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SUMMARY

This report presents methods of synchronizing the realtime clocks associated with a set of respective
digital processing modules interconnected through a backplane bus. All the methods are based on the

broadcast of a strobe signal over the backplane bus, which simultaneously samples all the realtime clocks

being synchronized. The repor describes and compares various methods of implementing realtime clocks,
designed to permit their rate of advance with respect to physical time to be adjusted. It examines and
makes recommendations on various interface standardization issues related to variable rate realtime

clocks. It also gives and evaluates software algorithms for synchronizing variable rate realtime clocks.
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1.0 INTRODUCTION

Many digital processing systems employ a sense of the physical time of day. Realtime systems use it to
record the time at which events occur in the external world, to measure the elapsed time between events,
to control the sequence in which event processing takes place, and to schedule initiation of events in the
external world. Distributed fault-tolerant systems use it to detect events which fail to occur without
incurring the cost of timeout messages.1 Database systems use it to provide atomic coordination of
transactions through the use of timestamps, as well as including it as an element of the data maintained
within the database.

The software executing within a digital processor obtains a reading of the current physical time by
accessing a realtime clock. A realtime clock is a register whose numeric cortent monotonically increases at
a known rate with respect to physical time. 2 The simplest form of realtime clock consists of a
processor-accessible counter, which increments on each cycle of an oscillator connected to it.

1.1 CENTRALIZED VERSUS LOCAL REALTIME CLOCK IMPLEMENTATION

An important type of digital processing system consists of two or more independent processors
interconnected through a backplane bus. When more than one processor needs access to a realtime clock,
the question arises as to where the realtime clock should be located. There are two basic approaches:
providing a single centralized realtime clock and providing each respective processing module needing
realtime clock access with its own local realtime clock. A combination of the two approaches is also
possible.

It may seem better to employ a centralized realtime clock rather than replicating the realt'me clock
locally at each module. A centralized realtime clock requires less hardware overall. It also avoids the
problem of synchronizing the collection of local realtime clocks. There are, however, three reasons why a
distributed set of local realtime clocks may be a better approach.

First, access by a processor to a centralized realtime clock is generally slower than access to a local
realtime clock connected more directly to the processor. The degradation in speed is due to the physically
longer access path to the centralized realtime clock and the many potential software and hardware
interfaces between the processor and the centralized realtime clock.

Second, time values obtainable from a centralized realtime clock are generally less accurate than
those obtainable from a local realtime clock. The centralized realtime clock, by definition, is a shared
resource. Contention may arise between users of the centralized realtime clock or on some component of
the access path to the centralized realtime clock. Since competing traffic may be neither interruptible nor
of known duration, it is often impossible to determine when the request for time data actually reached the
centralized realtime clock. This calls into question the accuracy of the time data obtained.

'The basic idea is that message traffic through the distributed system can be reduced by having processes agree in advance
on the physical time at which the failure of a process is assumed rather than sending timeout messages when failures are
detected. See Lamport, L. April 1984. "Using Time Instead of Timeout for Fault-Tolerant Dishibuted Systems," ACM
Trans. Prog. Languages, vol. 6, no. 2, pp. 254-280.

2
1n addition to the realtime clock, there also exists the concept of a virtual time clock. Given two events that happen at
ditferent Liros, both clocks can be used to determine which event happens first. The clocks differ in that a virtual time
c'..k does not quantitatively indicate the duration of time between the events, but only their relative sequence in time.
This limited capability is usually adequate for atomic transaction coordination time-stamping. Virtual time is beyond the
scope of this paper. See Jefferson, D. July 1985. "Virtual Time," ACM Trans. Prog. Languages, vol. 7, no. 3, pp.
404-425.



An argument may be raised that systems requiring very accurate time data employ a centralized time
standard, such as a cesium clock, which is considerably more accurate than a collection of local realtime
clocks driven by relatively low-cost crystal oscillators. Regardless of the internal accuracy of the
centralized realtime clock itself, the issue of contention for the clock, or for the access path to it,
degrading the obtainable accuracy is still valid. Such systems can employ the external time standard for
accuracy, yet still gain the benefits of distributed local realtime clocks, provided that they implemen tight
synchronization between the local realtime clocks and the external time standard.

Third, a centralized realtime clock is less fault tolerant than a collection of local realtime clocks. The
centralized realtime clock represents a single point of failure. A distributed collection of local realtime
clocks not only provides a backup source of time data should the primary source fail, but also provides a
means of validating time data by comparing realtime clock values.

Distributed local realtime clocks avoid the three problems described above, but introduce a new
problem, the need to keep the local realtime clocks synchronized with one another or with an external
time standard. The remaining sections of this report assume the distributed local realtime clock approach.

1.2 ADJUSTING CLOCK VALUE VERSUS RATE

There are two methods for adjusting a clock to bring it into synchronization. They can be illustrated
by analogy to adjusting a mechanical clock powered by a spring. The first method is to move the hands on
the clock face. This is equivalent to modifying the value displayed by the clock. The second method is to
adjust the tension on the spring powering the clock (usually by a screw adjustment on the back). This is
equivalent to modifying the rate at which the time displayed by the clock advances. One can also use a
combination of the two methods.3

Once a clock value has been initialized, adjusting the clock rate is usually superior to adjusting clock
value for several reasons.

First, adjusting the clock rate avoids backward adjustments in time value. When the clock has been
running too fast, it displays a time beyond the time desired. Adjusting the clock value to the proper time
implies moving the time value backward for an instant. This destroys the utility of the clock in applications
that depend on timestamps to establish the temporal sequence of events or transactions. Adjusting clock
rate, on the other hand, never causes the clock value to move backward. When the clock has been
running too fast, the rate is adjusted so that the value advances more slowly. The time value gradually
converges toward the proper value. As the time value approaches the proper value, future rate
adjustments converge on the proper rate to maintain the proper value.

Second, adjusting the clock rate avoids abrupt discontinuities in the otherwise steady advance of clock
value. The problem with abrupt discontinuities can be illustrated by a simple example. Consider
computing the average speed of an object moving in a straight line between two points. The average speed
is the distance between the two points divided by the difference in the time values sampled when the

3There is at least one historical instance in which both techniques were used. Pope Gregory XIII was concerned that the
Julian calendar, which had a leap year every 4 years, was not keeping pace with the Spring equinox needed to compute
the date for Easter. In 325, the year of the Council of Nicea, the Spring equinox was on 21 March. By 1582, it had
slipped to II March. The pope effectively "moved the hands" of the clock (the calendar) by declaring that the day after
4 October 1582 would be designated 15 October 1582. He effectively "adjusted the spring" of the clock by declaring that
years divisible by 100 but not by 400 would no longer be leap years. See appendix A to the translation of Ptolemy's "The
Almagest" in Great Books of the Western World. 1952. Encyclopedia Britannica, Chicago, vol. 16, p. 467.
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object was at each point. If the clock value is adjusted dramatically just after the object leaves the first

point but just before the object arrives at the second point, the computed speed could be dramatically in

error. Even worse, a backward adjustment in time value could cause the computed speed to be negative.
If the time values sampled at the two points were the same, which would happen if the elapsed time

between the two points was canceled by a backward time adjustment, the speed computation would
require division by zero. Adjusting clock rate, rather than clock value, still introduces the possibility of

error. The error, however, is minimal since a small difference between the clock rate and the proper rate

does not allow much error to accumulate during a short period of time.

Finally, adjusting the clock rate, when properly implemented, minimizes the need to continually
readjust the clock in the future. When the clock is running too fast or too slow, any adjustment of the

clock value is only temporary. Since the clock is running at the wrong rate, the clock value, although
initially correct, drifts from the proper value as time progresses. The clock continually needs

readjustment. Only by correcting the clock rate itself can this drift be minimized.

1.3 STROBE VERSUS FILTER SYNCHRONIZATION

This report concentrates on a realtime clock synchronization technique called the strobe technique.
The strobe technique can be summarized as follows. Periodically a realtime clock synchronization

algorithm is executed. It is executed frequently enough that no realtime clock drifts beyond a margin of

synchronization error selected by the system designer. For each iteration of the algorithm, one of the
modules simultaneously broadcasts to all modules, including itself, a command requesting that the

hardware in each module immediately sample and locally store the value of its respective realtime clock.
This command is called a strobe. The strobe effectively takes a snapshot of the state of all the realtime

clocks at a given ir 3tant in time. The strobe does not broadcast realtime clock time value data. It only

signals the moment when the data are to be locally collected. Once a module detects that the realtime
clocks have been sampled, it executes an algorithm, called the adjustment algorithm, which adjusts the
local realtime clock to bring it into synchronization. There are many variations of adjustment algorithms.
All of them, however, adjust the local realtime clock based on the difference between its sampled value

and the sampled values from one or more other realtime clocks.

Figure 1 shows a block diagram of the hardware components required by the strobe technique. The

strobe detector and the strobe register are unique to each bus type. The adjustable realtime clock, the
sample register, and the optional strobe watchdog timer can employ a common design. For parallel

backplane busses, the strobe detector is an address comparator that identifies a strobe by recognizing the

broadcast address dedicated to the strobe function. For serial busses, the strobe detector is a sequential

state machine, which identifies a strobe by recognizing the broadcast destination address dedicated to the
strobe function. When the strobe detector detects access to the dedicated address, it generates a signal to
load the current value of the adjustable realtime clock atomically into the sample register. The same signal

can aiso generate an interrupt to the processor to indicate the presence of a new sample enabling the

adjustment algorithm to proceed. The strobe register and the optional strobe watchdog timer are

explained later.

When realtime clock synchronization is required across an interface, it is often the case that a strobe

on one side of the interface cannot be instantaneously presented by the interface to the other side. The
problem is further complicated when the other side connects to a shared resource where variable delays

due to contention are present, such as connections to a multiplexed peripheral or to another bus. The
problem is solved by providing the interface with an internal timer (not shown in figure 1) that measures

the elapsed time the strobe consumes crossing the interface. The elapsed time then is used to correct

realtime clock sample values obtained across the interface.
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Figure 1. Strobe synchronization technique block diagram.

