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FOREWORD

This final report was prepared by Honeywell Inc., Armament Systems

\ Division, 7225 Northland Drive, Brooklyn Park. Minnesota 55428, for the
Naval Surface Warfare Center (NSWC), White Oak Laboratory, Silver Spring,
Maryland 20903-5000, under contract N60921-86-C-0249.

This effort was conducted during the period from September 1986 to
September 1987. The NSWC Program Manager was Paula Walter.

The author would like to express his appreciation to LT Josef Smith for per-
forming the Hopkinson Bar tests at Eglin Air Force Base, and to Gordon R. Johnson
and Craig Wittman of Honeywell for their contributions to his work.

The purpose of this contract was to obtain HY-80, HY-100, and HY-130 steel
constants for the strength and fracture models in the EPIC-2/EPIC-3 codes.
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SECTION 1
INTRODUCTION

This report documents the strength and fracture characteristics of HY-80,
HY-100, and HY-130 steels, subjected to various strains, strain rates, temperatures,
and pressures. The result of this characterization is the generation Ef constants for
the strength and fracture models in the EPIC-2 and EPIC-8 codes.!’

The following sections describe the test data and the analysis of the data used
to obtain constants for both the strength and fracture models.
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SECTION 2
TEST DATA.

The test data were obtained from torsion tests at various strain rates, :
Hopkinson bar tension tests at various temperatures, and quasi-static tension tests
wi& various specimen geometries (notched and unnotched). The torsion tests were

rformed with the Biaxial Testing Machine at Southwest Research Institute, the
{opkinson bar tests were performed at Eglir. Air Force Base, and the quasi-static
tension tests were performed at Honeywel.. The HY-80, HY-100, and HY-130
material was provided by the Naval Surface Warfare Center (NSWC). Physical
preperties are given in Table 1.3 Metallurgical data are shown in Appendix A.

-Torsion data are shown in Fig}lres 1to 3. Comparable data for 12 other
materials are presented elsewhere.4® Some desirables features of this testing
technique are that the state of stress in the specimen is well defined, large strains
can be achieved without forming geometric instabilities, and a wide range of strain
rates can be obtained with the same testing technique. It appears that adiabatic
thermal softening is causing the lower stresses at the higher rates.

Figures 4 to 6 show Hopkinson bar test data at various temperatures. The
elevated temperatures are obtained by surrounding the in-place test specimen by an
oven such that the temperatures are applied for several minutes prior to testing.
Although it is possible to test materials to greater strains than those shown in
Figures 4 to 6, the Hopkinson bar data cannot be accurately evaluated after necking
begins in the tenzile specimens. Furthermore, at larger strains the effects of
adiabatic heating can also complicate the results. The elevated temperatures show a
distinct softening effect on the strength of the materials,

Photogra?hs of the fractured Hopkinson bar specimens are shown in
Figures 7 to 9. The cross-sectional area of these surfaces can be used to obtain
fracture characteristics,

Quasi-static stress-strain data for both tension and torsion tests are shown in
Figures 10 to 12, An equivalent tensile flow stress is obtained from the torsion data
by using the von Mises flow rule, the tepsile stressis 0 = V3, and the
corresponding tensile strain ise = y/V3.

The stress for the tension test data is based on the current area of the neck, and
the strain is defined as In (Ay/A), where A, and A represent the initial and current
areas of the neck. The notchgd tension bars give a concentration of hydrostatic
tension in the test specimen.

