AD-A234 893 o o
III!IIINH flllh/l lfﬂ’llﬂl libn

COORDINATION IN LARGE SCALE SOFTWARE DEVELOPMENT /

Robert E. Kraut and Lynn A. Streeter
N R L Belicore
Morristown, NJ 07962
USA

ABSTRACT

Successful software development requires tight coordination among subgroups involved
in the development process. Coordination is difficult because of the division of labor,
interdependence and uncertainty inherent in large software projects. A survey in 65
software development projects reveals that informal communication is necessary for
coordination under these circumstances. Results show that software professionals got
much of their information directly from other people. They perceived that interpersonal
techniques for getting information from beyond their immediate workgroup were
underused, while more formal procedures for tracking routine information were overused
compared to their value. Technically uncertain projects and highly interdependent ones
had staffs who were poorly informed and were poorly coordinated. When project
members had a large network of personal contacts outside the project, information flow
improved, especially when the project was uncertain. The paper concludes with
organizational and technological suggestions for increasing the flow of relevant
information across functional boundaries in projects.

DTIC

& SLECTE gy
w@' APR 2 41991 ;;'
W o A

. oy e s e

L)I("Tﬂ'.’."":!‘{ u&‘“—-‘x&*ﬂ A }

! Aopioved ior Pusic releasey]
Dzv‘c-ru o Unus Irsd

et e i s &

91 4 05 063

Coordination in software 1

COORDINATION IN SOFTWARE DEVELOPMENT

Robert E. Kraut and Lynn A. Streeter
Bellcore
Morristown, NJ 07962
USA

INTRODUCTION

Since its inception, the software industry has been in crisis. As Blazer (1975) noted
fifteen years ago, "[Software] is unreliable, delivered late, unresponsive to change,
inefficient, and expensive,” "... and has been for the past 20 years." In a survey of
software contractors and government contract officers, over half of the respondents
believed that calendar overruns, cost overruns, code that required in-house modifications
before being usable, and code that was difficult ¢ mudify weic common problems in the
software projects they supervised (U.S. Department of Commerce, 1979). Even today
problems with large software systems are common and highly publicized occurrences
(e.g..Washington Post, 1990; Burnham, 1990; Travis, 1990).

The problem of coordinating activities while developing large software systems is a
major contributor to this continued crisis. Coordination is the direction of "individuals’
efforts toward achieving common and explicitly recognized goals” (Blau and Scott,
1962) and "the integration or linking together of different parts of an crganization to
accomplish a collective set of tasks” (Van de Ven, Delbecq, and Koenig, 1976, p. 322).
In software development, it means that different peopie and subunits working on a
common project agree to a common definition of what they are building, share
information, and mesh their activities. They must have a common view of what the
software they are constructing should do, how it should be organized, and how it should
fit with other software systems already in place or undergoing parallel development. To
build the software efficiently, they must share detailed design specifications and
information about the progress of software modules. In sum, they must coordinate their
work so that it gets done and fits together, that it isn’t done redundantly, and that
components of the work are handed off expeditiously.

Characteristics of Software Development

Achieving a successful software system requires tight coordination among the various j--—-'“”d- -
efforts involved in the software development cycle. Yet this coordination is difficult to ! '

achieve. As Curtis, Krasner and Iscoe (1988) note in their study of large software ; .
development projects, communication bottlenecks and breakdowns are very common. " .
Indeed, several characteristics of software development make these coordinatio T '
problems inevitable, not just common (Brooks, 1975).

Scale. A fundamental characteristic of many software systems is that they are very |
and far beyond the ability of any individual or small group to create or even to '
understand in detail. If a software system were small, effective coordination could occur ' f
because a single individual or small group couid direct 1ts work and keep all the ’;
| :

- ‘ l |

A

MESRSSRESENSNINNNE__———

1

Coordination in software 2

impleinentation details in focus. But this ideal is impossible for many large software
systems, where system size is measured in millions or tens of millions of lines of code.!
Assuming typical productivity (measured in lines of new cr changed production- quality
code per staff year), a software system with one million lines of code might require 500
staff-years of effort (Martin, personal communication), summing across the analysts,
programmers, support staff, testers, document writers, managers, and administrative
infrastructure involved in a large project.

Efforts of this scale invariably lead to specialization and a division of labor. These
organizational responses in turn lead to compartmentalization of interdependent actors
through geographic, organizational, and social boundaries. Within these boundaries,
unique subgroup perspectives, cohesiveness, ethnocentrism, and unwillingness to trade
information increase (e.g., Brewer and Kramer, 1985; Tajfel, 1982). Barriers --
geographic, organizational, or social -- reduce people’s opportunity and eagerness to
share information and to leam from distant colleagues (Newcomb, 1961; Faunce, 1958;
Monge and Kirste, 1980, Dearborn and Simon, 1958; Jablin, 1979; Barnlund and
Harland, 1963; Sykes, Lamntz, and Fox, 1976; Monge, Rothman, Eisenberg, Miller, and
Kirste, 1985). While compartmentalization promotes organizational efficiency in large
groups by shielding people from unnecessary information, it nonetheless creates new
coordination tasks. Changes in one "compartment” require adjustments in others,
Compartments limit people’s breadth of experience, leading to errors, narrowness, and
insufficient opportunity for comparing knowledge. They can reduce the motivation to
interact with relevant others and to accept new ideas.