The synchronization of the realtime clocks on a set of interconnected modules requires that at least
one module generate strobes. To avoid creating a potential single point of failure, at least some of the
modules are equipped with both the ability to generate strobes and the ability to monitor whether strobes
are, in fact, being gvicratd. These modules have a watchdog timer. 4 The watchdog timer may be
implemented either directly in hardware or as an application of the interval timing services provided by the
operating system of the processor. A module initializes its watchdog timer when it goes online. A module
reinitializes its watchdog timer whenever it detects the generation of a strobe by any module, including
itself. A module generates a strobe when its watchdog timer interval expires. Normally, the module with
the shortest watchdog timer interval generates the next strobe. This is because all watchdog timers are
reinitialized at the same time by the same strobe and the watchdog timers on the other modules, whose
initialized intervals are longer, do not have a chance to expire before being reinitialized. The approach
provides fault tolerance since in the event that the module expected to generate Lhe next strobe fails to do
so, the module with the next successively longer watchdog timer interval automatically generates the next
strobe. The approach also provides a means for the system to accommodate automatically the needs of
the module whose realtime clock synchronization requires the shortest period between strobes.

The adjustment algorithm is intended to execute sometime during the interval between consecutive
strobes. It is essential that each execution only compares realtime clock value samples obtained from the
same strobe invocation. Mixing samples from different strobes, as explained below, destroys the
simultaneous nature of the samples upon which the synchronization algorithm depends.

Samples from different strobes become intermixed when a new strobe appears while Cte adjustment
algorithm is in the process of collecting samples from the previous strobe. This can happen ir. in two ways.
First, the adjustment algorithm execution may be delayed due to processor load. The delay can cause the

4 The watchdog timer approach was presented in an earlier report as a means of prO':'ing fault tolerant strobe generation.

See Wilcox, D. R. August 1989. "Periodic Phase Adjustment Distributed Clock Synchronization in the Hard Realtime
Environment." Naval Ocean Systems Center, San Diego, TR 1310, p. 15. The original idea of watchdog timers
with unique time intervals can be traced to the collision resolution method of the IEEE 802.3 Ethernet local area

network. The use of strobe labels, presented below, eliminated both the need for the watchdog timer intervals to be unique
and the need for the watchdog timers to be initialized all at the same time.
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processor to miss the deadline required to complete collection of the sample values captured by the strobe
before another strobe overwrites the sample values with new ones. Second, two or more strobes may be
broadcast in rapid succession. This can happen for a number of reasons. Two or more watchdog timers
may generate strobes at approximately the same time. A strobe may be delayed to such an extent that its
broadcast appears at approximately the same time as the broadcast of another strobe. A strobe may
appear from an interface to an external subsystem employing its own realtime clock synchronization.
Regardless of the reason, when strobes appear in rapid succession the adjustment algorithm may be caught
having only partially collected the sample values in response to one strobe before the another strobe
overwrites the remainder with ntw sample values.

As an example, consider the ilterconnection of two independent backplane bus subsystems through
an interface. Initially the interface between them is offline, isolating the subsystems from each other. Both
subsystems independently generate their own strobes to synchronize their own realtime clocks. WhLn the
interface linking the subsystems first goes online, there is a critical initial period before a single source of
strobe invocations has been selected when the modules of each subsystem potentially receive not only the

strobe associated with their own subsystem but also the strobe originating from the other subsystem. The
problem is even more severe in complex, loosely coupled networks consisting of many subsystems and
interfaces.

Fortunately, there is a simple way to avoid these race conditions. When the strobe detector samples
the realtime clock value in response to a strobe, it also atomically records information that uniquely
identifies the strobe from other strobes. This unique information is called the strobe label. The content of
the strobe label typically is derived from the source address of the module generating the strobe. The

strobe detector records the strobe label in the strobe register. The adjustment algorithm checks to assure
that all the realtime clock sample values required to be taken at the same instant of time have the same
strobe label before performing computations using them. As shown in figure 2, if the strobe labels differ,
the adjustment algorithm simply reaccesses the samples until they are all verified to be from the same

strobe.

COLLECT SAMPLES
WITH STROBE 

LABELS 7
DO ALL

SAMPLES HAVE SAME NO
STROBE LAB3EL ?

<4YES

Figure 2. Strobe synchronization technique sample access.
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The strobe technique relies on the presence of hardware to record immediately and simultaneously
the values t,, the realtime clocks in the system upon detection of a strobe broadcast. If this hardware
support is not available, another technique, called the filter technique, is generally used. s The filter
teconique employs statistics to estimate the relative difference betv.,een realtime clock values based upon a
nt_.ber of samples taken from each of the respective realtime clocks involved. In comparing the two
techniquec the strobe technique is superior in three respects.

First, the strobe technique avoids processor and backplane bus contention problems. Its adjustment
algorithm needs to know how far ahead or behind one realtime clock is in relationship to another and, in
the case of clock rate adjustment, how much time has elapsed between strobes. These parameters are
determined by computing the numeric differences 1:etween realtime clock sampl, values. Once a realtime
clock has been initialized, it is the differences between realtime clock sample values, not the realtime
clock sample values themselves, which are critical to synchronization. As long as realtime clocks are
sampled simultaneously and frequently enough to confine drift to within a specified bound, it is not
important precisely when a strobe is broadc-,st. No harm is done when a strobe is delayed due to
contention at the processor issuing the strobe or due to competing traffic on the backplane bus. -i he only
area where contention is of concern is where reception of the strobe by the module causes the sampling of
its local realtime clock value. Contention is avoided here through the use of dedicated hardware.

Contention is a major concern in the absence of hardware support. To some degree, the contention
problem can be minimized by executing the software at a high priority. This is not a complete solution,
however, because access to shared resources may not permit preemption regardless of the priority. Since
the strobe technique avoids software and backplane bus contention problems, there is no need for the
strobe to be broadcast at a high priority. The priority can be set to whatever level makes sense in relation
to other processing. This flexibility makes the strobe technique compatible with rate monotonic scheduling
technology.

Second, the strobe technique obtains realtime clock synchronization very quickly. When realtime
clcck synchronization error is plotted versus time, the value or the error is represented by a point on the
curve and the rate at which the error changes is represented by the slope of the curve. This is depicted in
figure 3. The slope of the curve is approximated by the .,lope of a line passing through two nearby points
on the curve. The st;obe technique can correct realtime clock value from the first strobe received and
realtime clock rate from the first two strobes received.

The strobe technique synchronizes realtime clocks much more rapidly than the filter technique.
Collecting all the realtime clock samples for the filter technique takes time, which makes the filter
techniq,:e less robust, both at deriving the iniitial synchronization and at responding to sudden changes in
realtime clock oscillator behavior. The resolution can be expressed in terms of a given standard deviation.
The variance, which is the square of the standard deviation, is inversely proportional to the number of
independent samples. Thus, the number of independent realtime clock samples required increases

generally as the square of the relat;ve realtime clock sample resolution to be statistically recoverej.
Furthermore, since the fil.ering technique is statistical, the confidence in the resulting synchronization is

5 The filter technique uses statistics to improve the available realtime clock synchronization resolution. While the filter
technique generally is used when there is no hardware support, it can also be used with hardware support to improve

further the resolution provided through the hardware. For example, it can be used when the system needs a resolution
gr -ter than provided by so-e or all of the realtime clock oscillators.
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Figure 3. Strobe technique realtime clock error versus time.

also statistica. In theory, both techniques should be able to provide comparable resolution given enough
time and a fairly stable oscillator. 6

Finally, software support for the strobe technique is less complex than for the filter technique. This is
because the strobe technique computes differences between realtime clock values directiy rather than

performing complex algorithms to estimate them statistically.

1.4 MASTER VERSUS AVERAGE REFERENCE TIME

1 he synchronization of two or more realtime clocks requires that their respective synchronization

algorithms have a common understanding of what the correct time should be. Without this common
understanding, attempts to synchronize the realtime clocks can be futile. To illustrate the point, consider
two realtime clocks, X and Y, where X is initially running at a rate A faster than Y. The synchronization

algorithm for X assumes that Y has the correct time. Since it has determined that X is running faster than

Y, it decreases the rate of X by A to match the initial rate of Y. Independently, the synchronization
alporithm for Y assumes that X has the c rrect time. Since it has also determined that X is running faster
than Y, it increases the rate of Y by A tc iatch the initial rate of X. Thus, two rate adjustments have been
made, one at X and one at Y, both by the amount A. Rather than synchronizing the rates of X and Y, this
process leaves X running at a rate A slower than Y. The problem is that the synchronization algorithms for

6 Thc backplane bus environment is benign in comparison to that of a wide area network where the filtering technique must

be used. "It should be recognized that clock synchronization requires by its nature long periods and multiple comparisons

in order to mair:ain accurate timekeeping. "'bile only a few measurements are usually adequate to reliably detcrmine [sic]

local time to within a second or so, periods ,: many hours and dozens of measurements are required to resolve oscillator
.kcw and maintain local time to the order of a millisecond." Quoted from Mills, D. L. July 1990. Network Time Protocol
Version 3). Specification, Implementation, and Analysis. Univ. of Delaware, just above sec. 2.1, p. 5.
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X and Y have different understandings of what the coirect time should be. X assumes that Y has the
correct time while Y assumes that X has the correct time. Even more troublesome, these definitions
depend upon one another. This creates a realtime clock synchronization loop. 7 Synchronization of a given
set of realtime clocks requires that there be only one definition of the correct time w'thin the set so that all
realtime clocks within the set are synchronizing to the same goal.

The synchronization algorithm's understanding of what the time should be is called its reference time.
There are two important methods of determining reference time. The first method, called the master-slave
method, assumes that one of the realtime clocks within a set of realtime clocks maintains the correct time.
That realtime clock, called the master realtime clock, provides the reference time for the remaining
realtime clocks, known as slave realtime clocks. The other method, called the averaging method,
computes the reference time by averaging the time values of a set of realtime clocks. The components of
the average may be weighted to accommodate some realtime clocks being judged better than others. The
master-slave method can be viewed as a special case of the averaging method where the master realtime
clock is given a weight of one and all the slave realtime clocks are given a weight of zero.