This is clearly shown in the data of Figures 10 to 12, For a specified true strain,
the stress (inclnding hydrostatic tension) increases for the notched geometry. It can
also be seen that the presence of the hydrostatic tension significantly decreases the
strain at which the material fractures.
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TABLE 1. PHYSICAL PROPERTIES OF HY-80, HY-100, AND HY-130 STEEL

HY-80 STEEL | HY-100 STEEL | MY-130 STEEL ;
HARDNESS (ROCKWELL) c-21 c25 - c-30
ELASTIC PROPERTIES !
ELASTIC MODULUS, E (GPa) 207 207 207
POISSON'S RATIO, ¥ 30 30 30
SHEAR MODLUILUS, E/2 (1 + V) (GPa) 79 79 79
BULK MODULUS, E/3 (1 -2v) (GPa) 172 172 172
THERMAL PROPERTIES
DENSITY, p (lkym3) 7748 7748 7685
CONDUCTIVITY, k (WimK) 34 34 27
SPEGIFIC HEAT, ¢, (IAgK) 502 502 489
DIFFUSIVITY, k/pc, (m¥s) .000009 000009 .000007
EXPANSION COEF. (VOL.), & K1) .000011 000014 .000013
MELTING TEMPERATURE, T g 1 (K) 1793 1793 1793

NO7-020.IF
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FHGURE 2. STRESS-STRAIN DATA FOR TORSION TESTS AT VARIOUS STRAIN
RATES FOR HY-100 STEEL
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FIGURE 6. STRESS-STRAIN DATA FOR HOPKINSON BAR'TESTS AT
VARIOUS TEMPERATURES IFOR HY-130 STEEL
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. FIGURE 7. PHOTOGRAPLIS OF THE FRACT'URE PROFILES ON THI HY-80
STEEL IHOPKINSON BAR SPECIMENS
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FIGURE 8. PHOTOGRAPIIS OF THI FRACTURE PROFILES ON TIHE Y100 v
STEEL HOPKINSON BAR SPECIMENS
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FIGURE 9. PHOTOGRAPHS OF THE FRACTURE PROFILES ON THE HY-130
STEEL HOPKINSON BAR SPECIMENS
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FIGURE 11. STRESS-STRAIN DATA FOR QUASI-STATIC TENSION AND
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SECTIONS3
STRENGTH MODEL

The origin of the strength model, and the techniques used to extract constants
for the model, are described in References 7 and 8. The analysis which follows is
essentially identical to that described in these references.

L

The model for the von Mises flow stress, o, is expressed as

o ={A + Be")[1 + Clné*|(1 = T*™| (1)

where ¢ is the equivalent plastic strain, ¢* = /¢, is the dimensionless plastic strain
rate for ¢,= 1.0s"! and T* is the homologous temperature, The five material con-
stants are A, B, n, C, m, The expression in the first set of brackets gives the stress as
a functicn of strain for ¢* = 1,0 and T* = 0. The expressions in the second and third
sets of brackets represent the effects of strain rate and temperature, respectively.
The basic form of the model is readily adaptable to most computer codes since it uses
variables (g, ¢*, T*) which are available in the codes.

The first step in the process is to determine the constants in the first set of
brackets. A isthe yield stress and B and n represent the effects of strain hardening.
Since the torsion data in Figures 1 to 3 include the strain rate of interest (¢* = 1.0),
itis a straightforward procedure to obtain the appropriate constants for this strain
rate. .

The same three constants ¢an also be derived from the quasi-tension data of
Figures 10 to 12. These results are for ¢* = 0.002 and must therefore be adjusted
for ¢* = 1.0. This can readily be accomplished after the strain rate constant, C, is
determined.

Figure 13 shows the effect of strain rate for tension and torsion. In both cases
the stress increases as the strain rate increases. The results are shown for relatively
small strain values (¢ = 0.08, y = 0.20) to ensure that the strain rate effect is not
significantly altered by adiabatic thermal softening. Strain rate constants for both
t?nﬁios and torsion can be determined from the ‘least squares’ linear approximations
of the data.

The effect of thermal softening is shown in Figures 4 to 6. The thermal
softening fraction, Ky = 1 - T*m, issimply the ratio of the stress at elevated
temperature to that at room temperature. The thermal softening constant, m, is
shown to give an analytic expression which closely matches the experimental data.
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At this point there are two sets of constants (tension and torsion) for strain and
strain rate effects (A, B, n, C) and one constant, m,for the thermal softening,
Averaging the tension and torsion constants for strain rate effects gives a Enal set of
constants (A, B, n, C) to be used in the strength model. The resulting stress-strain
relationships are shown in Figures 14 to 186.