Uncertainty. The inherent uncertainty in software development compounds the
coordination problems produced by large scale alone. By uncertainty, we mean the
unpredictability of both the software and the tasks that software engineers perform.
Unlike manufacturing, software development is a nonroutine activity, and the
specification of what a software system should do changes over time (Brooks, 1987; Fox,
1982; Curtis, Krasner, and Iscoe, 1988). In part, change in software specification comes
about because the external world that the software was designed to support also changes,
as business needs, user desires, computer platforms, input data, and the physical world
itself all change. The likelihood of change is greater whenever software is used directly
by people, because it is often only by using software that purchasers and users understand
its capabilities and limitations. Especially as they use software in circumstances for
which it wasn’t designed explicitly, the users demand new capabilities that had not been
envisioned during the design.

Software development also is uncertain because specifications for it are invariably
incomplete. Incompleteness partially results from limited domain knowledge and
division of labor typical of software projects (Curtis et al., 1988). Too few people

1. The software 10 run ground control for the Apollo spacecraft in the 1970s contained about 23 million lines of code (Fox, 1982).
The code for AT&T's SESS switch is about 10 million lines of code. The software to allocate lines in a telephone network
comains over 10 mullion lines of code. Each generation of softw are is typically larger than the one that preceded it.

Coordination in software 3

working on a software project have sufficient knowledge about the domain in which they
are working. A project group writing software for a heads-up display for pilots needs in-
depth knowledge of aircraft and aviation, as well as knowledge of computer science.
Typically, analysts with varying degrees of domain knowledge interview customers and
users, and then write specifications for architects and designers. Relevant information is
inevitably lost. Some of the users’ needs will not be uncovered by the analysts, and some
of the analysts’ tacit knowledge will not be reflected in the specifications. Thus, a major
coordination problem in software development is that at many points the information that
software architects and programmers need to make decisions is not available to them
through documents, although users, analysts, and others in the project may have the
knowledge necessary for these decisions. '

Finally, software is uncertain because the different subgroups involved in its
development often have different beliefs about what it should do and how it should do it.
For example, analysts translate users’ needs into requirements for system capabilities.
As a result, they often adopt the point of view of the software’s users. On the other hand,
designers and programmers often have a more internal focus, with an emphasis on ease
of development and efficiency of operation. As more groups become involved in
software development, disagreements among them inevitably increase. These differences
in points of view must be resolved for coordination ‘o succeed.

Interdependence. The large size and uncertainty in software work would be less of a
problem if software didn’t require a strong degree of integration of its components.
Much software is built of thousands of modules that must mesh with each other perlfectly
for the software system as a whole to operate correctly. The recent disruption of the
AT&T long distance network (Travis, 1990) shows how interactions among modules
introduced whiie updating software to give it more capabilities can have disastrous,
unanticipated consequences. The implication is that poor coordination between
subgroups producing software modules could lead to failure in integrating the modules
themselves.

Informal communication. Both practical experience and organizational theory suggest
that previous efforts in software engineering cannot by themselves solve the coordination
problems in large software projects. The combination of large size, uncertainty, and
interdependence requires special coordination techniques that may not be necessary in
more routine operations. At the risk of oversimplification, one can say that most
proffered solutions to the software crisis have taken one of three approaches: (1)
technicat ioui,, rarging from new workstations to syntax-directed editors, to improve the
pro-fuctivity of individual developers, (2) modularization, both technical, such as object-
ornien ' programming, and managenal, such as the organizational separation of the
requirements, coding, and testing functions, to encapsulate the behavior of program
elements and individual software professionals, thereby reducing needs for cogrdination,
and (3) formal procedurcs, both technical, such as version control sottware and
specification languages, and managerial, such as test plans, delivery schedules, and
requirement documents, to control communication among development personnel.

These techniques are likely to be an incomplete solution. Tools to increase the

Coordination in software 4

productivity of individual programmers by definition do not solve coordination problems.
No matter how successfully layered architectures and structured programming
methodologies reduce the number of interfaces between modules, different people with
different peispectives still must agree on what is to be built and must fit together pieces
of software. Consensus formation, information sharing and coordination dilemmas that
don’t show at one level surface at another. Finally, trends toward formalization, while
necessary for some purposes, for other purposes may be a misguided attempt to apply
routine procedures when they are not applicable.

Formal, informal communication systems best suit different types of activities. Forinal
and impersonal communication is useful for coordinating routine transactions within
groups and organizations. Formal coordination mechanisms often fail in the face of
uncentainty, which typifies much software work. Under these circumstances, informal
communication may be needed for coordination (Ochi, 1980; Van de Ven, Delbecq, and
Koenig, 1976; Daft and Lengel, 1986).

