RFPORT DOCTIMENTATION PAGE G0 ioms

»age 1 hour per response, .nciuding the time for reviewing instructions, searching existing data sources gathering and maintaining the data
zding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden. to Washington
. 1215 Jetferson Davis Highway. Suite 1204, Arlinaton, VA 22202-4302, and to the Oftice of Information and Regulatory Affairs, Office of

AD-A234 380 -eowoe—

3. REPORT TYPE AND UATES COVERED
Final: Dec 17, 1990 to Mar 1, 1991

4. TITLE AND SUBTITLE

MOTOROLA MVME133 (Target), 901129S1.11051

Ada Compiler Validation Summary Report: DDC International A/S, DACS VAX/'VMS
to 68020 Bare Cross Compiler System, Version 4.6, microVAX 3100 (Host) to

5. FUNDING NUMBERS

[6. AUTHOR(S)

National Institute of Standards and Technology
Gaitheisburg, MD

USA

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
National Institute of Standards and Technology
National Computer Systems Laboratory
Bldg. 255, Rm A266
Gaithersburg, MD 20899 USA

8. PERFORMING ORGANIZATION
REPORT NUMBER

NIST90DDC500_2_1.11

3. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Ada Joint Program Office

United States Department of Defense

Pentagon, RM 3E114

Washington, D.C. 20301-3081

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

71, SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

DDC International A/S, DACS VAX/VMS to 68020 Bare Cross Compiler System, Version 4.6, Gaithersburg, MD, microVAX
3100 running VMS Version 5.3(Host) to MOTOROLA MVME133 board (Target), ACVC 1.11.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val. .
Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO. 16. PRICE CODE
[ccrnaTy CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT Gr ABSTRACT
UNCLASSIFIED UNCLASSIFED UNCLASSIFIED

NSN 7540-01-280-550

91

Standard Form 298, (Rev. 2-89)
Prescribed by ANSI Std. 239-128

4 01 066

AVF Control Number: NIST90DDCS00 2 1.11
DATE COMPLETED
BEFORE ON-SITE: December 17, 1990
AFTER ON-SITE: November 30, 1990
REVISIONS:

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: 901129S1.11051
DDC International A/S
DACS VAX/VMS to 68020 Bare Cross Compiler System, Version 4.6
microVAX 3100 => MOTOROLA MVME1l33

Prepared By:

Software Standards Validation Group
National Computer Systems Laboratory
National Institute of Standards and Technology
Building 225, Room A266
Gaithersburg, Maryland 20899

o

AVF Control Number:

NIST90DDC500_ 2 1.11

Certificate Information

The following Ada implementation was tested and determined to pass

ACVC 1.11.

Compiler Name and Version:

Host Computer System:

Target Computer System:

Testing was completed on November 29,

1990.

DACS VAX/VMS to 68020 Bare Cross
Compiler System Version 4.6

microVAX 3100 running VMS Version

5.3

MOTOROLA MVME133 board

A more detailed aesc.iption of this Ada implementation is found in

section 3.1 of this report.
As a result of this
901129S81.11051 is
certificate expires

awarded t
on March 0

o DDC

1,

1993.

validation effort, Validation Certificate

This

International A/S.

This report has been reviewed and is approved.

Ada Validation
Dr. David K. Je
Chief, Information Systems
Engineering Division (ISED)
National Computer 3ystems
Laboratory (NCSL)
National Institute of
Standards and Technology
Building 225, Room A266
Gaithersburg, MD, 20899

- e

S /-v

/A 7

A Dop g ey
Ada Validation Organization
Director, Computer & Software
Engineering Division
Institute for Defense Analyses
Alexandria va 22311

"Ada Validation
Mr. L. Arnold J
Manager, Software Standards
Validation Group
National Computer Systems
Laboratory (NCSL)
National Institute of
Standards and Technology
Building 225, Room A266
Gaithersburg, MD 20899

Ada Joint Program Office
Dr. John Solomond
Director

Department of Defense
Washington DC 20301

DECLARATION OF CONFORMANCE

The following declaration of conformance was supplied by the
customer.

DECLARATION OF CONFORMANCE

Customer and Certificate Awardee: DDC International A/S

Ada Validation Facility: National Institute of Standards and
Technology
National Computer Systems Laboratory
(NCSL)
Software Validation Group
Building 225, Room A266
Gaithersburg, Maryland 20899

ACVC Version: 1.11
Ada Implementation:

Compiler Name and Version: DACS. VAX/VMS to 68020 Bare Cross
Compiler System Version 4.6

Host Computer System: microVAX 3100 running VMS Version
5.3
Target Computer System: MOTOROLA MVME133 board
Declaration:

[I/we] the undersigned, declare that [{I/we] have no knowledge of
deliberate deviations from the Ada Language Standard
ANSI/MIL-STD-1815A ISO 8652-1987 in the implementation 1listed

above.
78
. /o= v o
% S S

Date

iZiSB

A7
Customer Signature
Company
Title

TABLE OF CONTENTS

CHAPTER 1 . ¢ ¢ ¢ ¢ & o o o o o« &
INTRODUCTION

1.1 USE OF THIS VALIDATION

1.2 REFERENCES
1.3 ACVC TEST CLASSES
1.4 DEFINITION OF TERMS

CHAPTER 2 . ¢ ¢ ¢ o o o o s o o
IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS .

2.2 INAPPLICABLE TESTS

2.3 TEST MODIFICATIONS

CHAPTER 3 . ¢ ¢« ¢ ¢ o o o s+ o o =
PROCESSING INFORMATION . . .

3.1 TESTING ENVIRONMENT
3.2 SUMMARY OF TEST RESULTS

3.3 TEST EXECUTION . .

APPENDIX A . . ¢ ¢ ¢ & « o o « &
MACRO PARAMETERS

APPENDIX B .« ¢ ¢ ¢ ¢ ¢ o o s o &
COMPILATION SYSTEM OPTIONS .
LINKER OPTIONS

APPENDIX C ¢« ¢« « « « .
APPENDIX F OF THE Ada STAND

ARD

e o & o o

¢ e o & e

N N N N R T
R e
WHRRRP WNE PR

WWwwww
[I I |
(NN e S

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the
Ada Validation Procedures [Pro90] against the Ada Standard [Ada83]
using the current Ada Compiler Validation Capability (ACVC). This
Validation Summary Report (VSR) gives an account of the testing of
this Ada implementation. For any technical terms used in this
report, the reader is referred to [Pro90]. A detailed description
of the ACVC may be found in the current ACVC User's Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the
Ada Certification Body may make full and free public disclosure of
this report. In the United States, this is provided in accordance
with the "Freedom of Information Act" (5 U.S.C. #552). The results
of this validation apply only to the computers, operating systems,
and compiler versions identified in this report.

The organizations represented on the signature page of this report
do not represent or warrant that all statements set forth in this
report are accurate and complete, or that the subject
implementation has no nonconformities to the Ada Standard other
than those presented. Copies of this report are available to the
public from the AVF which performed this validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results
should be directed to the AVF which performed this validation or
to:

Ada Validation Organization
Institute for Defense Analyses

1801 North Beauregard Street
Alexandria VA 22311

1.2 REFERENCES

[Ada83] Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

(Pro90] Ada Compiler Validation Procedures, Version 2.1, Ada Joint
Program Oftice, August 1990.

1-1

(UG89] Ada Compiler Validation Capability User's Guide, 21 June
1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC.
The ACVC contains a collection of test programs structured into six
test classes: A, B, C, D, E, and L. The first letter of a test
name identifies the class to which it belongs. Class A, C, D, and
E tests are executable. Class B and class L tests are expected to
produce errors at compile time and link time, respectively.

The executable tests are written in a self-checking manner and
produce a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when they are executed. Three Ada 1library units, the
packages REPORT and SPPRT13, and the procedure CHECK FILE are used
for this purpose. The package REPORT also provides a set of
identity functions used to defeat some compiler optimizations
allowed by the Ada Standard that would circumvent a test objective.
The package SPPRT13 is used by many tests for Chapter 13 of the Ada
Standard. The procedure CHECK_FILE is used to check the contents
of text files written by some of the Class C tests for Chapter 14
of the Ada Standard. The operation of REPORT and CHECK_FILE is
checked by a set of executable tests. If these units are not
operating correctly, validation testing is discontinued. Class B
tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled
and the resulting compilation listing is examined to verify that
all violations of the Ada Standard are detected. Some of the class
B tests contain legal Ada code which must not be flagged illegal
by the compiler. This behavior is also verified.