In the more general case, the synchronization of realtime clocks can be organized into a tree.
Assuming the master-slave method, all realtime clocks except the one at the root of the tree are slave
realtime clocks in relationship to their parent on the tree. All realtime clocks except the ones at the leaves
of the tree are master realtime clocks in relationship to their children on the tree. This can be generalized
to include the averaging method as well. Any realtime clock that has children on the tree can act as a
master realtime clock for them. But their parent on the tree can also act as simply another component in
the average c-,iputed by them as their common reference time. In such a structure, all the children of a
given parent have a common reference time. That reference time is independent of the reference time
used by the parent for its own synchronization. It is also independent of the reference times used by the
children of other parents.8 The tree organization avoids realtime clock synchronization loops.

Since the reference time must be unique, the independent synchronization algorithms associated with
each of the realtime clocks must use the same realtime clock sample time values and compute the average
in the same way to insure generation of the same result. The strobe technique is ideally suited for
implementing the averaging method. The strobe broadcast samples all realtime clocks simultaneously.
Each synchronization algorithm has access to the same collection of realtime clock sample values for a
given strobe. The averaging method is dangerous for techniques that do not broadcast a strobe. Although

adjustments can be made for the various times that samples are taken, the realtime clocks can continue to
drift at unknown rates between the times these samples are taken making computation of a unique
reference time impossible.

All else being equal, the averaging method generally gives a more accurate reference time than the
master-slave method. As stated previously, accuracy is statistically improved by filtering. The averaging
method implements a form of filtering not previously presented. It filters realtime clock sample values

7 X is trying to synchronize using Y; and Y is trying to synchronize using X. This creates a realtime clock synchronization

loop. The problem is ;milar to the deadlock of two tasks. Task A is waiting for a signal from task B; and task B is

waiting for a signal from task A. This creates a coordination synchronization loop. In both cases, any kind of loop, not

merely one with only two elements, creates a problem.
8 The Network Time Protocol employs a tree organization. See Mills, D. L. July 1990. Network Time Protocol (Version

3) Specification, Implementation, and Analysis, Univ. of Delaware, sec. 2.2, pp. 7-8. The Network Time Protocol,

following tne convention of the telephone industry, calls the levels of the tree "stratum." Mills references Bell

Communications Research, November 1986, Digital Synchronization Network Plan, Technical Advisory

TA-NPL-000436. The most accurate realtime clocks, such as those controlled by cesium standards and radio clocks, are

intended to be placed closest t, the root.
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obtained at the same time from various realtime clocks rather than realtime clock sample values obtained

at various times from the same realtime clock. The reference time computed by the average is the filter

output. In the master-slave method, on the other hand, the reference time is identical to the master

realtime clock value. In the absence of filtering, the accuracy of each slave realtime clock value is no

better than that provided by the master realtime clock to which it is synchronized.

Affer initialization, the presence of faulty realtime clocks can be detected by checking for realtime

clock synchronization errors between realtime clocks that are beyond a range expected given the

specification of the associated realtime clock oscillators. The master-slave method requires a mechanism

to establish a new master realtime clock in the event that the current master realtime clock fails. The

averaging method requires that the weights used by the averaging equation be adjusted proportionally to

exclude failed realtime clocks.

2.0 ADJUSTABLE REALTIME CLOCK IMPLEMENTATION
All realtime clocks fundamentally consist of a counter, which is incremented by cycles of an oscillator.

Processors generally use crystal oscillators to drive their realtime clocks. Crystal oscillator frequency is
determined by factors such as manufacturing tolerance, temperature, 9 and aging. 10 From the circuit design

point of view, crystal oscillator frequency is considered fixed at a value within some tolerance of the

desired value. Since the oscillator is assumed to be nonadjustable, the only way to make the realtime clock

adjustable is to adjust the way in which the counter counts. This section presents three alternative
hardware approaches. They are the hidden offset method, the periodic phase modification method, and

the phase accumulation method.

2.1 HIDDEN OFFSET METHOD

The hidden offset method" implements an adjustable realtime clock by correcting a least-significant

portion of the realtime clock counter value not accessible by the realtime clock user. As shown in figure 4,

the method partitions the n-bit realtime clock counter into an (n-m)-bit most-significant portion accessible

by the user and an m-bit least-significant portion accessible only by the synchronization algorithm. The
realtime clock value is restored to synchronization by adding to it the synchronization error. The realtime

clock must be corrected frequently enough that its synchronization error never exceeds what can be
represented by an m-bit two's complement number including sign bit. The addition only takes place when

the m-bit least-significant portion of the realtime clock counter reaches a number consisting of a one
followed by m-i zeroes in the most-significant through the least-significant bit positions. As shown in

figure 5, this number appears half way between the last time that the (n-m)-bit most-significant portion of

the realtime clock counter was incremented (at time T) and the next time that it will be incremented (at
time T+ 1). Although the realtime clock value may continue to drift while the synchronization error is held
waiting for that number, the impact of the wait is negligible.

9 For a discussion of quartz crystal temperature coefficient of frequency, see Radio Society of Great Britain. 1968. The
Radio Communication Handbook, p. 6.2.

10 Examination of crystal oscillator data sheets shows that aging is typically on the order of one part per million per year.
Aging has little significance in comparison to manufacturing tolerance and temperature.

"The designation "hidden offset method" was assigned by the author. The method itself was obtained from an

unpublished working draft paper, long since superseded, prepared by Richard Volz of the Univ. of Texas A&M for the

IEEE 896 Futurebus committee. In that paper the method was called the "direct synchronization method." See Volz,

R., D. Wilcox, and L. Sha. June 1989. "Maintaining Global Time in Futurebus±," Guide to Real-Time Applications
Using IEEE Futurebus+, sec. 4.3.1, pp. 36-38.
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Figure 4. Hidden offset method variables.
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Figure 5. Hidden offset method correction.
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As stated previously, the synchronization error is added to the realtime clock value to make the
correction. Since the m-1 least-significant bits of the realtime clock value are required to be zero when the

addition takes place, the addition simply replaces these bits with the bits from the corresponding bit
positions of the synchronization error. And since the most-significant bit of the m-bit least-significant

portion of the realtime clock value is required to be a one when the addition takes place, the addition
replaces that bit with the complement of the synchronization error sign bit. There is no carry propagation

from the m-bit least-significant portion of the realtime clock value into the (n-m)-bit most-significant
portion of the realtime clock value. Thus, the addition reduces to loading new bits into the m-bit
least-significant portion of the realtime clock counter.

Figure 6 shows a block diagram of an adjustable realtime clock implementation using the hidden

offset method. When a correction is to be made, the adjustment algorithm loads the synchronization error
into the synchronization error register. The load also sets a flip-flop to indicate that a correction request is

pending. When both the detector recognizes the output 10.. .00 from the user nonaccessible m-bit
least-significant portion of the realtime clock counter, and the flip-flop is in the correction pending state, a

signal is generated to load the contents of the synchronization error register, with sign bit inverted, into the
user nonaccessible portion of the realtime clock counter.

SYNCHRONIZATION ERROR INPUT

BIT POSITION -- m m-1 1 0

$YNCHRONIZATION LOAD
E.RROR REGISTER

SIGNBT I BIT
INVERTEDIf

USER ACCESSIBLE PORTION OF USES tNACCESSIBLE PORTION LOAD
REALTIME CLOCK COUNTER RIEALTiME CLOCX COUNTEI

10.. .00 DETECTOR

ACKNOWLEDGE

CORRECTION PENDING REQUEST
FLIP-FLOP

Figure 6. Hidden offset method block diagram.
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The hidden offset method has the advantage of simple hardware implementation of its adjustable
realtime clock. The method also has the advantage that its adjustable realtime clock is controlled directly
by the synchronization error. Other methods, presented later, have adjustable realtime clocks controlled
by parameters requirin- complex computations, which are costly to implement in hardware. Since
synchronization error i. ,ne difference between the local realtime clock value and the reference realtime
clock value, it is easily computed in hardware. Thus, the hidden offset method offers the opportunity to
implement the entire realtime clock synchronization process without the use of software. An entirely
hardware implementation not only reduces software complexity and load, but eliminates the need for a
processor on modules that otherwise have no need of one.

The hidden offset method has the disadvantage of restricting the realtime clock resolution accessible
by the user. The method adjusts clock value rather than clock rate. Unlike other methods that adjust
clock value, it avoids the problems of corrections causing clock values to go backward or to experience
abrupt discontinuities. This is accomplished by making the user-accessible realtime clock resolution coarse
enough that these problems are made invisible to the user. But, as with all methods that adjust clock value
rather than clock rate, there still exists the need to continually make new corrections to compensate for
drift due to the clock advancing at the wrong rate. Thus, the hidden offset method has the second
disadvantage of requiring frequent corrections to maintain synchronization.

2.2 PERIODIC PHASE MODIFICATION METHOD

The periodic phase modification method12 implements a variable rate realtime clock by inserting a
programmable state machine, called a phase counter, between the realtime clock counter and the
oscillator. Figure 7 shows a block diagram of this relationship. The phase counter continually cycles
through a sequence of unique states. Each oscillator cycle causes the transition from one phase counter
state to the next in the sequence or, in the case of the last state in the sequence, the transition back to the
first state in the sequence. Whenever the phase counter enters the first state of the sequence, it generates
an output signal, designated the increment enable, to increment the realtime clock counter. The phase
counter acts like a frequency divider between the oscillator and the realtime clock counter. The realtime
clock counter increments at a frequency equal to the frequency of the oscillator divided by the number of
states in one cycle of the phase counter state sequence.

REALTIME CLOCK COUN111TER PHASE COUNTE OSCILLATOR..

ENABLE

Figure 7. Periodic phase modification method phase counter.

The periodic phase modification method adjusts the realtime clock rate by periodically directing the
phase counter to execute a cycle of its state sequence that contains either one more or one less than the

121n a previous report, this method was called the "periodic phase adjustment method." See Wilcox, D. R. August 1989.

