

For conversion of SI metric units to U.S./British customary units of measurement consult ASTM Standard E380, Metric Practice Guide, published by the American Society for Testing and Materials, 1916 Race St., Philadelphia, Pa. 19103.

•

Cover: Small Unit Support Vehicle and Heavy Expanded Mobility Tactical Truck In the snow.

• • •

CRREL Report 90-13

U.S. Army Corps of Engineers Cold Regions Research & Engineering Laboratory

Wheels and Tracks in Snow Second Validation Study of the CRREL Shallow Snow Mobility Model

Paul W. Richmond, George L. Blaisdell and Charles E. Green

December 1990

	Acces	ion For	·····
	DTIC	CRA&I TAB nounced cation	
	By Di⊾t ib	tio /	
	A	vailability (· · · · · · · ·
	Dist	Avail and Spacial	
INSTERNED 3	A-1		

Prepared for OFFICE OF THE CHIEF OF ENGINEERS

Approved for public release; distribution is unlimited.

PREFACE

This report was prepared by Paul W. Richmond, Mechanical Engineer, George L. Blaisdell, Research Civil Engineer, both of the Applied Research Branch, Experimental Engineering Division, U.S. Army Cold Regions Research and Engineering Laboratory, and Charles E. Green, Research Civil Engineer, Mobility Investigations Group, Mobility Systems Division, U.S. Army Waterways Experiment Station (WES). The report documents some of the efforts expended in a joint study conducted by CRREL and WES. The Keweenaw Research Center (KRC) of Michigan Technological University was contracted with to provide services and expertise for this project as well. Funding for this report was provided by DA Project 4A762784AT42, *Cold Regions Engineering Technology*; Work Unit CS/ 040, *Wheels vs Tracks in Winter*.

Technical review of this report was graciously provided by Sally A. Shoop (CRREL) and Russell Alger (KRC).

The authors express their appreciation to the personnel at CRREL, WES and KRC who worked on this project. Particular thanks go to Stephen Decato and Andrew Sunderlund of CRREL and to Russell Alger of KRC.

The contents of this report are not to be used for advertising or promotional purposes. Citation of brand names does not constitute an official endorsement or approval of the use of such commercial products.

CONTENTS

Preface	ii
Nomenclature	iv
Introduction	1
Background	1
Field experiments	2
Test procedures	3
CIV	3
Military vehicles	4
Results and analysis	4
Traction	4
Resistance	8
Conclusions and recommendations	22
Literature cited	22
Appendix A: Shallow snow mobility model	25
Appendix B: Tire tread footprints for traction analysis	37
Abstract	41

ILLUSTRATIONS

Figure

1. Traction data for the CIV equipped with three different tire types	6
2. Traction data for the military vehicles	7
3. Vehicle traction on hard-packed snow	9
4. Chalk dust displacement around a tire rut	9
5. Vehicle sinkage analysis	12
6. CIV resistance data	18
7. Resistance data for military vehicles	19
	22

TABLES

Table	
1. Final snow densities used in SSM2.0	2
2. CIV tire data	2
3. Tire and track data for selected vehicles	3
4. CIV traction data	5
5. Military vehicles' traction data	8
6. Vehicle sinkage data	10
7. Motion resistance for the CIV	13
8. Motion resistance data for military vehicles	14
9. Summary of percent differences between resistance calculations	22

NOMENCLATURE

Symbols

- length of tire or track in contact with undeformed snow а
- b width of tire or track
- b_a average width of the deformed snow under a wheel or track
- d_{t} apparent distance traveled by a tire or track
- d actual distance traveled by a vehicle

DBP draw bar pull

- DIV differential interface velocity
 - h initial snow depth
 - *l* track length
 - *n* number of wheels or tracks
 - n' number of driven wheels or tracks
 - N normal stress acting under a tire or track
 - *p* tire or track contact pressure
 - r tire radius
 - R_h hard surface motion resistance
 - R, external resistance attributable to snow compaction
 - R_t total motion resistance

 T_g gross traction TMR towed motion resistance

- net traction T_n
- Ŵ vehicle weight
- z vehicle sinkage

^zmax P f maximum sinkage for a vehicle

- theoretical final density
- ρ initial density

Abbreviations

- CIV CRREL Instrumented Vehicle
- HEMTT Heavy Expanded Mobility Tactical Truck
- HMMWV High-Mobility Multipurpose Wheeled Vehicle
 - KRC Keweenaw Research Center
 - LAV Light Armored Vehicle
 - NDCC Non-Directional Cross Country (a type of tire)
 - SUSV Small Unit Support Vehicle

Wheels and Tracks in Snow Second Validation Study of the CRREL Shallow Snow Mobility Model

PAUL W. RICHMOND, GEORGE L. BLAISDELL AND CHARLES E. GREEN

INTRODUCTION

During the winters of 1988 and 1989, a winter mobility study was jointly conducted by WES and CRREL. These studies, part of the larger U. S. Army *Wheels/ Tracks* program, were to be used to compare predictions of the CRREL shallow snow mobility model with actual snow mobility data for a wide variety of vehicles. Some of the 1988 results are reported in Blaisdell et al. (1990) and Green and Blaisdell (in press). The winter phase of the *Wheels/Tracks* study encompassed two winter field seasons; this report presents the results of the second winter field season (1989).

The major accomplishment of the first (1988) field study was the development of a new traction algorithm, which was incorporated into the second version of the shallow snow mobility model (SSM2.0). This traction equation was based on shear failure of snow via the Mohr– Coulomb criterion and used test data to arrive at a bestfit failure curve. The curve was found to predict traction well for all snow densities because tractive effort in most cases occurs on similar snow conditions (compacted snow with a density of approximately 550 kg/m³) regardless of the initial snow conditions. Additionally, the equation was developed using data from wheeled vehicles equipped with state-of-the-art tires and several tracked vehicles. Vehicle motion (show work) was not predicted well by the shallow snow model.

Based on the results and analysis of the 1988 data, we decided that the final winter field season in the *Wheels/Tracks* program would primarily address vehicle motion resistance. Limited attention would be given to the traction aspect of mobility and this would be oriented towards removing some of the known caveats in the SSM2.0 traction algorithm.

During the second field season, tests were conducted primarily during January 1989 with limited testing continuing in March and April 1989.

BACKGROUND

The primary goal of this study was to investigate vehicle motion resistance in snow to continue validation of the CRREL shallow snow mobility model. The model is based on theoretical relationships and empirical expressions developed in the past from a large, but scattered, data base.