It can be seen that the strength results for the three materials are well
behaved. Asexpected, the HY-80 steel has the lowest strength and the HY-130 has
the highest strength. The yield stresses, A, increase when going from the HY-80 to
the HY-130; the strain rate effects, C, decrease when going from the HY-80 to the
HY-130i and the thermal softening effects, m, are essentially identical for all three
materials. i

1400 T T T T T T

1200 |- TENSION DATA (& = .08) .

/M
o r /’_ﬁjﬂ/'/'

3
§ ///w/
é 800 | 7
b—
g o A ]
;E, 600 - HY =130 i N r .
g HY-100 —* ” /r———-—-‘
[ ] _’_'_,_‘-——-"’—

HY-80 ——
400 |- -
TORSION DATA (Y= .20)

200 |- .
0 1 1 i - I ! j
0001 .001 .01 1 1.0 10 100 1000

STRAIN RATES, & AND Y (s-1)

FIGURE 13. STRESS VIERSUS STRAIN RATE FOR TENSION AND TORSION
TESTS
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@
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E ol ﬂ
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200 |- ]
0 1 1 1 | . A
00 .25 0.5 75 10 1.26 1.5 175
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. FIGURE 14. ANALYTIC STRESS STRAIN RELATIONSHIPS FOR ISOTHERMAL
AND ADIABATIC CONDITIONS FOR HY-30 STEEL
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SECTION 4
FRACTURE MODEL

The origin of the fracture model and the techniques used to obtain the appro-
priate constants are presented in References 7 and 9. As was the case with the
strength constants, the fracture constants are obtained in a manner similar to that
presented in these references:

To begin, the damage to an element is defined as

. Ag

D= = (2)
g,
1

where Ae is the incremen.t of equivalent plastic strain which occurs during an

integration cycle, and ¢ris the equivalent strain to fracture, under the current

conditions of strain rate, temperature, pressure and equivalent stress. Fracture is

then allowed to occur when D = 1.0,

The general expression for the strain at fracture is given by
g = [l)1 + l)2oxp Dao*lll + D41 nt*) (1 -+ Db'l"‘J @3)

for constant values of the variables (o*, ¢*, T*) and 0* < 1.5. The dimensionless
pressure-stress ratio is defined as 0* = 0,/ where oy, 1s the average of the three
normal stresses an.. G is the von Mises equivalent stress. The dimensionless strain
rate, £* and homologous temperature, T*, are identical to those used in the strength
model of Equation (1),

The five constants are D;...D5. The expression in fhe first set of brackets
follows the form presented by Hancock and Mackenzie, !0 It essentially says that the
strain to fracture decreases as the hydrostatic tension, o, increases. The expression
in the second set of hrackets represents the effect of strain rate, and that in the third
set of brackets represents the effect of temperature. For high valuesof hydrostatic
tension ( o* > 1.5), eris linearly interpolated between erat o* = 1.5 and gpmin 38
0% = 0gpall/T, where ogpall and epnin are input values of spall stress and strain,

The first step required to obtain the fracture constants is to determine the
effect of the dimensionless pressure-stress ratio, o*. This can be done by considering
the quasi-static tension and torsion data of Figures 10 to 12 and 17. For the torsion
data o* = 0 and for the unnotched tension data o*= 1/3. For the notched tension
bar, EPIC-2 simulations were performed to compute o* at the center of the specimen,
These results are shown in Figure 18. For these computations, an average pressure
for each set of adjacent triangular elements was used to eliminate any excessive
stiffness due to the triangular element formulation.11
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For the notched tensions bars, the computed pressure-stress ratio begins at
approximately o* = 0.8 and peaks somewhere between o* = 1.8 to 1.4, depending on
the material, After its peak the pressure-stress ratio gradually decreases until
fracture. It should be noted that each curve’s maximum pressure-stress ratio is in the
same order as their respective strengths.

