
RFPC)RT DOr-1JMENTATION PAGE N~;4o4188

brage I ho~ur per repories. nc~luiNg the tim. tot r.e! n titns searching exiting data soucee gatheiNg and maintaining the data
jrdin this burdsn estimate or anry other spect of this collection of information. Wckudtig suggestiona for reducing this burden to Washi~on

1t215 Jefferson Davis Higtway. Suits 1204. Aulvrlon. VA 22202-43D2. arid to t Office of Infrmation and Regulawqr Affairs. Office of

A D-A 234 380 REPORT DATE 3.REPORT TYPE AND yATES COVERED

IFinal: Dec 17, 1990 to Marl1, 1991
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Ada Compiler Validation Summary Report: DDC International A/S, DACS VAX/VMS
to 68020 Bare Cross Compiler System, Version 4.6, microVAX 3100 (Host) to
MOTOROLA MVME1 33 (Target), 901129S1.1 1051

6. AUTHOR(S)

National Institute of Standards and Technology
Gaitht.-sburg, MD
USA
7. PERFORMING ORGANiZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

National Institute of Standards and Technology REPORT NUMBER

National Computer Systems Laboratory NIST9ODDC500_2_1.11
Bldg. 255, Rm A266
Gaithersburg, MD 20899 USA
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING, AGENCY

Ada Joint Program Office REPORT NUMBER

United States Department of Defense
Pentagon, RM 3E 14
Washington, D.C. 20301-3081

11. SUPPLEMENTARY NOTES

1 2a. DISTRIBUTION/AVAILABILITY STATEM ENT 12b. DISTRIBUTION CODE

Approved for public release, distribution unlimited.

13. ABSTRACT (Maximum 200 words)

DDC International A'S, DACS VAXiVMS to 68020 Bare Cross Compiler System, Version 4.6, Gaithersburg, MD, microVAX
3100 running VMS Version 5.3(Host) to MOTOROLA MVME1 33 board (Target), ACVC 1.11.

14 SUBJECT TERMS 15. NUMBER OF PAGES

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val. ___________

Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO. 16. PRICE CODE

,!:r itqTV CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT I c ABSTRACT

UNCLASSIFIED UNCLASSIFED UNCLASSIFIED
NSN 7540-01 -280-550 Standard Form 298, (Rev. 2-89)

91 4 1 066 Prescribed by ANSI Std. 239-128

AVF Control Number: NIST90DDC500_21.11
DATE COMPLETED

BEFORE ON-SITE: December 17, 1990
AFTER ON-SITE: November 30, 1990
REVISIONS:

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 901129S1.11051
DDC International A/S

DACS VAX/VMS to 68020 Bare Cross Compiler System, Version 4.6
microVAX 3100 => MOTOROLA MVME133

Prepared By:
Software Standards Validation Group
National Computer Systems Laboratory

National Institute of Standards and Technology
Building 225, Room A266

Gaithersburg, Maryland 20899

9...

t .-

AVF Control Number: NIST90DDC500_21.11

Certificate Information

The following Ada implementation was tested and determined to pass
ACVC 1.11. Testing was completed on November 29, 1990.

Compiler Name and Version: DACS VAX/VMS to 68020 Bare Cross
Compiler System Version 4.6

Host Computer System: microVAX 3100 running VMS Version
5.3

Target Computer System: MOTOROLA MVME133 board

A more detailed aesc.iption of this Ada implementation is found in
section 3.1 of this report.

As a result of this validation effort, Validation Certificate
901129S1.11051 is awarded to DDC International A/S. This
certificate expires on March 01, 1993.

This report has been reviewed and is approved.

Ada ValidAtion ci i Ada Validati1on i -ity
Dr. David K. Je erto Mr. L. Arnold J nson
Chief, Information Syskems Manager, Software Standards
Engineering Division (ISED) Validation Group

National Computer Systems National Computer Systems
Laboratory (NCSL) Laboratory (NCSL)

National Institute of National Institute of
Standards and Technology Standards and Technology
Building 225, Room A266 Building 225, Room A266
Gaithersburg, MD, 20899 Gaithersburg, MD 20899

Ada Validation Organization Ada Joint Program Office
;2) Director, Computer & Software Dr. John Solomond

Engineering Division Director
Institute for Defense Analyses Department of Defense
Alexandria VA 22311 Washington DC 20301

DECLARATION OF CONFORMANCE

The following declaration of conformance was supplied by the
customer.

DECLARATION OF CONFORMANCE

Customer and Certificate Awardee: DDC International A/S

Ada Validation Facility: National Institute of Standards and
Technology

National Computer Systems Laboratory
(NCSL)

Software Validation Group
Building 225, Room A266
Gaithersburg, Maryland 20899

ACVC Version: 1.11

Ada Implementation:

Compiler Name and Version: DACS. VAX/VMS to 68020 Bare Cross
Compiler System Version 4.6

Host Computer System: microVAX 3100 running VMS Version
5.3

Target Computer System: MOTOROLA MVME133 board

Declaration:

[I/we] the undersigned, declare that [I/we] have no knowledge of
deliberate deviations from the Ada Language Standard
ANSI/MIL-STD-1815A ISO 8652-1987 in the implementation listed
above.

Customer Signature Date
Company
Title

TABLE OF CONTENTS

CHAPTER i 1-1
INTRODUCTION 1-1

1.1 USE OF THIS VALIDATION SUMMARY REPORT 1-i
1.2 REFERENCES L-1
1.3 ACVC TEST CLASSES 1-2
1.4 DEFINITION OF TERMS 1-3

CHAPTER 2 2-1
IMPLEMENTATION DEPENDENCIES 2-1

2.1 WITHDRAWN TESTS 2-1
2.2 INAPPLICABLE TESTS 2-1
2.3 TEST MODIFICATIONS 2-3

CHAPTER 3 3-1
PROCESSING INFORMATION 3-1

3.1 TESTING ENVIRONMENT 3-1
3.2 SUMMARY OF TEST RESULTS 3-2
3.3 TEST EXECUTION 3-2

APPENDIX A A-i
MACRO PARAMETERS A-i

APPENDIX B B-i
COMPILATION SYSTEM OPTIONS B-i
LINKER OPTIONS B-2

APPENDIX C ... C-I
APPENDIX F OF THE Ada STANDARD C-i

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the
Ada Validation Procedures [Pro90] against the Ada Standard [Ada83]
using the current Ada Compiler Validation Capability (ACVC). This
Validation Summary Report (VSR) gives an account of the testing of
this Ada implementation. For any technical terms used in this
report, the reader is referred to [Pro9O]. A detailed description
of the ACVC may be found in the current ACVC User's Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the
Ada Certification Body may make full and free public disclosure of
this report. In the United States, this is provided in accordance
with the "Freedom of Information Act" (5 U.S.C. #552). The results
of this validation apply only to the computers, operating systems,
and compiler versions identified in this report.

The organizations represented on the signature page of this report
do not represent or warrant that all statements set forth in this
report are accurate and complete, or that the subject
implementation has no nonconformities to the Ada Standard other
than those presented. Copies of this report are available to the
public from the AVF which performed this validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results
should be directed to the AVF which performed this validation or
to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.2 REFERENCES

[Ada83] Reference Manual for the Ada ProQramming LanguaQe,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

(Pro9O] Ada Compiler Validation Procedures, Version 2.1, Ada Joint
Program Oftice, August 1990.

1-1

[UG89] Ada Compiler Validation Capability User's Guide, 21 June
1989.

1.3 ACVC TEST CLASSES

Compliance of kdt implementations is tested by means of the ACVC.
The ACVC contains a collection of test prograr. structured into six
test classes: A, B, C, D, E, and L. The first letter of a test
name identifies the class to which it belongs. Class A, C, D, and
E tests are executable. Class B and class L tests are expected to
produce errors at compile time and link time, respectively.