Periodic Phase Adjustment Distributed Clock Synchronization in the Hard Realtime Environment, TR 1310, Naval
Ocean Systems Center, San Diego, pp. 4-8. The word "modification" has replaced "adjustment" because
the latter tended to imply that once a phase cycle was adjusted, future phase cycles remained adjusted in the same way,
which is not the case.
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normal number of states. As shown in figure 8, inserting a state into the phase counter state sequence
lengthens the period between the increment enable signals sent to the realtime clock counter for that cycle
of the sequence. This decreases the rate at which the realtime clock counter increments. Similarly,
deleting a state shortens the period between increment enable signals sent to the realtime clock counter,
which increases the rate at which the realtime clock counter increments. Since most cycles of the phase
counter state sequences have the normal number of phase states, this method permits small adjustments to
be made in the average rate at which the realtime clock counter increments.

INSERTION OF PHASE STATE

MAKES CLOCK GO SLOWER

PHASE STATE

111 2 011 1 2 10o 112 f3 0o 1 20 1

REALTIME CLOCK COUNTER INCREMENT ENABLE

DELETION OF PHASE STATE
MAKES CLOCK GO FASTER

2
PHASE STATE

111 2 10 i 2 1o 0 i jo 1i 112 1o 0 i 2 0o

REALTIME CLOCK COUNTER INCREMENT ENABLE

Figure 8. Modification of phase state sequence.
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The realtime clock rate is adjusted by adjusting the frequency at which normal phase counter state
sequence cycles are replaced with modified phase counter state sequence cycles. The period between
modified cycle initiations is called the rate adjustment period. Figure 9 shows an example of how the
inclusion of a modified cycle containing an additional phase state every rate adjustment period reduces
the realtime clock rate. In this example, normal cycles have six phase states, modified cycles have seven
phase states, and there are four cycles per rate adjustment period. These parameters will reduce the
realtime clock rat' by

4x6 _

1 - 0.04
4x6 + 1

or 4 percent of what it would have been without the introduction of modified cycles.

CLOCK TIME RATE
ADJUSTMENT

PERIOD

OSCILLATOR- ISER

AL~MeIi.QCK~~UREALTIMEU

INCREMENT ENABLE " - l J J 7 - i

Figure 9. Rate adjustment period.
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The periodic introduction of modified cycles can be facilitated in hardware by inclusion of a third

counter called the rate adjustment counter. The rate adjustment counter indicates the number of normal

cycles remaining before a modified cycle is introduced. The rate adjustment counter is decremented at the
same rate as the realtime clock counter is incremented. When the rate adjustment counter reaches zero,

the phase counter is directed to execute a modified cycle rather than a normal cycle. Associated with the

rate adjustment counter is a rate adjustment reload register. The rate adjustment reload register contains

the number of normal cycles per rate adjustment period. It provides the next value of the rate adjustment

counter after it reaches zero. The adjustment algorithm software initializes the rate adjustment reload

register. It also selects whether modified cycles are longer or shorter than normal cycles. The rate

adjustment reload register provides a means of maintaining a constant realtime clock rate without further

software intervention. Figure 10 shows a block diagram of a periodic phase modification adjustable rate

realtime clock implementation, which includes the rate adjustment counter and the rate adjustment reload

register.

PROCESSOR DATA BUS

RATE ADJUSTMENT
RELOAD REGISTER RRATE ADJUSTMENT

COUNTER DISABLE

RATE ADJUSTMENT
COUNTER MODIFY LONG

CYCLE SELECT

REALTIME CLOCK COUNTER - PHASE COUNTER OSCILLATORSINCREMENT
ENABLE

Figure 10. Periodic phase modification adjustable rate clock block diagram.

Figure I I shows the computation of the rate adjustment period that keeps pace with the rate of the

oscillator, assuming that there is initially no error in the realtime clock value. A slightly shorter rate

adjustment period is needed to gradually decrease realtime clock synchronization error that may have

already accumulated. The equation is a simple application of ratio and proportion or, when viewed

graphically, of similar triangles.

Note that the local realtime clock error appears in the denominator of the equation. As the local
realtime clock error decreases, the rate adjustment period increases. This is as one would expect, since as

the realtime clock counter approaches perfect synchronization with the phase counter executing only

normal cycles, the need for the phase counter to frequently introduce modified cycles decreases. If the
realtime clock co'inter were perfectly synchronized with the phase counter only executing normal cycles,
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rate adjustment period =sample period X phase state period
local realtime clock error

Figure 11. Phase adjustment period computation.

the local realtime clock error would be zero and the rate adjustment period would be infinity. The equa-
tion fails at this point because it involves division by zero. Even when the local realtime clock error is not
zero, but merely very small, the division can overflow the available quotient bits of an actual implementa-
tion. The problem is overcome by disabling the rate adjustment counter when the local realtime clock
error falls below the threshold where overflow is known to occur. In the disabled mode, no modified
cycles are introduced. The selection of the disabled mode is under the control of the rate adjustment
algorithm software.

Integrated circuits performing a function similar to that of a realtime clock phase counter have been
used for years in the design of general-purpose processors employing variable-length microcycles. The
Am2925 integrated circuit 13 is a good example. The realtime clock implementation requires only one

13 The Am2925 "Clock Generator and Microcycle Length Controller" was first introduced by Advanced Micro Devices, 901
Thompson Place, P.O. Box 3453, Sunnyvale, CA 94088,
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output signal to increment the realtime clock counter. This is far simpler than the many phased output
signals typically required by the circuitry of a general-purpose processor. Simple gates and flip-flops wired

as a counter or shift register, rather than an integrated circuit specifically designed for variable-length
microcycle processors, decrease cost and power consumption. Figure 12 shows an example of such a

circuit, which implements the phase counter state sequences shown in figure 8. The upper and lower

flip-flops in the figure implement the most-significant and least-significant bits, respectively, of the phase

counter state.

MODIFY LONG
CYCLE SELECT

OSCILLATOR OUTPUT INCREMENT ENABLE

Figure 12. Divide-by-three phase counter implementation example.

Several Am2942 8-bit integrated circuits' 4 can implement most of the remaining circuitry. A block

diagram of the Am2942 is shown in figure 13. The Am2942 "address counter" and "word counter" are
redefined to be the realtime clock counter and the rate adjustment counter, respectively. The Am2942

"done" signal is redefined to be the modify cycle signal, which in combination with a signal to select long
or short cycles, controls the phase counter state sequence. The phase counter is external to the Am2942.

14 The Am2942 "Programmable Timer/Counter DMA Address Generator" was first introduced by Advanced Micro
Devices. The Am2940 is similar to the Am2942 but is not recommended because it has a physically larger package and

does not permit control of the Word Count Register independently of the Address Register.
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Am2942

ADDRESS WORD COUNT
REGISTER REGISTER

NOT RATE ADJUSTMENT
USED RELOAD REGISTER

MULTIPLEXER MULTIPLEXERCOTL

REALTIME CLOCK RTE ADJUSTMENT

TRANSFER COMPLETE 3-STATE
CIRCUITRY MULTIPLE:E

DONE DAAPORT

MODIFY CYCLE

Figure 13. Am2942 integrated circuit block diagram.
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The Am2942 "address register" is not used. The Am2942 "word count register" implements the rate
adjustment reload register. The instruction set of the Am2942 supports the reload function. The sample
register is external to the Am2942. Sample register access and processor access may be interleaved
through the same Am2942 data port by assigning them different dedicated phases of the phase counter
sequence.

2.3 PHASE ACCUMULATION METHOD

The phase accumulation method15 implements a variable rate realtime clock by replacing the simple
realtime clock counter with an accumulator and adder. The accumulator in combination with the adder
performs a function similar to a counter, but rather than incrementing by one on each oscillator cycle, it
increments by a programmable number called the tick period. Each cycle of the oscillator causes the
contents of the tick period to be added to the contents of the accumulator and the sum to be stored back
into the accumulator. At initialization, the adjustment algorithm sets the tick period to the nominal
oscillator period. Once the adjustment algorithm has determined the realtime clock rate, it corrects it by
adjusting the magnitude of the tick period. Figure 14 shows a block diagram of the phase accumulation
method.

PROCESSOR DATA BUS

RGISTER ACUULATOR

~ADDER

Figu;e 14. Phase accumulation adjustable rate clock block diagram.

The phase accumulation method has several advantages over the other methods. First, the phase
accumulation method is conceptually simple. Comparison of the block diagrams of the respective methods
illustrates this point. Second, the phase accumulation method permits the format of the realtime clock

15The basic concept of the phase accumulation method initially appeared in IEEE P1212, CSR Architecture, "Part 1: an
overview," Draft 0.31, September 18, 1989, sec. 11, pp. 65-66, and "Part 11: a specification," Draft 0.30, September
5, 1989, sec. 6.1.12 - 6.1.16, pp. 34-37. These are unapproved IEEE drafts. Do not specify or claim conformance to
these document.
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value to be independent of the oscillator frequency. The periodic phase modification method requires the

oscillator frequency to be an integer multiple of the frequency at which the realtime clock value visibie to

the user is incremented. The hidden offset method further requires that it be a power-of-two integer

multiple. Given sufficient least-significant bits in the accumulator and adder to support a good

approximation of the tick period, the phase accumulation method can accommodate any oscillator

frequency. This flexibility often reduces hardware cost by permitting the same crystal oscillator to serve

both the realtime clock and other module hardware, such as processors and interfaces, which usually have

their own restrictions on oscillator frequency. Third, the phase accumulation method has the advantage of
avoiding scaling problems within its adjustment algorithm, such as the divide overflow problem suffered by

the periodic phase modification method described in section 2.2.

The primary disadvantage of the phase accumulation method is its requirement for a very wide adder

and accumulator. A wide accumulator and adder are required to represent the tick period with sufficient

accuracy to compensate for the accumulation of quantization error in the least-significant bits of the

accumulator resulting from the potentially millions of serially executed additions between synchronization

adjustments. Considerable error can accumulate in the least-significant bits over time.

The accumulator can be implemented using 8-bit register integrated circuits such as the SN74S374.

The adder can be implemented using 4-bit arithmetic integrated circuits such as the SN74S381, in
conjunction with look-ahead carry generator integrated circuits such as the SN74S 182. Unfortunately, this

approach leads to the use of a very large number of integrated circuits. A 16-bit-wide implementation

requires 12 SN74S374s, 24 SN74S381s, and 8 SN74S182s for a total of 44 integrated circuits.

Substitution of the 4-bit-wide SN74S281 for half of each SN74S374 and each full SN74S381, which

combines the function of accumulator and adder within the same integiated circuit, reduces the total to 32
integrated circuits. The reduced integrated circuit count is offset by the physically larger package of the

SN74S28 1.

