
DTiC FILE COPY]

Intelligent Scheduling with Machine Learning
Capabilities: The Induction of Scheduling

(V) Knowledgei

Michael J. Shaw*t
NSang Chan Park**

Narayan Raman*
N CMU-RI-TR-90-25

DTIC
MAR 1 41991aw

8 DI--T

Copy Right 0 1990 Camegie Mellon University

t Robotics Institute, Carnegie Mellon University; on leave from The Beckman Institute,
University of Illinois at Urbana-Champaign

The Department of Business Administration, University of Illinois at Urbana-Champaign
* School of Business, University of Wiscosin at Madison

§ Forthcoming in IE Transactions; an earlier version appeared in the BEBR Working Paper
Series No. 90-1639.

Revised November, 1990

3 // o9c



Form Approved
REPORT DOCUMENTATION PAGE 0MB No. 07040188

Public reporting b froenftor this collection of information is estimated to averaqe I 'our per eoorse. including te tme for reviewinq instructions. searcfhini evsttrng data sourcet
gatheriq and maintaiing the ata needed, and comleting and reviewng tIhe colection ol information Send comments regaraing this burden estimate or anv other aspect of this
or .nchadng suggestions for reducing this buroen. to Washirqton Headouarters Services. Directorate for nformation ODerations and Reports. 1215 Jefferson

Davis ighwav. Suite 1204. Arlington, VA 22202.4302. a tO the Office of Management and Budget, Paperwof Reduction Project (0704-0188). Washington. DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
November 1990 Technical

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Intelligent Scheduling with Machine Learning Capabilities: The
Induction of Scheduling Knowledge

6. AUTHOR(S)

Michael J. Shaw, Sang Chan Park, and Narayan Raman

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMBER

The Robotics Institute
Carnegie Mellon University CMU-RI-TR-90-25
Pittsburgh, PA 15213

9. SPONSORING MONITGRING AGENCY NAME(S) AND ADDRESSiES) 10. SPONSORING, MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVA:LABILITY STATEMENT j 12b. DISTRIBUT;ON CODE

Approved for public release;
Distribution unlimited

13. ABSTRACT :,Vaxrmum 2 0woras1

Dynamic scheduling of manufacturing systems has primarily involved the use of dispatching rules. In the context of
conventional job shops, the relative performance of these rules has been found to depend upon the system attributes, and
no sile rule is dominant across all possible scenarios.

This indicates the need for developing a scheduling approach which adopts a state-dependent dispatching rule selection
policy. The importance of adapting the dispatching rule employed to the current state of the system is even more critical
in a flexible manufacturing system because of alternative machine routing possibilities and the need for increased
coordination among various machines.

This study develops a framework for incorporating machine learning capabilities in intelligent scheduling. A
pattern-directed method, with a built-in inductive learning module, is developed for heuristic acquisition and refinemenL
This method enables the scheduler to classify distinct manufacturing patterns and to generate a decision tree consisting of
heuristic policies for dynamically selecting the dispatching rule appropriate for a given set of system attributes.

Computational experience indicates that the learning-augmented approach leads to improved system performance. In
addition, the process of generating the decision tree shows the efficacy of inductive learning in extracting and rankdng the
various system attributes relevant for deciding upon the appropriate dispatching rule to employ.

14. SUBJECT TERMS 15. NUMBER OF PAGES

33 DP
16. PRICE CODE

17. SECURITY CLASS;FICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT•
L unlimited unlimited unlimited

i 7::-



Contents

1. Introduction ...................................................................................... 1

2. Intelligent Scheduling and Machine Learning ................................... 3

3. Inductive Learning ........................................................................ 5

4. Heuristic Scheduling and Inductive Learning .................................... 8

4.1 Heuristic Schyeduling .............................................................. 8

4.2 Induction of Heuristic Knowledge ............................................... 9

5. FM S Scheduling ............................................................................. 12

5.1 Problem Characteristics ............................................................ 12

5.2 Implementation of PDS ............................. 13

6. Experimental Study ........................................................................ 16

7. Conclusion .................................................................................... 21

References ........................................................................................ 22

D 7. AdAc~~~ce~ ..i . .- -..... 
U. a.:!,.,"' :.d .

B y .......... .......... .
D it ib. , I

A141 I



List of Figures

Figure 1. The Inductive Learning Process ................................................ 10

Figure 2. Decision Tree for Selecting Dispatching Rules .............................. 15

Figure 3. Decison Tree for Selecting the Smoothing Parameter .................... 15

Figure 4. Dynamic Execution of PDS............................................... 16

Figure 5. Impacts of the Number of Pattern Changes................................... 18

List of Tables

Table 1. Comparative Mean Tardiness Value ......................................... 16

ih"



Abstract

Dynamic scheduling of manufacturing systems has primarily involved the use of dispatching

rules. In the context of conventional job shops, the relative performance of these rules has

been found to depend upon the system attributes, and no single rule is dominant across

all possible scenarios. This indicates the need for developing a scheduling approach which

adopts a state-dependent dispatching rule selection policy. The importance of adapting the

dispatching rule employed to the current state of the system is even more critical in a flexible

manufacturing system because of alternative machine routing possibilities and the need for

increased coordination among various machines.

This study develops a framework for incorporating machine learning capabilities in in-

telligent scheduling. A pattern- directed method, with a built-in inductive learning module,

is developed for heuristic acquisition and refinement. This method enables the scheduler to

classify distinct manufacturing patterns and to generate a decision tree consisting of heuristic

policies for dynamically selecting the dispatching rule appropriate for a given set of system

attributes.

