: FAR | ’ 9’ ‘
:. User's Guide O
3 CMU/SEI-90-UG-1 :

AD-A235 ?40 ESD-90-TR-5
LT DTIC
:}\ —=.. Software Engineering Institute & FLECTE %%
: \\\ 0 ﬁ
. N
Hartstone Benchmark User's
CIE N Guide, Version 1.0

Patrick Donohoe
Ruth Shapiro
Nelson Welderman
March 1990

\{\
\.

91-0032
llﬂlll!ﬂll!ililﬂ//l"!ﬂl!lillllllllll!ﬂlz

User’s Guide

CMU/SEI-90-UG-1
ESD-90-TR-5
March 1990

Hartstone Benchmark User’s Guide,
Version 1.0

Patrick Donohoe

Ruth Shapiro

Nelson Weiderman

Real-Time Embedded Systems Testbed Project

A(Q;soasion Far A
BT1S GRARX
DTIC TAB 0
Unsanovwnced 0
Justiricatio

By
Pistribution/
Availabiliity Codes
" Taval) and/er
‘Diat: ‘ Spoaial

|

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, Pennsyivania 15213

This technical report was prepared for the

SE! Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

é ;arles J. Ryan, Zajor;USAF

SEl Joint Program Office

This work is sponsored by the U.S. Department of Dafense.

Copyr.ght © 1990 by Carnegie Mellon University.

*
This document is available through the Defense Technical Information Center. ‘omc provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and polential contractors, and other U S Govemment

agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information
Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical Information Service. For information on ordering,
please contact NTIS directly: National Technical Information Service, U.S. Department of Commerce, Springfield VA 22161.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder

Table cf Contents

1. Introduction

2. Perlodic Harmonic Test Series
2.1. Periodic Tasks
2.2. Hartstone Experiments
2.3. Overall Benchmark Structure and Behavior

3. Hartstone Portability
4. Running Hartstone Experiments

5. Understanding Hartstone Results
5.1. Format of Results
5.2. The Baseline Test
5.3. What the Results Mean
5.4, Factors Affecting Hartstone Performance
5.5. Unexpected Results

6. Future Work
Bibliography

Appendix A..Sample Results for XD Ada VAX/VMS -> MC68020
A.1. Host-Target Configuration
A.2. Experiment 1: Summary of Results
A.3. Experiment 2: Summary of Results
A.4. Experiment 3: Summary of Results
A.5. Experiment 4: Summary of Results

Appendix B. Supporting PIWG Results
B.1. Calendar.Clock Resolution
B.2. Delay Statement Resolution
B.3. Procedure Call Overhead

Appendix C. Obtaining Hartstone Source Code and lhformatlon
Appendix D. Hartstone Ada Code for PH Serles

w0 O P WOW -

11

13
14
15
17
19

23
25

7
27
28
33
37

41

47
47
47
48

49
51

CMU/SEI-90-UG-1

CMU/SEI-90-UG-1

List of Figures
® hd Figure 2-1: Hartstone Dependency Diagram A 7
» '
° '
o .
o .
" .
o '
o)

CMU/SEI-90-UG-1 . fil

Hartstone Benchmark User’s Guide, Version 1.0

Abstract: The Hartstone benchmark is a set of timing requirements for testing a
system’s ability to handle hard real-time applications. It is specified as a set of proc-
esses with well-defined workloads and timing constraints. The name Hartstone derives
from HArd Real Time and the fact that the workloads are presently based on the well-
known Whetstone benchmark. This report describes the structure and behavior of an
implementation in the Ada programming language of one category of Hartstone require-
ments, the Periodic Harmonic (PH) Test Series. The Ada implementation of the PH
series is aimed primarily at real-time embedded processors where the only executing
codeis benchmark and the Ada runtime system. Guidelines for performing various
Harts .ne experiments and interpreting the resuits are provided. Also included are the
source code listings of the benchmark, information on how to obtain the source code in
machine-readable form, and some sample results for Version 1.0 of the Systems
Designers XD Ada VAX/VMS - MC68020 cross-compiler.

1. Introduction

The Hartstone benchmark comprises a series of requirements to be used for testing the ability of
a system to handle hard real-time applications. Its name derives from Hard Real Time and the
fact that the computational workload of the benchmark is provided by a variant of the Whetstone
benchmark [Curnow 76}, [Harbaugh 84}, {(Wichmann 88]. “Hard" real-time applications must meet
their deadlines to satisfy system requirements; this contrasts with "soft” real-time applications
where a statistical distribution of response times is acceptable [Liu 73]. The rationale and opera-
tional concept of the Hartstone benchmark are described in {Weiderman 89]; in particular, five
test series of increasing complexity are defined and one of these, the Periodic Harmonic (PH)
Test Series, is described in detail.!

This user's guide describes the design and implementation of the PH series in the Ada program-
ming language [LRM 83]. The overall structure and behavior of the benchmark programs are
described, implementation-dependent aspects of the design are noted, and guidelines for per-
forming the experiments described in [Weiderman 89] and interpreting their results are provided.
Source ccde for the benchmark and :ample resuits for the Systems Designers XD Ada VAX/VMS
to Motorola MC68020 cross-comg.ier, Version 1.0, are included as appendices, as well as infor-
mation on how to obtain machir::-readable copies of the Hartstone source code and supporting
documentation.

This Ada implementation of the Hartstone PH test series is aimed primarily at real-time em-
bedded or "bare-board” target systems. It is assumed that on such systems the only executing
code is the Hartstone code and the Ada runtime system. Hartstone can be used to gauge the
performance of the Ada runtime system and its abiiity to handle multiple real-time tasks efficiently.
As this guide explains, Hartsione is not a simple benchmark that produces just one number

This document is recommended reading for people wishing to gain a broader understanding of the issues that
motivated the concept of the Hartstone benchmark.

CMU/SEI-90-UG-1 1

representing the "score” of the runtime system. The output from all Hartstone expsaments must
be considered, as well as the characteristics of the target processor, when drawing conclusions
baseri on Hartstone results.

2 CMU/SEI-90-UG-1

i

2. Periodic Harmonic Test Series

2.1. Periodic Tasks

The Periodic Harmonic (PH) Test Series is the simplest of the five test series defined
in [Weiderman 89] for the Hartstone benchmark. The Ada implementation (the "Delay/ND" de-
sign discussed in [Weiderman 89]) consists of a set of five periodic Ada tasks that are inde-
pendent in the sense that their execution need not be synchronized; they do not communicate
with each other. Each periodic task has a frequency, a workload, and a priority. Task fre-
quencies are harmonic: the frequency of a task is an integral multiple of the frequency of any
lower-frequency task. Frequencies are expressed in Hertz; the reciprocal of the frequency is a
task's period, in seconds.

A task workload is a fixed amount of work, which must be completed within a task’s period. The
workload of a Hartstone periodic task is provided by a variant of the well-known composite syn-
thetic Whetstone benchmark [Curnow 76] called Small_Whetstone [Wichmann 88].
Small_Whetstone has 4 main loop which executes one thousand Whetstone instructions, or one
Kilo-Whetstone. A Hartstone task is required to execute a specific number of Kilo-Whetstones
within its period. The rate at which it does this amount of work is measured in Kilo-Whetstone
instructions per second, or KWIPS. This workload rate, or speed, of a task is equal to its per-
period workload multiplied by the task’s frequency. The deadline for completion of the wozkioad
is the next scheduled activation time of the task. Successful completion on time is defined as a
met deadline. Failure to complete the workload on time results in a missed deadline for the task.
Missing a deadline in a hard real-time application is normally considered a system failure. In the
Hartstone benchmark, however, processing continues in order to gather additional information
about the nature of the failure and the behavior of the benchmark after deadlines have begun to
be missed. Therefore, in the Ada implementation of the PH series, if a task misses a deadline it
attempts ta compensate by not doing any more work until the start cf a new period. This process,
called load-shedding, means that if a deadline is missed by a large amount (more than one
period, say) several work assignments may be cancelled. Deadlines ignored during load-
shedding are known as skipped deadlines. The reason for load-shedding is that “resetting" of-
fending tasks and letting the test series continue allows more useful information to be gathered
about the failure pattern of the task set. The conditions under which the test series eventually
completes are discussed in Section 2.2. '

Task priorities ar2 assigned to tasks according to a rate-monotonic scheduling discipline [Liu
73], [Sha 89]. This means that higher-frequency tasks are assigned a higher priority than lower-
frequency tasks. The priorities are fixed and distinct. The rate-monotonic priority assignment is
optimal in the sense that no other fixed-priority assignment scheme can schedule a task set that
cannot ba scheduled by the rate-monotonic scheme [Liu 73]. In the Hartstone task set, priorities
are statically assigned at compile time via the Priority pragma. Task 1 has the lowest priority and
task 5 has the highast. The main program which starts these tasks is assigned a priority higher
than any task so that it can activate all tasks via an Ada rendezvous.

CMU/SEI-20-UG-1 3

A task implernents periodicity by successively adding its period to a predetermined starting time
to compute its next activation time. Within a period, it does its workload and then suspends itself
until its next activation time. This paradigm, based on the one shown in Saction 9.6 of the Ada
Language Reference Manual [LHi: 83), was adopted because of its portability, portability being
one of the major objectives of the Hartstone benchmark. The implications of using this paradigm
are discussed in Section 5.4. '

2.2. Hartstone Experiments

Four experiments have been defined for the PH series, each consisting of a number of tests. A
test will either succeed by meeting all its deadlines, or. fail by not meeting at least one deadline.
The Hartstone main program initiates a test by activating the set of Hartstone tasks; these per-
form the actual test by executing their assigned workioads, periodically, for the duration of the
test. A test will always run for its predefined test duration. When a test finishes, the results are
collected by the main program and a check is made to see if the test results satisfy a user-defined
completion ctiterion for the entire experiment. If they do, the experiment is over and a summary
of the entire experiment is generated:; if not, a new test is initiated and the experiment continues.
Experiment completion criteria are defined later in this section.

Each new test in an experiment is derived from the characteristics of the preceding test. The first
test, called the baseline test, is the same for all experiments: activate the initial set of Hartstone
tasks (called the .baseline task sef) and collect the results from them. As an example, the base-
line test below has a total workload rate of 320 Kilo-Whetstone instructions per second (KWIPS)2
allocated as follows: '

Task Frequency Kilo-Whets Kilo-Whets

No. (Hertz) ‘per period per second
1 200 32 64.00
2 4.00 16 . 64.00
3 8.00 8 64.00
4 16.00 4 64.00
5 32.00 2 64.00
' 320.00

2This baseline test is different from that of [Weiderman 89]; the frequencies and workloads have been doubled, This
doubling was done initially to cause deadlines to be missed after fewer ilerations, so that experiments would complete in a
shorter time. The original task set proved to be too low a starting point for the cross-compiler and target used in Hartstone
prototype testing, the Systems Designers XD Ada compiler, and a 12.5 MHz Motorola MC88020 target processor. During
subsequent testing on a number of different cross-compilers, stronger reasons for increasing or decreasing the fro-
quencies and workloads of the baseline task set emerged. A more detailed discussion of desirable properties of the
baseline task set appears in Section 5.2.

3 CMU/SEI-90-UG-1

The four experiments are:

Experiment 1: Starting with the baseline task set, the frequency of the highest frequency task
(task 5) is increased for each new test until a task misses a deadline. The frequencies of the
other tasks and the per-period workloads of all tasks do not change. The amount by which the
frequency increases must preserve the harmonic nature of the task set frequencies: this means a
minimum increase by an amount equal to the frequency of task 4. For the previous example, this
sequence increases the task set’s total workioad rate by 32 KWIPS (16 Hertz, the frequency
increment, times task 5's per-period workload) at a time and tests the system’s ability to handle a
fine granularity of time (the decreasing period of the highest-frequency task) and to switch rapidly
between proces. as.

Experiment 2: Starting with the baseline task set, all the frequencies are scaled by 1.1, then 1.2,
then 1.3, and so on for each new test until a deadline is missed. The per-period workloads of all
tasks do not change. The scaling preserves the harmonic frequencies; it is equivalent to multiply-
ing the frequencies of the current test by 0.1 to derive those of the next test. As with experiment
1, this sequence increases the total workload rate in the above example by 32 KWIPS. By
contrast with experiment 1, the increasing rates of doing work affect all tasks, not just one.

Experiment 3: Starting with the baseline task set, the workload of each task is increased by 1
Kilo-Whetstone per period for each new test, continuing until a deadline is missed. The fre-
quencies of all tasks do not change. This sequence increases. the total workioad rate in the
example by 62 KWIPS at a time, without increasing the system overhead in the same way as in
the preceding experiments.

Experiment 4: Starting with the baseline task set, new tasks with the same frequency and work-
load as the "middle" task, task 3, of the baseline set are added untii a deadline is missed. The
frequencies and workloads of the baseline task set do not change. This sequence increases the
total workload rate in the example by 64 KWIPS at a time and tests the system’s ability to handle
a large number of tasks.

When the computational load, plus the overhead, required of the periodic tasks eventually ex-
ceeds the capability of the target system, they will start to miss their deadlines. An experiment is
essentially over when a test misses at least one deadline. For the purpose of analysis, it may be
useful to continue beyond that point; therefore, tests attempt to compensate for missed deadlines
by shedding load, as described previously. A Hartstone user has the choice of stopping the
experiment at the point where deadlines are first missed or at some later point. The completion
criteria for an experiment are largely defined in terms of missed and skipped deadlines. An-.
experiment completes when a test satisfies one of the following user-selected criteria: ‘

¢ Any task in the task set misses at least one deadline in the current test.

» The cumulative number of missed and skipped deadlines for the task set, in the
current test, reaches a pre-set limit.

* The cumulative number of missed and skipped deadlines for the task set, in the
current test, reaches a pre-set percentage of the total number of deadlines. This
criterion is an alternative to specifying an absolute number of missed and skipped
deadlines.

CMU/SEI-90-UG-1 5

¢ The workload required of the task set is greater than the workload achievable by the
benchmark in the absence of tasking. This is a default completion criterion for all
experiments.

¢ The default maximum number of extra tasks has been added to the task set and
deadlines still have not been missed or skipped. This is a default completion crite-
rion for experiment 4. If this happens, the user must increase the value of the
parameter representing the maximum number of tasks to be added.

2.3. Overall Benchmark Structure and Behavior

The Ada implementation of the PH series consists of three Ada packages and a main program. A
Booch-style diagram illustrating dependencies between these Hartstone units is shown in Figure
2-1. The arrows represent with clauses. The Workload package contains the Small_Whetstone
procedure that provides the synthetic workload for Hartstone periodic tasks. The Periodic_Tasks
package defines the baseline set of tasks, and a task type to be used in the experiment where
new tasks are added to the baseline set. The Experiment package provides procedures to initial-
ize experiments, get the characteristics of a new test, check for experiment completion, and store
and output results. It also defines the frequencies and workloads to be assigned to the baseline
task set, as well as the experiment completior crteria. Initialization of an experiment includes a
"calibration” call to Small_Whetstone to measure the procedure’s raw speed; this is why the
dependency diagram shows a dependency of package Experiment on package Workload. The
main Hartstone program controls the starting and stopping of tasks, and uses procedures pro-

vided by the Experiment package to output results of individual tests and a summary of the entire
experimrant.

The compilation order of the packages and main program is as follows:

package Workioad
package Periodic_Tasks
package Experiment
procedure Hartstone

Tasks obtain the starting time, duration, frequency, and workloads of the test from a rendezvous
with the main Hartstone program and then proceed independently. On completion of a test, the
results are collected by the main program in a second rendezvous, and may optionally be written
at that point. The main program then starts the next test in the experiment a/:J the experiment
continues until it satisfies the user-defined completion criterion. On completion of the experiment,
a summary of the entire experiment is generated. Details of the output produced by Hartstone
tests are given in Section 5.1.

6 CMU/SEI-90-UG-1

QUOISISUM NeUS

sy |

q :o_.aouxoL

PR “sysel owpouad’ - .

13

-~

—.!n::oom..-ao._. 53:0\“—

_1! sunsey 1891 9I01S |—

—.‘ o1o|dwod i L

|

[weiwed]

_‘ s T

1

?2;5:. igodhy ‘sjumisuod

T yuawadxa; Y

(wesboad
uiey)

TauOISHEH:

Figure 2-1: Hantstone Dependency Diagram

CMU/SEN-90-UG-1

CMU/SEI-90-UG-1

3. Hartstone Portability

The Ada version of the Hartstone benchmark for the PH series is written entirely in Ada and is
intended to be portable over a wide range of Ada compilations systems. However, it does have
certain implementation-dependent features which can be classified in two broad categories: fea-
tures affecting the portability of the source code and features affecting the runtime performance of
Hartstone executable code. The principal portability issues are Hartstone’s use of mathematical
library functions and predefined types. These also influence the performance, of course, but a
discussion of performance factors will be deferred until Section 5.4.

Mathematical Libraries. The Small_Whetstone benchmark (and the full Whetsone benchmark,
from which it is derived) performs computations involving transcendental functions; these func-
tions are typically provided by a mathematical library package supplied with the Ada compilation
system. The names used by vendors for mathematical libraries vary greatly, so a user will need
to ensure that the correct library name for the system is being used in the with and use clauses
in the body of package Workioad wherein Small_Whetstone is encapsulated. Also, the names of
some of the functions in these libraries may vary: ior example, in some libraries, the natural
logarithm function is named "Log,” while for others it is named “Ln." An additional problem is
caused by the fact that "Log" is used, in some libraries, to designate the base 10 logarithm
function. The Small_Whetstone procedure requires the natural logarithm function for its calcula-
tions to be correct, so inadvertent use of a base 10 function will cause a runtime exception. This
exception is typically either a Constraint_Error or an exseption defined within Small_Whetstone
that is raised when Small_Whetstone’s internal self-check tails. The Hartstone package Work-
load is commented with guidelines for dealing with several vendors’ mathematical library names
and function names. By default, it renames the natural logarithm function as "Log,” the name
proposed by the WG9 Numerics Rapporteur Group [WG9 89].3

Pre-Defined Types. The predefined types Integer and Float are used within Hartstone on the
assumption that most implementations of these types provide sufficient range and accuracy for
Hartstone needs. The counts of met and missed deadlines computed by Hartstone, for example,
are expected to be much less than the maximum integer value of a 16-bit machine, and a
floating-point type with 6 digits of accuracy provides one-microsecond accuracy for Hartstone
timing calculations performed in floating-point. However, before running the Hartstone, the user
should check the Digits attribute of the integer and floating-point types to ensure that they meet
these range and accuracy assumptions.