Prior descriptions of communication in organizations, although not looking at software
development per se, have shown the heavy and effective use made of informal
communication for exchanging information in research and development settings. By
informal communication we mean personal, peer-oriented, and interactive
communication. It is to be contrasted with more formal procedures, such as written
specification documents, formal specification languages, and automated reporting and
tracking of program errors, in which communication is through documents and is
unidirectional. The major findings are easy to summarize. First, informal, interpersonal
communication is the primary way that information flows into and through research and
development organizations (e.g., Adams, 1976; Allen, 1977; Tushman, 1977). Second, in
the world of research and development as in many other domains (Culnan, 1933; Zipf,
1949), the ease of acquiring information is at least as important as the quality of the
information in determining the sources that people use. Therefore physical proximity of
the source is a major constraint on engineers’ work-related information (Allen, 1977).
Third, getting information and coordinating activity through informal, interpersonal
communication is valuable both for individuals and for their organizations, especially as
R&D tasks become more uncertain (Pelz and Andrews, 1966; Tushman, 1977).

The previous discussion points to a major and perhaps unresolvable tension in large
software development projects. Because of interdependence, different groups involved
in a software development project must be tightly coordinated. Because of the high
degree of uncertainty typical of software projects, informal, interpersonal communication
is a valuable method for achieving this coordination. But because of the large size of
these projects, the inefficiencies of pairwise face-to-face communication may preclude its
use as a major technique for solving coordination problems in large project groups.

The present paper is an empirical attempt to cxamine the cundiions under which
different techniques are used for coordinating software development and the conditions
under which various of them actually succeed or fail in improving coordination. For the
reasons just described, we concentrate on the contrast between more formal, impersonal
techniques, such as design and requirements documents and status tracking

Coordination in software 5

methodologies, and more informal, interpersonal techniques, such as peer discussion and
unstructured electronic mail. Structured, interpersonal meetings, such as status reviews
or design reviews are intermediate on the formality dimension.

SURVEY STUDY OF COORDINATION IN SOFTWARE DEVELOPMENT

We surveyed the intergroup coordination practices in one large software development
company. The survey focused on three factors: 1) coordination practices used, 2)
structural characteristics of projects that might interact with the practicality and utility of
various coordination techniques, and 3) the success of the projects on several dimensions.
We were particularly interested in features of the projects and the coordination practices
that influenced the sharing of information and of goals.

The research site. The research site was the software development divisions of a
research and development company. They employed approximately 3,000 managers,
analysts, software engineers, programmers, testers, and documentation specialists.
Collectively, the staff worked on the development of a wide range of products for the
telecommunications industry. using a wide range of techniques in the development
process. In terms of scale, they ranged from two to four person projects with
development on PCs to large main-frame systems, with 14 million lines of code already
developed and 150 people on staff at once. The median project had over 15 people on
staff at the time of the survey. In terms of software life cycle, the projects ranged from
those in the specification stage with active negotiations with clients and with other
development organizations to more maintenance-oriented projects, where new releases
were meant to fix bugs and add small numbers of features. While all projects used both
formal and informal communication to coordinate activity, the balance differed across
projects. For example, on the more formal end, requirement specification documents
were written by members of a different vice presidential area than those who design
software architecture. Information about the needed software capabilities was conveyed
through these formal specification documents. In other projects representing the more
informal end of the continuum, the responsibility for assessing software capabilities and
for actually writing the code resided within the same 30-person department and
communication was through informal, interpersonal contacts supplemented by sketchy
requirements documents. Similarly, some departments made extensive use of electronic
mail and bulletin boards to distribute project knowledge, while others did not use these
facilities.

Sample. The sample consisted of 150 supervisory groups involved in some aspect of
software development, representing approximately 80 different software systems. The
coordination survey was sent to 750 people (150 first level supervisors and 600 technical
staff). We included all phases of software from requirements to field support. Eighty-
eight percent of the sample returned the questionnaire after three mailings and of these
563, or 75% of the total sample, returned usable data.

There were 65 projects for which at least two people provided data. Projects with only
one respondent were dropped. The number of respondents per project ranged from 2 to
47 with a mean of 7.6 and median of 4. Depending on the question, analyses are based on

Coordination in software

563 individuals or 65 projects.

Measures. The survey measured the following aspects of software development within a
project. Table 1 shows examples of all measures.

1.

Structural characteristics of projects. These include project size, project age,
and stage in the software life cycle. Two other structural characteristics were
especially impertant. One, organizational interdependence, is the extent to which
members of a project get inputs from and pass output to other groups within the
company that are outside of their immediate supervisory group. The other, project
certainty, is the extent to which a project is stable and the work consists of tasks
which are well understood and easily accomplished by local expertise.

Coordination techniques used. These include: formal, impersonal coordination
techniques, such as written requirements documents, modification request tracking,
and data dictionaries; formal, interpersonal techniques. such as requirement
reviews, status reviews, and code inspections; and informal interpersonal
techniques, such as unscheduled group meetings or co-location of requirements
and design staff. Among the informal techniques, we examine separately electronic
communication, such as electronic mail and electronic bulletin boards, and
interpersonal nerworks. The interpersonal network measure requires additional
explanation. Respondents were given a list of 100 first-level supervisors randomly
selected from the software development divisions and circled all those with whom
they had talked the previous 2 years. Projects in which people had many contacts
outside the project had extensive interpersonal networks.

Outcomes of coordination techniques. This paper uses two measures. The
informed scale measures respondents’ assessments of how adequately informed
they and the project’s managers were about project status and responsibilities. The
coordination success scale measures respondents’ assessments of how well their
projects were going and integrating with the work of other organizations. (See
Table 1.)