Class L tests check that an Ada implementation correctly detects
violation of the Ada Standard involving multiple, separately
compiled units. Errors are expected at link time, and execution
is attempted.

In some tests of the ACVC, certain macro strings have to be
replaced by implementation-specific values -- for example, the
largest integer. A list of the values used for this implementation
is provided in Appendix A. 1In addition to these anticipated test
modifications, additional changes may be required to remove
unforeseen conflicts between the tests and implementation-dependent
characteristics. The modifications required for this
implementation are described in section 2.3.

For each Ada implementation, a customized test suite is produced
by the AVF. This customization consists of making the
modifications described in the preceding paragraph, removing

1-2

withdrawn tests (see section 2.1) and, possibly some inapplicable
tests (see Section 3.2 and [UG89]).

In order to pass an ACVC an Ada implementation must process each
test of the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler

Ada Compiler
Validation
Capability
(ACVC)

Ada
Implementation

Ada
Validation
Facility (AVF)

Ada
Validation
Organization
(AVO)

Compliance of
an Ada
Implementation

Computer
System

Conformity

The software and any needed hardware that have to
be added to a given host and target computer
system to allow transformation of Ada programs
into executable form and execution thereof.

The means for testing compliance of Ada
implementations, Validation consisting of the
test suite, the support programs, the ACVC
Capability user's guide and the template for
the validation summary (ACVC) report.

An Ada compiler with its host computer system and
its target computer system.

The part of the certification body which carries
out the procedures required to establish the
compliance of an Ada implementation.

The part of the certification body that provides
technical guidance for operations of the Ada
certification system.

The ability of the implementation to pass an ACVC
version.

A functional unit, consisting of one or more
computers and associated software, that uses
common storage for all or part of a program and
also for all or part of the data necessary for
the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including
arithmetic operations and logic operations; and
that can execute programs that modify themselves
during execution. A computer system may be a
stand-alone unit or may consist of several
inter-connected units.

Fulfillment by a product, process or service of
all requirements specified.

1-3

Customer

Declaration of
Conformance

Host Computer
Systen

Inapplicable
test

Operating
System

Target
Computer
System

Validated Ada
Compiler

Validated Ada
Implementation

Vvalidation

wWithdrawn
test

An individual or corporate entity who enters into
an agreement with an AVF which specifies the terms
and conditions for AVF services (of any kind) to
be performed.

A formal statement from a customer assuring that
conformity is realized or attainable on the Ada
implementation for which validation status is
realized.

A computer system where Ada source programs are
transformed into executable form.

A test that contains one or more test objectives
found to be irrelevant for the given Ada
implementation.

Software that controls the execution of programs
and that provides services such as resource
allocation, scheduling, input/output control,
and data management. Usually, operating systems
are predominantly software, but partial or
compiete hardware implementations are possible.

A computer system where the executable form of Ada
programs are executed.

The compiler of a validated Ada implementation.

An Ada implementation that has been validated
successfully either by AVF testing or by
registration [Pro90].

The process of checking the conformity of an Ada
compiler to the Ada programming language and of
issuing a certificate for this implementation.

A test found to be incorrect and not used in
conformity testing. A test may be incorrect
because it has an invalid test objective, fails
to meet its test objective, or contains erroneous
or illegal use of the Ada programming language.

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

Some tests are withdrawn by the AVO from the ACVC because they do
not conform to the Ada Standard. The following 81 tests had been
withdrawn by the Ada Validation Organization (AVO) at the time of
validation testing. The rationale for withdrawing each test is
available from either the AVO or the AVF.

this list of withdrawn tests is 90-10-12.

The publication date for

E28005C B28006C C34006D B41308B C43004A C45114A
C45346A C45612B C45651A C46022A B49008A A74006A
C74308A B83022B B83022H B83025B B83025D B83026A
B83026B Cc83041A B85001L C97116A C98003B BA2011A
CB7001A CB7001B CB7004A CCl1223A BCl226A CCl226B
BC3009B BD1BO2B BD1BO6A AD1BO8A BD2A02A CD2A21E
CD2A23E CD2A32A CD2a41A CD2A41E CD2A87A CD2B15C
BD3006A BD4008A cDh4022A CD4022D CD4024B CD4024C
CD4024D CD4031A CD4051D CD5111A CD7004C ED7005D
CD7005E AD7006A CD7006E AD7201A AD7201E CD7204B
BD8002A BD8004C CD39005A CD9005B CDA201E CE2107I
CE2117A CE2117B CE2119B CE2205B CE2405A CE3111C
CE3118A CE3411B CE3412B CE3607B CE3607C CE3607D
CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are
irrelevant for a given Ada implementation. The inapplicability
criteria for some tests are explain..d in documents issued by ISO
and the AJPO known as Ada Issues and commonly referenced in the
format AI-dddd. For this implementation, the following tests were
inapplicable for the reasons indicated; references to Ada Issues
are included as appropriate.

The following 201 tests have floating-point type declarations
requiring more digits than SYSTEM.MAX DIGITS:

C24113L..Y (14 tests)
C35706L..Y (14 tests)
C35708L..Y (14 tests)
C45241L..Y (14 tests)
C45421L..Y (14 tests)
C45524L..Z (15 tests)

C35705L..Y (14 tests)
C35707L..Y (14 tests)
€35802L..2 (15 tests)
C45321L..Y (14 tests)
C45521L..2 (15 tests)
C45621L..2 (15 tests)

C45641L..Y (14 tests) C46012L..Z2 (15 tests)

C24113I..K (3 TESTS) USE A LINE LENGTH IN THE INPUT FILE WHICH
EXCEEDS 126 CHARACTERS.

The following 21 tests check for the
LONG_INTEGER:

predefined type

C35404c¢C C45231C C45304C C45411C C45412C
C45502C C45503C C45504cC C45504F C45611C
C45612C C45613C C45614C C45631C c45632C
B52004D C55BO7A B55B0g9C B86001W C86006C
CD7104iF

C35404D, C45231D, B86001X, C86006E, and CD7101G check for a

predefined integer type with a name other than INTEGER,
LONG_INTEGER, or SHORT_INTEGER.

C35702A , C35713B, C45423B, B86001T, AND C86006H CHECK FOR THE
PREDEFINED TYPE SHORT_FLOAT.

C35713D AND B86001Z CHECK FOR A PREDEFINED FLOATING-POINT TYPE
WITH A NAME OTHER THAN FLOAT, LONG_FLOAT, OR SHORT_FLOAT.

C45531M, C45531N, C455310, CA5531P, C45532M, C45532N, C455320,
AND C45532P CHECK FIXED-POINT OPERATIONS FOR TYPES THAT REQUIRE
A SYSTEM.MAX MANTISSA OF 47 OR GREATER.

C45624A CHECKS THAT THE PROPER EXCEPTION IS RAISED IF
MACHINE OVERFLOWS IS FALSE FOR FLOATING POINT TYPES WITH DIGITS
5. FOR THIS IMPLEMENTATION, MACHINE_OVERFLOWS IS TRUE.

C45624B CHECKS THAT THE PROPER EXCEPTION IS RAISED IF
MACHINE OVERFLOWS IS FALSE FOR FLOATING POINT TYPES WITH DIGITS
6. FOR THIS IMPLEMENTATION, MACHINE_OVERFLOWS IS TRUE.

C4A013B CONTAINS THE EVALUATION OF AN EXPRESSION INVOLVING
'MACHINE_RADIX APPLIED TO THE MOST PRECISE FLOATING-POINT TYPE.
THIS EXPRESSION WOULD RAISE AN EXCEPTION. SINCE THE EXPRESSION
MUST BE STATIC, IT IS REJECTED AT COMPILE TIME.