Briefly, SSM2.0 uses the following expressions to calculate shallow snow mobility:

Net traction:
$$T_n = T_g - R_s$$
 (1)

where T_g is gross traction and R_s is the external motion resistance attributable to snow compaction. Gross traction (in kilopascals) can be estimated for a wide range of vehicles using

$$T_{\rm g} = 0.851 \, N^{0.823} \tag{2}$$

where N is the normal stress under a tire or track (in kilopascals). R_s is primarily determined by the amount a vehicle sinks in the snow; SSM2.0 uses the following equations to estimate sinkage (z)

Maximum sinkage:
$$z_{\text{max}} = h \left(1 - \frac{\rho_0}{\rho_f}\right)$$
 (3)

where h is the depth of undisturbed snow (in meters), ρ_f is the theoretical final density in the rut following vehicle passage (kilograms per cubic meter, see Table 1 for values) and ρ_f is the initial undisturbed snow density (kilograms per cubic meter).

Both SSM1.0 and SSM2.0 were described fully by Blaisdell et al. (1990); we repeat a detailed description of SSM2.0 in Appendix A for reference, and refer the reader to Appendix A for the equation describing R_s .

Table 1. Final snow densities usedin SSM2.0.

Maximum ground pressure (kPa)	Final density (kg/m ³)
< 210	500
211-350	550
351-700	600
> 701	650

FIELD EXPERIMENTS

The field experiments described in this report were carried out at Keweenaw Research Center (KRC) located at the Houghton County Airpark, Michigan (KRC is located on the Keweenaw Peninsula of Lake Superior). Tests were conducted by personnel from WES, KRC and CRREL. Two types of mobility tests were conducted—traction tests in various snow conditions and resistance tests in undisturbed snow.

CRREL and KRC personnel conducted mobility tests using the CRREL Instrumented Vehicle (CIV). The CIV, which is fully described by Blaisdell (1983), is based on a 1977 Jeep Cherokee with modifications to its braking and driving components to accommodate typical mobility tests. In addition to its onboard computerbased data acquisition system, the vehicle contains a number of transducers for force and speed measurements. In previous tests the CIV has produced results (traction data) that agreed very well with data obtained from larger vehicles with similar ground contact pressures (Blaisdell et al., 1990) in side by side tests. For this reason the CIV was used again this field season to extend the winter mobility data base. The CIV was equipped with several different tires during this study to examine the effects of tire parameters on traction and resistance.

The standard or control tire was a Michelin XCH4 allseason mud and snow tire and was tested at inflation pressures of 179 and 103 kPa (26 and 15 lb/in.²). During the traction tests two additional tires were used: an NDCC (Non-Directional Cross Country) tire, which is the old standard military tire, and another Michelin XCH4 that had its tread buffed off. The NDCC tire was to represent a tire that wasn't up to the latest standards in tire design, and the buffed Michelin was used to determine the effect of tire tread, as compared with the unmodified control tire.

For the resistance tests, the control tire and two other tires were used. These two additional tires were not used for traction tests and were chosen for resistance testing based solely on their width and availability. The Firestone T145/80 is a temporary spare tire with a maximum width of 0.156 m (6.1 in.) and the Goodyear Eagle P225/60R15 is a low profile "street-rod" tire with a maximum width of 0.274 m (10.8 in.). The tires used with the CIV and their characteristics are given in Table 2.

Tire nomenclature	Inflation pressure (kPa)	Contact area* (m ²)	Radius [†] (m)	Width** (m)	Contact length (m)	Tire code
Michelin	179	0.0412	0.375	0.260	0.2512	A
LT235XCH4	103	0.0635	0.375	0.279	0.3825	Α
Michelin (buffed) ^{††}	179	0.0443	0.37	0.260	0.253	а
LT235XCH4	103	0.0586	0.37	0.272	0.335	a
NDCC	234	0.0238	0.39	0.215	0.1993	в
700-16LW	138	0.029	0.39	0.217	0.2377	В
Firestone T145/80	414	0.0204	0.325	0.156	0.187	с
Goodyear Eagle P225/60R15	248	0.0319	0.35	0.274	0.1636	D
Goodyear Tiempo	179	0.028	0.356	0.254	0.2073	Е
P225/75R15	103	0.034	0.349	0.267	0.2564	

Table 2. CIV tire data.

Hard surface contact area.

Radius of undeformed part of tire.

** Maximum deformed width.

⁺⁺ The tread was buffed off to below the wear bars.

Vehicle	Tire nomenclature	Inflation pressure (kPa)	Contact area* (m ²)	Radius [†] (m)	Width** (m)	Contact length (m)
HMMWV	37.00 × 12.5 R16.5 36.00 × 12.5 LT	138/152 138	0.074	0.429 0.425	0.33	0.247
HEMTT	16.0 R20	241/276 139/207	0.149 0.171	0.617 0.589	0.475 0.483	0.429 0.472
LAV25 ^{††}	12.50/75 R 20XL	207 103	0.100 0.141	0.445 0.414	0.378 0.343	0.368 0.518
	11.00 R 16XL	290 165	0.580 0.102	0.434 0.417	0.314 0.332	_
SUSV	Track		1.18	32.5°	0.6096	3.7592
Bradley ⁺⁺	Track	_	2.09	25°	0.533	3.920
M113A1 ⁺⁺	Track	—	1.02	21°	0.381	2.667
M601A1	Track	_	2.8	35°	0.66	4.248

Table 3. Tire and track data for selected vehicles.

Per tire on track.

* Radius for wheeled vehicles, entrance angle (degrees) for tracked vehicles.

** Maximum deformed width.

⁺⁺ From 1988 tests.

Personnel from WES conducted mobility tests using the following group of military vehicles:

1. M988—High-Mobility Multipurpose Wheeled Vehicle (HMMWV), 4×4, equipped with Michelin 37×12.5R16.5LT tires.

2. M977—Heavy Expanded Mobility Tactical truck (HEMTT), 8×8, equipped with Michelin 16.0R20 tires.

3. M973—Small Unit Support Vehicle (SUSV), articulated, tracked.

4. M60A1-Main battle tank, tracked.

These vehicles were chosen to span the full range of typical ground vehicle contact pressures and to represent a cross section of current military vehicles. The characteristics of these vehicles, as well as those used during the 1988 field season, are given in Table 3.