3The WGS (Working Group 9) proposal defines the specification of a generic package of elementary functions ar a
package of related exceptions. Its content derives from a joint proposal of the association for Computing Machinery
(ACM) SIGAda Numerics Working Group and the Ada-Europe Numerics Working Group, Draft 1.1 (October 1989) of the
proposal has been submitted for consideration as an international standard.

CMU/SEI-90-UG-1 9

10

CMU/SEI-90-UG-1

4. Running Hartstone Experiments

The Hartstone benchmark is primarily for embedded real-time target processors that are con-
nected to a host system from which the executable Hartstone code is downloaded. Because of
this, and for portability, it is assumed that the only code executing on the target system is the
Hartstone code and the Ada runtime system. The Hartstone benchmark makes no explicit calls
to Ada runtime system functions or to any kernel operating system layer interposed between it
and the Ada runtime system. Additionally, and in particular, no assumptions are made about the
Ada runtime system support of host-target file /O or interactive screen /0. Therefore, all exper-
iment characteristics (e.g., test duration, task set characteristics, experiment number, experiment
completion criterion, etc.) must be known at compile time: in this implementation they cannot be
entered interactively or read from a host file. Similarly, the benchmark does not attempt to open
any file on the host for output of results. At a minimum, it is expected that the output procedures
of the Text_lO package will be capable of writing output to a terminal connected to the target
processor. In the SEl host-target environment, the serial ports of the various targets are con-
nected to corresponding serial ports on the VMS host. Output from the targets is displayed in a
window on the host console as it arrives at the host serial port. Some cross-compilers provide
the capability to capture such host input automatically in a file; for those that do not, the /LOG
qualifier of the VMS DCL command SET HOST/DTE/LOG <port_ID> will create a log file of all
input arriving at the host serial port.

A user of Hartstone performs one experiment per download. The benchmark is not set up to do
multiple experiments per download; the idea is that each separately downloaded experiment
begins with the runtime system in the same initial state. To choose an experiment to perform, a
user modifies one line in the body of the Experiment package. The criterion for stopping the
experiment (for example, stop after a total of 50 deadlines have been missed) may also be set in
the next line. By default, the experiment outputs the results of each test in an experiment as the
test completes. This is useful for monitoring the progress of an experiment. The user may
disable this "full output” option in favor of simply producing a summary of the entire experiment
when the experiment completes. Instructions for making these changes are provided as com-
ments in the body of the Experiment package in a section clearly marked as the user-modifiable
section. This section also defines two string variables that should be initialized by a user to
provide a brief description (e.g., name, version number, target CPU type) of the compiler and
target processor. Following these modifications, the package body must then be re-compiled,
and the Hartstone benchmark re-linked to produce a new executable module for the chosen.
experiment.

The default duration of a Hartstone test is 10 seconds, with a 5-second lag before the first test of
an experiment begins. If full output is enabled (i.e., if complete test results are to be output as
soon as the test completes) and nothing has happened 20 seconds, say, after the start of an
experiment, then either Hartstone is broken or there is a host-target communication problem. Of
course, if full output is disabled (i.e., no output is produced until the experiment finishes), a user
should be prepared to wait a relatively long time to see the summary results.

CMU/SEI-90-UG-1 11

12

CMU/SEI-90-UG-1

5. Understanding Hartstone Resuits

5.1. Format of Results

By default, the Hartstona benchmark outputs the resuits of every test of an experiment as each
test completes. It then prints a summary of the results of the entire experiment. The two-part
output from a single test, including the characteristics of a test and its results, is shown below.

Experiment: EXPERIMENT 1
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1122.19
Tast 21 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hartz) per period per saecond Utilization
1 2.00 32 64.00 5.70 %
2 4.00 16 64.00 5.70 %
3 8.00 8 64.00 5.70 %
4 16.00 4 64.00 5.70 %
5 352.00 2 704.00 62.73 %
960.00 85.55 %

Experiment step‘siza: 2.85 %

Test 21 rasults:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 0 7 13 626.683
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 - 2.841 3520 0 0 0.000

P]
The raw speed of the benchmark is the number of Kilo-Whetstone instructions per second
(KWIPS) achieved by the Small_Whetstone procedure. This calibration test is performed by the
Experiment package when an experiment is initialized. The resultant non-tasking workioad rate
will always be befter than that achievable by splitting the same workioad among the five
Hartstone tasks; it provides a metric against which the performance of the Hartstone task set can
be measured. Both the raw speed calibration test and a Hartstone task include the overhead of
calling the Small_Whetstone procedure. The performance requested of Hartstone tasks is ex-
pressed as a percentage workload utilization, which is computed as the ratio of the requested

CMU/SE90-UG-1 _ E ' 13

task speed (in KWIPS) and the raw benchmark speed. The raw speed is assumed fo represent
100% utilization. The utilization required of the entire task set is the sum of the individual task
utilizations. Successive tests in an experiment increase the requested utilization to the point
where deadlines are not met.

The step size'of an experiment is an indication ot the extra work required of the task set when the
next test in an experiment is derived from the current test. Like the workload utiiization, it is
axpressed as a percentage of the raw speed. As an example, for experiment 1 the extra work for
the task set comes from increasing the frequency of the highest-frequency task, task 5. The

additional work required of task 5 Is its workload muitiplied by the frequency increment detined for -

task § in experiment 1 (in the above example, it is 2 Kilo-Whetstones times 16 Hettz, giving 32
KWIPS). This KWIPS figure, expressed as a percentage of the raw speed KWIPS fipure, is the
step size for the experiment. It varies from experiment to experiment but remains constant for a
specific experiment. The sum of the total requested utilization and the step size for the current
test is equal to the next test's total requested utilization. The step size is the granularity, or
resolution, of an experiment.

The sum of the met, missed, and skipped deadlines for a task should, in general, be equal to the
task’s frequency multiplied by the test duration (i.e., the expected number of activations for that
task). The case where they do not add up will be discussed later. The average late figure for a
task is the average amount by which the task missed its deadlines during the test. It is the sum of
the amounts by which individual deadlines were missed, divided by the number of missed dead-

lines. For lower-priority tasks, it is an indication of the amount of preemptiorr by higher-priority

tasks. Skipped deadlines do not influence this figure; they are simply part of the process of
"resetting” a task whose lateness is already known.

The summary output produced at the end of an experiment consists of four test results similar to
those shown above. The four tests are: the first test in the experiment (the baseline test), the
test with the highest utilization and no missed/skipped deadlines (the "best" test), the test which
first experienced missed/skipped deadlines, and the final test performed. Example summary
results for all four experiments are given in Appendix A.

5.2. The Baseline Test

To get meaningful results from the Hartstone benchmark it is important to define an appropriate
starting point for Hartstone experiments. This starting point is the baseline task set and it must
first be "tuned” for a user’s cross-compiler and target before Hartstone can be used effectively.
At a very basic level, "tuning” ensures that the baseline workloads and frequencies are such that
an experiment neither runs hundreds of tests before completing, nor completes after running just
a few tests. More importantly, a badly-chosen baseline test can lead to unexpected resuits
(discussed later) that undermine the usefulness of the benchmark. This section will provide some
guidelines for choosing an appropriate baseline test.

To determine if the characteristics of the baseline task set need to be modified, a user must run a
Hartstorie experiment “as is" and examine the output of the baseline test. The numbers to check

14 . CMU/SEI-80-UG-1

are the total workload utilization and the experiment step size. Every experiment first runs the
baseline test, so the total utilization of the baseline test is the same for all experiments. The total
utilization should be in the range of 10 percent to 30 percent, so that an experiment commences
with a workload rate that is neither too low nor too high (a 50% utilization for the task set in the
very first test, for example, would be considered too high). in the example shown in Section 5.1,
the total workload utilization of the baseline task set is 28.50 percent (5 times 5.70%). If utili-
zation falls outside the recommended range, the usar must edit the task frequencies and/or
workloads in the body of package Experiment to bring them into line. If total utilization falls below
the range, the task set frequencies and/or workloads must be increased; if it falls above, they
must be reduced.

The experiment step size, which represents the resolution of the total utilization, should also be
within a range that ensures that the transition from one test to another does not cause either a
very large or a very tiny increase in the total resolution. A step size of around 2 or 3 percent
seems to be adequate. Step size depends on the parameters controlling the transition from one
test to the next. It remains constant for a specific experiment, but varies among different experi-
ments. For experiment 1, it depends on the frequency increment for the highest-frequency task;
for experiment 2, it depends on the scale factor applied to all frequencies; for experiment 3, on
the workload increment; and for experiment 4, on the frequency and workload of the extra task
added for each new test. In the example, the step size is 2.85 percent (task 5's frequency
increment times task 5's workload is 16 times 2, which is 32 KWIPS; this is divided by the raw
speed, 1122.19 KWIPS, and multiplied by 100 to give 2.85). In general, adjusting the total utili-
zation of the task set will also yield a reasonable step size, so the user should not need to modify
the step size parameters.

When making adjustments to the baseline test, the user must be careful to keep the task fre-
quencies harmonic, and must ensure, for example, that the frequency increment of experiment 1
also preserves the harmonic nature of the task set. Workloads must be integral values (the
Small_Whetstone benchmark does not permit fractional workloads), so & task cannot be assigned
a workload lower than one Kilo-Whetstone per period. By convention, workloads are such that
the workload rate (in Kilo-Whetstones per second) of each task in the baseline set is the same.

It is possible for a baseline task set to be within the guidelines just described and yet still fail to
run the baseline test successfully. Sections 5.4 and 5.5 provide some answers to this problem.

5.3. What the Results Mean

For any experiment there is no single number which best represents the result of the experimént.
The nature of the experiment and the performance of the various Hartstone tasks must be taken
into account when formulating a conclusion about the outcome of an experiment. Additionally,
the results from all four experiments must be considered when the benchmark is used to evaluate
the performance of an Ada runtime system.

The fest result of most interest to a user of the Hartstone benchmark is the one representing the
highest achieved utilization for an experiment, with no missed or skipped deadlines. In the cases

CMU/SEI-90-UG-1 15

where the experiment is allowed to continue until a predefined number of deadlines have been
missed or skipped, the resul. of the final test run is also of interest because it will show whether or
not tasks missed their deadlines in the expected manner for harmonic tasks: the lowest-priority
(lowest-frequency) task missing deadlines first, then the next-lowest-priority task, and so on up to
the highest-priority (highest-frequency) task.

In each experiment, the step size for that experiment is very significant. The maximum achiev-
able total utilization is represented with a granularitv equal to the the experiment step size. Ex-
periments 2 and 3, which affect all 5 tasks, tend to have larger step sizes than experiments 1 and
4, which affect only 1 task.

Once the effect of the step size on the experiment results is understood, the three most important
numbers for a test are the total number of task activations, the raw speed, and the tota! utilization.
The total number of activations (equal to the sum of the met plus missed plus skipped deadlines
for the task set) is an indication of the amount of task switching overhead required of the runtime
system. The total utilization is a measure of the useful work performed, while the raw speed is an
upper bound on the amount of useful work capable of being performed.

For experiment 1, the utilization achieved by the highest-frequency task is important since it
dominates the overall result (the utilization of the other tasks remains constant throughout the
experiment). The maximum frequency achieved by task 5 is of considerable interest since it is
the primary indication of the amount of overhead required of the runtime system. As task 5's
period decreases, runtime overhead consumes an increasing percentage of the task’s period. It
is expected that the total utilization for experiment 1 will be lower than that of experiments 2 and 3
because task switching is the predominant factor.

For experiment 2, the utilization of each task is the same for a given test and increases uniformly
from one test to the next as all the task frequencies are scaled up. The scaling has the effect of
also increasing all task workload rates (as measured in Kilo-Whetstones per second).

For experiment 3, the highest-frequency task’s utilization is again of interest because increasing
the actual workload, while keeping the frequency constant, means that the workload consumes
an increasingly large percentage of this task’s period. This, of course, is true for all tasks in this
experiment, but the effect is greatest for the highest-frequency task. Experiment 3 should, in
general, have better total utilization than the other experiments, since only the workloads increase
while the tasks' switching overhead remains the same. A large step size, however, may cause
experiment 3's best *~st result to occur at a lower utilization level: the increase in requested
utilization, in the tra.sition from success to missed deadlines, may hide the fact that a smaller
increase could have resulted in success at a higher level.

For experiment 4, the utilization of each task remains constant throughout the experiment, but the
number of tasks, and hence the total utilization, increases. Of primary interest is the count of
extra tasks added to the baseline set. This provides an indication of the runtime system’s ability
to handle a large number of tasks efficiently.

16 ' CMU/SEI-90-UG-1

5.4. Factors Affecting Hartstone Performance

The principal factors affecting the performance of Hartstone PH tests are
* The implementation of task periodicity
o The resolution of the delay statement
» The resolution of Calendar.Clock
» The accuracy of the fixed-point type Duration
« The implementation of mathematical library functions
¢ Floating-point precision
¢ Miscellaneous overhead factors

Task Petlodicity. The implementation of task periodicity in the Haitstone benchmark is based
on the paradigm exhibited in Section 9.6 of the Ada Language Reference Manual [LRM 83], a
version of which is shown below.

declare
use Calendar;
-- Period is a global constant of type Duration
Next Start : Time := Clock + Pariod;
begin
loop
Next_Delay := Naext_ Start -~ Clock;
delay Next Delay:
-=- do some work
Next_ Start := Next_Start + Period;
end loop;
end;

This is a highly portable method of implementing periodic tasks in Ada. It is, of course, very
dependent on how well the Ada runtime systera implements Calendar.Clock and the delay state-
ment. At a basic level, the performance of the Hartstone benchmark is a reflection of the perfor-
mance of these two features of the Ada language. The issues arising from the implementation of
these two features are discussed separately below. The other major issue associated with the
above paradigm is the possibility of preemption of the task between the reading of the Clock and
the start ¢¢ the delay statement, resulting in an actual delay that is longer than the requested
delay. It can be shown that this is not a problem for the periodic harmonic task sets used in the
Hartstone benchmark.

Delay Statement Resolution. The resolution of the délay statement is how closely an actual
delay matches a requested delay. A requested delay of one millisecond that is actually imple-
mented as a ten or twerty millisecond delay will cause periodic tasks to start missing deddlines
earlier than expected. It has also been implicitly assumed that the expiry of the delay statement
is preemptive, i.e., that a lower-priority task currently executing will be preempted by a higher-
priority task whose delay has expired. A non-preemptive delay statement will likely cause results
that are at least as poor as, and probably worse than, those for a coarse delay statement resolu-
tion. Implementations using non-preemptive delays are technically ron-conforming, but the cur-
rent Ada Compiler Validation Capability (ACVC, Version 1.10) does not adequately test this.

CMU/SEI-90-UG-1 17

Calendar.Clock Resolution. The resolution of Calendar.Clock is the time period between suc-
cessive ticks of the clock. A Hartstone task performs arithmetic involving Calendar.Clock to
determine the time remaining in its period upon completion of its workload. It then suspends itself
by delayinyy until its computed "wakeup" time—the next scheduled activation time. A coarse
Calendar.Clock resolution means that a coarse value will be used as the expression in the delay
statement, thereby resulting in a flawed implementation of task periodicity. Also, a coarse ciock
resolution may cause variations in the calibrated raw speed of the Small_Whetstone procedure.
There are large differences in the resolution of Calendar.Clock in current Ada cross-compilers,
ranging, in those tested at the SE, from 61 microseconds to 100 milliseconds. The ACM SIGAda
Performance Issues Working Group '(PIWG)* benchmark suite contains tests to measure the
resolution of Calendar.Clock and the delay statement. These resolutions should always be
checked by users of Hartstone. (Note that, in general, the value of System.Tick is not the same
as the resolution of Calendar.Clock; a test should always be performed to determine the actual
resolution.) Sample results of these two tests, for the XD Ada MC68020 cross-compiler, are
included in Appendix B.

Type Duration. The accuracy of type Duration can be deiermined by examining the value of
Duration’Small. For many implementations, this value is 214 seconds, or approximately 61
microseconds. For some implementations, however, the value is 1 millisecond. In an attempt to
minimize the cumulative errors possible in fixed-point Duration arithmetic, a Hartstone periodic
task actuaiiy performs all arithmetic involving the types Time and Duration in floating-point. This
i done by using floating-point variables to compute Next_Start and Next_Delay and converting
Next_Delay to type Duration in the actual delay statement. The value returned by
Calendar.Clock is of the private type Time and so cannot be converted directly. Instead the
Calendar.Seconds function is used to extract the seconds portion of the Time value; this vaiue is
of the non-private type Day_Duration and so is amenable to direct conversion.%

Mathematical Library. The raw non-tasking speed measurement of the Small_Whetstone pro-
cedure is another important factor since it is the basis for the utilization figures and the exper-
iment step size. The raw speed will depend on how efficiently the Small_Whetstone computa-
tions are performed. For example, the computations involve trigonometric, logarithmic, and ex-
ponential functions whose efficiency depends on whether they are implemented wholly in soft-
ware on the main processor, or by special instructions on a co-processor, it one is present on the
target board. Testing at SE| has shown that most mathematical libraries do take advantage of an
on-board co-processor, but that even when they do, the differences in the performance of
Hartgtone's Small_Whetstone (and the PIWG full Whetstone benchmark) on the same target
board are striking.

“The name, address, and telephone number of the current PIWG chairperson and other officers may be found in Ada
Letters, a bimonthly publication of the ACM Special Interest Group on Ada (SIGAda)

SBecause the seconds portion of the time value beuemes zero after twenty-four hours, you should not run Hartstone
through a midnight boundary. Depending on how Calendar.Clock is initialized, "midnight" for the target system may bear
no relation to midnight as measured by a wall clock (which in tum may be different from time as measured by the host
system).

