Va)a Condition: P is a type

MP : [P/aa scheme.

(Yi) M : a Condition: a is a type
variable which is not

Aa.M : (Va)a free in any undischarged

assumption.

(-) M :'0 Condition: N is ob-

N:# tained from
M by changes of bound
variables.

(-) M : 1 Condition:
y is obtained from13 bychanges of bound vari-

ables and M :,0 is not
the conclusion of a rule.

Notes

1. Rules (-) and (-) have not been postulated in the literature; however, it
is standard to ignore changes of bound variables and the rules seem necessary
to formalize this practice. Note that while rule (-) is restricted the way rule
(=a) is in TA (Definition 2.1), rule (-) is not. In fact, if the latter rule were
so restricted, it would be impossible to deduce statements of the form Aa.M:

41

(Vb)/3 unless a and b were the same or there were an assumption of this form.

2. As we saw above we now have functions which take types for arguments, which
are not part of the type structures defined in Section 2.1, so these type struc-
tures are not models for TAP. In fact, Reynolds (Rey84] has shown that there
are no models for TAP in which the types are interpreted as sets as in type
structures. There are models of TAP in terms of category theory, but many
people who do not know category theory do not find such models helpful. For
computer scientists, it is probably best to think of the terms of TAP as having
only computational meaning.

3. Some writers use a different notation: M{a} instead of Ma and Aa.M for
Aa.M. The notation used here does not hide any important distinctions which
are not clear from the context and is somewhat cleaner than the alternative.

Example 2.6 The informal discussion before Definition 2.7 corresponds to the fol-
lowing formal deduction in TAP:

[z :a]

x:)(: a - a

Aa. Ax::a .x: (Va)(a-*a)

(Aa . Ax:a .z)4603-+6 (Ve)

Note that the term in the conclusion reduces to Ax:0 . z.

For the further theory of TAP, including the normalization theorem, see Fortune
et al. [FLO83] and Mitchell [Mit86]. For a proof of the Church-Rlosser theorem for
the reduction defined in Definition 10, see van Daalen [Daa8O], § 11.6.

42

2.4 The power of second order quantification

It might appear that the next order of business is to add the type forming operators
x and + and to arrange to add the new atomic type N. However, these additions
turn out to be unnecessary; for all of these can be defined, as can their associated
functions.

Definition 2.13 (Cartesian product type) Let a and P be any two type
schemes in TAP, and let a be a type variable which does not occur free in a or
P. Then the product type scheme a x P and its associated pairing and projection
operators are defined as follows:
(a) a x P - (va)((a -- (,8 "- a)) -- a);
(b) D,,,.a Ax:a . A,-8. . Aa . Ar.a -+ (80 -- a) . zxy;

(c) fsto,. A :a x 8 . za(Au:a . Av:8l. u); and
(d) snd,# - Ax:a x 8 . (u:a. At8# . v).

It is not at all difficult to prove that from these definitions we have

DaP : a -+ (P --I a x A)

fsta4, a x /-.a,
and

snd.,3 : a X 8 : 8-

Furthermore, we can easily see that

fst.,#(DapMN) -. M

and
sndaa (D.aMN) =. N.

Definition 2.14 (Disjoint union type) Let a and a be any two type schemes in
TAP, and let a be a type variable which does not occur free in a or P. Then the
disjoint union type scheme a + P and its associated injection and case operators are
defined as follows:
(a) a + 0 m- (V a)(Ca -+ a) a C8 ") --+ a));
(b) inlp a Axz:a Aa . Af:a - a. Ag:8 P a . fx;

(c) inra. m Ai./ . Aa . Afra - a . Ag:8 -- a . gy;
(d) casea,# - Az.a + /3. Aa . Af:a --o a . Ag:8l -- a . zafg.

43

It is easy to show that these definitions imply

inl0 6 : a --* a + 0,

inr.,# : a - +13,

and

case,,# a + 13 --+ (Va)((a -+ a) -(13 a) --* a)).

Furthermore, it is easy to show that if -/ is any type scheme and if M, N, F, and
G are any terms assigned types a, 13, a -- , and - -7 respectively, then

casea,#(in1IjM)FG =. FM

and
case, 9 (inrj,.N)yFG =. GN.

It turns out that we can also define the type void:

Definition 2.15 (Void type) void (Va)a.

Then if M : void, and if a is any type, then Ma : a. It follows that if M is

any dosed term such that M : void, and if 0 is any type constant, then MO is a
dosed term assigned type 0 . This together with the normalization theorem prove
the following result:

Theorem 2.4 There is no closed term M such that

-TAP M : void.

We can also define the natural number type N:

Definition 2.16 (Natural number type) (a) N - (Va)((a -+ a) -+ (a - a));

(b) 0 Aa . Az:a -- a . Asr.a . y;

(c) r Au:N . a . Az:a -+ a. Ay:a . x(uaxy);

(d) r Au:N. sndN,N(u(N x N) Q(DN,NOO)),
where Q - Av : N x N . DN,N(Oa(fStN,N1V))(fStN,NV); and

(e) R - a.az: . A: .- a-a. Az:N. z(N -- a)P(At : N .z)z,
where P M Av : N -+ a . Aw : N . y(rw)(v(irw)). The term n, which represents the

natural number n, is defined to be

44

where there are n occurrences of c.
It is not hard to show that

o: N,

a : -- N,

i": N-- N,

and
R : (Va)(a.-+ (N -+ a - a) -- N -+ a).

It is also easy to show that

n =. Aa .A:a --+ a. Ay:a. z(x(...(zy)...)),

where there are n occurrences of z after the last abstraction,

WO =. 0,

w(on) =. n,

and also, for any type scheme a and any terms M and N of types a and N -- a -- a
respectively,

RaMNO =. M,

and
RaMN(on) =. Nn(RaMNn).

Finally, we can define an existential quantifier over all types to go along with our
universal quantifier.

Definition 2.17 (Existential quantifier over all types) Let f3 be any type
scheme, and let a be a type variable, which may occur free in/ . Then the ez-
istential quantifier over all types and its associated operators are defined as follows:

(a) (3a)P = (Vb)((Va)(P -+ b) -* b),
(b) single0 =f Ac. A :[c/a]/3. Ab. Az:(Va)(/P --+ b). zcz,
(c) project0 = Az:(3a)/ . Ab. Az:.(Va)(3 --o b) . zbz.

It is easy to show that

singlep : (Vc)([c/a]/3 -+ (3a)a)

45

and

project : (3a)8 -+ (Vb)((Va)(3 -+ b) -- b).

It is also easy to show that if a and y are type schemes in which a does not occur
free and if M and F are terms assigned types [a/al and (Va)(3 --+,7) respectively,
then

projectp(singlepaM)tF =. FaM.

Thus, we can think of singlep as a kind of singleton, or one-tuple, in which the object
has type [a/a]p, and project# is as dose as we can come to a projection function.
Note that the type for single, tells us that if M is a term of type [a/a]3, then
singlepaM is in type (3a)3, and the type for projectp tells us that if M is a term
of type (3a)3, 7 is any type scheme in which a does not occur free, and F is any
term of type (Va)(P -- 7), then projectpM-tF is in type -y; this gives us one of the
important properties of existence in logic, as we shall see in Section 3.5.

It might appear that we can obtain a true projection function by forming
projectONTF where FaM =. M. But this fails to work, for in this case F must be
the term

Aa. Ax:[a/aj.,

which has type (Va)([a/a]fl -.- [a/a]l), which means that a must be a and 7 must
be [a/a], which is just P itself; thus, a occurs free in both a and y, which violates
the conditions for the type of projectp given above.
Note Most of the terms defined in this subsection which have type schemes as
parameters can be defined as terms representing functions applied to these type
schemes. For example, if we define

D Aa. Abb. D,b,

then for any type schemes a and P,

Da =. Da,j.

This idea also works for fst, snd, inl, inr, case and R. It fails to work for singlep and
project# because of the type vaziable which occurs free in O (in the interesting cases)
and which is bound in the definitions. Furthermore, since we do not have in TAP
any machinery for representing functions whose values are types, we cannot do a
similar thing for a x or a +.

46

2.5 Generalized type assignment

Although the two term-forming operators -- and V may appear to be entirely dis-
tinct, they can be made special instances of a more general type forming operator.
This more general operator is central to the theory of constructions.

This more general operator is obtained by extending the meaning of "type" in
TA by defining (Vz : a)/# to be a type whenever a and # are types and x does not
occur free in a. Here, z may occur free in P. Thus, the notion of type used here
is much more general than the notion of type in TA. But let us ignore this for the
moment and look at the elimination and introduction rules for these types, which
are as follows:

(Va e) M : (Vx: a)# N:a

MN :[N/x]#,

(Va i) [x : a] Condition: X

M : 0 does not occur free in a
or in any undischarged

Az:a. M : (Vz : a)13. assumption.

If z does not occur free in 0, then (Vz : a)# behaves just like a --. P3, and the above
rules become (-- e) and (--+ i). Hence, if (Vx a)#3 is a type whenever a and 8 are
types, then a -P / can be defined to be (Vz a)/# for a variable z which does not
occur free in either a or P.

Systems like this are called systems of generalized type assignment, and axe
covered in Hindley & Seldin [HS86] Chapter 16 and in the references given there.
Note that the notation is different there, since what we are denoting by (Vx : a)p
is there denoted by Ga(A\x.8), and what is there denoted by Gap is here denoted
by (Vx : a)(3x).

As we noted above, the definition of type needed for this sort of system is much
more complicated than that used in TA. In TA it is sufficient to define types, and
except for type variables there axe nio variables which occur in types. But here, in
order to have a system which is really more interesting than TA, it is necessary to
have types in which term variables occur. This means, in effect, that we need not
only types, but also functions whose values are types. Hence, any formalism for
generalized type assignment must include terms representing such functions.

Systems of generalized type assignment can be classified by the kinds of func-
tions they have whose values axe types, and in particular by what kinds of domains

47

such functions can have. The simplest assumption to make about such functions is
that the domains are all universal; i.e., if a is any type function of n arguments and
M is any term whatsoevr, then aM is a type function of n - 1 arguments (where,
of course, n > 1). A system of this sort is called basic generalized type assignment,
and we shall look at such syst-ems in Section 2.7. The only alternative is to allow
functions whose values are types over restricted domains. One possibility, for ex-
ample, is to allow functions whose values are types when the arguments are natural
numbers, but not necessarily otherwise. Including functions of this kind compli-
cates the definition of the systems: either the definition of type and type function
must list each restricted domain used, or else the machinery of type assignment
itself must be used to define the functions involved. We shall see more about this
in Section 2.8.

48

2.6 The need for conversion rules

Before we proceed, we need to consider the question of conversion. In TA, we have
the subject-reduction theorem (Theorem 2.1), which says that type assignment is
invariant of reduction. As we shall see below, a similar result holds for generalized
type assignment. For this reason, we have not paid attention to conversions among
terms to which types are assigned. Furthermore, in TA, the structure of the types
is so simple that the question of conversions between types just does not come up.
But in generalized type assignment, the structure of types is more complicated, and
so interesting conversions arise.

The best example of this can be seen in terms of the system TAGU of Section 2.8
below (Definition 2.24). Suppose one of the types is U of that system, and suppose
we internalize the definition of --. (which we discussed in Section 5) as follows (using
Curry's notation):

F = Au:U. , v:U .(V: u)v.

It is not hard to show that F has type (Vu : U)(Vv: U)U. Now suppose we have, for
a: U and#: U,

M : Fa/P

and

We would like to be able to conclude

MN : P.

However, to do this with our rules requires

M : (VX : a)#,

whereas all we have is

M : (,\u:U. ,.U . (Vx : u)v)a3.

It is true that this latter type converts to (VY : a)P, but with the rules we have so
far this is no help.

To solve this problem, we introduce the following rule:

(Efq") M:a a

M

49

(On the reason for the name of this rule, see Hindley & Seldin [HS86] Section
14E.)

This rule is often written as follows:

M:a
(Eq")

It is easy to reconstruct the right premise.
It might appear that the introduction of this rule significantly complicates the

nature of deductions and raises problems with the subject-construction theorem.
But in fact it is possible to limit the places in which this rule is used:

Theorem 2.5 In a system of generalized type assignment in which the rules are
(Va e), (Va i), (=') and (Eq"), (and in which there may be azioms), any deduction
can be transformed into another deduction with the same undiseharged assumption
and conclusion in which each inference by rule (Eq")occurs either just above the
major (left) premise for an inference by rule (Va e) or else just above the conclusion.

Proof This follows from the fact that the following transformations can be carried
out systematically throughout any deduction:
I.

1

Ixa]

M:f
(Eq")

Az:a. M :(Vz : a)-y

to

1

Ixa]

M:f

Ax:a. M :(Vz:a) (i

Ax:a. M : (Vz : a)-

50

M: (Vx:,O)y N:f3 (E"

MN: [N/z]-t (Va e)

to

M :(VZ :/3)7 (Eq2

M: (Vx: a)y (E)N:a

MN: [Nlx]7y (V e)

P,(Eq")

M:f3

to

M:a

N:a

Np (Eq")

.51

2.7 Basic generalized type assignment

As we noted in Section 2.5, the simplest form of generalized type assignment assumes
that any term can be any argument of any type-valued function. The system based
on this assumption is called basic generalized type assignment, abbreviated TAG.

The first step in defining this system is to define the terms and the types. In
this case, the types will all be terms, so we begin with the terms. Because type
functions will take any terms as arguments, it turns out to be convenient not to
carry along in the notation the type of each bound variable.

Definition 2.18 (TAG terms) The terms of TAG are defined from countably
many term variables z, X2, ... , X,, ... , and some term constants, including a
finite or infinite sequence of constants 01,02, ... , as follows:

(a) every term variable and term constant is a term;

(b) if M and N are terms, then so is (MN); and

(c) if z is a term variable and A and M are terms, then (Aa.M) and (Vx : A)M are
terms.

With each constant 0 is associated a non-negative integer dg(0i) called its degree.
The constants Oi are called type constants.

Reduction for TAG terms will be defined as in Definition 1.6; The only possible
contraction,; in a term of the form (Vz : A)M will be those which take place entirely
inside A and M.

Now we can define, the types and type functions. Each type function will have
a rank (the number of occurrences of V) and a degree2. The types will be the type
functions of degree 0.

Definition 2.19 (Atomic type function) A term a is said to be an atomic type
function of degree n if and only if

a - OMM 2... Mk,

where 0 is a type constant of degree k + n and Mx, M2 , ... , Mk are any terms.

Definition 2.20 (Proper TAG type functions) The term a is a proper TAG
type function of rank m and degree n if and only if one of the following conditions

2The number of arguments needed to produce a type. The degree of a type constant is a special
case of the degree of an atomic type function, which, in turn, is a special case of the degree of a
type function.

52

is met:
(a) a is an atomic type function of degree n and m = 0;

(b) a Ax:./3, where /3 is a proper TAG type function of rank m and degree n - 1
(and where, of course, n > 0);
(c) a - (Vz :/3), where /3 and y are proper TAG type functions of degree 0, n -

0, and m = 1 + rank(/3) + rank(7).

Definition 2.21 (TAG type functions) The term a is a TAG type function of
rank m and degree n if and only if there is a proper TAG type function /3 of rank
m and degree n such that a/3. A TAG type is a TAG type function of degree 0.

Theorem 2.6 The degree and rank of a TAG type function are unique. arther-
more, TAG type functions have the following properties:

T1. If a is a TAG type function of rank m and degree n and if/3 is any term such
that a =. /3, then /3 is a TAG type function of rank m and degree n;

T2. If a is a TAG type function of rank m and degree n, then Az.a is a TAG type
function of rank m and degree n + 1, and conversely;

T3. If a is a TAG type function of rank m and degree n + 1 and if M is any term,
then aM is a TAG type function of rank m and degree n; and

T4. (Vz : a)/3 is a TAG type function of rank m and degree 0 if and only if a and/3
are TAG type functions of ranks j and k respectively and degree 0 and m = 1+ j + k.

Proof See Hindley & Seldin [HS86] Theorem 16.27 and Remark 16.28. U

Definition 2.22 (The type assignment system TAG) The system TAG is a
natural deduction system. Its formulas have the form

M:a,

where M is a term and a is a TAG type. TAG has no axioms. Its rules are (Va e),
(Va i), (Eq") and (-').

Remark It might seem unnecessary to postulate rule (Eqe) here, since the argument
of Section 2.6 does not apply to this system. But it is traditional to postulate
it, especially since in the earliest versions (Vz : a)/3 was only an abbreviation for
Ga(Axz.), and rule (Va e) had to be obtained from the following rule:

M: Ga/3 N : a

MN :3N.

53

To obtain our rule (Va e) from this rule requires rule (Eq"); indeed, to use the
elimination rule given here in a nontrivial way requires rule (Eq"). See Hindley &
Seldin [HS861 Section 16D2.

The theory of TAG is similar to the theory of TA (Section 2.1). There are some
complications, but for the case we are considering here they are not serious. For
example, rules (Eq") and (-) complicate the subject-construction property, but
a version of the property holds (see Hindley & Seldin [HS86] Remark 16.37). The
replacement lemma (Lemma 2.1) needs some modification, but a version of it can
be proved that will work with the subject-reduction theorem (Theorem 2.1), which
holds for #-reduction. (Hindley & Seldin [HS86] Lemma 16.39 and Theorem 16.41).
The normalization theorem for deductions (Theorem 2.2) also holds (Hindley &
Seldin [HS86] Theorem 16.45).

In fact, TAG is not much stronger than TA. It can be shown that if a term
is assigned a type by TAG, then it is assigned a type by TA, although TAG may
assign more general types. (See Hindley & Seldin [HS86] Theorem 16.61.) And if
all of the type constants have degree 0, then TAG is equivalent to TA (Hindley &
Seldin [HS86] Corollary 16.61.1). These facts may appear to show that TAG is too
weak to be interesting. Perhaps it is better to take them as showing that TAG is a
kind of conservative extension of TA, and thus that the basic formalism on which
TAG is based is sound. This can give us some confidence in extending TAG, as we
now proceed to do in the next section.

54

2.8 Extended generalized type assignment

As we noted at the end of Section 2.1, there are two ways to generalize TAG: one is
to modify the definition of type to allow certain special types (such as the type N of
natural numbers) to serve as restricted domains for type functions, and the other is
to use the machinery of type assignment itself to define the types. Since the second
approach is obviously more general, we shall adopt it here.

Thus, we now suppose that that there is a type of types, or a "universal" type,
which for now we shall call U. All the types in which we are interested will be in
U. The system we shall define here will be called "TAGU". The reasons we had for
not supplying the type of a bound variable no longer apply, so we shall return to
the more familiar notation.

Definition 2.23 (TAGU terms) The terms of TAGU are defined from countably
many term variables xi, Z2, ... , z, , ... , and some term constants, which include
U, as follows:
(a) every term variable and term constant is a term;
(b) if M and N are terms, then so is (MN); and

(c) if z is a term variable and A and M are terms, then (A\ : A.M) and (Vx : A)M
are terms.

Reduction for TAGU terms will be defined using the #3-redexes of Definition
2.11. The only possible contractions in a term of the form (Vz : A)M are those
which take place-entirely inside A and M.
Definition 2.24 (The type assignment system TAGU) The system TAGU is

a natural deduction system. Its formulas have the form

M:A

where M and A are terms. It has no axioms. Its rules are (Eq"), (), and the
following:

55

Rules of type formation:

(V Formation) [x : A] Condition: z does not

A:U B:U occur free in A or in
any undischarged as-

(V : A)B: U sumption.

(Eq'U) A: U A =. B

B:U

Rules of type assignment:

(Ve) M:(Vx:A)B N:A

MN :[N/]B

(VUi) [z : A] Condition: x

M: B A: U does not occur free in A
or in any undischarged

Ax:A. M : (Vz : A)B assumption.

Rule (Eq'U) is a natural rule to go with rule (Eq"). We can extend the proof of
Theorem 2.5 to virtually eliminate it from any deduction.

Theorem 2.7 Every deduction in TAGU can be transformed into a deduction with
the same undischarged assumptions and conclusion in which each inference by either
of rules (Eq") and (Eq'U) occurs just above the major (left) premise for an inference
by rule (Eq'U) (in which case it is an inference by rule (Eq")) or just above the minor
(right) premise for an inference by rule (VUi) (in which case it is an inference by
rule (Eq'U)) or just above the conclusion.3

Proof Note that each rule which discharges an assumption of the form z : A has
a premise of the form A: U which does not depend on the discharged assumption.
Let us call the deduction of this latter premise the independent subdeduction of the

3Note that it is possible to have an inference by rule (Eq'U) followed immediately by an inference
by rule (Eq"), the conclusion of which is the conclusion of the deduction. In this case, the inference
by rule (EqU) will be regarded as occurring just above the conclusion.

56

rule and the deduction of the other premise the dependent subdeduction. The proof
is obtained by transformations which move an inference by one of the equality rules
from an independent subdeduction of a rule to the dependent subdeduction of the
same rule or else to below the conclusion, from a dependent subdeduction to below
the conclusion, from just above a minor premise of (V e) to just above the major
premise, or from just above an inference by (-') to below the conclusion. If an
inference by rule (Eq") occurs just above an inference by rule (Eq'U), then the
transformations moving the latter inference are applied before an attempt is made
to move the former (since dearly, an inference by rule (Eqe) occurring just above
an inference by rule (EqtU) cannot be moved below it without invalidating it). The
last two kinds of transformations are H and M of Theorem 2.5; in addition, we now
need the following transformations:

IV.
1

l[= : A]

C:U (EqU)

A:U B: U
(V Formation - 1)

(Vz : A)B : U

V3

57

to
1

x:A*z CJ (Eq"

C:U B:U
(V Formation - 1)

(Vx: C)B: U (EqU)

(Vz A)B: U

V3

V.
1

V2(z)
D1 C:U (Eq'U)

A:U B:U
(V Formation - 1)

(Vz: A)B: U

V3

to
1

(z:A]

"P 'P2(Z)

A:U C:.U
(V Formation - 1)

(Vz :A) :U (U'U

(Vz: A)B: U

p 3

58

VI.
1

[T:A]

M:C V2(Eq")
M: B A:U

(VU i - 1)
Az:A. M: (Vz: A)B

)3

to
1

[.:A]
D~l() V)2

M:C A:U

A,:A. M: (Vz: A)C (VUi-1)
(Eq")

Az:A. M: (Vz: A)B

V)3

If we try to remove an inference by rule (Eq'U) just above the right premise of

(VUi) the best we can do is the transformation which takes

1

[=:A] V2

-1 C:U-~(]Eq'U)

M:B A:U

(VU i- 1)

Az:A . M : (Vz : A)B

V3

59

to

[z:C]
(Eq")

x:A

V1 V2

M:B C:U
(VU i- 1)

A::C. M: (Vz: C)B (Eq")

Az:C. M: (Vx: A)B

V3

Note that this transformation changes the type of the bound variable in the term
to the left of the colon, and therefore cannot be used with this theorem.