Test procedures

The test procedures followed typical mobility field studies, in that measurements of net traction T_n and total motion resistance R_t were made with each vehicle under varying snow conditions. Although we wanted to conduct tests using all the vehicles on each day, the shortness of the available field time and the lack of appropriate snow falls precluded this. All of the tests were done in areas that had a packed snow base, with the exception of some traction and resistance tests, which were done on a snow-covered area that was underlaid by ice (the KRC ice rink).

CIV

The CIV's resistance to motion is measured with its rear tires driving and its front wheels rolling free. Since the triaxial load cells are located just inside the front wheels, this test measures the total amount of resistance felt at the front tires only. Motion resistance is first established on a level, undeformable surface. Measurements of hard surface resistance R_h are obtained for each tire type and selected inflation pressure. By convention, motion resistance tests are conducted at a vehicle speed of 8 km/hr (5 mi/hr), and it is known that resistance values are independent of moderate variations (\pm 3.2 km/hr [\pm 2 mi/hr]) in vehicle speed. Variations in R_h values between tire types are the result of differences in the forces necessary for tire flexing and can be attributed to differences in their design.

The external vehicle motion resistance in a snow cover (R_s) is calculated by measuring the motion resistance (R_t) in the test area using the above procedure and subtracting the hard surface motion resistance (R_h) .

Traction is measured by accelerating the front (driving) wheels while braking the rear wheels to hold the vehicle speed constant at 8 km/hr \pm 1 km/hr (5 \pm 1/2 mi/hr). In this manner the front tires are driven through a wide range of slip values, starting at zero slip. A plot of measured T_n vs differential interface velocity (DIV) is used to obtain tractive effort. The T_n value is taken as the average tractive force in a window centered around the maximum tractive force reading. The window is chosen to represent a range of slip values that could reasonably be maintained by a vehicle operator. Gross traction T_g is then calculated from eq 1 for each pair of resistance and traction tests.

Military vehicles

The tractive performance of the military vehicles was determined by measuring drawbar pull (*DBP*) and towed motion resistance (*TMR*). These measurements are not exactly the same as the T_n and R_t obtained with the CIV, since these were standard military vehicles and not modified for research. Drawbar pull tests were conducted by measuring the force that a vehicle can exert on a cable that is being used to resist vehicle motion. Thus

$$T_{n} = \frac{DBP}{n'} \tag{4}$$

where n' is the number of driven tires or tracks. T_n represents the average tractive force per driven wheel or track.

Motion resistance is determined by measuring the vehicle's resistance to towing. Here,

$$R_{t} = \frac{TMR}{n}$$
(5)

where n is the number of tires or tracks and R_t is the total motion resistance on an average tire or track.

Our procedure for measuring *DBP* was as follows. A load vehicle of approximately the same size and performance as the test vehicle was selected to apply a resistance to the test vehicle. A steel cable 0.016 m in diameter (0.6 in.) and 15.3 m in length (50 ft) was connected from the front of the load vehicle to a load cell attached to the rear pintle hook of the test vehicle. A string payout system (fishing reel) for measurement of true ground distance was also mounted on the test vehicle. Tachometers were mounted on the drive wheels or sprockets of the test vehicle and used to measure wheel or track travel during a test.

During each test, the test vehicles were operated in their lowest gear and at optimum engine rpm, yielding vehicle speeds between 3.2 and 8 km/hr (2 and 5 mi/hr). The vehicle proceeded into the test lane with the load vehicle following, the cable between the two vehicles being slack and unloaded. The load vehicle driver gradually applied load to the test vehicle by braking. The test sequence proceeded from the test vehicle initially experiencing a no-load, no-slip condition and increased up to a high-load, high-slip condition or a power limited condition in which the test vehicle could not maintain the desired track or tire speed. Forward speed and wheel or track speed were maintained (very nearly) constant for several seconds of steady-state pull measurements. Vehicle slip was calculated from a magnetic tape record by using both vehicle travel distance and wheel travel distance. The vehicle slip, in percent, is equal to

$$\frac{d_{\rm t}-d_{\rm v}}{d_{\rm v}} \times 100 \tag{6}$$

where d_t = apparent distance traveled by the wheel or track

 d_v = distance actually traveled by the vehicle.

Continuous measurements were made in this manner until a sufficient number of load and slip combinations were recorded to develop a curve of drawbar pull-slip data (usually two good test sequences in the same area). As with T_n in the CIV traction test, *DBP* is a function of slip or DIV. Generally, in low density snow (less than 500 kg/m³) maximum DBP occurs at rates of slip greater than 20%. However, efficiency of operation is inversely proportional to slip; little useful work is being done at very high slip rates. A slip of 20% is generally used as the cut off for power efficiency. Thus, the maximum DBP that occurred in the vicinity of 20% slip was used for the calculation of T_n (eq 4). Equation 1, again, is engaged to determine gross traction. This procedure agrees with the CIV data analysis process, which averaged the upper 15% of the gross traction data.

The procedure used for obtaining the *TMR* of the test vehicle in each test area was to tow the vehicle (with its transmission in neutral) at a speed of approximately 3.2 km/hr (2 mi/hr). After each traction test, the vehicle was steered into an undisturbed area adjacent to the traction test area, usually in a position straddling the ruts of the associated traction test. The load vehicle then towed the test vehicle forward to determine the *TMR*. The test proceeded for a sufficient distance to permit the load cell readings to stabilize and to be recorded on magnetic tape. An average value during the stable portion of the record was taken as *TMR*, and R_t was then calculated from eq 5. Finally, external resistance from snow compaction R_s was found by subtracting R_h from R_t .

Measurements of snow characteristics (depth, density, temperature and sinkage) were obtained at each test area while tests were being conducted. The undisturbed densities ranged from 70 to 320 kg/m³ (4.4 to 20 lb/ft³), and depths ranged from 3 to 30 cm (1 to 12 in.). Generally, each test condition represented snow from one storm and the air temperatures were well below freezing.

RESULTS AND ANALYSIS

Traction

The objective of traction tests during this series of tests was to obtain traction data for snow and tire condi-

Table 4. CIV traction data.