18 CMU/SEI-90-UG-1

Floating-Point Precision. The current implementation of Hartstone uses the type Float for all
floating-point computations. Of the 8 Ada cross-compilers at the SEIl, 7 implement type Float with
6 decimal digits of precision (Flnat'Digits = 6) while 1 implements it with 15. Rather than defining
a machine-dependent package that simply contains a type Hart_Float, say, Hartstone uses the
type Float on the assumption that it will always provide at least 6 digits of precision. Doing the
computational workioad of Hartstone (the Small_Whetstone procedure) in a higher-precision
floating-point type may, of course, take longer. The user must be aware o this when comparing
Hartstone results from different Ada implementations. For consistency, a floating-point type with
6 digits of precision should be used; this will usually be the predefined type Float, but, for some
cross-compilers, may be Short_Float.

Miscellaneous Overhead Factors. Calling the Small_Whetstone procedure from within a
Hartstone task is another tactor affecting performance; the overhead of the call may be zero if
in-lining is used -and non-zero otherwise. Again, the PIWG suite provides tests to measure this
overhead. Hartstone contains an inline pragma for Small_Whetstone; the user should check the
compilation listings to see if the compiler is accepting or rejecting it. Even when the pragma is
accepted there may still be a performance factor attributable to the location and the even/odd
word alignment of the copies of the code in different areas of memory.

There are other sources of overhead which undoubtedly influence Hartstone but are difficult for
users to measure. These include, but are not limited to, the tasks’ switching time, time spent in
the clock interrupt handler, time spent managing delay and ready queues upon expiry of a delay,
cache hit/miss rates, time to switch between the processor and co-processor, and, possibly, peri-
odic garbage collection. Highly-specific, fine-grained benchmark tests, or hardware timing capa-
bilities such as those provided by a logic analyzer, are needed to detect and measure the effect
of such items on Hartstone’s petrformance.

5.5. Unexpected Resulits

In normal circumstances, a Hartstone experiment proceeds from the baseline test through a num-
ber of intermediate tests to a point where a test meets the predefined completion criterion for the
experiment. The resuits of the experiment can then be examined to determine the overall utili-
zation and the failure pattern when tasks began to miss their deadlines. Sometimes the results
can be quite different from what the user expected. This section attempts to characterize a
sample set of such results; it is based on actual resuits encountered during testing of Hartstone
on various Ada cross-compilers and target processors.

Baseline Test Fallure. As discussed earlier, one reason for this may be the fact that the baseline
task set utilization is outside the recommended range. However, even when it is within range,
other factors may cause missed deadlines in the baseline set. A non-preemptive delay state-
ment, or one with poor resolution, means that the actual implemented frequency of a task is much
less than the requested frequency. Since a task’s period and activation times are computed as a
. function of the requested frequency, an implemented frequency that is lower will cause a task to
delay needlessly and miss its scheduled activation times. Even a reasonable delay statement

CMU/SEI-90-UG-1 19

resolution can still be overwhelmed when used in combination with a Calendar.Clock with poor
resolution to implement task periodicity. Tha user's only recourc? is to scale back the fre-
quencies of the baseline task set (keeping them harmonic) and re-run the experiment. A rule of
thumb: the benchmark is already in trouble if the period of the highest-frequency baseline task is
less than the period between successive ticks of Calendar.Clock. For example, if the highest-
frequency baseline task's frequency is 32 Hertz and the resolution of Calendar.Clock is 100
milliseconds, the task’s requested 31.25-millisecond period will never be realized. The outcome
may well be that Hartstone cannot manage a successful run of even the first test without scaling
back the baseline task set. One possible, but highly machine-dependent solution to the problem
is to use a high-resolution programmable timer (if one is available on the target system) as a
source of periodic interrupts. A dispatcher program could field these interrupts and dispatch
tasks at their assigned frequencies in the manner described in [Borger 89].

Excess Task Actlvations. When a periodic task runs at a fixed frequency, measured in task
activations per unit time, in a test whose duration is a multiple of the unit time, then the number of '
times the task can be expected to activate is the product of the task frequency and the test
duration. In the Hartstone benchmark, the outcome of any one run of a Hartstone periodic task
will be a met, missed, or skipped deadline; therefore the sum of all such met, missed, and
skipped deadlines reported by the task in a single test will equal the actual count of activations for
that task. Testing has shown that, for the highest-frequency task of experiment 1, the actual
activation count sometimes exceeds the expected activation count. The reason has to do with
the way periodic tasks, in this implementation, keep track of time. A task starts at its assigned
starting time, performs its assigned workload, and determines its next activation time by adding
its period to the starting time. Each time around the task’s main loop, the new activation time is
compared with the test's finishing time (pre-computed by adding the test duration to the starting
time) and the task executes for another cycle if the finishing time has not been reached. If the
successive additions of the task’s period to the starting time eventually yield a value exactly equal
to the finishing time then the test finishes without extra activations. Because of rounding effects,
however, the task may complete its "expected” number of activations and still manage one or
more runs before the finishing time occurs. It is also possible that a coarse Calendar.Clock
resolution will allow extra activations; since there is no external timing source in this version of
Hartstone (e.g., peric ‘¢ interrupts from a programmable interval timer, a highly implementation-
dependent, non-portable solution), there is no way to cut tasks off at exactly the end of a test.

Inverted Task Set Breakdown Pattern. Because of the priority structure of the task sei
(highest-frequency task has highest prioritv, lowest-frequency task has lowest) one expects the
lower-frequency tasks to be preempted by the higher-frequency tasks. Thus the expected break-
down pattern for the task set is that task 1 (lowest priority) will miss deadlines first, then task 2,
and so on. Tests have shown that this is not always the case. In experiment 1, the frequency of
the highest-frequency task is incremented for each new test, with the result that the task-
switching overhead becomes an increasingly significant percentage of the task's period. Even-
tually, the rapid switching required of the task leaves no time for useful work, and the highest-
frequency task starts missing deadlines before any of the other tasks start missing theirs. The
eifect of this breakdown pattern is that the total workload utilization for the task set may be poor,
despite the fact that the highest-frequency task may have been driven to a very high frequency

ey e R B R

20 CMU/SEI-90-UG-1

R SO

before it started to miss deadlines. Tests have shown that the inverted breakdown pattern
usually occurs if the total utilization of the baseline task set is less than 10 percent. The user
should scale up the baseline characteristics (remembering to keep the task set frequencies
harmonic) to overcome the problem.

Inverted Summary Results. During testing of Hartstone, the highest-frequency task of exper-
iment 1 would sometimes miss a single deadline, but then meet all its deadlines in the next
several tests. The experiment would continue normally until the task set began missing deadlines
in the expected fashion, at which point the experiment would terminate. This situation can be
detected by examining the summary reports produced at the end of an experiment, One of the
summaries is the output of the "best" test—the one achieving the highest utilization with no
missed deadlines. Another summary is the output of the test where deadlines were first missed.
The test number of the "best" test normally precedes that of the "first missed” test; however, in
the case where a test with missed deadlines is followed by one or more tests that do not miss
deadlines, the test number of the “best" test is consequently higher than that of the “first missed"
test. This phenomenon is still under investigation; preliminary testing with a logic analyzer in-
dicates that the highest-frequency task may be blocked for varying amounts of time by runtime
system activities such as delay queue management and Calendar.Clock updating. Depending on
the amount of queue re-organization required, and whether or not the clock also needs servicing,
the highest-frequency task may occasionally be blocked just long enough to miss a deadline.

Exceptions. The Smali_Whetstone procedure raises an exception if it fails an internal check on
the result of its computation. Two reasons for such a failure have been encountered during
testing. The first was when the link-time memory layout parameters did not allow enough stack
and heap space in the target board's memory for Hartstone. A simple readjustment of the
parameters took care of the problem. The second reason was more subtle, involving different
interpretations of the name "Log" as used in vendor mathematical libraries to denote a logarithm
function. The logarithm function used within the Small_Whetstone procedure is intended to be
the natural logarithm function (base e), not the base 10 function. Some vendors denote the
former by "Ln" and the latter by "Log"; others use "Log" for natural logarithms and a name such
as "Log10" for base 10 logarithms. If base 10 logs are used inadvertently (i.e., the user did not
modify the Small_Wheistone procedure correctly for the mathematical library being used) the
compilation will succeed but the computation performed by Small_Whetstone will produce a run-
time exception.

Other exzeptions, such as Storage_Error, can arise if not enough code space has been allocated
for Hartstone (again, modifying the file that describes the target memory layout solves the
problem), or if the runtime system provides support only for a default number of tasks -(possibly
defined by a user-modifiable link parameter) and this default is exceeded by the extra tasks
created in experiment 4. .

CMU/SEI-90-UG-1 ' 21

22

CMU/SEI-90-UG-1

6. Future Work

it is expected that this report will be sufficient to enable a Hartstone user to run a series of
experiments against a particular Ada compiler on a particular architecture. The sample outputs
show what experiment results look like and some initial guidance on interpretation of results has
been provided. However, in order to be a truly useful tool, it is necessary to be able to compare
different implementations and provide a deeper analysis of results. Work is under way at the SEl
to do just that. The Hartstone benchmark will be used to generate results for several different
embedded systems cross-compilers. A subsequent report will describe these results and the
analysis required to draw from them conclusions about the usability of the cross-compilers for
hard real-time applications. The purpose of the report will not be to "rate" the various cross-
compilers, but to show Hartstone users how to draw their own conclusions when evaluating the
hard real-time characteristics of their own Ada compilers.

CMU/SEI-80-UG-1 . 23

24

CMU/SEI-90-UG-1

Bibliography

[Borger 89] Borger, M., Klein, M., Veltre, R.
Real-Time Software Engineering in Ada: Observations and Guidelines.
Technical Report CMU/SEI-89-TR-22, Software Engineering Institute, Carne-
gie Mellon University, Pittsburgh, PA 15213, September, 1989.

[Curnow 76] Curnow, H.J. and Wichmann, B.A.
A Synthetic Benchmark.
Computer Journal 19(1):43-49, January, 1976.

[Harbaugh 84] Harbaugh, S. and Forakis, J.
Timing Studies using a Synthetic Whetstone Benchmark.
Ada Letters 4(2):23-34, 1984.

[Liu 73] Liu, C.L. and Layland, J.W.
Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environ-
ment.
Journal of the Association of Computing Machinery 20(1):46-61, January,
1973.

[LRM 83] United States Department of Defense.
Reference Manual for the Ada Programming Language
American National Standards Institute, New York, 1983.

[Sha 89] Sha, L. and Goodenough, J.B.
Real-Time Scheduling Theory and Ada.
Technical Report CMU/SEI-89-TR-14, Software Engineering Institute, Carne-
gie Mellon University, Pittsburgh, PA 15213, April, 1989.

[Weiderman 89] Weiderman, Nelson.
Hartstone: Synthetic Benchmark Requirements for Hard Real-Time
Applications.
Technical Report CMU/SEI-89-TR-23, Software Engineering Institute, Carne-
gie Mellon University, Pittsburgh, PA 15213, June, 1989.

[WGS 89] ISO-IEC/TC1/SC22/WG9 (Ada) Numerics Rapporteur Group.
Proposed Standard for a Generic Package of Elementary Functions for Ada
WG9 Numerics Rapporteur Group, 1989.

[Wichmann 88] Wichmann, B.A.
Validation Code for the Whetstone Benchmark.
Technical Report DITC 107/88, National Physical Laboratory, Teddington, Mid-
dlesex, UK, March, 1988.

CMU/SE-30-UG-1 - 25

26

CMU/SEI-90-UG-1

Appendix A: Sample Results for XD Ada VAX/VMS ->
MC68020

A.1. Host-Target Configuration

The following is the host-target configuration used for generating the results reported here:

HOST: DEC MicroVAX It running VAX/VMS, Release 5.1-1
CROSS-COMPILER: Systems Designers XD Ada, Version 1.0, ACVC 1.10
TARGET: Motorola MVME133: 12.5 MHz MC68020 CPU with 12.5

MHz MC68881 Floating-Point Co-processor; one wait
state; 1Mb RAM; 256-byte on-chip instruction cache

Full optimization (the default) was specified for all compilations. No checks were suppressed.
The summary output for the four Hartstone experiments is shown in the next four sections.

CMU/SEI-90-UG-1 27

‘ co - ', el s -n'—n,‘ - rau ,' — " uu" al Ctisias i“ ¥ T 6 i Ly T‘ T & TR 6r-—-r L w‘*‘"'f’ T *."‘T' "*"*v"w}
\

A.2. Experiment 1: Summary of Results

HARTSTONE BENCHMARK SUMMARY RESULTS

Baseline tast:

Experiment: EXPERIMENT 1
Completion on: Miss/skip 50 daadlines

Raw spaed in Kilo-Whetstone Instructions Per Second (KWIPS): 1122.19
Test 1 characteristics:

Task Frequency Kilo-Whets Xilo-Whets Requested Workload

No. (Hexrtz) per period per sacond Utilization
1 2.00 32 64.00 5.70 %
2 4.00 16 64.00 5.70 %
3 8.00 8 64.00 5.70 %
4 16.00 4 64.00 5.70 %
5 32.00 2 €4.00 5.70 &
320.00 28.52 %

Experiment step siza: 2.85 %

Test 1 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec¢)
1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 320 0 0 0.000

E e e

28 CMU/SEI-90-UG-1

Last test with no missed/skipped deadlines:

Experiment: EXPERIMENT 1
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1122.19
Test 20 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hextz) . per period per second Utilization
1 2.00 32 64.00 5.70 %
2 4.00 16 64.00 5.70 %
3 8.00 8 64.00 5.70 %
4 16.00 4 64.00 5.70 %
5 336.00 2 672.00 59.88 %
928.00 82.70 %

Experiment step size: 2.85 %

Test 20 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 2.976 3360 0 0 0.000

R S e e e S e e S e e e I

CMU/SEI-90-UG-1

29

Test when deadlines first missed/skipped:

== R — — =

Experiment: EXPERIMENT 1
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (XWIPS): 1122.19

Test 21 chazgcta:iatics:

Task Frequendy Kilo-Whets Kilo-Whets Requested Workload

No. (Haxtz) per period pear second Utilization
1 2.00 32 64.00 5.70 %
2 4.00 16 64.00 5.70 &
3 8.00 8 64.00 5.70 %
4 16.00 4 64.00 5.70 %
5 352.00 2 704.00 62.73 %
960.00 85.55 %

Expariment ste; aiza: 2.85 %

- i e - o an - -

Test 21 results:

Test duration (saconds): 10.0

Task Period Mat Misged Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)
1l 500.000 9 - 7 13 : 626.683
2 250.000 40 0 0 0.000
3 125.000 80 9 0 0.000
4 $2.500 160 0 0 0.000
5 2.841 3520 0 0 0.000

R R R A A S T S L S I e e S T I R e R R I e e e e S T

30 CMU/SEI-90-UG-1

Final test performed:

Experiment: EXPERIMENT 1
Complation on: Miss/skip 50 deadlines

Raw speed in Xilo-Whetstone Instructions Per Second (KWIPS): 1122.19
Test 22 characteristics:

Task Frequency Kilo-Whets [Kilo-Whets Requasted Workload

No. (Hertz) per period per second Utilization
1 2.00 32 64.00 5.70 %
2 4.00 16 64.00 5.70 %
3 8.00 8 64.00 5.70 %
4 16.00 4 64.00 5.70 &
5 368.00 2 736.00 65.59 %
992.00 88.40 %

Experiment step size: 2.85 %

Test 22 rasults:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 0 6 14 10985.724
2 250.000 0 20 20 103.137
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 2.717 3680 0 0 0.000

e e T T T

CMU/SEI-90-UG-1 31

Benchmark : Hartstone Benchmark, Version 1.0]
Compiler : Systems Dasigners XD Ada 1.0 VAX/VMS ~-> MC68020
Target : Motorola MVME133 (12.5 MHz MC68020 & 12.5 MHz MC68881)

Characteristics of best test for this experiment:
(no missed/skipped deadlines)

Test 20 of Experiment 1 ¢
Raw (non-tasking) benchmark spead in XWIPS: 1122.19

Full task set:

Total Deadlines Task Set Total L
Tasks Per Second Utilization KWIPS
5 366.00 82.70 % 928.00

Highest-frequency task:

Pariod Deadlines Task Task)

(msec) Per Second gtilization XWIPS

2.976 336.00 59.88 % 672.00

Experiment step size: 2.85 %
L
END OF HARTS™ONE BENCHMARK SUMMARY RESULTS

L
®
®
®

32 CMU/SEI-90-UG-1

A.2. Experiment 2: Summary of Resulits

HARTSTONE BENCHMARK SUMMARY RESULTS

Baseline test:

Experiment: EXPERIMENT 2
Complation on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1122.10
Tast 1 characteristics:

Task Frequency Kilo-Whets Kilo-Whats Requested Workload

No. (Hartz) per period per second ytilization
1 2.00 32 64.00 5.70 %
2 4.00 16 64.00 5.70 %
3 8.00 8 64.00 5§.70 %
4 16.00 4 64.00 5.70 &
5 32.00 2 64.00 5.70 %

Experiment step size: 2.85 %

Test 1 results:

Tast duration (seconds): 10.0

Task Pariod Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 320 0 0 0.000

CMU/SE!-90-UG-1 33

Last test with no missed/skipped deadlines:

Expariment: EXPERIMENT 2

Completion on: Miss/skip 50 deadlines

Ravw speed in Kilo-Whetstoae Instructions Per Second (KWIPS): 1122.10

Test 23 characteristics:

Task Frequency Kilo-Whets

Kilo-Whets

Requested Workload

No. (Hextz) per period per second Utilization
1 6.40 32 204.80 18.25 %
2 12.80 16 204.80 18.25 %
3 25.60 8 204.80 18.25 %
4 51.20 4 204.80 18.25 %
5 102.40 2 204.80 18.25 %
1024.00 91.26 %
Experiment step size: 2.85 %
Test 23 results:
test duration (seconds): 10.0
Task Period Met Missed Skipped ‘Average
No. in msacs Deadlines Deadlines Deadlines Late (msec)
1 156.250 64 0 0 0.000
2 78.125 128 0 0 0.000
3 39.063 256 0 0 - 0.000
4 19.531 512 0 0 0.000
5 9.766 1024 0 0 0.000
]
34 ' CMU/SEL-90-UG-1