Figure 19 shows the equivalent plastic strain to fracture as a function of the
pressure-stress ratio for quasi-static conditions. For all three materials an apfproxi-
xlr)llate t:lnlglytic fit to the data was performed by setting D3 = -0.5, and solving for

and D2.

Figure 20 shows the effect of strain rate and temperature on the strainto  ~
fracture. The fracture strains are expressed as the ratio of the Hopkinson bar frac-
ture strains divided by the quasi-static tensile fracture strains. The Hopkinson bar
fracture strains are approximately determined by measuring the cross-sectional area
of the post-tested specimens as shown in Figures 7 to 9. Unfortunately, these areas
cannot be measured with a high degree of accuracy. The temperatures for each test
range from the initial temperature at the beginning of the test to the computed
temperature at the strain where fracture occurs,

For example, in Fi%-ure 20, for the first test performed on the HY-100 material
the specimen was initially at room temperature (T* = 0). If all the plastic work is
converted to adiabatic heat, the computed final temperature is 606K (T* = .21), The
strain at.which this specimen fractured was ef = 1.13, at an average strain rate of

¢ =~ 550s 1, The quasi-static (¢ = ,002s-1), room temperature (T* = Q) tension test is
used as the normalizing denominator for the vertical axis. For the HY-100 material
this fracture strain is ef = 1.04. The ratio of these two fractures strains is 1,09 and is
the value plotted on the vertical axis. The same procedure is used for the remaining
three HY-100 tests with the only difference being the initial temperature of the
specimen,

Under normal conditions a linear least squares fit is performed on the data of
each material in Figure 20, of which the intercept is the strain rate'influence on
fracture and the slope is the temperature influence., The HY-80, HY-100, and
HY-130 materials acted differently than expected, displaying a consistent trend of
reaching a peak fracture strain ratio between .15T* and .35T* and then becoming
less ductile as the temperature is increased (Figure 20). Possible explanations for this
behavior is that the material becomes strain rate sensitive at higher tempera-
tures as shown in Figure 17, or it may be experiencing a phenomena referred to as
'ltem er sx]nbrittlement’ where under certain tempering processes a metal becomes

ess ductile.

The current fracture model was not developed toc handle the phenomena which
is occurring with the HY materials. By applying the linear least squares fit to the
data, one obtains deceiving results, implying that the material is very strain rate
sensitive and loses ductility as the temperature increases. A more realistic approach
to incorporate this data into the fracture model is to obtain an ‘average’ strain rate
constant and neglect thermal effects. In graphical terms, fit the best horizontal line
to the data points of each material as shown on the right hand side in Figure 20,

Now the fracture constants can be determined. The strain rate constant, D4, is

obtained by averaging the fracture strain ratios of Figure 20 for each respective
material. The average strain rate constant for all three is greater than 1.0. This
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ratio indicates thut the strain to fracturs ircreases slightly as the strain rate
increases. This same trend is verified by the fracture data of Figure 17, (The
decrease in fracture strains for the higher strain'rate torsion data may be due to
shear localizations resulting from adiabatic heating.4,5) The constants related to the
pressure-stress ratio (D1, D2, D3) are those of Figure 19, adjusted from quasi-static
conditions (¢ = .002s 1) to ¢* = 1.0. Finally, the temperature constant, D5, is set to
zero, due to the unconforming data of Figure 20. The resulting relationships are
shown in Figures 21 to 23.

Unlike the strength relationships, which transitioned in a well-behaved
manner from HY-80 to HY-130, the fracture characteristics do not follow a well- _
behaved pattern. The HY-80 steel exhibits the most ductility, as expected, but the
HY-100 is the least ductile. Generally, it would be expected that the higher strength
HY-130 :i:teel would exhibit less ductility. The reasons for this apparent discrepancy
are not clear. .