		Tire	Norm	al load	Norma	l stress	Resi	istance	Net t	raction	Gross	traction	Aver	age
Date	Code	Pressure	Left	Right	Left	Right	Left	Right	Left	Right	Left	Right	Traction	Load
(1989)		(kPa)	(N)	(Ň)	(kPa)	(kPa)	(N)	(N)	(N)	(Ň)	(kPa)	(kPa)	(kPa)	(kPa)
17 Jan*	А	179	7408	6876	180	167	128	172	2323	2124	59	56	57.6	173.3
	Α	179	7369	6913	179	168	128	172	1859	1696	48	45	46.8	173.3
	Α	103	7514	6912	118	109	338	348	2076	1978	38	37	37.3	113.6
	Α	103	7509	6905	118	109	338	348	1949	2010	36	37	36.6	113.5
	а	179	7488	6598	169	149	128	147	2679	2483	63	59	61.4	159.0
	a	179	7455	6486	168	146	128	147	2854	2705	67	64	65.8	157.4
	а	103	7336	6869	125	117	276	253	2977	2788	56	52	53.7	121.2
	а	103	7543	6747	129	115	276	253	2502	2297	47	44	45.5	121.9
	В	234	7631	7015	321	295	79	59	1441	1190	64	52	58.2	307.7
	В	234	7561	6886	318	289	79	59	1474	1337	65	59	62.0	303.5
	В	138	7554	6990	238	220	179	134	1486	1366	52	47	49.8	228.7
	В	138	7506	7029	236	221	179	134	1489	1566	52	53	52.9	228.5
1 Mar [†]	Α	179	7312	6725	177	163	786	713	1645	1421	59	52	55.4	170.4
	Α	179	7184	6559	174	159	786	713	1474	1470	55	53	53.9	166.8
	Α	103	7251	6672	114	105	795	818	1693	1491	39	36	37.8	109.6
	Α	103	7368	6647	118	106	795	818	1662	1465	39	37	37.9	112.1
	а	179	7483	6886	169	155	885	863	893	923	40	40	40.2	162.2
	а	179	7293	6617	165	149	885	863	1466	1107	53	44	48.8	157.0
	a	103	7171	6618	122	113	1055	876	1934	1770	51	45	48.1	117.7
	a	103	7188	6419	123	110	1055	876	1832	1697	49	44	46.6	116.1
	В	234	7404	6748	311	284	578	624	1697	1173	96	75	85.6	297.3
	В	234	7332	6708	308	282	578	624	1762	1544	98	91	94.7	295.0
	В	138	7332	6719	231	211	657	696	1616	1241	71	61	66.2	220.9
	В	138	7295	6710	229	211	657	696	1512	1147	68	58	63.1	220.2
6 Apr**	Α	179	6477	6179	157	150	842	756	1978	1901	68	64	66.2	153.6
	Α	179	6383	6257	155	152	842	756	2202	2256	74	73	73.3	153.4
	Α	179	6278	6185	152	150	842	756	2222	2219	74	72	73.1	151.3
	Α	179	6544	6212	159	151	149	163	2226	2249	57	58	57.8	154.8
	Α	179	6549	6247	159	152	149	163	2273	2200	58	57	57.8	155.3

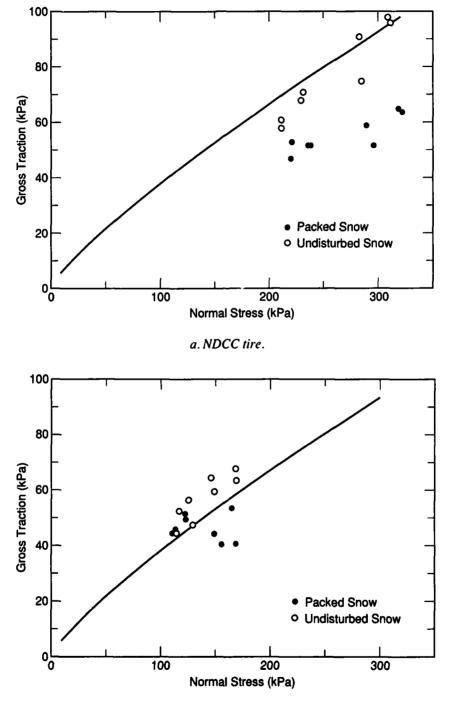
* On 17 January the tests were done on a packed and groomed snow road, the snow was approximately 6 cm deep and had an average density of 560 kg/m³.

On 1 March the tests were done on undisturbed dry snow, the initial snow density was 150 kg/m³ and the depth ranged from 10 to 20 cm.

** On 6 April the snow was wet, the average density was 510 kg/m³ and the depth was 2-7 cm, the last two tests on this date were done on packed wet snow.

tions distinctly different from those given in Blaisdell et al. (1990), which were used to develop eq 2. These new conditions were to be used to extend the usefulness of eq 2 from undisturbed snow with state-of-the-art tires to other tires and snow conditions; additionally, a feel for the general applicability (robustness) of the equation would be obtained. Using the CIV, we examined three additional initial snow conditions for traction—wet snow, wet packed snow and a groomed packed snow road. The military vehicles were tested for traction on the packed snow road and in undisturbed snow overlaying ice.

CIV traction


The traction data obtained using the CIV, sequentially equipped with three different tire types, and snow conditions are given in Table 4. The load values are those measured with the vehicle's load cells. The stress is obtained by dividing the load by the hard surface contact areas given in Table 2 for each tire and inflation pressure. These stress values are plotted in Figure 1; eq 2 (undisturbed snow, underlain by packed snow or frozen soil) is drawn on the plots for reference. There is good agreement between the traction equation and the data under all but two conditions. The performance of the NDCC tire on packed snow is over-predicted by eq 2, and the Michelin XCH4's performance is under-predicted on wet snow. The performance of the NDCC tire may be explained by considering tread geometry (deep, widely spaced lugs, see Appendix B) and the older style tire compound and carcass design. In undisturbed snow, the lugs of the NDCC tire were able to dig into the snow, developing the same magnitude of interfacial strength (traction) as the state-of-the-art tires. However, on packed snow the less-than-optimal tread design and tire compound could not engage the same amount of interfacial strength as observed with newer type of tires. In wet snow the Michelin XCH4 was able to develop more traction than expected. This may be ascribable to some uniqueness of the tire's compound, which provides greater stickiness between wet snow and the tire. We

suspect the tire compound rather than the tread design because of the good performance of the buffed (treadless) Michelin in dry snow conditions (Fig. 1b).

Military vehicles

The data obtained from the military vehicles are given in Table 5 and plotted on Figure 2. Here again the

vehicles were tested on several different types of snow conditions and eq 2 (undisturbed snow underlain by packed snow or soil) is drawn on the plot for reference. The range of traction values obtained with the CIV on ice (Blaisdell and Harrison 1981) with various tires is also shown in the figure. The following observations can be made from Figure 2: 1) there is a slight reduction in

b. Buffed Michelin XCH4.