The executable tests are written in a self-checking manner and
produce a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when they are executed. Three Ada library units, the
packages REPORT and SPPRTl3, and the procedure CHECK FILE are used
for this purpose. The package REPORT also provides a set of
identity functions used to defeat some compiler optimizations
allowed by the Ada Standard that would circumvent a test objective.
The package SPPRT13 is used by many tests for Chapter 13 of the Ada
Standard. The procedure CHECK FILE is used to check the contents
of text files written by some of the Class C tests for Chapter 14
of the Ada Standard. The operation of REPORT and CHECK FILE is
checked by a set of executable tests. If these units are not
operating correctly, validation testing is liscontinued. Class B
tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled
and the resulting compilation listing is examined to verify that
all violations of the Ada Standard are detected. Some of the class
B tests contain legal Ada code which must not be flagged illegal
by the compiler. This behavior is also verified.

Class L tests check that an Ada implementation correctly detects
violation of the Ada Standard involving multiple, separately
compiled units. Errors are expected at link time, and execution
is attempted.

In some tests of the ACVC, certain macro strings have to be
replaced by implementation-specific values -- for example, the
largest integer. A list of the values used for this implementation
is provided in Appendix A. In addition to these anticipated test
modifications, additional changes may be required to remove
unforeseen conflicts between the tests and implementation-dependent
characteristics. The modifications required for this
implementation are described in section 2.3.
For each Ada implementation, a customized test suite is produced
by the AVF. This customization consists of making the
modifications described in the preceding paragraph, removing

1-2

withdrawn tests (see section 2.1) and, possibly some inapplicable
tests (see Section 3.2 and [UG89]).

In order to pass an ACVC an Ada implementation must process each
test of the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to
be added to a given host and target computer
system to allow transformation of Ada programs
into executable form and execution thereof.

Ada Compiler The means for testing compliance of Ada
Validation implementations, Validation consisting of the
Capability test suite, the support programs, the ACVC
(ACVC) Capability user's guide and the template for

the validation summary (ACVC) report.

Ada An Ada compiler with its host computer system and
Implementation its target computer system.

Ada The part of the certification body which carries
Validation out the procedures required to establish the
Facility (AVF) compliance of an Ada implementation.

Ada The part of the certification body that provides
Validation technical guidance for operations of the Ada
Organization certification system.
(AVO)

Compliance of The ability of the implementation to pass an ACVC
an Ada version.
Implementation

Computer A functional unit, consisting of one or more
System computers and associated software, that uses

common storage for all or part of a program and
also for all or part of the data necessary for
the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including
arithmetic operations and logic operations; and
that can execute programs that modify themselves
during execution. A computer system may be a
stand-alone unit or may consist of several
inter-connected units.

Conformity Fulfillment by a product, process or service of

all requirements specified.

1-3

Customer An individual or corporate entity who enters into
an agreement with an AVF which specifies the terms
and conditions for AVF services (of any kind) to
be performed.

Declaration of A formal statement from a customer assuring that
Conformance conformity is realized or attainable on the Ada

implementation for which validation status is
realized.

Host Computer A computer system where Ada source programs are
System transformed into executable form.

Inapplicable A test that contains one or more test objectives
test found to be irrelevant for the given Ada

implementation.

Operating Software that controls the execution of programs
System and that provides services such as resource

allocation, scheduling, input/output control,
and data management. Usually, operating systems
are predominantly software, but partial or
complete hardware implementations are possible.

Target A computer system where the executable form of Ada
Computer programs are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated
Implementation successfully either by AVF testing or by

registration [Pro90].

Validation The process of checking the conformity of an Ada
compiler to the Ada programming language and of
issuing a certificate for this implementation.

Withdrawn A test found to be incorrect and not used in
test conformity testing. A test may be incorrect

because it has an invalid test objective, fails
to meet its test objective, or contains erroneous
or illegal use of the Ada programming language.

1-4

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

Some tests are withdrawn by the AVO from the ACVC because they do
not conform to the Ada Standard. The following 81 tests had been
withdrawn by the Ada Validation Organization (AVO) at the time of
validation testing. The rationale for withdrawing each test is
available from either the AVO or the AVF. The publication date for
this list of withdrawn tests is 90-10-12.

E28005C B28006C C34006D B41308B C43004A C45114A
C45346A C45612B C45651A C46022A B49008A A74006A
C74308A B83022B B83022H B83025B B83025D B83026A
B83026B C83041A B85001L C97116A C98003B BA2011A
CB7001A CB7001B CB7004A CC1223A BC1226A CC1226B
BC3009B BDlB02B BDlB06A AD1BO8A BD2AO2A CD2A21E
CD2A23E CD2A32A CD2A41A CD2A41E CD2A87A CD2Bl5C
BD3006A BD4008A CD4022A CD4022D CD4024B CD4024C
CD4024D CD4031A CD4051D CD5111A CD7004C ED7005D
CD7005E AD7006A CD7006E AD7201A AD7201E CD7204B
BD8002A BD8004C CD9005A CD9005B CDA2O1E CE2107I
CE2117A CE2117B CE2119B CE2205B CE2405A CE3111C
CE3118A CE3411B CE3412B CE3607B CE3607C CE3607D
CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are
irrelevant for a given Ada implementation. The inapplicability
criteria for some tests are explain, .d in documents issued by ISO
and the AJPO known as Ada Issues and commonly referenced in the
format AI-dddd. For this implementation, the following tests were
inapplicable for the reasons indicated; references to Ada Issues
are included as appropriate.

The following 201 tests have floating-point type declarations
requiring more digits than SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)

2-1

C45641L..Y (14 tests) C46012L..Z (15 tests)

C24113I..K (3 TESTS) USE A LINE LENGTH IN THE INPUT FILE WHICH
EXCEEDS 126 CHARACTERS.

The following 21 tests check for the predefined type
LONGINTEGER:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504C C45504F C45611C
C45612C C45613C C45614C C45631C C45632C
B52004D C55B07A B55B09C B86001W C86006C
CD7101

C35404D, C45231D, B86001X, C86006E, and CD7101G check for a
predefined integer type with a name other than INTEGER,
LONGINTEGER, or SHORTINTEGER.

C35702A , C35713B, C45423B, B86001T, AND C86006H CHECK FOR THE
PREDEFINED TYPE SHORTFLOAT.

C35713D AND B8600lZ CHECK FOR A PREDEFINED FLOATING-POINT TYPE
WITH A NAME OTHER THAN FLOAT, LONGFLOAT, OR SHORTFLOAT.

C45531M, C45531N, C455310, C45531P, C45532M, C45532N, C455320,
AND C45532P CHECK FIXED-POINT OPERATIONS FOR TYPES THAT REQUIRE
A SYSTEM.MAXMANTISSA OF 47 OR GREATER.

C45624A CHECKS THAT THE PROPER EXCEPTION IS RAISED IF
MACHINE OVERFLOWS IS FALSE FOR FLOATING POINT TYPES WITH DIGITS
5. FOR THIS IMPLEMENTATION, MACHINEOVERFLOWS IS TRUE.

C45624B CHECKS THAT THE PROPER EXCEPTION IS RAISED IF
MACHINEOVERFLOWS IS FALSE FOR FLOATING POINT TYPES WITH DIGITS
6. FOR THIS IMPLEMENTATION, MACHINEOVERFLOWS IS TRUE.

C4AO13B CONTAINS THE EVALUATION OF AN EXPRESSION INVOLVING
'MACHINE RADIX APPLIED TO THE MOST PRECISE FLOATING-POINT TYPE.
THIS EXPRESSION WOULD RAISE AN EXCEPTION. SINCE THE EXPRESSION
MUST BE STATIC, IT IS REJECTED AT COMPILE TIME.