S

RO

Taest when deadlines first missed/skipped:

I I e D P e R s]

Experiment: EXPERIMENT 2
Completion on: Miss/skip 50 deadlines

Raw spaed in Kilo-Whetstone Instructions Per Second (KWIPS): 1122.10
Tast 24. charactexristics:

Task' Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Heztz) per period per second Utilization
1 6.60 32 211.20 18.82 %
2 13.20 16 211.20 18.82 %
3 26.40 8 211.20 18.82 %
4 52.80) 4 211.20 18.82 %
5 105.60 2 211.20 18.82 &
1056.00 94.11 %

Experiment step size: 2.85 %

Test 24 results:

Tast duration (seconds): 10.0

Task Period Mat Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Lata (msec)
1 151.515 0 33 33 55.840
2 75.758 132 0 : 0 0.000
3 37.879 264 0 0 0.000
4 18.939 528 0 0 0.000
5 9.470 1056 0 0 0.000
]
CMU/SEI-90-UG-1 35

Final test pexformed:

e e T e e

See preceding summary of tast 24

Banchmark : Hartstone Benchmark, Version 1.0

_Compiler
Target

Charactaeristics of best test for this experiment:
(no missed/skipped deadlines)

Test 23 of Experiment 2

Raw (non-tasking) benchmark speed in KWIPS: 1122.10

Full task set:

Total Deadlines Task Set Total
Tasks Per Sacond Utilization KWIPS
5 198.40 91.26 % 1024.00

Highest-frequency task:

Pariod Deadlines Task Task
(msac) Per Second Utilization KWIPS
9.766 102.40 18.25 % 204.80

Experiment step size: 2.85 %

: Systems Designers XD Ada 1.0 VAX/VMS -> MC68020
: Motorola MVME1l33 (12.5 MHz MC68020 & 12.5 MHz MC68881)

P
i

END OF HARTSTONE BENCHMARK SUMMARY RESULTS

36

CMU/SEI-90-UG-1

A.4. Experiment 3: Summary of Results

i HARTSTONE BENCHMARK SUMMARY RESULTS

Baseline test:

P Experiment: EXPERIMENT 3
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1121.88

Tast 1 characteristics:

° Task Frequency Kilo-Whets Kilo-Whets Requested Workload
No. (Hertz) per period per second Utilization
] 1 2.00 32 64.00 5.70 %
3 2 4.00 16 64.00 5.70 %
- 3 8.00 8 64.00 5.70 %
’b 4 16.00 4 64.00 5.70 %
5 32.00 2 64.00 5.70 %
320.00 28.52 %

Experiment step siza: 5.53 %

b S —

Test 1 results:

Test duration (seconds): 10.0

P Task Period Met Missed Skipped Average
n No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
rP 5 31.250 320 0 0 0.000
CMU/SEI-90-UG-1 37

Last test with no missad/skipped deadlines:

=== T S e e e e S A e e e o A

Experiment: EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

|

Raw spead in Kilo-Whutstone Instructions Per Second (KWIPS): 1121.88

Test 13 characteristics:

Task Fraquency Kilo-Whets

Kilo~-Whets

Requested Workload

No. (Haxtz) per period per second Utilization
1 2.00 44 88.00 7.84 %
2 4.00 28 112.00 9.98 %
3 8.00 20 160.00 14.26 %
4 16.00 16 256.00 22.82 %
5 32.00 14 448.00 39.93' %
1064.00 94.84 %
Experiment step size: 5.53 %
‘Tast 13 results:
Test duration (seconds): 10.0
Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 320 0 0 0.000
P]
38 CMU/SEI-90-UG-1

Test when deadlines first missed/skipped:

Expexriment: EXPERIMENT 3
Completion on: Miss/skip 50 deadlines

Raw speed in Xilo-Whetstone Instructions Per Second (KWIPS): 1121.88
Test 14 characteristics:

Task Fraquency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization
1l 2.00 45 90.00 8.02 %
2 4.00 29 116.00 10.34 %
3 8.00 21 168.00 14.97 %
4 16.00 17 272.00 24.24 %
5 32.00 15 480.00 42.79 %
1126.00 100.37 %

Experiment step size: 5.53 %

Test 14 results:

Test duration (seconds): . 10.0

. Task Pexriod - Mat Missad _ Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 0 10 10 248.639

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000

b]

CMU/SEI-90-UG-1 39

Final test performed:

See preceding summary of test 14

Benchmark : Hartstone Benchmark, Version 1.0

Compiler

: Systems Designers XD Ada 1.0 VAX/VMS -> MC68020

Target : Motorola MVME133 (12.5 MHz MC68020 & 12.5 MHz MC68881)

Characteristics of best test for this experiment:

(no missed/skipped deadlines)

Test 13 of Experiment 3

Raw (non-tasking) benchmark speed in XWIPS: 1121.88

Full task set:

Total Deadlines
Tasks Per Sacond
5 62.00

Highest-frequency task:

Periocd Deadlines
(msec) Per Second
31.250 32.00

Task Set Total
Utilization KWIPS
94.84 % 1064.00
Task Task
Utilization KWIPS
39.93 % 448.00

Experiment step size: 5.53 %

END OF HARTSTONE BENCHMARK SUMMARY RESULTS

40

CMU/SEI-90-UG-1

A.5. Experiment 4: Summary of Results

in the summaries that follow, the characteristics (frequencies, workloads, and utilizations) of the
extra tasks added to the baseline set are all ideitical; therefore, some have been edited out for
brevity. Similarly, some of the identical results produced by these extra tasks have also been
omitted. Such omissions are indicated by ellipses.

HARTSTONE BENCHMARK SUMMARY RESULTS

Baseline tast:

Experiment: EXPERIMENT 4
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Pexr Sacond (KWIPS): 1122.11
Test 1 characteristics:

Task Fraquency Kilo-Whets Kilo-Whets Requested Workload

No. (Hartz) per period per second Utilization
1 2.00 32 64.00 5.70 %
2 4.00 16 64.00 5.70 %
3 8.00 8 64.00 5.70 %
4 16.00 4 64.00 5.70 %
5 32.00 2 64.00 5.70 %
320.00 28.52 %

Experiment step size: 5.70 %

Tast 1 results:

Taest duration (seconds): 10.0

Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 320 V] 0 0.000

o e

!

CMU/SEI-90-UG-1 41

Last test with no missed/skipped deadlines:

e — e]

Experiment: EXPERIMENT 4
Complation on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1122.11
Test 12 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hartz) per period per second Utilization
1 2.00 32 64.00 5.70 %
2 4.00 16 64.00 5.70 %
3 8.00 8 64.00 5.70 %
4 16.00 4 64.00 5.70 %
5 32.00 2 64.00 5.70 %
6 8.00 8 64.00 5.70 %
16 8.00 8 64.00 5.70 %
1024.00 91.26 %

Experiment step size: 5.70 %

Test 12 results:

Test duration (seconds): 10.0

Task Period Met Missaed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 320 0 0 0.000
6 125.000 80 0 0 0.000

16 125.000 80 0 0 -0.000-

R R R R R R D R T =R

42 CMU/SEI-90-UG-1

Test when deadlines first missed/skipped:

— e
Experiment: EXPERIMENT 4
Completion on: Miss/skip 50 deadlines
° Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1122.11
i Tast 13 characteristics:
Task Fraquency Kilo-Whats Kilo-Whets Requested Workload
No. (Hertz) per period per second Utilization
1 2.00 32 64.00 5.70 %
() 2 4.00 16 64.00 5.70 %
3 8.00 8 64.00 5.70 %
4 16.00 4 64.00 5.70 %
5 32.00 2 . 64.00 5.70 %
6 8.00 8 64.00 5.70 %
L J
17 8.00 8 64.00 5.70 %
1088.00 96.96 %
f. Experiment step size: 5.70 %
Test 13 results:
o Test duration (seconds): 10.0
Task Period . Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 0 10 10 247.742
2 250.000 40 0 0 0.000
! 3 125.000 80] 0 0.000
"] 4 62.500 160 0 0 0.000
4 5 31.250 320 0 0 0.000
6 125,000 80 0 0 0.000
o 17 125.000 80 0 0 0.000
3
CMU/SEI-90-UG-1
»
,:

Final test performed:

Experimant: EXPERIMENT 4
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1122.11
Test 14 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hextz) per period ©per seconc Utilization
1 2.00 32 64.00 5.70 %
2 4.00 16 64.00 5.70 %
3 8.00 8 64.00 5.70 %
4 16.00 4 64.00 5.70 %
5 32.00) 2 64.00 5.70 %
6 8.00 8 64.00 5.70 %
18 8.00 8 64.00 5.70 %
1152.00 102.66 %

Experiment step size: 5.70 %

Tast 14 results:

Test duration (seconds): 10.0

Task Pariod Met Missaed Skipped Average
No. in msaecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 0 4 16 2002.884
2 250.000 0 20 20 124.420
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 320 0 0 0.000
6 125.000 80 0 0 0.000
18 125,000 80 0 (o] 0.000

44 CMU/SEI-90-UG-1

P S]

Benchmark : Hartstone Benchmark, Version 1.0
Compiler : Systems Designers XD Ada 1.0 VAX/VMS -> MC68020
Target : Motorola MVME133 (12.5 MHz MC68020 & 12.5 MHz MC68881)

Characteristics of bast test for this experiment:
(no missed/skipped deadlines)

Test 12 of Experiment 4
Raw (non-tasking) benchmark speed in KWIPS: 1122.11

Full task sot:

Total Deadlines Task Set Total
Tasks Par Sacond Utilization KWIPS
16 150.00 91.26 & 1024.00

Highest-frequency task:

Period Deadlines Task Task
(mseac) Par Second Utilization KWIPS

31.250 32.00 5.70 % 64.00

Experiment step size: 5.70 %

f e e o

END OF HARTSTONE BENCHMARK SUMMARY RESULTS

CMU/SEI-90-UG-1 45

46

CMU/SEI-90-UG-1

Appendix B: Supporting PIWG Resuits

The following are the results of some ACM Performance Issues Working Group (PIWG)
benchmarks for XD Ada 1.0 on the Motorola MVME133 board. The tests come from the Decem-
ber 12, 1987 release of the benchmarks. All compilations had full optimization in effect and no

checks were suppressed.

B.1. Calendar.Clock Resolution

Tast Name:

A000090

Clock resolution measurement running

Test Description:

Determine clock resolution using second differences

of values raturned by the function CPU_Time Clock.

Number of sample values is

Clock Resolution

Clock Reuolution (average)
Clock Rasolution (variance)

B.2. Delay Statement Resolution

The delay values shown are in seconds.

1

2000

0.000122070312500 seconds.
0.000122070312500 saconds.
0.000000000000000 saconds.

¥000001 Measure actual delay vs commanded delay
Actual

Commanded
.0010
.0020
.0039
.0078
.0156
.0313
.0625
.1250
.2500
.5000
.0000
.0000
.0000
.0000

AN PFPOOOCCOOOO0OO0OO0O

OANHFOOOOOO0OOOOO

.0013
.0023
.0042
.0081
.0159
.0314
.0626
.1252
.2501
.5000
.0001
.0002
.0001
.0001

OHENFOOO0ODO0DO0DO0000O0

CrPU

.0013
.0023
.0042
.0081
.0159
.0314
.0626
.1252
.2501
.5001
.0001
.0002
.0002
.0002

Iterations

4096

2048

1024

512

286

128

64

CMU/SE!-90-UG-1

47

B.3. Procedure Call Overhead

Tast Name: P00000S Class Name: Procedure
CPU Tima: 1.6 microseconds
wWall Time: 1.6 microseconds. Itaration Count: 1024

Test Description:

Procedure call and retura time measurement

The procedure is in a separately compiled package
One parameter, in INTFGER

Test: Name: P000006 Class Name: Procedure
CPU Tima: 2.8 microseconds
Wall Time: 2.8 microseconds. Iteration Count: 1024

Test Description:

Procedure call and return time measurement

The procedure is in a separately compiled package
One parameter, out INTEGER

Tast Name: P000007 Class Name: Procedure
CPU Time: 3.1 microseconds)
Wall Time: 3.1 mnmicroseconds. Iteration Count: 1024

Test Description:

Procedura call and return time measurement

The procedure is in a separately compiled package
One parameter, in out INTEGER

48 CMU/SEI-99-UG-1

Appendix C: Obtaining Hartstone Source Code and
Information

Hartstone source code and supporting documentation can be obtained from the Real-Time Em-
bedded Systems Testbed (REST) Project at the Software Engineering Institute in a number of -
different ways. Full details can be obtained by sending a request for information to the electronic
mail or postal address listed below.

Electronic mail requests should be sent to the following Internet address:
HARTSTONE-INFO@SEI.CMU.EDU

Electronic malil received at this address will automatically return to the sender instructions on all
available distribution mechanisms.

For peopie who do not have Internet access, the address to send information requests to is:

REST Transition Services
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890
Phone: (412) 268-7700

CMU/SEI-90-UG-1] 49

50

CMU/SEI-90-UG-1

—

Appendix D: Hartstone Ada Code for PH Series

The code in this appendix is listed in the order shown below.

Main procedure:

Package spec:
Package body:

Package spec:
Package body:

Package spec:
Package body:

The actual compilation order is

Package spec:
Package body:

Package spec:
Package boly:

Package spec:
Package body:

‘Main procedure:

Hartstone

Experiment
Experiment

Periodic_Tasks
Periodic_Tasks

Workload
Workload

Workload
Workload

Periodic_Tasks
Periodic_Tasks

Experiment
Experiment

Hartstone

CMU/SEI-90-UG-1

51

Hartstone Benchmark, Version 1.0

~| Unit Name: Hartstone

~| Unit Type: Main Procedure Body

—~| Description:

Controls & single Hartstone experiment. A Hartstone experiment consists
of a series of individual tests, with the tests being performed by a

set of tasks. The tasks are required to perform varying computational
loads within hard-real-time deadlines. (The name Hartstone comes from
HArd Real-Time and the fact that the computational load is provided by

a variant of the Whetstone benchmark.) This main program activates the
set of tasks and collects results from it.

As each test complotes, its results are stored and may optionally

be output at that time. Also, a check is made to see if the entire
experiment has completed. If not, the next test in the series is
started. On completion of the experiment, & summary of the results
is output.

-| Authors:

Nelson Weiderman, Neal Altmnn, Patrick Donohoe, Ruth Shapiroe,
Software Engineering

Carnegie Mellon University,

Pittsburgh, PA 16213.

~| References:

Weiderman, N.,
Hartstone: Synthetic Benchmark Requirements
for Hard Real-Time Applications
Technical Report CMU/SE]-89-TR-23,
Software Engineering Institute, June 1989,

Donohoe, P., Shapire, R., Weiderman, N.,
Hartstone Benchmark User’s Guide, Version 1.0
Technical Report CMU/SEI-80-UG-1,

Software Engineering Institute, March 1990.

-1 Distribution and Copyright Notice:

Copyright (C) 1989 by the Carnegie Mellon University, Pittsburgh, PA.

—| The Software Engineering Institute (SEI) is a federally funded research
—| and development center established and operated by Carnegie Mellon
—I University (CMU). Sponsored by the U.S. Department of Defense under
~| contract F19628-85-C-0008, the SEI is supported by the services and

—: defense agencies, with the U.S. Air Force as the executive eontrachng

~| agent.

Permission to use, copy, modify, or distribute this software and its

—| documentation for any purpose and without fee is horeby grantod,

~| provided that the above copyright notice appears in all copies and that
~| both that copyright notice and this permission notice appear in

--| supporting documentation. Further, the names Software Engmoenng
- | Institute or Carnegie Mellon University may not be used in advertising
~| or publicity pertaining to distribution of the software without

~| specific, written prior permission. CMU makes no claims or

~| representations about the nnhbiht'y of this software for any purpose.
| This software is provided "as is” and no warranty, exprees or implied,
| is made by the SEI or CMU, as to the accuracy and functioning of the
~| program and relsted program material, nor shall the fact of distribution

52

CMU/SEI-90-UG-1

--| constitute any such warranty. No responsibility is assumed by the SEI
- or CMU in connection herewith.

with Experiment;

with Periodic_Tasks;

with Calendar;

use Calendar; - To gain visibility for-arithmetic operations on time

with System;

procedure Hartstone is

pragma Priority(System.Priority’lLast); - Higherthan any Hartstone task

- Variables to hold test parameters

Test_Start_Time
Test Duration

No_Of_Test_Repetitions

Full Output

Task Frequencies
Task | _Workloads
No_ Of Extra_Tasks
Extra " Tasks

Calendar.Time;
Duration;
Natural;
Boolean;

Experiment .Frequency Arxay;
Experiment .Workload Array;
Experiment .Extra Tasks _Range;
array(l..Experiment .Max _Extra_ Tasks)
of Periodic_ Tasks.New 'rask Po:.nter.