Computational experience indicates that the learning-augmented approach leads to im-

proved system performance. In addition, the process of generating the decision tree shows

the efficacy of inductive learning in extracting and ranking the various system attributes

relevant for deciding upon the appropriate dispatching rule to employ.
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1 Introduction

Scheduling forms a part of the operational control process in a manufacturing system. The

need for scheduling arises whenever a common set of resources in the manufacturing system

must be shared to make a variety of different products during the same period of time.

The objective of manufacturing scheduling is the efficient allocation of machines and other

resources to jobs, or operations within jobs, and the subsequent time-phasing of these jobs

on individual machines.

The needs of research in new approaches to manufacturing scheduling have been stim-

ulated by a variety of pragmatic and theoretical considerations. On one hand, scheduling

is a notoriously difficult problem to solve computationally; on the other hand, it is also a

problem encountered in every manufacturing system and .there are a great deal of finan-

cial incentives for factories to improve their scheduling practices. Global competition has

enhanced the significance of manufacturing effectiveness. Better manufacturing schedules

provide competitive advantage through reduced production cost and increased productiv-

ity. Moreover, global competition in the last decade has forced U.S. con. -,anies to invest

in automated, capital- intensive new manufacturing systems, such as flexible manufacturing

systems (FMSs). These new systems have created a range of new operational problems, mak-

ing the development of new methods for scheduling these sophisticated systems increasingly

important (Raman and Talbot 1985; Shaw 1986-89).

The maturation of artificial intelligence (Al) has redirected the body of scheduling re-

search (Rodammer and White 1988; Stockey 1989). There are several capabilities of AI that

make this technology particularly suitable for scheduling; these include (1) the richer, more

structured, knowledge representation schemes capable of fully incorporating manufacturing

knowledge, constraints, state information, and heuristics; (2) the reasoning ability enabling

the scheduling systems to perform more reactive scheduling in addition to predictive schedul-

ing; (3) the ease to integrate Al-based scheduler with other decision support systems in the

manufacturing environment, such as diagnostic systems, process controllers, sensor monitors,

and process planning systems; and (4) the ability to incorporate descriptive, organization-

ally specific scheduling knowledge usually possessed only by human expert schedulers. The



adoption of Al for factory automation is the general trend in the industry; for example, a

recent survey showed that in the near future manufacturing process controllers will be mostly

rule-based (Booker 1989).

However, the development of Al systems for intelligent scheduling is now at a critical

junction, very much in need of new advancements to resolve a number of common difficulties

encountered in applying the technology. The proposed research project is aimed at develop-

ing new methods for intelligent scheduling to address some of these issues, such as (1) how

to automate the acquisition of scheduling knowledge in a given manufacturing environment?

(2) how to perform dynamic, adaptive scheduling? (3) what would be the most relevant

information for making such scheduling decisions.- (4) how to improve the robustness of

the Al-based scheduling process? (5) how best to integrate the simulation and scheduling

systems for reactive- based scheduling? These research questions will be addressed in this

paper by developing a new methodology using machine learning for intelligent scheduling.

This methodology points to a new direction for scheduling research-the development of

intelligent schedulers with machine learning capabilities. As a first step, this paper focuses

on the use of inductive learning in a pattern-directed scheduling process (Shaw 1989).

Previous scheduling research has indicated that the relative effectiveness of a given

scheduling rule is dependent upon the system characteristics. In a dynamic manufacturing

system, these characteristics continue to change over tim. It appears conceptually appealing,

therefore, to adopt an approa,6 which employs appropriate and possibly different scheduling

-at various points in time. In order to do so, however, we need a mechanism which can dis-

tinguish different system characteristics, upon the rule appropriate for a given combination.

This paper presents an approach to achieve these objectives by integrating pattern- directed

scheduling with inductive learning.

The integration of inductive learning with pattern-directed scheduling results in an inter-

esting scheduling approach capable of performing adaptive scheduling by selecting scheduling

heuristics opportunistically; moreover, it also help identify the relative importance of a va-

riety of manufacturing attributes in dynamic scheduling. Empirical results from simulation

studies showed that this learning-augmented approach generates better scheduling perfor-

mance than the traditional methods.
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This paper is organized as follows. §2 discusses how machine learning can be applied in

solving scheduling problems and the advantages of doing so. In §3 we describe the inductive

learning process which is illustrated in §4 in the context of machine scheduling. §5 describes

the generation of decision trees for selecting the appropriate scheduling rules in an FMS

environment. We present an experimental study in §6 for evaluating the relative merit of

this method over the single scheduling rule approach adopted in most of the previous research

on dynamic scheduling. We conclude in §7 with a summary discussion of the major results.

2 Intelligent Scheduling and Machine Learning

In the recent past, several researchers have applied artificial intelligence (Al) based methods

for solving scheduling problems. This body of research can best be reviewed by highlighting

the focus of the Al techniques used as done below.

Scheduling as Search. Scheduling can be viewed as a process search through the state

space of all possible partial and complete schedules. Search is ubiquitous in AI problems, but

it is more significant an issue in scheduling problems. Several methods have been suggested

in literature to alleviate the computational complexity incurred by the search process. The

ISIS system (Fox and Smith 1984, Fox 1987) uses several types of constraints to reduce the

state space; constraint satisfaction is used as an index to direct the search. Shaw (1986a,

1988a), Shaw and Whinston (1989a) use the combination of A' procedure and scheduling

-heuristics to facilitate the search for the final schedule. The OPIS system (Ow et al. 1988)

employs an opportunistic approach to improve upon ISIS. It selects the most appropriate

strategy for scheduling opportunistically; the resulting flexibility achieved in problem solving

results in better performance. Ow (1984) describes the beam search method for scheduling

problems.

Scheduling as Planning/Replanning One of the goals of intelligent scheduling is to be

able to generate schedules more flexibly whenever alternative machine routing is possible

while simultaneously taking the dynamically changing system state information into account.