RESULTS

Techniques for spreading project information and coordinating work. We examine
the conditions under which projects used formal procedures and informal ones to
coordinate work and the value they judged these procedures to have. For each technique
respondents made two ratings: (1) the extent to which the project used the technique to
get work done and (2) the value of each technique for spreading information and
coordinating work regardless of its use. Each rating was made using a 7 point scale with

1R

Coordination in software 7

"1" indicating "no use" or "low value" and "7" indicating "used a lot" or "high value".
Analyses are based on linear regression equations predicting techniques used from
charactenstics of projects, and their perceived value from project characteristics and use.

As Table 2 shows, projects tended to use formal impersonal procedures such as project
documents, milestone and delivery schedules, and error tracking more when the projects
were certain, larger, and had passed the requirements and design stages of their life
cycles. These formal procedures were judged valuable the more they were used and
were judged especially valuable when projects were more certain. Formal information
exchange meetings such as requirements and status reviews were used most in large
projects. They were judged most valuable when projects were more certain and when
they were in planning stages. On the other hand projects tended to use informal,
interpersonal communication such as unscheduled meetings very frequently, and used it
regardless of project size, certainty, or life cycle. This informal communication was
judged especially valuable when the project was certain and when it was in the planning
stages. Finally, electronic communication was used as frequently as the formal,
impersonal procedures, and was used more when projects were heavily dependent on
input from other groups in the company. No project characteristics predicted the value of
electronic communication, once one controlled for its use. Finally, projects had more
extensive interpersonal networks outside the project when the project was smaller, when
it depended was interdependent, and when it was certain.

Figure 1 extends these results by looking at the use and value of particular techniques.
Since people tend to judge techniques they use as more valuable, our analysis attempts to
correct for this inherent bias. Figure 1 shows the line found by regressing the use of
various techniques on value. Those techniques that are above the regression line were
judged to be more valuable than predicted by current use, while those below the line
were judged to be less valuable than one would expect based on their use. Techniques
that were judged to be statistically significantly more valuable than one would predict
based on their use are marked with a "+". These include both informal discussions with
geographically local colleagues (discussions with boss, discussions with peers, group
meetings) and other interpersonal procedures that make available points of view external
to ones local work group. Thus requirements reviews, design reviews, and customer
testing allow personnel with different responsibilities and points of view, such as
requirements analysts, systems engineers, architects, programmers, testers, and
customers, to comment on each others work interactively, but in structured a setting. The
co-organization of requirements and development, -- the placement of these functions

2. Note that the procedure was different for the interpersonal networks measure, described above. For this measure, respondents
completed a communications roster, rather than estimating how frequently they used interpersonal networks. They did not rate the
value of the networks.

Coordination in software 8

under a single line of management -- allows for more frequent communication between
the personnel responsible for these functions. Techniques that respondents judged to be
statistically significantly less valuable than the amount they were uscu are marked with a
"-". These tended to be formal coordination techniques, both interpersonal ones in which
the information conveyed is relatively routine (code inspections, status reviews) and
impersonal oncs (project documents, source code, milestones, and error tracking).

How do software professionals get help? The way project members deal with specific
work problems also reflects coordination patterns in software development. We asked
people to describe the most recent project-related problem they had that they couldn’t
solve alone. A variety of technical and managenal problems were reported. Technical
problems included such difficulties as dealing with corrupt data in a database, deciding
on a new programming language to use on a project, determining whether a particular
piece of data was needed for an interface, or investigating why a software module ran ioo
slowly. More managerial problems included specifying a human interface that was being
jointly defined by two separate cuinipanies, calculating a complete cost estimate for a new
work project, or handling a conflict in responsibilities between a developer and a
documenter.

From a list of information and conisultation sources, respondents rated (1) the extent to
which the source was used to solve the particular problem and (2) the potential
usefulness of the source, whether or not it was actually used for the particular problem.
Again, ratings were made on a 7-point scale with "1" indicating that the source was "not
consulted” or was of "low" potential usefulness, and "7" that the source was "strongly
consulted” and of "high” potential usefulness.

Figure 2 parallels Figure 1 and shows which information sources are perceived to be
underused (above the line), and which are perceived to be overused (below the line).

By far the predominant source of information was other people. Consistent with
previous research (e.g., Allen, 1977), software engineers overwhelmingly get their
information from vuther people and the ease of getting the information is a critical
determinant. Thus, in our data, three of the top four information sources were other
people. Other project members, often in close physical proximity to the respondent, were
used as information sources far more than other source. On the other hand, respondents
judged that people from outside the project and therefore difficult to access (other
company employees not on the project, and subject matter experts from outside the
company) were perceived as significantly underused relative to their value. All forms of
written documentation were perceived as less valuable than personal contacts, and some
of them were judged to be significantly overused relative to their value (books, and
journals, electronic bulletin boards, and project documentation). Again, these results
suggest the value of getting information by interpersonal means from outside ones
immediate work group.