B86001Y CHECKS FOR A PREDEFINED FIXED-POINT TYPE OTHER THAN
DURATION.

C96005B CHECKS FOR VALUES OF TYPE DURATION'BASE THAT ARE OUTSIDE
THE RANGE OF DURATION. THERE ARE NO SUCH VALUES FOR THIS
IMPLEMENTATION.

CD1009C USES A REPRESENTATION CLAUSE SPECIFYING A NON-DEFAULT
SIZE FOR A FLOATING-POINT TYPE.

2-2

CA2009C, CA?'009F, BC3204C, AND BC3205D THESE TESTS INSTANTIATE
GENERIC UNITS BEFORE THEIR BODIES ARE COMPILED. THIS
IMPLEMENTATIDN CREATES A DEPENDENCE ON GENERIC UNIT AS ALLOWED
BY AI-00408 & AI-00530 SUCH THAT A THE COMPILATION OF THE GENERIC
UNIT BODIES MAKES THE INSTANTIATING UNITS OBSOLETE.

CD2A84A, CD2A84E, CD2A84I..J (2 TESTS), AND CD2A840 USE
REPRESENTATION CLAUSES SPECIFYING NON-DEFAULT SIZES FOR ACCESS
TYPES.

The following 265 tests check for sequential, text, and direct
access files:

CE2102A..C (3) CE2102G..H (2) CE2102K CE2102N..Y (12)
QE2103C..D (2) CE2104A..D (4) CE2105A..B (2) CE2106A..B (2)
CE2107A..H (8) CE2107L CE2108A..H (8) CE2109A..C (3)
CE2110A..D (4) CE2111A..I (9) CE2115A..B (2)
CE2120A..B (2) CE2201A..C (3) EE2201D..E (2) CE2201F..N (9)
CE2203A CE2204A..D (4) CE2205A CE2206A
CE2208B CE2401A..C (3) EE2401D CE2401E..F (2)
EE2401G CE2401H..L (5) CE2403A CE2404A..B (2)
CE2405B CE2406A CE2407A..B(2) CE2408A..B (2)
CE2409A..B (2) CE2410A..B (2) CE2411A CE3102A..C (3)
CE3102F..H (3) CE3102J..K (2) CE3103A CE3104A..C (3)
CE3106A..B (2) CE3107B CE3108A..B (2) CE3109A
CE3110A CE3111A..B (2) CE3111D..E (2) CE3112A..D (4)
CE3114A..B (2) CE3115A CE3116A CE3119A
EE3203A EE3204A CE3207A CE3208A
CE3301A EE3301B CE3302A CE3304A
CE3305A CE3401A CE3402A EE3402B
CE3402C..D (2) CE3403A..C (3) CE3403E..F (2) CE3404B..D (3)
CE3405A EE3405B CE3405C..D (2) CE3406A..D (4)
CE3407A..C (3) CE3408A..C (3) CE3409A CE3409C..E (3)
EE3409F CE3410A CE3410C..E (3) EE341OF
CE3411A CE3411C CE3412A EE3412C
CE3413A..C (3) CE3414A CE3602A..D (4) CE3603A
CE3604A..B (2) CE3605A..E (5) CE3606A..B (2)
CE3704A..F (6) CE3704M..O (3) CE3705A..E (5) CE3706D
CE3706F..G (2) CE3804A..P (16) CE3805A..B (2) CE3806A..B (2)
CE3806D..E (2) CE3806G..H (2) CE3904A..B (2) CE3905A..C (3)
CE3905L CE3906A..C (3) CE3906E..F (2)

CE2103A..B and CE3107A EXPECT THAT NAME ERROR IS RAISED WHEN AN
ATTEMPT IS MADE TO CPEATE A FILE WITH AN ILLEGAL NAME; THIS
IMPLEMENTATION DOES NOT SUPPORT THE CREATION OF EXTERNAL FILES
AND SO RAISES USEERROR.

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 67 tests.

2-3

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard
in the way expected by the original tests.

B22003A B26001A B26002A B26005A B28003A B29001A B33301B
B35101A B37106A B37301B B373n2A B38003A B38003B B38009A
B38009B B55AOlA B61001C B610O1F B61001H B61001I B61001M
B6100lR B61001W B67001H B83A07A B83A07B B83A07C B83EOlC
B83EOlD B83EOlE B85001D B85008D B91001A B91002A B91002B
B91002C B91002D B91002E B91002F B91002G B91002H B910021
B91002J B91002K B91002L B95030A B95061A B95061F B95061G
B95077A B97103E B97104G BA1001A BA1101B BC1109A BC1109C
BC1109D BC1202A BC1202F BC1202G BE2210A BE2413A

"PRAGMA ELABORATE (REPORT)" has been added at appropriate points
in order to solve the elaboration problems for:

C83030C

The value used to specify the collection size has been increased
from 256 to 324 take alignment into account for:

CD2A83A

CE2103A..B and CE3107A abort with an unhandled execption when
USEERROR is raised on the attempt to create an external file
(see 2.2). The AVO ruled that these tests are to be graded as
inapplicable.

2-4

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is
described adequately by the information given in the initial
pages of this report with the following additional information:

The DACS VAX/VMS to 68020 Bare Cross Compiler System Version 4.6
was executed on the target MOTOROLA MVME 133 board with the
following:

The MC68020
The MC68881
One internal timer
One serial port
1MB RAM

For a point of contact for technical information about this Ada
implementation system, see:

Mr. Svend Bodilsen
DDC International A/S
Gl. Lundtoftevej lB

DK-2800 Lyngby
DENMARK

Telephone: + 45 42 87 11 44
Telefax: + 45 42 87 22 17

For a point of contact for sales information about this Ada
implementation system, see:

Mr. Palle Andersson
DDC International A/S
Gl. Lundtoftevej lB

DK-2800 LYNGBY
Denmark

Telephone: + 45 42 87 11 44
Telefax: + 45 42 87 22 17

Testing of this Ada implementation was conducted at the
customer's site by a validation team from the AVF.

3-1

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes
each test of the customized test suite in accordance with the Ada
Programming Language Standard, whether the test is applicable or
inapplicable; otherwise, the Ada Implementation fails the ACVC
[Pro90].

For all processed tests (inapplicable and applicable), a result
was obtained that conforms to the Ada Programming Language
Standard.

a) Total Number of Applicable Tests 3561

b) Total Number of Withdrawn Tests 81
c) Processed Inapplicable Tests 528
d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point

Precision Tests 0

f) Total Number of Inapplicable Tests 528 (c+d+e)
g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

Version 1.11 of the ACVC comprises 4170 tests. When this
compiler was tested, the tests listed in section 2.1 had been
withdrawn because of test errors. The AVF determined that 528
tests were inapplicable to this implementation. All inapplicable
tests were processed during validation testing. In addition, the
modified tests mentioned in section 2.3 were also processed.

A magnetic tape containing the customized test suite (see section
1.3) was taken on-site by the validation team for processing.
The contents of the magnetic tape were loaded directly onto the
host computer.

After the test files were loaded onto the host computer, the full
set of tests was processed by the Ada implementation.

The tests were compiled and linked on the host computer system,
as appropriate. The executable images were transferred to the
target computer system by Digital Equipment Corporation ethernet
server system via an RS232 connection to the target board. The
results were captured on the host computer system via the same
communications process.

Testing was performed using command scripts provided by the

3-2

customer and reviewed by the validation team. See Appendix B for
a complete listing of the processing options for this
implementation. It also indicates the default options. The
options invoked explicitly for validation testing during this
test were:

/LIST /LIBRARY

The options invoked by default for validation testing during this
test were:

/CHECK /CONFIGURATIONFILE = <default file>
/NOPROGRESS /NOSAVE_SOURCE /NOXREF

Test output, compiler and linker listings, and job logs were
captured on magnetic tape and archived at the AVF. Selected
listings examined on-site by the validation team were also
archived.