Although no tests were performed to obtain spall characteristics of HY-80,
HY-100, and HY-130, it is necessary to designate a spall stress and strain to complete
the model. Based on comparisons with materials of similar yield strengths, the spall
stress and strain were estimated and are shown in Table 2,
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TABLE 2. SUMMARY OF STRENGTH AND FRACTURE MODEL CONSTANTS
FOR HY-80, HY-100, AND HY-130 STEEL
’ HY-80 STEEL | HY-100 STEEL | HY-130 STEEL .
. STRENGTH CONSTANTS FOR
Cu[A+BE"[1+CIn E*)[1-T*"]
A (MPa) 872 758 920
B (MPa) 425 402 333
n 36 26 a9
c 014 011 008
m 114 1,13 1.15
FRACTURE CONSTANTS FOR

, € =D, +D,EXP 03%" J[14D, InEY[1+D,T "]

! D, -85 -61 -69
D, 2.70 2,07 2.39
D, -0.50 -0.50 -0.50
D, 006 010 004

_ D, 0.0 v.e 0.0
| SPALL STRESS, GgpaL (MPa) 5500 5600 5900

g™ 033 034 038

¢ = o/

-',“ t*- & /t, FORE, =108

T (T Thoou)/ Ty * Troow)
NO7-021 JF

33/34
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SECTION §
CONSTANTS FOR EPIC-2/EPIC-3 DATA LIBRARY

A summary of the strength and fracture model constants is given in Table 2.
Data statements for the EPIC-2/EPIC-3 material library (Subroutine MATLIB) are
shown in Figure 24, and the corresponding Preprocessor output is shown in
Figures 25 to 27. .
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c .
C #%t HY=B80 STEEL # % S ddAn AN AR AR AN A AR RN N AR AR AN RN A RN N EW TJH - AUG 1987
' C #w* LIMITED TO U.5. GOVERNMENT AGENCIES ONLY
B c PRESSURE - KOHN, AFwWL-TR-69-38, 1969, P. 140 (STAINLESS STEEL 304L)
ﬁ C STRENGTH -~ HOLMQUIST, NSWC REPORT 1987
. c PRACTURE - HOLMQUIST, NSWC REPORT 1987
c EPALL = QVERESTIMATED FROM DATA IN AFWAL-~TR-81-4040, 1981
] DATA MTYPE(25)/1/,1IDAM(25)/0/,1FAIL(25)/0/,EFAIL(25)/999./,
. 1 DEN(25)/.000725/,8PH(25)/7433000./,CDUCT(25)/4.32/,
2 ALPHA(25),/.0000063,/,TEMP1(25),/70./,TROOM(25)/70./,
k) TMELT(25),/2768./,C0(25)/.02/,G(25)/11240000./,
4 C1(25)/97460./,€2(25)/61640,/,AN(25)/.36/,C3(25)/.014,,
5 An(25)/1.14/,C4(25)/0./,C5(25)/0./,C(25)/23776000./, .
€ D(25)/42693000./,8(25)/72513000./,GRUN(25)/1.16/,
1 Q1(25)/.2/,Q2(25)/4./,PMIN(25)/10000000./,C9(25)/0./,
8 pl(25)/-.85/,02(25)/2.70/,03(25)/~.50/,D4(25)/.006/,
9 D5(25)/0.00/,PPAIL(25)/795000./,EPMIN(25)/.033/,C10(25)/0./,
A (DRSCM(25,J),J0=1,4) /4H*HY-,4HBO S, 4HTEEL, 4H s
B (DESCM(25,J),3=5,8) /4H. +4H , HRC~2, 4H1 /e
(o {DESCM(25,0),J=9,12)/4H ,4H , 48 . 4H e
R C
C *##% HY-100 STEEL 44 ddnaddkanAddAd v e dh AR AdAAdddddhord PTH = AUG 1987
C w»*» LIMITED TO U.S5. GOVERNMENT AGENCIES ONLY
(o} PRESSURE - KOHN, ArwL-TR-69-38, 1969, P. 14U (STAINLESS STEEL 304L)
Cc STRENGTH - HOLMQUIST, NSWC REPORT 1987
(o] FRACTURE -~ HOLMQUIST, NSWC REPORT 1987
c S§PALL - QOVERESTIMATED FROM DATA IN AFwAL-TR-81-4040, 1981