Current integrated circuit technology easily supports implementation of the entire phase accumulation
variable rate realtime clock within a single large scale integrated circuit. At the time of this writing, the

author knows of no such implementation within the open market. A realtime clock consisting of a 96-bit

accumulator, a 96-bit adder, a 64 bit tick period register, two 64-bit sample registers with independent
strobe inputs, and a multiplexed 32-bit bidirectional data port has been partially designed to estimate the

feasibility of implementation within a single integrated circuit.' 6 Using the 1.2-micron National Security

Agency (NSA) CMOS standard cell library, a military technology well within the capabilities of integrated

circuit vendors, the design was estimated to fit within a square die 0.243 inch on a side. The maximum

permissible oscillator frequency as seen by the accumulator and adder was estimated at 20 megahertz.1 7

2.4 SOF'WARE ADJUSTMENT METHOD

Both the periodic phase modification metiiod and the phase accumulation method involve the design

of variable rate realtime clock hardware. It is also possible to implement a variable rate realtime clock

using software to correct the realtime clock value presented by nonadjustable realtime clock hardware.

This method is called the software adjustment method. The software implementatio , is called a logical

realtime clock to distinguish it from the hardware realtime clock.' 8

16 This work was performed by Hugh D. Copeland, Naval Ocean Systems Center, Code 552.
1 7 Faster 0.8 micro technology is widely available and even finer geometries are expected soon.

18 The Network Time Prof,.col (NTP), which synchronizes realtime clocks witl in nodes interconnected through wide area

or local area networks, encompasses a working example of the software adjustment method. See Mills, D. L. July

1990. Network Time Protocol (Version 3) Specification, Implementation, and Analysis, Univ. Delaware, ,.e'wark, sec.

5, pp. 39-45.
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Associated with the local clock is a local clock service routine. The service routine is typically part of

the oper-,ing system kernel. All requests for the cu rent time pass through the service routine. The service
routine - ;erts the hardware realtime clock value into the adjusted realtime clock value retuined to the

user. The same conversion is also required for the realtime clock sample value captured in the sample
register by the strobe.

The advar .ge of the software adjustment method is that it avoids the need to implement any special
realtime clock hardware other than the sample register. The disadvantage of the software adjustment

method is that all requests for either the current time or the sample time must pass through service
routines. Service routine software access is less efficient than direct hardware access. It can also be
functionally limiting. Controllers with little arithmetic processing capability of their own, such as direct
memory access interfaces and input/output channels, can read the time directly from an adjustable
realtime clock hardware memory-mapped interface. When this hardware is not present, these controllers

must either also read the realtime clock adjustment parameters needed for later processing by an
arithmetically superior processor or by some means interrupt such a processor to obtain the adjusted time
results.

3.0 REALTIME CLOCK INTERFACE

This section presents some of the design issues related to backplane bus realtime clock interface

standardization in general and to the IEEE P1212 Control Status Register (CSR) draft specification in
particular.

3.1 REALTIME CLOCK ATOMIC ACCESS

The problem of atomic access to a realtime clock must be addressed when the access path to the

realtime clock is narrower than the width of the realtime clock value. A common situation is 32-bit access
to a 64-bit realtime clock value. Access to the entire realtime clock value requires a pair of accesses, one

for the least-significant portion and the other for the most-significant portion. The problem is that a
running realtime clock may propagate an internal carry from the least-significant portion to the
most-significant portion between the time of the first access and the time of the second access of the pair.
The internal carry propagation causes the realtime clock value constructed by concatenating the two

accesses to be erroneous. The problem exists regardless of which portion is accessed first.

Several approaches designed to solve the problem, along with a summary of the advantages and
disadvantages of each approach, are presented below. These are followed by a more detailed comparison
of one approach against another.

In the software read approach, the software makes three accesses rather than two. First the

most-significant portion of the realtime clock value is read, then the least-significant portion is read, and,
linally, the most-significant portion is read again. It is assumed that all three reads take place in a time
interval shcrter than half the length of time between successive internal carry propagations from the
least-significant portion to the most-significant portion of the realtime clock value. The software compares

the first access with the third access. If they returned the same value, no internal carry propagation took
place between the time of the first access and the third access. The realtime clock value is constructed by
concatenating the most-significant portion read by either the first or the third access to the least-significant
portion read by the second access. If, on the other hand, the first and third access obtain different values,
an internal carry propagation did take place. If the software is willing to sacrifice some accuracy in the
least-significant bits of the least-significant portion, it could simply perform a fourth access to read the

least-significant portion again. It would then construct the realtime clock value by concatenating the values
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read by the third and fourth access. A flow chart of this approach appears in figure 15. Alternatively, the
most-significant bit of the value read by the second access is examined. If it is a one, carry propagation
took place after the second access. The realtime clock value is constructed by concatenating the values
read by the first and second access. If it is a zero, carry propagation took place before the second access.
The realtime clock value is constructed by concatenating the values read by the third and second access.
A flow chart of this alternative approach appears in figure 16.

ENTER

FIRST READ
MOST-SIGNIFICANT

PORTION

SECOND READ
LEAST-SIGNIFICANT

PORTION

THIRD READ
MOST-SIGNIFICANT

PORTION AGAIN

NO CARRY CARRY

FIRST AND SECOND LEAST-SIGNIFICANT THIRD AND FOURTH
READ VALUES PORTION AGAIN READ VALUES

Figure !5. Software read realtime clock atomic access.

The advantages of the software read approach are (a) it minimizes the amount of hardware required,
(b) it has no side effects, and (c) a requirement to read only from either the most-significant or the
least-significant portion of the realtime clock value requires only one access. The disadvantages of the
software read approach are (a) it requires three (or possibly even four) software accesses rather than two,
(b) it requires software execution time, (c) it requires a processor to execute the software, and (d) it
makes read access to the realtime clock dependent on the width of the access rather than being
transparent.
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Figure 16. Alternative software read realtime clock atomic access.

In the save register read approach, a hardware register, called a save register, is inserted between the
least-significant portion of the realtime clock value and the read access interface to it. The first software
access returns the most-significant portion of the realtime clock value and, simultaneously, loads the
least-significant portion of the realtime clock value into the save register. The second software access
returns the least-significant portion of the realtime clock value saved in the save register by the first access.
There is no internal carry propagation problem, since the entire realtime clock value is captured
simultaneously by the first access. A block diagram of the save register read approach is shown in

figure 17.

The advantages of the save register read approach are (a) it only requires two software accesses and
* (b) the realtime clock value can be read directly rather than requiring software processing. The

disadvantages of the save register read approach are (a) it requires additional hardware for the save
register and its control, (b) it introduces side effects (which are explained later), and (c) it is not possible
to read from the least-significant portion of the realtime clock value without first reading from the
most-significant portion of the realtime clock value due to the intervening save register.
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Figure 17. Save register read realtime clock atomic access.

In the software write approach, the software writes the least-significant portion before writing the
most-significant portion of the realtime clock value. Since the software knows the value it is writing, it
avoids writing a value into the least-significant portion that would be in danger of creating an internal carry
propagation before the software has had a chance to write into the most-significant portion.

The advantages of the software write approach are (a) it minimizes the amount of hardware required,
(b) it has no side effects, and (c) a requirement to write only into either the most-significant or the
least-significant portion of the realtime clock value requires only one access. The disadvantages of the

software write approach are (a) it restricts the flexibility of the value written, (b) it requires some software
execution time, and (c) it requires a processor to execute the software.

In the save register write approach, a hardware register, called a save register, is inserted between

the most-significant portion of the realtime clock value and the write access interface to it. The first
software access only writes into the save register. The second software access writes into the
least-significant portion of the realtime clock value and, simultaneously, transfers the content of the save

register into the most-significant portion of the realtime clock value. There is no internal carry propagation
problem since the entire realtime clock value is modified simultaneously by the second access. A block
diagram of the save register write approach is shown in figure 18.
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Figure 18. Save register write realtime clock atomic access.

The advantages of the save register write approach are (a) only two software accesses are required and
(b) no special software processing is required. The disadvantages of the save register write approach are
(a) it requires additional hardware for the save register and its control, (b) it introduces side effects, and
(c) it is not possible to write to the most-significant portion of the realtime clock value without first writing
to the least-significant portion of the realtime clock value.

In the disable oscillator write approach, the first software access writes the most-significant portion
of the realtime clock value and, simultaneously, disables the oscillator. The second software access writes
the least-significant portion of the realtime clock value and reenables the oscillator. Since the oscillator is
disabled between the first and the second software accesses, there is no internal carry propagation to
disrupt a partially written realtime clock value. The oscillator is not needed during this interval because
whatever realtime clock value currently exists is being modified in any event.

The advantages of the disable oscillator write approach are (a) only two software accesses are
required, (b) no special software processing is required, and (c) no hardware save register is required. The
disadvantages of the disable oscillator write approach are (a) it requires more hardware than the software
write approach and (b) it introduces a side effect.

Problems associated with the approaches summarized above are now explained and evaluated in more
detail.

One of the disadvantages of the software read approach is the need for a processor to execute the
software. Cost considerations may preclude including a processor within simple direct memory access
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controllers or peripheral device interfaces simply to deal with the minimal computation associated with
time-tagging their data transfers. When the software read approach is mandated, these devices can
perform the accesses of the realtime clock interface associated with the software read approach without
performing the actual computation of the time value. The processor expecting the data transfer then has
the responsibility to execute the computation when it receives the data transfer. Unfortunately, this
solution leads to another compni;cation. A distinction is now necessary between realtime clock information
obtained from devices returning the processed realtime clock value and those returning unprocessed
realtime clock accesses.

The save register read approach, the save register write approach, and the disable oscillator write
approach all have the disadvantage of introducing side effects. A side effect is an internal state that passes
information between the first and second accesses of the approach. In the case of the save register
approach, this information is passed through the save register. In the case of the disable oscillator write
approach, this information is passed by the enabled or disabled state of the oscillator. While these
approaches solve the carry propagation atomic access problem between the realtime clock and its
backplane bus interface, their side effects create a new atomic access problem between their backplane
bus interface and the processors that use it. Once a processor executes its first access to the realtime clock
backplane bus interface, all other processors must be prevented from accessing that interface until after
the processor executes the second access required by the approach to that interface. This is usually
accomplished through a backplane bus locking mechanism.