3-3

APPENDIX A

MACRO PARAMETERS

This appendix ontains the macro parameters used for customizing
the ACVC. The meaning and purpose of these parameters are
explained in [UG89]. The parameter values are presented in two
tables. The first table lists the values that are defined in
terms of the maximum input-line length, which is 126 the value
for $MAXINLEN--also listed here. These values are expressed
here as Ada string aggregates, where "V" represents the maximum
input-line length.

Macro Parameter Macro Value

SMAXINLEN 126

SBIGIDl (l..V-l => 'A', V => 'I')

SBIGID2 (1..V-1 => 'A', V => '2')

$BIGID3 (1..V/2 => 'A') & '3' & (l..V-l-V/2 => 'A')

$BIGID4 (1..V/2 => 'A') & '4' & (l..V-I-V/2 => 'A')

$BIGINTLIT (l..V-3 => '0') & "298"

$BIGREALLIT (1..V-5 => '0') & "690.0"

$BIGSTRINGI '"' & (l..V/2 => 'A') & '"'

$BIGSTRING2 '"' & (l..V-I-V/2 => 'A') & 'I' & '"'

SBLANKS (l..V-20 => '

SMAXLENINTBASEDLITERAL
"2:" & (1..V-5 => '0') & "11:"

SMAXLENREALBASED LITERAL
"16:" & (1..V-7 => '0') & "F.E:"

SMAXSTRINGLITERAL '"' & (l..V-2 => 'A') & '"'

A-1

The following table contains the values for the remaining macro
parameters.

Macro Parameter Macro Value

ACC SIZE : 32
ALIGNMENT : 4
COUNT LAST : 2 147 483 647
DEFAULT MEM SIZE : 2 097152
DEFAULT STOR UNIT : 8
DEFAULTSYS NAME : DACS 68020
DELTA DOC - : 2#l.O#E-31
ENTRY ADDRESS : 16#FF#
ENTRY ADDRESS1 : 16#FE#
ENTRY ADDRESS2 : 16#FD#
FIELD LAST : 35
FILE TERMINATOR : ASCII.EM
FIXED NAME : NO SUCH TYPE
FLOAT NAME : NO SUCH TYPE
FORM STRING : ""

FORM STRING2
"CANNOT RESTRICT FILE CAPACITY"
GREATER THAN DURATION : 100 000.0
GREATER THAN DURATION BASE LAST : 200-000.0
GREATER THAN FLOAT BASE LAST : 1.80141E+38
GREATER THAN FLOAT SAFE LARGE : 1.0E308
GREATER THAN SHORTFLOATSAFELARGE: 1.0E308
HIGH PRIORITY : 24
ILLEGAL EXTERNAL FILE NAME1 : \NODIRECTORY\FILENAME
ILLEGAL-EXTERNAL-FILE-NAME2

THIS-FILE-NAME-IS-TOO-LONG-FOR-MY-SYSTEM
INAPPROPRIATELINELENGTH : -i
INAPPROPRIATEPAGELENGTH : -l
INCLUDE PRAGMAl

PRAGMA INCLUDE ("A28006D1.TST")
INCLUDE PRAGMA2

PRAGMA INCLUDE ("B28006E1.TST")
INTEGER FIRST : -2147483648
INTEGER-LAST : 2147483647
INTEGER LAST PLUS 1 : 2147483648
INTERFACELANGUAGE :AS
LESS THAN DURATION : -75000.0
LESS THAN DURATION BASEFIRST : -131073.0
LINE TERMINATOR : ASCII.CR
LOW PRIORITY : 1
MACHINE CODE STATEMENT

AA INSTR' (AAEXIT_SUBPRGRM,0,0,0,AAINSTR INTG'FIRST,0);
MACHINE CODE TYPE : AA INSTR
MANTISSADOC- : 31-

A-2

MAX DIGITS : 15
MAX INT : 2147483647
MAX -INT -PLUS_1 : 2147483648
MIN INT : -2147483648
NAME :NOSUCH TYPEAVAILABLE
NAME -LIST :dacs_68020
NAMESPECIFICATIONi

DISK$AWC 2: [CROCKETTL.ACVC. DEVELOPMENT]X2120A.; 1
NAME SPECIF"ICATION2

DISKSAWC 2: [CROCKETTL.ACVC.DEVELOPMENT]X2120B.; 1
NAME SPECIFICATION3

EDISK$AWC_2: [CROCKETTL.ACVC. DEVELOPMENT)X2120C.; 1
NEG BASED INT : 16#FOOOOOOE#
NEW7 MEN SIZE : 2097152
NEW7 STOR UNIT : 8
NEW -SYS NAME : OURULTRIXADA
PAGE TERMIINATOR : ASCIfI.FF
RECORiD DEFINITION

RECORD INSTRNO: INTEGER ;ARGO: INTEGER ;ARG1: INTEGER;
ARG2 :INTEGER ;-ARG3 :INTEGER; ARG4 :INTEGER; END RECORD;

RECORD-NAME : AAINSTR
TASK SIZE : 32
TASKSTORAGESIZE : 1024
TICK- : 2#1.0#E-14
VARIABLEADDRESS : 16#ffffoo#
VARIABLEADDRESS1 : 16#ffff2o#
VARIABLEADDRESS2 : 16#ffff4O#
YOURPRAGMA : NO FLOAT

A-3

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in
this Appendix, are provided by the customer. Unless specifically
noted otherwise, references in this appendix are to compiler
documentation and not to this report.

QUALIFIER DESCRIPTION

/[NO]CHECK Suppresses run-time constraint checks.
/CONFIGURATIONFILE Specifies the file used by the compiler.
/LIBRARY Specifies program library used.
/[NO]LIST Writes a source listing on the list file.
/OPTIMIZE Specifies compiler optimization.
/[NO]PROGRESS Displays compiler progress.
/[NO]SAVESOURCE Inserts source text in program library.
/[NO]XREF Creates a cross reference listing.
/UNIT Assigns a specific unit number to the

compilation (must be free and in a
sublibrary).

/ADARTS For maintenance purpose.
<source-file-spec> The name of the source file to be

compiled.

B-1

LINKER OPTIONS

The linker options of this Ada implementation, as described in
this Appendix, are provided by the customer. Unless specifically
noted otherwise, references in this appendix are to linker
documentation and not to this report.

QUALIFIER DESCRIPTION

/LIBRARY The library used in the link.
/[NO]WARNINGS Print warnings.
/[NO]STATISTICS Print statistics.
/[NO]VERIFY Print information about the link.
/[NO]FLOAT Control of co-processor use.
/[NO]VECTOR Interrupt vector description.
/[NO]INTERRUPT STACK Interrupt stack description.
/[NO]MAINSTACK Main task stack description.
/[NO]TASKS Number of TCB'S allocated.
/DEFAULTS Default values for tasks.
/[NO]INTERRUPTSTACK Interrupt vector description.
/MAINTASK Main task defaults.
/[NO)HEAP Control of memory management.
/[NO]EXCEPTIONS Control of exception management.
/BASE Base address of the link.
/RAM Description of RAM memory.
/[NO]ROM Description of ROM memory.
/[NO]ENTRY Alternative program start label.
/[NO]INIT FILE Initialization file name.
/[NO]OPTION_FILE Linker option file name.
/[NO]KEEP Do not delete temporary files.
/BOOT Generate a boot module.
/[NO]USR LIBRARY A user supplied object library.
/RTS STACK USE Amount of memory used by RTS.
/[NOTABSOLUTE Name of absolute file.
/UCCLIBRARY UCC library name.
<unit-name> The name of the main unit.