Thus, the scheduler not only has to decide the time sequences for performing the operations,

it also has to allow for dynamic machine assignments as well. Shaw (1986a, 1988a) uses a
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nonlinear planning method for deciding machine assignments and the temporal relationships

among various operations. This method integrates scheduling with process planning by

utilizing a two-phase procedure. In phase 1, the various machine and resource assignments

for achieving the required manufacturing goals are selected. Subsequently, phase 2 works

to resolve conflicts while maintaining progressive performance improvement. This approach

originated with the robot planning method (Fikes and Nilsson 1971; Georgeff and Lansky

1986), and it is especially suitable for dynamic scheduling which is treated as the problem

of replanning with a changed goal.

Scheduling as Rule-Based Inference This method attempts to incorporate scheduling

knowledge into an IF-THEN rule form which is implemented by an expert system. Wysk et

al. (1986) use a multipass expert system to decide the appropriate scheduling rules based on

information such as the current system status, scheduling objective and management goals.

Other examples in this line of work include Raghavan (1988), Kusiak and Chen (1988) and

Kusiak (1987). Bruno et al. (1986) use an expert system for knowledge representation and

heuristic problem solving in the scheduling domain. In their study, the expert system is

coupled with an activity-scanning scheduler adapted from discrete event simulation and a

closed queueing network based algorithm for schedule analysis and performance evaluation.

Another example is the ISA (Intelligent Scheduling Assistant) system developed at Digital

Equipment Corporation (Kanet and Adelsberger 1987) in which approximately 300 rules

were used to construct the evolving schedules.

Scheduling as Cooperative Problem Solving: Scheduling in manufacturing environment is

typically performed by a group of scheduling agents. As computer integrated manufacturing

makes scheduling progressively more complex because of the large number of resources, infor-

mation requirements and decisions as well as a larger variety of jobs involved, the scheduling

of manufacturing processes will increasingly require team effort. In such an environment, the

scheduling agents can be flexible cells, machine centers, or human schedulers (Parunak 1987,

Ow et al. 1988). Shaw and Whinston (1985, 1989b) and Shaw (1986b, 1988b, 1988c) apply

distributed artificial intelligence to the scheduling of manufacturing cells. Using coopera-

tive problem solving, the scheduling problem can be decomposed into several subproblems

to be solved by individual agents through task sharing and parallel processing. Moreover,
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this approach fits naturally into the distributed manufacturing environment in which various

subsystems are interconnected through communication networks.

Machine Learning is a rapidly emerging research area for studying methods for developing

artificial intelligence systems which are capable of learning (Michalski et al. 1983). The

ability to learn and improve is essential for an intelligent system; however, little work has

been done in applying machine learning to intelligent scheduling. Shaw (1989b) and Park

et al. (1989) apply machine learning to identify the combination of system attributes which

would lead to the use of a given scheduling rule. This knowledge can then be exploited by a

pattern-directed scheduler in an adaptive fashion. In addition to heuristic learning, machine

learning results in the identification of manufacturing attributes critical to the scheduling

decision, and it generates an adaptive mechanism for applying the scheduling rules.

Incorporating machine learning capabilities into intelligent scheduling systems can be

quite useful in enhancing scheduling performance. The potential enhancements are in the

following areas: 1) Machine learning can accelerate the search process by accumulating

heuristics (Shaw 1989b), 2) machine learning can facilitate the planning/replanning process

by learning schemata (Shaw et al. 1988), 3) machine learning can enhance rule-based infer-

ence by automating the acquisition and the refinement of rules (Shaw 1987), and 4) machine

learning can help cooperative problem solving by improving the coordination among the

multiple scheduling agents (Shaw and Whinston 1989b).

'3 Inductive Learning

Inductive learning can be defined as the precess of inferring the description (i. e., the concept)

of a class from the description of individual objects of the class (Shaw 1987). A concept is

a symbolic description which is true if it describes the class correctly when applied to a

data case, and false otherwise. The concept to be learned in scheduling, for example, can

be the identification of the most appropriate dispatching rule (a class) for a given set of

manufacturing attributes.

A set of training examples is provided as input for learning the concept representing each

class. A training example consists of a vector of attribute values and the corresponding
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class. A learned concept can be described by a rule which is determined by the inductive

learning process. If a new data case satisfies the conditions of this rule, then it belongs to

the corresponding class. For example, a rule defining a concept can be the following:

IF (b _> ai _cii) AND ... (bi, ? aim _>i .)

THEN r.

where aij represents the jth. attribute, bj and cjJ define the range for aij, and r denotes the

class.

Shaw (1989b) and Park et al. (1989) employ inductive learning to derive heuristics

for selecting the appropriate dispatching rules in a flexible manufacturing system. In this

instance, the IF-THEN rule is treated as a selection heuristic which is a conjunction of

attribute conditions collectively defining the pattern, and r represents the best scheduling

rule for that pattern.

An instance that satisfies the definition of a given concept is called a positive example

of that concept; an instance which does not do so is a negative example. In the dynamic

scheduling problem, because there are several scheduling rules which can potentially be

selected, multiple concepts need to be learned. In this situation, the training examples

supporting the use of a given scheduling rule are treated as the positive examples of that

rule; training examples supporting any other rule would be treated as negative examples.

Generalization and specialization are essential steps for the inductive learning process.

A generalization of an example is a concept definition which describes a set containing that

example. In other words, if a concept description Q is more general that the concept de-

scription P, then the transformation from P to Q is called generalization; a transformation

from Q to P would be specialization. For a set of training examples, the generalization

process identifies the common features of these examples and formulates a concept definition

describing these features; the specialization process, on the other hand, helps restrict the

coverage of features for a concept description. Thus, inductive learning can be viewed as

the process of making successive iterations of generalizations and specializations on concept

descriptions as observed from examples. This process would continue until an inductive

concept description which is consistent with all the training examples is found. Thus the
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generalization/specialization relations between concept descriptions provide the basic struc-

ture to guide the search the inductive learning process. For a given problem, applying the

inductive learning process can contribute to one's understanding of the decision process on

.the following three dimensions (Shaw and Gentry 1990):

e Predictive validit. the ability to predict the decision outcome for a given data base.