This system is a part of the type theory of Martin-Lf, and is, in fact, one of the
most important parts; see the references listed under his name. At the same time,
the system has some weaknesses. For example, it is weaker than TAP: the condition
A : U in rule (VUi)prevents inferences corresponding to those by rule (Vi)in TAP
because U : U does not hold.4 There are several ways one might extend this system.
One might follow Martin-Ldf himself by introducing more universes. Thus, the type
U would become U0, and a new sequence of types U1, U2 , ... , U,, ... (finitely or
infinitely many) would be introduced with axioms such as U,, : U,,+l and rules such
as the following:

A:U

A : U,,+,

Then in rules (V Formation) and (VUi), U may be replaced by any U.. But this
system is still weaker than TAP.

Another way to extend TAGU is to add two more rules: the formation rule

[X: U] Condition: z does not

A:U occur free in any undis-
charged assumption.

(Vz : U)A: U

4In fact, adding U U to TAGU makes the system inconsistent; see (Coq86a.

60

and the type assignment rule

[x : U] Condition: z does not
M: A occur free in any undis-charged assumption.

Ax:U . M : (Vz U)A.

This system is called TAGL in Hindley 8z Seldin [HS86] §16E, since there U is
called L. Furthermore, TAP can be interpreted in this system. Nevertheless, the
system is still not as strong as one might want, since one might wonder why not
allow z : U --+ U as the discharged assumption.

In Chapter 4, we shall consider the theory of constructions, introduced by Co-
quand [Coq85]. This turns out to be the best available system of this kind. (See
Chapter 4 for further references.)

61

Chapter 3

CONSTRUCTIVE LOGIC

A reader who has read this far is now in a position to understand the basic rules
and the metatheory of the theory of constructions. However, there is an important
aspect of the theory of constructions that we have not discussed; it has to do not with
the underlying rules but rather with its intended interpretation. This interpretation
is an important part of the motivation Coquand had in creating the system. Some
readers might find it useful to consider this interpretation before proceeding to the
theory of constructions itself. For this reason, the theory of constructions will be
postponed to Chapter 4, and in this chapter we will consider that interpretation.

The interpretation is what is usually known as the Curry-Howard isomorphism,
or formulas-as-types idea. The essence of it is that in systems of type assignment,
types can be thought of as formulas and terms as proofs or deductions. We will
consider this here for constructive logic, and it is with this that we will begin (in the
latter part of this introduction). In Section 3.1, we take up a simple fragment of the
propositional calculus for constructive logic in which the only logical connective is
D (if-then). In Section 3.2, we explain the essentials of the formulas-as-types idea.
For some readers, this may be enough, and these readers are invited to proceed to
Chapter 4 after completing Section 3.2.

For readers who want more, we consider in Sections 3.3-3.4 the extension of these
ideas to propositional calculus with the additional connectives A (and), V (or), and
-, (not). Again, many readers may wish to proceed to Chapter 4 after completing
Section 3.4.

But for those who want still more, we consider in Sections 3.5-3.6 the extension
of these ideas to predicate logic, both first order logic (Section 3.5) and higher
order logic1 (Section 3.6). The systems TAJ and TAT presented in these sections

'Le., simple type theory.

62

will seem strange to some people, and they are not strictly necessary for using the
theory of constructions, but they do give some useful information about much of its
motivation and intended interpretation.

Let us now turn our attention to constructive logic. Most people who have heard
of constructive logic understand that it has something to do with existence proofs.
But in fact, the difference between classical and constructive logic involves more
than that. In classical logic we are only interested in whether or not a proposition
is true. In constructive logic we are interested in whether or not a proposition has a
proof, and we do not want to assert its provability without having access to a proof.

This difference can be illustrated with formulas involving implication. A formula
A D B is classically false when A is true and B is false; it is true for all other
combinations of truth values for A and B. Note that its truth value depends only
on the truth values of A and B; how these truth values are established is classically
irrelevant.

In constructive logic, implication is not truth functional; the truth of A D B
depends on much more than the truth values of A and B. In fact, instead of
specifying when A D B is true, we need to specify what it means to have a proof of
A D B. The standard constructive specification is as follows: a proof of A D B is a
function [program] which, given any proof of A as an argument [input], produces a
proof of B as a value [output].

Truth in classical logic (at least propositional logic) can be defined by means of
truth tables. In constructive logic, however, we really need to introduce a kind of
calculus of proofs.

63

3.1 The D-calculus

One way of defining a system of formal logic that seems especially suited to construc-
tive logic is to use a natural deduction system of the kind introduced by Jaikowski
(Jas34] and Gentzen [Gen34] and studied extensively by Prawitz [Pra65] . We have
seen the method of writing rules used by Gentzen and Prawitz in Section 2.1, but we
have not really discussed natural deduction systems as such. In a natural deduction
system, each logical constant is characterized by two rules, one for introducing it
and one for eliminating it. In the case of implication, these two rules are as follows:

(De) ADB A (Di) [A]

B B

ADB

Rule (D e) is also known as modus ponens, and rule (D i) is sometimes called the
deduction theorem.

A formal calculus of propositional logic for the constructive theory of D can be
defined as follows:

Definition 3.1 (D-formulas) Assume that there axe (finitely or countably many)
atomic formulas El, E2, ... , En, Then D-formulas, or formulas are defined
as follows:

(a) Every atomic formula is a formula;

(b) If A and B axe formulas, then so is (A D B). Unnecessary parentheses will be
omitted. Furthermore,

Al D A 2 ...An D B

will be regarded as an abbreviation for

A , C) A2 D (. .A n D B) ...))

Definition 3.2 (The formal calculus NA(D)) The formal calculus NA(D) 2is a
natural deduction system. Its formulas are D-formulas. It has no axioms; its rules
are (D e) and (D i) given above.

Here are some examples of deductions in NA(D), given in table form:
2 The name NA()) means the implication fragment of NA. Here the "N' stands for "natural

deduction', while "A* stands for "absolute', a term used by Curry (Cur63] to stand for constructive
logic without negation. (Curry, who was using 'N' for negation, called the system TA, but here
this would be confused with 'type assignment'. The letter 'N' was'used in this way by Gentzen
(Gen34].)

64

Example 3.1 I-NA(D) A D A

Proof.

1. A Hyp 1

2. ADA 1 (De)

Example 3.2 'NA(D) A D B D A

Proof.

1. A Hyp 1

2. BDA 1 (Di) 1

3. ADBDA 2 (Di)

Example 3.3 -NA(D) (A D B D C) D (A D B) D A D C

Proof.

1. ADBDC Hyp 1

2. ADB Hyp 2

3. A Hyp 3

4. BDC 1,3 (De) 1,3

5. B 2,3 (De) 2,3

6. C 4,5 (De) 1,2,3

7. ADC 6 (Di) 1,2

8. (AD B)DADC 7 (Di) 1

9. (ADBDC) D(ADB)DADC 8 (Di)

Example 3.4 AD B, B D C NA() A D C

Proof.

1. ADB Hyp 1

2. BDC Hyp 2

3. A Hyp 3

4. B 1,3 (De) 1,3

5. C 2,4 (De) 1,2,3

6. ADC 5 (Di) 1,2

65

In tree form, the examples are as follows:
Example 3.1'

1

[A]
(Di-1)

ADA

Example 3.2'

[A]
(Di-v)

BDA

ADBDA (Di1)

Example 3.3'

1 3 2 3

[A D B D C] [A] [A D B] [A]

B jC (De) (De)

C(
e)

ADC (D i-3)
-(D i-2)

(ADB)DADC (D(Di-1)

(A DB D C) D (A D B) D A DC

Example 3.4'

Hyp 1

Hyp ADB [A]

BDC B (De)

C
(De)

ADC
(D

66

3.2 Formulas-as-types

If Definition 3.1 is compared with the remarks immediately before Definition 1.3
(in Section 1.2), it will be observed that the D-formulas are isomorphic to the
type symbols used in defining the basic typed A-terms; each atomic formula Ej
corresponds to an atomic type 8i, and if A and B correspond to a and/8 respectively,
then A D B corresponds to a --+ 13. If Definition 3.2 is compared with Definition 2.3,
it should be clear that deductions in NA(D) are isomorphic to deductions in TA. Now
by the subject-construction theorem, the terms in deductions in TA are isomorphic
to the deductions. Hence, we can think of TA as a calculus of deductions of NA(D),
where the types represent the formulas and the terms represent the deductions. If we
make use of Definition 2.3, we can use basic typed A -terms to represent deductions
in NA(D).

This correspondence between typed A-calculus and propositional logic was first
noticed by Curry in [CF58] Section 9E, and was later extended independently by
a number of people, including W. A. Howard [How80]. (For more references, see
Hindley & Seldin [HS86] Discussion 14.46.) The correspondence is usually called
formulas-as-types isomorphism or the Curry-Howard isomorphism.

As we noted after Definition 2.3, a 1-reduction step for deductions in TA is
similar to the D-reduction step of Prawitz [Pra65]. In fact, under the formulas-as-
types isomorphism, the two types of reduction steps correspond exactly, the proof of
Theorem 2.2 (i.e., the proof of Theorem 1.2) together with the isomorphism proves
Prawitz's result for NA(D), namely that every deduction can be reduced to a normal
form. Here, a normal form means that nowhere in the deduction is the conclusion
of an inference by (D i) the major (left) premise for an inference by (D e).

This isomorphism can also be used to show that certain formulas are not provable
in NA(D). Let us consider as an example the formula known as Peirce's law.

((A DB) D A) DA.

It is not hard to see that this formula is classically true, for it is only necessary to
consider what assignment of truth values could make it false. This would require an
assignment that makes A false and (A D B) D A true. Now if A is false and (A D B)
D A is true, then A D B must also be false, but this is impossible if A is false. Thus,
Perice's law is always assigned the value true by a truth table. Nevertheless, it is
not constructively valid.

Theorem 3.1 The formula scheme ((A D B) D A) D A is not provable in NA(D).

Proof If this formula were provable, it would be the conclusion of a normal de-
duction in which every assumption is discharged. By the formulas-as-types isomor-

67

phism, it would follow that for any two types a and 3, there is a dosed term M in
normal form such that

FTA M: ((t -0 O-+ a- .

It follows that M : ((a -- / 8) -' a) -- a is the conclusion of a deduction V in
normal form. By the subject-construction theorem, M must have the form Xx.N
for some term N for which FV(N) C {z, and VD must have the form

[N : (a -+ /) -* a]
~1)

N:a
(-4i-1)

Ax.N: ((a -+ P3) --+ a) -+ a.

Since it is sufficient to prove that there exist types a and for which this is im-
possible, there is no loss of generality in assuming that a is atomic, and thus that
there is no inference by (-. i) in the left branch of V1. Since the only undischarged
assumption in 1 is x : (a -+ /P) --+ a, it follows that this assumption occurs at the
top of the left branch of V1. Hence, 1 has the following form, where N is zP:

x (a -+ /3) --* a
V)2

x : (a P: a -9/3
(-fe)

xP:a

Note that FV(P) C {x. Now consider the structure of 1)2: if the left branch
had no inference by (--+ i), then the left branch would begin with the assumption
x : (a --+) -+ a and would end with P : a -8, which is impossible since a is
assumed to be atomic. It follows that D2 has the following form, where P is Ay.Q:

2

x :(a-+)-+a, [Y:a]

1)3

Q:#3
(.- i- 2)

>I.Q : a -+ /

68

Hence, V3 is a normal deduction of

z:(C-t, Y a I-TA Q:0,

where FV(Q) C {z, y}. Since we can assume without loss of generality that / as
well as a is atomic, this is dearly impossible. U

Corollary 3.1.1 If A and B are atomic formulas, then

VNA(:)) ((A D B) D A) D A.

69

3.3 Adding AV, and I (for -')

Let us now turn to the full propositional calculus. In addition to D (implication),
we need A (and), V (or), and -, (not). In constructive logic, -, is usually defined in
terms of .I. (absurdity), and we shall follow this practice here.

Definition 3.3 (Propositional formulas) Assume that, as in Definition 3.1, we
have finitely or countably many given atomic formulas E1 ,..., E,,. Propositional
formulas axe then defined as follows:
(a) a given atomic formula Ej is an (atomic) formula;
(b) I is an (atomic) formula; and
(c) if A and B axe formulas, then so are (A D B), (A A B), and (A V B).

Notation Unnecessary parentheses will be omitted. The infixes A and V will have
smaller scope than D. The abbreviation

nA

will be used for
A D..

The elimination and introduction rules postulated for A and V axe as follows:

(Ae) AAB AAB

A, B

(Ai) A B

AAB

(Ve) [A] [B]

AVB C C

(Vi) A B

AVB, AVB

Of these rules, (Ve) will probably look least familiar. It is easy to understand if we
think of proof by cases: if case A or case B holds, and if C can be proved in each
case, then C must be provable.

70

The elimination and introduction rules for negation, which are derived from

those for implication, are as follows:

(-ie) -iA A (-,i) [A]

± J.

-,A

There is one additional rule used with negation: it is as follows:

(-j) I

A

It expresses the fact that anything follows from a contradiction, a fact accepted by
most constructivists. (For those constructivists who do not accept this principle,
there is the minimal calculus, which is the system NJ without this rule. We will not
bother with the minimal calculus here.)

This leads us to the following definition:

Definition 3.4 (The formal calculus NJ) The formal calculus NJ is a natural
deduction system. Its formulas are the propositional formulas of Definition 3.3. It
has no axioms. Its rules are (D e), (D i), (Ae), (Ai), (Ve), (Vi), and (..L j).

Remark Many people may be surprised that rule (-,i) is constructively valid, since
it is often said that constructivists object to proof by contradiction. In fact, the
form of proof by contradiction to which constructivists object is not (-1i), but rather
the following rule:

(.I d) [-IA]

I

A

This rule is not valid in NJ; in fact, if it is added to NJ, the result is classical logic.

It turns out that it is possible to modify Definition 3.4 somewhat:

71

Lemma 3.1 If rule (I j) is postulated in the form

I

E,

where E is one of the given atomic formulas, then the rule holds in its full generality
as a derived rule.

Proof Since the case of the rule in which A is I is trivial, it is sufficient to prove the
rule for compound formulas A on the assumption that it holds for shorter formulas.
The three cases (note that - is taken care of by the case for D) are taken care of
by the following three deductions:

)
- (.I)

B
AD (i- v)ADB

- (.I j) - (Ij)
A B (Ail

AAB

- (ij)
A

AvB
(Vi)

72

3.4 Extension of formulas-as-types

In order to extend the formulas-as-types isomorphism of Section 2 to NJ, it is most
natural to compare A, V, and I to x, +, and void. This leads us to consider the
system extended TA of the remark at the end of Section 2.1. But this system does
not correspond exactly to NJ. Instead it corresponds to a system obtained from NJ
by replacing the rules (Ae), (Ai), (ye), and (Vi) by the following axiom schemes:

(1) ADBDAAB;
(2) AAB D A;

(3) AAB D B;

(4) A D AVB;

(5) B D AVB;

and
(6) AVBD(A DC) D(B DC) DC.

It should be clear that, in the presence of the rules (D e) and (D i), these six axiom
schemes are equivalent to the indicated rules.

Note that by Lemma 3.1, rule (.. j) is equivalent to the scheme
(7) ±D E,

where E is an atomic formula distinct from I. This scheme would appear not
to correspond to any term in extended TA, since such a term would have to be
assigned the type void -- 0 for an atomic type 0. If there is some object M in the
type 0, then we can apply (--+ i) with vacuous discharge of the assumption x : void
to obtain the conclusion Ax.M : void --+ 0. But we cannot guarantee that there is
an object M to which 0 is assigned for each atomic type 0; indeed, if there were
such a term for each atomic type, this would correspond to the provability of each
atomic formula. So instead, we will add to extended TA a constant .l for each
atomic type 9 distinct from void, and we will assume the axiom

(I j9) -l: void -+ 0.

Since these constants Is do not occur at the beginning of any redexes, they do
not affect the normalization result. Hence, these axioms cannot be used to produce
dosed terms in any of the 9. Furthermore, by the proof of Lemma 3.1, it should be
dear that for each type a there is a dosed term ie of type void -. a.

It is not difficult to show that Theorem 3.1 and Corollary 3.1.1 apply to NJ. The
normalization theorem for extended TA plus the constants .0 and axioms (.L je)
can be used to prove that NJ is, indeed, different from classical logic in one of its
most important aspects.

72 a

Theorem 3.2 For at least one formula A

NjAV -,A.

Proof Let A be an atomic formula. Let V be a proof (i.e., a deduction with
no undischarged assumptions) whose conclusion is A V -,A. An instance of axiom
scheme (6) is

A v ,A D (A D A) D (-A D A) D A.

Using this, V, Example 3.1, and two inferences by (D e), we get a proof of

(-nA D A) D A,

which is, when abbreviations are removed,

((A D.I.) D A) D A.

Since both A and I are atomic formulas, this is unprovable by Corollary 3.1.1.

3The reduction and normalization procedure used here for NJ, which is based on extended
TA plus (I je), is not the usual normalization procedure for NJ in proof theory. For the usual
procedure, see Prawits [Pra65] Chapter IV.

73

3.5 First order quantifiers

It is standard in logic to proceed from propositional logic to first order logic. In
first order logic, universal and existential quantifiers are present, and are assumed
to operate over one fundamental domain of individuals; it is not possible to quantify
over sets of individuals or functions whose arguments and values are individuals.

To take an example from elementary arithmetic, suppose that the fundamental
domain is the set of natural numbers, and suppose that our language has terms
representing the natural numbers and also addition and multiplication (which, for
now, will be denoted by their usual notation in algebra). Suppose also that formulas
include equations between expressions denoting numbers. Then a formula stating
that z is an even number is

(3y)(x = 2y),

where 2 is the term representing the number 2. A formula stating that x < y is

(3u)(-,u = 0 A y = z + u),

where 0 represents the number 0. (Recall that in the set of natural numbers, there
are no negative numbers, so that if a number is different from 0 it is positive.) A
formula which says that x divides evenly into y is

(3u)(- = 0 A y = xu).

Finally, a formula which says that 0 is an identity for addition is

(Vx)(z = X + 0).

In giving these examples, I assumed that there is a term representing each natural
number. In fact, such terms are easy to construct: begin with an individual constant
0 and a function symbol a with one argument. Then the term n representing the
natural number n is

f(f(...(ao) ...)),

where there are n occurrences of a.
If we analyze the structure of the formulas in these examples, we see that we

have an individual constant 0, individual variables z, y, u, ... , function symbols a
of one argument and + and • (multiplication) of two arguments, a predicate symbol
= of two arguments, the logical connectives of propositional logic, and the universal
and existential quantifiers. This leads us to the following formal definition:

74

Definition 3.5 (First order term and formula) Assume that we have count-
ably many individual variables z, y, z, zi, etc., finitely or countably many individ-
ual constants el, e2,..., finitely or countably many function symbols wz, w2,..., and
finitely or countably many predicate symbols Wp1, Wo2, ... , where each function sym-
bol and predicate symbol has associated with it a natural number called its degree,
which represents its number of arguments. Then terms are defined as follows:

(a) individual constants and individual variables axe terms; and

(b) if w is a function symbol of degree m, and if ta,... ,xtm are terms, then
w(ta,... ,tm) is a term.
First order formulas axe now defined as follows:

(c) if Wp is a predicate symbol of degree m, and if tl,... ,tm are terms, then
p(ti,... , tin) is an atomic formula;

(d) I is an atomic formula;

(e) if A and B are formulas, then so are (A A B), (A V B), and (A D B); and

(f) if A is a formula and z an individual variable, then (Vz)A and (3x)A are formu-
las. Parentheses will be omitted as usual. An occurrence of an individual variable
is said to be bound if it is within the scope of a universal or existential quantifier;
otherwise it is free.

Notes (1) Both function symbols and predicate symbols may have degree 0. A
function symbol of degree 0 is just an individual constant; individual constants axe
listed separately because it is customary to do so. A predicate symbol of degree 0
is an atomic formula. One example of such an atomic formula is I.

(2) Here I is, in effect, taken to be a predicate symbol of degree 0. But this is
not necessary in all first order systems. For example, in first order arithmetic, I is
often defined to be the atomic formula 0 = or0, which is 0 =1. What is important
is that I be an atomic formula.

Definition 3.6 (The formal calculus NJ*) The formal calculus NJ* is a natu-
ral deduction system. Its formulas are the first order formulas of Definition 3.5. It
has no axioms. Its rules are the rules of NJ and, in addition, the following:

(Ve) (Va)A(z) Condition: t is a term.

A(t)

75

(i) A(z) Condition: x does not

(Va)A(z) occur free in any undis-
charged assumption.

(3e) [A(y)] Condition: y

(3z)A(z) C does not occur free in C
or in any undischarged

C assumption.

(3i) A(t) Condition: t is a term.

(3x)A(x)

The condition on the variable z in rule (Vi) guarantees that no assumption is made
about z above the inference. Rule (3e) formalizes the argument: there is an z
such that A(z); let y be a thing such that A(y); conclusion C (where y does not
occur free in C). See the discussion after Definition 2.17. The condition on y is
obviously necessary for this rule. Variables such as z in (Vi) and y in (3e) are called
eigenvariables or characteristic variables.

At first glance it might appear that the natural way to extend the formulas-as-
types isomorphism to NJ* is to use the system TAP. But this will not work. For
in TAP, only types (corresponding to formulas) can be substituted for the (type)
variables, whereas in NJ* we must be able to substitute terms for the quantified
variables. Instead, we will need to take a type to represent the fundamental domain
of quantification, and introduce quantification over that type. We will also need to
modify the definition of type to correspond to Definition 3.5.

Thus, suppose one of the atomic types is J, the type of individuals. For each
atomic constant e, we will want to assume

e:J.

For each function symbol w of degree m, we will want to assume

W. : J ---# J --' ... -.- J,

where there are m + 1 occurrences of J. Then it will follow for each closed term t
that

t:J.

76

Furthermore, if t is a term with free variables x1,... , xn, then it will follow that

X, : J,...,X, : J I-t :J.

Next, we need to generalize the definition of atomic type: for each predicate symbol
(p of degree m, and for any terms tl,...,tn, we need that '(h,...,t,) is a type.
We also assume void is an atomic type, and form as usual types a x/3, a + /3, and
a --* /3. Also, we need that if z is a variable and a is a type, then (Vz : J)a and
(3x : J)a are types.

IL remains to specify the terms in (Vz : J)a and (3z : J)a. For the type (Vx : J)a,
we want a function which, when applied to any object t of type J, produces a value
in [t/z]a. Note that as in TAG the type of this function depends on its argument
and not just on the type of its argument. For (3x : J)a, we want to have pairs
(t, M) such that t has typc J and M has type [t/z]a. These are just the kind of
pairs we were unable to represent in the type structures of Section 1.1. We shall
have more to say about this later.

The above conventions, although stated as in previous definitions, can also be
obtained by using the machinery of TA or TAG. What is necessary is some type
to which the above types belong, such as the type U of Section 2.8. Since the
above types represent propositions, this new type will be called Prop. We have the
following formal definition:

Definition 3.7 (TAJ types) The types of the system TAJ are defined as follows:

(a) J and Prop are (atomic) types; and

(b) if a and /3 are types, then so is (a -- /3). The special types Jn and Prop' for n
> 0 are defined as follows (by induction on n):

Jo =- J, jn+l = j j;

Prop0 = Prop, Propn+i = J --+ Propn .