B-2

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in Chapter 13 of the Ada Standard, and
to certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of this Ada
implementation, as described in this Appendix, are provided by
the customer. Unless specifically noted otherwise, references
in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package
STANDARD, which are not a part of Appendix F, are:

package STANDARD is

type SHORTINTEGER is range -32_768 .. 32_767;

type INTEGER is range -2**31 .. 2**31-1;

type FLOAT is digits 6
range -3.402823466385E+38 .. 3.402823466385E+38;

type LONGFLOAT is digits 15
range -l.7976931348623157E+308 .. 1.7976931348623157E+308;

type DURATION is delta 2#1.0#E-14 range -131_072.0 .. 131_071.0;

end STANDARD;

C-1

APPENDIX F
IMPLEMENTATION DEPENDENT CHARACTERISTICS

This appendix describes the implementation-dependent
characteristics of DACS VAX/VMS to 68020 Bare Ada Cross Compiler
System required in Appendix F of the Ada Reference Manual
(ANSI/MIL-STD-1815A).

F.1 Implementation-Dependent Pragmas

This section describes all implementation defined pragmas.

F.1.1 PRAGMA INTERFACE-SPELLING

Format: pragma INTERFACESPELLING(<subprogram-name>,
<string>)

Placement: The pragma may be placed as a declarative item.

Restrictions: Pragma INTERFACE SPELLING must be applied to the
subprogram denoted by <subprogram-name>. The
<string> must be a string literal.

This pragma allows an Ada program to call routines with a name
that is not a legal Ada name, the <string> provides the exact
spelling of the name of the procedure.

F.1.2 PRAGMA INITIALIZE

Format: pragma INITIALIZE(<string_literal>)

Placement: The pragm4 may be placed as a declarative item.

Restrictions: None.

When the pragma is applied the linker will, as part of the
initialization code generate a call to the subprogram with the
name <stringliteral>. The call will be performed before the
elaboration of the Ada program is initiated, with IPL on 7. If
several pragmas INITIALIZE are applied to the same program the
routines are ca±led in the elaboration order, if several pragmas
INITIALIZE are applied to one compilation unit the routines are
called in-4the order of appearance. If several compilations units
apply pragma INITIALIZE to the same routine the routine is called
once only.

Page F-1

User's Guide

Implementation Dependent Characteristics

F.1.3 PRAGMA RUNDOWN

Format: pragma RUNDOWN(<stringliteral>)

Placement: The pragma may be placed as a declarative item.

Restrictions: None.

Similar to pragma initialize, but the subprogram is called after
the main program have terminated and in the reverse order as for
the pragma INITIALIZE.

F.1.4 PRAGMA TASKS

Format: pragma TASKS;

Placement: The pragma may be placed as a declarative item.

Restrictions: None.

Marks the compilation unit with the task attribute. If the code
that is interfaced by a pragma INTERFACE uses any tasking
constructs, the compilation unit must be marked such that the
linker includes the tasking kernel in target programs that
reference the compilation unit.

F.1.5 PRAGMA FLOAT

Format: pragma FLOAT;

Placement: The pragma may be placed as a declarative item.

Restrictions: None.

Marks the compilation unit with the float attribute. If the code
that is interfaced by a pragma INTERFACE uses any floating point
co-processor instructions, the compilation unit must be marked
such that the linker includes initialization of the floating
point co-processor in target programs that reference the
compilation unit.

Page F-2

User's Guide

Implementation Dependent Characteristics

F.1.6 PRAGMA INTERRUPTS

Format: pragma INTERRUPTS;

Placement: The pragma may be placed as a declarative item.

Restrictions: None.

Marks the compilation unit with the interrupt attribute. If the
code that is interfaced by a pragma INTERFACE uses any
interrupts, the compilation unit must be marked such that the
linker include the interrupt handling in target programs that
reference the compilation unit.

F.1.7 PRAGMA STORAGE-MANAGER

Format: pragma STORAGE MANAGER;

Placement: The pragma may be placed as a declarative item.

Restrictions: None.

Marks the compilation unit with the heap attribute. If the code
that is interfaced by a pragma INTERFACE uses the storage
manager, the compilation unit must be marked such that the linker
include initialization of the storage manager in target programs
that reference the compilation unit.

F.1.8 PRAGMA INTERRUPT-HANDLER

The pragma interrupt handler is defined with two formats.

F.1.8.1 PRAGMA INTERRUPT-HANDLER for Task Entries

Format: pragma INTERRUPTHANDLER;

Placement: The pragma must be placed as the first
declarative item ir the task specification that it
applies to.

Restrictions: The task for which the pragma INTERRUPT-HANDLER is
applied must fulfill the following requirements:

Page F-3

User's Guide
Implementation Dependent Characteristics

address clause must be specified for all entries to the
-ask.

- All entries of the task must be single entries with no
parameters.

- The entries must not be called from any tasks.

- No other tasks may be specified in the body of the task.

- The body of the task must consist of a single sequence of
accept statements for each of the defined interrupts, see
below:

task body fih is
-- local simple data declaration, no tasks.

begin
accept handlerl do

<statementlist>;
end handlerl;
accept handler2 do

<statementlist>;
end handler2;

end fih;

- No other tasking construct than unconditional entry calls may
appear in the statement list for the select alternatives. The
execution of a statement list must only execute one
unconditional entry call.

- Any procedures called from the accept body must not use any

tasking constructs at all.

- No heap storage must allocated.

- No exception must be proporgated out of the statement list of
the accept alternatives.

If the restrictions described above are not fulfilled, the
program is erroneous and the result of the execution
unpredictable. The compiler cannot and is not checking all the
restrictions, but attempts to perform as many checks of the
requirements as possible.

The PRAGMAINTERRUPT handler with no parameters allows the user
to implement immediate response to exceptions.

Page F-4

User's Guide

Implementation Dependent Characteristics

F.1.8.2 PRAGMA INTERRUPT-HANDLER for Procedures

Format: pragma INTERRUPTHANDLER(procedure-name,integer-

literal);

Placement: The pragma must be placed as a declarative item, in

the declarative part defining the specification of

the immediately after the procedure specification.

Restrictions: The procedure for which pragma INTERRUPT-HANDLER
applies must fulfill the following restrictions:

- The integer-literal must be in range 0..255, and
must not define an interrupt vector entry to
which the processor may generate a trap.

- The procedure must not be called _ywhere in the

application.

- No tasks may be declared in the body of the
procedure.

- The only tasking construct that may be used from
the body of the procedure is unconditional entry
calls. Several unconditional entry calls may
appear in the body of the procedure but the
execution of the body must only lead to the
execution of one.

- Any subprograms called from the procedure must
not use any tasking constructs at all.

- The procedure must be parameterless.

- No heap storage must allocated from the
procedure.

- Exception must no be propagated out of the
procedure.

If the restrictions described above is not fulfilled the program
is erroneous anid the result of the execution unpredictable. The
compiler cannot and is not checking all the restrictions, but
attempts to perform as many checks of the requirements as
possible.

The pragma INTERRUPT-HANDLER for procedures defines the named
subprogram to be an interrupt handler for the interrupt vector
entry defined by the integer-literal.

Page F-5

User's Guide

Implementation Dependent Characteristics

F.1.9 PRAGMA NOFLOAT

Format: pragma NOFLOAT(task-id)

Placement: The pragma must be placed as a declarative item, in
the declarative part defining the task type or
object denoted by the task-id.

Restrictions: The task(s) denoted by the task-id must not execute
floating-point co-processor instructions.

This pragma informs the compiler and runtime system that the task
will not execute floating point co-processor instructions.
Consequently the context switch needs not save and restore the
state of the floating point co-processor yielding improved
performance.

F.2 Implementation-Dependent Attributes

No implementation-dependent attributes are defined.

