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SECTION I

INTRODUCTION

This report documents the strength and fracture characteristics of HY-80,
HY-100, and HY-130 steels, subjected to various strains, strain rates, temperatures,
and pressures. The result of this characterization is the generation of constants for
the strength and fracture models in the EPIC-2 and EPIC-3 codes. 1,2

The following sections describe the test data and the analysis of the data used
to obtain constants for both the strength and fracture models.

1/2
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SECTION 2

TEST DATA.

The test data were obtained from torsion tests at various strain rates,
Hopkinson bar tension tests at various temperatures, and quasi-static tension tests
with various specimen geometries (notched and unnotched). The torsion tests were
performed with the Biaxial Testing Machine at Southwest Research Institute, the
Hopkinson bar tests were performed at Eglir. Air Force Base, and the quasi-static
tension tests were performed at Honeywell. The HY-80, HY-100, and HY-130
material was provided by the Naval Surface Warfare Center (NSWC). Physical
properties are given in Table 1.3 Metallurgical data are shown in Appendix A.

Torsion data are shown in Figures 1 to 3. Comparable data for 12 other
materials are presented elsewhere.4 ,5 Some desirables features of this testing
technique are that the state of stress in the specimen is well defined, large strains
can be achieved without forming geometric instabilities, and a wide range of strain
rates can be obtained with the same testing technique. It appears that adiabatic
thermal softening is causing the lower stresses at the higher rates.

Figures 4 to 6 show Hopkinson bar test data at various temperatures. The
elevated temperatures are obtained by surrounding the in-place test specimen by an
oven such that the temperatures are applied for several minutes prior to testing.
Although it is possible to test materials to greater strains than those shown in
Figures 4 to 6, the Hopkinson bar data cannot be accurately evaluated after necking
begins in the ten3ile specimens. Furthermore, at larger strains the effects of
adiabatic heating can also complicate the results. The elevated temperatures show a
distinct softening effect on the strength of the materials.

Photographs of the fractured Hopkinson bar specimens are shown in
Figures 7 to 9. rhe cross-sectional area of these surfaces can be used to obtain
fracture characteristics.

Quasi-static stress-strain data for both tension and torsion tests are shown in
Figures 10 to 12. An equivalent tensile flow stress is obtained from the torsion data
by using the von Mises flow rule, the te~nsile stress is a = V3/3, and the
corresponding tensile strain is e = y/V3.

The stress for the tension test data is based on the current area of the neck, and
the strain is defined as in (Ao/A), where A. and A represent the initial and current
areas of the neck. The notchYd tension bars give a concentration of hydrostatic
tension in the test specimen.

This is clearly shown in the data of Figures 10 to 12. For a specified true strain,
the stress (inchlding hydrostatic tension) increases for the notched geometry. It can
also be seen that the presence of the hydrostatic tension significantly decreases the
strain at which the material fractures.

" = • !
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TABLE]. PHYSICAL PROPERTIES OF IIY-80, I Y-lOO, AND HY-130 STEEL

HY-O STEEL HY-100 STEEL HY-130 STEEL

HARDNESS (ROCKWELL) C-21 C-25 C-30

ELASTIC PROPERTIES

ELASTIC MODULUS, E (OPA) 207 207 207

POISSON'S RATIO, ' .30 .30 .30

-SHEAR MODULUS, E/ 2 (1 + 1) (GPa) 79 79 79

BULK MODULUS, E / 3 (1 - 2-0) (GPa) 172 172 172

THERMAL PROPERTIES

DENSrITY, p (kg/m*) 7746 7748 7885

CONDUCTIVITY, k (W/mK) 34 34 27

SPECIFIC HEAT, c p (JftgK) 502 502 489

DIFFUSIVITY, k/pcp (m 1/s) .000009 .000009 .000007

EXPANSION COEF. (VOL.), a (K"1 ) .000011 .000014 .000013

MELTING TEMPERATURE, TMM.T (K) 1793 1793 1793

N07.020,JF

-- ,i

4,
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SECTION 3

STRENGTH MODEL

The origin of the strength model, and the techniques used to extract constants
for the model, are described in References 7 and 8. The analysis which follows is
essentially identical to that described in these references.