Definition 3.8 (TAJ terms) The terms of TAJ are defined from countably many
term variables Zl,Z2,...,z,,..., and the term constants el,e 2,..., Wl,2,...,

VIsV2, ... , void, D, Dj, fst, snd, inl, inr, case, projj, and, I_, as follows:
(a) every term variable and term constant is a term;

(b) if M, N, A, and B are terms, so are (MN),(A x B), (A + B), and (A -- B); and

(c) if z is a term variable and A and M are terms, then (Az:A. M), (x:J. M),
(Vz : J)A, and (3x : J)A are terms. With each constant wi and Wi is associated a
natural number dg(wi) or dg((pi), called the degree of the constant in question.

77

Definition 3.9 (Reduction for TAJ terms) Reduction for TAJ terms is defined
by the following table of redexes and contracta:

Redex Contractum

(p) (A z : A.M)N [N/z]M
(fst) fstAB(DABMN) M
(snd) sndAB(DABMN) N
(case,) caseAB(inABM)CFG FM
(case 2) caseAB(inrABM)CFG GM
(proj) projjACZ(DjAMN) ZMN

Definition 3.1.0 (The type assignment system TAJ) The system TAJ is a

natural deduction system. Its formulas are all expressions of the form

M:A,

where M is a term and A is either a term or a type. The azioms are as follows:
(ei) ej: J,
(We) W : jm, n = dg(WO,
(pj) Wi : Propm , m = dg(Wi),
for each i and
(void) void : Prop

The rules of TAJ come in two groups:
Rules of type formation:

(x Formation) A: Prop B : Prop

A x B : Prop

(+ Formation) A: Prop B : Prop

A + B : Prop

(- Formation) A: Prop B : Prop

A -* B : Prop

78

(Vi Formation) [z : J] Condition: x does not
A: Propoccur free in any undis-
A: Propcharged assumption.

(Vx :iJ)A : Prop

(Wiormation) Ix:J] Condition: x does not

A: Prop occur free in any' undis-
____________charged assumption.

(3x J)A : Prop

Rules of type assignment:

(x e)1 M:AxB A:Prop B:Prop

fstA.BM: A

(x e)2 M:AxB A:Prop B:Prop

sndABM: B

(x i) M: A N: B A: Prop B: Prop

DABMN: Ax B

(+ e)

[y: B]

M:A+B \x:A.N:C P:C A:Prop B:Prop C:Prop

caseABMC(Axz:A .N)(A\y:B . P) : C

Condition: x and y do not
occur free in M,A,B,C, or
in any undischarged. assump-
tion; x does not occur free in
P, and y does not occur free
in N.

79

(+i)1 M:A A:Prop B:Prop

inlABM: A + B

(+i)2 N:B A:Prop B:Prop

inrABN: A + B

(-ye) M: A -- B N: A Condition: A and B

are both terms or bothMN : B
-types.

(-. i) 1 : A] Condition: z does not

M :B A : Prop occur free in A, B, or
in any undischarged as-

Ax:A.M:A-+ B sumption, anA A is a
term.

(i)[: A] Condition: z does not

M: B occur free in A,B, or
in any undischarged as-

Az:A. M: A -B sumption, and A and B
are types.

(I j) Foreachi,
Ni :J N2 : J ... N,: J Condition: m = dg(i).

I1 WoiNiN2 ... Nn : void WiN oN2 ... N,.

(VJe) M: (Vz: J)A N:J

MN :[NlxA

(Vxi) [:] Condition: z does not

M: A occur free in any undis-
charged assumption.

Ax:J . M : (Vx : J)A

80

(3Je)

[z: J][y: A] [x: J]

M: (3z: J)A N:C A : Prop C : Prop

projj(Az:J. A)C(z:J . \y:A. N)M: C

Condition: z and y do not
occur free in C, M, or
in any undischarged assump-
tions, and y does not occur
free in A.

(3Ji) Iz : J] Condition: z does not

M: J N:[M/z]A A: Prop occur free in M or N
or in any undischarged

DjQtz:J. A)MN : (3: :J)A assumption.

() M: A Condition: N is ob-

N: A tained from
M by changes of bound
variables.

(=') M : A Condition: B is ob-

M:B tained from
A by changes of bound
variables.

Notes (1) As we have seen, we have in TAJ functions the type of whose values
depend on the arguments as well as the types oi the arguments, and we also have
pairs in which the type of the second element depends on the first element as well
as on its type. This means that the type structures of Section 1.1 are not models
of TAJ Oust as they are not models of TAP). It is possible to construct a kind of
semantics for TAJ as follows: J is interpreted as the set of all dosed terms of NJ';
Prop is interpreted as the set of closed' formulas of NJ*; the function types built
up from J and Prop using --+ are interpreted using terms and formulas in which
free variables occur; and terms assigned as types terms in Prop are.interpreted as
deductions or, if they are closed, as proofs. Any other model for TAJ is likely to be

81

too complicated to provide most people with any insight.
(2) The presence of Az:J . A in the conclusion of rules (3Je) and (3Ji) may seem

a bit strange. It is there merely to supply A as an argument, and therefore it might
seem more appropriate to use simply A. But if we did that, then z would occur
free in the conclusion whenever it occurs free in A, which is contrary to the spirit
of the system. The only obvious alternative is to postulate Dj,A and ProjjA for
each formula A, but in this case whether or not a term DjA is defined depends on
whether or not there is a deduction whose conclusion is A : Prop, and this is also
contrary to the spirit of the system. The (proj) contraction of Definition 3.9 shows
that it makes no difference whether A or Ax:J . A is used as an argument here, since
it disappears in the contraction.

The system TAJ contains the system NJ* in an important sense, for we can
easily write A, V, D, and I instead of x, +, -, and void (provided, of course,
that the constant .I of TAJ is renamed). The system NJ* has been given here as a
separate system because it is traditional to do so. However, from here on, systems
of logic will only be presented with the systems of type assignment with which they
are associated by the formulas-as-types isomorphism.

82

3.6 The full theory of types

An examination of TAJ raises a question: why quantify only over the type J? Why
not quantify over other types, such as Prop? In fact, why not quantify over all of the
TAJ types of Definition 3.7? There is, in fact, no reason at all for not quantifying
over all TAJ types, and a logic based on this idea was proposed as long ago as 1940
by Church [Chu4O]. A version of this system will now be presented as a system of
type assignment.

Clearly the main difference between TAJ and the system that will be defined
here is that instead of only (Vx : J) and (3z : J), we will now have (Vx : a) and
(3z : a) for every TAJ type a. It should be clear how to obtain the more general
quantifier rules required here from those of TAJ.

However, there is another important difference: one of the TAJ types is Prop,
and since we can quantify over Prop, we can interpret TAP in this new system.
This means that we can use the definitions of Section 2.4 to reduce the number of
primitives.

The new system will be called TAT.
The types of TAT will be those of TAJ (Definition 3.7).

Definition 3.11 (TAT terms) The terms of TAT are defined from countably
many term varialbes x, , 2,... Iz,... and the term constants el, e,..., W1,W2,...,

V1,V2),...-, as follows:
(a) every term variable and term constant is a term;
(b) if M and N, are terms, so are (MN) and (M --* N); and

(c) if x is a term variable, A and M are terms, and a is a type, then (Ax:A. M),
(Ax:a . M), and (Vz : A) are terms. With each constant wi and Vo is associated a
natural number dg(wi) or dg(Wi), called the degree of the constant in question.

Reduction for TAT terms is defined using the P-redexes of Definition 3.9.

Definition 3.12 (The type assignment system TAT) The system TAT is a
natural deduction system. Its formulas are all expressions of the form

M :A,

where M is a term and A is either a term or a type. The axioms are (ei), (wi), and
(ji) from Definition 3.10 for each i. The rules of type formation are (-- Formation)

83

of Definition 3.10 and

(Va Formation) a] Condition: x does not

A: Prop occur free in any undis-charged

(Vx : a)A : Prop assumption, and a is a
type.

The rules of type assignment are (--+ e), (-+ i), (sb), and (_-) of Definition 3.10
and, for each type a,

(Vae) M : (Vz : a)A N:a

MN : [n/z]A

(Vai) [z : a] Condition: z does not

M: A occur free in any undis-
charged assumption.

Az:a . M : (Vx : a)A

Remark As in TAJ, the type structures of Section 1.1 are not models of TAT.
There are models of the original (classical) version of Church's type theory formed
by interpreting J as any set, Prop as the set of two truth values, true and false,
and interpreting compound types a -+ # as the set of all functions from the set
corresponding to a to the set corresponding to #. But these models are not models
of TAT because they do not model the deductions. Furthermore, since TAP can be
interpreted in TAT, it follows that TAT has no set theoretic models. It is probably
best to adopt the procedure we used for TAJ, and interpret Prop as the set of dosed
formulas. Because we now have quantifiers over all types, this idea is hard to make
precise, and so is unlikely to be accepted as the basis for any kind of theory of
models. Nevertheless, the idea probably gives most people more insight into TAT
than any other notion of semantics.

Now let us show how to use the definitions of Section 2.4 to define the other terms
and operators of TAJ. Some changes in the previous definitions will be necessary:
wherever we previously had a quantifier (Va), we will now need a quantifier (Vz :
Prop), and where we previously used the abstraction Aa, we will now need Au : Prop.
Furthermore, the existential quantifier will need somewhat different treatment, since

84

we now expect the elements assigned an existential type will be pairs. In addition,
it is now possible to quantify over the parameters that stood for type schemes in
TAP and now stand for terms of type Prop. For this reason, it is worth stating
these definitions again for this system.

Definition 3.13 (Cartesian product proposition) The product type operator
and its associated pairing and projection operators are defined as follows:

(a) X Au:Prop. ,rProp. (Vw : Prop)((u -+ v --+ w) -t w);

(b) D Au:Prop. \v:Prop. Ax:u. Ay:v . \w:Prop . Az.u -+ v -+ w. zzy;

(c) fst A _:Prop. Av:Prop . Axz:Xuv. zu(Aytu. Az:v . y); and

(d) snd =_ Au:Prop . Av:Prop . Axz:Xuv . zv(A :u . \z:v . z).
We use A x B as an abbreviation for XAB.

It is not at all difficult to prove from these definitions that if A: Prop and B: Prop

DAB: A-+ B -+ A x B,

fstAB: A x B -A,

and
sndAB: A x B -B.

Furthermore, it is easy to see that if M : A and N : B, then

fstAB(DABMN) -, M

and
sndAB(DABMN) -, N.

Definition 3.14 (Disjoint union type) The disjoint union operator and its as-
sociated injection and case operators are defined as follows:

(a) 0 Au:Prop . Av:Prop . (Vw : Prop)((u --+ w) -- ((v --+ w) --+ w));

(b) inl \u:Prop . Av:Prop . Ax:u . Au : Prop . Af:u --+ w . Ag:v -+ w .f;

(c) inr E Au:Prop . \v:Prop . ,y-v. Aw:Prop . Af:u --* w .)Ag:v --+ w . gy; and

(d) case - Au:Prop . \v:Prop . Az:Ouv . Aw:Prop . \f:u - w . \gv --* w . zwfg.
We use A + B as an abbreviation for OAB.

It is easy to show that if A : Prop and B : Prop, then

inIAB :A - A + B,

85

inrAB : B --. A + B,

and
caseAB: A + B - (VW: Prop)((A -w)-*((B -w)--* to)).

Furthermore, it is easy to show that if C : Prop, M : A, N : B, F : A --o C, and
G : B -- C, then

caseAB(inABM)CFG =, FM

and
caseAB(inrABN)CFG =, GN.

Definition 3.15 (void type) void - (Vz: Prop)z.

Definition 3.16 (Existential quantifier) If a is a type, B is a term, and if, for
a variable z which does not occur free in a but may occur free in B, we have
z : a - B : Prop, then the existential quantifier over a and its associated pairing
and projection functions are defined as follows:
(a) (3z : a)B - (Vw : Prop)((Vx : a)(B --+ w) - to);
(b) Dc, ,# - Az:a A.B. Aur.Prop . Az.(Vx : a)(B -- tw) . zzy; and
(c) proj,., , - AurProp . Az.(Vz : a)(B -- w) . Ay:(Vz : a)B . yuz.
It not hard to show that rules (3aFormation), (3ae) and (3ai) corresponding to

the rules for 3J in Definition 3.10 are satisfied. It is also easy to show that

proj.,#Z(DCoMN) =. ZMN.

Note that in Definition 3.16, there is no way to avoid the use of the parameters;
for types are completely distinct from terms, and there may be a free variable in B
which is bound in the definitions.

Remark It is worth comparing projap with project#, of Definition 2.17. For the
same reason that the latter could not be made a true projection function, the former
cannot be used to define a true right projection for use with rule (3ae). There is
no problem with the left projection: take C S a and take Z - Ax:a. A:B . z, and
observe that this satisfies the condition on rule (3ae), which becomes in this case
that z and y do not occur free in C or in D,# MN and y does not occur free in B.
On the other hand, for the right projection, we need to take Z - Az:a . AyrB . B,
and this requires C =- B, in which z may occur free. Being able to use a right
projection with rule (3ae) would correspond to allowing an inference in NJ* from
(3z)A(z) to A(tA) for some term t A, and making inferences like this work for natural
deduction formulations of first order or higher order logic is notoriously difficult.

86

Chapter 4

THE THEORY OF
CONSTRUCTIONS

We have now seen quite a few systems of type assignment to A-terms. As we said
in the introduction, these systems are important for us because they are the basis
for the system which really interests us, the theory of constructions. This is an
extension of TAGU and TAT introduced by Coquand [Coq85] and studied further
in [CH86], [CH], [Coq86a], [Coq86b], and [Coq]. We have already seen that TAT
is an extension of TAP; the theory of constructions, as an extension of TAT, is
also an extension of TAP. It is also an extension of the important part of the type
theory introduced by Martin-L~f [Mar75], [Mar82], and [Mar84]1 . This chapter will
be devoted to the theory of constructions.

The proofs in this chapter will be given in more detail than in previous chapters.
This is because the system is new and some of the proofs are difficult. In fact,
Martin-L6f [Mar7lb] 2 presented a proof of normalization for a system which was
later shown not to be normalizable 3. For this reason, the important proofs in this
chapter need to be checked carefully, and so they will be presented in considerable
detail.

1See also fBee85] Chapter XI.
'An early version of [Mar75].3See [Coq86a].

87

4.1 The theory of constructions: natural deduction
formulation.

The theory of constructions, or TAC, combines the kind of generalized type assign-
ment of systems such as TAG and TAGU with the formulas as types isomorphism
used in defining TAT.

As we remarked at the end of Section 2.8, one of the weaknesses we want to
eliminate in this system is the fact that in TAGU we cannot quantify over compound
types built up from Prop. For this reason, as in TAT, we need a notion of type. But
unlike TAP, we cannot define the types as a fixed set of terms. Instead, we need to
indicate the types by the rules of the system. Thus, in addition to formulas of the
form M : A, we need formulas of the form

A: Type

The types are then specified by the deductive rules of the system.

Definition 4.1 (TAC terms) The terms of TAC are the terms of TAGU (Def-
inition 2.23), where U is denoted by Prop, except that there is a new constant,
Type.

The original intention was that Type would not be part of any compound type.
However, it has since turned out that it is convenient to have Type occurring as a
certain part of certain compound types, as we shall see below.
Definition 4.2 (The type assignment system TAC) The system TAC is a

natural deduction system. Its formulas are of the form

M:A,

where M and A are terms. There is one axiom:

(PT) Prop : Type.

88

The rules are as follows:

Rules of type formation:

(P PFormation) [x: A] Condition: z

A: Prop B: Prop does not occur free in A
or in any undischarged

(Vz : A)B : Prop assumption.

(TPFormation) [z: A] Condition: z
A : Type B : Prop does not occur free in A

or in any undischarged
(Vz : A)B : Prop assumption.

(PTFormation) [z: A] Condition: z
A:Prop B:Type does not occur free in A

or in any undischarged

(Vz : A)B :Type assumption.

(TTFormation) [x: A] Condition: z

A: Type B : Type does not occur free in A
or in any undischarged

(Vz : A)B : Type assumption.

(Eq'P) A: Prop A =.B

B : Prop

(Eq'T) A: Type A- B

B : Type

Rules of type assignment:

(Ve) M: (Vz: A)B N: A

MN: [N/x]B

89

(VPi) [x: A] Condition: x

M : B A: Prop does not occur free in A
or in any undischarged

Az:A M : (Vz : A)B assumption.

(VTi)[z : A] Condition: x

M: B A: Type does not occur free in A
or in any undischarged

Az:A. M : (Vz: A)B assumption.

(Eq") M: A A =, B

M:B

M : A Condition: N is ob-
tained from
M by changes of bound

variables.

(Note that several rules listed earlier are listed here in full: since this system is
the main subject of this work, it was felt to be important to make this definition
relatively self-contained.)

It is possible to state the rules of this system in a more compact form. To do
this, we define the kinds to be the two terms Prop and Type. Then if we let x and
P' be any two kinds, the rules of type formation can be stated as follows:

(ign'Formation) Ix : A] Condition: x

A : c B : W does not occur free in A
or in any undischarged

(Vx : A)B : o' assumption.

(Eq'r-) A: K A =, B

90

Furthermore, the rules for (VI) can be combined as follows:

(Voti) [z:A]

M:EBA:P

Ax:A M (Vz :A)B

91

4.2 The basic metatheory of the theory of cnnstruc-
tions

Theorem 2.7 can be extended to TAC:

Theorem 4.1 Every deduction in TAG can be transformed into a deduction with
the same undischarged assumptions and conclusion in which each inference by any
of the rules (Eq") and (Eq'r) occurs just above the major (left) premise for an
inference by (Ve) (in which case it is an inference by rule (Eq")) or just above the
minor (right) premise for an inference by (Vii) (in which case it is an inference by
rule (Eq'i)) or just above the conclusion.4

Proof Similar to the proof of Theorem 2.7. The definitions of independent subd-
eduction and dependent subdeduction will be obtained from those of the proof of
Theorem 2.7 with U replaced by any kind .. In addition to transformations II and
III from the proof of Theorem 2.5, we need the following transformations (corre-
sponding to transformations IV-VI of the proof of Theorem 2.7):
VII.

1

V1 [z:A]

(Eq'K) D2 (X)

A: B: C'

(Vx : A)B : Wt (KW'Formation - 1)

to

'Here, just above the conclusion means what it did in Theorem 2.7, and there may be two such
inferences, one by rule (Eq'i) and the next one by rule (Eq").

92

It.

[zC]

zA (Eq")

V, V2 (X)

C: IcB:P

(Vx: C)B: x! (oK'Formation - 1)

(Eq'x')
(Vx: A)B: Pe

V3

[x: A]

A: icB: K' (Eqlicl)

(OU'Formation - 1)
(Vx A)B W'

V3

to

[x: A]

A ~C: M'

(Vx: A)C: K' (rucFormation - 1)

(Eq'K')
(Vx A)B K1

V3

93

IX.

1

[z:A]
'P1(Z)

M :C
(Eq") D2

M:B A:
(Vi - 1)

Ax:A. M: (Vz A)B

V3

to
1

[x: A]
V() VD2

M:C A:

Az:A. M: (Vx: A)C (Vxi-1)

(Eq")
A:A. M: (Vz: A)B

P3

From now on, we shall assume without further comment that the transformation
given by Theorem 4.1 has been carried out in any deduction. In some cases, when
deductions are put together, inferences by equality rules will be indicated at places
other than those specified by the theorem; this will mean the deduction obtained
from the one shown by carrying out the transformation given by Theorem 4.1.

TAC is clearly an extension of the system TAGU, i.e., of the system TAGL of
Hindley & Seldin [HS86] Section 16E. This means that TAP can be interpreted in
it.

Theorem 4.2 TAP can be interpreted in TAC.

94

Proof See Hiudley & Seldin [HS86] Theorem 16.66. M

Yow let us turn to the general theory of TAC. The first result we have is that
Type and Prop control terms which can occur as "types" the way we expect them
to. To see this, we need first to consider the conditions under which assumptions
may be discharged. For each rule that discharges an assumption of the form z : A,
there is the independent subdeduction, the conclusion of which is either A: Prop
or A: Type. This fact and the conditions on the occurrences of the variables of
discharged assumptions imply that assumptions must be discharged in a certain
order. Thus, instead of sets of assumptions, we are really interested in sequences of
assumptions. Now suppose that we are given a sequence of assumptions of the form

x, : A,, X2 : A2, • • •, Xn : An

Suppose that the assumption that we wish to dischaige is always the last of the
sequence. Under what conditions can the last assumption be discharged? And
more generally, under what conditions is it always possible to discharge the last
assumption of any initial segment of this sequence? It is not difficult to see that the
conditions are those of the following definition:

Definition 4.3 ((Well-formed) environments) A (well-formed) environment is
a sequence of assumptions

.Tl : A1 , X 2 : A 2 , ... , Xn : An (4.1)

such that, for i = 1, 2, ..., n - 1, the following two properties hold:

(a) zi does not occur free in A 1,A 2,.. .,A (but may occur free in A+ ,..., A.);
and

(b) either
XI Al, X2 :A2,...,i :Ai -TAc Ai+j Prop

or
.T A,,X2 :A 2 ,...,zi : Ai '-TAC Ai+l : Type.

We can now see that the terms which can be proved to be in Type are really
quite limited.

Theorem 4.3 If
r I-TAC A: Type,

for any set of assumptions r, then for some n > 0 and for some terms
A1 , A2, ... , An, and for a sequence of pairwise distinct variables zx, X2, ... ,

A ----. (VX1 : A)(V2 : A2)... (Vn : An)Prop.

95

Proof This follows immediately from the fact that any formula of the form A : Type
can occur only as the axiom (P T) or as the conclusion of one of the rules (OT
Formation) or (Eq'T). a

Definition 4.4 (Context) A context is a term A satisfying the conclusion of The-
orem 4.3. If A is a context, and if the conclusion of Theorem 4.3 is that A is
convertible to

(Vxl -AI)(V2 : A2) ... (Vx, : Ar,)Prop, (4.2)

then 4.2 is called a standard form of A, n is called the index of the standard form,
and A1 , A2, ... , A. are called its prefix types.

It is easy to see (by the Church-Rosser theorem) that two standard forms can
be standard forms of the same context if and only if they have the same index and
corresponding prefix types are convertible. This means that we can speak of the
index of a context, and if we are willing to consider equivalence classes of convertible
terms, we can speak of the prefix types of a context. It is also easy to see that any
context can be reduced to one of its standard forms.

Contexts have a clear meaning: each context is the type of propositional func-
tions of a certain number of arguments over certain terms as "types". Obviously,
contexts are really useful only when the prefix types are either in Prop or in Type.
For this reason, we would like to know which contexts can be shown (perhaps using
assumptions) to be in Type; i.e., we want as general as possible a partial converse
to Theorem 4.3.

Definition 4.5 (Well-formed context) A context is said to be well-formed if
and only if it has a standard form (4.2) such that the corresponding sequence of
assumptions (4.1) is a well-formed environment.