* Structural validity. the ability to capture the underlying structure of the decision

process.

9 Identifying validity the ability to infer the most critical attributes in the decision

process.

These features of inductive learning make it useful in dealing with the scheduling problem. If

we can make an inductive learning system observe the effects of various scheduling decisions

on the manufacturing processes and the resulting scheduling performance, then it can 1)

predict the outcome of any schedule for a given manufacturing process in a specified set of

manufacturing conditions (predictive validity), 2) capture the underlying decision structure

of the scheduling process (structural validity), and 3) identify the critical manufacturing

attributes for the scheduling decision process (identifying validity).

The input to an inductive learning algorithm consists of three steps: 1) A set of positive

and negative examples, 2) a set of generalization and other transformation rules, and 3)

criteria for successful inference. Each training example consists of two components - a

data case consisting of a set of attributes, each with an assigned value; and the classification

decision made by a domain expert according to the given data case. The output generated

by this inductive learning algorithm is a set of decision rules consisting of inductive concept

definition for each of the classes. Learning programs falling into this category include AQ15

(Michalski 1983), PLS (Rendell 1983) and ID3 (Quinlan 1986). These programs are referred

to as similarity- based learning methods.

Shaw et al. (1990) compare the above three inductive learning programs in terms of their

algorithmic designs and classification accuracy. They find that, in general, ID3 and PLS pro-

duce more accurate classifications than AQIS. They are also more efficient computationally

and are better able to handle noisy data. For these reasons, we use ID3 in this research. The
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learning process in ID3 follows a sequence of specialization steps guided by an information

entropy function for evaluating class membership. The concept description generated by a

learning process can be represented by a decision tree, which is a special case of disjunctive

normal form expressions.

4 Heuristic Scheduling and Inductive Learning

4.1 Heuristic Scheduling

One of the major applications of machine learning to scheduling is in dyamic job shops

and flexible manufacturing systems (FMSs) in which jobs arrive randomly over time and

the system behaves like a network of queues. Because of the combinatorial nature of the

underlying optimization problem, scheduling decisions in such systems are specified in terms

of dispatching rules; whenever a machine becomes idle, the scheduler must decide which job

should next be processed on the machine. This selection is based on assigning priority indices

to various jobs competing for the given machine; the job with the highest priority is selected

next. Dispatching rules differ in how they assign these priority indices.

Because it is difficult to evaluate most of these dispatching rules analytically, computer

simulation methods are used generally to study their behavior and compare their relative

performance. Prior research in this area (see, for example, Conway et al. 1967, and Baker

1974, 1984 for a survey ot this research) deals primarily with conventional job shops for

the scheduling objectives of minimizing mean job flow time and mean job tardiness. The

conclusions reached by the various studies are, however, at variance with one another.

Baker (1984) suggests that the fundamental reason underlying these conflicting results

is the fact that they address different systems, and the relative performance of a given

dispatching rule depends upon the system and job characteristics. In the context of a job

shop under balanced machine workloads, Baker studies the impact of one such attribute,

namely, the tightness of job due dates. He shows that, depending upon due date tightness,

there are crossovers between dispatching rules. In particular, at the extremes, EDD is

superior when due dates are set loosely, and SPT performs well when they are tightly set.

8



MOD performs the best in the intermediate range (which is, nevertheless, quite wide in his

study).

Raman et al. (1989) extend Baker's investigation to also understand the impact of

imbalance of machine workloads (which leads to one or more bottlenecks in the system) as

well as variability in due date assignment on the performance of dispatching rule. Their

study shows that while MOD retains its effectiveness under balanced workloads, there are

crossovers between MOD and MDD when significant imbalance in machine workloads exists.

In particular, MDD is superior when due date tightness is low to moderately high, and

when there is greater variability in the due date assignment. They also study the benefits

of using an adaptive scheduling procedure in which the selection of the dispatching rule is

machine workload dependent. In particular, the shop performance improves significantly if

the dispatching rule used at the bottleneck machine(s) is MDD, and MOD is used at other

machines.

4.2 Induction of Heuristic Knowledge

The aforementioned studies on heuristic scheduling raise two important questions: 1) What

are the job and system attributes that affect the relative performance of a given dispatching

rule, and 2) How should the scheduler take these into account while making the dynamic

scheduling decisions? Inductive learning can help resolve these issues by first identifying the

relevant system and job attributes, and subsequently, developing scheduling systems capable

of selecting the dispatching rule most appropriate for a given state of the manufacturing

system as characterized by the combination of these attributes (i. e., the manufacturing pat-

terns). Because the selection of dispatching rules is determined by the dynamically chang-

ing manufacturing patterns, we refer to this scheduling approach as Pattern-Directed

Scheduling (PDS).

The suggested approach consists of two basic stages: 1) The learning stage, and 2) the

scheduling stage. The learning stage extracts relevant manufacturing patterns, which are

conjunctions of attribute-value pairs, from simulation experiments. The output of this stage

is a set of heuristic rules which describe the relationships among manufacturing patterns and

the appropriate dispatching rule in the form

9



pattern (ij) --+ dispatching rue i

An example of such a heuristic is

IF: (TBF < 14) AND (S _ 63) AND (NSDRL > 16)

THEN: MDD rule.

This rule states that when the Total buffer size is less than 14, the system utilization is greater

than or equal to 0.63, and the normalized standard deviation of relative machine loading is

greater than or equal to 1.6, then the dispatching rule to be applied is the Modified Job Due

Date rule. Index j is used in the above expression to denote the various patterns for which

rule i would be applicable.