Coordination in software 9

Predicting Project Coordination Success. What project characteristics and
coordination techniques predict successful at intergroup coordination? To answer this
question, we used path analysis. Path analysis uses a system of simultaneous linear
regression equations to test causal hypotheses by holding constant the effects of
antecedent variables when estimating the causal impact of a focal variable.® Figure 3
presents the significant relationships among some of the variables from Table 2 and the
outcome measures; the numbers on the arcs are the standardized beta weights.

The first conclusion to be drawn from Figure 3 is that projects with different
characteristics differ in the degree to which they were coordinated. As one might be
expect, projects that were older, smaller, and less interorganizationally interdependent
were better coordinated. In addition, projects that were more technically certain (i.e.,
stable, homogencous and confronting routine problems) had project staff who were better
informed and were better coordinated. Interestingly, both project age and project
interdependence had part of their effects on coordination success through project
certainty. That is, older projects are on average more stable and homogeneous, and these
factors make coordination easier to accomplish. Similarly, projects that are less
interdependent have more control over the directions they set and the resources they have
available. These factors make project members more informed about decisions that
affect them and project success. These factors also make projects more certain and in
turn better coordinated.

We had seen carlier that projects with different characteristics rely on different
coordination techniques. In particular, we have seen that larger projects, more certain
projects, and projects that have passed beyond the planning phases of the software life
cycle were more likely to use formal, impersonal coordination techniques such as written
documents, milestone and delivery schedules, and management tracking of errors and
change requests. The interesting finding revealed in Figure 3 is that the use of formal
procedures does not seem to improve intergroup coordination once one controls for the
conditions under which they are used.

Figure 3 shows that different factors predict whether members of a project have a dense
interpersonal network that extends beyond the project’s boundaries. (See also Table 2.)
In projects that are highly interdependent, members of the project by necessity know

3. [n the path anaiysis, we assumed the following casual ordering: Structural characteristics, such as project age. size, and
interdependence could potentially influence a project’s certainty. Together these project characteristics could potentially influence
the coordination technigues a project adopts, which in tum, could pou:nually influence how well informed project members were
and how successfully the project was coordinated. This causal ordering is consistent with both the prior literature on task certaimty
and coordination (¢.g., Perrow, 1970; Tushman, 1977) and the literature in software engineering (e.g. Brooks, 1975; Fox, 1987}
However, like all path analyses based op cross-sectional data, the ordering can be debated. For example, the lack of success oo a
project could cause managers to increase its size (one of the dangers Brooks warned about), or the coordination techmques tha: a
project adopts may cause the project to becomne more or less cenain

s e e

Coordination in software

many others outside of their projects. On the other hand, in large projects the
interpersonal network is within the project and as a result project members know few
people outside of their project. Finally, more cenain projects have more extensive
interpersonal networks.

The maintenance of an extensive interpersonal network improves outcomes. In

particular, in projects in which members talk to others outside of the project, both project
members and their management know more about project status and commitments. They
are rarely caught by surprise. This greater awareness aids their intergroup coordination.

Perhaps the most interesting finding revealed in Figure 3 is the the statistical interaction

between project certainty and interpersonal networks. This interaction means that the
beneficial effect of interpersonal networks was most pronounced when projects were
uncertain. This finding is consistent with organizational research, reviewed in the

introduction, that informal, interpersonal communication is necessary for coordination
under conditions of uncertainty.

SUMMARY

The results show the value of interpersonal communication, both informal and more
formal, as mechanisms to achieve coordination in software development. Software

development requires personal co:nmunication across functional boundaries to cope with

uncertainty. Managenal and technical problems continuously arise in the process of

creating software. While people can solve some of these problems by themselves or by

examining static documen.s, others demand information or cooperation from other

people. An employee who doesn’t understand the work flow that software was designed
to support, who needs to negotiate which of two modules to change to fix a bug, or wh»

needs to fill in the gaps left in a functional specification docuinent, needs help from
someone else in the software development process.

The standard response when one confronts a problem that cannot be solved alone is to go

to a colleague close by. However, not all the necessary knowledge or relevant
viewpoints can be gathered from local colleagues, who are often consulted more from

convenience than from relevance or competence. Personal contact with those outside of

ones immediate project is one mechanism to get this information. Thus, projects with
denser cross-boundary networks were better informed and coordinated, and extensive
personal networks were particularly useful in uncertain projects.

However, personal contact between organizations through interpersonal networks is not a

panacea for coordination problems in large software projects, both because of the

excessive transactions costs resulting from the many pairwise conveisations and because
of the ephemeral nature of the information transferred in them. Thus, a large project will

also need institutionalized communication events, like requirements reviews, design

X5

Coordination in software 11

reviews, and customer testing, where the diverse groups involved in the project can come
together in a controlled way and from which archival records can be derived. In .he
present study, project mem"ers judged these between-organizational meetings were
underused and supported relative to their value. On the other hand, project members did
not call for increased use of meetings that typically exchange routine information or that
don’t involve outsiders, such as status review meetings or code inspections.

In the company described i~re, impersonal modes of coordination, such as project
documents, memos, and bulletins, milestone and delivery schedules, and error tracking,
were a standard part of the software development process and hence were heavily used in
most projects. Surprisingly, once one controlled for the conditions under which they are
used, namely in larger, more certain projects that have passed the planning stages, greater
reliance on them did not lead to better coordination. Neither did project members call for
more use of these procedures. These findings suggest some of the limitations on formal
procedures.