Figure 1. Traction data for the CIV equipped with three different tire types.

traction on hard-packed snow (approximately -21%) as compared to undisturbed snow, 2) the traction obtained when undisturbed snow overlays an ice cover is significantly reduced (approximately -51%), and is slightly higher than that observed on ice alone and 3) the values obtained under natural (undisturbed) snow conditions with the HMMWV and Bradley agree well with eq 2 (i.e., the data obtained in a prior field season). Least squares regression analysis yielded these two equations for the above conditions

Hard-packed snow: $T_g = 0.321 N^{0.97}$ (7)

Snow over ice:
$$T_{\alpha} = 0.127 N^{1.06}$$
. (8)

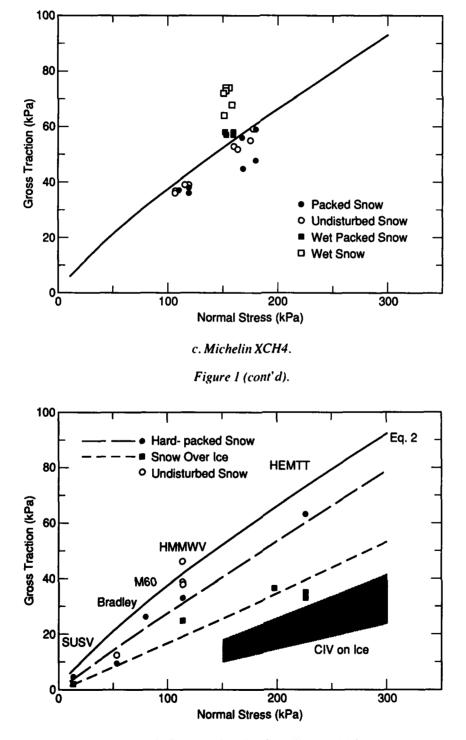


Figure 2. Traction data for the military vehicles.

		traction_	Normal		
Date	Coeff.	Stress	stress	Density	Snow
(1989)		(kPa)	(kPa)	(kg/nr ³)	description
a. HMMWV					
Weight: 33,450 N					
Contact area: 0.074 m ²	:				
17 Jan	0.335	37.9	113.0	180	undisturbed
	0.294	33.2	113.0	560	hard-packed
	0.222	25.1	113.0	120	undisturbed over ic
19 Jan	0.347	39.2	113.0	160	undisturbed
20 Jan	0.411	46.4	113.0	160	undisturbed
ь. НЕМТТ					
Weight: 268,560 N					
Contact area (at 241/2)	76 kPa): 0.1	49 m ²			
Contact area (at 138/20					
	0.107	24.5	107.2	250	
14 Jan	0.187	36.7	196.3	250	undisturbed over ic
	0.158	35.6	225.3	250	undisturbed over ic
18 Jan	0.282	63.5	225.3	560	hard-packed
	0.149	33.6	225.3	250	undisturbed over ic
c. SUSV					
Weight: 61,340 N					
Contact area: 1.18 m ²					
17 Jan	0.138	1.8	13.0	140	undisturbed over ic
	0.342	4.4	13.0	560	hard-packed
19 Jan	0.346	4.5	13.0	120	undisturbed
d. Bradley					
Weight: 223,299 N					
Contact area: 2.09 m ²					
14 Jan	0.182	9.7	53.4	560	hard-packed
17 Jan	0.238	12.7	53.4	230	undisturbed
e. M60A1					
Weight: 444,820 N Area: 2.8 m ²					
17 Jan	0.332	26.4	79.4	560	hard-packed

At this point one might question the difference in results between the military vehicles and the CIV on hard-packed snow. The CIV (with the control Michelin tires) obtained only slightly less traction than predicted by eq 2, and compares well to data from the other vehicles, as seen in Figure 3. The buffed Michelin tires generated more traction than predicted by eq 2; this seems to indicate the effect of increased contact area (no voids on the tire's surface). The low traction values obtained with the NDCC tire (as discussed above) are seen to fall well below the other tires.

Resistance

The amount a vehicle sinks in the snow (sinkage) or the depth of the rut left by vehicle passage greatly affects the amount of motion resistance exerted by the snow. The shallow snow model calculates resistance based on the amount of sinkage. The maximum sinkage predicted by SSM2.0 is determined from eq 3. SSM2.0 uses Table 1 to obtain the theoretical final density (ρ_f) for the snow, using nominal vehicle contact pressure to enter the table. We know of no systematic study of actual rut density for wheeled vehicles, presumably because of the difficulty in measuring densities of this generally small layer of dense snow. Thus, it is customary to estimate or calculate a compacted density.

Snow properties, rut depth and densities were measured for comparison with those calculated in the SSM2.0. Table 6 presents the measured snow and rut characteristics and the sinkage values obtained using eq 3 where



Figure 3. Vehicle traction on hard-packed snow.

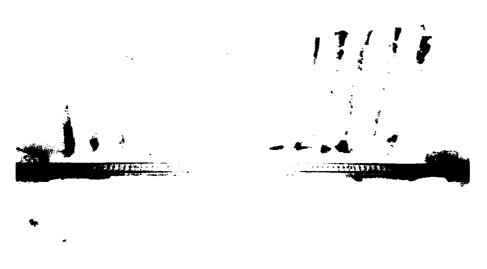


Figure 4. Chalk dust displacement around a tire rut.

final density is obtained from Table 1. In general, the measured rut density values do not agree very well with those used in SSM2.0; however, the values obtained for sinkage are very close.

Equation 3 was derived by assuming that the width of the deformed snow is a constant that is equal to the width of the tire or track and that the deformed snow is at a uniform density. In an effort to observe how the snow deforms, we marked the snow by filling 12.5-mm (0.5-in.) diameter vertical holes punched in the snow, perpendicular to the direction of wheel travel, with chalk dust. A vehicle was then driven into the marked area. Figure 4 shows the results of such an experiment and indicates that there is significant lateral snow displacement. To account for this lateral deformation, the deformed region under the tire rut (Fig. 4) can be assumed to have an average width b_a , while the tire (track) has a width of b. Using the same volumetric procedure used to develop eq 3, we obtained the following

Table 6. Vehicle sinkage data.