The side effect problem can also be solved by providing an additional access path to circumvent the
storage component responsible for the side effect when it is not needed. Figure 19 shows the additional
path for the save register read approach. The storage component in this case is the save register. As
previously described, atomic access to the full realtime clock value requires two accesses and to the
most-significant portion of the realtime clock value requires one access. Access to the least-significant
portion of the realtime clock value can be obtained with only one access by using the additional access
path to circumvent the save register. A similar modification can be applied to the save register write
approach. In the case of the oscillator disable write approach, the alternative path performs the same
access as the path that disabled the oscillator without disabling it.

LEAST-SIGNIFICANT
REALTIME CLOCK
SAVE REGISTER

ISOLATED LEAST-SIGNIFICANT ACCESS

Figure 19. Modified save register read realtime clock atomic access.
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The Institute of Electrical and Electronic Engineers (IEEE) P1212 Control Status Register (CSR)

draft standard uses the phase accumulation method as its realtime clock model.' 9 Figure 20 shows a block
diagram of the model. The accumulator and adder are 96 bits wide. The user has access only to the 64
most-significant bits of the accumulator through the realtime clock value registers. These registers assume
the software read and software write approaches when the access path to them is 32 bits wide. This

decision was based on the desire to eliminate side effects and to minimize hardware implementation costs.
The renltime clock model tiies the save register write approach for acccs to itz 61-bit tick period. The tick

period specifies the amount that the realtime clock value increases on each cycle of the oscillator. The

save register write approach was selected here because oscillator cycles occur so rapidly in comparison to

software execution speed that the software write approach is not feasible.

3.2 TIME VALUE FORMAT

It is advantageous for all absolute time values within a system to be represented by the same format.
This eliminates the overhead in memory space and execution time associated with the many permutations
converting from one format to another. While no single format is going to please everyone, the advantages

of a single format outweigh the consequences when viewed at the system level.

Many module designs employ the same crystal oscillator for both their arithmetic processor and their
realtime clock. This saves the cost of an additional crystal oscillator and simplifies the circuitry that
synchronizes processor access to the realtime clock. This suggests that the system time value format should

be related to processor crystal oscillator frequency. Unfortunately, crystal oscillator frequencies vary
among processors and among versions of the same processor. The least common denominator among
most of them is 1 megahertz, or a period of 1 microsecond. Recall, however, that the rate of the realtime
clock needs to be adjustable to permit synchronization with other realtime clocks in the system.
Section 2.0 presented various methods of implementing variable rate realtime clocks. The whole purpose
of these methods was to make the realtime clock rate independent of the frequcncy of the oscillator
driving the realtime clock. The system time value format can be independent of processor oscillator
frequency because the variable rate realtime clock is already independent of oscillator frequency. The

advantages of using a single crystal oscillator can still be maintained.

While the hardware instruction sets of some processors are designed to handle decimal arithmetic,
nearly all processors are designed to handle binary arithmetic. Therefore, a binary time value format is

more universal and consequently a better standard.

The least-significant bit of the binary time value format could represent a common decimal fractional

unit of time such as 1 millisecond, 1 microsecond, or 1 nanosecond. This would simplify application
software involving the particular unit selected. But these possible selections are related to one another by

the powers of 10 rather than the powers of 2. There is no convenient binary mapping between them.
Thus, the software simplification is not general, but is limited to application of the unit selected.

The selection of a single time value format does not necessarily imply the selection of a single
resolution for all clocks using that format. Resolution is the extent to which the physical time represented

by two time values can be differentiated. A realtime clock value updated by an oscillator once per second

19 Sce IEEE P1212 Draft 4.0, September 22, 1990, sec. A-7.3, p. A44. This is an unapproved draft. Do not specify or
claim conformance to this document.
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Figure 20. A proposed standard interface realtime clock model.
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has a resolution of 1 second. No matter how many least-significant bits representing fractional parts of a

second are included in the time value format, these additional bits convey no new information about the

physical time beyond the resolution of the oscillator.

In light of the considerations above, the IEEF P1212 CSR draft standard 20 specifies the following

format. Absolute time is represented by a 64-bit, fixed-point unsigned number. The binary radix point

divides the 64-bit number into two 32-bit portions. The 32-bit most-significant portion represents seconds.

The 32-bit least-significant portion represents a binary fraction of 1 second. The least-significant bit

represents a period of approximately 233 picoseconds. The 64-bit unsigned value overflows approximately

once every 136 years.

3.3 TIME SAMPLE FORMAT

Realtime clocks respond to the reception of a strobe broadcast by immediately, and simultaneously,

sampling their own values and placing the respective results in their sample registers. This suggests that the

sample register contents should have a format similar to that of the realtime clock value itself. The

synchronization algorithm operates on the relative differences between sample values rather than the

sample values themselves. Often hardware cost can be reduced by implementing only those sample register

bits that have an impact on the worst case computations of the differences between sample values. The
worst case depends on a number of factors.

First, the sample register must contain sufficient most-significant bits to support the computation of

the worst case synchronization error. The synchronization error is the difference between the sample time
value and the reference time value. When the source of the sample time value drifts in one direction and

the source of the reference time value drifts in the other, the impact on the synchronization error between

them is additive. Thus, sufficient bits are needed to support representation of the sum of the magnitudes

of the worst case errors from each. And since the synchronization error may be either positive or negative,

an additional bit is needed to support the sign of the difference.

Second, the sample register must contain sufficient most-significant bits to support the worst case
initialization error. Since the realtime clock operates asynchronously to the software initializing it, it is

often difficult to initialize the realtime clock value at a precise moment with respect to the value of other
realtime clocks. Initialization sets the realtime clock to a value in the neighborhood of the reference time.

The synchronization algorithm then makes the final adjustment as if the error was due to drift.

Third, the sample register may need to contain sufficient most-significant bits to support a faulty

realtime clock synchronization error threshold A faulty realtime clock can tick erratically, or more

commonly, simply fails to tick at all. If the number of missing or extra ticks is small, the fault may look

like realtime clock drift. As the number of missing or extra ticks increases, a point is reached where the

synchronization error cannot be considered drift, given the clock oscillator specifications. The

synchronization error is compared against this threshold to detect faulty realtime clocks.

The sample register is designed to provide very accurate measurement of synchronization error. It
provides more resolution in its least-significant bits than is usually necessary for detecting a faulty realtime

20 See IEEE P1212 Draft 4.0, September 22, 1990, sec. 4.6.17, pp. 64-66 and sec. A-7, p. A41. This is an unapproved

draft. Do not specify or claim conformance to this document.
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clock. The threshold could be applied instead to the difference in the values obtained by reading the
realtime clock values directly. Using the sample register usually improves synchronization algorithm soft-
ware execution time since the sample register contents are obtained for drift compensation anyway.

The IEEE P1212 CSR draft standard specifies that sample registers have the same format as the
most-significant 64-bit portion of the clock value registers. 21 It further specifies that unnecessary
least-significant bits may be omitted from "adder and internal clock registers."2 The intent was to avoid
unnecessary complexity in the adder circuitry. All most-significant bits are required to encourage
interoperability and improve fault detection execution speed.

3.4 SAMPLE PERIOD FORMAT

The selection of the period between strobe broadcasts, called the sample period, depends on the
realtime clock synchronization resolution desired and on the rate at which the realtime clock values drift
apart. The rate at which realtime clock values drift apart depends on the ability of the realtime clocks to
track and compensate for differences in their oscillator frequencies.

Crystal oscillator frequency is a function of temperature. The worst case rate of frequency change
occurs when power is first applied because applying power immediately raises the temperature of the
crystal. A momentary interruption of power, such as when power is switched from one source to another,
has little effect because there is insufficient time for significant temperature change of the crystal to occur.

Figure 21 shows crystal oscillator frequency change over time immediately after applying power to a
military computer, an AN/UYK-44(V) "Military Reconfigurable Computer" (MRC) a23 Figure 22 shows
similar results for a commercial computer, an NCR PC8, a clone of the IBM AT personal computer. Both
computers show rapid frequency change for the first few seconds of operation, followed by gradual
frequency change thereafter. The rapid frequency change is caused primarily by the rise in the
temperature of the crystal itself. The gradual frequency change is caused by the rise in the temperature of
the surrounding environment.

The maximum sample period that still guarantees that the realtime clock synchronization error
remains within a given limit is computed from the rate of frequency change using the following equation

clock error
sample period = clkero

rate of freq change

2 1See IEEE P1212 Draft 4.0, September 22, 1990, see. 4.6.19, pp. 68-69. This is an unapproved draft. Do not specify or
claim conformance to this document.

22 See IEEE P1212 Draft 4.0, September 22, 1990, sec. A-7.3, p. A44. This is an unapproved draft. Do not specify or
claim conformance to this document.

23Actually two AN/UYK-44(V) MRCs were tested, SN AA003 and SN AA033. The results were almost identical. The
test data were recorded using a Hewlett Packard HP-5371A frequency modulation analyzer. It contains an internal
temperature-controlled oscillator, which was allowed to operate for 3 days before conducting the experiments to assure

stability.
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Figure 21. AN/UYK-44(V) oscillator frequency after power is applied.
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Figure 22. NCR PC8 oscillator frequency after power is applied.

For example, if the maximum rate of frequency change is one part per million per second (ppm/s), a
sample period of 1 second limits the maximum realtime clock synchronization error to 1 microsecond.
Since the absolute value of the rate of frequency change generally decreases from the time power is
applied, the sample period can increase correspondingly. The sample period may extend to several sec-
onds or even to a minute.

One could represent a sample period in the same format as used for the realtime clock value. Such an
approach, however, would impose unnecessary complexity on the hardware implementation of a sample
period timer for two reasons. First, the range of reasonable sample periods makes it unnecessary to
implement many of the most-significant and least-significant bits present in the realtime clock value
format. There is no need to support sample periods greater than a minute. There is also no need to
support resolution in the sample period finer than usable by the fault-tolerant mechanism that selects a
single source of strobes. Second, using the realtime clock value format to represent the sample period
requires that the sample period timer hardware decrement by subtracting the tick period on each cycle of
the oscillator. The logic is greatly simplified by designing a timer that decrements by one on each cycle of
the oscillator. This suggests an alternative format that represents the sample period in the units of local
realtime clock oscillator ticks rather than the units of realtime clock value. Given a format where the
least-significant bit represents one local realtime clock oscillator tick unit, the range of reasonable sample
periods is easily represented within 32 bits.