The pattern-directed scheduling stage applies the dispatching rules selected in stage

1 adaptively for performing dynamic scheduling based on the manufacturing pattern mani-

fested by the system.

The learning stage starts with conducting a series of simulation experiments to generate

training examples to study the performance of various dispatching rules under a variety of

manufacturing environments which are modeled in the simulation program. These training

examples are input into the inductive learning process, which generates the heuristic rules

describing the dependence between manufacturing patterns and the dispatching rules. This

integration of inductive learning and pattern directed scheduling is depicted in Figure 1.

INSERT FIGURE 1 HERE

Figure 1 also shows an additional stage, that of rule refinement. This stage collects the

performance results of the pattern-directed stage, and uses a critic program to evaluate the

performance of a given rule. If the heuristic rule is found to yield unfavorable results, then

the rule-refinement module generates additional training examples with a view to revise the

rule (possibly through attribute conjunction). Thus, the rule- refinement program iterates

through the steps of obtaining performance results of various rules, analyzing rules which

are not satisfactory, and appropriately modifying these rules. [Politakis and Weiss (1984),
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Bundy and Silver (1982) and Wilkins (1989) describe some methods for refining rules.] Meta-

rules are used to suggest further experimentation involving training examples. The 'IF' part

of the meta-rule contains a conjunction of predicate clauses that look for certain features

of the unsatisfactory rules as well as the training examples which generated these rules.

The 'THEN' part of the meta-rule-suggests further experiments with modified attributes for

generating additional training examples and refining the rules.

The proposed pattern-directed scheduling approach can be viewed as an Al planning

process (Georgeff and Lansky 1986), in which a sequence of operators, i.e., the dispatching

rules, are selected on the basis of the current manufacturing state. In terms of the problem

solving strategy, the selection of rules in pattern directed scheduling is driven by the changes

in manufacturing pattern, rather than the goal. Moreover, rule selection is opportunistic

based on the dynamics of the manufacturing process. It is not preplanned as is the case for

most planning problems.

We are now in a position to formally state the difference in the approach taken by this

paper relative to the previous work on dynamic tcheduling which has primarily adopted the

use of a single dispatching rule.

Definition 1 The single rule scheduling problem is represented by (J, So, %", D) where J

denotes the scheduling objective, So is the initial state of the manufacturing system, 7 rep-

resents the set of candidate dispatching rules, and D denotes the decision that selects a

dispatching rule from %" based on S0 . This rule is used until J is achieved.

Definition 2 The pattern directed scheduling problem is represented by (J, M, *I, R, E)

where J and 7i are defined as above. M is the set of manufacturing states, and R is the

set of heuristics for selecting dispatching rules. Each rule r in R is of the form p --. h, p E

M, h E I. E is a list of events, et,,et2,..., eik,..., which trigger the application of selection

heuristics at time t 1 , t2, .  At time ttk, dispatching rule h selected by 'R is activated, and

the manufacturing system transits from state mt to state mtk+l, i. e., h(mtk) = mtk+1.

In our approach, inductive learning is used to determine the set R from simulation experi-

ments. Because the pattern-directed approach is more adaptive to the environmental changes
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of the manufacturing system, it should result in better scheduling performance. As discussed

later in §6, this conjecture is verified by empirical studies.

The fact that the pattern-directed approach can select dispatching rules dynamically

implies that it should be especially useful in manufacturing systems with more dynamic

processes. This feature makes the pattern-directed approach a good candidate for scheduling

flexible manufacturing systems which are characterized by the versatility of their machines

and routing flexibility, and therefore, require a more dynamic approach to scheduling.

5 FMS Scheduling

5.1 Problem Characteristics

FMS scheduling differs from conventional job shop scheduling in that FMSs offer many more

alternatives to the scheduler. For example, an operation could be processed at any one of

several machines. In addition, the various machines in the system are linked more tightly

because of limited available buffer space and the use of common material transporters. This

results in a more difficult scheduling problem as it leads to more manufacturing patterns

that can be manifest in an FMS. Consequently, the ability of PDS to discern these patterns

and to apply the appropriate dispatching rules becomes even more appealing in an FMS

environment.

In addition to due date tightness and relative workload imbalance, which have been

discussed in the previous section, the attributes which are likely to be significant for selecting

the appropriate dispatching rule in an FMS include: 1) The scope for alternative job routing,

2) the limitation on local buffers available at individual machines, and 3) the increased

versatility of machines. It is possible in an FMS to configure the machines in such a way

that a given operation can be done on one or more machines. Elementary queueing theory

suggests that the routing flezibility provided by such parallel servers can lead to significant

reductions in the job flow time, which in turn, should reduce job tardiness. However, it

is not clear how this flexibility will impact the relative effectiveness of various dispatching

rules. The system performance will also be affected by the constraints on the available
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buffer space. When this constraint is binding, various machines in the system are likely to

go through phases of blocking and starving which adversely affect the system performance.

In such a case, the overall performance of a scheduling rule also depends upon its ability to

minimize such instances. Finally, the increased processing capability of some machines in the

system would lead to varying number of operations being processed at different machines.

This would affect, among other factors, the coefficient of variation of the machine service

times which would, in turn, impact the flow times and tardiness values.

5.2 Implementation of PDS

We now discuss the application of PDS in an FMS which permits random, job shop like

material flows. The scheduling objective considered is minimizing mean tardiness. This

objective was selected primarily because it has been studied extensively. As mentioned in §3,

a variety of dispatching rules have been found to be effective under different situations. This

not only provides with a larger set 7 of effective dispatching rules, but more importantly,

we have a strong benchmark for testing the relative effectiveness of the PDS approach. The

set of dispatching rules which have been found to be dominant in previous research includes

the Earliest Due Date (EDD) rule [Baker and Bertrand 1981, 1982], the Shortest Processing

Time (SPT) rule [Baker and Bertrand 1981, 1982; Conway 1965], the Modified Job Due Date

(MDD) rule [Baker and Kanet 1983; Raman et al. 1989] and the Modified Operation Due

date (MOD) rule [Baker 1984; Raman et al. 1989]. Consequently, these four dispatching

rules were selected in this study.