				Sinkage	
Date	Snow	Density	Depth	Measured	SSM2.0
(1989)	Initial	Final*	(cm)	(cm)	(cm)
a. CIV Tire A (179.3	kDe inflation				
a. CIV The A (179.3	-KPa Inflation	i pressure)			
13 Jan	200	_	4.5	2.0	2.9
	200	_	18.0	16.5	11.5
18 Jan	90		7.5	6.0	6.3
19 Jan	110	—	12.0	10.0	9.6
20 Jan	120	_	20.0	17.0	15.6
2 Mar	150		20.0	16.5	-
b. CIV Tire D (248.2	-kPa inflatio	n pressure)			
14 Jan	240		3.5	2.5	2.0
14 Jan	240		16.5		9.3
10 7		_		13.0	
19 Jan	110		10.0	8.0	8.0
	110	—	13.0	10.5	10.4
	125	—	8.0	6.5	6.2
20 Jan	120	—	19.0	14.5	14.9
c. CIV Tire C (413.7	-kPa inflatior	n pressure)			
19 Jan	110	_	12.0	11.0	10.0
19 Jan	95		6.0	5.0	5.
20 Jan	120	_	17.0	16.0	13.9
d. HMMWV (151.7-1	kPa inflation	pressure)			
13 Jan	200	380F	15.0	8.0	9. 1
15 Jali	200		15.0	8.0	9.
		480R			
	200	470F	19.5	11.9	11.
	200	500R	19.5	13.8	12.4
	200	535F	23.5	19.1	14.3
	200	—R	23.5	21.0	15.0
	200	455F	19.5	14.5	11.8
	200	470R	17.5	13.1	12.4
	200	445F	18.0	14.5	11.0
	200	475R	18.0	13.0	11.5
19 Jan	120	320F	13.0	9.0	9.1
	120	410R	12.0	8.5	10.3
20 Jan	120	—F	19.5	14.0	14.
	120	—R	18.0	14.0	15.2
23 Jan	190	575R	10.0	9.0	6.
e. HEMTT (275.8-kF	Pa inflation p	ressure)			
14 Jan	250	490F	20.0	12.4	10.2
17 7001	250	440	20.0	16.9	10.2
	250	520	20.0	16.2	10.
	250 250				
		460R	20.0	15.6	10.9
	250	490F	16.5	12.4	8.4
	250	490	18.0	13.2	8.4
	250	510	20.5	15.4	9.0
	250	510R	20.0	15.6	9.0
	245	F	20.0	14.3	10.4
	245	460R	17.0	12.6	11.1
20 Jan	120	F	13.0	10.0	9.5
	120	R	13.0		10.2

					Sinkage	
	Date	Snow	Snow Density		Measured	SSM2.0
	(1989)	Initial	Final*	(cm)	(cm)	(cm)
f. HEM	TT (206.8-kP	a inflation pro	essure)			
	14 Jan	_	R	6.0	1.0	
			—	3.5	3.2	_
		245	510F	17.0	12.6	7.7
		245	525	18.0	15.1	7.7
		245	430	17.5	14.6	9.4
		245	445R	16.0	13.1	9.4
		245	445R	16.0	12.2	8.9
	19 Jan		—F	3.5	0.3	_
		95	R	4.0	3.0	3.3
		120	300F	12.0	10.5	7.6
		120	315R	11.0	9.0	9.4
g. SUSV	/ (13.2-kPa c	ontact pressu	re)			
	13 Jan	240	415F	14.0	_	7.3
		240	450R	15.5	11.4	7.3
		250	460F	18.5	10.2	9.3
		250	450R	21.0	10.8	9.3
		250	440F	17.5	8.9	8.8
		250	430R	17.0	9.5	8.8
	20 Jan	120	230F	12.5	12.5	9.5
		120	245R	12.5	12.5	9.5
	23 Jan	410	430R	64.0	19.5	11.5
		265	455R	54.0	27.5	25.4
	24 Jan	310	450R	58.4	22.9	22.2
		450	480R	35.5	5.0	3.6
h. Bradl	ey (53.09-kPa	a contact pres	sure)			
	14 Jan	_	_	3.0	2.0	
	20 Jan	100	355	18.5	16.0	14.8
	23 Jan	190		8.0	7.0	4.9
		265	540	51.0	37.0	24.0
i. M60A	1 (79.4-kPa	contact pressu	ire)			
	16 Jan	340	520	56.0	32.0	17.9

Table 6 (cont'd).

*F--refers to the front axle, R--to the rear axle, values between F and R are the second and third axles respectively.

$$z = h \left(1 - \frac{b\rho}{b_a \rho_f} \right). \tag{9}$$

Since (b/b_a) is less than 1, the effect of this term is to increase the sinkage. This explains why, even with the estimates of final theoretical density (ρ_f) being too high, eq 3 still yields good predictions of sinkage in SSM2.0.

The predicted sinkage values in Table 6 were determined following the SSM2.0 algorithm (eq 3) with the caveat that the snow depth used for the front tires was also used for all following tires, even though the measured snow depths (at the following wheels) may have been different. The use of this algorithm produces fairly good results. The measured sinkage data from different vehicles are depicted in Figure 5. The y-axis variable $(\rho \times h)$ and the x-axis variable (h-z) were obtained by rearranging eq 3 so that the slope on this plot would represent the final density (ρ_f) . The data fall quite neatly on a straight line, which has a slope of 563 kg/m³. Predictions of sinkage made using the least-squares regression equation (y=563.0x+7.11) are only slightly different (and no better on the average) from those obtained using the algorithm of SSM2.0.

Motion resistance data for the CIV are given in Table 7. Motion resistance tests were conducted using three different width tires to determine the effect of tire width

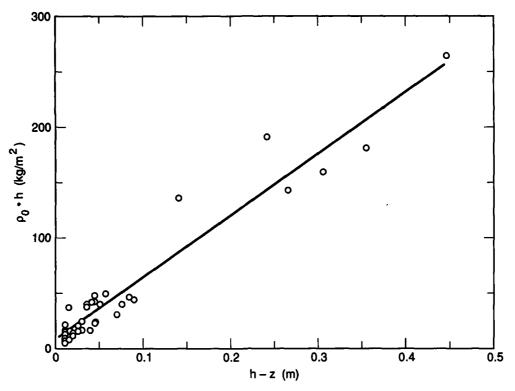


Figure 5. Vehicle sinkage analysis.

on resistance. Comparing the data for tests conducted sequentially in the same test area with similar snow conditions revealed no clear trend when tire width was the only changing parameter. We wanted a parameter that could be used to combine vehicle characteristics and varying snow conditions. After several iterations, the parameter ($\rho_0 \times b \times a$) was tried, where a is the length of the tire or track in contact with undisturbed snow (Fig. A1), and is determined from the calculated sinkage and tire or track geometry. The CIV resistance attributable to snow deformation reported here and that from Blaisdell et al. (1990) are plotted in Figure 6a. The scattered data in Figure 6a tend toward 0 as the snow parameter approaches 0. A 0 intercept is expected since no snow yields no external resistance. An equation of the form $y=dx^e$ was fit to the data in Figure 6b.