The research reported here is consistent with a large literature about coordination in
organizations. In some ways, coordinition in software development differs little from
coordination in hospitals (Georgopoulous « Mann, 1962), social service agencies (Van
de Ven, et al, 1976), or research and development more generally (Tushman, 1977). Yet
concluding that the problems of software engineering are common managerial ones
requires stronger evidence. In particular, the present study suffers from two weaknesses.
The firet is the simplified assumptions about causal ordering of variables, referred to
previously. For example, while most organizational theorists treat task certainty as a
fundamentzl property of organizations that influences the coordination techniques used
and valued (Perrow, 1970; Katz & Tushman, 1978), the causation is undoubttedly
bidirectional, and organizational responses also change certainty. The second weakiess
is the nature of the outcome measures reported here. They are self-reports from technical
workers ana first level supervisors. One would like similar results coming from a wider
variety of metrics, including the quality of the software, time to delivery, and customer
satisfaction, before confidently endorsing them.

Improving the process. How might software projects gain some of the advantages of
interpersonal communication for coordination under uncertainty, while minimizing the
overhead and lack of managcrial control that pairwise communication entails? Better
communication support could be achieved either through organizational means or
through technological means. We review both approaches below.

Respondents in the present study Jought that coordination could be substantially
improved if different functional specialties, such as requirements analysis and code
development, were located in the same organization or were physically close to each
other. These changes would make others with different information or priorities more
accessible and also provide a managerial mechanism to resolve differences in goals and
point of view. Research in domains analogous to software development suggests that
these approaches do indeed work to improve the design and development process. For
example, Clark, Chew, and Fujimoto (1987) determined that differences in managenal
structures and communication patterns accounted for a sizable proportion of the

e

Coordination in software 12

advantage that Japanese car manufacturers have over European and American ones in
terms of the time to bring a new model to market and the engineering hours used to
develop it. To oversimply their complex study, Japanese automobile design and
engineering typically had smaller, multifunctional project teams, strong project managers
with the expertise and power to control and make technical decisions, and intense formal
and informal lateral communication between functional specialties. On the other hand,
US manufacturers tended to have larger projects, weaker project managers to coordinate
but not make technical decisions, and more formal between-specialty communication
through frequent large meetings. The Europeans typically used a fur.ctional organization
in which coordination was achieved through formalized rules and procedures, no project
manager and intense informal communication across functional boundanes.

Whiie the analogy between automobile and software design and manufacturing is not
perfect®, the Japanese managerial and communication models bear a close resemblance
to the chief programmer teams advocated by Weinberg (1971) and chief architect model
that Curtis et al (1988) identified as characteristic of successful software projects. The
Japanese example suggests that both of these software engineering visions of strong,
technical managenrial control must be supplemented by intense lateral communication
between functional specialities.

These findings seriously undermine the traditional waterfall mode! of software
development in which each hierarchically organized, functionally specialized group (be it
requirements or system test) hands off its products to the next downstream group.
Functional organization coupled with over-reliance on formal coordination procedures
leads to larger development teams and longer software life cycles. An error made
"upstream” cannot be caught until the next stage in the process. Functionally organized
software efforts tend to populate each stage with specialists while strong team leader
projects tend to staff more broadly.

As the Japanese case of automobile production points out, successful projects rely on
both formal and informal communication techniques. Respondents in this survey found
some mectings, such as design and requirements reviews, especially valuable for
coordination. These meetings must make and review highly consequential but uncertain
decisions, and must be informed by a wide variety of personnel. Decisions reached at
such meetings have important consequences for the project as a whole, and decisions
made at them as well as the reasoning behind them should be a permanent, retrievable
part of the project memory. This suggesis that ways to automatically capture and
document these decisions are important. Technology could be summoned to provide
better support for these meetings. For example, some of these meetings could be
conducted through computer conferences or using computer-based group decision
support systems (see Kraemer and Pinsonneault, 1990, for a review). Computer-

4. For example, software development is more uncertain with changing platforms, languages and applications, while automobile
manufacture requires more cross organizational interdependence, with substantial outsourcing of components.

f‘—

Coordination in software 13

supported communication couid have the consequence of opening up the discussion to
more and more divergent points of view, improving the quality of decisions reached, and
providing a content addressable archive of the meeting.

Information technologies could be made more valuable for supporting informal
communication in software development, if two major social problems could be solved.
The first is the difficulty of insuring that the relevant information that some project
members know is made explicit and available for others to use. One of the values of
personal networks is that people will contribute information when explicitly asked, often
going well beyond the original question. However, in general, people under-contribute
information when the information is intended for the anonymous, common good (e.g.,
explanatory comments in source code). This tendency is a natural consequence of the
economics of common goods, in which ones personal interest is best served by receiving
from but not giving to the common good (cf Hardin’s, 1968, discussion of the common’s
problem and Thorn and Connolly’s, 1990, application to discretionary databases). The
second difficulty is one of coping with information overload. Given the vast amount of
information associated with software projects, it is likely that individuals will be
bombarded with information, both relevant and irrelevant. It is not clear whether
standard information retrieval techniques can deal with this flood.

e

Coordination in software 14

REFERENCES

1. Adams, J. S. The structure and dynamics of behavior in organizational boundary
roles. In M. D. Dunnette (Ed.), Handbook of Industrial and Organizational
Psychology. Chicago: Rand-McNally, 1976, 1175-1199.