~ The following constant is added to the start time of a test to
- allow for task elaboration etc., particularly when new tasks
- are being added to the baseline set

Settling Time : constant := 5.0;

- Variables to hold test results

Met_Deadlines : Experiment.Deadlines Array;
Missed Deadlines : Experiment.Deadlines Array;
Skipped_Deadlines : Experiment. Deadlines | _Array;
Cumulative Late : Experiment. Cumulat:.ve Late Array;

procedure Start_Test is - Activate all tasks at a common starting time

begin

Periodic_Tasks.T1. Start (Test_Start_Time,

Test Durat:.on,
Task_; _Frequencies (1),
Task_wWorkloads (1)) ;

Periodic Tasks.T2.Start (Test_Start_Time,

Test_Duration,
Task_Frequencies (2),
Task _Workloads(2));

Periodic_Tasks.T3.Start (Test_Start_Time,

Test_Duration,
Task_Frequencies(3),
Task_Workloads (3)):

Periodic_Tasks.T4.Start (Test_Start_Time,

Test_Duration,
Task_Frequencies(4),
Task_Workloads (4));

CMU/SEI-90-UG-1

53

Periodic_Tasks.T5.Start (Test_Start _Time,
Test Durat:.on,
Task Frequenczes(S),
Task Workloads(S)),

for I in 1..No_Of Extra Tasks loop
Extra 'I‘asks(I) Start (Test Start T.une,
Test Duratlon,
Task | Frequencxes(axperzment No_Of Basic_Tasks + I),
Task WOrkloads(Expe:zment No_(of Baszc Tasks + I));
end loop;
end Start Test;

procedure Stop_Test is - Retrieve task results on completion of a test
begin
Periodic_Tasks.Tl.Stop (Met Deadlines(l),
Missed Deadlines(l),
Ska.pped Deadlines{l),
Cumnulative Late(1)):

Periodic_Tasks.T2.Stop (Met_Deadlines(2),
Missed | Deadlines(2),
Sk;pped Deadlines(2),
Cumulative_pate(z));

Periodic_Tasks.T3.Stop (Met_Deadlines(3),
Missed Deadlines(3),
Skipped Deadlines(3),
Cumulative_Late(3));

Periodic_Tasks.T4.Stop(Met Deadlines(4),
Missed Deadlines(4),
Skzpped Deadlines(4),
Cumulat:.ve Late(4)):;

Periodic_Tasks.T5.Stop(Met_Deadlines(5),
M:Lssed Deadlines (5),
Sk;pped Deadlines(5),
Cumulative_Late (5));

for I in 1..No_Of Extra Tasks loop
Extra Tasks(I) Stop (Met Deadlines (Experiment.No Of _Basic_Tasks + I),
Missed Deadl:.nes(Exper:Lment No_(" Of Bas:.c Tasks + I),
Sk:.pped Deadlines (Experiment .Nc Of Bas:.c Tasks + I),
Cumulative _Late (Experiment.No_(0 Baslc Tasks + I));

end loop;
end Stop_Test;
begin - Hartstone
= Get some basic experiment parameters common to all tests
Experiment.Initialize(Test_Duration,
No__ of _Test Repet:.t ions,
Full Output) ;

~ Perform the tests of the experiment until a pre-determined
- experiment-completion criterion is satisfied

loop
- Retrieve the cuxrent test parameters

54 CMU/SEI-90-UG-1

Experiment.Get_Test (Task Frequenc:.es,
Task Workloads,
No_Of Extra_ Tasks);

- If the current experiment requires it, create a new task

if No_Of Extra Tasks > 0 then

Extra ‘I‘asks (No Of Extra_Tasks) := new Periodic Tasks.New_Task;
end if;”

~ Repeat each test a pre-determined number of times

for I in 1..No_Of_ Test_ Repetitions loop
Met Deadlines := (others => ();
Missed Deadlines := (others => 0);

Skipped Deadlines := (others => 0);
Cumulative lLate := (others => 0.0);

Test_Start_ Time := Calendar.Clock + Settling Time;

Start_Test;

~ Delay the main program beyond the end of the test (add twice
- the longest period) so that the rendezvous calls to collect
- test results won't interfere with the tasks as they finish up

delay Settling Time +
Test Durat:.on +
2 * Duration(l1.0 / Task _Frequencies (Task_ Frequencies’/First));

Stop_Test;

Experiment.Store Test_Results(Met Deadlines,
Missed |_Deadlines,
Skzpped Deadlines,
Cumulative_Late);

if Full Output then

Experiment.Output_Test_Results; - Results of current test
end if;

end loop;
exit when Experiment.ls_ Complete;
end loop;
Experiment.Output_Swmary Results; - Summary of entire experiment

end Hartstone;

CMU/SE!-90-UG-1 , 55

-1
-1
«1! Unit Name: Experiment

-1

=1 Unit Type: Package Specification

-l

- | Description:

—~1 Provides the interfaces for retrieving the characteristics of

-| experiments and their constituent tests, storing and displaying

—|{ test and experiment results, and checking for experiment completion.

package Experiment is
- Exported constants, types, and subtypes
Benchmark : constant String := "Hartstone Benchmark, Version 1.0";
No_Of Basic_Tasks : constant Natural := 5;
Max Extra Tasks : constant Natural := 100;
subtype Extra _Tasks Range is Integer range =-1..Max Extra_Tasks;

subtype Task Number Range is Natural
range 1. .No Of_ Bas:.c Tasks + Max_ Extra_Tasks;

type Frequency Array is array(Task Number_ Range) of Float;
type Workload Array is arrzay ('rask Number . _Range) of Natural;
type Work_Rate Array is t::ay(‘rask Number . _Range) of Float;
type Deadlines . _Array is u:ay('rask Number ; _Range) of Natural;

type Cumulative__l.ate_Array is array(Task] “Numbex . _Range) of Duration;

-1

-: Unit Name: Initialize

-1 Unit Type: Procedure Specification

-1

-| Description:

-1 Retrieves test parameters which are common to all tests in
-| the experiment.

-1

—| Parameters:

—~| Length_Of_Test: The duration of each test in the experiment,
—! measured in seconds.

-1

-1 No_Of_Repetitions: The number of times the current test is run
-1 before the next test in the series is started.

-1

-1 Full_Output_Requested: If false, only summary results are
-1 output at the end of the experiment. Iftrue, results are

-1 also output as each test repetition completes.

procedure Initialize (Length Of Test : out Duration;
No_Of Repet:.t;ons : out Positive;
Full Output _Requested : out Boolean);

-1

~| Unit Name: Get_Test

-1

~| Unit Type: Procedure Specification
-1

~| Description:

56 - * CMU/SEI-90-UG-1

-1 Retrieves the characteristics of the current test in a test series.
-1

- | Parameters:

-1 Frequencies: Each element of this array contains the frequency,
—~! in Hertz, of the corresponding Hartstone task.

-1

—~| Workloads: Each element of this array contains the workload,
| expressed in thousands of Whetstone instructions, of the

-1 corresponding Hartstone task.

-1

—~| Extra_Tasks: The total number of extra tasks to be exectuted along
-1 with the baseline set of Hartstone tasks, in a single test.

procedure Get Test (Frequencies : out Frequency Array;
Workloads : out Workload Array;
Extra_Tasks : out Extra_Tasks_Range);

-1

- Unit Name: Is_Complete

-1

- Unit Type: Function Specification

- | Description:

-~ Checks the completion criterion established for the experiment in
~| progress. Returns a Boolean value indicating whether (true) or not
~| (false) the experiment is finished.

-1

~| Parameters: None

-1

function Is_Complete return Boolean;

-1

~ | Unit Name: Store_Test_Results

-1

—| Unit Type: Procedure Specification

-1

- | Description:

-1 Stores the results of the current test so that they may be used

—~! to check for experiment completion and/or delivered as output.

-1

-| Parameters:

~| Met: Each element of this array contains the number of times during

-] the test that the corresponding Hartstone task successfully

-1 completed its workload before its next scheduled activation time.

-1

| Missed: Each element of this array contains the number of times during
-1 the test that the corresponding Hartstone task failed to complete

-1 its workload before its next scheduled activation time.

| :
-1 Skipped: Each element of this array contains the number of times during
—~1 the test that the corresponding Hartstone task did not attempt to

~| perform its workload for the scheduled activation time.

-1

~| Amount_Late: Each element of this array contains the sum of the

-1 amounts by which the corresponding Hartstone task was late when

-1 it missed its deadlines.

-1

procedure Store Test_Results(Met : in Deadlines_Array;

Missed ¢ in Deadlines_Array;

Skipped : in Deadlines_Array;
CMU/SEI-90-UG-1 57

Amount_Late :

-1 Unit Name: Output,_Test_Results

~1 Unit Type: Procedure Specification
-1

~| Description:
=1 Outputs the results of the single test just completed.

- | Parameters: None
-]

procedure Output_Test Results;

-
-I Unit Name: Output_Summary_Results

-l Unit Type: Procedure Specification
-1

~| Description:
-| Outputs & summary of the results of an entire experiment.

-

-| Parameters: None

-}

pProcedure Output_Summary Results;

end Experiment;

in Cumulative_Late Array);

58

CMU/SEI-80-UG-1

® 7
-1
-1
-1
-1
-1
-1
L -1
-1
-1
-1
-
-1
-1
e -
-1
-1
-1
-1
-1
-1
° |
-1
-1
-1
-1
-1
-1
o -l

- | Unit Name: Experiment
-1
® ~| Unit Type: Package Body

Description:
The charactaristics of four experiments for the Hartstone Periodic
Harmonic (PH) test. series are defined here. Also provided are the
procedures and functions to retrieve individual test characteristics,
store and display test results, check for completion of an experiment,
and output a summary of the entire experiment.

An experiment consists of a series of tests. The tests are performod
by a set of tasks. The transition from one test to the next in the
series is achieved by increasing the computational load required of the
task set. The four experiments defined here are:

Experiment 1: Increase the frequency of the highesi-frequency task
Experiment 2: Scale up the frequencies of all the tasks

Experiment 3: Increase the workloads of all tasks

Experiment 4: Add new tasks to the baseline task set

When the computational load required of the periodic tasks exceeds the
processor’s capability they will start to miss their deadlines. They

will shed load by skipping workload assignments in an effort to reach

a point where a workload may again be attempted. Deadlines ignored
during load-shedding are known as skipped deadlines. The completion
conditions for an experiment are largely defined in terms of missed
and sidpped deadlines. An experiment completes when a test satisfies
one of the following user-selected completion criteria:

(a) Any task in the task set has missed at least one deadline
in the current test

{(b) The cumulative number of missed and skipped deadlines in the
task set, for the current test, reaches a pre-set limit

(c) The cumulative number of missed and skipped deadlines in the
task set, for the current test, reaches a pre-set percentage
of the total number of met + missed + skipped deadlines

(d) The workload required of the task set is more than it could
possibly achieve, i.e. when the requested workload is greater
than the workload achievable by the benchmark in the absence
of tasking. This is a default completion criterion for all
experiments.

(e) The maximum number of extra tasks has been added to the task
set and deadlines still have not been missed or skipped. This
is a default completion criterion for experiment 4. If this
happens, the user should increase the value of the parameter
representing the maximum number of tasks to be added.

Since this benchmark is primarily for embedded targets, no assumptions
are made about the availability of host-target file 1/O, or the ability

to provide parameters to the executing benchmark interactively. It is
assumed that the only code executing on the target system is the
Hartstone benchmark and the Ada run-time system. Thus the experiment
to be performed, the conditions under which it stops, and the
characteristics of tests within the experiment are all defined here

and are changed by manual editing of this package body. The part of

the package that needs to be modified by users is small and explicitly
indicated by comments. For any given experiment, the changed package
body must be re-compiled, and the Hartstone benchmark re-linked and re-

CMIJ/SEI-90-UG-1

59

-1

loaded into the target.

with Workload;

with Calendar;
with Text_ IO;

package body Experiment is

type Experiment Type is (Experiment_ 1, Experiment 2,
Experiment_3, Experiment_d4);

type Completion_ Type is (One_Unmet Deadline,
Many Unmet _Deadlines,
Percent: Unmet _Deadlines);

erererrmemerest << START OF USER-MODIFIABLE SECTION >5>-scevercssnmems
- Modify the next two strings to describe your compiler and target

Compiler : constant String :=

"XXX Host_ System -> Target_System, release n.n";
Target : constant String :=

"Target_ System (m.n MHz)";

- Modify only the next two values to implement a particular
- experiment using the default parameters

Which_Experiment

constant Experiment Type := Experiment 1;
Completion_Criterion

- Modify the parameters below ONLY if you wish to change the default
- characteristics of an experiment.

- Experiment characteristics:

- False => only output a summary

Full Output : constant Boolean e;
.0; -~ Seconds

No_Of Test Repetitions : constant :
Test Durat:.on : constant Duration :

- Experiment completion criteria parameters:

Unmet Deadlines Limit : constant := 50;
Percent_Unmet Deadlines Limit : constant := 50.0;
- Task aet characteristics:

- Bear in mind that the harmonic nature of the PH test series must be

~ preserved and that rate-monotonic priorities for tasks depend on the

- task frequencies (higher-frequency task => higher priority, and vice

— versa). Also note that the frequency specified in the "others"

« choice must be the same as the third array element.

Initial_Task Frequencies : constant Frequency_ Array :=
(2.0, 4.0, 8.0, 16.0, 320,

othexrs => 8.0);

—~ The set of initial workloads provides each task with the same

- workload per second (frequency x workload). The workload specified

- in the "others" choice must be the same as the third array element.
Initial_ Task_Workloads : constant Workload Array :=

60

CMU/SEI-90-UG-1

constant Completion Type := Many Unmet Deadlines;

nt
Al

(32' 16' 8’ 4' 2'
others => 8);

-- The frequency increment for the highest-frequency task in the basic
- task set must be set equal to the frequency of the next-to-last task
— in order to preserve the harmonic nature of the PH series task set

Frequency Increment : constant Float :=
Initial_Task ._Frequencies (No_Of_| Basic_Tasks - 1)
Workload Increment : constant Natural := 1;

Frequency Scale_Factor : constant Float := 0.1;

~eme—m-c<< END OF USER-MODIFIABLE SECTION 55>>-—eceeemceeee

type Test_State is
record
Test Number
No_(Of Extra_ Tasks
Total] _No_Of | “Tasks
Task F:equencxes
Task_| “Workloads
Met Deadl;nes
M;ssed Deadlines
Skipped_peadlines
Cumulative Late
Task Work Rates
Total Rate_Requested
Total Rate Achieved
end recorzd;

Natural := 0;

Extra_Tasks_Range := -1;

Natural := No_Of Basic_Tasks;

Frequency Array = Inztzal Task_Frequencies;
Workload Array := Initial Task Workloads,
Deadlines _Array = (othexrs => 0);
Deadlines | _Array := (others => 0);
Deadlines . _Array (others => 0);
Cumulat;ve Late_Array := (others => 0.0);
Work_Rate Array := (others => 0.0);

Flecat := 0.0;

Float := 0.0;

5% 3% % B 40 SV v 3D se e es se
e 00 o0 o

Initial Test
Current_Test

First Fa:.led Test
Last__ Successful Test

Test_State;
Test_State;
Test_State;
Test_State;

*s 00 oo se

Total Met Deadlines : Natural := 0;
Total_Unmet Deadlines : Natural := 0;
Raw_Speed : Float := 0.0;
Experiment_ Step_Size : Float := 0.0;

-000-

-1

~! Unit Name: Compute_Rew_Speed

-1

~| Unit Type: Procedure Body

-1

~| Description:

-1 This local procedure provides a "calibration” of the computational

~| load required of Hartstone tasks. A synthetic workload for each task
-1 1is provided by a variant of the Whetstone benchmark. This procedure
—~| computes the raw speed of the Small_Whetstone benchmark, in the

—~| absence of tasking, by determining how many thousands of Whetstone
-l instructions (Kilo-Whetstones) per second it can execute. Raw

—~| speed is expressed in Kilo-Whetstone Instructions Per Second (KWIPS).
—| The performance of the Hartatone task set will be measured against

~1 this non-tasking computation.

-1

—~| The accuracy of this timing measurement will depend on the resolution
-1 of Calendar.Clock.

-1

procedure Compute Raw_Speed is

use Calendar; - To achieve visibility of operations on Time values

CMU/SEI-90-UG-1 61

Iterations : constant := 10 _000; - Thousandsof Whetstone instructions
Start_Time : Calendar.Time;
Finish_Time : Calendar.Time;

begin

« The number of loop iterations depends on the desired timing accuracy
- and the accuracy of Calendar.Clock. For example, to achieve an

- accuracy of one microsecond with a ten-millisecond Clock, the loop

- should iterate 10000 times. Note that to achieve a constant overhead
~ the Small_Whetstone procedure is called repeatedly with a value of 1,
~ representing one Kilo_Whetstone. This is also how Hartstone tasks do
- their workloads; the overhead of the procedure call is part of &

- task’s overall execution time.

Start_Time := Caléndar.Clock;
for I in 1l..Iterations loop
Workload.Small Whetstone(l):;
end loop;
Finish_Time := Calendar,Clock;
Raw_Speed := Float (Iterations) / Float (Finish Time -~ Start_Time);

end Compute_Raw_Speed;

000~

Unit Name: Initialize
Unit Type: Procedure Body

Description:
Retrieves the basic test parameters common to all tests in an
experiment, i.e. the duration of a test, the number of times
the same test is to be repeatsd, and whether or not the results
of a test should be output when the test completes. (A summary
of the entire experiment will always be output.) Also computes
the raw (non-tasking) speed of the bonchmn'k and the step size

~| of the experiment.

-1

procedure Initialize(Length Of Test : out Duration;
No_Of Repetitions : out Positive;
Full Output_Requested : out Boclean) is

begin .

- "Calibrate” the Hartstone benchmark by measuring the speed
- of the synthetic workload in the absence of tasking

Compute_Raw_Speed;
- Determine the step size of the experiment. "Step size” is a measure
— of the extra work requested of the task set when the next test in
— a series is derived from the current test. It is expressed as a
— percentage of the raw speed. It varies from experiment to experiment
- but remains constant for a specific experiment.
case Which Experiment is
when Experiment 1 =>

- The step size of Experiment 1 is equal to the amount of extra
- work given to the highest-frequency task divided by the raw speed

62

CMU/SEI-90-UG-1

Experinent_Step_Size := 100.0 * (Frequency_lncrement *
Float (Initial_Task _Workloads (No_Of_Basic Tasks))) / Raw_Speed;

when Experiment 2 =>

- The step size of Experiment 2 is equal to the amount of extra
— work given to all the tasks divided by the raw speed

for I in 1l..No Of Basic_Tasks loop
Experiment_ Step Size := Experiment Step_ Size +
100.0 * (Frequency Scale Factor * In:.t:.al Task_Frequencies (I) *
Float (Initial ' Task Workloads(I))) / Raw Speed,
end loop:;

when Experiment 3 =>

"« The step size of Experiment 3 is equal to the amount of extra
- work given to all the tasks divided by the raw speed

for I in 1..No_Of Basic_Tasks loop
Experiment Step "~ Size 1= Experiment_ Step Size +
100.0 * (Float (Workload ! Increment) * Im.tn.al Task_Frequencies(I)) /
Raw_Speed;
end loop;

when Experiment_4 =>

- The step size of Experiment 4 is equal to the amount of work
-- performed by a new task divided by the raw speed.