The IEEE P1212 CSR standard24 does not specify a sample period register because strobes can be
scheduled by operating system software.

2 4 See IEEE P1212 Draft 4.0, September 22, 1990. This is an unapproved draft. Do not specify or claim conformance to
this document.
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4.0 RATE ADJUSTMENT ALGORITHMS

The rate adjustment algorithm is the method used to adjust the rate of a realtime clock given its
current and previously sampled synchronization error. The synchronization error of a realtime clock is the
difference between the realtime clock value and the reference time value. The reference time is the
measure of time assumed to be correct for the purposes of realtime clock synchronization. Methods of
determining reference time were presented in section 1.4. Variable rate realtime clock hardware
implementations were presented in sections 2.2 and 2.3. This section considers the algorithms used to
control the variable rate realtime clock hardware. The discussion centers on the IEEE P1212 Control
Status Register draft standard realtime clock model. 25 It is based on the phase accumulation method and
is depicted in figure 20.

4.1 RATE ADJUSTMENT WITHOUT ALGORITHM EXECUTION DELAY

Synchronizing the realtime clock to the reference time is equivalent to obtaining and maintaining the
minimum synchronization error between the two. It is useful to think of the problem in terms of
synchronization error as a function of time. The value of the synchronization error function at a particular
point in time represents the error in the realtime clock value at that time. The slope or derivative of the
synchronization error function at a particular point in time represents the error in realtime clock rate at
that time.

Rate adjustment algorithms are concerned with both the value and.the rate of the realtime clock. If
only the rate were corrected, whatever value error existed would continue to exist forever. If only the
value were corrected, then, by definition, this would not be a rate adjustment algorithm with all the
associated benefits described in section 1.2.

The rate adjustment algorithm designer has some freedom in selecting how quickly synchronization is
obtained. Synchronization must be obtained quickly enough to keep pace with frequency variations in the
realtime clock oscillator. Typical crystal oscillator performance was illustrated in figures 21 and 22. On
the other hand, synchronization should not be obtained so rapidly that it adversely affects application
computations dependent on realtime clock rate, such as time interval measurements.

Consider a realtime clock that is sampled and immediately adjusted at the expiration of each sample
period. In other words, there is no delay between the time the strobe takes the sample and the time it is
processed by the rate adjustment algorithm. The case where there is delay will be presented later. It is
further assumed that all sample periods are of the same duration and that the realtime clock oscillator is
stable. The problem is to design the rate adjustment algorithm such that synchronization is achieved
exactly within one sample period.

The solution is shown graphically in figure 23. Points A and D plot the synchronization errors
computed from the previous and current samples, respectively. If no adjustment were made in either the
realtime clock value or rate, the synchronization error function would continue increasing at the same
slope and the next sample would be expected at point H. The problem is to adjust the rate so it appears
instead at point E. It is given that all sample periods have the same duration, so vector AB = CE. Choose

2 5 See IEEE P1212 Draft 4.0, September 22, 1990, sec. A-7.3, p. A44. This is an unapproved draft. Do not specify or
claim conformance to this document.
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Figure 23. Geometric derivation of rate adjustment.

point G on FH such that BC = FG. By geometry it can be shown that CD = EF = GH. As previously
stated, the iate adjustment algorithm is concerned with both the value and the rate of the realtime clock.

The rate adjustment therefore consists of two components. The first rate component, FE - CE, cancels

the effects of the value offset CD over the period CE. The second rate component, HF * CE, cancels the

effects of the rising slope DB - AB over the period CE. The total rate adjustment is the sum of these two

components, that is, HE ' CE. Note that since these components are computed from synchronization
error, they represent the amount by which the realtime clock rate is adjusted, not the absolute realtime

clock rate desired.

Knowing the amount of realtime clock rate adjustment, the next step is to apply it to the phase

accumulation variable rate realtime clock hardware. Between samples, the rate at which error accumulates

per unit time is assumed to be constant. For the samples at A and D, this rate is represented by the slope

of the line AD. As shown by the similar triangles in figure 24, the tick error per tick period is equivalent to

the sample error per sample period because they involve the same slope. Since all the respective triangles
are similar, figure 23 can be used to derive the tick adjustment by rescaling it such that all references to

the sample period are replaced with corresponding references to the tick period. This is shown in
figure 25. Since the rate adjustment was a change in slex of HE per sample period CE, the tick

adjustment, having the same change in slope, is H'E' per tick period C'E'. To correct the phase

accumulation variable rate realtime clock thus requires a change in the magnitude of the tick period by the

amount H'E'. By vector addition, paying careful attention to the sense of the vectors:

H'E' = H'G' + G'F' + F'E' = 2 x D'C' + C'B' = - (2 x C'D' - C'B')
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Since the tick period A'B' has the same duration as the tick period C'E', division of the equation above
yields:

H'E' 2 x C'D' - C'B'

C'E' A'B'

By the proportional relationships of similar triangles such as shown in figure 24:

H'E' 2 x C'D' - C'B' 2 x CD - CB

C'E' A'B' AB

This is the amount per tick that a tick must be adjusted to obtain convergence at point E. Thus, for a
phase accumulation variable rate realtime clock with no rate adjustment delay and regular sample periods,
the required proportional change in tick period is

n c o d pI 2 x current sample error - previous samplenew tick period = old tick period x (1 - sml eiderr
sample period

4.2 RATE ADJUSTMENT WITH ALGORITHM EXECUTION DELAY

It is critical that the local realtime clock be sampled immediately upon detection of a strobe. This is
normally accomplished using hardware as described in section 1.3. It is not critical, however, that the
adjustment algorithm immediately process the sample once it is obtained. This is one of the major
advantages of the strobe technique.

Figure 26 shows the impact of a delay in rate adjustment algorithm execution. Point X projects the
synchronization error expected when the rate adjustment algorithm completes execution. As the delay
increases, point X approaches point H.

The equation derived above assumes that the rate adjustment algorithm is executed immediately after
the strobe samples the realtime clock value and that it requires negligible execution time. It may seem that
the delay problem can be solved simply by deriving a new equation to obtain synchronization at point E by
adjusting the rate at point X rather than at point D. But as the delay increases, the slope of the line XE
becomes increasingly steeper. There are two dangers. First, the rate adjustment, depicted by the slope,
may become more iapid than acceptable to the application software. Second, successively recurring delays
can cause the slope to oscillate up and down with increasingly severe swings even though the samples
obtained by the strobes look good. Figure 27 illustrates this situation.

Assuming an equation that targets synchronization at point E, the magnitude of the synchronization
error oscillation increases when the delay is greater than half the sample period CE. Equivalently, the
magnitude increases when the sample period is less than twice the delay. 2 Although delays cause

26The two-to-one relationship stggests affinity to the Nyquist sampling principle. The Nyquist sampling principle specifies
th: minimum frequency at which one must sample to avoid losing signal information. Since the Nyquist rate is a
constant for a given signal, the maximum period between samples is also constant. The problem of variations in
execution delay, described above, is also one of limiting the maximum period between samples. In the latter case, the
information contained in the signal is the frequency of the uncorrected clock synchronization error.
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synchronization error oscillations, the designer can assure stability by selecting a sample period that is at
least no smaller than twice the maximum expected delay. If this is not possible, the designer can target
synchronization at a point S beyond point E, as shown by figure 28.

The equation needed to converge at an arbitrary time in the future, point S, can be derived with the
help of figure 28. Points A and D plot the synchronization errors computed from the previous and current
samples, respectively. The problem is to adjust the rate so the realtime clock is synchronized at point S.
The sample period is AB. The point V is selected such that UV = AB. The rate adjustment is delayed by
CU. The rate adjustment component YW - UV cancels the effects of the value offset UX over the period
US. The rate component ZY -- UV cancels the effects of the rising slope DB - AB. The sum of the two
compoents is thus

ZW ZY + YW DC + CB + YW CD - CB + WY

UV UV AB AB

Only WY is left to be determined. By the similar triangles AWYX and AXUS

WY UX

XY US
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Figure 28. Geometric derivation of rate adjustment with delay.
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Solving for WY

UX PX -PU PX +CB
WY = -xXY = -- xAB = x- xAB.

us us us

By the similar triangles AXPA and ADBA

PX BD
AP AB

Solving for PX

BD BCG+GCD CD-GCB
PX = - xAP = X AP = x (AB+CU).

AB AB AB

Substituting PX into the equation for WY

CD - GBCD- CBx (ABi+CU) + CBPX + GB AB
WY = -- XAB = x AB

us us

CU CU
(CD-CB) + (CD-CB) x - + CB CD + (CD-CB) x--

AB XAB= AB x AB
US US

CD x AB + (CD-CB) x CU

us

Finally, solving for ZW + UV

CD x AB + (CD-CB) x CUGD - GB +

ZW CD- CB + WY us

UV AB AB

CD - CB CD x AB + ( CD-CB) x CU

AB US x AB
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where: CD = current sample synchronization error

CB = previous sample synchronization error

CU = time between current sample taken and rate adjustment

AB = time between previous and current samples taken

US = time between rate adjustment and synchronization.

The first term corrects the realtime clock rate error. It is independent of the execution delay CU. The

second term corrects the realtime clock value error. It depends on CU because longer delay causes greater

accumulation of synchronization error. The new tick period for the phase accumulation method is

new tick period = old tick period X 1 K)

The more restrictive equation derived in section 4.1 is obtained from the equations above by setting

CU = 0 and US AB.

In practical systems, it is often impossible to predict the exact delay CU at design time. Higher priority

activity and blocking may cause variability in CU. In such cases, CU is determined at execution time by

subtracting the sample time from the current time.