B86001Y CHECKS FOR A PREDEFINED FIXED-POINT TYPE OTHER THAN
DURATION.

C96005B CHECKS FOR VALUES OF TYPE DURATION'BASE THAT ARE OUTSIDE
THE RANGE OF DURATION. THERE ARE NO SUCH VALUES FOR THIS
IMPLEMENTATION.

CD1009C USES A KEPRESENTATION CLAUSE SPECIFYING A NON-DEFAULT
SIZE FOR A FLOATING-POINT TYPE.

2=2

CA2009C, CAUC00N9F, BC3204C, AND BC3205D THESE TESTS INSTANTIATE
GENERIC ©UNITS BEFORE THEIR BODIES ARE COMPILED. THIS
IMPLEMENTATION CREATES A DEPENDENCE ON GENERIC UNIT AS ALLOWED
BY AT-00408 & AI-00530 SUCH THAT A THE COMPILATION OF THE GENERIC
UNIT BODIES MAKES THE INSTANTIATING UNITS OBSOLETE.

CD2A84A, CDZAB4E, CD2A84I..J (2 TESTS), AND CD2A840 USE
REPRESENTATION CLAUSES SPECIFYING NON-DEFAULT SIZES FOR ACCESS
TYPES.

The following 265 tests check for sequential, text, and direct
access files:

CE2102A..C (3) CE2102G..H (2) CE2102K CE2102N..Y (12)
CE2103C..D (2) CE2104A..D (4) CE2105A..B (2) CE2106A..B (2)
CE2107A..H (8) CE2107L CE2108A..H (8) CE2109A..C (3)
CE2110A..D (4) CE2111A..I (9) CE2115A..B (2)

CE2120A..B (2) CE2201A..C (3) EE2201D..E (2) CE2201F..N (9)
CE2203A CE2204A..D (4) CE2205A CE2206A
CE2208B CE2401A..C (3) EE2401D CE2401E..F (2)
EE2401G CE2401H..L (5) CE2403A CE2404A..B (2)
CE2405B CE2406A CE2407A..B(2) CE2408A..B (2)
CE2409A..B (2) CE2410A..B (2) CE2411A CE3102A..C (3)
CE3102F..H (3) CE3102J..K (2) CE3103A CE3104A..C (3)
CE3106A..B (2) CE3107B CE3108A..B (2) CE3109A
CE3110A CE3111A..B (2) CE3111D..E (2) CE3112A..D (4)
CE3114A..B (2) CE3115A CE3116A CE3119A
EE3203A EE3204A CE3207A CE3208A
CE3301A EE3301B CE3302A CE3304A
CE3305A CE3401A CE3402A EE3402B
CE3402C..D (2) CE3403A..C (3) CE3403E..F (2) CE3404B..D (3)
CE3405A EE3405B CE3405C..D (2) CE3406A..D (4)
CE3407A..C (3) CE3408A..C (3) CE3409A CE3409C..E (3)
EE3409F CE3410A CE3410C..E (3) EE3410F
CE3411A CE3411C CE3412A EE3412C
CE3413A..C (3) CE3414A CE3602A..D (4) CE3603A
CE3604A..B (2) CE3605A..E (5) CE3606A..B (2)

CE3704A..F (6) CE3704M..0 (3) CE3705A..E (5) CE3706D
CE3706F..G (2) CE3804A..P (16) CE3805A..B (2) CE3806A..B (2)
CE3806D..E (2) CE3806G..H (2) CE3904A..B (2) CE3905A..C (3)
CE3905L CE3906A..C (3) CE3906E..F (2)

CE2103A..B and CE3107A EXPECT THAT NAME ERROR IS RAISED WHEN AN
ATTEMPT IS MADE TO CREATE A FILE WITH AN ILLEGAL NAME; THIS
IMPLEMENTATION DOES NOT SUPPORT THE CREATION OF EXTERNAL FILES
AND SO RAISES USE ERROR.

.3 TEST MODIFICATIONS

Modifications (see sectinn 1.3) were required for 67 tests.

2-3

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard
in the way expected by the original tests.

B22003A B26001A B26002A B26005A B28003A B29001A B33301B
B35101A B37106A B37301B B373Nn2A B38003A B38003B B38009A
B38009B BS5S5A01A B61001C B61001F B61001H B61001I B6100IM
B61001R B61001W B67001H B83A07A B83A07B B83A07C BS3E01C
B83EO1D BS83EO1lE B85001D B85008D BS91001A B91002A B91002B
B91002C B91002D B91002E B91002F B91002G B91002H B91002I
B91002J B91002K B91002L B95030A B95061A B95061F B95061G
B95077A B97103E B971045 BAlOOlA BAll01B BC1109A BCl109C
BC1109D BC1202A BC1202F BC1l202G BE2210A BE2413A

"PRAGMA ELABORATE (REPORT)" has been added at appropriate points

in order to solve the elaboration problems for:
Cc83030C

The value used to specify the collection size has been increased
from 256 to 324 take alignment into account for:

CD2A83A

CE2103A..B and CE3107A abort with an unhandled execption when
USE_ERROR is raised on the attempt to create an external file
(see 2.2). The AVO ruled that these tests are to be graded as
inapplicable.

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is
described adequately by the information given in the initial
pages of this report with the following additional information:

The DACS VAX/VMS to 68020 Bare Cross Compiler System Version 4.6
was executed on the target MOTOROLA MVME 133 board with the

following:

The
The
One
One
1MB

For a point

MC68020
MC68881
internal timer
serial port
RAM

of contact for technical information about this Ada

implementation system, see:

Mr. Svend Bodilsen
DDC International A/S
Gl. Lundtoftevej 1B
DK-2800 Lyngby
DENMARK

Telephone: + 45 42 87 11 44
Telefax: + 45 42 87 22 17

For a point of contact for sales information about this Ada
implementation system, see:

Testing of

Mr. Palle Andersson
DDC International A/S
Gl. Lundtoftevej 1B
DK=-2800 LYNGBY
Denmark

Telephone: + 45 42 87 11 44
Telefax: + 45 42 87 22 17

this Ada implementation was conducted at the

customer's site by a validation team from the AVF.

3-1

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes
each test of the customized test suite in accordance with the Ada
Programming Language Standard, whether the test is applicable or
inapplicable; otherwise, the Ada Implementation fails the ACVC
(Pro90).

For all processed tests (inapplicable and applicable), a result
was obtained that conforms to the Ada Programming Language
Standard.

a) Total Number of Applicable Tests 3561
b) Total Number of Withdrawn Tests 81
c) Processed Inapplicable Tests 528
d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point
Precision Tests 0
f) Total Number of Inapplicable Tests 528 (c+d+e)

g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

Version 1.11 of the ACVC comprises 4170 tests. When this
compiler was tested, the tests listed in section 2.1 had been
withdrawn because of test errors. The AVF determined that 528
tests were inapplicable to this implementation. All inapplicable
tests were processed during validation testing. In addition, the
modified tests mentioned in section 2.3 were also processed.

A magnetic tape containing the customized test suite (see section
1.3) was taken on-site by the validaticn team for processing.
The contents of the magnetic tape were loaded directly onto the
host computer.

After the test files were loaded onto the host computer, the full
set of tests was processed by the Ada implementation.

The tests were compiled and linked on the host computer systenm,
as appropriate. The executable images were transferred to the
target computer system by Digital Equipment Corporation ethernet
server system via an RS232 connection to the target board. The
results were captured on the host computer system via the same
communications process.

Testing was performed using command scripts provided by the

3=2

customer and reviewed by the validation team. See Appendix B for
a complete 1listing of the processing options for this
implementation. It also indicates the default options. The
options invoked explicitly for validation testing during this
test were:

/LIST /LIBRARY

The options invoked by default for validation testing during this
test were:

/CHECK /CONFIGURATION_FILE = <default file>
/NOPROGRESS /NOSAVE SOURCE /NOXREF

Test output, compiler and linker 1listings, and job logs were
captured on magnetic tape and archived at the AVF. Selected
listings examined on-site by the validation team were also
archived.