The model for the von Mises flow stress, a, is expressed as

a = IA + Brn"11 + CIni*jll - T*(1)

where E is the equivalent plastic strain, 0* = O/to is the dimensionless plastic strain
rate for to = 1.0s1 and T* is the homologous temperature. The five material con-
stants are A, B, n, C, m. The expression in the first set of brackets gives the stress as
a function of strain for 0* = 1.0 and T* = 0. The expressions in the second and third
sets of brackets represent the effects of strain rate and temperature, respectively.
The basic form of the model is readily adaptable to most computer codes since it uses
variables (e, 0, T*) which are available in the codes.

The first step in the process is to determine the constants in the first set of
brackets. A is the yield stress and B and n represent the effects of strain hardening.
Since the torsion data in Figures 1 to 3 include the strain rate of interest (U* = 1.0),
it is a straightforward procedure to obtain the appropriate constants for this strain
rate.

The same three constants can also be derived from the quasi-tension data of
Figures 10 to 12. These results are for 0* = 0.002 and must therefore be adjusted
for &* = 1.0. This can readily be accomplished after the strain rate constant, C, is
determined.

Figure 13 shows the effect of strain rate for tension and torsion. In both cases
the stress increases as the strain rate increases. The results are shown for relatively
small strain values (c = 0.08, y = 0.20) to ensure that the strain rate effect is not
significantly altered by adiabatic thermal softening. Strain rate constants for both
tension and torsion can be determined from the 'least squares' linear approximations
of the data.

The effect of thermal softening is shown in Figures 4 to 6. The thermal
softening fraction, Kt = 1 - TVn, is simply the ratio of the stress at elevated
temperature to that at room temperature. The thermal softening constant, mn, is
shown to give an analytic expression which closely matches the experimental data.

17
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At thispoint there are two sets of constants (tension and torsion) for strain and
strain rate effects (A, B, n, C) and one constant, re,for the thermal softening.
Averaging the tension and torsion constants for strain rate effects gives a final set of
constants (A, B, n, C) to be used in the strength model. The resulting stress-strain
relationships are shown in Figures 14 to 16.

It can be seen that the strength results for the three materials are well
behaved. As expected, the HY-80 steel has the lowest strength and the HY-130 has
the highest strength. The yield stresses, A, increase when going from the HY-80 to
the HY-130; the strain rate effects, C, decrease when going from the HY-80 to the
HY-130; and the thermal softening effects, m, are essentially identical for all three
materials.

1400

1200 TENSION DATA (e .08)

Hy- 1 30

1000 -H-0

HY-80

800l4
600 HY-130---

HY IO .. _ J . ............

HY-80

400 HYBO -

TORSION DATA (7-..20)

200-40

0 _ I I I . . . I ... .

.0001 .001 .01 .1 1.0 10 100 1000

STRAIN RATES, 9 AND¶' (S-1)

FIGURE 13. STRESS VERSUS STRAIN RATE FORTENSION AND TORSION
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SECTION 4

FRACTURE MODEL

The origin of the fracture model and the techniques used to obtain the appro
priate constants are presented in References 7 and 9. As was the case with the
strength constants, the fracture constants are obtained in a manner similar to that
presented in these referencest

To begin, the damage to an element is defined as

) - -(2)

where Ac is the increment of equivalent plastic strain which occurs during an
integration cycle, and cc is the equivalent strain to fracture, under the current
conditions of strain rate, temperature, pressure and equivalent stress. Fracture is
then allowed to occur when D = 1.0.

The general expression for the strain at fracture is given by

el'= [I)1 + l) 2 oxp l) 30*111 + D4 1n0*]I1 + D IIT*I (3)

for constant values of the variables (0*, t*, T*) and o* < 1.5. The dimensionless
pressure-stress ratio is defined as 0* = am/5 where am .-1 the average of the three
normal stresses anm B is the von Mises equivalent stress. The dimensionless strain
rate, &* and homologous temperature, T*, are identical to those used in the strength
model of Equation (1).