Table 8 contains the resistance data obtained from the military vehicles during both field seasons (see Table 3); also included are calculations of the parameter ($\rho_0 \times b \times a$) as defined above. The resistance value presented is per tire (track) and thus all vehicle data can be shown on the same graph. The SUSV was considered a two-track vehicle (as opposed to four), since it appears that the trailing track does not act like a trailing tire on a wheeled vehicle owing to its extremely low ground pressure.

The division of R_s by the number of wheels or tracks is a departure from traditional thoughts on vehicle resistance in snow. In the past, and in SSM2.0, it was believed that trailing tires with contact pressures lower than the preceding tires would have little or no external resistance. By dividing by the number of wheels, we are assuming here that following tires displace as much snow (on a mass basis) as preceding tires. This theory was not explicitly examined during these tests, and the sinkage measurements discussed above do not apply since sinkage was measured behind each axle after the vehicle came to a stop. To test this idea, the sinkage should be measured at the same location in the snow as each axle passes by.

The resistance per wheel (per track) are plotted in Figure 7 and are combined in Figure 8. The results of least-squares regression analysis based on an equation of the form $y=dx^e$ are shown on each plot. The equation obtained from using all the data

$$R_{\rm s} = 68.083 \ (\rho_{\rm o} aw)^{0.9135}$$

(correlation coefficient $r^2 = 0.39$) (10)

is used to estimate resistance for the vehicles and is compared with both the measured values and the results from SSM2.0 in Tables 7 and 8.

Table 9 summarizes the percent errors shown in Tables 7 and 8. From this table it can be seen that eq10 unfortunately does not offer any improvement over SSM2.0.

(%) Diff:* (%) 36 Est. resist. Diff.* (%) 8 % % Est. resist. 317 328 328 269 269 269 890 1045 836 836 836 989 989 989 Average: Standard deviation: Net resist. (N) 125 76 58 125 305 305 305 305 247 721 1021 1085 721 696 696 801 801 801 Temp. (°C) v v 7 7 v v v 8 8 7 7 9 9 4 4 Sinkage (cm) 10.6 8.6 8.6 8.6 8.6 6.3 6.3 6.3 13.6 9.9 9.9 9.9 9.7 9.7 9.7 pxbxa (kg/m) 5.38 5.60 5.60 4.49 4.67 8.11 8.43 19.89 19.89 19.89 13.67 13.67 13.67 13.67 13.67 13.67 13.67 13.67 13.67 13.67 13.67 13.67 13.67 13.67 13.67 13.67 13.67 14.77 14.67 14.77 1 5.10 7.72 7.72 7.74 4.45 7.84 7.84 7.84 7.84 7.85 9.63 9.63 9.63 9.63 9.63 12.03 9.63 17.15 12.03 9.63 10.00 Depth (b) (cm) 12.5 12.5 12.5 9.0 9.0 9.0 9.0 22.0 16.0 18.0 18.0 220.7 220.7 220.7 220.7 220.7 220.7 220.7 220.7 220.7 220.7 220.7 220.7 220.7 220.7 220.7 220.7 220.7 220.7 220.7 200 Density (p) (kg/m³) Arc (a) (m) 0.712 0.698 0.712 0.712 0.712 0.712 0.712 0.698 0.712 0.698 0.712 0.698 0.712 0.698 0.712 0.698 E Width (m) 0.254 0.267 0.256 0.256 0.256 0.256 0.256 0.256 0.256 0.256 0.256 0.256 0.256 0.256 10 Feb 12 Feb 17 Feb 1988 23 Jan 26 Jan 1989 18 Jan 20 Jan 19 Jan 2 Mar Date

Percent difference from the measured net resistance.

Table 7. Motion resistance for the CIV.

Diameter

Tire

Eq 10

Table 8. Motion resistance data for military vehicles.

a. Tracked vehicles.

		1/00 4						MORON LESISIANE		<u>h:</u>	2		0.71000
Date	Width (m)	Arc (a) (m)	Density (p) (kg/m ³)	Depth (b) (cm)	p×b×a (kg/m)	Sinkage (cm)	Coeff.	Gross (N)	Net (N)	Est. resist.	Diff.* . (%)	Est. resist.	Diff.* (%)
1. SUSV													
1988													
21 Jan	0.6096	0.06	99	3.5	2.10	3.1	0.130	7974	1840	134	-93	48	6-
26 Jan	0.6096	0.12	148	9.0	10.64	6.3	091.0	9815	2760	590	-79	157	-94
28 Jan	0.6096	0.14	150	0.11	13.10	T.T	0.170	10428	3067	714	-11	192	-94
10 Feb	0.6096	0.32	220	31.0	43.33	17.4	0.170	10428	3067	2129	-31	514	-83
10 Feb	0.6096	0.20	250	22.0	31.20	0.11	0.170	10428	3067	1577	49	344	-89
13 Feb	0.6096	0.23	290	30.0	41.46	12.6	0.150	9201	2454	2045	-17	418	-83
13 Feb	0.6096	0.21	250	23.0	32.62	11.5	0.160	9815	2760	1643	4	359	-87
686													
17 Jan	0.6096	0.05	140	4.0	4.57	2.9	0.072	4417	61	273	345	69	13
17 Jan	0.6096	0.00	560	6.0	0.00	0.0	0.083	1605	399	0	-100	0	-100
19 Jan	0.6096	0.07	120	5.0	5.17	3.8	0.085	5214	460	306	34	85	-82
19 Jan	0.6096	0.19	160	15.0	18.52	10.2	0.152	9324	2515	679	φ.	262	06-
19 Jan	0.6096	0.14	160	0.11	13.58	7.5	0.112	6870	1288	738	4	192	-85
23 Jan	0.6096	0.43	320	64.0	83.65	23.0	0.218	13372	4539	3883	-14	794	-82
3 Jan	0.6096	0.0	190	8.0	10.69	5.0	0.071	4355	31	593	1832	138	349
23 Jan	0.6096	0.16	190	14.0	18.71	8.7	0.108	6625	1165	686,	-15	241	62-
								• • •	Average		102		-52
									Standard	Standard deviation:	606		110
2. M113.						:							
1988													
22 Jan	0.381	0.13	160	7.0	8.10	4.8	090.0	6245	572	460	-20	295	8 7
3 Jan	0.381	0.28	75	12.0	8.13	10.2	0.050	5204	52	462	788	431	728
28 Jan	0.381	0.26	80	0.11	7.86	9.2	0.080	8327	1613	448	-72	4 04	-15
10 Feb	0.381	0.48	220	31.0	40.60	17.4	0.130	13531	4216	2007	-52	1242	-71
0 Feb	0.381	0.31	250	22.0	29.24	11.0	060.0	9368	2134	1486	-30	830	-61
13 Feb	0.381	0.32	250	23.0	30.57	5.11	0.130	13531	4216	1548	ç;	868	62-
-				; ; ; ;					Average:		65	:	\$ 9