ﬂ- DATA MTYPE(26)/1/,IDAM(26}/0/,1FALIL(26)/0/,EFAIL(26)/999./,
DEN(26)/.000725/,8PH(26)/433000./,CDUCT(26)/4.32/,
ALPHA(26)/.0000077/,TEMP1(26)/70./, TROOM(26)/70./,
TMELT(26),/2768./,C8(26)/.02/,G(26),/11240000./,
€1(26)/109900./,C2(26)/58320./,AN(26)/,26/,C3(26)/.011/,
AM{26)/1.13/,C4(26)/0./,C5(26)/0./,C(26)/23776000,/,
D(26)/42693000./,5(26)/72513000./,GRUN(26)/1.16/,
Q1(26)/.2/,02(26)/4./,PMIN(26)/10000000./,C9(26)/0./,
D1(26)/-.61/,02(26)/2.07/,03(26)/-.50/,D4(26)/.010/,
D5(26),0.00/,PPAIL(26)/819300./,EFRIN(26)/.034/,C10(26)/0./,
(DESCM(26,0) ,J=1,4) /4H*HY-,4H100 ,4HSTEE,4HL /e
(DESCM(26,J),0=5,8) /d4H 4H +4HRC-2, 4H5 /s
(DESCM(26,0),9=9,12)/4H +4H 44 , 4H /

c8
2(
6)
5¢(
/4
€)
L(

lit
foX- 2 RT-X.-XSF. 31 W NYXY S

ARt HY-130 STEEL AWM ahRiauddhdwAhd N ds vah bR ANhAWRdkd % TJH o AUG 1987

#4#% LIMITED TO U.85. GOVERNMENT AGENCIES ONLY '

PRESSURE - KOHN, AFWL-TR-69-38, 1969, P. 140 (STAINLESS STEEL 304L)

STRENGTH - HOLMQUIST, NSWC REPORT 1987

LRACTURE - HOLMQUIST, NSWC REPORT 1987

SPALL = OVERESTIMATED PROM DATA IN AFWAL-TR-81-4040, 1981

DATA HTYPE(27)/1/,IDAH(27)/0/,IFAIL(27)/0/,EFAIL(27)/999./o
DEN(Z?)/.OOO738/,BPH(27)/422000./,CDUCT(27)/3.46/.
ALPHA(27)/.0000073/,T!MP1(27)/70./,TRO0M(27)/70./,
THBLT(27)/2768./,C8(27)/.02/,G(27)/11240000./, ’
€1(27)/133400./,¢2 27),48300./,AN(27)/.39/,C3(27)/.008/,
AN(27)/1.15/,04(27 /0./,€5(27)/0./,€(27) /23776000, /,
D(27)/42693000,/,5 27)/72513000,/,GRUN(27)/1,16/
Q1(27)/.2/,02(27)/4./,PHIN(27)/10000000./,C9(27) 0./, -
D1(27)/-.69/,D2(27 /2.39/,03(27)/-.50/,D04(27)/.004/,
05(27)/0.00/,PFAIL 27)/860000./,ZFMIN(27)/.036/, 10(27)/0./,
(DESCM(27,J) ,0=1,4) /4H*HY-,4H130 ,4HSTEE, {HL
(DESCM(27,3),Jd«5,8) /4H 4H +4HRC-3,dHO
(DESCM(27,J),9=9,12) /4K 4R »4H +4H

nonNnNann

0O~

(
)
(
4
)
{
)