The five constants are D1 ...D5 . The expression in the first set of brackets
follows the form presented by Hancock and Mackenzie.10 It essentially says that the
strain to fracture decreases as the hydrostatic tension, am increases. The expression
in the second set of brackets represents the effect of strain rate, and that in the third
set of brackets represents the effect of temperature. For high values of hydrostatic
tension ( a* > 1.5), cris linearly interpolated between egat o* = 1.5 and Efpnin at
0* = Ospall/U, where Ospall and ejrnin are input values of spall stress and strain.7,'

The first step required to obtain the fracture constants is to determine the
effect of the dimensionless pressure-stress ratio, o*. This can be done by considering
the quasi-static tension and torsion data of Figures 10 to 12 and 17. For the torsion
data o* = 0 and for the unnotched tension data o* = 1/3. For the notched tension
bar, EPIC-2 simulations were performed to compute o* at the center of the specimen.
These results are shown in Figure 18. For these computations, an average pressure
for each set of adjacent triangular elements was used to eliminate any excessive
stiffness due to the triangular element formulation. II

23
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For the notched tensions bars, the computed pressure-stress ratio begins at
approximately o* = 0.8 and peaks somewhere between o* = 1.3 to 1.4, depending on
the material. After its peak the pressure-stress ratio gradually decreases until
fracture. It should be noted that each curve's maximum pressure-stress ratio is in the
same order as their respective strengths.

Figure 19 shows the equivalent plastic strain to fracture as a function of the
pressure-stress ratio for quasi-static conditions. For all three materials an apjproxi-
mate analytic fit to the data was performed by setting D3 = -0.5, and solving or
D1 and D2.

Figure 20 shows the effect of strain rate and temperature on the strain to
fracture. The fracture strains are expressed as the ratio of the Hopkinson bar frac-
ture strains divided by the quasi-static tensile fracture strains. The Hopkinson bar
fracture strains are approximitely determined by measuring the cross-sectional area
of the post-tested specimens as shown in Figures 7 to 9. Unfortunately, these areas
cannot be measured with a high degree of accuracy. The temperatures for each test
range from the initial temperature at the beginning of the test to the computed
temperature at the strain where fracture occurs.

For example, in Figure 20, for the first test performed on the HY-100 material
the specimen was initially at room temperature (T* = 0). If all the plastic work is
converted to adiabatic heat, the computed final temperature is 606K (T* = .21). The
strain at-which this specimen fractured was cf = 1.13, at an average strain rate of
t 550s 1. The quasi-static (t - .002s-0), room temperature (T* = 0) tension test is
used as the normalizing denominator for the vertical axis. For the HY-100 material
this fracture strain is ef = 1.04. The ratio of these two fractures strains is 1.09 and is
the value plotted on the vertical axis. The same procedure is used for the remaining
three HY-100 tests with the only difference being the initial temperature of the
specimen.

Under normal conditions a linear least squares fit is performed on the data of
each material in Figure 20, of which the intercept is the strain rate'influence on
fracture and the slope is the temperature influence. The HY-80, HY-100, and
HY-130 materials acted differently than expected, displaying a consistent trend of
reaching a peak fracture strain ratio between. 15T* and .35T* and then becoming
less ductile as the temperature is increased (Figure 20). Possible explanations for this
behavior is that the material becomes strain rate sensitive at higher tempera-
tures as shown in Figure 17, or it may be experiencing a phenomena referred to as
'temper embrittlement' where under certain tempering processes a metal becomes
less ductile.

The current fracture model was not developed to handle the phenomena which
is occurring with the HY materials. By applying the linear least squares fit to the
data, one obtains deceiving results, implying that the material is very strain rate
sensitive and loses ductility as the temperature increases. A more realistic approach
to incorporate this data into the fracture model is to obtain an 'average' strain rate
coustant and neglect thermal effects. In graphical terms, fit the best horizontal line
to the data points of each material as shown on the right hand side in Figure 20.