It is easy to show the following result:

Theorem 4.4 If A is a well-formed context, then

I-TAC A : Type.5

We would like to show that a context cannot be assigned a type other than Type.
To do this, we need to consider places that Type can occur in a deduction. It may

"It is, in fact, easy to strengthen Theorem 4.3 to show that if '-TAC A: Type then A is a
well-formed context.

96

appear that it occurs only on the right of the colon and then only alone. But this
is not the case, for consider the following example:

Prop : Type Prop : Type

Ax:Prop. Prop (Vx : Prop)Type (Vi - v)

What we can prove about occurrences of Type requires a definition:

Definition 4.6 (Supercontext) A term A is a super ontext if

A =. (Vxi : A1) ... (Vxn : An)Type

where (xi : A1) ... (Vxn : An)Prop is a well-formed context. Here, (W1i
A,) ... (Vxn : An)Type is called a standard form of A, n is called the index of
the standard form, and A1 , A2, ... , An are called its prefix types.

The remarks after Definition 4.4 about the standard forms of contexts apply
equally to those of supercontexts.

The result we want is now as follows:

Theorem 4.5 (a) If r is a well-formed environment and if

r -TAc M :A,

then M reduces to a term in which there is no occurrence of Type.
(b) If r is a well-formed environment and if

r i-TAC M :A,

and if there is an occurrence of Type in every term to which A reduces, then A is a
superconteXt.

6

Proof (a) By induction on the deduction of

r '-TAc M : A.

6Since it is not, in general, decidable whether or not there is an occurrence of Type in every
term to which a given term reduces, it may appear that this theorem involves a nQnconstructive
use of the law of excluded middle. But in fact, all that is really needed for part (b) is that it is
not possible to determine from the deduction that there is a reduction from the term to a term in
which Type does not occur, and this can be constructively determined.

97

(Note that the type of each variable in a well-formed environment satisfies the
conditions of the lemma.) In the cases for rules (Eq'K), the conclusion follows
via the Church-Rosser theorem and the fact that no reduction can introduce an
occurrence of Type into a term. The remaining cases are easy.

(b) By induction on the deduction of

r I-TAC M :A.

The only difficult case is rule (Ve); in this case, suppose that the inference is

M : (Vx : B)C N: B

MN: [N l]C

If there is an occurrence of Type in every term to which [N/x]C reduces, then by
(a) there is an occurrence of Type in every term to which N reduces and hence also
in every term to which C reduces. Hence, there is an occurrence of Type in every
term to which (Vx : B)C reduces. Thus, by the induction hypothesis (on the left
premise), (Vx : B)C is a supercontext. It follows that C and hence also [N/x]C are
also supercontexts. E

Define an occurrence of a subterm A of a term M to be the type of a bound

variable if A is the indicated part of a subterm of the form Ax:A . N or (Vx : A)B.

Theorem 4.6 Let r be a well-formed environment, and suppose

r I'TAC M :A,

where A is not a supercontext. Then M =. N for some term N in which every
occurrence of the atomic term Prop is inside the type of a bound variable.7

Proof By induction on the deduction of r I-TAc M : A. E

Corollary 4.6.1 if r is a well-formed environment, and if

r -TAc M :A,

where A is not a supercontext, then M is not a context.
7The condition of the theorem that A is not a supercontext is not constructively decidable.

However, all that is really necessary for the theorem is that it not be possible to read from the
deduction in question that A is a supercontext, and this can be constructively determined.

98

Corollary 4.6.2 If r is a well-formed environment, and if

r -TAC M : x and r -TAc M:K',

then x =_ W.

Proof Otherwise, we have r -TAC M : Prop and r -TAc M : Type, from. which
we get by Theorem 4.3 that M is a context and from Corollary 4.6.1 that it is not
a context. U

It is not hard to generalize Theorem 4.3 to the following:

Theorem 4.7 If 4"

r I-TAC A:B,

where B is a supercontext, then

A =\ x:A1 • \X2: : A 2 ,xn: : An • A, (4.3)

where A' is a context.

Definition 4.7 (Context Function) A term A satisfying the conclusion of The-
orem 4.7 is called a context function. If A' is a standard form, then the form on
the right of 4.3 is called a standard form of A, and its index is m plus the index
of A'. All of the remarks and conventions regarding standard forms and indices of
contexts apply to those of context functions.

Now let us consider the subject-reduction theorem (Theorem 2.1) . In order to
prove it, we need a replacement theorem corresponding to Lemma 2.1. Lemma 2.1
is stated in terms of the subject-construction theorem, which is much more compli-
cated to state for TAC than it is for TA, but the part of the lemma corresponding to
the subject-construction theorem is not needed for the subject-reduction theorem.
Another complication arises from the fact that changes in a term to which a type
is assigned may be reflected later in a deduction in the types themselves. However,
in the case of the replacement lemma needed for the subject-reduction theorem, a
term is replaced by a convertible term, so by rule (Eq), the later types need not
be changed. (See Hindley & Seldin [HS86] Lemma 16.39.) It is sufficient to have
the following result (which is called a theorem because it is more substantial than
Lemma 2.1):

99

Theorem 4.8 (Replacement) Let r, be any well-formed environment, and let V
be a deduction of

r 1 I"TAC M :A.

Let V : C be any statement in 1, let 1 be that part of 1 ending in V : C, let 12 be
the rest of 1, and let z, : B 1, z2 : B 2, ... , z,, : B, be the assumptions of 1, that
are discharged in 12. Let W be a term such that W =. V and FV(W) _ FV(V),
and suppose that r2 is a well-formed environment in which zl, x2, ... , :, do not
occur free. Suppose that 13 is a deduction of

Ir,l : Bi,...,z, : B, I-TAt W : C.

Then replacing 11 by 13 in 1 results in a deduction 14 of

ri, r 2 -TAC M* : A,

where M* is obtained from M by replacing appropriate occurrences of V by W.'

Proof By induction on the structure of 1V2.

Basis. There axe two cases.

Case 1. 12 consists of the single statement V : C. Then M is V, M* is W, and
14 is just 1)3.

Case 2. 12 consists only of the axiom (P T). Then the replacement is vacuous,
W - V - Prop, and 14 consists only of the axiom (P T).

Induction step: We have the following cases depending on the last inference in
12.

Case 1. The last inference of 12 is (Pcx' Formation).Then A is W, M is
(Vz : B)E, and 1 is

1

[:B]

V5s 16(z)
B : r E:,re'

(K'Formation - 1)

$It is difficult to describe exactly the replacements which are required to obtain M" from M,

but it is possible to read the replacement process from the proof. It is worth noting that the part
of 4 which is not included in V3 has exactlythe same inference rules in the same relative positions
as V2 except perhaps for some inferences by (Eq'u), (Eq"), or

100

where the occurrence of V : C is either in Vs or in De(z). By the induction
hypothesis, the replacement of V by V 3 in V, and D6 (z) leads to deductions V 7

and Vs(z) of, respectively,
rl, r 2 FTAC B*:K

and
r,r 2,z :B FTAC E" :

for appropriate B* and E*. Since V =. W, B* =. B, and so V 4 is as follows:

1
D7 [z : BI

B" :c Ds(x)

B :c E* : W'
('K'Formation - 1)

(Vx : B)E* : r.

Case 2. The last inference of V is by (EqsK). Then A is K and V is

V5

(EqtK)M: K,

where N =. M. By the induction hypothesis, the replacement of D1 by V 3 in Vs
leads to a deduction D6 of

r1, r 2 -TAC N":
for an appropriate N*. Since N" =. N =. M, we can take M* - M, and then D4

is obtained from V6 by an inference by (Eq'i).

Case S. The last inference of D is by (Ve). Then M is M1 M2, A is [M2 /z]A',
and V is

V5 D6

M 1 :(Vz : B)A' M 2 : B
(Va e)

M 1M2 : [M2 /z]A'.

By the induction hypothesis, the replacement of D1 by D3 in D5 and V6 leads to
deductions V 7 and Vs of

r1 , r 2
1-TAc MI : (Vx : B)A

101

and
r:, r 2 -TAC M2 : B

for appropriate Mj and M2. Furthermore, M2 =. M 2.Hence, D4 is

VT 6

Mr : (Vx : B)A' M2 : B

M;M; : [M2/x]A'
e)

MI*M2 : [M2/x]A'. (-"

Case 4. The last inference of D is by (Vici). Then A is (Vz : B)E, M is Ax
B. N, and V is

1

[z:B]

DS(z) V)

N:E B:K
(V, i - 1)

Az:B. N : (Vz : B)E.

By the induction hypothesis, the replacement of D, by)3 in D5(z) and)6 leads
to deductions D7(x) and Ps of

rl,r 2,z :B -TAC N* : E

and
rl, r 2 -TAC B*:

for appropriate N* and B*, where B* =. B. Then)4 is as follows:

1

z:B] Vs

P(x) B" : (

N*:E B: x

A:: B. N* : (Vz : B)E. (Vri-1)

102

Case 5. The last inference of V is by (Eq"). Then D is

V5

M:B
M A, (Eq")M : A, W

where A =. B. By the induction hypothesis, the replacement of 'D1 by D3 in V)5
leads to a deduction V 6 of

r, r 2 I-TAC M* : B

for appropriate M*, and D)4 is obtained by adding an inference by (Eq") at the end.
Case 6. The last inference in VD is by (='). Then V is

V5

N:A

M:A,

where M is obtained from N by changes of bound variables. By the induction
hypothesis, the replacement of 1I by V,3 in 'D5 leads to a deduction D6 of

r 1 ,r 2 -TAC N* :A

for appropriate N*. Since FV(W) 9 FV(V), the changes of bound variables which
occur in passing from N to M will take N* to the desired M*, and so D 4 can be
obtained from V6 by adding an inference by (-). U

We can use this theorem to prove the subject-reduction theorem the same way
that Lemma 16.39 of Hindley & Seldin [HS86] is used to prove Theorem 16.41:

Theorem 4.9 (Subject-reduction theorem) Let r be a well-formed environ-
ment. If

r -TAc M :A

and MN, then
r I-TAC N :A.

(See also the proof of Hindley & Seldin [HS86] Theorem 15.17).

103

As in Hindley & Seldin [HS86] §16D2, the subject-reduction theorem is related
to the normalization theorem. In particular, it tells us the result of performing a
reduction step on a valid deduction is another valid deduction. The reduction steps
that interest us axe the following:

ic reductions. A deduction of the form

1

[x:A]

Vi(x) V

M:B A:,o

Ax:A .M: (Vx: A)B (Vi- 1)
(Eq")

Ax:A. M : (Vx : C)B N: C
(Va e)

(Ax:A : M)N : [N/x]B

V4

reduces to
)3

N:C
(Eq")

N:A

VI(N)

[n/zIM: [N/z]B

)4',

where V4' is obtained from D 4 by replacing appropriate occurrences of (Ax: a. M)N
by [N/x]M according to Theorem 4.8.

Here, the formula Ax:a . M : (Vx : C)B the cut formula of the reduction step.
A reduction is a (possibly empty) sequence of replacements using these reduction
steps.

A special case of a oc reduction step is a context-reduction step or c-reduction
step in which B is a context or a supercontext. A context-reduction or c-reduction is
a reduction in which each reduction step is a c-reduction step. A deduction will be
said to be context-normal, or c-normal if it contains no cut formulas for c-reduction

104

steps. It turns out to be easy to prove that every deduction can be reduced to a
c-normal deduction using the notion of the degree of a term, and that this partial
normalization result is important in proving the full normalization theorem.

Definition 4.8 (Degree of a term) Let A be a term such that there is a step
M : A in a deduction in TAC. Then the degree of A relative to the deduction is
defined as follows:

(a) if A is not a context or a supercontext, then the degree of A is 0;

(b) the degrees of Prop and Type are 1;

(c) the degree of (Vz : A)B is one more than the maximum of the degrees of A and
B; and
(d) if A =. B, then the degree of A is equal to the degree of B.

Since only contexts and supercontexts have nonzero degrees, the definition of a
context is enough to guarantee that the degree of a term relative to a deduction is
well defined.

Remark Since it is not possible to decide mechanically for a given term whether
or not it is a context or a supercontext, it may appear that this definition uses
the law of the excluded middle, which is invalid in constructive logic, to define the
degree of a term. But this is not really the case; for in calculating the degree of a
given context or supercontext, it is only necessary to calculate the degree of terms
A which are either Prop or Type or for which there is a step in the deduction of the
form A: Type or A : Prop, and then the degree of A can be determined by which of
these situations occurs. (It is impossible to have more than one by Theorems 4.3,
4.4, 4.5 and 4.6, and it is possible to determine mechanically which occurs.)

Note that the degree of a term relative to a deduction is invariant of 1-conversion.

Theorem 4.10 Every deduction in TAC with conclusion M : A can be reduced to
a c-normal deduction with the same undischarged assumptions and with conclusion
N : A, where MN.

Proof Let the degree of a cut formula be the degree of its type with respect to
the deduction. Note that if a cut formula is removed by a reduction step, the
degree of another cut formula which had lower degree before the reduction step and
which occurs in the deduction after the reduction is unchanged. Let the index of
a deduction be the pair (d, n), where d is the maximum degree of any cut formula
in the deduction and n is the number of cut formulas in the deduction with degree
d. If the pairs are ordered as in the proof of Theorem 1.2, and if reduction steps

105

are carried out in the same order (the cut formula has degree d, and there is no cut
formula with degree d in V3), then an argument like that of the proof of Theorem 1.2
shows that every deduction can be reduced to a deduction with no cut formulas.
It should be clear from the nature of the reduction steps that a reduction changes
only the term to the left of the colon in any formula by carrying out a sequence of
contractions. U

Definition 4.9 The term N of Theorem 4.10 will be called a c-normal form of M.

In terms of this definition, Theorem 4.10 says that every term to which a type
is assigned by TAC has a c-normal form.

This partial normalization result is important for the full normalization theorem
because it gives us some useful information about terms A for which it is possible to
prove r I-TAC A : Prop. To obtain this information, we need the following lemmas:

Lemma 4.1 Let) be a c-normal deduction of

r -TAC A: Prop,

where r is a well-formed environment. Then either A =. (Vx : B)C for some terms
B and C and some variable Y which does not occur free in r, or A =. xM1M 2 ... Mp

for some variable z, some natural number p (which may be 0), and some terms
M 1,M 2 ,... , Mp, and furthermore, it can be decided constructively which of these
alternatives holds.

Proof Consider the last inference in) which is not by (Eq"), (Eq'P), or (-). This
inference cannot be by (Voci) since the type of the conclusion is an atomic constant,
so the only remaining possible rules axe (xP Formation) and (Ve). Which of these
rules actually occurs can be decided constructively (by inspection of the deduction).

If the inference is by (KP Formation), then there are terms B and C and a
variable x which does not occur free in r such that A =. (Vz : B)C.

If the inference is by (Ve), then consider the left branch of the deduction. As
we travel up that branch from the bottom, the only inferences we find are by (Ve),
(Eq"), (='), and perhaps (Eq'P) at the very bottom. This means that the formula
at the top of the left branch must be an undischarged assumption, and it must
therefore be in r. It follows that this statement must have the form z : B, where
B =. (Vx : Ci)... (Vz : Cp)Prop for some natural number p (which may be 0). Then
we must have A =. xMI... Mp for some terms MI,... ,Mp. 0

106

Definition 4.10 (Simple and compound deductions) If V is a deduction as
in Lemma 4.1, then it will be called compound if the first case of the lemma holds
and simple if the second case holds. If A is a term such that A : Prop is the conclusion
of such a deduction V., then A will be simple [compound] if V is simple [compound].

Lemma 4.2 If there is a deduction of

r -TAC A: Prop,

then there is a c-normal deduction of it.

Proof Let V be the given deduction. By Theorem 4.10 there is a c-normal deduction
of

r '-TAC B: Prop,

where AB. By adding one inference by (Eq'P) at the end, we get the desired
c-normal deduction of

r F'TAC A: Prop.

By Lemma 4.2 and Definition 4.10, every type in Prop (with respect to a given.
well-formed environment) is either simple or compound, and it is possible to decide
constructively which it is. Furthermore, the compound types axe formed by repeated
use of the operation V from the simple types and Prop. Note that the contexts axe
formed in more or less the same way.

Lemma 4.3 If V is a deduction of

r F-TAC (Vz : A)B : Prop,

where z does not occur free in r or in A and where r is a well-formed environment,
then there is a deduction 1.) of

r, z : A -TAC B : Prop.

Furthermore, the c-normal deduction to which 1) reduces has fewer inferences by
rules other than (Eq"), (Eq'i.), and (=) than the c-normal deduction to which V
reduces.

Proof This follows from Lemmas 4.1 and 4.2. u

107

Theorem 4.11 If
r I-TAC M: A,

where r is a well-formed environment and A is not a aupercontext, then

r I-TAC A: Type

or

r -TAC A: Prop.

Proof By induction on the length of the deduction V with the conclusion M : A.
The only difficult case is that in which the last inference of D is by rule (Ve). Then
M =- PN, A =- [N/z]C, and D has the form

V, V2

P: (Vz: B)C N: B

PN : [n/z]C.
e)

By the induction hypothesis,

I' I-TA (Vz : B)C : 0, (4.4)

and
r F-TAC B : K', (4.5)

If we have - Type, then 4.4 must be the conclusion of either (K"TFormation), the
premises being 4.5 and

r, z : B '-TAc C :Type.

The conclusion then follows placing D2 over each occurrence of the assumption
z : B. If K = Prop, we use Lemma 4.3 to carry out a similar argument using one of
the rules rules (xP Formation). M

Lemmas 4.1 and 4.2 give us a structure on the types in Prop. It is interesting
to note that the other types have exactly the same structure. By Theorem 4.11,
every type is in Prop, in Type, or is a supercontext. It is dear from the definition
that supercontexts have this structure, and Theorem 4.3 tells us that the same is
true for contexts. What all of this means is that types are built up from Type, Prop,

and the simple types by the operation forming (Vz : A)B.
Theorems 4.3, 4.4 and 4.11 and Corollary 4.6.1 allow us to classify all formulas

which can be deduced from well-formed environments:

108

Definition 4.11 (Classification of formulas) A formula M : A is called:
(a) a context function if A is a supercontext;

(b) a context if A =. Type;

(c) a proposition function if A is a context;

(d) a proposition if A =. Prop; and

(e) a proof if A is neither a context nor a supercontext.

A deduction whose undischarged assumptions form a well-formed environment is
classified according to its last formulas.

This classification shows the connection between TAC and the formulas-as-types
isomorphism.

We would like to extend this classification to the terms M (at least relative to
a given well-formed environment). In other words, we modify Definition 4.11 as
follows:

Definition 4.12 (Classification of terms) A term M is called:
(a) a r-context function if there is a supercontext A such that r -TAC M : A;

(b) a r-context if r -TAC M : Type;

(c) a 1-proposition function if there is a context A such that r FTAc M : A;

(d) a r-proposition if r '-TAc M : Prop; and
(e) a r-proof if there is a term A which is neither a context nor a supercontext such

that r }-TAC M : A.

We have already proved (Corollary 4.6.1) that no term is both a r-context
function and a 1-proposition function or both a r-context function and a r-proof.
To complete the proof that this a classification is exclusive, we need the following
result.

Theorem 4.12 If r is a well-formed environment, and if

r -TAC M :A and r F-TAC M': B,

are both derivable, where M and M' differ only by changes of bound variables, then

A=.B.

Proof By induction on the lengths of the two deductions, D and V 2 respectively.

Case 1. The last inference in V1 is by (Eq). Assume that the left premise is
M : A'. By the induction hypothesis, A' =. B. But A =, A', and so A =. B.

109

Case 2. The last inference in V2 is by (Eq"). Symmetric to Case 1.
Case 3. The last inference in neither D1 nor D 2 is by (Eq").
Subcase 3.1. D1 consists of the axiom. Then M is Prop and A is Type. Then

either D 2 is also the axiom, in which case B is Type and we are finished, or else the
last inference in V 2 is by rule (Eq ic), in which case . is Type by Corollary 4.6.1.

Subcase 3.2. The last inference of V1 is by (ic'cFormation). Then B is r.' by
Corollary 4.6.2.

Subcase 3.3. The last inference of V1 is by (Eq'K). Then by Corollary 4.6.2, B
is x.

Subcase 3.4. The last inference of V1 is by (Va e). Then the last inference of V 2

is either (Va e) or (Eq'K). If it is (Eq'K), then the theorem follows by Corollary 4.6.2
Otherwise, M is NP, M' is N'P' (where N' and P' differ from N and P only by
changes in bound variables, A is [P/x]A', B is [P/x]B', D1 is

VI'l V12

N :(Vx : C)A' P: C

NP: [P/zjA',
e)

and V 2 is

V 2 1 V 2 2

N :(Vz : D)B' P: B

NP : [Plx]B'. (e)

By the induction hypothesis, C =. D and (Vx : C)A' =. (Vx : D)B'. It follows that
A' = *B', and hence A =, B.

Subcase 3.5. The last inference in V1 is by (Voi). Then the last inference in V2
is by (Vri), M is Ax:C . N, M' is Az:C. N' where N and NI differ by changes in
bound variables, A is (Vz : C)A', and B is (Vz : C)B'. (There is no loss of generality
in assuming that the indicated bound variable is x in both M and M' because if
the bound variables are different a minor modification of D 2 will make them the

110

same.) Furthermore, D1 is

1

[:C]

VII

N:A' C

Az:C .N :(Vx :C)A'

and D 2 is
1

[x :C]

V21

N': B' C: f

Ax:C . N': (Vz : C)B'.

By the induction hypothesis, A' =. B', and it clearly follows that A = B.
Subcase 3.6. The last inference in D1 is by (m,). This case is trivial. 0

Corollary 4.12.1 For any well-formed environment r, no term is both a 1-
proposition function and a r-proof.

Proof Suppose M is both a r-proposition function and a F-proof. Then there is a
r-proposition B and a F-context C such that

F f-TAC M :B and F i-TAC M : c.

Hence,
F 1'TAC B : Prop and F '"TAC C : Type.

By the theorem, B =. C. Hence, by the Church-Rosser Theorem, there is a term
D to which both B and C reduce which can be proved on the basis of F to be in
both Prop and Type, contradicting Corollary 4.6.2. a

Theorem 4.10 gives us the following characterization of F-proposition functions:

Theorem 4.13 If r is a well-formed environment, and if A is a F-proposition
function which is not a proposition, then either each c-normal form of A has the
form A z:B : C, in which case the type assigned to A by F converts to (Vz : B)F,
where F is a context, or each c-normal form of A has the form xM 1 ... M,.

111

Proof By hypothesis, there is a c-normal deduction of

r -TAC D : (Vx : B)E,

where AD, which is a c-normal form of it, and B is a context. Except for (Eq")
and (E.), which make no difference, the last inference in this c-normal deduction
must be (Voci) or (Va e). If it is (Vri), we are done. If it is (Va e), then proceed
up the left branch to the first formula which is not the conclusion of an inference
by (-.* e) or (Va e). Since the deduction is c-normal and since r7 is a context, this
formula is not the conclusion of an inference by (Vii). Hence, it is an assumption,
and D has the form xM 1 ... M,, as desired. (That all c-normal forms of A are of
the same kind follows by the Church-Rosser Theorem.) a

By iterating the theorem, and, if necessary, replacing terms M by Ay,:Bi .Myj,
where yj is not free in M, we can prove the following corollary:

Corollary 4.13.1 Under the hypotheses of the theorem, if

r I-TAC A : (Vxl :B1) ... (Vx,, : B,,)Prop,

then either A =. ,z:B1 Az:B, . A', where A' is a r-contezt, or else every
c-normal form of A has the form xM 1 ... M,.