[gR- B Rv-3. B W YRy Ty
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FIGURE 24. DATA STATEMENTS FOR THE EPIC-2/EPIC-3 MATERIAL
LIBRARY IN ENGLISI1 UNI'T'S
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INPUT DATA FOR SOLID MATERIAL

MATERIAL NUMBER 25

MASS/THERMAL PROPERTIES
DENSITY
SPECIFIC HEAT
CONDUCTIVITY
VOLUME EXPANSION COErF
INITIAL TEMPERATURE
ROOM TEMPERATURE
MELTING TEMPERATURE

_STRENGTH PROPERTIES

SHEAR MODULUS

YIELD STRESS, Cl

HARDENING COEF, C2

HARDENING EXPONENT, N

STRAIN RATE COEF, C3

SOFTENING EXPONENT, M

PRESSURE COEF, ¢4

MAX STRENGTH (OPTIONAL)
EQUATION OF STATE

Kl

K2

K3

GRUNEISEN COEF

MAX WEGATIVE PRESSURE
ARTIFICIAL VISCOSITY

LINEAR COEF

QUADRAYTIC COEF

HOURGLASS COEF
FRACTURE PROPERTIES

DAMAGE COMPUTED

FRACTURE ALLOWED

MINIMUM FRACTURE STRAIN

SPALL STRENGTH

STRALIN FOR TOTAL FAILURE
EXTRA TONSTANTS

Al (C9) CERAMICS CRUSHED

X2 (c10)

*HY~80 STEEL

.725000E~-03
.433000E+06
.432000E+01
.630000E~-05
+700000E+02
.700000E+02
.276800E+04

112400E+08
0.974600E+05
0.616400E+05
0.360000E+00
0.140000E~01
0.114000E+01
0,000000E+00
0.000000E+00

0.237760E+08
0.426930E+08
0,725130E+08
0.116000E+01
0,100000E+08

0.200000E+00
0.400000E+01
(,2000C0E-01

0

0
~0.850000E+00
0.270000E+01
-0.500000E+00
0.6000008-02
0,000000E+00
0,330000E-01
0.795000E+06
0.999000E+03

0.000000E+00
0.000000E+00

0
0
0
0
0
0
0
0

FIGURE 25, EPIC-2/EP1C-3 PREPROCESSOR OUTPUT FOR THE MATERIAL
DATAIN ENGLISH UNITS FOR NY-80 STEIL
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INPUT DATA FOR SOLID MATERIAL

MATERIAL NUMBER 26

MAS3/THERMAL PROPERTIES
DENSITY
SPECIFIC HEAT
CONDUCTIVITY
VOLUME EXPANSION COEF
INITIAL TEMPERATURE
ROOM TEMPERATURE.
MELTING TEMPERATURE
STRENGTH PROPERTIES
SHEAR MODULUS
YIELD STRESS, Cl
HARDENING coEr, C2
HARDENING EXPONENT, N
STRAIN RATE COBF, C3
SOFTENING EXPONENT, M
PRESSURE COEFr, C4
MAX STRENGTH (OPTIONAL)
EQU?TION QF STATE
X

K2

K3

GRUNEISEN COEF

MAX NEGATIVE PRESSURE
ARTIFICIAL VISCOSITY

LINEAR COEF

QUADRATIC COQEr

HOURGLASS COEF
FRACTURE PROPERTIES

DAMAGE COMPUTED

FRACTURE ALLOWED

Dl

D2

b3

D4

D5

MINIMUM FRACTURE STRAIN

SPALL STRENGTH

STRAIN FOR TOTAL FAILURE

EXTRA CONSTANTS

X1 (C9) CERAMICS CRUSHED

X2 (Cl0)