The control attributes selected for capturing the relevant manufacturing patterns were:

1. Number of machines in the system (NMAC).

2. Total buffer size (TBF).

3. Maximum relative machine workload (BOTTLE) which checks whether any one of the

machines in the system is a bottleneck at a given point in time. It is expressed as the

ratio W.,/W, where Wi.., is the maximum workload, measured in terms of remaining

processing time, in front of any machine in the system currently, and W is the current

average machine workload.
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4. Variability in machine workload (NSDRL). This is expressed as the ratio of the stan-

dard deviation of individual machine utilizations to the average machine utilization.

5. Contention factor (CFACT) which indicates the average number of alternative ma-

chines available for processing a given operation.

6. Contention factor ratio (CFRATIO) which is the ratio of CFACT to NMAC.

7. Machine homogeneity (MH) which measures the variability in the number of operations

that individual machines can process. It is expressed as the ratio of the standard

deviation of the number of operations that each machine can process to the average

number of operations that a machine can process.

8. Flow allowance factor (F) which measures due date tightness. Following Baker (1984),

we used the Total Work Content (TWK) rule for assigning job due dates. Under TWK,

the due date di of job j is determined as follows:

= aj + Fpi

where ai is the arrival time and pi is the total processing time of job j.

9. Overall system utilization (S).

Note that NMAC, in conjunction with MH, is a measure of the versatility of the machines

in the system. BOTTLE and NSDRL together describe the relative machine workloads. S

-impacts job flow times directly. As Baker (1984) notes, the due date tightness induced

by a given vaue of F depends upon system utilization as well. However, when significant

imbalances in machine workloads exist, S merits independent consideration.

In the learning stage, we generated 130 training examples which covered various combi-

nations of the nine attributes discussed above. For each example, steady state statistics per-

taining to the mean tardiness values under each of the four dispatching rules were recorded.

Those instances in which a given rule performed the best were selected as positive exam-

pies pertaining to that rule. The ID3 algorithm was used for rule induction based on these

positive examples. The resulting decision tree was translated into a set of pattern directed

heuristics which is depicted in Figure 2.
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INSERT FIGURE 2 HERE

Note that an important contribution of this decision tree is in its ability to highlight the

relative importance of the control attributes in influencing the selection of dispatching rules.

Thus, from Figure 2, these attributes can be ranked in the following order of decreasing

importance: TBF, (S, BOTTLE), (F, NSDRL), CFACT, and CFRATIO. Also note that

MH is screened out because of its marginal impact.

Preliminary studies with PDS indicated the need to curtail excessive nervousness of the

scheduling system. We observed that PDS performs poorly in many instances if switch-

ing between dispatching rules was affected immediately upon a pattern change. In order

to mitigate overreaction to patterns which are only transitory, we developed a smoothing

approach in which the scheduling mechanism retains a cumulative score of the number of

occasions a given dispatching rule is favored. Whenever a scheduling decision is to be made,

the dispatching rule with the maximum cumulative score is selected provided it is above a

prespecified threshold. Suppose that the dispatching rule being used currently is i with a

cumulative score of Si. Whenever a scheduling decision is required, this scheme will select

rule j, if it exists, where

j = arg max (Sh), andS, " 9,
hEw

and 9 is a measure of the required threshold; otherwise it will continue using rule i. 0 is a

smoothing coefficient; higher 9 values lead to increased damping of system responsiveness.

•Further experimentation revealed that varying degrees of smoothing are required to respond

to different manufacturing patterns. This resulted in a scheme in which 0 was allowed to

vary, and the rule induction process was applied once again to yield another decision tree;

the corresponding set of heuristic selection rules is shown in Figure 3.

INSERT FIGURE 3 HERE

The overall PDS module, therefore, consists of two functional components: the heuristic

selection module (HSM) and the pattern smoothing module (PSM). These two modules and

their interactions are depicted in Figure 4. Whenever a scheduling decision is required.

PSM selects the 0 value based upon the current manufacturing pattern observed and the
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induction tree for 0. This value of 0 determines the required smoothing threshold. HSM

uses this threshold in conjunction with the observed pattern and the heuristic knowledge

generated through inductive learning to select the appropriate dispatching rule to use.

INSERT FIGURE 4 HERE

We now discuss the experiments conducted to evaluate the relative merit of the PDS

approach.

6 Experimental Study

This section describes an experimental study conducted to understand the performance char-

acteristics of PDS. A priori, we expect the PDS approach to be superior to the conventional

single dispatching rule approach for two reasons. First, as depicted in Figure 2, PDS iden-

tifies the best dispatching rule for a given manufacturing scenario. Because of this selecting

ability, PDS should perform at least as well as the best from among the candidate dispatching

rules considered in Xt. Second, PDS is able to adapt its selection of the best dispatching rule

dynamically to the changing patterns. Such an adapting ability should result in a schedule

quality which is even superior to that of the best dispatching rule. Simulation studies were

designed specifically to verify these two expectations.

As noted earlier, the PDS module consists of the HMS and PSM components. This

expermiental study focused on the performance of HSM in selecting the best dispatching

rule through inductive learning. Thus, the selection function performed by PSM is emulated

by employing the value of 0 which is the best of three predetermined values - 0.0, 0.7 and 1.0,

so that the impact of HSM can be isolated and better understood. [The smoothing effect of

PSM is, however, indispensable for achieving the adapting ability of PDS. As an extension to

this work, we are currently conducting another study which focuses on the adapting behavior

of PDS in response to such disturbances as machine breakdowns and sudden changes of job

loading patterns.]