F.3 Package SYSTEM

The spcification for package SYSTEM is as follows:

package SYSTEM is

type ADDRESS is new INTEGER;
subtype PRIORITY is INTEGER range 1 .. 24;
type NAME is (dacs 68020);
SYSTEM NAME: constant NAME := dacs 68020;
STORAGE UNIT: constant := 8;
MEMORY SIZE: constant := 2048 * 1024;
MIN INT: constant := -2 147 483 648;
MAX-INT: constant := 2 _47 _83 647;
MAX-DIGITS: constant := 15;
MAXMANTISSA: constant := 31;

FINE DELTA: constant := 2#1.0;E-31;
TICK: constant := 2#I.0#E-14;

type interface-language is (AS);

end SYSTEM;

Page F-6

user's Guide

Implementation Dependent Characteristics

F.4 Representation Clauses

The DACS VAX/VMS to 68020 Cross Compiler fully supports the 'SIZE
representation for derived types. The representation clauses
that are accepted for non-derived types are described in the
following subsections.

F.4.1 Length Clause

Some remarks on implementation dependent behavior of length
clauses are necessary:

- When using the SIZE attribute for discrete types, the
maximum value that can be specified is 32 bits.

- SIZE is only obeyed for discrete types when the type is a
part of a composite object, e.g. arrays or records.

- Using the STORAGE SIZE attribute for a collection will set
an upper limit on the total size of objects allocated in this
collection. If further allocation is attempted, the
exception STORAGEERROR is raised.

- When STORAGE SIZE is specified in a length clause for a task,
the process stack area will be of the specified size.

F.4.2 Enumeration Representation Clauses

Enumeration representation clauses may specify representations in
the range of INTEGERIFIRST + 1..INTEGER'LAST - 1.

F.4.3 Record Representation Clauses

When representation clauses are applied to records the following
restrictions are imposed:

- if the component is a record or an unpacked array, it must
start at a storage unit boundary (8 bits)

- a record occupies an integral number of storage units
(words) (even though a record may have- fields that only
define an odd number of bytes)

- a record may take up a maximum of 2 Gigabits

Page F-7

User's Guide
Implementation Dependent Characteristics

- a component must be specified with its proper size (in
bits), regardless of whether the component is an array or
not.

- if a non-array component has a size which equals or
exceeds one storage ur-it 32-bits the component must start on
a storage unit uuunaaLy.

- the elements in an array component should always be ,:holly
contained in 32-bits.

If the record type contains components which are not covered by a
component clause, they are allocated consecutively after the
component with the value. Allocation of a record component
without a component clause is always aligned on a storage unit
boundary. Holes created because of component clauses are not
otherwise utilized by the compiler.

Pragma PACK on a record type will attempt to pack the components
not already covered by a representation clause (perhaps none).
This packing will begin with the small scalar components and
larger components will follow in the order specified in the
record. The packing begins at the first storage unit after the
components with representation clauses.

F.4.3.1 Alignment Clauses

Alignment clauses for records are implemented with the following
characteristics:

- If the declaration of the record type is done at the
outermost level in a library package, any alignment is
accepted.

- If the record declaration is done at a given static
level (higher than the outermost library level, i.e.,
the permanent area), only word alignments are accepted.

- Any record object declared at the outermost level in a
library package will be aligned according to the alignment
clause specified for the type. Record objects declared
elsewhere can only be aligned on a word boundary. If the
record type is associated with a different alignment, an
error message will be issued.

- If a record type with an associated alignment clause is
used in a composite type, the alignment is required to
be one word; an error message is issued if this is not
the case.

Fage F-8

User's Guide
Implementation Dependent Characteristics

F.5 Implementation-Dependent Names for Implementation
Dependent Components

None defined by the compiler.

F.6 Address Clauses

This section describes the implementation of address clauses and
what types of entities may have their address specified by the
user.

F.6.1 Objects

Address clauses are supported for scalar and composite objects
whose size can be determined at compile time, if the specified
address is a literal.

F.6.2 Task Entries

Address clauses are supported for task entries. The following
restrictions applies:

- The affected entries must be defined in a task object

only, not a task type.

- The entries must be single and parameterless.

- The address specified must not denote an interrupt index
which the processor may trap.

- If the interrupt entry executes floating point co-
processor instructions the state of the co-processor must
be saved prior to execution of any floating point
instructions, and restore before the return.

The address specified in the address clause denotes the interrupt
vector index.

F.7 Input/Output Packages

In many embedded systems, there is no need for a traditional I/O
system, but in order to support testing and validation, DDC-I has
developed a small terminal oriented I/O system. This I/O system
consists essentially of TEXT 10 adapted with respect to handling
only a terminal and not file I/O (file I/O will cause a USE-ERROR

Page F-9

User's Guide
Implementation Dependent Characteristics

to be raised) and a low level package called TERMINAL DRIVER. A
BASIC_IO package has been provided for convenience purposes,
forming an interface between TE "T 10 and TERMINALDRIVER as
illustrated in the following figure.

TEXTIO
BASICIO

TERMINAL DRIVER
(H/W interface)

The TERMINALDRIVER package is the only package that is target
dependent, i.e., it is the only package that need be changed when
changing communications controllers. The actual body of the
TERMINAL DRIVER is written in assembly language, but an Ada
interface to this body is provided. A user can also call the
terminal driver routines directly, i.e. from an assembly language
routine. TEXT 10 and BASIC_10 are written completely in Ada and
need not be changed.

BASIC_10 provides a mapping between TEXTIO control characters
and ASCII as follows:

[TEXT 1O ASCII Character

LINE TERMINATOR 1 ASCII.CR
PAGE TERMINATOR ASCII.FF
FILE TERMINATOR l ASCII.EM (ctrl Z)
NEW-LINE. ASCII.LF

The services provided by the terminal driver are:

1) Reading a character from the communications port.

2) Writing a character to the communications port.

Page F-10

User's Guide

Implementation Dependent Characteristics

F.7.1 Package TEXTIO

The specification of package TEXT 10:

pragma page;
with BASICIO;

with 10 EXCEPTIONS;
package TEXTIO is

type FILE-TYPE is limited private;

type FILE-MODE is (INFILE, OUTFILE);

type COUNT is range 0 .. INTEGER'LAST;
subtype POSITIVE COUNT is COUNT range 1 .. COUNT'LAST;
UNBOUNDED: constant COUNT:= 0; -- line and page length

-- max. size of an integer output field 2#.... #
subtype FIELD is INTEGER range 0 .. 35;

subtype NUMBERBASE is INTEGER range 2 .. 16;

type TYPE-SET is (LOWERCASE, UPPERCASE);

pragma PAGE;
-- File Management
procedure CREATE (FILE : in out FILE TYPE;

MODE : in FILE MODE :=OUT FILE;
NAME : in STRING
FORM : in STRING

procedure OPEN (FILE : in out FILE TYPE;
MODE : in FILE MODE;
NAME : in STRING;
FORM : in STRING

procedure CLOSE (FILE : in out FILETYPE);
procedure DELETE (FILE : in out FILE TYPE);
procedure RESET (FILE : in out FILE TYPE;

MODE : in FILE MODE);
procedure RESET (FILE : in out FILETYPE);

function MODE (FILE : in FILE TYPE) return FILE MODE;
function NAME (FILE : in FILE TYPE) return STRING;
function FORM (FILE : in FILE-TYPE) return STRING;

function ISOPEN(FILE : in FILE-TYPE return BOOLEAN;