Remark It is worth pointing out that, as we have formulated TAC, there is nothing
to exclude making an assumption of the form x : A, where A is a supercontext. We
have not considered such assumptions so far, and the early formulations of TAC
excluded them. But they do no harm, since the rules of the system prevent the
discharge of any such assumption. Furthermore, they will tur-n! out to be useful in
practice, since undischarged variables may be thought of as new .onstants added
to the system. But if such assumptions are allowed, then it is no longer true that
anything that can be proved to be in Type is a context in the sense of Definition 4.4;
it might convert instead to

(Vxl : A,)... (Vx, : An)zBi... B,,.

If we allow such terms to be contexts in a generalized sense, then different assump-
tions can result in the same formula having different classifications according to
Definition 4.11. For example, let r1 be x : Type and let r2 be z : Prop; then y z
is a ri-proposition and a 12-proof. Furthermore, the definition of well-formed en-
vironment (Definition 4.3) would have to be modified to allow any of the A, to be
a supercontext. (Definition 4.5, of a well-formed context, would then have to differ

112

from Definition 4.3, since none of the Ai of a standard form of a well-formed context
can convert to a supercontext.) In Definition 4.8, it is necessary to specify that the
rank of z1 1 ... B.m is 1 if z : (Vxl : A,)... (Vzm : Am)Type is assumed in the de-
duction. In connection with Definition 4.10, a term of the form zE 1 ... B, where
z : (Vxl : A,) ... (Vzm : Am)Type assumed in the deduction, will be called a sim-
ple generalized context. Finally, it is important to specify that no substitutions be
made for variables assumed to be in supercontexts; they must behave like constants.
In what follows, we shall assume that these modifications have been made.

113

4.3 The strong normalization theorem.

It might appear that to prove the normalization theorem it is sufficient to combine
Theorem 4.10 with a similar result for reduction steps whose cut formulas are not
propositions. But this fails to work, for on the one hand, such a reduction step may
require that a type of abitraxy complexity be substituted for a vaxiable that is part
of an assumption that is also a sentence, and on the other hand, a reduction step
whose cut formula is a proof may introduce a new cut formula which is a proposition
and whose type is a context of arbitrarily high degree.

On the other hand, Theorem 4.10 is of help in proving normalization, for it
shows (via Lemma 4.3) that the types which axe proved to be in Prop can be
formed from the simple types and Prop by V in much the same way that the types
of TAP are formed from type variables by the type constructors. This turns out
to make it possible to adapt a proof of normalization for TAP to TAC. The proof
we have chosen to adapt is a proof of strong normalization due to Stenlund [Ste72]
§5.6. However, the proof needs to be modified in much the way that the proof of
[Ma7la] is modified in [Mar73].

Convention Let V be a deduction whose conclusion is M : A, where A =. (Vl
A 1)...(Vzn : An)B, and for i = 1,...,n, let V, be a deduction with conclusion
M : X, where

Al - [Mi /xi,. .j I ,-/xi- IjAi.

Then

M:A

114

will denote the deduction

(Eq"M:A

M : (Vl : A1) ... (Vz, : A)B M1 : A'i
(V e)

MM1 (M1/zi(Vz2 : A 2)... (VX, : A)B

M M I ... M - 1 :(V,, : A)B' M n, A'

MM,... M: B",
(V e)

where B' a [MlIX1,..., Mn-1/Xn-I]B and B" a [M 1/xl,... ,M, /zn]B. (If n = 0,
then it will denote V itself.)

Definition 4.13 (Type of a deduction) If V is a deduction whose conclusion is
M : A, then A is called the type of D.

Definition 4.14 (Strongly normal deduction) A deduction V is said to be
strongly normal (SN) if every reduction starting with V terminates in a normal
deduction.

Our aim is to prove that every deduction is SN.

Remark In the proof, we will be making important use of the classifications in
Definition 4.11. We will also be discussing a number of deductions at the same
time. It will be important that each formula in each deduction be classified the
same way in any other deduction under consideration. For this purpose we will
need to know that the well-formed environments of different deductions are all
consistent in that none of them have assumptions assigning different types to the
same variable. To ensure this consistency, we will assume that we are starting
with a generalized well-formed environment r0 that is an infinite set rather than
a finite sequence of assumptions. All well-formed environments actually considered
will draw their assumptions from r0 , and no variable will be assigned more than
one type in ro. Furthermore, we shall assume that any finite subset of r0 can be
extended to a larger finite subset of r0 whose elements can be ordered in such a
way that it is a well-formed environment. For any deduction under consideration,

115

we shall assume that its discharged assumptions belong to ro; such a deduction
will be called r0 -acceptable. A term which is the type of a r0 -acceptable deduction
will be called a ro-type. We shall assume that any term is a r0-type which can
be built up from Prop, Type, and the simple types and simple generalized contexts
obtainable from assumptions in r0. (This assumption is easy to satisfy; if we start
with a candidate for r0 for which it is not true, we extend it with new assumptions
(for new variables), and we keep doing this until there are enough assumptions.) A
ro-proposition variable of type A, where A is a context, is a variable z such that
z : A is in ro. And finally, a r 0 -term of type A is a term M such that M : A is
provable from assumptions in ro.

Definition 4.15 (Ground type set) A set S of ro-acceptable deductions is a
grounded type set (ground) if the following three conditions are satisfied:
(a) Every deduction in S is SN;
(b) If VI(N) is a part of a deduction obtained from a deduction

x:A

Dj(z)

M:B

by substituting N for z, if V3 is SN, and if

V3

N:C (Eq")

N:A

[N/z]M : EN/z]B

V....n

116

is in S, then

1

(z:A]
V1 (X) V2

M:B A:

Ax:A. M : (Vx : A)B (Vic i - 1) V
(Eq")

Az:A. M: (Vx: C)B N:C
(V e)

(Ax:A.M)N: [N/x]B

{Pi. .. I }

is also in S; and
(c) If V1,...,, are SN, and if

{ :A

is a ro-acceptable deduction, then it is in S. A ground in which all of the deductions
have a given type A will be called a ground of type A.

Examples The set of all SN ro-acceptable deductions is a ground. This ground
will be called SN. If A is a ro-type, then the set of all I7-acceptable deductions of
type A is a ground of type A; it is called SNA.

Definition 4.16 (Proposition term) A proposition term is a term A such that
A : B is a proposition. A proposition term which is also a variable is a proposition
variable. If B =. (Vxl : B1)...(Vz, : B,) Prop, then terms MI,...,Mn such that
for i = 1,2,...,n, Mi : [Bj1/x,...,Bj-.i/x.-]B can be proved from hypotheses
from r0, will be called argument terms of A. If n = 0, then the term [variable] is
called a sentence term [sentence variable]. (Note that if A is a proposition term and
Ml,..., M, are argument terms of A, then AM, ... M, : Prop can be proved from
assumptions in p0 .)

For the next definition, we need to recall what we know about ro-types. We
know that any such type (except a supercontext) can be proved (from assumptions

117

in 1'o) to be in Prop or in Type, and that a deduction proving that A is in Prop or
Type which has been transformed by Theorem 2.5 can end with an inference by rule
(Eq'ic). If we take such a deduction which is c-normal and delete this last inference,
we get what we might call a standard form of A, to which A converts. If we add to
these standard forms the standard forms of the supercontexts, then this standard
form will either be Prop, Type, a simple type, a simple generalized context, or else
will have the form (Vx : B)C. When we speak of making a definition by induction
on the structure of a type, we will mean by induction on the number of occurrences
of V in its standard form. This mirrors the construction of the type from Prop
and the simple types by the universal type-forming operator. We can indicate this
induction by the following definition:

Definition 4.17 (Rank of a r 0 -type) The rank of a ro-type A, rk(A), is defined
as follows:
(a) if A is a simple type or a simple generalized context, rk(A) = 0;
(b) rk(Prop) = rk(Type) = 0;
(c) rk((V: : A)B) = rk(A) + rk(B) + 1; and
(d) if A =. B, then rk(A) = rk(B).

Definition 4.18 (Computability predicate) Let M be a r0-term of type A. By
induction on rk(A), a computability predicate of type M, denoted p[M] is defined as
follows:
(a) if A is not a context, 4,hen p[M] - M;
(b) if A =. Prop or Type, zhen p[M] is a ground of type M; and
(c) if A =. (V:1 : A,)... (Vz,, : A,)Prop, then p[M] is a function whose arguments
are computability predicates p[M1], ... ,p[Mn] of types M1,..., M, where each Mi
is a ro-term of type Ai, and whose value is a ground of type MM1 ... M,'.

For the next definition, we need to proceed by a kind of induction on the struc-
ture of a term. For this induction, we need to note that if a term A is not a r 0 -proof,
then it is a lro-proposition function, a ro-context function, or a supercontext. Thus,
if A is not a ro-proof, then it converts to Prop, Type, a ro-simple type, a ro-simple
generalized context, (Vx : B)C (where B is neither a supercontext nor a proof and
where C is not a proof), or A: : B . C (where B is neither a supercontext nor
a proof and where C is neither a supercontext nor a proof). Here B and C are
essentially simpler than A; furthermore, if A converts to a simple type xM1 ... M,
then each M, is essentially simpler than A. This justifies the following definition by
induction on the "structure of A".

118

Definition 4.19 (Computability object) Let A(xl,. .. ,x,,) be a term all of
whose free variables which are not assigned to supercontexts in ro occur in the
list z,..,,.Let A,... ,A,, be ro-terms of the types of z,..,, respec-
tively. Let p[AI,... ,p(An] be an assignment of computability functions to the
terms A,,... , A.,. Relative to this assignment we shall define by induction on the
structure of A~i. ,,)a computabiity object C[A(zi,.. . ,,,)] (p(AI],... ,p[A,]),
which will contain deductions of type A(A,,. .. ,A,,) if A~ 1 ... ,,)is a ro-type.
To simplify the notation, we let x be the sequence x,.... , In , A the sequence
A,,... , An,, and p(A] be the sequence p[A1],... ,p[A,,].
(a) if A(m) is a 17-proof, then C(A(x)I(p[AI) is the term A(A) itself;
(b) if A(m) =Prop, Type, or a ro-simple generalized context, then C[A(Xz)](p[AJ)=
SNA(A);
(c) if A(m) xi~M(a)... Mm(2m) and is neither a ro-proof nor a ro-simple gener-
alized context, then C[A(x)I(p[AI) is p[AiI(C[MI(x)](p[A]), ... , C[Mm(xD)I(p[A]);9

(d) if A(m) =. (Vx B(x))C(x, x), where 11(m) is not a context, then C[A(x)](p[A])
is the set of all ro-acceptable deductions

M :A(A)

such that if

N-:B(A)

is in C[B(x)](p[A]), then

M :A(A)

M :(Vx :B(A))C(x, A) Eq)N B(A)

MN :C(N, A), (V e)

is in C(C(N, x)](p[A]); 10

(e) if A(m) =. (Vz B(x))C(x,x) where 11(z) is a context, then C[A(x)](p[A]) is
the set of ail ro-acceptable deductions

M :A(A)

119

such that if
D'

E :B(A)

is in C[B(z)](p[A]) and if p[E] is any computability predicate assigned to E, then

V

M : A(A)

M: (Vz: B(A))C(z, A) E: B(A)

ME: C(E, A),
e)

is in C[C(z, z)](p[E],p[A]); and
(f) if A(z) =. Ax : B(z).C(z,z) and is not a Io-proof, then C[A(z)](p[A]) is a
function whose argument is a computability function of type A, where A is a ro-term
of type B(A) (the type of z), and whose values are given by (C[A(z)](p[A]))(p[A])
= C[C(x, z)](p[Ap[A])).

Lemma 4.4 (a) If

x:B

{D1 ,.. . DVn}

for n > 0 is a deduction of type A(A), and if DI, ... , D, are all SN, then

z:B

'This definition makes sense only if C[A(z)](p[A]) is a computability predicate. This will be
proved below (Lemma 4.6).

l°In case (d), note that since B(z) is not a context and since N : B(A), C(N, z) must. have

the same structure (with respect to the construction of types) as C(z, z). The division into cases
between (d) and (e) is precisely the distinction between terms which can, after substitution, change
the structure of the type in an essential way, and dealing with this possible change is one of the
main difficulties of the proof. Furthermore, in cases (d) and (e) of this definition, we are assuming
that z does not occur free in A. Since z does not occur in B(A), this is immediate for those Ai
which actually occur in B(A), and for those which do not occur in C(z,A), there is clearly no
problem. For those A, which occur in C(z, A) but not in B(A), since we automatically change
bound variables to avoid clashes when we carry out a substitution, the fact that the bound variable
is z implies that it does not occur free in these Ai.

120

is in C[A(x)](p[A]).
(b) Every deduction in C[A(z)](p[A]) is SN. 11

Proof By induction on the structure of A(z). Note that A(z) is not a r0-proof
and does not convert to Az:B(m) . C(z, z).

Case .1. A(z) =. Prop, Type, or a 1 o-simple generalized context. Since

:B

{V 1,.. . ,Vn)

is SN whenever V1, ... , V1, are SN, (a) follows by Definition 4.19(b). Part (b)
follows immediately by Definition 4.19(b).

Case 2. A(z) =. zM... M,, and is not a r0 -generalized context. Part (a)
holds by Definition 4.15(c) and Definitions 4.18 and 4.19(b). Part (b) holds by
Definition 4.15(a) and Definitions 4.18 and 4.19(b).

Case 3. A(z) =, (Vz : B(z))C(z,z), where B(z) is not a context. To prove
(a), let

V

M: A(A)

be a deduction in C[A(z)](p[A]) and let z : B(A) be an assumption in r0 for which
z does not occur free in V. (We may assume without loss of generality that the
bound variable x has been changed if necessary to assure that there is such an
assumption in r'o.) By the induction hypothesis (a) (with n = 0), z : B(A) is in

C[B(x)](p[A]). Hence, by Definition 4.19(d),

V

M: A(A)
(Eq")

M: (Vz: B(A))C(x,A) X: B(A)

Mz : C(z, A) (Ve)

is in C[C(z,z)](p[A]). Hence, by the induction hypothesis (b), this deduction is
SN. Hence, V is SN.

ICf. Hindley & Seldin [HS86] Theorem A2.3, Lemma 1.

121

To prove (b), let
Y:E

be a r 0 -acceptable deduction of type A(A) where Vi, ... ,, are all SN, and let

N : B(A)

be in C[B(z)](p[A]). By the induction hypothesis (b), V is SN. Hence, by the
induction hypothesis (a),

y:E

{V,. ...,. ,V}

is in C[C(N, z)](p[A]). Hence, by Definition 4.19(d),

y:E

{V1,. . .,

is in C[A(z)](p[A]).
Case 4. A(z) =. (Vx : B(z))C(z, a), where B(z) is a context. To prove (a), let

V

M : A(A)

be in C[A(z)](p[A]), and let z : B(A) be an assumption in ro. By the induction
hypothesis (a) (with n = 0), z : B(A) is in C[B(z)](p[Aj). By Definition 4.19(e),

V

M : A(A)
-- -(Eq)

M : (Vz: B(A))C(x, A) z: B(A)

MT: C(z, A)

is in C[C(, z)](pzj,p[A]) for all p[z]. By the induction hypothesis (b), it is SN.
Hence, V is SN.

122

To prove (b), let
y:E

{D 1 ,...,.Dnj}

be an ro-acceptable deduction of type A(A) where V1, ... , 9n are all SN, and let

)

F.: B(A)

be in C[B(x)](p[A]). By the induction hypothesis (b), V is SN. Hence, by the
induction hypothesis (a),

y:E

{Vli,.... ,nV}

is in C[C(x, x)](p[Fj,p[A]) for all p[F]. Hence, by Definition 4.19(d),

y:E

{*D,..., V}

is in C[A(x)](p[A]). n

Lemma 4.5 If V(N) is a part of a deduction obtained from a deduction

z:E
Vj(x)
M:B

by substituting N for x, if V3 is SN, and if

V3.

N:C
(Eq")

N:E (4.6)

A1 (N)
[Nlx]M : [N/x]B

{ ' *D,1 }

123

is in C[A(x)](p[A]), then

1

[x:E]

VI(X) V2

M:B E:

Ax:E. M: (Vx: E)B (V - 1) (4.7)
(Eq")

Az:A. M: (Vx: C)B N: C
(Ve)

(,x:A: M)N: [N/]B
{M/ Vn'}

is also in CIA(x)](p[A]).' 2

Proof By induction on the structure of A(z). Again, A(z) is not a ro-proof and
does not convert to Az:B(z) . C(z, x).

Case 1. A(m) = Prop, Type, or a Io-simple generalized context. The lemma
follows from Definition 4.19(b) and the fact that (4.7) is SN whenever (4.6) is and
the hypotheses of the lemma are satisfied.

Case 2. A(z) =. xjM ... Mm and is not a r 0 -simple generalized context. The
lemma holds by Definition 4.15(b) and Definition 4.19(c).

Case 3. A(z) =. (Vz : B(z))C(z,x), where B(x) is not a context. By hypoth-
esis, (4.6) is in C[A(x))(p[A)). Let

D

P : B(A)

12Cf. Hindley Seldin [HS86] Theorem A2.3 Lemma 2.

124

be any deduction in C[B(z)](p[A]). Then by Definition 4.19(d) we have

*D3
N:C

(Eq")
N:E

V1(N)

[N/x]M: [Nl/]B{' VV}

is in C[C(P, z)](p[A]). By the induction hypothesis,

1

[z:E]
91() V2

M:B E:K

Az:E. M: (Vz: E)B (Vri1) V3(Eq")
Az:E . M: (Vz: C)B N: C

(V e)
(A:E :M)N [N/x]B

{1', Vi, V}

is in C[C(P, z)](p(A]). Hence, by Definition 4.19(d), (4.7) is in C[A(X)](p[A]).
Case 4. A(z) =. (Vx : B(z))C(z, z), where B(z) is a context. By hypothesis,

(4.6) is in C[A(z)](p(A]). Let
V

F: B(A)

be any deduction in C[B(z)](p[A]), and let p[F] be a computability function for F.

125

Then by Definition 4.19(e) we have

V3

N: C
(Eq")

N: E

Vi(N)

[N/z]M: [N/x]B

is in C[C(z, zr)](p[F], p[A]). By the induction hypothesis,

1

Di(x) V2

M: BE:o

Ax:E. M: (Vx:E)B (Voci-1) V

Az:E . M :(Vz: C)B '(q)N: C
(V e)

(Ax:E :M)N :[N/zIB

is in C[C(xz)](p[F],p[A]). Hence, by Definition 4.19(e), (4.7) is in C[A(M)II(p[A]).

Lemma 4.6 If A(z) and p[AI satsfyj the hypothesis of Definition 4.19, then
C[A(z)](p[Aj) is a ground for each term A(A).

Proof Lemmas 4.4 and 4.5.m0

The following lemma makes sense because of Lemma 4.6.

Lemma 4.7 (Substitution) Let z be a variable which is not assigned a supeicon-
text as a type by 1'o, let A(z,y) be any ro-type, and let B1(V) be a term which can
be shown from 1'o to have the same type as x, where y includes all variables except

126

z which occur free and which are not assigned supercontexts as types by ro. Let c
be a sequence of terms of the same types as the variables in V and let p[C] be an
assignment of computability predicates to the terms in C. Then

C[A(z,y,)](C[B(C)](p[C]),p[C]) = C[A(B(y),y)](p[C]).

Proof By induction first on the rank of the type of B(y) and second on the struc-
ture of A(z,y). For simplicity, let p[B(C)] abbreviate C[B(y)](p[C]). (This is a
computability predicate by Lemma 4.6.)

Case 1. A(x, y) is a r-proof. Then both sides are A(B(C), C) by Defini-
tion 4.19(a).

In the remaining cases, we may assume that A(z, y) is not a r 0 -proof.

Case 2. z does not occur free in A(z, y). Then the lemma is trivial. This takes
care of the cases in which A(x, y) converts to Prop or Type.

Case 3. A(x, y) =. zM ... Mn, a simple generalized context. Then z is assigned
a supercontext as a type by r0 and hence, by hypothesis, is distinct from z. Then
by Definition 4.19(b), each side consists of the set of all SN deductions of type
A(B(C), C).

Case 4. A(z, y) =. yM(z,y) ... M.(z,y), where y #z is one of the variables
in y, and C is the term in C corresponding to y. Then

C[A(x, y)](p[B(C)],p[C]) =

p[C](C[M1(z, y)](p[B(C)], p[C]),... , C[Mn(x, y)]([B(C)], p[C])),

and since A(B(y),y) =yM(B(y),y)... M(B(y),y),

C[A(B(y), y)](p[C]) = (p[C])(C[Mi (B(y), y)](p[C]),..., C[Mn(B(y), y)](p[C])).

The lemma follows by the induction hypothesis.

Case 5. A(z, y) =. zM 1 (z, y) ... Mp(z, y). For simplicity, write this as zM(z, y).
Then the type of z and B(y) is

(Vzl : .. (Vzp: E,,

where G is either Prop or a ro-simple context function, and so B(y) is a proposition
function. By Definition 4.19(c),

C(A(x, y)](p[B(C)],p[C]) = p[B(C)](C[M(z,y)](p[B(C)],p[C])).

By the induction hypothesis, the right-hand side equals

p[C](C[M(C.y)](p[C])),

127

which, by our abbreviation for p[B(C)], is

C[B(y)](p[CI)(C[M(B(y),y)](p(C])).

If p = 0, we axe finished, since A(B(y), y) =. B(y) and M(B(y)) is void, so this is
just

C[A(B(y), y)](p[C]),

as desired. If p > 0, then we have the following subcases according to Corol-
lary 4.13.1:

Subcase 5.1. B(y) =. Az 1:E1 Azp:Ep . F(z, y), where z is the sequence
zl,...,zp. By Definition 4.19(f),

C[B(y)](p(C])(C[MB(y), y)](p[C]))

is C[BCy)z]Cp[C], c[M B~y), y)](p[C])).

By the induction hypothesis on the type of B(y), this is

C[B(y)M(B(y), Y)](p[C]),

and since A(B(y),1y) =. B(y)M(B(y),y), we are done.
Subcase 5.2. B(y) =. yiNI(y) ... Nq(y), which we may as well abbreviate as

yN(y). Then A(B(y), y) =. yiN(y)M(B(y), V). Now by Definition 4.19(c),
C[B(vt)](p[C])(C[.M/B(y),yV)](p[C]))

is p[C,](C[N y]p[])(C[B(y), y)1(p[C])),
but this is the same thing as

pECI(C[N(y)I(p[Cl), C[MB(y), y)](p[Cl)),
and by Definition 4.19(c), this is

C[A(B(y), y)(p[CI),

as desired.
Case 6. A(z, y1) =. (Vz E(z, y))F(z, x, y), where E(x, y) is not a context. By

the induction hypothesis,

C[E(z, yj)](p[B(C)], p[C]) = C[E(B(1 ,), yJ)(p[C])

128

and, for any term N(y) such that there is a ro-aceptable deduction ending in
N(C):E(B(C)),

C[F~z, --,y)](p[BCC)],p[C]) = C[F~z, B~y), y)]Cp[C]).