Now the fracture constants can be determined. The strain rate constant, D4, is
obtained by averaging the fracture strain ratios of Figure 20 for each respective
material. The average strain rate constant for all three is greater than 1.0. This
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ratio indicates that the strain to fracture, ir ,reases slightly as the strain rate
increases. This same trend is verified by the fracture data of Figure 17, (The
decrease in fracture strains for the higher strainwrate torsion data may be due to
shear localizations resulting from adiabatic heating.4,5) The constants related to the
pressure-stress ratio (D1, D2, D3) are those of Figure 19, adjusted from quasi-static
conditions (t = .002s 1) to 0- = 1.0. Finally, the temperature constant, D5, is set to
zero, due to the unconforming data of Figure 20. The resulting relationships are
shown in Figures 21 to 23.

Unlike the strength relationships, which transitioned in a well-behaved
manner from HY-80 to HY-130, the fracture characteristics do not follow a well-
behaved pattern. The HY-80 steel exhibits the most ductility, as expected, but the-
HY-100 is the least ductile. Generally, it would be expected that the higher strength
HY-130 steel would exhibit less ductility. The reasons for this apparent discrepancy
are not clear.

Although no tests were performed to obtain spall characteristics of HY-80,
HY-100, and HY-130, it is necessary to designate a spall stress and strain to complete
the model. Based on comparisons with materials of similar yield strengths, the spall
stress and strain were estimated and are shown in Table 2.
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TABLE 2. SUMIMARY OF STRENGTJI AND FRACTURE MODEl, CONSTANTS
FOR IIY-80, IIY-100, AND HY-130 STEEL,

"HY-80 STEEL HY-100 STEEL HY-130 STEEL

STRENGTH CONSTANTS FOR
'- [A +B B C•n 1 +iCn *] (1 -T*m]
A (MPa) 672 758 920
B (MPa) 425 402 333
n .36 .26 .39
C W014 .011 ,008
m 1.14 1,13 1,15

FRACTURE CONSTANTS FOR

&.I P,[ +D2 EXP 03o* ][1+D 4 1n'el][ +DT ]
D -.85 -.61 -.69
D2  2.70 2.07 2.39

-0.50 -0.50 .0.50
D 4  .006 .010 .004
D ' 0.0 0,C 0.0
SPALL STRESS, aSPAL. (MPa) 5500 5600 5900
I m"h .033 .034 .036

! " Sc% ZeCA,, FOR *£ -10 -

N07-021 .JF
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SECTION 5

CONSTANTS FOR EPIC-2/EPIC-3 I)ATA LIBRARY

A sunmmary of the strength and fracture model constants is given iii Table 2.
Data statements for the EPIC-2/EPIC-3 material library (Subroutine MATLIB) are
shown in Figure 24, and the corresponding Preprocessor output is shown in
Figures 25 to 27.
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C
Y * H-80 STEEL *********u,*****~*aTJki .- AUG 1987

C **LIMITED TO U.S. GOVERNMENT AGENCIES ONLY
C PRESSURE - KOHIN, AFWL-TR-69-38, 1969, P. 140 (STAINLESS STEEL 304L)
C STRENGTH - HOLMQUIST, NSWC REPORT 1987
C FRACTURE - HOLMQUIST, NSWC REPORT 1907
C SPALL - OVERESTIMATED FROM DATA IN AFWAL-TR-61-.4040, 1981

DATA MTýYPE(25)/1/,IDAM( 25)/Of, IFAIL(25)/O/,EFAIL(25)/999./.
1 DEN(25)/.000725/,BPH(25)/433000./,CDUCT(25)/4.32/,
2 ALPMA(25)/.0000063/,TZMP1(25)/70./,TROOM(25)/70.'/,
3 TREL'I(25)/2768./,CO( 25)/.02/,G( 25 )/11240000 ./,
4 C1( 25)/97460./,C2(25)/61640./,AN( 25 )/.36/,C3(25 )/. 014/,t