Page F-11

User's Guide
Implementation Dependent Characteristics

pragma PAGE;
-- control of default input and output files

procedure SET INPUT (FILE : in FILE TYPE);
procedure SET OUTPUT (FILE : in FILETYPE);

function STANDARD INPUT return FILE TYPE;
function STANDARDOUTPUT return FILETYPE;

function CURRENT INPUT return FILE TYPE;
function CURRENTOUTPUT return FILE TYPE;

pragma PAGE;
-- specification of line and page lengths

procedure SETLINELENGTH (FILE : in FILE TYPE;
TO : in COUNT);

procedure SETLINELENGTH (TO : in COUNT);

procedure SETPAGELENGTH (FILE : in FILE TYPE;
TO : in COUNT);

procedure SETPAGELENGTH (TO : in COUNT);

function LINELENGTH (FILE : in FILE TYPE)
return COUNT;

function LINE LENGTH return COUNT;

function PAGELENGTH (FILE : in FILE TYPE)
return COUNT;

function PAGELENGTH return COUNT;

pragma PAGE;
-- Column, Line, and Page Control

procedure NEWLINE (FILE : in FILE TYPE;
SPACING : in POSITIVE COUNT :);

procedure NEW LINE (SPACING : in POSITIVE COUNT 1);

procedure SKIPLINE (FILE : in FILETYPE;
SPACING : in POSITIVE COUNT 1);

procedure SKIPLINE (SPACING : in POSITIVE COUNT 1);

function END OF LINE (FILE : in FILE TYPE) return BOOLEAN;
function ENDOFLINE return BOOLEAN;

procedure NEW PAGE (FILE : in FILETYPE);
procedure NEW-PAGE;

procedure SKIP PAGE (FILE : in FILETYPE);
procedure SKIPPAGE;

function END OF PAGE (FILE : in FILE TYPE) return BOOLEAN;
function END OFPAGE return BOOLEAN;

Page F-12

User's Guide
Implementation Dependent Characteristics

function END OF FILE (FILE : in FILETYPE) return BOOLEAN7
function END-OF-FILE return BOOLEAN;

procedure SET COL (FILE : in FILE TYPE;
TO : in POSITIVE COUNT);

procedure SETCOL (TO : in POSITIVECOUNT);

procedure SETLINE (FILE : in FILE TYPE;
TO : in POSITIVE COUNT);

procedure SETLINE (TO : in POSITIVECOUNT);

function COL (FILE : in FILE TYPE)
return POSITIVE COUNT;

function COL return POSITIVECOUNT;

function LINE (FILE : in FILE TYPE)
return POSITIVE COUNT;

function LINE return POSITIVE COUNT;

function PAGE (FILE : in FILE TYPE)
return POSITIVECOUNT;

function PAGE return POSITIVE COUNT;

pragma PAGE;
-- Character Input-Output

procedure GET (FILE : in FILETYPE; ITEM : out CHARACTER);
procedure GET (ITEM : out CHARACTER);
procedure PUT (FILE : in FILETZPE; ITEM : in CHARACTER);
procedure PUT (ITEM : in CHARACTER);

-- String Input-Output

procedure GET (FILE : in FILETYPE; ITEM : out CHARACTER);
procedure GET (ITEM : out CHARACTER);
procedure PUT (FILE : in FILETYPE; ITEM : in CHARACTER);
procedure PUT (ITEM : in CHARACTER);

procedure GET LINE (FILE : in FILE TYPE;
ITEM : out STRING;
LAST : out NATURAL);

procedure GETLINE (ITEM : out STRING;
LAST : out NATURAL);

procedure PUTLINE (FILE : in FILE TYPE;
ITEM : in STRING);

procedure PUT LINE (ITEM : in STRING);

pragma PAGE;
-- Generic Package for Input-Output of Integer Types

generic

Page F-13

User's Guide
Implementation Dependent Characteristics

type NUM is range <>;
package INTEGERIO is

DEFAULT WIDTH : FIELD NUM'WIDTH;
DEFAULT-BASE : NUMBERBASE 10;

procedure GET (FILE : in FILE TYPE;

ITEM : out NUM;
WIDTH : in FIELD 0);

procedure GET (ITEM : out NUM;
WIDTH : in FIELD 0);

procedure PUT (FILE : in FILE TYPE;
ITEM in NUM;
WIDTH in FIELD := DEFAULT WIDTH;
BASE in NUMBERBASE := DEFAULT_BASE);

procedure PUT (ITEM in NUM;
WIDTH in FIELD := DEFAULT WIDTH;
BASE in NUMBERBASE := DEFAULT BASE);

procedure GET (FROM : in STRING;
ITEM : out NUM;
LAST : out POSITIVE);

procedure PUT (TO : out STRING;
ITEM : in NUM;
BASE : in NUMBER-BASE := DEFAULTBASE);

end INTEGER IO;

pragma PAGE;

-- Generic Packages for Input-Output of Real Types

generic
type NUM is digits <>;

package FLOATIO is

DEFAULT FORE : FIELD 2;
DEFAULT AFT : FIELD NUM'DIGITS - 1;
DEFAULTEXP : FIELD 3;

procedure GET (FILE in FILETYPE;
ITEM out NUM;
WIDTH in FIELD 0);

procedure GET (ITEM out NUM;
WIDTH in FIELD 0);

procedure PUT (FILE : in FILETYPE;
ITEM : in NUM;
FORE : in FIELD DEFAULT FORE;
AFT : in FIELD DEFAULT AFT;

Page F-14

User's Guide
Implementation Dependent Characteristics

EXP : in FIELD DEFAULTEXP);
procedure PUT (ITEM : in NUM;

FORE : in FIELD DEFAULT FORE;
AFT : in FIELD DEFAULT AFT;
EXP : in FIELD DEFAULT EXP);

procedure GET (FROM : in STRING;
ITEM : out NUM;
LAST : out POSITIVE);

procedure PUT (TO : out STRING;
ITEM : in NUM;
AFT : in FIELD DEFAULT AFT;
EXP : in FIELD DEFAULTEXP);

end FLOATIO;

pragma PAGE;

generic
type NUM is delta <>;

package FIXEDIO is

DEFAULT FORE : FIELD NUM'FORE;
DEFAULT AFT : FIELD NUM'AFT;
DEFAULTEXP : FIELD 0;

procedure GET (FILE in FILE TYPE;
ITEM out NUM;
WIDTH : in FIELD 0);

procedure GET (ITEM : out NUM;
WIDTH : in FIELD 0);

procedure PUT (FILE : in FILE TYPE;
ITEM : in NUM;
FORE : in FIELD DEFAULT FORE;
AFT : in FIELD DEFAULT AFT;
EXP : in FIELD DEFAULT EXP);

procedure PUT (ITEM : in NUM;
FORE : in FIELD DEFAULT FORE;
AFT : in FIELD DEFAULT AFT;
EXP : in FIELD DEFAULT EXP);

procedure GET (FROM : in STRING;
ITEM : out NUM;
LAST : out POSITIVE);

procedure PUT (TO : out STRING;
ITEM : in NUM;
AFT : in FIELD DEFAULT AFT;
EXP : in FIELD DEFAULTEXP);

Page F-15

User's Guide
Implementation Dependent Characteristics

end FIXEDIO;

pragma PAGE;
-- Generic Package for Input-Output of Enumeration Types

generic
type ENUM is (<>);

package ENUMERATIONIO is

DEFAULT WIDTH : FIELD 0;
DEFAULT-SETTING : TYPESET UPPERCASE;

procedure GET (FILE in FILETYPE; ITEM : out ENUM);
procedure GET (ITEM : out ENUM);

procedure PUT (FILE FILE TYPE;
ITEM in ENUM;
WIDTH in FIELD DEFAULT WIDTH;
SET in TYPE SET DEFAULTSETTING);

procedure PUT (ITEM in ENUM;
WIDTH : in FIELD DEFAULT WIDTH;
SET : in TYPESET DEFAULTSETTING);

procedure GET (FROM : in STRING;
ITEM : out ENUM;
LAST : out POSITIVE);

procedure PUT (TO : out STRING;
ITEM : in ENUM;
SET : in TYPE SET := DEFAULTSETTING);

end ENUMERATIONIO;

pragma PAGE;