The simulation experiments addressed an FMS at which jobs arrive following a Poisson

process. Upon its arrival, each job was assigned the number of required operations randomly
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from a uniform distribution which ranged between 1 and the total number of machines in

the system. Operation processing times were sampled from an exponential distribution with

a mean of 400. A range of due date tightness was achieved by allowing the flow allowance

factor to vary between 2 and 15.

Three different system sizes comprising 4, 6 and 8 machines were considered. The relative

machine workload was allowed to vary between 0.6 and 1.2. Machine homogeneity was

allowed to vary between 0 and 0.4. [A value of 0 implies that the same number of operations

are assigned to all machines.] The contention factor ranged between 2 and 4. Job interarrival

times were varied to yield overall system utilizations between 50% and 95%.

The experiments addressed 69 different combinations of these parameters. In each case,

the method of batching was used to determine the steady state mean tardiness values re-

sulting from employing SPT, EDD, MOD and MDD dispatching rules individually, as well

as the values obtained by using PDS which incorporated the selection heuristics depicted in

Figures 2 and 3.

The mean tardiness values obtained by using different scheduling rules are shown in Table

1. In this table, BEST refers to the mean tardiness value obtained by the dispatching rule

which performs the best for the corresponding scenario. This dispatching rule is labeled the

Best Rule.

Overall, PDS resulted in an improvement of 11.5% over BEST. It produced lower mean

tardiness values in 33 cases and the same values in 26 cases. It was worse in the remaining

10 cases; however, the tardiness values obtained in 8 of these cases were quite low (less than

19) under both BEST and PDS.

INSERT TABLE 1 HERE

These experiments indicate that the performance of PDS depends upon two factors. First

is the impact of the number of machines in the system. Table 2 gives a breakdown of the

number of instances in which PDS was better, the same and worse for the three system

sizes studied. PDS is distinctly superior for 4-machine systems. However, as the system size

increases, the number of instances in which PDS and BEST are equally effective increases

as well.
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TABLE 2

mp act of System Size

No. of Machines No. of Cases in which PDS is

Better Same Worse

4 18 2 4

6 10 8 3

8 5 16 3

Second, as depicted in Figure 5, the relative improvement achieved by PDS depends upon

the frequency of pattern changes realized in the system. Recall that a pattern change signals

a potential switch in the applicable dispatching rule as determined by the PDS decision

tree. However, depending upon the appropriate value of 0, a change may not be affected in

practice. Therefore, the number of actual dispatching rule switches would be smaller than

the number of pattern changes. [Also note that the number of pattern changes is dependent

upon the PDS tree generated. If this tree is different, possibly because of the use of a

different rule induction algorithm, the number of pattern changes for the same experiment

is also likely to be different.]

INSERT FIGURE 5 HERE

In order to understand these results, it is important to first note that the relative perfor-

-mance of PDS will depend, among other factors, upon i) the difference in the performance of

individual dispatching rules under a given pattern, and ii) whether the system characteristics

result in a dominant pattern. If the system attributes are such that they yield a sequence of

patterns in which the various dispatching rules yield similar results, PDS is not likely to be

significantly superior to BEST. This argument partially explains the apparent dependence

of PDS upon system size. An increase in the number of machines, in general, leads to an

increase in contention factor as well. As reported in Wayson's (1965) and Stecke and Ra-

man's (1990) studies, the difference in mean flow times and mean tardiness values obtained

under different dispatching rules decreases with an increase in the number of alternative ma-

chines available for processing any operation. Consequently, higher contention factors lead

18



to smaller differences between PDS and BEST. Therefore, conceptually, we would expect

PDS and BEST to behave identically in the limit.

However, in most real FMSs, providing high contention factors, which amounts to creating

more redundancies in the system, may not be economically viable because it leads to a

reduction in the number of parts which can be manufactured concurrently and/or a reduction

in system utilization. In most practical situations, contention factor is likely to be low to

moderately high, a range in which PDS is significantly superior to BEST.

We observed from our experiments that the relative difference between various dispatch-

ing rules decreases also when mean tardiness values are small. [This result is reported in

earlier simulation studies of job shops as well; see, for example, Baker 1984.] In such cases,

the benefit in using PDS is small even if there are large number of rule switches. [As shown

in Figure 5, the experiments do show that small tardiness values are accompanied by a large

number of pattern changes. This would indicate the existence of several crossovers among

the dispatching rules when tardiness is small even though they differ only marginally from

each other.] This argument partially explains why, in Figure 5, we find that the improvement

ratio decreases with a decrease in mean tardiness and an increase in the number of pattern

changes.

At the other extreme, fewer pattern changes imply that there is a small number of dom-

inant patterns that characterize the system. In such cases, PDS would frequently select the

dispatching rule(s) most appropriate for the dominant pattern(s); as a result, the difference

between PDS and BEST would be marginal. As shown in Figure 5, we observed that domi-

nant patterns are accompanied by high tardiness values. This would happen, for example, if

system utilization levels are high and buffer sizes are small. In such instances, MDD would

be the most appropriate dispatching rule across a wide range of other system attributes.

Consequently, the manufacturing pattern which favors MDD will be dominant resulting in

a small difference between PDS and MDD (which would be the BEST rule). Of course, it is

unlikely that most real systems would operate at high tardiness values on a sustained basis.

In summary, the maximum effectiveness of PDS is realized when the number of pattern

changes is medium to reasonably high, and no one pattern is clearly dominant. This range

also corresponds to tardiness values ranging from low to moderately high - a range which
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would be applicable to most viable manufacturing systems.