To achieve synchronization at point S, point S must be treated as an absolute point in time. While

approaching point S, the interval US decreases by the amount AB within the rate adjustment algorithm as

each new sample is processed. If US were taken instead as a constant, synchronization would be obtained
in the limit rather than at an absolute time. The convergence of synchronization in the limit is

shown in figure 29.
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Figure 29. Geometric representation of synchronization in the limit.
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APPENDIX A-CRYSTAL OSCILLATOR TEST DATA

To obtain a feel for the nature and relative magnitude of the drift of crystal oscillators within densely
packed electronic equipment designed for the severe military environment, the performance of the crys-
tals within AN/UYK-44(V) Modular Reconfigurable Computers (MRCs) were tested. The test data were
recorded using a Hewlett Packard HP-5371A frequency modulation analyzer. It contains a temperature-
controlled internal oscillator, which was allowed to run for 3 days before conducting the experiments to
assure its stability.

The following table shows the drift of two AN/UYK-44(V) MRC oscillators for the first 18 seconds of
operation immediately after applying power after remaining off overnight. No significance should be attrib-
uted to the values missing from the table.

SN AA033 SN AA003
No program No program

Time Frequency Frequency
Seconds MHz MHz

0.3 19.732 327 87 20.627 020 28
0.6 19.999 681 36 20.000 354 71
0.9 679 25 350 29
1.2 678 17 347 17
1.5 677 09 345 15

1.8 676 11 343 88
2.1 675 53 342 83
2.4 674 99 341 88
2.7 674 45 341 31
3.0 673 93 340 75

3.3 673 41 340 17
3.6 672 92 339 68
3.9 672 39 339 19
4.2 671 85 338 71
4.5 671 28 338 24

4.8 670 75 337 77
5.1 670 17 337 29
5.4 669 61 336 83
5.7 669 01 336 33
6.0 668 43 335 85

6.3 667 83 335 37
6.6 667 21 334 89
6.9 666 60 334 41
7.2 666 00 333 89
7.5 333 40

7.8 332 89
8.1 332 39
8.4 331 85
8.7 662 84 331 32
9.0 662 28 330 79
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SN AA033 SN AA003
No program No program

Time Frequency Frequency
Seconds MHz MHz

9.3 661 56 330 27
9.6 660 95 329 71
9.9 660 31 329 16

10.2 659 68 328 61
10.5 659 04 328 09

10.8 658 40 327 51
11.1 657 79
11.4 657 15
11.7 656 55
12.0 655 93 325 31

12.3 655 28 324 77
12.6 654 69 324 19
12.9 654 00 323 65
13.2 653 48 323 08
13.5 652 87 322 52

13.8 652 29 321 95
14.1 651 69 321 39
14.4 651 11 320 83
14.7 650 49 320 25
15.0 649 95 319 69

15.3 649 32 319 12
15.6 648 77
15.9 648 16
16.2 647 63
16.5 647 05 316 83

16.8 646 47 316 28
17.1 645 93 315 71
17.4 645 37 315 12
17.7 644 83 314 57
18.0 644 28 314 03

The following table shc-ws the drift of an AN/UYK-44(V) MRC oscillator for the first 2 hours of
operation immediately after applying power after remaining off overnight. No significance should be attrib-
uted to the values missing from the table.
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SN AA033
With program

Time Frequency
Seconds MHz

7.2 20 000 299 311 1
14.4 299 285 0
21.6 287 531 1
28.8 274 938 3

36.0 262 991 7
43.2 251 998 3
50.4 241 998 9
57.6 232 821 7
64.8 224 321 7

72.0 216 424 4
79.2 209 127 8
86.4 202 314 4
93.6 195 924 4

100.8 189 731 1

108.0 184 002 8
115.2 178 695 0
122.4 173 719 4
129.6 168 622 8
136.8 163 630 6

144.0 159 188 3
151.2 154 895 6
158.4 151 051 1
165.6 147 396 1
172.8 144 015 6

180.0 140 788 9
187.2 137 613 9
194.4 134 651 7
201.6 131 974 4
208.8 129 346 1

216.0 126 986 7
223.2 124 501 1
230.4 122 221 1
237.6 119 995 6
244.8 117 005 6

252.0 115 837 8
259.2 113 883 9
266.4 112 866 1
273.6 110 403 3
280.8 108 699 4

288.0 107 029 4
295.2 105 402 2
302.4 103 985 6
309.6 102 587 8
316.8 101 225 6
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SN AA033
With program

Time Frequency
Seconds MHz

324.0 099 912 8
331.2 098 678 0
338.4 097 455 0
345.6 096 519 4
352.8 095 679 4

360.0 094 408 9
367.2 093 076 1
374.4 091 943 9
381.6 090 884 4
388.8 089 905 6

396.0 089 000 0
403.2 088 205 6
410.4 087 395 6
417.6 086 562 8
424.8 085 827 8

432.0 084 990 6
439.2 084 152 2
446.4 083 501 1
453.6 082 828 9
460.8 082 287 2

468.0 081 572 2
475.2 080 730 6
482.4 079 993 9
489.6 079 307 2
496.8 078 606 7

504.0 077 982 2
511.2 077 562 2
518.4 077 148 9
525.6 076 548 9
532.8 075 811 7

540.0 075 166 7
547.2 074 564 4
554.4 074 247 8
561.6 073 836 7
568.8 073 313 3

576.0 072 965 0
583.2 072 470 6
590.4 071 872 2
597.6 071 461 7
604.8 071 068 3

612.0 070 740 0
619.2 070 328 9
626.4 069 894 4
633.6 069 493 3
640.8 069 096 1
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SN AA033
With program

Time Frequency
Seconds MHz

648.0 068 702 2
655.2 068 560 0
662.4 068 284 4
669.6 067 905 0
676.8 067 666 1

684.0 067 181 7
691.2 066 739 4
698.4 066 383 9
705.6 066 026 1
712.8 065 886 7

720.0 065 716 1

792.0 063 103 3

864.0 060 013 3

1008.0 057 455 0

1224.0 052 893 9

1296.0 050 006 7

1584.0 046 335 0

2016.0 041 355 0
2023.2 041 669 4
2030.4 041 723 9
2037.6 041 536 7
2044.8 041 271 1

2052.0 040 857 2
2059.2 040 880 6
2066.4 040 790 0
2073.6 040 716 1
2080.8 040 472 8

2088.0 040 297 8
2095.2 040 267 8
2102.4 040 270 0
2109.6 040 144 4
2116.8 040 280 6

2124.0 039 897 8
2131.2 039 574 4
2138.4 039 485 0
2145.6 039 407 2
2152.8 039 452 8

2160.0 039 769 4
2167.2 040 102 8
2174.4 040 473 9
2181.6 040 642 2
2188.8 041 254 4
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SN AA033
With program

Time Frequency
Seconds MHz

2196.0 041 598 9
2203.2 041 726 1
2210.4 041 832 2
2217.6 042 034 4
2224.8 042 205 0

2232.0 042 347 8

2304.0 042 245 0
2311.2 042 088 9
2318.4 042 041 7
2325.6 041 927 8

2376.0 040 981 1

2448.0 040 387 8

2520.0 040 084 4

2556.0 039 931 7
2563.2 039 928 3
2570.4 039 950 6
2577.6 039 884 4
2584.8 039 903 9

2592.0 039 870 6
2599.2 040 005 6
2606.4 039 975 6
2613.6 039 927 2

2952.0 039 196 7

3024.0 039 035 6

3600.0 036 988 9

3672.0 037 016 7

3744.0 037 560 0

3888.0 037 442 2

3960.0 037 153 9

40- 0 036 480 6

4104.0 035 738 9

4248.0 035 030 6

4680.0 036 045 0

4752.0 035 617 2

5400.0 034 071 7

5472.0 034 534 4

6120.0 034 535 3
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SN AA033
With program

Time Frequency
Seconds MHz

6192.0 034 576 1

6840.0 033 301 1

6912.0 033 864 4

6984.0 034 911 7

7056.0 033 801 8

7128.0 032 217 2
7178.4 032 462 2

The following table shows the drift of an NCR PC8 Personal Computer oscillator for the first 54
seconds of operation immediately after applying power after remaining off overnight.

Time Frequency
Seconds MHz

1.8 8.000 764 413
3.6 761 212
5.4 759 679
7.2 758 787

9.0 758 250
10.8 757 725
12.6 757 225
14.4 756 667
16.2 756 133

18.0 755 612
19.8 755 091
21.6 754 795
23.4 754 292
25.2 753 800

27.0 753 289
28.8 752 776
30.6 752 273
32.4 751 757
34.2 751 238

36.0 750 727
37.8 750 186
39.6 749 672
41.4 749 148
43.2 748 628

45.0 748 116
46.8 747 591
48.6 747 070
50.4 746 564
52.2 746 052

54.0 745 529
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L realtime clock
centralized, 1
definition, I

labels. See strobe label distributed, 1
realtime systems

M scheduling, 6
use of clock for, 1

reference time, 33
mechanical clock analogy, 2 averaging method, 8

definition, 8
N initialization, 29

master-slave method, 8, 9
method advantage comparison, 8

Network Time Protocol (NTP), 7, 20 tree organization of methods, 8
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See also synchronization resolution
O centralized time standards, 2
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operating system time value format, 27, 29
software adjustment method, 21
strobe scheduling, 32 S

P sample period
automatic selection of shortest, 4

periodic phase modification method, 9, 12 definition, 30
Am2925 integrated circuit, 16 synchronization resolution, 30
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block diagram, 12 sample register, 3
phase counter, 12 minimum width, 29
rate adjustment counter, 15, 16 purpose of, 30
rate adjustment period, 14 software adjustment method, 21
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block diagram, 19 atomic write access, 24
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definition, 26

R software adjustment method, 20
advantages and disadvantages, 21

race condition state machine, phase counter, 17
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rate adjustment algorithms race conditions, 5
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definition, 33 variable delay of, 3
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rate adjustment period, 14 strobe label, 5
rate monotonic scheduling, 6 strobe period. See sample period
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strobe register, 3, 5 oscillator frequency, 27
synchronization algorithms, 3 timestamps, transaction processing, 1

filter technique, 6
priority, 6 U
software complexity, 7

strobe technique, 3
technique comparison, 6 UYK-44 computer, 30

synchronization error function, 6, 33
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time virtual time, 1
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