Experiment_Step Size := 100.0 *
(Inzt:.al Task _Frequencies (No_Of Basic_Tasks + 1) *
Float(Im.t:.al Task_ Workloads (No_0Of Bas:.c Tasks + 1))) / Raw_Speed;

end case;
Length Of Test ;= Test Durat:.o.n,
No Of Repet;t:.ons := No Of Test Repetitions;

Full Output_Requested := Full Output;
end Initialize;

000

-1

-1 Unit Name: Get_Test

-}

«| Unit Type: Procedure Body

-1

-| Description:

~1 Retrieves the frequencies and workloads to be assigned to the Hartstone
-1 task set for the current test. Also retrieves a count of the number
-] of extra tasks to be executed along with the baseline set (if required
~| by the experiment) in the currert test. It is this procedure which
—~| manages the transition from one test to the next in an experiment.
-1

procedure Get_ Test (Frequencies : out Frequency Array;
Workloads : out Workload Array,
Extra Tasks : out Extra _Tasks_Range) is
begin

~ Update paramete . for this test, in accordance with current experiment

CMU/SEI-90-UG-1) 63

case Which_Experiment is
when Experiment 1 =>
- Increment frequency of highest-frequency basic task
Current_Test.Task_Frequencies (No_Of Basic_Tasks) :=
Initial _Task Frequenc:.es(No Of Basgic I‘asks) +
Float (Current Test .Test Number) * Frequency Increment;
when Experiment 2 w=>

- Scale up frequencies of all basic tasks

for I in 1..No_Of_Basic_Tasks loop
Current_ Test.Task Frequenc:.es(I) ;=
Initial _Task !‘requenc:.es(l‘ + Float (Current_Test.Test_Number) *
Frequency Scale Factor * Initial_ Task Frequencles(I) ;

end loop;
when Experiment 3 =>
~ Increment workloads of all basic tasks

for I in 1..No_Of Basic_Tasks loop
Current_Test. . Task Worfloads(I) s= Initial_Task Workloads(I) +
Current _Test. Test _Number * Workload Increment.

end loop;
when Experiment 4 =>

~ For each test, add a new task (dynamicRlly
- created in the main program) to the task set

Current_ Test.No_Of Extra Tasks := Current_Test.No_Of_ Extra_ Tasks + 1;
Current_Test.Total No_Of Tasks := No_Of Basic_Tasks +
Current_Test.No_Of_Extra_Tasks;

end case;

Current_Test.Test_Number := Current Test.Test_ Number + 1;
- Return task characteristics for current test

Frequencies := Current_Test.Task_Frequencies;

Workloads := Current_Test.Task_Workloads;
Extra_Tasks := Current_Test.No_Of_ Extra_Tasks;

end Get_ Test;

000

~1 Unit Name: Is_Complete

- | Unit Type: Function Body

Description:
Checks the completion criterion established for the experiment in
progress. Returns a Boolean value indicating whether (true) or not
(false) the experiment is finished. The completion criteria are
defined in terms of the mazimum allowed number of unmet deadlines
for the Hartstone task set.

64

CMU/SEI-90-UG-1

function Is_Complete return Boolean is

begin

— Check the default completion criteria. These are: stop any experiment

- when the work rate requested of the task set exceeds that achievable

-- by the non-tasking benchmark (raw speed), and stop Experiment 4 when
- the maximum number of extra tasks have been added, whether or not

-- deadlines have been missed.

if Current Test.Total Rate_ Requested >= Raw_Speed or
Current Test No Of Extra “Tasks = Max | Extra Tasks then
return True;

end if;

-- Check the user-specified completion criterion

case Completion Criterion is

when One_Unmet_Deadline =>

return Total Unmet Deadlines >= 1;

when Many Unmet_ Deadlines =>

return Total Unmet Deadlines >= Unmet Deadlines Limit;

when Percent_Unmet Deadlines =>

return (Float (Total_ Unmet_Deadlines) /

Float (Total_Met Deadlz.nes + Total Unmet_Deadlines)) * 100.0 >=

Percent Unmet Deadl.mes _Limit;

end case;

end Is Complete;

000

- | Unit Name: Store_Test_Results

-1 Unit Type: Procedure Body

-1 Description:

-~{ Stores the results of the current test so that they may be used
—~1 to check for experiment completion and/or delivered as output.
—1 Also saves the results of the highest test in the series with no
~| missed or skipped deadlines, the results at the time deadlines
—~| were first missed or skipped, and the results of the first test
—| inthe series.

-]

procedure Store_ Test Results(Met

begin

in Deadlines_Array;

Missed : in Deadlines . _Array;
Skipped : in Deadl:.nes_Array,
Amount_Late : in Cumulative_Late_Array)

— Store the results provided in the call

Current Test.Met Deadlines := Met;

Current _Test. M:Lssed Deadlines := Missed;
Current _Test. Skzpped Deadlines := Skipped;
Current_Test.Cumulativé Late := Amount_Late;

is

CMU/SEI-90-UG-1

65

~ Derived results

Current_Test.Total Rate_Requested := 0.0; - Taskset'srequested work rate
Current Test Total Rate “Achieved := 0.0; - Task set'sachieved work rate
Total Met Deadl:.nes = 0;
Total Unmet _Deadlines := 0;

for I in l1..Current_Test.Total No Of Tasks loop
— Calculate the rates at which tasks are required to do their workloads

Current_Test.Task_Work Rates(I) := (Current Test.Task _Frequencies (I) *
Float (Current Test. Task Workloads (I) V)

~ The task set’s requested work rate is the sum of the tasks’ work rates

Current_Test.Total Rate Requested := Current_Test.Total Rate_Requested +
Current_Test.Task_Work Rates(I);

~ Calculate the rate at which the task set's workload was actually done

Current Test.Total Rate Ach:.eved := Current_ Test.Total Rate_. Ach;eved +
(Float (Current Test .Met _Deadlines(I) *

Current_Test. S Task Workloads(I)) / Float (Test_Duration));

Total Met Deadlines := Total Met Deadlines +
Current_Test.Met Deadlines(I):

'rotal Unmet_Deadlines := Total_ Unmet Deadlines +
Current Test Skipped Deadlines(I) +
Current_ “Test .Missed | Deadlines(I);

end loop;

- If the'current test hasn’t missed/skipped any deadlines yet
- then record its state as the pest result so far, otherwise,

- if the current test is the first to misa/skip deadlines,

-- record the state of the task set at the time of the miss/skip.

if Total_Unmet Deadlines = 0 then
Last Successful Test := Current Test;
elsif First Fa:Lled Test .Test Number = 0 then
First Fa:.led Test := Current _Test;
end if;

- Save the initial (baseline) test results for the summary
if Current Test.Test Number = 1 then
Initial Test := Current_Test;
end if;
end Store_Test Results;

000

-l

- | Unit Name: Put_Results
-1

—| Unit Type: Procedure Body
-l

-1 Deacnptlon'

~| For the given test, outputs the name of the experiment, the
~| completion cnﬁenon, the characteristics of the task set (its
-| frequencies, workloads, and utilization) and the results

CMU/SEI-90-UG-1

|

-1 achieved by the task set (met, missed, and skipped deadlines).
-1 Also ouputs the raw (non-tasking) speed and the experiment
-1 step size. Utilization is defined as the workload execution

—~| rate expressed as a percentage of the raw speed. The step

~| sizeis the increase in utilization required of the task set

-1 when performing the successor to the current test. Itis

—~1 the "resolution” of the workload utilization.

procedure Put Results(Test : in Test_State) is
package Flt_IO is new Text_ IO.Float_IO(Float);
package Int I0 is new Text I0. Integer I0 (Integer);
package Durat:.on I0 is new Text ~10. leed IO (Duration);
use Text IO;

begin

New_Line;
Put_Line("

New_Line;
Put_Line ("Experiment: " & Experiment_Type’Image (Which Experiment));

Put ("Completion on: ")
case Completion Criterion is
when One Unmet _Deadline =>
Put L;ne("Mlss/skxp at least one deadline");
when Many Unmet Deadlines =>
Put Llne(“Mzss/sklp" & Integer’Image (Unmet_Deadlines Limit) &
" deadlines™);
when Percent Unmet Deadlines =>
Put ("Miss/skip ")
Flt_IO.Put (Float (Percent_Unmet_ Deadlines_Limit), 3, 1, 0);
Put Llne(" percent of deadlines");
end case;

New_Line;

Put ("Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): %)
Flt_IO.Put (Raw_Speed, 4, 2, 0);

New_Line;

New_Line;

Put_Line("Test"™ & Integer’Image(Test.Test_ Number) & " characteristics:");
New_Line;

Put_Line("™ Task Frequency Kilo-Whets Kilo~Whets Requested Workload");
Put_Line (" No. (Hertz) per period per second Utilization"):;

for I in 1..Test.Total No_Of Tasks loop

~ Task number
Set_Col(5):
Int_I0.Put(I, 2);

- Task frequency
Set_Col(1l):;
Flt_IO.Put (Test.Task_Frequencies(I), 4, 2, 0);

— Kilo Whetstones per period
Set_Col(25);
Int_IO.Put(Test.Task Workloads(I), 4);

- Kilo Whetstone Instructions Par Second
Set_Col(37):

CMU/SEI-90-UG-1 - . 67

")

Flt_IO.Put (Test.Task_Frequencies(I) * Float (Test.Task_Workloads(I)), 4, 2, 0);

- Requested KWIPS as a % of the raw speed

Set_Col (53); .

Flt I0.Put ((100.0 * Test. Task_Work_Rates(I) / Raw_Speed), 3, 2, 0);
Put Lmne(“ $");

end loop;
Set_Col(37);

Set Col(53):

Put Line("—=—=—e== "

Set Col(37):

Flt_IO.Put (Test.Total_ Rate_Requested, 4, 2, 0);

Set Col (53):;

Flt_IO.Put ((100.0 * Test.Total_ Rate_Requested / Raw_Speed), 3, 2, 0);
Put_Line(" %"):

New_Line;

Put ("Experiment step size: ");

Flt_I0.Put (Experiment_Step_Size, 3, 2, 0);
Put ane(" ") ;

New line;
Put Line("

New Line;
Put_Line("Test" & Integer’Image (Test.Test Number) & " results."),

New_Line;
Put ("Test duration (seconds): ");
Duration_IO.Put (Test_Duration, 3, 1, 0);

New_Lline;

New_Line;

Put_Line (" Task Period Met Missed Skipped Average®);
Put_Line (" No. in msecs Deadlines Deadlines Deadlines Late (msec)"):

for I in 1..Test.Total_No_ Of Tasks loop

Set_Col (5):
Int_IO.Put(I, 2); - Tasknumber

Set_Col(11);
Flt_IO.Put ((1000.0 / Test.Task Frequencies(I}), 4, 3, 0); - Task period

Set_Col (23);
Int_IO.Put (Test.Met Deadlines(I), 5);

Set_Col (35);
Int_I0.Put (Test.Missed Deadlines(I), 5);

Set_Col (47);
Int_10.Put (Test.Skipped Deadlines(I), 5):

Set_Col (58);
if (Test.Missed | Deadlines (I) > 0) then

F1t_I0.Put(1000.0 * Float (Test.Cumulative Late(I)) /

Float (Test .Missed Deadlines(I)), 5, 3, 0); - Averagelate amount

else

Flt_IO.Put (1000.0 * Float (Test.Cumulative Late(I)), 5, 3, 0);
end if;
New_Line;

end loop;

68

CMU/SEI-90-UG-1

New line;

Put_Line ("
New_Line;

end Put_Results;

000

: : Unit Name: Output_Test_Results
: : Unit Type: Procedure Body
:: Description:
:: Output the results for the test just completed.
procedure Output_Test_Results is
begin
Put_Results (Current_Test);
end Output_Test_ Results;

-000

~| Unit Name: Output_Summary_Results

-1

-| Unit Type: Procedure Body

-1 Description:

-~| Outputs a summary of the results of an entire experiment. The sumamary
~| includes the results of the first test, the best test with no missed

-1 or skipped deadlines, the test where deadlines were first missed, and

—~1| the final test run.

-l
procedure Output_Summary Results is
package Flt IO is new Text_IO.Float_IO(Float);

package Int_ IO is new Text:IO.Integer_Io(Integer);
use Text I0;

Test : Test_State; -- Foroutput of overall summary of best test result
begin

if Full Output then

New_Page;

end if;

New_Line (2);

Put_Line (* HARTSTONE BENCHMARK SUMMARY RESULTS");

New_Line;

- Output the results of the key tests. Because some run-time systems .

- have problems outputting the volume of summary data, a deley has

- been inserted between each summary to slow down the output.

delay 5.0:

New Line;

CMU/SE!-90-UG-1

69

")

Put_Line("Baseline test: ");
Put_Results(Initial Test);
New_Page;

delay 5.0;

New Llne(Z),

Put_Line ("Last test with no missed/skipped deadlines: ");

if Tast _Successful Test.Test_Number > Initial_ Test.Test_ Number then
Put Results(Last “Successful _Test);
New | _Page;

elsif Last_Successful Test.Test Number = Initial Test.Test Number then

Put_L;ne(" See preceding summary of test" &
Integer’Image (Initial_ Test.Test_Number));
New_Line (2);
else
Put_Line (" Not applicable®™);
New_Line (2);
end if;

delay 5.0;

New~Line(2); .
Put_Line("Test when deadlines first missed/skipped: ");
if First _Failed Test.Test_Number > Initial_Test.Test_Number then
Put Results(rzrst Failed |_Test) ;
New _Page;
elsif First _Failed Test.Test_ Number = Initial Test.Test_ Number then
Put LGe(“ See preceding summary of test"™ &
Integer’ Image (Initial Test.Test_ Number));
New_Line(2);
else
Put_Line (" Not applicable");
New Line(2); '
end if;

delay 5.0;

New_ Line(2);

Put ane("?;nal test performed: ");

if Current _Test.Test_Number = Initial Test.Test Number or
Current_ Test, Test _ Number = Last_. Successful Test.Test _Number oxr
Current_ “Test, Test] “Number = First _Failed ' Test .Test Number then
Put_Llne(" See preceding summary of test" &

Integer’Image (Current_Test.Test_Number));

New_Line (2) ;

else
Put_Results(Current_ Test);
New_Page;

end if;

-~ Output "executive summary” of the best result for the compiler & target
delay 5.0; '

New_Line(2);
Put_Line ("

New_Line;

Put_Line ("Benchmark
Put LGe("Comp;ler
Put Llne("Target

" & Benchmark):;
" & Compiler):;
" & Target);

New_Line;
Put_Line ("ClLaracteristics of best test for this experiment: ");

70

CMU/SE!-90-UG-1

Put_Line (" (no missed/skipped deadlines)"):;
New_Line;

Test := Last Successful Test;
if Test.Test Number = 0 then
Put_Llne(“ Not applicable");
else
Put (" Test™ & Integer Image (Test.Test_Number) & " of Experiment ");
case Which_Experiment is
when Experiment 1 =>
Put_Line("™1");
when Experlment 2 =>
Put Llnn("2"),
when Exper;ment 3 =>
Put_Line("3");
when Experlment 4 =>
Put Llne("4"),
end case;

New_Line;
Put (* Raw (non-tasking) benchmark speed in KWIPS: ");
Flt_IO.Put(Raw_Speed, 4, 2, 0);

New_Line;

New_Line;

Put_Line("™ Full.task set:");

New_Line; .

Put_Line (" Total Deadlines Task Set Total"):
Put_Line (" Tasks Per Second Utilization KWIPS") ;

— Total tasks = no. of baseline tasks + any extra tasks
Set_Col(8);
Int_ "I0.Put (Test. Total_No_Of Tasks, 3);

~ Total deadlines per second is indicator of task switching overhead
Set Col(19):;
declaze

Sum : Float := 0.0; - Total deadlines per secis sum of frequencies
begin

for I in 1..Test.Total No Of Tasks loop

Sum := Sum + Test.Task Frequencxes(I),

end loop;

Flt_IO.Put (Sum, 4, 2, 0);
end;

~ Task set utilization

Set_Col (34);

F1t_I0.Put ((100.0 * Test.Total Rate_Requested / Raw_Speed), 3, 2, 0);
Put(“ ")

- Task set workload rate in Kilo-Whetstone Instructions Per Second
Set_Col(48):

Flt IO.Put (Test.Total Rate_ Requested, 4, 2, 0);
New . Llne,

New_Line;

Put_Line(" Highest-frequency task:"):

New Line;

Put ane(" Period Deadlines Task Task ");
Put ane(" (msec) Per Second Utilization KWIPS");

- Task period
Set_Col (6);
Flt_IO0.Put(1000.0 / Test.Task Frequencies(No_Of_ Basic_Tasks), 3, 3, 0);

CMU/SEI-90-UG-1 71

- Total deadlines per second
Set_Col(19);
Flt_I0.Put (Test.Task Frequencies(No_Of_ Basic_Tasks), 4, 2, 0);

- Task utilization
Set_Col (34):
F1t_IO.Put ((100.0 *

Test.Task Work_ Rates(No_Of Basic Tasks) / Raw_Speed), 3, 2, 0);
Put (" &");

- Task speed in KWIPS

Set_Col (48);

Flt_10.Put (Test.Task_Work_Rates (No_Of_ Basic_Tasks), 4, 2, 0);
New Line;

New_Line;

Put (" Experiment step size: ");
Flt_I0.Put (Experiment_Step Size, 3, 2, 0);
Put_Line (™ &");

end if;

New_line;
Put_Line ("

New_Line (2); .
Put_Line(" END OF HARTSTONE BENCHMARK SUMMARY RESULTS");
New Line;

end Output_Summary Results;

end Experiment;

72

CMU/SEI-90-UG-1

")

-1
-1
-1
-1
-1
-1
-1
-1
-l
-1
-1
-1
-1
-1
-1
-1
-l
-l
-l
-1
-1
-1
-l
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-l
~|
-1
-1
-1
-1
-1
-1
-1
-l

Unit Name: Periodic_Tasks
Unit Type: Package Specification

Description:
This is the basic set of independent periodic tasks that performs a
test in a Hartstone test series. Each task has a specific frequency
and workload. The goal of each task is to complete its workload within
its period. The deadline for completion of the workload is the next
scheduled activation time of the task. For any given period, a task
will either meet or miss its deadline; at the end of the test each task
will report the total number of deadlines it met and missed, together
with the cumulative late amount by whicli deadlines were missed. To
enable a task to continue past the point at which deadlines are first
missed, tasks "reset’ themselves by skipping one or more workload
assignments until they reach a point where a workload may again be
attempted. This process, called load-shedding, allows the failure
pattern of tasks to be studied when the task results are collected.