5AW(25)/I. 14/,C4( 25)/O./,C5(25)/O ./,C(25)/23776000./,
6 DC25)/42693000./,S(25)/72513000./.GRUN(25)/1.16/,
71 Q1( 25)/.2/,Q2C25)/4./,PMIN(25 )/10000000./,C9(25)/O./,
a Dl(25)/-.85/,D2(25)/2.70/oD3( 25)/-.50/,D4(25)/.006/,
9 05( 25)/O.OO/,PFAzL(25)/795OOOý/,ZFMzIq(25)/.033/,ClO(25)/O./,
A (DESCM(25,3)5 3-1,4) /4H*HY-,4HBO S,4HTEEL,4H /I
B (DZsCm(25,j),J-'5,8) /4H. ,4H ,4HRC-2,4Hl /.
C (DESCM(25,J),J7-9,12)/4H ,4H ,4H ,4H /

C
C B Y-100 STEEL ****************A* TJH -AU(. 1987
C LIMITED TO U.S. GOVERNMENT AGENCIES ONLY

C PRESSURE - KOHN, AFWL-TR-69-38, 1969, P. 14U (STAINLESS STEEL 304L)
C STRENGTH - HOLMQUIST, NSWC REPORT 1987
C FRACTURE - HOLMQUIST, NSWC REPORT 1987
C SPALL - OVERESTIMATED FROM DATA IN AFWAL-TR-81-4040, 1981

DATA MTYPE (26)/1/, 1DAM ( 26 1/0/,IT A L ( 26) /0/,EFAIL (2 6 )/9 99./
I DEN (2 6) /.0 0 07 25/, SPH (2 6 )/4 33 00 0./,CDUCT ( 26 )/4. 32/,
2 AL PRA (26)/. 00 0 0 077/, TEMP 1 ( 26 ) /70 Q. / TROOM ( 2 6 ) /7 0./
3 TMELT(26)/2768./,CS(26)/.02/,GC26 )/11240000,/,
4 C I(N ) /109 9 ./, C 2(26) /5 8 3 0. /,AN ( 26 ) /. 26/, C 3(26)/ 011/,
5 AM(26)/1.13/,C4(26)/O./,C5(26 )/O./,C(26)/23776000./,
6 D(26)/42693000./,S(26),'72513000./,GRUN(26)/1.16/,
7 Q1(26)/.2/,02(26)/4./,PMIN(26 )/10000000./,C9(26)/O./,
8 D 1(2 6)/-. 61/, D2 (2 6)/2.07 /, D3 ( 26 )/-. 50/, D4(2 6 )/. 010/,
9 D 1 2 6)/0 . OO/ ,P TAI L(2 6)/819 3 00 ./, EFM I N(2 6)/. 0 34/, C 10( 26)/0./
A (DESCM(26,J),J-1,4) /4H*HY-,4HlO0 ,4HSTEE,4HL /
B (DESCM(26,J),J-5,8) /4H ,4H ,4HRC-2,4HS /
C (0ESCM(26,J),J-9,12)/4H ,4H ,4H ,4H /

C
C P** HY-130 STEEL TJH - AUG 1987
C ** LIMITED TO U.S. GOVERNMENT AGENCIES ONLY
C PRESSURE - KOHN, ATWL-TR-69-38, 1969, P. 140 (STAINLESS STEEL, 304L)
C STRENGTH - HOLMQUIST, NSWC REPORT 1987
C I-RACTURE - HOL.MQUIST, NSWC REPORT 1987
C SPALL - OVERESTIMATED FROM DATA IN ArWAL-TR-81-4040, 1981

DATA MTP(7//IA(7//IAI(7//EAL2)99/
1 DEN(27)/.000738/,BPH(27)/422000./CDUCT(27)/3.46/,
2 ALPHA(27)/.0000073/,TEMP1(27)/70./TROOM(27 )/70./,
3 TMELT(27)/2768./,C8(27)/.02/,G(27)/112

4 0 00 0 ./,4 Cl( 2 7)/13340O./,C2(27)/48300o/,pAjNv27)/. 39/,C3( 27 )/.008/,
5 AN(27)/1.15/,C4(27),/0./,C5(27 )/O./,C(27)/23776000./,'
6 D( 2 7 )/ 4 2 6 9 3 0 0 0./S5(27)/72513000./,GRUN(27)/1.16/,
I Ql(27)/.2/,Q2(27)/4./,PMIN(27 )/10000000./,C9(27)/0./,
8 Dl(27)/-.69/,D2(27),/2.39/,D3( 27)/-.50/,o4(27/, 004/,
9 DS(27)/O. OO/,PFAXL(27)/860000./,EFMIN(27 )/.O36/,CIO(27)/0,/,
A (DESCm(27,.7),J-1.,4) /4a*HY-,41,1130 ,4HSTEE,.4HL /
B (DESCM(27,J),J..5,8) /4H ,4H ,4HRC-3,4H0 /
C (DESCM(27,J),J-9,12)/4i ,4H ,4H ,4H /