3-3

APPENDIX A

MACRO PARAMETERS

This appendix ontains the macro parameters used for customizing
the ACVC. The meaning and purpose of these parameters are
explained in [UG89]. The parameter values are presented in two
tables. The first table lists the values that are defined in
terms of the maximum input-line length, which is 126 the value
for $MAX_ IN_LEN--also listed here. These values are expressed
here as Ada string aggregates, where "V" represents the maximum
input-line length.

Macro Parameter Macro Value

$MAX_IN_LEN 126

$BIG_ID1 (1..V=1 => 'A', V => '11")

$BIG_ID2 (1..V=-1 => 'A', V => '2")

$BIG_ID3 (1..v/2 => 'A') & '3' & (1..V-1-V/2 => 'A!')
$BIG_ID4 (1..V/2 => 'A') & '4' & (1..V=1-V/2 => 'A')
$BIG_INT_LIT (1..V=3 => '0') & "298"

$BIG_REAL LIT (1..V-5 => '0') & "690.0"

$BIG_STRING1 Yutr & (1..V/2 => 'A') & '

$BIG_STRING2 g (1..V=1-V/2 => 'A') & '1' & '™
$BLANKS (1..V=20 => ' ')

$MAX LEN INT BASED LITERAL
n2:" & (1..V-5 => '0') & "11:"

$MAX LEN REAL BASED LITERAL
"16:" & (1..V-7 => '0') & "F.E:"

$MAX STRING LITERAL '"' & (1..V-2 => 'A') & '™

The following table contains the values for the remaining macro

parameters.

Macro Parameter

ACC_SIZE
ALIGNMENT
COUNT_LAST
DEFAULT MEM SIZE
DEFAULT STOR UNIT
DEFAULT_SYS_NAME
DELTA_DOC

ENTRY ADDRESS
ENTRY_ ADDRESS1
ENTRY_ADDRESS2
FIELD LAST
FILE_TERMINATOR
FIXED NAME

FLOAT NAME
FORM_STRING
FORM_STRING2

Macro Value

"CANNOT_RESTRICT_FILE_CAPACITY"

GREATER_THAN_ DURATION

GREATER THAN DURATION_BASE LAST

GREATER THAN FLOAT _ BASE LAST

GREATER THAN _ FLOAT _SAFE LARGE
GREATER THAN SHORT FLOAT SAFE _LARGE

HIGH PRIORITY
ILLEGAL EXTERNAL FILE NAME1l
ILLEGAL EXTERNAL FILE _NAME2

e 88 98 00 a0 S0 o0 oo

3
4
2_147_483_647
2 097 152

8

DACS_68020
2#1.04#E-31
164FF#
164FE#
16#FD#
35
ASCII.EM
NO_SUCH_TYPE
NO SUCH TYPE

24
\NODIRECTORY\FILENAME

THIS-FILE-NAME-IS-TOO-LONG-FOR-MY-SYSTEM

INAPPROPRIATE LINE_ LENGTH
INAPPROPRIATE PAGE_LENGTH
INCLUDE PRAGMAl

PRAGMA INCLUDE ("A28006D1.TST")

INCLUDE_PRAGMA2

PRAGMA INCLUDE ("B28006E1l.TST")

INTEGER_FIRST
INTEGER LAST

INTEGER_LAST PLUS_1
INTERFACE _LANGUAGE
LESS_THAN DURATION

LESS_THAN DURATION_ BASE_FIRST

LINE_TERMINATOR
LOW_PRIORITY

MACHINE_ CODE_STATEMENT

AA INSTR'(AA EXIT_ SUBPRGRM,0,0,0

MACHINE CODE_TYPE
MANTISSA_DOC

s o8 w

=2147483648
2147483647
2147483648

AS

=-75000.0

-131073.0

ASCII.CR

1

AA_INSTR_INTG'FIRST,O0);
AA_INSTR
31

MAX DIGITS : 15

MAX INT ¢ 2147483647

MAX INT PLUS 1 : 2147483648

MIN INT : =2147483648

NAME ¢ NO_SUCH_TYPE AVAILABLE
NAME LIST : dacs 68020

NAME SPECIFICATION1
DISKSAWC 2:[CROCKETTL.ACVC. DEVELOPMENT]XZlZOA.,l
NAME SPECIFICATION2
DISK$AWC_2: [CROCKETTL.ACVC. DEVELOPMENT]XZlZOB..l
NAME SPECIFICATION3
DISK$AWC 2:[CROCKETTL.ACVC. DEVELOPMENT]XZIZOC.,I
NEG_BASED_INT 16#F000000E#
NEW _MEM_SIZE 2097152
NEW_STOR _UNIT 8
NEW_SYS_NAME OUR_ULTRIX_ADA
PAGE_TERMINATOR ASCII.FF
RECORD DEFINITION
RECORD INSTR _NO:INTEGER;ARGO: INTEGER ARG1:INTEGER;
ARG2 : INTEGER; ARG3 : INTEGER ; ARG4 : INTEGER ; END RECORD;

RECORD_NAME ¢ AA_INSTR
TASK_SIZE : 32

TASK STORAGE_SIZE : 1024

TICK : 2#1.0#E-14
VARIABLE ADDRESS : le#ffffoo#
VARIABLE ADDRESS1 : l6#ffff204#
VARIABLE ADDRESS2 : 16#££££40%
YOUR_PRAGMA : NOFLOAT

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in
this Appendix, are provided by the customer. Unless specifically
noted otherwise, references in this appendix are to compiler
documentation and not to this report.

QUALIFTER

/ [NO]CHECK
/CONFIGURATION FILE
/LIBRARY

/[NO]LIST
/OPTIMIZE

/ [NO]PROGRESS

/ [NO]SAVE_SOURCE

/ [NO]XREF

/UNIT

/ADA_RTS
<source-file-spec>

DESCRIPTION

Suppresses run-time constraint checks.
Specifies the file used by the compiler.
Specifies program library used.

Writes a source listing on the list file.
Specifies compiler optimization.
Displays compiler progress.

Inserts source text in program library.
Creates a cross reference listing.
Assigns a specific unit number to the
compilation (must be free and in a
sublibrary).

For maintenance purpose.

The name of the source file to be
compiled.

LINKER OPTIONS

as described in
Unless specifically
references 1in this appendix are to linker

The linker options of this Ada implementation,
this Appendix, are provided by the customer.
noted otherwise,

documentation and not to this report.

QUALIFIER DESCRIPTION

/LIBRARY The library used in the link.

/ [NO]WARNINGS Print warnings.

/ [NO]STATISTICS Print statistics.

/ [NO]VERIFY Print information about the link.
/ [NO]JFLOAT Control of co-processor use.

/ [NO]JVECTOR Interrupt vector description.

/ [NOJINTERRUPT STACK
/ [NOJMAIN STACK

Interrupt stack description.
Main task stack description.

/ [NO]TASKS Number of TCB'S allocated.
/DEFAULTS Default values for tasks.

/ [NOJINTERRUPT_STACK Interrupt vector description.
/MAIN_TASK Main task defaults.

/ [NOJHEAP Control of memory management.

/ [NOJEXCEPTIONS Control cf exception management.
/BASE Base address of the link.

/RAM Description of RAM memory.

/ [NOJROM Description of ROM memory.

/ [NO]JENTRY Alternative program start label.

/[NOJINIT FILE

/ [NOJOPTION_ FILE
/ [NO]KEEP

/BOOT

/ [NOJUSR_LIBRARY
/RTS_STACK_USE

Initialization file name.
Linker option file name.

Do not delete temporary files.
Generate a boot module.

A user supplied object library.
Amount of memory used by RTS.

/ [NOJABSOLUTE Name of absolute file.
/UCC_LIBRARY UCC library name.
<unit-name> The name of the main unit.