Each task is assigned a priority according to the rate-monotonic
scheduling algorithm: higher-frequency tasks are given higher
priorities than lower-frequency tasks. Because Ada task priorities
are statically assigned, each task in the baseline Hartstone task
set with a unique priority is explicitly named.

One of the Hartstone experiments requires the addition of new tasks.
These all have the same characteristics as a single specified task in

the basic task set. In particular, they will all have the same priority,
80 a task type definition, provided below, can be used to define them.

References:
Liu, C. L., and Layland, J. W.,
Scheduling Algorithms for Multiprogramming
in a Hard-Real-Time Environment.
Journal of the Association for Computing Machinery,
Vol. 20, No.1, January 1978, pp. 46-41.

Sha, L., and Goodenough, J.,
Real-Time Scheduling Theory and Ada.
Technical Report CMU/SE]-83-TR-14,
Software Engineering Institute, April 1989.

with System;
with Calendar;

package Periodic Tasks is

Task_Workload Failure: exception; - Raised if Small Whetstone fails

~ T1 = lowest~priority task

Tl Priority : constant System.Priority
T2_Priorxity : constant System.Priority
T3 Prioxity constant System.Priority
T4_Priority : constant System.Priority
T5 Priority : constant System.Priority :
- T5 = highest-priority task

Tl _Prioxity + 1;
Tl Priority + 2;
Tl _Priority + 3:
Tl Priority + 4;

o so oo oo

oo oo oo oo
.
LI

New_Task Priority : constant System.Priority := T3_Priority;

000

System.Priority’/First;

CMU/SEI-90-UG-1

73

-l

-1 Unit Name: T1 .. T5

-1

-1 Unit Type: Task Specification
-l

~| Description:

—~| Periodic task to perform an assigned workload at a specific frequency.

-
—~1| Parameters:

—~| Entry Start: Provides the input t.2st parameters.

~| Test_Start‘Time: The time at which the task starts performing

-1 its requested workload.
-1

~| Test_Duration: The length of the test, in seconds.

-1 Task_Frequency: The number of times per second the task is
-l required to perform its requested workload.

.l

-1 Task_Workload: The amount of work required of the task, expressed
-1 as & number of Kilo-Whetstone instructions. A variant of the
~l Whetstone benchmark provides the- computational load for the task.

~| Entry Stop: Allows the caller to retrieve test results from the task.

-l

~| Task_Met_Deadlines: The number of times during the test that the
~| task successfully completed its workload before its next scheduled

-} activation time.

~| Task_Missed_Deadlines: The number of times during the test that the
~| task failed to complete its workload before its next scheduled

-1 activation time.

-] Task_Skipped_Deadlines: The number of scheduled activation times
~! which were not performed because of a previously missed deadline.

~i Task_Cumulative_Late: The sum of the amounts by which the task was

-i late whgn it missed deadlires.

task T1 is
pragma Priority (T1_Priority):

entry Start (Test_Start Time :
Test_Duration :
Task _Frequency :
Task_Workload :

entxy Stop(Task_Met Deadlines

Task_Misgsed Deadlines
Task_Skipped Deadlines
Task_Cumulative Late

end T1;
000

in Calendar.Time;
in Duration;

in Float;

in Natural):;

out Natural;
out Natural;
out Natural;
out Duration);

task T2 is
pragma Priority(T2_Priority):

entry Start (Test_Start Time
Test Duration
Task Frequency
Task Workload

in Calendar.Time;
in Duration;

in Float;

in Natural):;

74

CMU/SEI-90-UG-1

entry Stop(Task _Met Deadlines
Task_Missed Deadlines
Task_Skipped_Deadlines
Task_Cumulative_Late

se 00 oo s

end T2;

000

task T3 is
pragma Priority(T3_Priority):

out Natural;
out Natural;
out Natural;
out Duration):;

3 antry Start (Test_Start Time
® Test_Duration
Task_Frequency

se oo oo o»

in Calendar.Time;
in Duration;

in Float;

in Natural,;

Task_Workload

entry Stop(Task Met Deadlines
Task Mlssed Deadlines
Task_Sklpped;peadllnes
] Task _Cumulative Late
A end 73;

oOo

task T4 is
pragma Priority (T4_Priority);

entry Start (Test_Start Time
Test_Duration
Task_Frequency
Task_Workload

:

se o0 oo oo

- entry Stop(Task_Met Deadlines

E Task | M:.ssed Deadlines
. " Task_ Skxpped Deadlines

Task Cumulatzve Late

°e oo oo oo

out Natural;
out Natural;
out Natural;
out Duration);

in Calendar.Time;
in Duration;

in Float;

in Natural):;

out Natural;
out Natural;
out Natural;
out Duration);

3 end T4;
000
task TS5 is
> pragma Priority(T5_Priority);

entry Start (Test_Start_Time
Test_Duration
Task_Frequency
Task_Workload

in Calendar.Time;
in Duration;

in Float;

in Natural);

out Natural;

Task M;ssed Deadlines
Task_ Sklpped Deadlines
Task_pumulat;ve_;ate

Fb entry Stop(Task_Met Deadlines

es os ss e

out Natural:
out Natural;
out Duration);

end 7T5;

— - 000

task type New Task is

pragma Pr;orlty(New Task Prioxity):

entry Start (Test_ Start_ Time
Test_Duration
Task_Frequency
Task_Workload

entry Stop (Task_Met Deadlines

in Calendar.Time;
in Duration;

in Float;
in Natural):;

: out Natural;

CMU/SEI-30-UG-1

75

Task_Missed Deadlines

Task_Skipped Deadlines

Task_Cumulative Late
end New_ Task;

out Natural;

¢ out Natural:;

out Duration):

type New_Task_Pointer is access New_Task;

end Periodic_Tasks;

76

CMU/SEI-90-UG-1

-1
-1

-1 Unit Name: Periodic_Tasks

-1 Unit Type: Package Body

- | Description:
See the description in the package specification and the description
of the local procedure below.

-1
-l
-l
-1
-l
-|
-1
-1
-l
-|
-1
-1
-1
-1

Because Ada priorities are assigned statically, the unique prioricies

of the baseline task set are assigned to explicitly-named tasks via the
Priority pragma in the tasks’ specifications. It is not possible, for
example, to define an array of baseline tasks whose elements are of a
single task type, and whose priorities can be assigned at run-time.

For similar reasons, a generic w.nplate is also not an option. Thus the
five tasks in the baseline set are task objects with distinct names and
priorities, hence the "duplication” of code below. The amount of text
duplicated is reduced somewhat by putting actions common to all tasks in
a procedure.

with Workload;

with Calendar;

package body Periodic_Tasks is

-} Unit Name: Do_Work

~| Unit Type: Procedure Body

-1 Description:

Local procedure to do the work of a Hartstone task. Task periodicity

is implemented using the delay statement (expiry of a delay is assumed
to be pre-emptive) and Calendar.Clock. The Small_Whetstone procedure,
a variant of the composite synthetic benchmerk, provides the task
computational workload. The workload is expressed in thousands of
Whetstone instructions (Kilo-Whetatones) and the rate of doing work

is measured in Kilo-Whetstone Instructions Per Second (KWIPS).

The deadline for completion of the workioad during a task’s period is
the next scheduled activation time of the task. Late completion of

the workload is defined as a missed deadline, Tasks continue to run
after deadlines are missed by skipping workload assignments until
they reach a point where a workload may again be attempted. This
process is called load-shedding and any deadlines ignored during it

are recorded as skipped deadlines.

This procedure is based on the drift-free periodic procedure exhibited

in section 9.6 of the Ada Language Reference Manual. To avoid problems
of cumulative error with the fixed-point type Duration, computations

are performed in floating-point arithmetic and only converted to
Duration in the actual delay statement. Calculations involving the

type Time are also done in floating-point, by extracting the seconds
portion of the Time value (a private type) veturned by Calendar.Clock
and converting it from Day_Duration to Float. Because only the seconds
portion is used, the test duration should not cross a midnight

boundary; the Day_Duration value returned by Calendar.Seconds becomes
zero after 24 hours.

A number of implementation-dependent features are nresent in this
procedure: the accuracy of the Duratiun expression used in the delay

CMU/SEI-90-UG-1

statement (depends on Duration’Small), the resolution of the delay
statement itself (the actual delay may be much larger than the
requested delay), and the resolution of Calendar.Clock (a coarse
resolution means that a coarse value will be used as the expression
in the delay statement, thereby resulting in a flawed implementation
of task periodicity).

procedure Do_Work (Test_Start Time in Calendar.Time;
Test_Duration in Duration;
Task_Frequency in Float;
Task_Workload in Natural;

Task_Met Deadlines
Task_| M:.ssed Deadlines
Task: Sk:.pped Deadlines
Task_ Cumulat:.ve Late

out Natural:
out Natural;
out Natural;
out Duration) is

®s ov se 80 00 48 0e e

use Calendar; - Make operators for Time and Duration calculations visible

Finish Time : Float := Float (Calendar.Seconds(Test_ Start Time +

Test Duration));

Period : Float := Float(1.0 / Task_Frequency);

Next_Start : Float := Float (Calendar.Seconds(Test_Start_Time));
Next Delay : Float := 0.0;

Met Deadlines : Natural := 0;

Missed Deadlines : Natural := 0;

Sk:.pped Deadlines : Natural := 0;

Cumulative_Late : Float := 0.0; - Sum ofmissed deadline late amounts
Now : Float := 0.0; - Will be used during load shedding
Old_Met Deadlines : Natural := 0; < Will be used during load shodding

begin - Do_Work

while Next_Start < Finish Time lodp

Next Delay := Next_ Start -~ Float(Calendar.Seconds (Calendar.Clock)

if Next Delay >= 0.0 then

- A positive delay computation means eithaer that the task completed
~ its last workload on time or that the load-shedding to corapensate
- for the last missed deadline was successful

delay Duration(Next_Delay) ;
for I in 1..Task_] Workload loop

Worklocad.Small Whetstone(l) H
end loop;

- Assume that the task has completed this worklead on time;
- if not, the count of met deadlines will be adjusted later

Met Deadlines := Met_Deadlines + 1;
Next_Start ;= Next_ Start + Period;

else

~ A negative delay value means that either the workload was

~ completed late (i.e. a deadline was mirsed, requiring Joad

~ shedding to reset the task’s next activation {ime) or that

- the load-shedding operation was somehow delayed long enough
- to cause the task to miss itss next scheduled activation time.

if Met_Deadlines > Old_Met_Deadl.nes then

78

CMU/SEI-90-UG-1

| @

- A difference between the current number of missed deadlines
- and the last recorded value prior to load shedding indicates

- a missed deadline. Record the current missed deadline, adjust
- the met deadline count, and record the amount by which the

- tagk was late.

Missed Deadlines := Missed Deadlines + 1;

Met Deadlines := Met_Deadlines - 1;

Old_Met Deadlines := Met_Deadlines; - Save until needed again
Cumulative Late := Cumulative_Late + (- Next_Delay):;

- Shed load by finding the current time (i.e. the time

~ the last workload actually completed) and advancing the
- next starting time until it exceeds the current time,

- counting the number of deadlines skipped in the process

Now := Next Start + (- Next Delay):;
while Next_Start < Now and Next Start < Finish Time loop

Next_Start := Next_Start + Period;
Skipped Deadlines := Skipped Deadlines + 1;
end loop:;
alse

— No difference between the current number of missed deadlines
- and the last recorded value indicates that while shedding load
- to catch up the task was delayed long enough to miss its next
- scheduled activation time. So, advance its activation time and
- skip one more deadline.

Next_Start := Next_Start + Period;
Skipped_Deadlines := Skipped Deadlines + 1;
end if;
.end if;
end loop;

- Check to see if the final deadline was missed
Next_Delay := Next_Start - Float(Calendar.Seconds(Calendar.Clock)
if Next_Delay < 0.0 and Met_Deadlines > Old Met Deadlines then
Missed Deadlines := Missed Deadlines + 1;
Met Deadlines := Met_Deadlines - 1;
Cumulative Late := Cumulati se_Late + (-~ Next Delay);
end if; .
- Return the results

Task_Met_Deadlines := Met Deadlines;
Task_Missed Deadlines := Missed Deadlines;
Task_Skipped Deadlines := Skipped Deadlines;
Tagk_Cumulative_Late := Duration(Cumulative Late};

exception - Raised if Small Whetstone fails its internal self-check
when Workload.Workload Failure => raise Task Workload Failure;

end Do_Work;
pragma Inline (Do_Work); - Someimplementations may ignore this
-000-

CMU/SEI-90-UG-1

-1

-1 Unit Name: T1.. TS

-1

| Unit Type: Task Body

-1 Description:

~| Performs the requested workload at the given frequency. The task
—~| will begin at the specified starting time and continue for the

~| requested duration. On completion, information concerning the

~| ability of the task to perform the requested work is provided.

-| to the calling program.

task body T1 is

Start_Time : Calendar.Time;

Length Of_Test : Duration;

Frequency : Float:;

Workload ¢ "Natural;

Met Deadlines : Natural;

Missed |_Deadlines : Natural;

Sk:pped Deadlines : Natural;

Cumnlat;ve Late : Duration;
begin

loop

select

lcccpt Start (Test_Start Time
Test Duratxon
Task_Frequency
Task_Workload

in Calendar.Time;
in Duration;

in Float;

in Natural) do

Start_Time := Test_Start Time;

Length_Of_Test := Test Duration;

Frequency := Task | _Frequency;

Workload := Task_Workload;
end Start;

Do_Work (Start_Time, Length Of Test, Frequency, Workload, Met_Deadlines,
Missed | Deadlines, Skxpped Deadlines, Cumulative Late),

accept Stop(Task_Met Deadlines : out Natural;
Task_Missed Deadlines : out Natural;
Task_Skipped Deadlines : out Natural;
Task Cumulatlve Late ¢ out Duration) do
Task_Met Deadl;nes 1= Met _Deadlines;
Task_Missed Deadlines := Missed Deadlines;
Task Skzpped Deadlines := Skipped Deadlines;
Task_Cumulative_Late := Cumulative_late;
end Stop; ’

or
terminate;

end select;
end loop;
end T1;

000

task body T2 is

Start_Time : Calendar.Time;
Length_Of Test : Duration;

CMU/SEI-90-UG-1

Frequency ¢ Float;

Workload :+ Natural;
Met Deadlines : Natural;
Missed Deadlines : Natural;

Skipped Deadlines : Natural;
Cumulative_ Late ¢ Duration;

begin
loop
select ’
accept Start (Test_Start_ Time
Test_Duration
Task_Frequency
Task_Workload

in Calendar.Time;

in Duration;

in Float; .
in Natural) do

Start_Time := Test_Start_Time;

Length Of Test := Test_Duration;

Frequency s= Task_Frequency;

Workload := Task_Workload;
end Start;

Do_Work (Start_Time, Length_Of_ Test, Frequency, Workload, Met Deadlines,
Missed Deadllnes, Skzpped Deadlines, Cumulative Late),

accept Stop(Task Met_Deadlines
Task_Missed Deadlines
Task_Skipped Deadlines : out Natural;
Task Cumulative Late out Duration) do
Task_ Met_Deadlines := Met_Deadlines;
Task M;ssed Deadlines := Missed Deadlines;
Task . Skzpped Deadlines := Sk;pped Deadlines;
Task_ Cumulat;ve Late := Cumulative _Late;
end Stop;

out Natural;
out Natural;

or
terminate;

end select;
end loop:;
end T2;

~000

task body T3 is

Start Time ¢ Calendar.Time;

Length_Of Test : Duration;

Frequency ¢ Float;

Workload ¢ Natural;

Met Deadlines s+ Natural;

Mlssed Deadlines : Natural;

Sk;pped Deadlines : Natural;

Cumulat;ve Late : Duration;
begin

loop

select

accept Start (Test_ Start T;me
Test Duration
Task | _Frequency
Task | _Workload

in Calendar.Time;
in Duration;

in Float;

in Natural) do

Start_Time T® Test _Start_Time;
Length Of_Test := Test Duration;
Frequency = Task_prequency;

CMU/SEI-30-UG-1 81

Workload ;= Task_Workload;
end Start;

Do_Work (Start_Time, Length Of Test, Frequency, Workload, Met_Deadlines,
Missed |_Deadlines, Sklpped Deadlines, Cumulative Late),

accept Stop (Task_Met_Deadlines ¢ out Natural;
Task M;ssed Deadlines : out Natural;
Task Sk;pped Deadlines : out Natural;
Task_ “Cumulative _Late : out Duratiocn) do
Task_ Met Deadlznes t= Met _Deadlines;
Task | Mzssed ‘eadlines := Missed _Deadlines;
Task . Sklpped Deadlines := Sk;pped_Deadlxnes.
Task_CumulatIve_Late := Cumulative_ Late;
end Stop:

or
terminate;

end select;
end loop;
end T3;

task body T4 is

Start Time : Calendar.Time;

Length Of Test : Duratioen;

Frequency : Float;

Workload : Natural;

Met_Deadlines : Natural;

Missed Deadlines : Natural;

Skipped Deadlines : Natural; . -

Cumulative Late : Duration; .
begin

loop

select

accept Start (Test_Start sze : in Calendar.Time;
Test Duration : in Duration;
Task_| _Frequency : in Float;
Task_Workload : in Natural) do
Start_Time := Test_Start_ Time;
Length Of Test := Test Duration;
Frequency := Task_Frequency;
Workload := Task_Workload;
end Start:

Do_Work (Start_Time, Length Of_ Test, Frequency, Workload, Met Deadlines,
. Missed | Deadlines, Skzpped Deadlines, Cumulative Late),

accept Stop (Task_Met Deadlines
Task Missed | Deadlines
Task . Sk;pped Deadlines : out Natural;
Task Cumnlathe Late ocut Duration) do
Task_Met Deadl;nes 1= Met _Deadlines;
Task_Missed Deadlines := Missed Deadlines;
Task_Skipped Deadlines := Skipped Deadlines;
Task Cumulative Late := Cumulative_Late;
end Stop;

out Natural;
out Natural;

»e e se oo

or
terminate;

82 CMU/SEI-90-1.G-1

end select;

end loop;
end T4;
000
task body TS5 is
Start_Time ¢ Calendar.Time;
Length Of Test : Duration;
Frequency ¢ Float;
Workload : Natural;
Met_Deadlines : Natural;
M;ssed Deadlines : Natural;
Sklpped Deadlines : Natural;
Cumulat;ve Late : Duration;
begin
loop
select

accept Start (Test Start Time
Test Duration
Task Frequency
Task Workload

in Calendar.Time;
in Duration;

in Float:;

in Natural) do

(Lt

Start_Time := Test Start Time;

Length Of Test ::» Test_Duration;

Frequency := Task _Frequency;

Workload := Task Workload,
end Start;

Do_Work (Start Time, Length Of _Test, Frequency, Workload, Met Deadlxnes,
Missed Deadlxnes, Skzpped Deadlines, Cumulative Late),

accept Stop(Task Met Deadlines
Task_Missed_Deadlines '
Task_: Skzpped Deadlines out Natural;
Task_Cumulative Late out Duration) do
Task_Met_Deadlines := Met_Deadlines;
Task_Missed_Deadlines := Missed Deadlines;
Task_Skipped Deadlines := Skipped Deadlines;
Task_Cumulative_Late := Cumulative_ Late;
end Stop;

out Natural;
out Natural;

ee oo o0 o0

or
terminate;
end select;
end loop;
end T5;

-000

‘task body New Task is

Start Time : Calendar.Time;
Length Of Test : Duration;
Frequency : Float;
Workload : Natural;

Met Deadlines ¢ Natural;
Missed Deadlinus : Natural;
Skipped Deadlines : Natural;

CMU/SEI-90-UG-1 83

Cumulative_ Late ¢ Duration;

begin
loop
select
accept Start (Test_ Start_Time : in Calendar.Time;
Test Duration : in Duration;
Task Frequency : in Float:
Task Workload ¢ in Natural) do

Start_Time t= Test_Start_Time;

Length Of Test := Test_ Duration;

Frequehcy := Task Frequency:

Workload s= Task_Workload;
end Start;

Do_Work (Start_Time, Length Of Test, Frequency, Workload, Met Deadlines,
Missed Deadlines, Skipped Deadlines, Cumulative Late);

accept Stop(Task_Met Deadlines
Task_Missed Deadlines
Task_Skipped Deadlines : out Natural;
Task_ Cumulative Late out Duration) do
Task_Met_ Deadlines := Met Deadlines;
Task_Missed Deadlines := Missed Deadlines;
Task_Skipped Deadlines := Missed Deadlines;

Task_Cumulative_Late := Cumulative_Late;
end Stop;

out Natural;
out Natural;

orxr
tezminate;

end select;
end loop:
end New_Task;

end Periodic_Tasks;

84 CMU/SEI-90-UG-1

-1
-1
-1
-1
-1
-1
-
-1
-1
-1
-|
-1
-1
-l
-1

Unit Name: Workload
Unit Type: Package Specification

Description:
Encapsulates the synthetic computational workload of a Hartstone task.
The actual computation is performed by the Small_ Whetstone procedure,
a variant of the Whetstone benchmark program. The amount of work
requested is expressed in thousands of Whetstone instructions, or
Kilo-Whetstones. An internal consistency check is performed on the
worklc:id computation within Small Whetatone; if it fails, an exception
is raised.

package Workload is

Workload_Failure : exception; - Raised if Small Whetstone self-check fails

-1

-1 Unit Name: Small_Whetstone

-1

-1 Unit Type: Procedure Specification

-l

~| Description:

~| Performs the computational workload of a Hartstone task. The
~} computation is a scaled-down version of the one performed by the
-1 full Whetstone benchmark program. An exception is raised if the
—~| computation fails to satisfy an internal consistency check. This
-| procedure does not return any "result” from its computation; its
-1 sole function is to give a Hartstone task something to do.

-4 CoL. .

«~| Parameters:

~1 Kilo_Whetas: The number of Kilo-Whetstone iustructions to be performed
~| by the procedure. A value of 1 means one thousand Whetstone
~| instructions will be executed as the computational load.

-1

procedure Small Whetstone (Kilo Whets : in Positive);

pragma Inline (Small Whetstone); - Someimplementations may ignore this

aend Workload;

CMU/SEI-90-UG-1

85

Unit Name: Workload
Unit Type: Package Body

Description:
See the description in the package specification and the description
of the Small_Whetstone procedure below.

The Small_Whetstone procedure requires an implementation-dependent
raathematical library. Refer to the explanatory comments in the
procedure for details.

— IMPLEMENTATION-DEPENDENT library name; see examples below
with Float_Math_ Lib;
use Float_Math Lib;

package body Workload is

-~ IMPLEMENTATION-DEPENDENT subtype definition; see comments below
subtype Whet Float is Float;

- Iustantiate the math library here, if necessary; see comments below

- TMPLEMENTATION-DEPENDENT library & function names; see examples in
- comments below
function Log(X : in Whet_Float) return Whet Float

renames Float Math Lib.Log;

.|
-1

-] Umt Name: Small Whetstone
-1

-: Unit Type: Procedure Body

~1| This version of the Whetstone benchmark is designed to have an inner
~1 loop which executes only 1000 Whetstone instructions. This is so that
-1 smaller units of CPU time can be requested for benchmarks, especially
«| real-time benchmarks. The parameter "Kilo_Whets" determines the number
~| of loop iterations; a value of 1 means the loop will execute 1000

«~| Whetstons Instructions. A Whetstone Instruction corresponds to about
-| 1.8 machine instructions on a conventional machine with floating point.
-l

~| Small_Whetstone was developed by Brian Wichmann of the UK National
—1 Physical Laboratory (NPL). The Ada version was translated at the

-] Carnegie Mellon University Software Engineering Institute from the

~| original standard Pascal language version (see references below).

| This Hartstone version has been adapted from the Ada standard

- | version by making the Kilo_Whets variable a passed parameter, and

~| by raising an exception, rather than printing an error message, if

~| the benchmarlk’s internal consistency check fails.

-4

~| Small_Whetstone uses the following mathematical functions, which are
| listed here using the ISO/WG9 Numerics Rapporteur Group proposed

~{ standard names for functions of a Generic_Elementary_Functions library
~| (Float_Type is a generic type definition):

-

~| function Cos (X : Float_Type) return Float_Type;

~| function Exp (X : Float_Type) return Float_Type;

-1 function Log (X: Float_Type) return Float_Type; -~ Natural logs

-1 function Sin (X : Float_Type) return Float_Type;

CMU/SEI-90-UG-1

—| function Sqrt (X : Float_Type) return Float_Type;

-1

—-| The name of the actual mathematical library and the functions it

~| provides are implementation-dependent. For Small_Whetstone, the
~| function name to be careful of is the natural logarithm function;

-1 some vendors call it ‘Log" while others call it "Ln". A renaming -
- | declaration has been provided to rename the function according to
-1 the ISO/WGH name.

—| Another implementation-dependent area is the accuracy of floating-
- point types. One vendor’s Float is another’s Long_Float, or even

-1 Short_Float. The subtype Whet_Float is provided so that the change
~1| can be made in a single place; users should modify it as necessary

~| to ensure comparability of their test runs.

-1

~| Examples of some vendor mathematical library and log function names,
-1 and the values of the 'Digits attribute for the floating-point types

| are provided in the comments below. The ONLY changee a user should
~| make to run Small_Whetstone are (a) the library name, (b) the log
~| function name, if necessary, and (c) the definition of the subtype

~| Whet_Float, if necessary. Any changes should be documented along
- : with reported results.

- References:

~| The first two apply only to the full version of Whetstone. The

~| first includes a listing of the original Algol version. The second

~I includes an Ada listing. The third reference also deals mostly with
-1 the full Whetstone benchmark but in addition contains a brief

~! rationale for the Small_Whetstone benchmark and a listing of its
-: standard Pascal version.

~| Curnow, H.J., and Wichmann, BA.

-1 A Synthetic Benchmark

~I The Computer Journal, Vol. 19, No. 1, February 1976, pp. 43-49.
-1

-| Harbaugh, S., and Forakis, J.A.

~| Timing Studies Using & Synthetic Whetstone Benchmark

-: Ada Letters, Vol. 4, No. 2, 1984, pp. 23-34.

~| Wichmann, BA.,

~| Validation Code for the Whetstone Benchmark

-1 NPL report DITC 107/88, March 1988.

-~! National Physical Laboratory,

-1 Teddington, Middlesex TW11 OLW, UK.

-1
-l

- Math library for TeleSoft TeleGen2 VAX/VMS -> MC68020:
with Math_Library;

package Math is new Math_Library(Whet_Float);

use Math;

~ Natural logs (base e) = Ln(x); base 10 logs = Log(x). ‘
= There is aleo a pre-instantiated library called Float_Math_Library.

- Float'Digits = 6; Long FloatDigits = 16
- Math library for Verdix VADS VAX/VMS -> MC68020:

with Generic_Elementary_Functions;

package Math is new Generic_Elementary_Functions(Whet_Float);
use Math;

CMU/SEI-90-UG-1

87

- Natural logs (base e) = Log(x); base 10 logs = Log(x, Base => 10).
~ Short_Float'Digits = 6; Float'Digita = 15
—~ Math library for DEC VAX Ada:

-~ with Float_Math_Lib;
~ use Float_Math_Lib;

— Natural logs (base) = Log(x); base 10 logs = Log10(x).

- FloatDigits = 6; Long FloatDigits = 16; Long Long_Float'Digits = 33
- Math library for Alsys Ada VAX/VMS -> MC88020:

with Math_Lib;

m I?hth is new Math_Lib(Whet_Float);

Natural logs (base ¢) = Log(x); base 10 logs = Log10(x).

~ If using the 68881 Floating-Point Co-Proceasor, the Math_Lib_M68881
- package can be used.

— FloatDigits = 6; Long FloatDigits = 16
— Math library for DDC-I Ada (DACS-80386PM) VAX/VMS -> i80386:

~ with Math_Pack;
~ use Math_Pack;

~ Natural logs (base &) = La(x); base 10 logs = Log(x, 10.0).
- FloatDigits = 6; Long FloatDigits = 15
- Math library for Systems Designers XD Ada VAX/VMS -> MC68020:

-~ with Float_Math_Lib;
- use Float_Math_Lib;

: Natural logs (base e) = Log(x); base 10 logs = Log10(x).

~ FloatDigits = 6; Long FloatDigits = 16; Long Long Float'Digits = 18

procedure Small Whetstone (Kilo Whets : in Positive) is

T : constant := (0,499975; - Values from the original Algol
T1 : constant := (0.50025; -~ Whetatone program and the
T2 : constant := 2.0; - Pascal SmallWhetstone program

N8

constant := 10; . = Lopp iteration count for module 8
N9

constant := 7; ~ Loop iteration count for module 9
Value : constant := 0.941377; -~ Value calculated in main loop
Tolerance : constant := 0.00001; -~ Determined by interval arithmetic

I : Integer;

IJ ¢ Integer := 1;
IK : Integer := 2;
1L, : Integer := 3;

Y : Whet_Float := 1.0; -~ Constant within loop

88

CMU/SEI-90-UG-1

2 : Whet_Float;
Sum : Whet_Float := 0.0; -~ Accumulates valueofZ

subtype Index is Integer range 1l..N9; -—Wasa typein the Pascal version
El : arrxay (Index) of Whet Float;

procedure Clear Array is
begin
for Loop_Var in El’Range loop
El(Loop_Var) := 0.0;
end loop;
end Clear Array;

procedure PO is

begin
.E1(IJ) := El1(IK):;
E1(IK) := E1(IL):
E1(I) ;= E1(IJ);
end PV;

procedure P3 (X : in Whet Float;

Y : in Whet_ Float;

2 : in out Whet_ Float) is
Xtemp: Whet Float := T * (2 + X);
Ytemp: Whet Float := T * (Xtemp + Y);

begin
2 := (Xtemp + Ytemp) / T2;

end P3;

begin -- Small Whetstone
for Outer_Loop_Var in 1..Kilo_Whets loop
Clear_ Array;
-~ Module 6: Integer arithmetic
I0 := (IK - IJ) * (IL - IK);
IK := IL ~ (IK - IJ);
IL := (IL - IK) * (IK + IL); .
E1(IL - 1) := Whet_Float(IJ + IK + IL);
E1(IK - 1) := Sin(Whet_Float (IL)):
- Module 8: Procedure calls
2 := E1(4);
for Inner_ Loop_Var in 1..N8 loop
P3(Y * Whet_Float (Inner_loop Var), Y + 2, 2 };
end loop;
~ Second version of Module 6:
= IL - (IL - 3) * IK;
IL := (IL - IK) * (IK - 1J);
IK := (IL - IK) * IK;

El1(IL - 1) := Whet_?loat(IJ + IK + IL):
E1(IK + 1) := Abs(Cos(Z));

— Module 9: Array references
- Note: In the Pascal version, the global variable I is used as both

CMU/SEI-90-UG-1

89

~ the control variable of the for loop and an array index
~ within procedure P0. Because the for-loop control variable
~ of Ada is strictly local, this translation uses a while loop.

I =1;
while I <= N9 loop
PO;
I :=1I4+1;
end loop;
« Module 11: Standard mathematical functions

~ Note: The actual name of the natural logarithm function used here
-~ isimplementation-dependent. See the comments sbove.

2 := Sqrt(Exp(Log(E1(N9)) / T1));

Sum := Sum + Z;
~ Check the current value of the loop computation
if Abs (2 ~ Value) > Tolerance then
Sum := 2,0 * Sum; - Forces error at end
IJ := IJ + 1; — Prevents optimization
end if;
end loop;
= Self-validation check
if Abs(Sum / Whet Float (Kilo_Whets) - Value) >
Tolerance * Whet Float (Kilo_Whets) then
raise Workload Failure;
end if;
end Small Whetstone;

end Workload;

90

CMU/SEI-90-UG-1

UNLIMITED, UNC

SECUMITY CLASSIFICATION OF THIS PAGE

m

REPORT DOCUMENTATION PAGE

1e REPORT SECURITY CLASSIFICATION 16, RESTRICTIVE MARKINGS
UNCLASSIFIED NONE
20 SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
N/A APPROVED FOR PUBLIC RELEASE
25, OECLASSIFICATION/DOWNGRADING SCHEDULE DISTRIBUTION UNLIMITED
N/A
4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITOARING ORGANIZATION REPORT NUMBERI(S)
CMU/SEI-90-UG-1 ESD~-90-TR~5
] 6a. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 78 NAME OF MONITORING ORGANIZATION
(If applicable)
ITYTE]l SEI __SET_JOINT PROGRAM OFFICE
. RESS (City, State end 2IP Code) 7b,-ADDRESS (City, State and ZIP C3dé) = ---. |
°CARNEGIE MELLON UNIVERSITY VESD/XRS1 TN
PITTSBURGH, PA 15213 HANSCOM AIR FORCE BASE, MA 01731
‘ \"""’“—” ' T - '/‘
8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL |9. PROCUREMENT INSTRUMENT 10ENTIFICATION NUMBER
ORGANIZATION (1f applicable)
SEI JOINT PROGRAM OFFICE SEI JPO F1962885C0003
8c. ADDRESS (City, Stale and ZIP Code) 10. SOURCE OF FUNDING NOS
TASK WORK UNIT
CARNEGIE MELLON UNIVERSITY _ E::ggsfzb. 'R%§CT :o. "y
SOFTWARE ENGINEERING INSTITUTE JPO i N/A
PITTSBURGH. PA 15213 N/A N/A
11. TITLE (Include Securtty Classification)
Hartstone Benchmark User's Guide, Version 1.0
12, PERSONAL AUTHORIS)
13a. TYPE OF REPORT 136, TIME COVERED 14.0ATEOFREPORT(Y&.M@.QWI 15. PAGE COUNT

16. SUPPLEMENTARY NOTATION

17 COSAT!I CQOES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB. GR.

19. ABSTRACT (Continue on reverse if necessary and idenlify by dlock number)

The Hartsone benchmark is a set of timing requirements for testing a system's ability

to handle hard real-time applications. It is specified as a set of processes with well-
defined workloads and timing constraints. The name Hartstone derives from Hard Real Time
and the fact that the workloads are presently based on the well-known Whetstone benchmark.
This report describes the structure and behavior of an implementation in the Ada
programming language of one category of Hartstone requirements, the Periodic Harmonic (PH)
Test Series. The Ada implementation of the PH series is aimed primarily at real-time
embedded processors where the only executing code is the benchmark and the Ada runtime
system. Guidelines for performing various Hartstone experiments and interpreting the
results are provided. Also included are the source code listings of the benchmark,
information on how to obtain the source code in machine-readable form, and some sample
results for Version 1.0 of the Systems Designers XD Ada VAX/VMS-MC68020 cross—compiler.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
uNcLasSIFIEO/UNLIMITED X same as aerT. (J oTic users X5 UNCLASSIFIED, UNLIMITED
22a NAME OF RESPONSIBLE INDIVIDUAL 226 TELEPHONE NUMBER 22c OFFICE SYMBOL
LKARL SHINGLER (412> 268-7630 SE1 JPO
0D FORM 1473, 83 APR . EOITION OF 1 JAN 73 1S OBSOLE TE. UNLIMITED, UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