FIGURE 24. DATA STATEMENTS FOR TII E PIC-2/EIPIC-3 MATERIA I
LI1BRAIIY IN ENGLISH UNITS
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INPUT DATA FOR SOLID MATERIAL

MATERIAL NUMBER 25 *HY-80 STEEL RC-21

MASS/THERMAL PROPERTIES
DENSITY w 0.725000E-03
SPECIFIC HEAT 0 0.433000E+06
CONDUCTIVITY 0.432000E+01
VOLUME EXPANSION COEF 0.630000E-05
INITIAL TEMPERATURE 0o.700000E+02
ROOM TEMPERATURE 0.700000+02
MELTING TEMPERATURE 0.276800E+04

STRENGTH PROPERTIES
SHEAR MODULUS - 0.112400E+08
YIELD STRESS, Cl - 0.974600E+05
HARDENING COEF, C2 - 0.616400E+O5
HARDENING EXPONENT, N - 0.360000E+00
STRAIN RATE COEF, C3 - 0.140000E-01
SOFTENING EXPONENT, M - 0.114000E+01
PRESSURE COEF, C4 - 0.000000E+00
MAX STRENGTH (OPTIONAL) O.OOOOOOE+00

EQUATION O' STATE
El - 0.237760E+08
K2 - 0.426930E+08
K3 - 0.725130E+08
GRUNEISEN COEF - 0.116000E+01
MAX NEGATIVE PRESSURE - 0.100000E+08

ARTIFICIAL VISCOSITY
LINEAR COEF - 0.2000OOE.00
QUADRATIC COEF - 0,400000E+01
HOURGLASS COEF - 0.200000E-01

FRACTURE PROPERTIES
DAMAGE COMPUTED - 0
FRACTURE ALLOWED - 0
Dl - -0.850000E+O00
D2 - 0.270000E+01
D3 - -0,500000E+00
D4 - 0.600000E-02
D5 - 04000000E+00
MINIMUM FRACTURE STRAIN - 0.330000E-01
SPALL STRENGTH 0.795000E+06
STRAIN FOR TOTAL FAILURE - 0.999000E+03

EXTRA CONSTANTS
X1 (C9) CERAMICS CRUSHED - 0.OOOOOOE+00
X2 (Cl0) - O.OOOOOOE+00

FIGUIRE 25, EPIC-2/I'PIC-3 1IPREPROCESSOR OUTIPtITUFORI'TlE MATEi IAIL
)ATA IN ENGLISII UNITS FOR IIY-80STI'XI,
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INPUT DATA FOR SOLID MATERIAL

MATERIAL NUMBER 26 *HY-100 STEEL RC-25

MASS/THERMAL PROPERTIES
DENSITY 0.725000E-03
SPECIFIC HEAT 0.433000E+06
CONDUCTIVITY 0.432000Z+01
VOLUME EXPANSION COEF 0.770000E-05
INITIAL TEMPERATURE 0.700000E+02
ROOM TEMPERATURE. 0.700000E+02
MELTING TEMPERATURE 0.276800E+04

STRENGTH PROPERTIES
SHEAR MODULUS 0.112400E+08
YIELD STRESS, Cl 0.1099005+06
HARDENING COEr, C2 0.583000E+05
HARDENING EXPONENT, N 0.260000E+00
STRAIN RATE COsF, C3 0.1100001-01
SOFTENING EXPONENT, M 0.113000E+01
PRESSURE COEr, C4 0.000000E+00
MAX STRENGTH (OPTIONAL) 0,000000E+00