2. Allen, T.J. Managing the Flow of Technology. Cambridge: MIT Press, 1977.

3. Bamlund, D. C. and Harland, C. Propinquity and prestige as determinants of
communication networks. Sociometry 26, 1963, 466-479.

4. Brewer, M. B. and Kramer, R. M. The psychology of intergroup attitudes and
behavior. Annual Review of Psychology 36, 1985, 219-243.

5. Blau, P. and Scoit, W. R. Formal organizations. San Francisco: Scott, Foresman,
1962.

6. Blazer, R. Imprecise program specification. Report ISI/RR-75-36, Information
Science Institute, December, 1975.

7. Brooks, F. P. The Mythical Man-Month. Addison-Wesley, Reading, MA, 1975.

8. Breoks, F. P. No silver bullet: Essence and accidents of software engineering.
IEEE Computer Society 20, (April, 1987), 10-18.

9. Burmnham, D. The L.R.S.’s bumbling efforts to update its computers. The New York
Times, April 8, 1990, F 12.

10. Clark, K. B, Chew, W. B., and Fujimoto, T. Product development in the world
auto industry. Brookings Papers on Economic Activity 3, 1987, 729-781.

11. Curtis, B., Krasner, H., and Iscoe, N. A field study of the software design process
for large systems. Communications of the ACM 31(11), 1988, 1268-1287.

12. Culnan, M. J. Environmental scanning: The effects of task complexity and source
accessibility on information gathering behavior. Decision Science 14, 1983, 194-
206.

13. Daft,R. L., and Lengel, R. H. Information richness: A new approach to
managenal behavior and organization design. In B. Staw and L. L. Cummings
(Eds.), Research in Organizationel Behavior (Vol. 6). Greenwich, CT: JAI Press,
1984.

14. Dearborn, D. C. and Simon, H. A. Selection perception: A note on the
departmental identification of executives. Sociometry 21, 1958, 140-144.

15. Faunce, W. A. Automation in the auto industry: Some consequences for in-plant
social structure. American Sociological Review 23, 1958, 401-407.

16. Fox, J. M. Software and its Development. Englewood Cliffs, NJ: Prentice-Hall,
1982.

17. Georgopoulos, B.S. & Mann, F.C. The Community General Hospital. NY:
Macmillan, 1962.

|1 R I ™

Coordination in software

18. Hardin, G. The tragedy of the commons. Science, 162, 1962, 1243-1248.
19. Hunting the 'blueprint’ of eternity. Washingten Post, April 8, 1990, A1,26,27.

20. Jablin, F. M. Superior-subordinate communication: The state of the art.
Psychological Bulletin 86, 1979, 1201-1222,

21. Katz, R. & Tushman, M. Communication patterns, project performance, and task
characteristics: An empirical evaluation in an R&D setting. Organizational
Behavior and Human Performance, 23, 1978, 139-162.

22. Kraemer, K. & Pinsonneault, A. Technology and groups: Assessment of the
empirical research. In J. Galegher, R. Kraut & C. Egido, (Eds.). Intellectual
teamwork: Social and technological foundations of cooperative work. Hillsdale,
NJ: Lawrence Erlbaum, Associates, 1990.

23. Martin (personal communication, 1990).

24. Monge, P. R., Rothman, L. W., Eisenberg, E. M., Miller, K. L. and Kirste, K. K.
The dynamics of organizational proximity. Management Science 31, 1985, 1129-
1141.

25. Newcomb, T.R. The Acquaintance Process. New York: Holt, Rinehart and
Winston, 1961.

26. Ouchi, W. G. Markets, bureaucracies, and clans. Administrative Science Quarterly
25, 1980, 129-140.

27. Pelz, D. C. and Andrews, F. M. Scientists in Organizations: Productive Climates
for Research and Development. New York: Wiley, 1966.

28. Perrow, C. Organizational Analysis: A Sociological View. Belmont, CA:
Wadsworth, 1970.

29. Sykes, R.E, Lamntz, K., and Fox, J. C. Proximity and similarity effects on
frequency of interaction in a class of naval recruits. Sociometry 39, 1976, 263-269.

30. Tajfel, H. Social psychology of intergroup relations. Annual Review of Psychology
33, 1982, 1-39.

31. Thom, B. K. & Connolly, T. Discretionary data bases: A theory and some
empirical findings. Communications Research, 14, 1987, 512-528.

32. Travis, P. Why the AT&T network crashed. Telephony 218(4), (January 22, 1990),
11.

33. Tushman, M. L. Special boundary roles in the innovation process. Administrative
Science Quarterly 22(4), 1977, 587-605.

34. U.S. General Accounting Office. Contracting for Computer Software
Development--Serious Problems Require Management Attention 1o Avoid Wasting
Additional Millions. U.S. Department of Commerce, National Technical
Information Service, P880-105638, Washington, D.C., 1979.

Coordination in software 16

35.

36.

37.

Van de Ven, A. H,, Delbecq, A. L., and Koenig, R. Jr. Determinants of
coordination modes within organizations. American Sociological Review 41, 1976,
322-338.