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in Chapter 13 of the Ada Standard, and
to certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of this Ada
implementation, as described in this Appendix, are provided by
the customer. Unless specifically noted otherwise, references
in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package
STANDARD, which are not a part of Appendix F, are:

package STANDARD is
type SHORT_INTEGER is range -32_768 .. 32_767;
type INTEGER is range =2%*%*31 .. 2%*31-1;

type FLOAT is digits 6
range -3.402823466385E+38 .. 3.402823466385E+38;

type LONG_FLOAT is digits 15
range =1.7976931348623157E+308 .. 1.7976931348623157E+308;

type DURATION is delta 2#1.0#E-14 range -131_072.0 .. 131 071.0;

end STANDARD;

APPENDIX F
IMPLEMENTATION DEPENDENT CHARACTERISTICS

This appendix describes the implementation-dependent
characteristics of DACS VAX/VMS to 68020 Bare Ada Cross Compiler
System required in Appendix F of the Ada Reference Manual
(ANSI/MIL-STD-1815A).

F.1l Implementation-Dependent Pragmas

This section describes all implementation defined pragmas.

F.1.1 PRAGMA INTERFACE_SPELLING

Format: pragma INTERFACE_SPELLING(<subprogram-name>,
<string>)

Placement: The pragma may be placed as a declarative item.

Restrictions: Pragma INTERFACE_SPELLING must be applied to the
subprogram denoted by <subprogram-name)>. The
<{string> must be a string literal.

This pragma allows an Ada program to call routines with a name
that is not a 1legal Ada name, the <string> provides the exact
spelling of the name of the procedure.

F.1.2 PRAGMA INITIALIZE
Format: pragma INITIALIZE(<string_literal>)
Placement: The pragmg may be placed as a declarative item.

Restrictions: None.

When the pragma is applied the 1linker will, as part of the
initialization code generate a call to the subprogram with the
name <string_literal>. The call will pe performed before the
elaboration of the Ada program is initiated, with IPL on 7. 1If
several pragmas INITIALIZE are applied to the same program the
routines are cailed in the elaboration order, if several pragmas
INITIALIZE are applied to one compilation unit the routines are
called in «the order of appearance. I1f several compilations units
apply pragma INITIALIZE to the same routine the routine is called
once only.

Page F-1

User's Guide
Implementation Dependent Characteristics

F.1.3 PRAGMA RUNDOWN
Format: pragma RUNDOWN(<string literal>)
Placement: The pragma may be placed as a declarative item.

Restrictions: None.

Similar to pragma initialize, but the subprogram is called after
the main program have terminated and in the reverse order as for
the pragma INITIALIZE.

F.1.4 PRAGMA TASKS
Format: pragma TASKS;
Placement: The pragma may be placed as a declarative item.

Restrictions: None.

Marks the compilation unit with the task attribute. If the code
that is interfaced by a pragma INTERFACE uses any tasking
constructs, the compilation unit must be marked such that the
linker includes the tasking kernel in target programs that
reference the compilation unit.

F.1.5 PRAGMA FLOAT
Format: pragma FLOAT;
Placement: The pragma may be placed as a declarative item.

Restrictions: None.

Marks the compilation unit with the float attribute. If the code
that 1is interfaced by a pragma INTERFACE uses any floating point
co-processor instructions, the compilation unit must be marked
such that the 1linker includes initialization of the floating
point COo-processor in target programs that reference the
compilation unit.

Page F-2

User's Guide
Implementation Dependent Characteristics

F.1.6 PRAGMA INTERRUPTS
Format: pragma INTERRUPTS;
Placement: The pragma may be placed as a declarative item.

Restrictions: None.

Marks the compilation unit with the interrupt attribute. If the
code that is interfaced by a pragma INTERFACE uses any
interrupts, the compilation unit must be marked such that the
linker include the interrupt handling in target programs that
reference the compilation unit.

F.1.7 PRAGMA STORAGE_MANAGER
Format: pragma STORAGE MANAGER:;
Placement: The pragma may be placed as a declarative item.

Restrictions: None.

Marks the compilation unit with the heap attribute. If the code
that 1is interfaced by a pragma INTERFACE uses the storage
manager, the compilation unit must be marked such that the linker
include initialization of the storage manager in target programs
that reference the compilation unit.

F.1.8 PRAGMA INTERRUPT_HANDLER

The pragma interiupt handler is defined with two formats.

F.1.8.1 PRAGMA INTERRUPT_HANDLER for Task Entries
Format: pragma INTERRUPT_HANDLER;
Placement: The pragma must be placed as the first

declarative item in the task specification that it
applies to.

Restrictions: The task for which the pragma INTERRUPT_HANDLER is
applied must fulfill the following requirements:

Page F-3

User's Guide
Implementation Dependent Characteristics

address clause must be specified for all entries to the
.ask.

- All entries of the task must be single entries with no
parameters.

- The entries must not be called from any tasks.
- No other tasks may be specified in the body of the task.

- The Dbody of the task must consist of a single sequence of
accept statements for each of the defined interrupts, see
below:

task body fih is
-- local simple data declaration, no tasks.
begin
accept handlerl do
<{statementlist>;
end handlerl;
accept handler2 do
<{statementlist>;
end handler2;
end fih;

- No other tasking construct than unconditional entry calls may
appear in the statement list for the select alternatives. The
execution of a statement list must only execute one
unconditional entry call.

- Any procedures called from the accept body must not use any
tasking constructs at all.

- No heap storage must allocated.

- No exception must be proporgated out of the statement list of
the accept alternatives.

If the restrictions described above are not fulfilled, the
program is erroneous and the result of the execution
unpredictable. The compiler cannot and is not checking all the
restrictions, but attempts to perform as many checks of the
requirements as possible.

Tihe PRAGMA_INTERRUPT handler with no parameters allows the user
to implement immediate response to exceptions.

Page F-4

User's Guide
Implementation Dependent Characteristics

F.1.8.2 PRAGMA INTERRUPT_HANDLER for Procedures

Format: pragma INTERRUPT_ HANDLER(procedure-name, integer-
literal);

Placement: The pragma must be placed as a declarative item, in

the declarative part defining the specification of
the immediately after the procedure specification.

Restrictions: The procedure for which pragma INTERRUPT_HANDLER
applies must fulfill the following restrictions:

- The integer-literal must be in range 0..255, and
must not define an interrupt vector entry to
which the processor may generate a trap.

- The procedure must not be called .aywhere in the
application.

- No tasks may be declared in the body of the
procedure.

- The only tasking construct that may be used from
the body of the procedure is unconditional entry
calls. Several unconditional entry calls may
appear in the body of the procedure but the
execution of the body must only lead to the
execution of one.

- Any subprograms called from the procedure must
not use any tasking constructs at all.

- The procedure must be parameterless.

- No heap storage must allocated from the
procedure.

- Exception must no be propagated out o©f the
procedure.

If the restrictions described above is not fulfilled the program
is erroneocus and the result of the execution unpredictable. The
compiler cannot and is not checking all the restrictions, but
attempts to perform as many checks of the requirements as
possible.

The pragma INTERRUPT_HANDLER for procedures defines the named

subprogram to be an interrupt handler for the interrupt vector
entry defined by the integer-literal.

Page F-5

User's Guide
Implementation Dependent Characteristics

F.1.9 PRAGMA NOFLOAT
Format: pragma NOFLOAT(task-id)
Placement: The pragma must be placed as a declarative item, in

the declarative part defining the task type or
object denoted by the task-id.

Restrictions: The task(s) denoted by the task-id must not execute
floating-point co-processor instructions.

This pragma informs the compiler and runtime system that the task
will not execute floating point co-processor instructions.
Consequently the context switch needs not save and restore the
state of the floating point co-processor vielding improved
performance.

F.2 Implementation-Dependent Attributes

No implementation-dependent attributes are defined.

F.3 Package SYSTEM

The spcification for package SYSTEM is as follows:

package SYSTEM is

type ADDRESS is new INTEGER:

subtype PRIORITY is INTEGER range 1 .. 24;

type NAME is (dacs_68020):

SYSTEM_NAME: constant NAME := dacs_68020;
STORAGE_UNIT: constant 1= 87
MEMORY_SIZE: constant 1= 2048 * 1024;
MIN_INT: constant t= -2 _147_483_648;
MAX INT: constant := 2 147 _483_647;
MAX DIGITS: constant := 15;

MAX MANTISSA: constant = 31:
FINE_DELTA: constant = 2#1.07E-31;
TICK: constant = 2#1.08E-14;

type interface_language is (AS);

end SYSTEM;

Page F-6

User's Guide
Implementation Dependent Characteristics

F.4 Representation Clauses

The DACS VAX/VMS to 68020 Cross Compiler fully supports the 'SIZE
representation for derived types. The representation clauses
that are accepted for non-derived types are described in the
following subsections.