EQUATION OF STATE
K1 - 0.237760E+08

2- 0.426930E+08
K3 0.725130E+08
GRUNCISEN COEr - 0.116000E+01
MAX NEGATIVE PRESSURE 0.100000E+08

ARTIFICIAL VISCOSITY
LINEAR COEF - 0.200000E+00
QUADRATIC COEr - 0.400000E+01
HOURGLASS COEF - 0.200000E-01

FRACTURE PROPERTIES
DAMAGE COMPUTED 0
FRACTURE ALLOWED 0
D1 -0.610000E+00
D2 0.207000E+01
D3 ft -0.5OOOOos+00
D4 w 0.100000E-01
D5 w 0.OOOOOOE+00
MINIMUM FRACTURE STRAIN - 0.340000E-01
SPALL STRENGTH 0w819300E+06
STRAIN FOR TOTAL FAILURE - 0.999000E+03

EXTRA CONSTANTS
Xl (C9) CERAMICS CRUSHED - 0.OOOOOOE+00
X2 (C10) - 0.OOO E+00

FIGUR E 26. E PIC-2/,I IC-3 PREPROCESSOR OUTPUT FORITII•E MATERIAL
DATA IN ENGLISII UNITS FOR IIY-100 STEEL
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INPUT DATA FOR SOLID MATERIAL

MATERIAL NUMBER 27 *HY-130 STEEL RC-30

MASS/THERMAL PROPERTIES
DENSITY - 0.738000E-03
SPECIFIC HEAT - 0.422000E+06
CONDUCTIVITY - 0.346000E+01
VOLUME EXPANSION COEF - 0.730000E-05
INITIAL TEMPERATURE - 0.700000E+02
ROOM TEMPERATURE - 0.700000E+02
MELTING TEMPERATURE - 0.276800E+04

STRENGTH PROPERTIES
SHEAR MODULUS - 0.112400E+08
YIELD STRESS, Cl - 0.133400E+06
HARDENING COEF, C2 0.483000E+05
HARDENING EXPONENT, N - 0.390000E+00
STRAIN RATE COEF, C3 w 0.800000E-02
SOFTENING EXPONENT, M - 0.115000E+01
PRESSURE COEF, C4 - 0.000000+E00
MAX STRENGTH (OPTIONAL) - 0.OOOOOOE+00

EQUATION OF STATE
K1 - 0.237760E+08
K2 - 0.426930E+08
K3 - 0.725130E+08
GRUNEISEN COEF w 0.11600054,01
MAX NEGATIVE PRESSURE - 0.100000E+08

ARTIFICIAL VISCOSITY
LINEAR COEF - 0.200000E+00
QUADRATIC COEF - 0.400000E+01
HOURGLASS COEF - Q.200000E-01

FRACTURE PROPERTIES
DAMAGE COMPUTED 0
FRACTURE ALLOWED 0
Dlw -0.690000E+00
D2 - 0.239000E+01
D3 w -0.500000E+00
D4 w 0.400000E-02
ps w 0.0000005+00
MINIMUM FRACTURE STRAIN w 0.360000E-01
SPALL STRENGTH 0 0.860000E+06
STRAIN FOR TOTAL FAILURE - 0.999000E+03

EXTRA CONSTANTS
XI (C9) CERAMICS CRUSHED - 0.000000E+00
X2 (C10) - 0.000000s+00

FIGURE 27. EP'IC-2IEP-IC-31 I'RE.I)IOCESSOR OUTIPUT 'FOR I I IE MATERIAL
IJATA IN INGLISh UNITS FOIl IIY-130 STEEiL
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SECTION 6

SUMMARY

HY-80, HY-100, and HY-130 steels have been tested at various strains, strain
rates, temperatures and pressure. Th P .'2sults of these have been analyzed to obtain
strength and fracture constants for the corresponding models in the EPIC-2/EPIC-3
codes. These constants have lBeen incorporated into the EPIC-2/EPIC-3 material
data library.
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APPENDIX A