By Definition 4.19(d), the lemma follows.
Case 7. A(z,y) =. (Vz : E(z,y))F(z,z, y), where E(z,y) is a context. Similar

to Case 4 using Definition 4.19(e). M

Notation In the following lemma, x will denote the sequence T1,..., zl,, y the
sequence y,.. . ,Y, N the sequence N1 ,....,Nn, B the sequence B,,... ,B,,, and
p[B] the sequence p[Bi],... ,p[Bm]. Furthermore, A +,, for i = 0, ,...,n - I, will
denote [N1/zl,... ,NdIzl]Ai+l.

Lemma 4.8 Let
x, : AI(V),... ,x. : An,(y)

Iz, y)
M(m, y) : A(z, y)

be a ro-acceptable deduction all of whose undischarged assumptions are among
those shown, where y consists of all variables which occur free in any type or term
which are not assigned supercontexts as types by ro. For all assignments of terms
Bi,...,Bm to y,,...,yn (where for each i = 1,2,...,m, it can be proved from
ro that Bi is in the type assigned to yi) and for all assignments of computability
predicates p[BI], ... , p[Bm] to B,... ,Bm, if for i- 1,2,...,n, the ro-acceptable
deduction

vi

Ni:A (B)

is in C[Aj(y)](p[B]), then

NI, A'l(B) ,.,Nn A'(B)
V(N, B)

M(N,B) : A(N,B),

is in C[A(N,y)](p[B]). 1 3

129

Proof By induction on structure of D(z, V).
Basis:

Case 1. V(z,y) consists of the axiom (P T). Since this deduction is dearly SN,
the lemma follows by Definition 4.19(b).

Case 2. 9(z, y) consists of the assumption zi : Ai(y,). The lemma is immediate.

Induction step: There are the following cases, according to the last inference in
V(z, y).

Case 1. The last inference is by (KicFormation). By Definition 4.19(b), it is suf-
ficient to prove that (4.8) is SN. By the induction hypothesis and Definition 4.19(b),
the deductions of both premises are SN. Hence, (4.8) is SN.

Case 2. The last inference is by (Eq'K). Similar to Case 1.
Case 3. The last inference is by (V e). Then M(z,y)=-MI(xy)M2(wy),

A(z,y) - E(M2(xy),xy),
and V(x,y) is

zl:AI(y),... ,zn : An,(y) zl : AI(y),... z An(y)

V'(X',Y) D"(0f, Y)

M(, y) : (Vx : C(, y))E~, , y) M2(X, Y) : C(, Y)

Cre)
Mi (w,y)M2(x, y) : E(M2(x, y),x, y). Ve

Subcase 3.1. C(z,y) is not a context. By the induction hypothesis,

V1 ,

N, : A'(B) N.. , V: A'(B)

D'(N,B)

M(N,B) (Vx : C(N,B))E(z,N,B)

is in C[(Vx :C(N,y))E(x,N, y)](p[B]) and

D, Vn
N, : A'I(B) ,.,N, : A'(B)

V"(N, B)

M2(N,B) : (N,B),
13 Cf. Hindley & Seldin (HS86] Theorem A2.3 Lemma 3(b).

130

is in C[C(N, y)](p[B]). Then by Definition 4.19(d), (4.8) is inC[E(M2(N, y), N, y)]Cp[B]).
Subcase 3.2. C(w, y) is a context. By the induction hypothesis,

V1 pm

N, : AI(B) ,.,Nn : A'n(B)

V'(N, B)

Mi(N,B) (V: C(N,B))E(z,N,B)

is in C[(V: C(N,y))E(x, N, y)](p[B]) and

NI : A'(B) ,.,Nn : A'(B)

V(N,B)

M(N,B): A(N,B),

is in C[C(N, y)](p(B]). Then by Definition 4.19(e), for any computability predicate
p[M 2(N,B)], (4.8) is in C[E(z,IN, y)](p[M 2(N, B)],p[B]). To complete the proof,
it is sufficient to find a computability predicate p[M 2(N, y)] such that

C(E(z,N,y)](p(M2(N,B)],p[B]) = C[E(M 2(N,y),N,V)](p[B]). (4.9)

A suitable such function is the one such that

p[M 2(N, B)] = C[M 2(N, y)](p[B]).

That this is a computability predicate follows from Definition 4.18 and Lemma 4.6.
That (4.9) holds follows from Lemma 4.7.

Case 4. The last inference is by (Vii). Then A(z,y) =- (Vz : C(wy))E(xwy),
M(w,y) is A:C(w,y) . M,(x,x,y), and V(z,y) is

1

[x : C(w, y)], xl : Al(y),...,n : An,(y) x, :Ay).,z:An(y)

VCX, 0,"(z,)
Mj(z~zm): E(.Tjzjy) Cz, Y) : ,.

(Vwi- 1)
Az:C(w). Ml(x,z,y) :

(V : C(w))E(xw)1

131

Subcase 4.1. C(z, y) is not a context. Then K S Prop. By the induction hypothesis,
for all deductions

V1I

P : C(N, B)

in C[C(N, y)](p[B]),

PC(N, B) , Ni : A'(B) ... N, : A'(B)

2'(P, N, B)

MI(P,N,B) : E(P,N,B)

is in C[E(P, N, y)](p[B]). Hence, by Lemmas 4.4(b) and 4.5,

1 Di V1n DI Dn
[: C*], N, : A*,... ,N, : An N, : A*,,..., ,Nn : An*

DI"(z) ''I

M (x): E*(x) C*: 0,
(Vwi - 1)

AxC-. M (z) (Vx: C*)E*(x) P: C"
(v e)

(Ax: C*). M(x)P: E(P),

where A7 - A (B), X =X(N,B), and X*(Y) -X(YN,B), is also in
C[E(P, N,y)](p[B1). Since D"' is arbitrary, this implies by Definition 4.19(e) that
(4.8) is in C[A(N, y)](p[B]).

Subcase 4.2. C(z, y) is a context. Then . - Type. By the induction hypothesis,
for all deductions

VI"
F: C(N, B)

in C[C(N, y)](p[E]) and for all computability predicates p(F],

-D"' DI V
F:QN, B) , N, : A'(B) ... Nn : A'(B)

V'(F,N,B)

MI(F,N,B) : E(F,N,B)

132

is in C[E(z, N, y)](p[F],p [B]). Hence, by Lemmas 4.4(b) and 4.5,

1i V" VI V

Vrz -(x) C 2""

M l * () : E (-- . C * 0 C(V i i - 1)
Azx:C 5 . Ml*(z): (Vx: C*)E*() F: C*

(,\x:.C*. M*(x): E*F),(VYe)

where A:', X*, and X*(Y) are as in Subcase 4.1, is also in C[E(x, N, y)I(p(F],p(B]).
Since V"" and p[F] are arbitrary, this implies by Definition 4.19(d) that (4.8) is in

Case5(Telstifeec i y(E". hsissragtoradbyDfiiin .9

Cage 6. The last inference is by (e). This is striialfrx by De fiti n .19.

Theorem 4.14 (Strong normalization) Everyj deduction in TAG is strongly
normal.

Proof In Lemma 4.8, let Vi consist of the assumption xi Ai(y) and let Bi be yi.
Then for any sequence p[B], V(x, y) is in C[A(m, y)](p[B]), and so is SN.E

133

4.4 Consequences of the strong normalization theo-
rem

Although we have proved the strong normalization theorem for deductions, this
theorem is usually proved for terms. We saw in Theorem 2.2 and Corollary 2.2.1
that-for TA, the normalization theorem for terms can be proved from the strong
normalization theorem for deductions by using the subject-construction theorem.
We do not have this theorem for TAC in a form that is easy to state. Nevertheless,
there is a relationship between terms and deductions, and we can expect to use this
relationship to obtain a normalization theorem for terms.

Theorem 4.15 (Normalization theorem for terms) If r is a well-formed en-
vironment and if

r '-TAC M: A,

then M has a normal form.

Proof By Theorem 4.14 there is a normal deduction V of

r 'TAC N :A,

where MN. The proof is by induction on the deduction D.
Basis: If V consists of an assumption, then N is a variable, and so it is in normal

form. If V consists of the axiom (P T), then N is Prop, which is in normal form.
Induction step: There axe the following cases, depending on the last inference

in V.
Case 1. The last inference is by rule (ici.Formation). Then A is K', N is

(Vz : B)C, and V is

1

[x:B]
V1 D2()

b: Ic C : W
,i'Formation

(Vz : B)C : K,'

By the induction hypothesis, B and C have normal forms; hence, so does A.
Case 2. The last inference is by rule (Eq'K). Then by the induction hypothesis,

N converts to a term B (to the left of the colon in the premise) which has a normal
form.

134

Case S. The last inference is by rule (Ve). Then N PQ, A [Q/z]C, and V
is

P:(Vx:B)C Q:B
(V e)

PQ: [Q/X]C.
By the induction hypothesis, P and Q have normal forms. Furthermore, since V
is normal, there is no ic-reduction possible in it. It follows that at the top of the
left branch of V (and hence of V1) is an undischarged assumption. It follows that
P =. yQ ... Q, for some variable y. It follows that Ql,...,Q,, all have normal
forms, and hence that PQ =. yQ1 ... Q,,.Q does as well.

Case 4. The last inference is by rule (Vici). Then A E (Vz B)C, N - Axz:B . P,
and) is

:B]

P:C B

Ax:B .P .(Vz : B)C.

By the induction hypothesis, B and P have normal forms; hence, so does
N =- Az:B. P.

Case 5. The last inference is by rule (Eq"). Then N is the term to the left of
the colon in the premise, and so by the induction hypothesis it has a normal form.

Case 6. The last inference is by rule (='). Then N is obtained by changes
of bound variables from a term which, by the induction hypothesis, has a normal
form, and so N has a normal form. U

Note that we have not proved that every term is SN. If we try to replace the
conclusion by "N is SN" in the above proof, we can see that Case 2 breaks down,
since not every term convertible to an SN term is itself SN. Indeed, if A is SN, and
if z 0 FV(A), then for any terms B and C, (A\z:B . A)C =. A; now if C has no
normal form, then (A\z:B . A)C is not SN. This shows that we cannot strengthen
the theorem to prove that N is SN. (Of course, to prove that M is SN is somewhat
more complicated; we will take this up below.)

It might appear that since only Case 2 breaks down, and since the conclusion
in this case is not a proof, we might want to add the assumption that N : A is a

135

proof. This will exclude Case 2. But now we have trouble with Case 4: we can
conclude that P is SN, but not that B is SN. Indeed, by the remarks of the previous
paragraph, B might not be SN.

Mitchell [Mit86] defines a function Erase for TAP which deletes the types of the
bound variables. When this function is modified for TAC, it is defined as follows:

Definition 4.20 (Erase function)
(a) Erase(a) =_ a if a is a constant or a variable;
(b) Erase(MN) E Erase(M)Erase(N);
(c) Erase(Ax:A . M) Ax . Erase(M); and

(d) Erase((Vx : A)B) (Vx : Erase(A))Erase(B).

Note that except for clause (d), we are mapping terms of TAC to pure A-terms.
In fact, the range of the function Erase is the set of TAG terms (Definition 2.17).

We can now prove that if A is not a context in the theorem, then. Erase(N)
is SN. To extend this result to Erase(M), it is enough to note that deductions of
proofs do follow the constructions of the terms except that additional inferences of
formulas which are not proofs are added at various places on top. This will give us
the following result:

Corollary 4.15.1 Under the hypotheses of Theorem 4.15, if A is not a context,
then Erase(M) is strongly normal.

There are some further corollaries that follow immediately from Theorem 4.15.
These corollaries are standard consequences of normalization theorems.

Corollary 4.15.2 For terms M and N such that
r '-TAC M : A,

and
r 'TAC N :A,

where r is a well-formed environment, it is decidable whether or not M =. N.

Corollary 4.15.3 For a terms M and a well-formed environment r, it is decidable
whether or not there is a term A such that

r F'TAC M: A.

136

We can also prove a partial converse to Theorem 4.2, relating TAC to TAP.
Recall14 that the interpretation of types and terms of TAP as terms of TAC is defined
as follows: first, we divide the variables of TAC into two mutually disjoint classes,
the first for interpreting term variables of TAP and the second for interpreting the
type variables. Then, for a term or type A of TAP, we define A*, a term of TAC,
as follows:
(a) if z is a term variable, then z* is a variable of the first class distinct from all
variables y* for term variables y distinct from z;
(b) if a is a type variable, then a* is a variable of the second class distinct from all
variables b* for type variables b distinct from a;
(b) (a -* 3) is (Vz : a)*/3* for a (term-) variable z which does not occur free in a*
or
X";

(c) ((Va)a)* is (Va*: Prop)a*;
(d) (MN)* is M*N*;
(e) (Ma)* is M'a*;
(f) Az:a. M* is Ax* : a . M*; and

(g) Aa.M* is Aa* : Prop. M*.

It is easy to show that if a is any type-scheme of TAP, then a* is in normal form,
and that if M is any term of TAP which is in normal form, then M* is also in
normal form. Note also that this interpretation takes any #'-contraction of TAP
into a #-contraction of TAC.

Theorem 4.16 Let r be a sequence

X1 :l, X2 : C ..1 , Xn "an

of assumptions in TAP, and let r* be

X11 : all, X2: C12, :o*ak
Let a be any type scheme in TAP, let al,..., a, include all of the type variables

which occur free in a, and let r' be

at : Prop,...,am: Prop.

If V is a normal deduction in TAC of

r*,r, I M*:a,

"4C. Hindley & Seldin [HS86] Theorem 16.66

137

where M is a term of TAP, then there is a normal deduction V" in TAP of

r - M:a.

Proof Note first that Lemmas 16.67 and 16.68 of Hindley & Seldin (HS86] hold for
TAC as well as for TAGL; the proofs for TAC are obtained by a minor change in
notation from those for TAGL.

The proof is by induction on the deduction V. Note that by hypothesis,/7
does not consist of axiom (P T), and its last inference is not by any of rules
(oWFormation) or (Eq'K). Furthermore, since we are assuming that V has been
transformed according to Theorem 4.1, we may assume that the last inference is not
by rule (Eq"). For the types of the assumptions (both discharged and undischarged)
are all in normal form, and if the types of the premises of any rule except (Ve) and
(Eq") are in normal form, then so is the type of the conclusion. With regard to
inferences in V by rule (Ve) the left branch above each such inference contains in-
ferences only by the same rule and rule (Eq") and at the top of the branch is an
assumption (since V is normal); and it is not hard to see by beginning with the
assumption that because the type of the left premise of each such inference by rule
(Ve) is 3 for some TAP type scheme /3, so is the type of the conclusion. It follows
that each of these types is in normal form, and so there is no inference by rule (Eq")
in the branch. There are the following remaining cases:

Case 1. V consists of an assumption. Then M is zi, a is ai, and V consists of
the corresponding assumption in TAP.

Case 2. The last inference in V is by rule (Ve). Then since V is normal, the
only inferences which occur in the left branch are by rules (Ve). Furthermore, M*
is in normal form. Now it follows from this that M* has the form zM1 ... Mp,
where z is assigned a type by the assumption at the top of the branch (which is
not discharged). Hence, z is one of the x . By the definition of the interpretation,
it follows that each Mi is either N* for some TAP term Ni, in which case the type
assigned to it is for some TAP type scheme -j, or else some /3 for some TAP
type scheme /3j, in which case the type assigned to it is Prop. By the induction
hypothesis, there is a normal deduction Vi of r I- Nj : 7j for each such N1 , and
then rules (--, e) and (Ve) of TAP can be used to obtain D' from the assumption zi

a, and the deductions Vi.
Case 3. The last inference in V is by rule (VPi). Then a* is (Vz : B)C and M*

is Az:B. N. By the right premise, B is P* for some TAP type scheme P, and it
follows that z is some y*, for a TAP term variable y, and does not occur free in C;
furthermore, C is -" for some TAP type scheme -f. In addition, N is P* for some
TAP term P. It followsthat if the last inference is removed from V, the result is a

138

normal deduction V1 of

r*,*:f*,rI I-TAc P*:7'*.

By the induction hypothesis, there is a normal deduction D1' of

r,y:p -TAp P:7,

and i is obtained by an inference by rule (--, i).
Case 4. The last inference in V is by rule (VTi). Then a* is (Vz B)C and

M* is Ax : B . N. By the right premise, B is Prop. Hence, x is /* for a TAP type
variable a, C isO/3 for some TAP type schemef/, and N is P* for some TAP term
P. It follows that if the last inference is removed from D, the result is a normal
deduction D1 of

r*, r', a* : Prop -TAC P*

By the induction hypothesis, there is a normal deduction DI' of

r '-TAP P: p.

Since a is (Va)/3, D' follows by an inference by rule (Vi).
Case 5. The last inference in D is by rule (-'). This case is trivial since the

same rule (essentially) is also a rule of TAP.E

Corollary 4.16.1 Under the hypotheses of the theorem, if N =. M* and if
A =. a*, and if

r*,r' F-TAC N:A,

then
r -TAP M :a.

139

4.5 The theory of constructions: sequent formulation

In this section we shall consider an alternative formulation of the theory of con-
structions. It is a variant of the form in which the theory was originally presented
in Coquand [Coq85], and is closer to the presentation in other papers by Coquand
and Huet than is the system TAC.

As we saw in the last section, every rule which discharges an assumption of the
form z : A has a premise not depending on this discharged assumption that is either
A : Prop or A : Type. If we wanted to, we could take these premises as justifications
for the assumptions instead of premises for the rules; this is the approach adopted
by Martin-L6f in his work (see his [Mar75], [Mar82], and [Mar84]). The main reason
this is not done in TAC is that it would require that premise to be written above
the assumption, and then the assumptions would not occur at the tops of branches,
an inconvenience for the theory of a system such as TAC. But for the form of the
theory of constructions presented by Coquand, it is the most useful approach.

This form of the theory of constructions is what is known as a sequent calculus.
A sequent is an expression of the form

r F- E, (4.10)

where r is a (possibly empty) sequence of formulas and E is a formula. This partic-
ular sequent calculus is formulated in such a way that the only nonempty sequences
that can occur to the left of the turnstile (the symbol 'W) are well-formed envi-
ronments. This will make unnecessary the premises which "justify" the discharged
assumptions; for these assumptions will all occur to the left of the turnstile in the
premises of the rules and will hence be part of well-formed environments, and so
these premises will automatically hold. The fact that r is a well-formed environment
will be equivalent to the derivability of the sequent

1' F- Prop : Type.

The system will be called TACS.
Note that until the equivalence of TAC and TACS is proved, it will be necessary

to specify the system with respect to which an environment is well-formed. Until
notice to the contrary is given, a well-formed environment will mean with respect
to TACS.

Definition 4.21 (The type assignment system TACS) The system TACS is
a sequent calculus; its sequents are of the form

r F- E, (4.11)

139 a

where r is a sequence of TAC formulas and E is a TAC formula. The system has
one axiom:

(P T) I- Prop: Type

Its rules are as follows, where, in each case, z is a variable which does not occur
free in r or in A, and i is any kind:

I. Well-formed environments:

(Pi) r I- A: :

r, : A F- Prop: Type

I. Introduction of product:

(Vi) r,x : AF B :

r F (Vz: A)B: it,

III. Introduction of a variable:

(Pe) r 1- Prop :Type Condition: y : A occurs
in r and p does not oc-cur free in A.

IV. Lambda introduction:

(Ai) F, : A M: B

r F" Az:A. M : (Vz : A)B,

V. Application:

(Ve) r I-M: (Vz : A)B rFN:A

r F MN [N/z]B,

140

VI. Equality rules:
(Eq") If A =. B, then

r- M:B

r - M: A,

(Eq'K) If A =. B, then

rI-B:K

rI-A:K

VII. Changes of bound variables:
If N is obtained from M by changes of bound variables, then:

rI- M:A

r-N:A.

We shall now establish the equivalence of TACS and TAO:

Lemma 4.9 If r F-TACS E for any formula E, and if r, is any initial segment
of r (possibly including r itself), then each derivation of r -TACS E contains a
subderivation of r, '-TAcS Prop : Type.

Proof By induction on the derivation of r I-TACS E.
Basis: If r -TACS E is the axiom (P T), then r' is empty, and the result is

trivial.
Induction step: We assume the property for each premise of a rule and prove it

for the conclusion.
If the sequence to the left of I- in the conclusion is an initial segment of that

of at least one premise, this is trivial. This takes care of all rules except (Pi). In
this case, r is ri, A : Prop, and E is Prop : Type. If r is all of r, then the entire
deduction is what we seek. Otherwise, r, is an initial segment of r1 , and the result
is trivial by the induction hypothesis. M

Lemma 4.10 If r -TACS Prop : Type, then r is a well-formed environment.

Proof By induction on the pair (n, m), where n is the number of formulas in r and
m is the length of the derivation of r -TACS Prop : Type.

141

Basis: Trivial, since r is empty.
Induction step: Assume the lemma for any initial subsequence of r, and suppose

thast r is v7, z : A. By the induction hypothesis, 1' is a well-formed environment.
Now the only rules of which

i', z : A -TACS Prop: Type

can be the conclusion are the equality rules and (Pi). If the rule is an equality rule,
then by Lemma 4.9 there is a subderivation of the derivation of the premise of the
inference which is a derivation of

r', z : A -TACS Prop: Type

and so the conclusion follows by the induction hypothesis; if the rule is (Pi), then
it follows that z does not occur free in 1' or in A and that

r' -TACS A : r.

Since r' is a well formed environment, this implies that 1 is as well. U

Lemma 4.11 If r '-TACS E, then ris a well-formed environment.

Proof Lemmas 4.9 and 4.10. u

Theorem 4.17 There is a formula E such that r -TACS E if and only if r is a
well-formed environment.

Proof The "only if" part is Lemma 4.11. The "if" part is easy using the axiom
and rules (Pi) .0

We are now in a position to prove the equivalence between TAC and TACS.

Theorem 4.18 If
r7 I-TACS E, (4.12)

then
r7 1-TAC E. (4.13)

Proof By induction on the derivation of (4.12).
Basis: (4.12) is axiom (P T). Then r7 is empty, E is Prop : Type, and (4.13) holds

by axiom (P T) in TAC.
Induction step: The cases are by the last rule used in the derivation of (4.12).

142

Case (Pi). Trivial.
Case (Vi). E is (Vz : A)B : ., where z does not occur free in A or r, and the

premise is
r, z A I-TACS B : K.

By the induction hypothesis,

r, : A -TAC B : K.

Furthermore, by Theorem 4.17, r,z : A is a well-formed environment (with respect
to TACS). This means that the derivation of (4.12) includes a subderivation of

r -TACS A: W.

Hence, again by the induction hypothesis,

r '-TAC A: W.