F.4.1 Length Clause

Some remarks on implementation dependent behavior of length
clauses are necessary:

- When wusing the SIZE attribute for discrete types, the
maximum value that can be specified is 32 bits.

- S8IZE is only obeyed for discrete types when the type is a
part of a composite object, e.g. arrays or records.

- Using the STORAGE_SIZE attribute for a collection will set
an upper limit on the total size of objects allocated in this
collection. If further allocation is attempted, the
exception STORAGE_ERROR is raised.

- When STORAGE_SIZE is specified in a length clause for a task,
the process stack area will be of the specified size.

F.4.2 Enumeration Representation Clauses

Enumeration representation clauses may specify representations in
the range of INTEGER'FIRST + 1..INTEGER'LAST - 1.

F.4.3 Record Representation Clauses

When representation clauses are applied to records the following
restrictions are imposed:

- if the component is a record or an unpacked array, it must
start at a storage unit boundary (8 bits)

- a record occupies an integral number of storage units
(words) (even though a record may have- fields that only
define an odd number of bytes)

- a record may take up a maximum of 2 Gigabits

Page F-7

User's Guide
Implementation Dependent Characteristics

- a component must be specified with its proper size (in
bits), regardless of whether the component is an array or
not.

- if a non-array component has a size which equals or
exceeds one sterage uwnit 32-bits the component must start on
a storage unit vounaary.

- the elements in an array component should always be wholly
contained in 32-bits.

If the record type contains components which are not covered by a
component clause, they are allocated consecutively after the
component with the wvalue. Allocation of a record component
without a component clause is always aligned on a storage unit
boundary. Holes created because of component clauses are not
otherwise utilized by the compiler.

Pragma PACK on a record type will attempt to pack the components
not already covered by a representation clause (perhaps none).
This packing will begin with the small scalar components and
larger components will follow in the order specified in the
record. The packing begins at the first storage unit after the
components with representation clauses.

F.4.3.1 Alignment Clauses

Alignment <clauses for records are implemented with the following
characteristics:

- If +the declaration of the record type is done at the
outermost 1level in a library package, any alignment is
accepted.

- If the record declaration is done at a given static
level (higher +than the outermost 1library 1level, i.e.,
the permanent area), only word alignments are accepted.

- Any record object declared at the outermost level in a
library package will be aligned according to the alignment
clause specified for the type. Record objects declared
elsewhere can only be aligned on a word boundary. If the
record type 1is associated with a different alignment, an
error message will be issued.

- If a record type with an associated alignment clause is
used in a composite type, the alignment is required to
be -one word; an error message is issued if this is not
the case.

Fage F-8

User's Guide
Implementation Dependent Characteristics

F.S5 Implementation-Dependent Names for Implementation ~
Dependent Components

None defined by the compiler.

F.6 Address Clauses

This section describes the implementation of address clauses and
what types of entities may have their address specified by the
user.

F.6.1 Objects

Address clauses are supported for scalar and composite objects
whose size can be determined at compile time, if the specified
address is a literal.

F.6.2 Task Entries

Address clauses are supported for task entries. The following
restrictions applies:

- The affected entries must be defined in a task object
only, not a task type.

- The entries must be single and parameterless.

- The address specified must not denote an interrupt index
which the processor may trap.

- If the interrupt entry executes floating point co-
processor instructions the state of the co-processor must
be saved prior to execution of any floating point
instructions, and restore before the return.

The address specified in the address clause denotes the interrupt
vector index.

F.7 Input/Output Packages

In many embedded systems, there is no need for a traditional I/O
system, but in order to support testing and validation, DDC-I has
developed a small terminal oriented I/0 system. This I/O system
consists essentially of TEXT_IO adapted with respect to handling
only a terminal and not file I/0 (file I/O will cause a USE_ERROR

Page F-9

User's Guide
Implementation Dependent Characteristics

to Dbe raised) and a low level package called TERMINAL DRIVER. A
BASIC_IO package has been provided for convenience purposes,
forming an interface between TEYT_IO and TERMINAL_ DRIVER as
illustrated in the following figure.

TEXT_IO

BASIC_IO
TERMINAL DRIVER
(H/W interface)

The TERMINAL_ DRIVER package is the only package that is target
dependent, i.e., it is the only package that need be changed when
changing communications controllers. The actual body of the
TERMINAL DRIVER is written in assembly 1language, but an Ada
interface to this body is provided. A user can also call the
terminal driver routines directly, i.e. from an assembly language
routine. TEXT_IO and BASIC_IO are written completely in Ada and
need not be changed.

BASIC_IO provides a mapping between TEXT_IO control characters
and ASCII as follows:

TEXT_1I0O ASCII Character
LINE_TERMINATOR ASCII.CR
PAGE_TERMINATOR ASCII.FF
FILE_TERMINATOR ASCII.EM (ctrl 2)
NEW_LINE ASCII.LF

The services provided by the terminal driver are:
1) Reading a character from the communications port.

2) Writing a character to the communications port.

Page F-10

User's

Guide

Implementation Dependent Characteristics

F.7.1 Package TEXT_IO

The specification of package TEXT_IO:

pragma page;
with BASIC_IO;

with IO _EXCEPTIONS;
package TEXT_IO is

type FILE TYPE is limited private;

type FILE_MODE is (IN_FILE, OUT_FILE);

type COUNT is range O ..

INTEGER'LAST;

subtype POSITIVE COUNT is COUNT range 1 .. COUNT'LAST;
UNBOUNDED: constant COUNT:= 0O; -- line and page length
-- max. size of an integer output field 2#....#
subtype FIELD is INTEGER range 0 .. 35;
subtype NUMBER_BASE is INTEGER range 2 .. 16;

type TYPE_SET is (LOWER_CASE, UPPER_CASE);

pragma PAGE;

-- File Management

procedure CREATE

procedure OPEN

procedure CLOSE

procedure DELETE (FILE

procedure RESET
procedure RESET
function MODE

function NAME
function FORM

(FILE
MODE
NAME
FORM

):

(FILE
MODE
NAME

FORM

)
(FILE

(FILE
MODE
(FILE

(FILE
(FILE
(FILE

function IS_OPEN(FILE

in
in
in
in

s 86 00 oo

in
in
in
in

in
in
in
in
in

20 oo

in
in
in

in

Page

out FILE_TYPE;
FILE_MODE
STRING
STRING

OUT _FILE;

" g
’

se 8e o0
Honon

out FILE_TYPE;
FILE_MODE;
STRING;
STRING

"o

i

out FILE_TYPE):
out FILE TYPE):
out FILE_TYPE;
FILE MODE):

out FILE_TYPE):

FILE _TYPE) return FILE_ MODE;
FILE TYPE) return STRING:
FILE_TYPE) return STRING;

FILE _TYPE return BOOLEAN;

F-11

User's Guide

Implementation Dependent Characteristics

pragma PAGE;

-~ control of default input and output files

procedure SET_INPUT : .
procedure SET_OUTPUT (FILE : in FILE TYPE);

functien

function
function
pragma PAGE;

(FILE in FILE TYPE);

STANDARD INPUT return FILE TYPE;
function STANDARD_OUTPUT return FILE TYPE;

CURRENT_INPUT return FILE_ TYPE;
CURRENT_OUTPUT return FILE TYPE;

-- specification of line and page lengths

procedure SET_LINE LENGTH (FILE : in FILE TYPE;

TO : in COUNT);

procedure SET_LINE LENGTH (TO : in COUNT):;

procedure SET_PAGE LENGTH (FILE

¢ in FILE_TYPE;
TO : in COUNT);

procedure SET_PAGE_LENGTH (TO : in COUNT):;

function
function
function
function

pragma PAGE’;
-- Column,

LINE_LENGTH
LINE_LENGTH
PAGE_LENGTH

PAGE_LENGTH

(FILE : in FILE_TYPE)
return COUNT;
return COUNT;