Weinberg, G. M. The Psychology of Computer Programming. New York: Van
Nostrand Reinhold Co, 1971.

Zipf, G. K. Human Behavior and the Principle of Least Effort. Cambridge, MA:
Addison-Wesley, 1949.

Coordination in software 17

STRUCTURAL CHARACTERISTICS

PROJECT SIZE

1. Number of people working on this project across the company.

PROJECT AGE

1. Maximum number of years that any project member worked on the project.

PLANNING STAGE
1. Percent of project staff having as their major work activity either requirements analysis and
specification or high level software architecture and design.
ORGANIZATIONAL INTERDEPENDENCE (5-items, Alpha = .69)
1. Extent to which your work is interrelated with people in your division, but outside your group

2. Extent to which work is related with the work of others outside your division, but within the assistant
vice presidential area

3. Extent to which work is related with work outside the assistant vice presidential area, but within the
vice presidential area.
PROJECT CERTAINTY (8-items, Alpha = .65, Adapted from Van de Ven, Delbecq, and Koenig, 1976)
1. Clearly defined body of knowledge or subject matter guiding work on the project
2. Extent to which people in a particular district do the same type of work
3. Sability of the detailed specifications for the project

COORDINATION TECHNIQUES

FORMAL, IMPERSONAL PROCEDURES (5-items, Alpha = .63)
1. Project documents and memos
2. Project milestones and delivery schedules
3. Modification request and error tracking
4,

Data dictionaries

FORMAL, INTERPERSONAL PROCEDURES (5-items, Alpha = .74)
1. Status review meetings
2. Design review meetings

3. Code inspections

INFORMAL, INTERPERSONAL PROCEDURES (2-items, Alpha = .56)
1. Group meetings

2. Co-location of requirements and development staff

ELECTRONIC COMMUNICATION (2-items, Alpha = .38)
1. Electronic mail
2. Electronic bulletin boards

Coordination in software 18

INTERPERSONAL NETWORK

1. Number of supervisors from outside the project talked to in the previous two vears.
OUTCOMES

PROJECT MEMBERS INFORMED (5-items, Alpha = .83)
1. Management on the project has an accurate view of how well the project is going

2. Immediate manager is a good source of information about relevant work from other areas of
company

3. People are well informed about project status

COORDINATION SUCCESS (5-items, Alpha = .65, Adopted from Georgopoulous and Mann, 1962)
1. Lack of duplication and redundancy in the work of groups on the project

2. Extent to which the group avoids working in a "crisis mode”

TABLE 1. Survey measures, with examples

Coordination in software

19

Coordination Techniques
Formal Formal Informal Electronic Interpersonal
impersonal interpersonal interpersonal communication networks
procedures procedures procedures
Use Value Use Value Use Value Use Value
Project characteristics
1. Project age 017 004 013 014 016 -003 -003 -0.06 -0.08
2. Project size 0.32* 002 050 008 020 007 021 0.10 -0.30*
3. Planning stage -0.30* -0.01 -005 036* 027 028« 0.14 0.18 0.14
4. Group interdependence -0.02 0.10 -0.18 -018 001 -002 034+ -0.03 042+
5. Project centainty 0.24* 039* 016 032* 008 046 010 0.06 0.29*
Use of the
coordination technique - 0.56* - 0.40* - 0.48* - 0.77* -

Note. Entries are the standardized beta weights in a regression analysis predicting the use and value of coordination
techniques (columns) by project characteristics (rows).

Use of a technique was entered into the equation predicting its value. Interpersona! networks were measured

differently from the other coordination techniques. A distinction between use and value was not made.

*p<0.05
N = 65 projects

TABLE 2. Predicting the use and value of coordination techniques.

Value of Coordination Techniques

.

6.0

55

5.0

4.5

4.0

3.5

3.0

Coordination in software 20
+ discussion with
Greater value peers °
than use
+ customer testing ¢

d proiect documents —

i . milestones ~

+ deS|gn reviews ¢ . error tracking -

+ requirements reviews
+ CO-0rganization ¢ '
[i . Co-location »
+ discussion with boss » .
] » status reviews -
+ group meetings © . .
« electronic mail
* code inspections ~
* project bulletin
* source code —
* management case tools
Greater use
than value
i]

2 4 5 6
Low Use of Coordination Techniques High

Figure 1. Comparing the use and value of coordination techniques

Coordination in software

Value of Help Sources

Greater value
than use

r—-

+ vendor
representatives s

+ client experts ¢

2]

* project
members

+ outsiders «

» project documentation —

* source code

* books, journals -

« electronic bulletin boards -

Greater use

than value
Low Use of Help Sources High

Figure 2. Comparing the use and value of sources of help

Coordination in software

<— Project characterics —» - C&m&‘: - «4—— Outcomes —»
Planning -30 Use formal,
sage impersonal
procedures
32 .
3
. 24
29
-29 Project Coordination
39 cerainty 48 N success
Members
24 . o informed
Organizational 40
interdependence .56 _ Interpe ‘3
neatworks *
.25 21
-30
Project
age Interpersonal
networks
X
Cerainty

Factors influencing coordination

Figure 3. Factors influencing successful coordination