Hence, (4.13) follows by (K'Formation).
Case (Pe). Trivial by the conventions of natural deduction systems.
Case (Ai). Similar to Case (Vi), using (Vgi).
Case (Ve). E is MN :[N/z]B, and the premises are

rFTAcsM:C and rF-TAcsN:A,

where C =. (Vz : A)B. By the induction hypothesis

r 1'TAC M:C and r 1'TAC N:A.

(4.13) then follows by rules (Eq") and (V e).
Case (Eq"). Trivial by rule (Eq").
Case (Eq'K). Trivial by rule (Eq'K).
Case (-). Trivial by zule (='). 2

For the converse we have:

Theorem 4.19 If ris a well-formed environment, and if (4.13) holds, then (4.12)
holds.

Proof By induction on the proof of (4.13).
Basis: If (4.13) is axiom (P T), then (4.12) follows by axiom (P T).
Induction step: The cases are by the last rule in the deduction of (4.13).

143

Case (ic;'Formation). (4.13) is
r F-TAC ((Vx : A))B:W,

where x does not occur free in A or in 1. The premises are

1 I-TAC A:r and r,z:A }TAc 1:W.

Hence, r, z : A is a well-formed environment (with respect to TAC), and so by the
induction hypothesis

r, z : A -TAcS r : .

Hence, (4.12) follows by (Pi).
Case (V e). (4.13) is

r -TAC MN : [N/z]B,

where the premises are

r 1'TAc M : (Vz : A)B and F-TAC N :A.

By the induction hypothesis,

r F-TAcsM:(VZ:A)B and r -TACSN:A.

Hence, (4.12) follows by rule (V e).
Case (Voi). (4.13) is

S-TAC Ax:A. M : (Vz : A)B,

where the premises are

r,z:A 1-TAC M:r and r F'TAC A:K,

where z does not occur free in A or in r. It follows that r, z : A is a well-formed
environment with respect to TAC, and so by the induction hypothesis,

1,z: A -TACS M : B.

Hence, (4.12) follows by rule ().).
Cases (Eq"), (EqiM), and (_). Trivial by the corresponding rules in TACS. a

Theorem 4.20 A necessary and.sufficient condition that (4.12) hold is that r be a
well-formed environment (with respect to TAG) and that (4.13) hold.15

144

Proof Theorems 4.18 and 4.19. u

Corollary 4.20.1 An environment r is well-formed with respect to TAG if and
only if it is well-formed with respect to TAGS.

For this reason, we shall no longer specify the system with respect to which an
environment is well-formed.

Remark The system TACS is slightly more general than the sequent version of
the theory of constructions presented by Coquand and Huet in that its equality
rules are more general. To obtain a natural deduction system equivalent to Huet's
system, the rules (Eq'i) must be deleted, rule (Eq") must be replaced by the two
more restricted rules

M:A B:i¢ A=.B
M: B,

and rule (=') must be generalized to allow changes of bound variables in both parts
of a formula M : A. The corresponding changes in TACS include introducing equal-
ity rules corresponding to those given above, and modifying rule (-) accordingly."'

"Pottinger (Pot87] proposes, a sequent formulation that is closer to TAC than is TACS
and helps to emphasize the equivalence. In Pottinger's system, which he calls TOC 1,
rules (Pi) and (Vi) are replaced, respectively, by Hyp (r I- A : x =K r, z : A -z : A) and Reit
(r I- E&r, F I- G * r, F t- E). Pottinger proves that TOC 1 is equivalent to TACS (which he
calls TOC 2). Since Pottinger's TOC 1 is a sequent version of TAC in the style of Fitch [Fit52],
Pottinger's equivalence result can be considered another form of this theorem.

1 Pottinger's TOC 1 (see the previous footnote) actually uses this more restricted version of the
equality rules.

145

Chapter 5

REPRESENTING LOGIC
AND MATHEMATICS IN
THE THEORY OF
CONSTRUCTIONS

It is now time to show that the theory of constructions can be a useful basis for the
ROMULUS system, and to show that we can represent many important concepts
from logic and mathematics in the theory.

This representation has actually been done by Coquand and Huet 1 . However,
their presentation consists of little more than definitions and examples, and so a
number of people have doubted the power of the theory. Here, in addition to the
important definitions and examples, we shall look at some proof-theoretic conse-
quences of the strong normalization theorem to show that these concepts behave
the way we want them to.

We begin in Section 5.1 with the representation of propositional and predicate
logic with equality. In Section 5.2 we discuss the additi6n of axioms to the system
and how this might affect consistency. Then, in the remaining sections, we take
up the representation of arithmetic, elementary set theory, and functions. The
representation of arithmetic includes the axiom of mathematical induction, and
it can thus serve as a model for the representation of inductively generated free
algebras. As an example of this, we take up lists (finite sequences). These lists are
useful in the formulation of the of the hook-up security property.

'See (CH86], [CH], and (HueS6], chapters 11 and 12.

146

5.1 Representing logic with equality

-We have already discussed representing the connectives and quantifiers of logic in
TAP (Section 2.4) and TAT (Section 3.6). Since TAP can be interpreted in the
theory of constructions (by Theorem 4.2), we can use these same definitions. It will
be convenient to repeat the appropriate definitions here. They are taken practically
word-for-word from Section 3.6, but a notation more suggestive of logic will be used.

To use these definitions, we need the arrow, or function-space, type. This now
becomes the implication proposition operator:

Definition 5.1 (Implication proposition operator) The term F is defined as
follows:

F =- Au:Prop. Av:Prop . (Vz : u)v.

We use either A -, B or A D B as an abbreviation for FAB, depending on the
context.

It is easy to show that -- satisfies the rules (-, e)and (-, i). This means, of
course, that D satisfies rules (D e)and (D i).

Definition 5.2 (Cartesian product proposition) The conjunction proposition
operator and its associated pairing and projection operators are defined as follows:
(a) A \u:Prop . \vProp . (Vwa: Prop)((u --* v --+ w) --+ w);

(b) D Au:Prop . Av:Prop . Az:u . Ayv . Aw:Prop . Az:u -- v --+ w . zzy;
(c) fst AuPtop . At.Prop . Az:Auv. zu(Ay:u. A.v. y); and

(d) snd - \u:Prop . \v:Prop. :Auv . xv(A\.u. Az:v. z).

We use A A B as an abbreviation for AAB.

It is not at all difficult to prove from these definitions that if A: Prop and B: Prop

DAB :A - B- - AAB,

fstAB : A A B A,

and
sndAB: A A B - B.

Furthermore, it is easy to see that if M : A and N : B, then

fstAB(DABMN) - M

and
sndAB(DABMN) =, N.

147

Definition 5.3 (Disjunction proposition operator) The disjunction proposi-
tion operator and its associated injection and case operators are defined as follows:

(a) V M Au:Prop . Ar.Prop . (Vw : Prop)((u -+ w) - ((v --. to) -1, w));
(b) inl Au:Prop. Av:Prop . Az:u. Aw : Prop. Af:u -, u;. Ag-v .- + w . ;
(c) inr Au:Prop . AtProp . Ayv . Aw:Prop . Af:u --+ w . Ag:v - w . gy; and
(d) case =- AuProp . AtProp . Az-Vuv . Aur.Prop . Af:u - to . Ag:v -. to . ztofg.

We use A V B as an abbreviation for VAB.

It is easy to show that if A : Prop and B : Prop, then

inlAB : A A V B,

inrAB : B -A V B,

and
caseAB : A V B - (Vto : Prop)((A -+ to) --+ ((B -- to) - to)).

Furthermore, it is easy to show that if C : Prop, M : A, N : B, F : A -C C, and
G : B -+ C, then

caseAB(inlABM)CFG =. FM

and
caseAB(inrABN)CFG =. GN.

Definition 5.4 (False proposition) . - (Vx : Prop)x.

With regard to the existential quantifier, we are now in a position to remove an
anomaly from Definition 3.16. For we now have the machinery to refer to functions
whose values are types.

Definition 5.5 (Existential quantifier) The existential quantifier proposition
operator and its associated pairing and projection functions are defined as follows:
(a) Z Au:Prop. Av:u -- Prop . (Vto : Prop)((Vx : u)(vx --+ to) -- to);

(b) D' Au:Prop. Ar.u -* Prop . Az:u . Ay=z . Ato:Prop . Az:(Vx : u)(vx - to). zy;
and

(c) proj - AuProp. Amu -+ Prop. Ato:Prop. Az:(Vx: u)(vx -+ to). A(Vx : u)vz
Ytoz.
We use (3z : A)B as an abbreviation for EA(A'A . B).

148

It not hard to show that if A : Prop and B : A -- Prop, then

(3:z : A)B : Prop,

D'AB : (Vu : A)(Bu D (3z : A)(Bx)),

and
projAB : (Vz : A)((Vu : A)(V, Bu)) (3w : A)(Bw)) x).

Furthermore, if in addition C : Prop, M : A, N : BM, and Z : (Vu : A)(Bu - C),
then

projABCZ(D'ABMN) =, ZMN.

Note that D' differs from D only in the types postulated for some of the bound
variables. But this difference is enough to make it impossible to define a right
projection for D' that is correctly typed2 .

We can also define equality over any type:

Definition 5.6 (Equality proposition) The equality proposition

M =A N,

where A is assigned type Prop, is defined to be

QAMN,

where
Q - Au:Prop. Ax:u. Aym. (Vz : u Prop)(zx D zy).

It is not hard to show that if A: Prop and X : A, then

Az-.A -+ Prop. Au:zX . u: X =A X,

and that if in adlition Y : A, M : X =A Y, Z : A -+ Prop, and N : ZX, then

MZN: ZY.

This gives us the reflexive law of the equality proposition and the substitution
property; these two properties are well known to imply all the usual properties of
equality.

It is not hard to see from this that we have all the usual properties of constructive
predicate logic with equality.

2On this point, see [Car86]. Of course, fst works as a left projection function for D'.

.149

We can also interpret classical logic. One interpretation 3 is based on the follow-
ing easily proved facts about intuitionistic logic:

--A DA, -,-B DB F -,-,(A AB) D(A AB),

and
-,-A(z) D A(x) - D (V)A(z).

Results corresponding to these can easily be proved in the theory of constructions.
This means that for formulas A which are classic4 that is for which - -- A D A,
the logic is classical. Furthermore, all negative formulas are classical and both A
and V preserve classical formulas. For other classical connectives and the existential
quantifier, we can use their familiar classical properties to define them:

A D, B = -(A A -B),

A Vc B = -(-A A -B),

and
(3,x : A)B = -,(Vz : A)-,B.

Since these are all negative formulas, they are all classical.
It is not hard to prove that if A is classical (in a well-formed environment r),

then there is a term M all of whose free variables are assigned types in r such that

r FTAc M:-AVcA.

If this method of representing classical logic is used in any "applied" theory,
then it is necessary to be certain that

-1-E D B

is provable for each formula E corresponding to an atomic formula in ordinary first
order logic. To assure this, it may well be necessary to take these formulas as new
axioms.

A second method of interpreting classical logic is as follows: define

Bool =_ (Vu : Prop)(u --+ u --+ u),

3See (CH] 13.3, where this is done for propositional logic.

150

T u: Prop A: U. AY: U. X,

and
F Au: Prop. Ax : u. Ap: u. y.

Here, Bool represents the boolean type familiar from the usual programming lan-
guages, and T and F for the familiar truth values. The familiar if ... then ...
else operator is defined as follows:

Cond A u : Prop. Av : Bool. A: : u . A : u . uy.

It is easy to prove that T:Bool and F:Bool and, if A is any type in Prop and M : A
and N : A, then

CondATMN =. M

and
CondAFMN =, N.

The propositional connectives familiar to most programmers can now be defined:

-1k MA : Bool. Cond Bool I F T,

Ak A :X : Bool.- 'kz Bool F,

and
Vk EAx : Bool. x Bool T.

It is then easy to prove the following:

-kT =F kF =, T

AkTT =T AkTF= F

AkFT =, F AkFF =, F

VkTT =T VkTF= T

VkFT =T VkFF F

We can then get implication as usual by defining

D =A: : Bool. -Ap : Bool . -'k(z Ak -'P),

and its usual truth table properties will follow.
In this formulation of classical logic, a proof of a proposition A is not a term

with that proposition as its type, but rather a term with the type A =sw T. Thus,

151

unlike the first interpretation of constructive logic, this interpretation is based on a
different set of terms to represent the propositions. In fact, it is based on the idea'
that there are only two propositions, T and F.

Extending this second interpretation to quantifier logic is a bit complicated. The
obvious way to proceed is to assume that we have a propositional function A over
some domain D, which is a type. In this case, this means that A: D - Bool. We
would want (Vkz : D)(AZ) to be T if and only if AM is T for every M : D and to
be F otherwise; but this specification assumes classical logic, whereas the type

(Vz : D)(Az =%w T)

is treated constructively by TAC, and in general there is no term with the type

(Vx : D)(Az =s" T) V (3x : D)(Az =9., F).

One possible solution is to use the first interpretation of classical logic, and replace
3 by 3,. But this will only work if D is a type for which there is a term of type

(Vz : D)(--,Az =S. T D Ax =Uj T).

A third possible method of interpreting classical logic is to add a new axiom by
assigning to an atomic constant the type

(Vu : Prop)(-,u V u). 5

We will have more to say about this in Section 5.2.

4Originally due to Frege.
*We could equally well use the formula (Va: Prop)(---m :> u).

152

5.2 Adding axioms to the theory of constructions

As we have seen, when logic is represented in the theory of constructions, the
formulas are all represented by types in Prop; the terms in these types will represent
proofs. One consequence of this is that assuming a new axiom A will mean taking
a new atomic constant c and adding c : A as a new assumption to the environment.

Now the way we have proved the strong normalization theorem in Chapter 4
guarantees that such constants can be added without interfering with the proof of
the theorem provided that these new constants do not occur at the heads of new
redexes. But this is just the way new axioms are added. Thus, adding new axioms
does not have any effect on the strong normalization theorem.

But adding new axioms may well affect the consistency of the system. Suppose,
for example, we assume c : I. This amounts to assuming as an axiom I, i.e., to
assuming the inconsistency of the system. This is one way in which the theory
of constructions differs from the second order polymorphic typed A-calculus: in
the latter, Theorem 2.4 shows that the strong normalization theorem implies both
the consistency of the entire system and of any set of assumptions6 , whereas in
the former, as we have seen, the strong normalization theorem does not imply the
consistency of all sets of assumptions.

The strong normalization theorem does, however, imply the consistency of the
empty environment, and thus of the system TAC itself:

Theorem 5.1 (Consistency of TAC) There is no closed term M such that

F'TAC M: -L.

Proof Similar to the proof of Theorem 2.4.E

Note that this proves the consistency of the higher-order constructive and clas-
sical logic of the previous section.

Although the strong normalization theorem does not imply the consistency of
all sets of assumptions, it does imply the consistency of some particular sets of
assumptions. For example, suppose r is

zi : "-A,,X2 : -nA2,...Xn : -IA,,

where -A is defined to be A D I. To show that r is consistent it is sufficient to
show that there is no closed term M for which

r '-TAC M : Ai

60f course, if we allowed new constants in TAP, we would get the same sort of possibilities for
inconsistency that we have in the theory of constructions.

153

for any i. As an example, let us prove that negations of equations between terms
with distinct normal forms are consistent if there are no other assumptions.

Theorem 5.2 (Q-consistencyT) Let r be a set of assumptions in which each for-
mula assigns to a rm (distinct) constant a type which converts to the form -'P =A Q
for terms P and Q of type A with distinct normal forms. Suppose that there is a
closed term R such that

r TAc R:M =AN.

Then
M=.N.

Proof Let V be a deduction in normal form of

r -TAC R: M =A N.

We proceed by induction on the structure of V. Thus, we may suppose as part of
the induction hypothesis that the theorem holds for any proper subdeduction of V.
Suppose that the last inference in V (except for equality rules) is by (V e). Because
V is normal, the only inferences in the left branch of D are (V e) and (Eq"). Consider
the forjtula at the top of the left branch of V. Because of the form of V and of the
rules of TAC, this formula is not a discharged assumption. If it is an undischarged
assumption, then the term of that formula to which the type is assigned is a variable
z, and R =' zRR 2 ... R,,, contradicting the assumption that R is dosed. If it is
a formula of r, then the deduction of the minor (right) premise for the inference
by (V e) of which the formula in question is the major (left) premise is a proper
subdeduction of D whose conclusion has the form S : P =A Q for a closed term S
and terms P and Q with distinct normal forms, contradicting the assumption that
the theorem holds for any proper subdeduction of V. Hence, the last non-equality
inference in V is not by (V e).

Since
M =A N =. (Vz: A -+ Prop)(zM D zN),

it follows that that last non-equality inference is by (VTi), R - Xz : A --* Prop . P,
and V has the forms

7This term is due to Curry; see [CF58] I8E3, p. 270.
$Posibly modulo some manipulations involving rules (Eq'P), (Eq'T), and (Eq"); we will not

bother to mention this fact again in what follows.

154

1

[z : A-- Prop]

V1 (z) Prop: Type A: Prop

P: zM D zN A -- Prop : Type

Az : A -- Prop. P : (Vz : A -* Prop)(zM D zN),

where z is a variable which does not occur free in r, M, or N. An argument similar
to the above argument for V shows that the last non-eq inference in D, (z) is not by
(V e), provided that at the end of the argument we note that although z may occur
free in P, since z does not occur free in r it can only occur free in the discharged
assumption, and the type assigned to z by that assumption makes it impossible for
it to occur at the top of the left branch in Pl(z). Hence, the last non-eq inference
in V)(z) is by rule (VPi), P =, Aw: zM. Q, and Vj(z) has the form

2

[W : zM]

2(w) z: A- Prop M: A

Q: zN zM: Prop

Aw: zM .Q: zM D zN, (VPi2)

where to is a variable distinct from z which does not occur free in r, M, or N. By
an argument similar to that above, the last inference in 1 2(w) is not by rule (V e).
Furthermore, any deduction of Q : zN must use the hypothesis w : zM. Since
V2(w) is normal and zM and zN are simple types, it is not hard to see that the
only rule that can occur in V2(w) is (Eq"), from which it follows that Q - w and,
more important, M =. N. m

Corollary 5.2.1 If r is as in the theorem, then it is consistent; i.e., there is no
closed term S such that

r -TA S: .

This theorem can be generalized somewhat. For example, if the types of the
variables are suitably restricted to prevent substitution instances of P and Q which

155

are convertible to each other, it is presumably possible to prove a version of the theo-
rem for universally quantified inequalities or for implications whose consequents are
inequalities. Furthermore, as we shall see in the next section, it is possible to prove
a similar theorem for a universally quantified inequality together with a universally
quantified implication between equalities in which it can be shown that if the terms
in the antecedent have distinct normal forms, then so do the terms in the consequent.

At the end of Section 5.1, we noted that we can obtain classical logic by taking

(Vu : Prop)(-u V u) as a new axiom; i.e., by assuming

c : (Vu : Prop)(-nu V u), 9

for an atomic constant c. We need some evidence that adding this assumption
does not introduce inconsistency. Of course, if we start with assumptions which
are inconsistent with the law of the excluded middle, then adding this assumption
will lead to a contradiction. But in most known systems without such assumptions,
the consistency of the constructive version of the system is well-known to imply the
consistency of the classical version. This makes it likely that adding this assump-
tion to most consistent well-formed environments10 will not make the environment
inconsistent.

Remark We have looked here at adding constants that do not head redexes. In
general, when we want a new redex, we define a closed term that can be shown
by an ordinary -reduction to head the required redex. This does not mean that
using such a definition is the most efficient way to implement the system. It does,
however, show that adding the new constant and reduction rule will not upset the
strong normalization theorem, since any infinite reduction using the new constant
and reduction rule will imply the existence of an infinite reduction from ordinary
/-reduction using the closed term which can be shown to have the same reduction
rule.

9Or, equally well, c: (Vu: Prop)('-,u :) u).
1 Which do not assign a type to c.

156

5.3 Representing arithmetic

As we saw in Section 2.4, we can easily represent the natural numbers in TAP. If
this definition is modified for TAC, it becomes the following:

Definition 5.7 (Natural number type)
(a) N M (VA : Prop)((A -- A) -+ (A -+ A));
(b) 0 - AA:Prop . Az:A A . Ay-A. y;
(c) - Au:N . AA: Prop. Az:A -- A. Ay:A.x(uAxy);

(d) r - Au:N . sndN,N(u(N x N) Q(DN,NOO)),
where Q =- Av: N x N. DN,N(O(fstN,NV))(fstN,NV); and
(e)R - AA: Prop. Az:A. Ay:N--,A--,A. Az:N.z(N--*)P(Aw:N.z)z,
where P E Av : N -+ A. Aw : N . y(rw)(v(7rw)).

The term n, which represents the natural number n, is defined to be

O(W... (00)...)),

where there are n occurrences of a.

As we saw above, it is not hard to show that

0: N,

:N - N,

r: N -+ N,

and
R : (VA : Prop)(A -. (N -+ A -+ A) -+ N -+ A).

It is also easy to show that

n =. AA : Prop. Az:A -+ A. Ay.A. x(x(...(xy)...

where there are n occurrences of x after the last abstraction,

tO =. 0,

ir('n) =. n,

and also, for any type A: Prop and any terms M and N of types A and N - A -- A
respectively,

RAMNO =. M,

157

and
RAMN(an) =. Nn(RAMNn).

It is also not hard to show that
N : Prop.

We know that this definition works in the sense that we can define all primitive
recursive functions and that the peano axioms hold. However, our knowledge of
the peano axioms is entirely metatheoretic; we do not get the formulas representing
these axioms as theorems of TAC. To get the peano axioms holding formally within
TAC, we need to add some new axioms. The first two axioms we need are obvious:

Peanol = (Vn : N)(-,on =N 0)

and
Peano2 a (Vm : N)(Vn : N)(om =N on D m =N n).

We also need the induction axiom:

Peano E (VA: N --+ Prop)((Vm : N)(Am D A('m)) D AO D (Vn : N)(An)).

Since the defining equations for + and x follow from the reduction properties of R
and rule (Eq"), it may appear that we have everything we need for arithmetic.

However, we are not finished. For although the only dosed terms of type N are
known to be natural numbers11 , so that the axiom Peano does not really restrict the
domain of objects in N, we do need to be able to talk about objects in other types
which are not natural numbers. We may even want to create a supertype of N, and
in such a supertype, where we will have things which are not natural numbers, we
will want to be able to assert that an object is not a natural number. To do this,
we need to be able to say that something is a natural number. And so far, we have
no way of doing this that is part of the logic; we have only

M: N,

which is definitely not the same thing. Thus, we need a predicate of the logic, N,
which says that something is a natural number. The definition we want is as follows:

N - Xn : N . (VA : N --- Prop)((Vm : N)(Am D A(om)) D AO) An).

"1Except for AA: PropAz : A -- A. z; this term is Y-convertible to 1, but not #-convertible. But
this term is not really something other than a natural number.

158

It is easy to prove

-TAC A: N -- Prop,
1-TAC M:.AO,

I-TAc N : (Vn : N)(An D N n)),

for closed terms M and N.
Now that we have the definition of A(, we no longer need the axiom Peano, for

it is easy to prove 12 that there is a dosed term M such that

-TAC M : (VA : N -- Prop)
((Vm: N)(Am D A(am)) D AO D (Vn : N)(NAn D An)).