(FILE : in FILE_TYPE)
return COUNT;
return COUNT;

Line, and Page Control

procedure NEW_LINE (FILE : in FILE TYPE;

SPACING : -
procedure NEW_LINE (SPACING : in POSITIVE COUN

in POSITIVE COUN

-3

procedure SKIP_LINE (FILE : in FILE TYPE:

function
function

procedure
procedure

procedure
procedure

function
function

END_OF_LINE
END_OF_LINE

NEW_PAGE
NEW_PAGE;

SKIP_PAGE
SKIP_PAGE;

END_OF _PAGE
END_OF_PAGE

SPACING : in POSITIVE_COUNT :=
procedure SKIP_LINE (SPACING : in POSITIVE COUNT :=

(FILE : in FILE_TYP:Z) return BOOLEAN;
return BOOLEAN;
(FILE : in FILE_TYPE);

(FILE : in FILE_TYPE);

(FILE : in FILE_TYPE) return BOOLEAN;
return BOOLEAN;

Page F-12

User's Guide

Implementation Dependent Characteristics

function
function

procedure
procedure
procedure
procedure
function
function
function
function
function
function

pragma PAGE;

END_OF_FILE
END_OF_FILE

SET_COL
SET_COL
SET_LINE
SET_LINE
COL

COL

LINE
LINE
PAGE

PAGE

(FILE : in FILE TYPE) return BOOLEAN:
return BOOLEAN;

(FILE : in FILE_TYPE;

TO : in POSITIVE_COUNT):

(TO : in POSITIVE_COUNT);

(FILE : in FILE TYPE;

TO : in POSITIVE_COUNT);

(TO : in POSITIVE_COUNT);

(FILE : in FILE TYPE)

return POSITIVE_COUNT;
return POSITIVE_COUNT;

(FILE : in FILE_TYPE)
return POSITIVE_COUNT;
return POSITIVE_COUNT;

(FILE : in FILE_TYPE)
return POSITIVE_COUNT;
return POSITIVE_COUNT;

-- Character Input-Output

procedure
procedure
procedure
procedure
-- String
procedure
procedure
procedure
procedure

procedure

procedure

procedure
procedure

pragma PAGE;

GET (FILE :
GET (
PUT (FILE :
PUT (
Input-Output

GET (FILE :
GET (
PUT (FILE :
PUT (

GET_LINE (

GET_LINE (

PUT_LINE (

PUT_LINE (

in FILE_TYPE; ITEM : out CHARACTER):;
ITEM : out CHARACTER):;

in FILE_TIPE; ITEM : in CHARACTER):
ITEM : in CHARACTER);

in FILE_TYPE; ITEM : out CHARACTER):
ITEM : out CHARACTER):;

in FILE_TYPE; ITEM : in CHARACTER}:
ITEM : in CHARACTER);

FILE : in FILE_TYPE;

ITEM : out STRING;

LAST : out NATURAL):

ITEM : out STRING;

LAST : out NATURAL);

FILE : in FILE_TYPE;

ITEM : in STRING);

ITEM : in STRING);

-- Generic Package for Input-Output of Integer Types

generic

Page

User's Guide
Implementation Dependent Characteristics

type NUM is range <>
package INTEGER IO is

DEFAULT WIDTH
DEFAULT_ BASE

FIELD

procedure GET (FILE
ITEM
WIDTH
(ITEM

WIDTH

procedure GET

PUT (FILE
ITEM
WIDTH
BASE
(ITEM
WIDTH

BASE

procedure

procedure PUT

GET (FROM
ITEM

LAST

procedure

PUT (TO
ITEM

BASE

procedure

end INTEGER_IO;

pragma PAGE;
-- Generic Packages for
generic

type NUM is digits <>;
package FLOAT_IO is

DEFAULT_FORE : FIELD :=
DEFAULT_AFT : FIELD :=
DEFAULT_EXP : FIELD :=
procedure GET (FILE :
ITEM :
WIDTH :
procedure GET (ITEM
WIDTH :
procedure PUT (FILE :
ITEM :
FORE :
AFT

NUMBER_BASE

-
’

NUM'WIDTH;
10;

in FILE_TYPE;

: out NUM;

: in FIELD := 0Q);

: out NUM;

: in FIELD := 0);

: in FILE_TYPE;

: in NUM;

: in FIELD := DEFAULT_WIDTH;
: in NUMBER_BASE :-=

: in NUM;

: in FIELD := DEFAULT_WIDTH;
: in NUMBER_BASE = DEFAULT_BASE);

in STRING;
out NUM;
out POSITIVE);

s ee e

out STRING:;
in NUM;

Input-Output of Real Types

2
NUM'DIGITS - 1
3

e Ne ~o

in FILE_TYPE;
out NUM;
in FIELD
out NUM;
in FIELD

:)
)2

0
0

in FILE_TYPE;
in NUM;

in FIELD
in FIELD

DEFAULT FORE;
DEFAULT_AFT;

Page F-14

DEFAULT BASE);

in NUMBER_BASE := DEFAULT BASE);

User's Guide
Implementation Dependent Characteristics

EXP : in FIELD := DEFAULT EXP):
procedure PUT (ITEM : in NUM;
FORE : in FIELD := DEFAULT_FORE;
AFT : in FIELD := DEFAULT_AFT;
EXP ¢! in FIELD := DEFAULT_EXP):
procedure GET (FROM : in STRING;
ITEM : out NUM;
LAST : out POSITIVE);
procedure PUT (TO : out STRING:
ITEM : in NUM;
AFT : in FIELD := DEFAULT_AFT;
EXP : in FIELD := DEFAULT_EXP);
end FLOAT_IO;
pragma PAGE;
generic
type NUM is delta <>;
package FIXED_IO is
DEFAULT_FORE : FIELD := NUM'FORE;
DEFAULT_AFT : FIELD := NUM'AFT;
DEFAULT_EXP : FIELD := O;

procedure GET (FILE in FILE TYPE;

ITEM : out NUM;

WIDTH : in FIELD := 0);
procedure GET (ITEM : out NUM;

WIDTH : in FIELD := 0);
procedure PUT (FILE : in FILE_TYPE;

ITEM : in NUM:;

FORE : in FIELD := DEFAULT_FORE;

AFT : in FIELD := DEFAULT_AFT:

EXP : in FIELD := DEFAULT_EXP);
procedure PUT (ITEM : in NUM;

FORE : in FIELD := DEFAULT_FORE:;

AFT : in FIELD := DEFAULT_AFT:

EXP : in FIELD := DEFAULT_EXP);
procedure GET (FROM : in STRING:;

ITEM : out NUM;

LAST : out POSITIVE):
procedure PUT (TO : out STRING;

ITEM : in NUM;

AFT : in FIELD := DEFAULT_AFT;

EXP : in FIELD := DEFAULT_EXP):

Page F-15

Us

er's Guide

Implementation Dependent Characteristics

pragma PAGE:;

end FIXED_ IO;

-- Generic Package for Input-Output of Enumeration Types

generic

type ENUM is (<>);

DEFAULT WIDTH

DEFAULT_SETTING

procedure
procedure

procedure

procedure

procedure

procedure

pragma PAGE;

GET
GET

PUT

PUT

GET

PUT

Exceptions

STATUS_ERROR
MODE_ERROR
NAME_ERROR

USE ERROR

DEVICE ERROR

END_ERROR

DATA_ERROR
LAYOUT_ERROR

pragma page;
private

se s s

package ENUMERATION_IO is

end ENUMERATION_ IO;

: FIELD := 0;

: TYPE_SET := UPPER_CASE;

(FILE : in FILE_TYPE; ITEM : out ENUM):
(ITEM : out ENUM);
(FILE : FILE_TYPE;

ITEM : in ENUM;

WIDTH : in FIELD := DEFAULT_WIDTH;

SET : in TYPE_SET := DEFAULT_SETTING);
(ITEM : in ENUM;

WIDTH : in FIELD := DEFAULT WIDTH:

SET : in TYPE_SET := DEFAULT_SETTING):;
(FROM : in STRING;