Finally, we note three possible reasons why PDS results in higher tardiness values com-

pared to BEST in some instances. First, because the set of training examples used for

generating PDS is a subset of the universe of the possible scheduling environments, the

learned heuristics are likely to be overgeneralized to some extent leading to a few prediction

errors. Specifically, PDS may not perform well in a situation which is not explicitly ad-

dressed by the training examples. Second, the performance of PDS is limited by the number

of control attributes considered for designing the training examples. While, on the basis

of the available scheduling literature, the nine attributes considered in this study are fairly

comprehensive, it is possible that for a given system, the selection of appropriate dispatching

rules is affected significantly by some other attributes. Third, because the training examples

are driven by simulation experiments, the appropriateness of a dispatching rule for a given

pattern is determined by its steady state average performance over the length of the simula-

tion run. Its implementation during real time scheduling is, however, based on the pattern

which is observed at the instant a scheduling decision is to be made. While a dispatching

rule may perform well in the long run for a given set of attributes, it need not necessarily be

effective when it is applied on a rolling basis on transient patterns.

The adverse impact of overgeneralization can be mitigated in practice by employing

a feedback mechanism to monitor scenarios in which PDS does not perform well, and to

update the set of training examples accordingly. The suggested rule induction process can

- then be used to appropriately refine the selection heuristics. In a similar vein, if empirical

evidence suggests that one or more control attributes, which were not previously considered

for generating training examples, have significant impact on the selection of dispatching rules,

then they can be included in new training examples (and, if necessary, selection heuristics

can be modified). In a real system, therefore, the relative performance of PDS should

continuously improve with the incorporation of a. feedback mechanism.

However, the use of steady state average values for determining the appropriateness of

any dispatching rule is intrinsic to the overall PDS approach in the context of dynamic

scheduling. The adverse impact, if any, of doing so is partially mitigated by the use of 0

which helps in smoothing out the transient patterns. Nevertheless, it must be understood
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that PDS may not perform very well if the pattern changes are extremely frequent. This

is another factor which contributes to a reduction in improvement ratio as the number of

pattern changes increases. As the experimental results indicate, however, in most such

instances there is only a minor degradation in the quality of the PDS schedule.

7 Conclusion

This study develops a scheduling approach which employs inductive learning to generate

pattern-directed heuristics for making dynamic scheduling decisions in an FMS. This ap-

proach comprises the three steps of: 1) Generation of training examples through experimen-

tation involving various dispatching rules, 2) determination of selection heuristics through

inductive learning, and 3) executing pattern-directed scheduling adaptively.

The PDS approach performs better than the conventional single dispatching rule ap-

proach because of its capabilities of selecting the best rule (the selecting ability), and of

switching between different rules in real time with changes in the state of the system (the

adapting ability). The decision trees generated in this study to depict the selection heuris-

tics clearly show the efficacy of inductive learning in extracting and ranking the system

attributes relevant for deciding upon the appropriate dispatching rule to employ. In this

process, those attributes which have only a marginal impact are screened out. The experi-

mental results show that this approach results in significantly improved system performance.

- This is especially so in systems which exhibit dynamically changing patterns.

We believe that the most appealing characteristic of PDS, in the presence of a feedback

mechanism, is its ability to dynamically refine the set of selection heuristics in response to

manufacturing scenarios in which it does not preform very well. Consequently, in a real

system, the relative performance of PDS should improve continuously.
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TABLE 1

Comparative Mean Tardiness Values

S. No. No. of Machines Mean Tardiness under Best Rule

BEST PDS

1 4 1991.00 1422.00 MDD

2 4 1834.00 1710.00 MDD

3 4 1063.00 915.00 MDD

4 4 983.20 983.20 MDD

5 4 660.80 660.80 MOD

6 4 97.94 87.90 MDD

7 4 58.34 54.37 MDD

8 4 56.28 40.27 MOD

9 4 51.73 28.48 MOD

10 4 38.62 25.61 MOD

11 4 16.88 16.50 MOD

12 4 11.31 18.34 MDD

13 4 11.05 9.23 MOD

14 4 8.13 4.96 EDD

15 4 5.26 6.36 MDD

16 4 4.58 3.62 EDD

17 4 1.06 2.93 MOD

18 4 0.90 0.34 EDD

19 4 0.86 0.52 EDD

20 4 0.65 0.00 MOD

21 4 0.56 0.48 MOD

22 4 0.53 0.07 MOD

23 4 0.48 1.10 EDD

24 4 0.33 0.13 MDD
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TABLE 1 (continued)

S. No. No. of Machines Mean Tardiness under Best Rule

BEST PDS

46 8 1457.00 1457.00 MDD

47 8 1057.00 1079.00 MDD

48 8 812.90 812.90 MDD

49 8 774.10 774.10 MDD

50 8 772.20 772.20 MOD

51 8 772.00 772.00 MDD

52 8 515.10 515.10 MDD

53 8 422.50 422.50 MDD

54 8 146.00 146.00 MOD

55 8 61.30 61.30 MOD

56 8 61.30 16.76 MOD

57 8 18.86 18.86 MOD

58 8 14.84 14.84 MOD

59 8 11.87 11.87 MOD

60 8 7.88 7.47 MOD

61 8 4.83 4.64 MOD

62 8 4.08 3.16 EDD

63 8 1.67 1.67 MOD

64 8 1.48 1.48 MOD

65 8 0.85 0.85 MDD

66 8 0.33 0.45 EDD

67 8 0.23 0.04 MOD

68 8 0.04 0.04 EDD

69 8 0.03 0.39 EDD

32



3.5~
0

2 -

3

12.5-

0.5

01
126 1024 4

No f aten2hne

MenTries + ImrvmnEai

Fiue5 Ipc f1h.ubr5fPter hne

03