[ . B

*HY-100 STEEL

0.725000E~03
0.433000E+06
0.432000E+01
0.770000E-05
0.700000E+02
0.700000E+02
0.276800E+04

0.112400E+08
0.109900E+06
0.583000E+05
0.260000E+00
0.110000E-01
0,113000E+01
0.000000E+00
0.000000E+00

0.237760E+08
0.426930E+08
0.725130E+08
0.116000E+01
0.100000E+08

0.200000E+00
0.400000E+01
0.200000E~01

0

0
-0.610000E+00
0.207000E+01
~0.5000002+00
0.100000E-01
0.000000E+00
0.340000E-01
0.819300E+06
0.999000E+03

0.000000E+00
0.000000E+00

EPIC-2/EPIC-3 PREPROCESSOR OUTPU'T FOR THE MATERIAL
DATA IN ENGLISH UNITS FOR HY-100 STEEL
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INPUT DATA FOR SOLID MATERIAL

MATERIAL NUMBER 27 "HY-130 STEEL RC-30

MASS/THERMAL PROPERTIES

DENSITY = 0.738000E-03
SPECIFIC HEAT n 0.422000E+06
CONDUCTIVITY - 0.346000E+01
VOLUNE EXPANSION COEF = 0.730000E~05
INITIAL TEMPERATURE = 0.700000E+02
ROOM TEMPERATURE - 0.700000E+02
MELTING TEMPERATURE - 0.276800E+04
STRENGTH PROPERTILS
SHEAR MODULUS - 0.112400E+08
YIELD STRESS, Ci - 0.133400E+06
HARDENING COEF, C2 - 0.483000E+05
HARDENING EXPONENT, N - 0.390000E+00
STRAIN RATE COEF, C3 - 0.800000E~02
SOFTENING EXPONENT, M - 0.115000E+01
PRESSURE COEF, C4 - 0.000000E+00
MAX STRENGTH (OPTIONAL) = 0.000000E4+00
EQUATION OF STATE
K1l 0.237760E+08
K2 0.426930E4+08
K3 0.725130E+08

GRUNEISEN COEF
MAX NEGATIVE PRESSURE
ARTIFICIAL VISCOSITY
LINEAR COEF
QUADRATIC COEF
HOURGLASS COEF
FRACTURE PROPERTIES
DAMAGE COMPUTED
FRACTURE ALLOWED

0.1160001401
0.100000E+08

0.200000E+00
0.400000E+01
0.200000E-01

0
0

Dl ~0.690000E+00
D2 0.239000E+01

-0.500000E+00
D4 0.400000E-~02
Dn5 0.000000E+00

MININUM FRACTURE STRAIN

SPALL STRENGTH

STRAIN FOR TOTAL PFAILURE
EXTRA CONSTANTS

X1 (C9) CERAMICS CRUSHED 0.000000E+00

X2 (c10) - 0.000000E+00

0.360000E-01
0.860000E+06
0.999000E+03

(=)
w
[ S O B B O B B B B

FIGURE 27, EPIC-2/EPIC-3 PREPROCESSOR OUTPUT FOR TH EE MATERIAL
DATA IN ENGLISH UNITS FOR 1 Y-130STEEL
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SECTION 6
SUMMARY

HY-80,HY-100, and HY-130 steels have been tested at various strains, strain
rates, temperatures and pressure. Th= ugults of these have been analyzed to obtain
strength and fracture constants for the corresponding models in the EPIC-2/EPIC-3
codes. These constants have Been incorporated into the EPIC-2/EPIC-3 material
data library.
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APPENDIX A

METALLURGICAL RESULTS OF HY-86, HY-100,
AND HY-130 STEEL

The metallugrical samples of zash material were prepared in cross section for
examination in three planes using s antopolishing technique and etched with
3 percent nital. The three orientations examined were: a plane parallel to the plate
surface and two planes 90° to gach other viewing the plate cross section, Various
degrees of typical inclusions were noted in the fine tempered martensitic structures,
The HY-130 (higher strength material) exhibited only spot, no linear inclusions.
Tyvical microstructures are illustrated: HY-80, Figures A-1 to A-5; HY-100,
Figures A-6 to A-10; and HY-130, Figures A-11 to A-14,
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