ITEM : out ENUM;

LAST : out POSITIVE);

(TO : out STRING;

ITEM : in ENUM;

SET : in TYPE_SET := DEFAULT_SETTING):
exception renames IO_EXCEPTIONS.STATUS ERROR;
exception renames IO _EXCEPTIONS.MODE ERROR;
exception renames IO_ “EXCEPTIONS.NAME ERROR;
exception renames IO EXCEPTIONS.USE ERROR;
exception renames IO EXCEPTIONS.DEVICE ERROR;
exception renames 10 _EXCEPTIONS.END ERROR;
exception renames IO EXCEPTIONS.DATA ERROR;
exception renames IO EXCEPTIONS.LAYOUT _ERROR;

type FILE_TYPE is

record
FT :

INTEGER

-1;

Page F-16

User's Guide
Implementation Dependent Characteristics

end record;

end TEXT IO;

F.7.2 Package IO_EXCEPTIONS

The specification of the package IO _EXCEPTIONS:

package IO_EXCEPTIONS is

STATUS _ERROR : exception;
MODE_ERROR ! exception;
NAME ERROR : exception;
USE_ERROR : exception;
DEVICE_ERROR : exception;
END_ERROR ¢ exception:;
DATA_ ERROR ! exception;
LAYOUT_ERROR : exception;

end IO_EXCEPTIONS;

F.7.3 Package BASIC_IO

The specification of package BASIC_ IO:

with IO _EXCEPTIONS:
package BASIC_I0 is

type ¢ount is range O .. integer'last;

subtype positive_ count is count range 1 .. count'last:

function get_integer return string:;

-- Skips any leading blanks, line terminators or page
-- terminators. Then reads a plus or a minus sign if

-- present, then reads according to the syntax of an

integer literal, which may be based. Stores in item
returns a string containing an optional sign and an
integer literal.

The exception DATA _ERROR is raised if the sequence

of characters does not correspond to the syntax
described above.

Page F-17

User's Guide
Implementation Dependent Characteristics

-- The exception END_ERROR is raised if the file terminator
-- is read. This means that the starting sequence of an

-- integer has not been met.

-- Note that the character terminating the operation must
-- be available for the next get operation.

function get_real return string:;

-- Corresponds to get_integer except that it reads according
-- to the syntax of a real literal, which may be based.
function get_enumeration return string:;

-- Corresponds to get_integer except that it reads according
-- to the syntax of an identifier, where upper and lower

~-- case letters are equivalent to a character literal

-- including the apostrophes.

function get_item (length : in integer) return string:
-- Reads a string from the current line and stores it in
-~ item. If the remaining number of <haracters on the

-- current line is less than length then only these

-- characters are returned. The line terminator is not

-- skipped.

procedure put_item (item : in string):

-- If the length of the string is greater than the current
-- maximum line (linelength), the exception LAYOUT_ERROR
-- 1is raised.

-- If the string does not fit on the current line a line

-- terminator is output, then the item is output.

-- Line and page lengths - [DOD-83] 14.3.3.

procedure set line_length (to : in count);

procedure set_page_length (to : in count):

function line_length return count;

Page F-18

User's Guide
Implementation Dependent Characteristics
function page length return count:
:: Operations on columns, lines and pages - [DOD-83] 14.3.4.
procedure new_line:
procedure skip line:;
function end_of_line return boolean;
procedure new_page;
procedure skKip_ page:;
function end_of page return boolean;
fuaction end_of_file return boolean;
‘procedure set_col (to : in positive_count);
procedure set_line (to : in positive_count):;
function col return positive_count;

function line return positive_count;

function page return positive_count;

-- Character and string procedures.
-- Corresponds to the procedures defined in [DOD-83] 14.3.6.

procedure get_character (item : out character);
procedure get_string (item : out string):
procedure get_line (item : out string;

Page F-19

User's Guide
Implementation Dependent Characteristics

last : out natural);
procedure put_character (item : in character);
procedure put_string (item : in string);

procedure put_line (item : in string);

-- exceptions:

USE_ERROR ¢ exception renames IO_EXCEPTIONS.USE_ERROR;
DEVICE_ERROR : exception renames IO_EXCEPTIONS.DEVICE_ERROR;
END_ERROR : exception renames IO_EXCEPTIONS.END ERROR;
DATA_ERROR : exception renames IQ_EXCEPTIONS.DATA ERROR;
LAYOUT_ERROR : exception renames IO_EXCEPTIONS.LAYOUT_ ERROR;

end BASIC_IO:;

F.7.4 Package TERMINAL_DRIVER

The specification of package TERMINAL DRIVER:
package terminal_driver is
procedure put_character(ch : character):
procedure flush;
function get_character return character:
procedure purge;
private

pragma interface (AS, put_character):
pragma interface_spelling(put_character, "Ada_UCC_GSPutByte"):

pragma interface (AS, get_character);
pragma interface_spelling(get_character, "Ada_UCC_GSGetByte"):

pragma interface (AS, flush):
pragma interface_spelling(flush, "Ada_UCC_GSFlushOutput"):

pragma interface (AS, purge):
pragma interface_spelling(purge, "Ada_UCC_GSPurgelnput");

Page F-20

User's Guide

Implementation Dependent Characteristics

pragma initialize("Ada_UCC_GSInitIO");
pragma rundown ("Ada_UCC_GsCloselIO");

end terminal_driver;

F.7.5 Package SEQUENTIAL_IO

-- Source code for SEQUENTIAL_IO
pragma PAGE:;
with IO _EXCEPTIONS;
generic

type ELEMENT_TYPE is private:;
package SEQUENTIAL IO is

type FILE _TYPE is limited private;

type FILE _MODE is (IN_FILE, OUT_FILE);

pragma PAGE;
-- File management

OUT_FILE;

-
-
-
. ’
lll|).
4

o .
’

FILE_TYPE) return FILE_MODE;

FILE TYPE) return STRING:

procedure CREATE(FILE : in out FILE_TYPE:;
MODE : in FILE MODE
NAME : in STRING
FORM : in STRING

procedure OPEN (FILE : in out FILE TYPE:
MODE : in FILE MODE:;
NAME : in STRING;
FORM : in STRING :=

procedure CLOSE (FILE : in out FILE TYPE):

procedure DELETE(FILE : in out FILE _TYPE):

procedure RESET (FILE : in out FILE_TYPE:
MODE : in FILE _MODE);

procedure RESET (FILE : in out FILE_TYPE):

function MODE (FILE : in

function NAME (FILE : in

function FORM (FILE : in

FILE _TYPE) return STRING:;

Page F-21

User's Guide
Implementation Dependent Characteristics

function IS_OPEN(FILE : in FILE _TYPE) return BOOLEAN;

pragma PAGE;
-- input and output operations

procedure READ (FILE
ITEM

in FILE TYPE;
out ELEMENT TYPE);

procedure WRITE (FILE : in FILE_ TYPE;
ITEM : in ELEMENT_TYPE);

function END_OF_FILE(FILE : in FILE_TYPE) return BOOLEAN;
pragma PAGE;

-- exceptions

STATUS_ERROR exception renames IO_EXCEPTIONS.STATUS_ERROR;

MODE_ERROR : exception renames IO_EXCEPTIONS.MODE_ERROR;
NAME ERROR : exception renames IO _EXCEPTIONS.NAME ERROR;
USE_ERROR : exception renames IO_EXCEPTIONS.USE_ERROR;
DEVICE_ERROR : exception renames IO EXCEPTIONS. DEVICE ERROR;
END_ERROR : exception renames IO EXCEPTIONS.END ERROR'
DATA_ERROR : exception renames IO _EXCEPTIONS.DATA_ERROR;

pragma PAGE;
private

type FILE_TYPE is new INTEGER;

end SEQUENTIAL_IO;

F.8 Machine Code Insertion

Machine code insertion is allowed using the instruction defined
in package MACHINE CODE. All arguments given 1in the code
statement aggregate must be static.

The machine 1language defined in package MACHINE _CODE is not VAX

assembler, but rather Abstract A-code which is an intermediate
language used be the compiler.

Page F-22