While this is not exactly Peano, it is close enough for practical purposes 13.
This leaves us with the axioms Peanol and Peano2. These two axioms appear

to constitute a minor variation of the well-formed environment r of Theorem 5.2.
In fact, a similar proof gives us the following result:

Theorem 5.3 (Q-consistency of arithmetic) If r is

cl : Peanol, c 2 : Peano2,

and if
r FTAC R: M A N,

where R is a closed term, A is a type in Prop, and M and N are terms of type A,
then

M=. N.

Corollary 5.3.1 If r is as in the theorem, then it is consistent; i.e., there is no
closed term S such that

r 'TAC S:.L.

The theory of arithmetic we have just seen is an excellent prototype for induc-
tively generated free algebras, which can all be defined by similar methods14 . It is
not strictly necessary to have definitions for the types and constants involved: the

12This is not mentioned in (Hue86] or [Hue87].
13What Peano actually does is to say that the induction principle holds formally for the type N.

We know metatheoretically that it holds for N, but without the axiom Peano, we do not have the
result as a formal theorem of TAC. Since we do have that formal knowledge about A(, it is difficult
to imagine circumstances in which this formal knowledge about N would be necessary.

14Ci (BB84].

159

above theory would work just as well if N, 0, a, and R are new atomic constants 5 .
If we do take them as atomic constants, then Peano can be interpreted as saying
that type N is assigned only to terms in the set N, and so we are justified in con-
cluding the consistency of the system with axiom Peano added.

As an example of an inductively generated free algebra, let us consider lists. In
ROMULUS we will use lists to formulate the hook-up security property. To have
lists of terms of type A, we need a type List which, when applied to A, forms the
type ListA of lists of objects of type A. We also need the empty list, nilA, and the
function consA of type A --, ListA --+ ListA which puts an object of type A at the
front of a list of objects of type A to produce a new list of objects of type A. We
will want to be able to define recursively functions on lists and objects of type A.
For example, the function append which concatenates two lists, is defined as follows,
where L1 and L2 are lists of type ListA and M : A:

appendA(nilA)L 2 E L2,

appendA(consAML,)L 2 - consAM(appendAL1 L2).

To take another example, the function reverse which reverses the order of a list is
defined by

reverseAL E flipAL(nilA),

where flip is defined by

flipA(nilA)L 2 L2,

flipA(consAMLI)L 2 flipALI(consAML2),

To make definitions like this, we need a term which plays with respect to lists the
role that R plays with respect to N.

It turns out to be possible to define List, nil, and cons so that these recursive
definitions become possible:

List - \A.Prop . (Vu: Prop)((A --+ u --. u) --. u - u),

nil =_ AA: Prop. AB : Prop . Af : A -+ B -- B. Ay: B. y,

cons - AA : Prop. Ax : A . A : ListA. AB : Prop.
Af : A -- B - B . Ay : B . fz(lBfy).

15 0f course, the reduction rules for R have to be postulated in this case. We can have confidence
that there is no problem with the strong normalization theorem if these new constants are assumed
precisely because we can define all of them as closed terms from which the reduction rules for R
can be deduced.

160

The intention is that if L =. (z1 , X2, ... , ,) is a list in ListA, f : A -- B - B,
and y : B, then

LBffzx(fx 2(... (f:,4y))...).

To show that this definition works, note that if h : A -+ B -* B and M : B, and if
g is defined by

g I= M : ListA. IBhM,

then g has the properties

g(nilA) M,

g(consAzL) hz(gL),

for all z : A and L : ListA. This function g allows us to define append, reverse, and
such other list functions as length, mapcar, null, car, and cdr.

Just as we defined N corresponding to N, so we can define L corresponding to
List. The definition is as follows:

£ M AA : Prop . Axz : List A. (Vy : ListA - Prop)
((Vu: A) (Vl : ListA)(£CAI D £A(consAul)) D £A(niIA) D £z).

It is then easy to prove

F-TAC £ : (VA : Prop)(ListA -- Prop),

l-TAC M :(VA: Prop)(£A(nilA)),

FTAC N : (VA : Prop)(Vu : A)(VL : ListA)(£Al D £A(consAul)),

and

1 TAC P : (VA : Prop)(VB : ListA -+ Prop)
((Vu : A)(VI: ListA)(BI D B(consAul)) D B(nilA) D (VI: ListA)(Cl D Bl)),

for some closed terms M, N, and P. This gives us the desired induction property
on lists. All we still need are axioms corresponding to Peanol and Peano2:

(VA: Prop)(Vz : A)(Vy: A) (VI: ListA)(Vm: ListA)
(consAzl =uaA consAym D z =A y Al =u.t m),

and
(VA: Prop)(Vz : A)(VI: ListA)(-,consAzl =u." nilA).

A modification of the proof of Theorem 5.3 shows that these two axioms are con-
sistent.

161

5.4 Representing sets and functions

We spoke in the last section of the predicate N of natural numbers. But most
mathematicians prefer to think of the set of natural numbers. This point of view
is easily accommodated in the theory of constructions, since it is easy to think of a
predicate as a set16 .

Thus, suppose we have some type U : Prop or U : Type. Then we may think of U
as the current universe. Sets over U are defined to be predicates of type U --. Prop.
More formally, we may define

Setu - U --* Prop.

In terms of this definition, A : SetN and, if A: Prop, ZA : Setter. If A : Setu, then
we define x E A to be At. The set {x : UIE} is defined to be A : U . E. Inclusion
of set A in set B can be defined by

A C B - (Vx: U)(x E A D z EB)

and the corresponding equality by

A=B-ABABCA.

A special intensional equality on U can be defined as follows:

- -(VA :Setu)(x E A Y y E A).

Many of the usual sets and set operations can be easily defined. For example:

0 - x:UI :-},

AnB- x: Ulz E A Az EB},

AU B {z: Ujz E A V z E B},

and
A = It : U-'z E A}.

When no confusion results, we can leave out U and write {zIE},Set, etc.
It is important to remember the constructive nature of the logic. This means that

the set operations given above are not exactly like those in ordinary mathematics.
For example, we have

A C-- A,
"This material is based on the work of Huet (Hue86], Chapter 12 and [HueS?].

162

but not, in general, the converse.
One operation on sets that we do not have here is the power set operation. For

the power set of A, i.e. the set of all subsets of A, is defined by

PA M AB : Set. B C A,

and the type of PA is not Set, which is A --+ Prop, but instead Set -- Prop. Terms
of type Set -- Prop will be called classes, and we will give the formal definition

Classu E Setu -+ Prop.

Since U can be replaced by Setu, all set operations are also class operations. We
can define other class operations, for example

c - {xI(VA : Set)(CA D x E A)}9

and
U C ={_I(3A : Set)(CA A x E A)}.

We can also define the singleton in terms of classes:

{x} =_ n(AA: Set..x E A).

With these definitions,
A(: SetN.

We know metatheoretically that the dosed terms which are elements of the set A(
are exactly the closed terms of type N. Thus, the set A(represents the type N in a
special way. There is no known uniform method of defining sets to represent types
for arbitrary types that does not require extra axioms' 7 .

Most mathematicians think of functions as sets of ordered pairs, but this con-
ception is not really appropriate here. For we already have functions built into the
theory of constructions as primitive. A function is simply a term assigned to a type
of the form (Vx : A)B. Functions can, of course, be elements of sets, especially if
the sets correspond to types the way A(corresponds to N. Since a set corresponding
to a type A is a term of type A --+ Prop, a set of functions from type A to type B
is a term of type (A -. B) -- Prop. To say that a function f : U --. U is a function
from set A to set B, we use the type

(Vz: U)(z E A D fz E B).

17It is, of course, possible to add an axiom of the form AM for each closed term M : A, where
A is a type and A is the set intended to represent it, but many of these axioms are likely to upset
the proof of strong normalization.

163

It follows that the set of functions from set A to set B is

\f: U -+ U . (Vx: U)(x E A D f E .B).

If f : U --+ U, then for A: Set we can define

PreservefA - (Vx : U)(z E A D fX E A).

In terms of this operator, the induction axiom Peano can be written as

Peano =. (VA : N -, Prop)((Preserve oA) D 0 E A D (Vn : N)(n E A)),

and the definition of N as

A/ =. An : N . (VA : N --+ Prop)(Preserve oA D 0 E A D n E A).

This may help to show how to standardize the definition of inductively defined free
algebras.

This much set theory is sufficient for most practical mathematical purposes, but
from the point of view of a set theorist it is incomplete. Its major weakness is that
if A is a set, PA is not a set but a class; in the standard set theories it is also a
set. To make this a set, we would need to have Set include not only the terms in
U -+ Prop but also in (U -- Prop) -. Prop, ((U -- Prop) --, Prop) --. Prop, etc. This
can be represented in the theory of constructions as follows:18 first define

Seti U-- Prop,

Set,+l =--Set,, -- Prop.

Then we want to introduce a new type Set which will be assigned to terms in any
of the types Set,,. This requires that each type Set,, be a subtype of Set.

There is a general method of making type A a subtype of type B: it is to take
as an assumption

Az:A.x : A-+B.

From this assumption and M : A, we get (A : A. x)M : B, and clearly (A:
A. x)M represents the same object as M; in fact, it reduces to M. Assumptions of
this form have not been considered so far in the theory of constructions, and cannot
occur in well-formed environments. However, they have been considered in connec-
tion with ordinary type assignment; see [CHS721, pp. 453 and 304, where they are
called proper inclusions. Furthermore, conditions under which these assumptions
are compatible with the normal form theorem are given in [Sel77] Remark 2 p. 23.
It is possible to extend condition (i) of that Remark to TAC:

"This is not done in EHue86l or [Hue57].

164

Theorem 5.4 (Consistency of proper inclusions) Let r be a well-formed en-
vironment, and let I be a sequence of assumptions each of which has the form

Ax: A. z: A -+ B,

where B is an atomic constant, the assumption B : r occurs in F, and B -+ C is
not a type in F' for any type C. Then any deduction of

r,F' -TAC M : A

is strongly normalizable and both M and A have normal forms.

Proof We begin by proving that the required deductions are SN. Begin by replacing
in each assumption in F the term Ax : A . x by a variable which does not occur free
in either F or F, using a distinct variable for each such assumption. The resulting
deductions are all SN by Theorem 4.14. Hence, the deductions in which we are
interested, which are all obtained by substituting terms for variables, are also all
SN.

Now let us consider the terms in these deductions. These terms may contain
redexes of the form

(Ax: A. x)M.

A contraction will replace this redex by M. What we need to know is that this will
not produce a new redex. This could only happen if the original redex occurred in
a subterm of the form

(Ax: A. x)MN1 N2 ... N,

and since the type of
(Ax : A. x)M

is B, which is by hypothesis a new constant and hence not convertible to the form
(Vy : C)D, this is impossible. U

Now, in order to interpret a set theory in which the power set of a set is a set,
we need only define Set, as indicated above for each n > 1, define Set to be a new
atomic constant, assume Set : Prop or Set Type, and then assume

Set, : Set

for each n >_ 119. It follows from what we have just proved that this is consistent;
for Set is essentially the union of all the Setn, and in any given deduction, it will be
possible to replace Set by the union of a finite number of the Set. and thus avoid
using any new assumptions.

"This involves an infinite number of assumptions, but they can all be described in a finite
manner, and so it is not unreasonable to suppose that this can be implemented.

165

Appendix A

LIST OF POSTULATES AND
SYSTEMS

Here are listed -the various postulates which have appeared in this document and
the systems in which they occur. A list of the systems and the number of their
definitions is given in appendix 2. The rules are listed in the order in which their
main operators first appear.

(-. Formation): TAJ, TAT

(- e): TA, TAP, TAJ, TAT
(-4 i): TA, TAP; (alternate form) TAJ, TAT

(V Formation): TAGU
(Ve): TAP; (another sense) NJ*; (another sense) TAGU, TAC; (another sense)

TACS
(Vi): TAP; (another sense) NJ*; (another sense) TACS
(VJFormation): TAJ
(Vie): TAJ
(Vii): TAJ
(VPi): TAC
(VTi): TAC
(VUi): TAGU
(VaFormation): TAT
(Vae): TAT, TAG
(Vai): TAT, TAG

166

(~:TA; (another sense) TAOS
()*TAP, TAJ, TAT, TAG, TAGU, TAO
(~:TAP

(s'a): TAJ, TAT
(D e); NA (C) NJ, NJ*

(D i): NA (C), NJ, NJ*
(Ae): NJ, NJ*
(Ai): NJ, NJ-
(ye): NJ, NJ*

(Vi): NJ, NJ-
(-ie): Derived in NJ, NJ*

(-ni): Derived in NJ, NJ*
(I. j): NJ, NJ'
(I1 je): added to extended TA
(I j~p): TAJ
(3e): NJ*
(3i): NJ*
(WJormation): TAJ
(3Je): TAJ
(3Ai): TAJ
(e1): TAJ

():TAJ
():TAJ

(void): TAJ
(x Formation): TAJ
(Xe) 1 : TAJ
(Xe) 2: TAJ
(Xi): TAJ
(+ Formation): TAJ
(+e): TAJ
(+i),: TAJ
(+0)2: TAJ
(Eqe): 'IAG, TAGU, TAO, TAOS

167

(E4UI): TAGU
(Eq'P): TAO, TACS
(Eq'T): TAC, TACS
(Pe): TAOS
(Pi): TACS
(PPFormation): TAC
(PT): TAO; (another sense) TAOS
(PT Formation): TAO
(TP Formation): TAO
(TT Formation): TAO
(Ai): TACS

168

Appendix B

SYSTEMS AND THEIR
DEFINITIONS

Here is a list of systems and their definitions.

NA(D): Definition 3.2.

NJ: Definition 3.4.

NJ*: Definition 3.6.

TA: Definition 2.1.

Extended TA: Remark after Corollary 2.2.3 (end of Section 2.1).

TAC: Definition 4.2.

TACS: Definition 4.21.

TAG: Definition 2.22.

TAGU: Definition 2.24.

TAJ: Definition 3.10.

TAP: Definition 2.12.

TAT: Definition 3.12.

169

Bibliography

[BB84] Corrado Bihm and A Berarducci. Automatic synthesis of typed lambda-
programs on term algebras. May 1984. Unpublished notes.

[Bee85] M. Beeson. Foundations of Constructive Mathematics. Springer, Berlin,
1985.

[C*86] R. Constable et al. Implementing Mathematics with the Nupri Poof De-
velopment System. Prentice Hall, Englewood Cliffs, New Jersey, 1986.

[Car86] Luca Cardelli. A Polymorphic A-calculus with Type : Type. Technical Re-
port, Systems Research Center of Digital Equipment Corporation, Palo
Alto, California, May 1986.

[CF58] Haskell Brooks Curry and Robert Feys. Combinatory Logic. Volume 1,
North-Holland Publishing Company, Amsterdam, 1958. Reprinted 1968
and 1974.

[CH] Thierry Coquand and Girard Huet. Concepts mathfmatiques et in-
formatiques formalisis dans le calcul des constructions. Colloque de
Logique, Orsay (July 1985), North Holland, forthcoming.

[CH84] Thierry Coquand and Gerard Huet. A theory of constructions. June
1984. Presented at the International Symposium on Semantics of Data
Types, Sophia-Antipolis.

[CH861 Thierry Coquand and G6rard Huet. Constructions: a higher order proof
system for mechanizing mathematics. In EUROCAL85, pages 151-184,
Springer-Verlag, Berlin, 1986.

[CHS72] Haskell Brooks Curry, J. Roger Hindley, and Jonathan P. Seldin. Com-
binatory Logic. Volume 2, North-Holland Publishing Company, Amster-
dam and London, 1972.

[Chu40] Alonzo Church. A formalization of the simple theory of types. Journal
of Symbolic Logic, 5:56-68, 1940.

170

[Coq] Thierry Coquand. Metamathematical investigations of a calculus of con-
structions. Received February 9, 1987.

[Coq85] Thierry Coquand. Une Thdorie des Constructions. PhD thesis, Univer-
sity of Paris VII, 1985.

(Coq86a] Thierry Coquand. An analysis of Girard's paradox. In Symposium on
Logic in -Computer Science, pages 227-236, IEEE Computer Society,
IEEE Computer Society Press, 1986.

[Coq86b] Thierry Coquand. A calculus of constructions. November 1986. Pri-
vately circulated.

[CR36] Alonzo Church and J. B. Rosser. Some properties of conversion. Trans-
actions of the American Mathematical Society, 39:472-482, 1936.

[Cur63] Haskell Brooks Curry. Foundations of Mathematical Logic. McGraw-Hill
Book Company, Inc., New York, San Francisco, Toronto, and London,
1963. Reprinted by Dover, 1977 and 1984.

[Daa80] Diederik Ton van Daalen. The Language Theory of A UTOMATH. PhD
thesis, Technische Hogeschool Eindhoven, February 1980.

(Fit521 Fredric Brenton Fitch. Symbolic Logic. The Ronald Press Company,
New York, 1952.

[FL083] S. Fortune, Daniel Leivant, and Michael J. O'Donnell. The expressive-
ness of simple and second order type structures. Journal of the Associ-
ation for Computing Machinery, 30:151-185, 1983.

[Gen34] Gerhard Gentzen. Untersuchungen fiber das logische schliessen. Math-
ematische Zeitschrift, 39:176-210, 405-431, 1934. Translated in Sabo
(ed.), The Collected Papers of Gerhard Gentzen as "Investigations into
Logical Deduction".

[Gir7l] Jean-Yves Girard. Une extension de l'interpretation de Gadel b l'analyse,
et son application . l'6imination des coupures dans l'analyse et la theorie
des types. In J. E. Fenstad, editor, Proceedings of the Second Scandina-
vian Logic Symposium, pages 63-92, North-Holland, Amsterdam, 1971.

[GMW79] M. J. Gordon, J. Mlner, and C. P. Wadsworth. Edinburgh LCF: A
Mechanized Logic of Computation. Springer Verlag, 1979. Lecture Notes
in Computer Science 78.

[How8O] W. A. Howard. The formulae-as-types notion of construction. In
J. Roger Hindley and Jonathan P. Seldin, editors, To H. B. Curry: Es-
says on Combinatory Logic, Lambda Calculus and Formalism, pages 479-

171

490, Academic Press, New York, 1980. A version of this paper was pri-

vately circulated in 1969.

[HS86] J. Roger Hindley and Jonathan P. Seldin. Introduction to Combinators

and A-calculus. Cambridge University Press, 1986.

[Hue86] Gerard Huet. Formal structures for computation and deduction. May

1986. Course Notes, Carnegie-Mellon University, First Edition.

[Hue87] Gerard Huet. Inductionprinciples formalized in the calculus of construc-

tions. In Springer Lecture Notes in Computer Science 249, pages 276-

286, Springer-Verlag, 1987.

[Jas34] Stanislaw Jaskowski. On the rules of supposition in formal logic. Studia

Logica, 1:5-32, 1934.

[Mar7la] Per Martin-L~f. Hauptsatz for the theory of species. In J. E. Fen-

stad, editor, Proceedings of the Second Scandinavian Logic S ,mposium,

pages 217-233, North-Holland Publishing Company, Amsterdam and

London, 1971.

[Mar7lb] Per Martin-L~f. A theory of types. February 1971. Revised October

1971. Privately circulated.

[Mar73] Per Martin-L~f. Hauptsatz for intuitionistic simple type theory. In

Patrick Suppes, Leon Henkin, Athanase Joja, and Gr.C. Moisil, edi-

tors, Logic, Methodology, and Philosophy of Science IV, pages 279-290,
International Congress for Logic, Methodology, and Philosophy of Sci-

ence, Bucharest, 1971, North-Holland Publishing Company, Amsterdam
and London, 1973.

[Mar75] Per Martin-L5f. An intuitionistic theory of types: predicative part.

In H. E. Rose and J. C. Shepherdson, editors, Logic Colloquium '73,

pages 73-118, North-Holland Publishing Company, Amsterdam, 1975.

[Mar82] Per Martin-Lbf. Constructive mathematics and computer science. In

L. J. Cohen, J. Los, H. Pfeiffer, and K.-P. Podewski, editors, Logic,

Methodology and Philosophy of Science VI, pages 153-175, North-

Holland Publishing Company, Amsterdam, 1982.

(Mar84] Per Martin-Laf. Intuitionistic type theory. Bibliopolis, Naples, 1984.

Notes by Giovanni Sambin of a series of lectures given in Padua, June

1980.

[Mil78] R. Milner. A theory of type polymorphism in programming. Journal of

Computer and System Science, 17:348-375, 1978.

172

[Mi185] R. Milner. The standard ML core language. Polymorphism, 2, 1985.

[Mit86] John C. Mitchell. A type-inference approach to reduction properties
and semantics of polymorphic expressions (summary). In Proceedings
of the 1986 ACM Conference on LISP and Functional Programming,
pages 308-319, 1986.

[Pot87I Garrel Pottinger. Two formulations of the theory of constructions. Jan-
uary 1987. Technical report in preparation, Odyssey Research Asso-
ciates.

[Pra65] Dag Prawitz. Natural Deduction. Almqvist & Wiksell, Stockholm,
G6teborg, and Uppsala, 1965.

[Rey74] J. C. Reynolds. Towards a theory of type structure. In Springer Lecture
Notes in Computer Science 19, pages 408-425, Springer-Verlag, 1974.

[Rey84] J. C. Reynolds. Polymorphism is not set-theoretic. In Springer Lecture
Notes in Computer Science 173, pages 145-156, Springer-Verlag, 1984.

[Ros84] J. B. Rosser. Highlights of the history of the lambda-calculus. Annals
of the History of Computing, 6:337-339, 1984.

[Sel77] J. P. Seldin. A sequent calculus for type assignment. Journal of Symbolic
Logic, 42:11-28, 1977.

[Ste72] S6ren Stenlund. Combinators, Lambda-Terms and Proof Theory. D.
Reidel, Dordrecht, Holland, 1972.

NOTE: Although this report references RL-TR-91-36, Volumes III -

VII dated April 1991, no limited information has been
extracted. Distribution Statement for Volumes III - VII
is as follows:

Distribution authorized to USGO agencies and private
individuals or enterprises eligible to obtain export-
controlled technical data according to DOD 5230.25;
Apr 91.

173

MISSION

OF

ROME LABORATORY

Rome Laboratory plans and executes an interdisciplinary program in re-

search, development, test, and technology transition in support of Air
Force Command, Control, Communications and Intelligence (C I) activities

for all Air Force platforms. It also executes selected acquisition programs
in several areas of expertise. Technical and engineering support within

areas of competence is provided to ESD Program Offices (POs) and other

ESD elements to perform effective acquisition of C31 systems. In addition,
Rome Laboratory's technology supports other AFSC Product Divisions, the
Air Force user community, and other DOD and non-DOD agencies. Rome
Laboratory maintains technical competence and research programs in areas
including, but not limited to, communications, command and control, battle

management, intelligence information processing, computational sciences

and software producibility, wide area surveillance/sensors, signal proces-
sing, solid state sciences, photonics, electromagnetic technology, super-

conductivity, and electronic reliability/maintainability and testability.