-- Exceptions

STATUS ERROR : exception renames 10 EXCEPTIONS.STATUS ERROR;
MODE ERROR : exception renames 10_EXCEPTIONS.MODE ERROR;
NAME ERROR : exception renames 10 EXCEPTIONS.NAME ERROR;
USE ERROR : exception renames IO-EXCEPTIONS.USE ERROR;
DEVICE ERROR : exception renames 10 EXCEPTIONS.DEVICE ERROR;
END ERROR : exception renames IO-EXCEPTIONS.END ERROR;
DATA ERROR : exception renames IO-EXCEPTIONS.DATA ERROR;
LAYOUTERROR : exception renames IOEXCEPTIONS.LAYOUTERROR;

pragma page;
private

type FILE TYPE is
record

FT : INTEGER := -1;

Page F-16

User's Guide

Implementation Dependent Characteristics

end record;

end TEXTIO;

F.7.2 Package IOEXCEPTIONS

The specification of the package IOEXCEPTIONS:

package IOEXCEPTIONS is

STATUS ERROR : exception;
MODE ERROR : exception;
NAME ERROR : exception;
USE ERROR : exception;
DEVICE ERROR : exception;
END ERROR : exception;
DATA ERROR : exception;
LAYOUTERROR : exception;

end IOEXCEPTIONS;

F.7.3 Package BASICIO

The specification of package BASICIO:

with IOEXCEPTIONS;

package BASIC IO is

type qount is range 0 .. integer'last;

subtype positivecount is count range 1 .. count'last;

function getinteger return string;

-- Skips any leading blanks, line terminators or page
-- terminators. Then reads a plus or a minus sign if
-- present, then reads according to the syntax of an
-- integer literal, which may be based. Stores in item
-- returns a string containing an optional sign and an
-- integer literal.

-- The exception DATA ERROR is raised if the sequence
-- of characters does not correspond to the syntax
-- described above.

Page F-17

User's Guide
Implementation Dependent Characteristics

-- The exception END ERROR is raised if the file terminator
-- is read. This means that the starting sequence of an
-- integer has not been met.

-- Note that the character terminating the operation must
-- be available for the next get operation.

function get_real return string;

-- Corresponds to get_integer except that it reads according
-- to the syntax of a real literal, which may be based.

function get_enumeration return string;

-- Corresponds to getinteger except that it reads according
-- to the syntax of an identifier, where upper and lower
-- case letters are equivalent to a character literal
-- including the apostrophes.

function get_item (length : in integer) return string;

-- Reads a string from the current line and stores it in
-- item. If the remaining number o-C characters on the
-- current line is less than length then only these
-- characters are returned. The line terminator is not
-- skipped.

procedure put_item (item : in string);

-- If the length of the string is greater than the current
-- maximum line (linelength), the exception LAYOUTERROR
-- is raised.

-- If the string does not fit on the current line a line
-- terminator is output, then the item is output.

-- Line and page lengths - [DOD-83] 14.3.3.

procedure set linelength (to : in count);

procedure set_page_length (to : in count);

function line-length return count;

Page F-18

User's Guide
Implementation Dependent Characteristics

function page_length return count;

-- Operations on columns, lines and pages - [DOD-83] 14.3.4.

procedure new-line;

procedure skip_line;

function end of line return boolean;

procedure newpage;

procedure skip_page;

function end ofpage return boolean;

function end of file return boolean;

procedure setcol (to in positivecount);

procedure setline (to in positive-count);

function col return positivecount;

function line return positive count;

function page return positivecount;

-- Character and string procedures.
-- Corresponds to the procedures defined in [DOD-83] 14.3.6.

procedure get-character (item out character);

procedure get_string (item out string);

procedure getline (item out string;

Page F-19

User's Guide

Implementation Dependent Characteristics

last : out natural);

procedure putcharacter (item : in character);

procedure put_string (item : in string);

procedure put_line (item : in string);

-- exceptions:

USE ERROR : exception renames 10 EXCEPTIONS.USE ERROR;
DEVICE ERROR : exception renames IO-EXCEPTIONS.DEVICE ERROR;
END ERROR : exception renames IO-EXCEPTIONS.END ERROR;
DATA ERROR : exception renames IO-EXCEPTIONS.DATA ERROR;
LAYOUTERROR : exception renames IOEXCEPTIONS.LAYOUTERROR;

end BASICIO;

F.7.4 Package TERMINAL-DRIVER

The specification of package TERMINALDRIVER:

package terminal-driver is

procedure put_character(ch : character);

procedure flush;

function get_character return character;

procedure purge;

private

pragma interface (AS, put-character);
pragma interfacespelling(put_character, "AdaUCC_GSPutByte");

pragma interface (AS, getcharacter);
pragma interface_spelling(getcharacter, "AdaUCC_G$GetByte");

pragma interface (AS, flush);
pragma interfacespelling(flush, "AdaUCC_GSFlushOutput");

pragma interface (AS, purge);
pragma interface spelling(purge, "AdaUCCG$PurgeInput");

Page F-20

User's Guide
Implementation Dependent Characteristics

pragma initialize("Ada UCC GSInitIO");
pragma rundown ("Ada-UCC-G$CloselO");

end terminaidriver;

F.7.5 Package SEQUENTIAL.IO

-- Source code for SEQUENTIAL10

pragma PAGE;

with IOEXCEPTIONS;

generic

type ELEMENTTYPE is private;

package SEQUENTIALIO is

type FILETYPE is limited private;

type FILEMODE is (INFILE, OUTFILE);

pragma PAGE;
-- File management

procedure CREATE(FILE : in out FILE TYPE;
MODE : in FILE MODE OUT FILE;
NAME : in STRING
FORM : in STRING

procedure OPEN (FILE : in out FILE TYPE;
MODE : in FILE MODE;
NAME : in STRING;
FORM : in STRING

procedure CLOSE (FILE : in out FILETYPE);

procedure DELETE(FILE : in out FILETYPE);

procedure RESET (FILE : in out FILE TYPE;
MODE : in FILE MODE);

procedure RESET (FILE : in out FILETYPE);

function MODE (FILE : in FILETYPE) return FILEMODE;

function NAME (FILE : in FILETYPE) return STRING;

function FORM (FILE : in FILETYPE) return STRING;

Page F-21

User's Guide
Implementation Dependent Characteristics

function ISOPEN(FILE : in FILETYPE) return BOOLEAN;

pragma PAGE;
-- input and output operations

procedure READ (FILE : in FILE TYPE;
ITEM : out ELEMENTTYPE);

procedure WRITE (FILE : in FILE TYPE;
ITEM : in ELEMENTTYPE);

function ENDOFFILE(FILE : in FILE-TYPE) return BOOLEAN;

pragma PAGE;
-- exceptions

STATUS ERROR : exception renames 10 EXCEPTIONS.STATUS ERROR;
MODE ERROR : exception renames IO-EXCEPTIONS.MODE ERROR;
NAME ERROR : exception renames IO EXCEPTIONS.NAME ERROR;
USE ERROR : exception renames IO-EXCEPTIONS.USE ERROR;
DEVICE ERROR : exception renames IO-EXCEPTIONS.DEVICE ERROR;
END ERROR : exception renames IO-EXCEPTIONS.END ERROR;
DATAERROR : exception renames IO-EXCEPTIONS.DATAERROR;

pragma PAGE;

private

type FILETYPE is new INTEGER;

end SEQUENTIALIO;

F.8 Machine Code Insertion

Machine code insertion is allowed using the instruction defined
in package MACHINE CODE. All arguments given in the code
statement aggregate must be static.

The machine language defined in package MACHINE CODE is not VAX
assembler, but rather Abstract A-code which is an intermediate
language used be the compiler.

Page F-22