METALLURGICAL, RESULTS OF HY-80, HY-100,
AND HY-130 STEEL

The metallugrical samples c iazh material were prepared in cross section for
examination in three planes using an antopolishing technique and etched with
3 percent nital. The three oriental, ons examined were: a plane parallel to the plate
surface and two planes 90' to pach other viewing the plate cross section. Various
degrees of typical inclusions were noted in the fine tempered martensitic structures,
The HY-130 (highexrtrength material) exhibited only spot, no linewr inclusions.
Tyuical microstructures are illustrated: HY-80, Figures Al1 to A-5; HY-100,
Figures A-6 to A-10; and HY-130, Figures A-Il to A-14.
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Miclostrucjturo phomiLr'uugroiphs of HY10 steel in cros,. ýuction at vm'icImrdjý, - nlfh

ations, viowing a plan., paidl lol to tho ý,afnplo loiwjth. Viowt; A A [A illuistrIto
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A- 4 27478 ______ _______ .Dhnr JHY-80 Steel

flicrostr'ucturo photomicra:graphs of IIY60 steel in cross, soction at various

inagni Fications, vlewirg a plano paralleil to the sample longth. Views A a B

illustrate tempered mar-tersite. Etchan! ;3% nital. ___ _____ __
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Microstructuro photomnicrographs of IIY80 steel in C~ross section at various

magni ficat Ions, viewing a plane, porpendicular to the sample length. Viows A & B

illu~strate tempered martionsito. Etchant: 3l% nital.
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VIEW A
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Photomicrographs of HYlOB stesel in cro55 socti on, viewing a p] anu parallel to the

saniple long-th. Views A ý B illustrate all inclusion at tho 5urfdcu continuing

-irn the plato prior to otch ing. Etchant: 3% nital
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A- 27478 j D. Dehmer HY-00 Steel

Microstructure ohotomicrographs of HY100 steel In cross section at various

magnf -ftons•_yi.gwiny a plane pdrallol to the sample length. Views A & B

ilhustr'a-I a line etching, Etcharnt: 3% nital.
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Mict-Osti-uctul'o photomnicrographs, of H1YIQO stecol In crosssect ion at varioujs

magnifications, Vil3wiFg ai planle parallel to U10 platO srfaco V 10ws A & 3

Illustrate tumpurad martunsito. Etchant: 3% nital, __
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VIEW A
MAGNIFICATION: 200X
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Mcrostructuro phatoniicrographs of HY1OG steel in cro5 o otna varloui3

inagitq~ifica-ioils, v-iowi ig ýi pladno -par-11o1 to tic. sampl lonagt oiw5 A& 1 3

Illus-trato tomporod rnartensito. E-tchant: 3% oftal.
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Microsti ucturo photornlcroqrapiis of HYlOC Stnr 1 in cross section at v,,,rious

mdcjnlficdtions, viewingj a piano purpondic:Kor, to the sample length. Views A 0 [

illustrate tumpaord iar-tonsito, EtRInt: 3 nital.

,lI'7.]:lrV S tA -1 I



NSWC TR 88.252

Honey-well1 DEFENSE SYSTEMS DIVISION
MATERIALS AND PROCESS ENGINEERING 6014

VIEW A
MAGNIFICATION: 200X

i.|

MAGNIFICATION: 200X

LA NI4 J.PMOI~ln Pt ENGINEA . P( 1CHI~ CIAN DEYICMPA141 NUM HEll

A1780 Dehmor HY-130 S~teel

Photomicr'ographs of HY130 steel In cross section, vlowin a~p~anj~prallel to the
.w A ---- '•us of - -hol_

z - -- 11r
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A-12



NSWC TR 88-252

Honeywell DEFENSE SYSTEMS DIVISION E
MATERIALS AND PROCESS ENGINEERING4

VIEW A
MAGNIFICATION: 200X

, ' 4:5',

MAGIFICATION: SOox

A1 24T ___ ______ I2 7478 IYiD Steed

Mict-ostructuro photornicrograph5. of !IYiJO steel in cros soto t various

magnifications, viewingj a piano parcillel to the plat ____(o Vlows A E 3
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Microstlru(tuire photomlcrographs of 1HYI30 steel in cross section dt var'ious~

magnilicationsp vinwing i plane parallel to the sample leng-th. Viow5 A & B

Illustrato tompered niartensito. rtchant, 3% nital.
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