.

Table 8 (cont'd).

a. Tracked vehicles (cont'd).

	7	Track					Μc	Motion resistance	ace	ų	Eq 10	SS	SSM2.0
Date	Width (m)	Arc (a) (m)	Density {p) (kg/m ³)	Depth (b) (cm)	pxbxa (kg/m)	Sinkage (cm)	Coeff.	Gross (N)	Net (N)	Est. resist.	, Diff.* (%)	Est. resist.	Diff.* (%)
. Bradley													
l Jan	0.5334	0.07	8	3.5	2.33	3.1	0.060	13398	1563	148	16 −	167	-89 -
3 Jan	0.5334	0.20	75	10.0	8.05	8.5	0.060	13398	1563	457	11-	523	61
8 Jan	0.5334	0.22	80	0.11	9.33	9.2	0.080	17864	3796	524	-86	589	-84 44
2 Feb	0.5334	0.28	230	22.0	34,49	611	0.180	40194	14961	1728	-88	1264	7 6-
2 Feb	0.5334	0.18	260	16.0	25.20	7.7	0.110	24563	7146	1298	-82	860	88- 88-
<u>1989</u>													
4 Jan	0.5334	0.05	240	4.0	6.30	2.1	0.049	10942	335	366	6	225	-33
7 Jan	0.5334	0.00	560	6.0	0.00	0.0	0.062	13845	1786	0	-100	0	001-
8 Jan	0.5334	0.00	560	6.0	0.00	0.0	0.063	14068	1898	0	-100	0	-100
0 Jan	0.5334	0.26	230	20.0	31.35	10.8	0.083	18534	4131	1584	-62	1149	-72
									Average:	::	-74		-81
									Standar	Standard deviation:	32		20

b. Wheeled vehicles.

	2	Wheel						MOI	Motion resistance	ce	Eq 10	10	<u>SS</u>	SSM2.0
	Width	Width Diameter	Arc (a)	Density (p)	Depth (b)	рхрха	Sinkage	Coeff.	Gross	Net	Est.	Diff.*	Est.	Diff.*
Date	(<i>m</i>)	(<i>m</i>)	(<i>m</i>)	(kg/m ³)	(cm)	(kgim)	(<i>cm</i>)		(N)	(N)	resist.	(%)	resist.	(%)
I. HMMWV	۸Ŵ													
1988														
19 Jan	0.33	0.858	0.00	550	5.0	0.00	0.0	0.050	1673	226	0	-100	0	-100
21 Jan	0.33	0.858	0.16	60	3.5	3.24	3.1	0.050	1673	226	661	-12	163	-28
23 Jan	0.33	0.858	0.30	75	12.0	7.48	10.2	0.070	2342	393	428	6	583	48
26 Jan	0.33	0.858	0.24	148	9.0	11.53	6.3	060.0	3011	560	635	13	465	-17
28 Jan	0.33	0.858	0.29	80	0.11	7.57	9.2	0.050	1673	226	433	92	541	139
10 Feb	0.33	0.858	0.40	220	31.0	29.06	17.4	0.140	4683	978	1478	51	1469	50
10 Feb	0.33	0.858	0.31	250	22.0	25.92	0.11	0.100	3345	1	1332	107	974	51
13 Feb	0.33	0.858	0.34	290	30.0	32.29	12.6	0.130	4349	895	1628	82	1174	31
26 Jan	0.33	0.858	0.34	148	18.0	16.53	12.7	0.070	2342	393	883	125	930	136
15 Feb	0.33	0.858	0.28	240	17.0	22.21	8.8	0.120	4014	811	1156	43	772	ŝ
1989														
13 Jan	0.33	0.858	0.25	220	12.7	18.19	7.1	0.106	3546	694	964	39	593	-15
13 Jan	0.33	0.858	0.23	240	11.4	18.07	5.9	0.069	2308	385	958	149	517	35

15

Table 8 (cont'd). Motion resistance data for military vehicles.

÷
5
2
2
3
6
<u>e</u>
<u> </u>
Ē
é
7
ele
- Z
ě.
2
ف

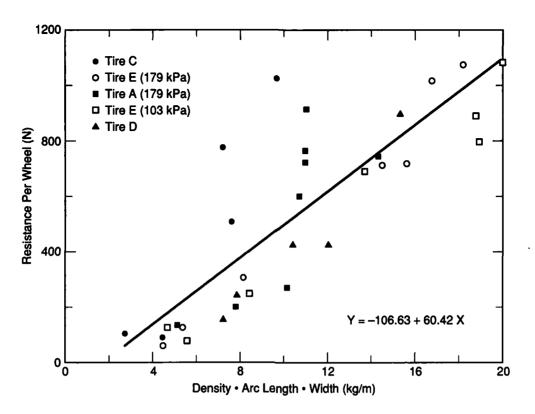
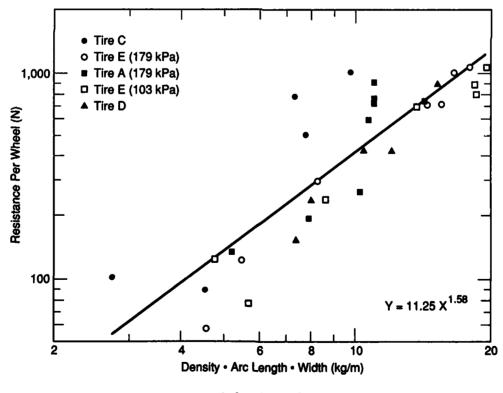
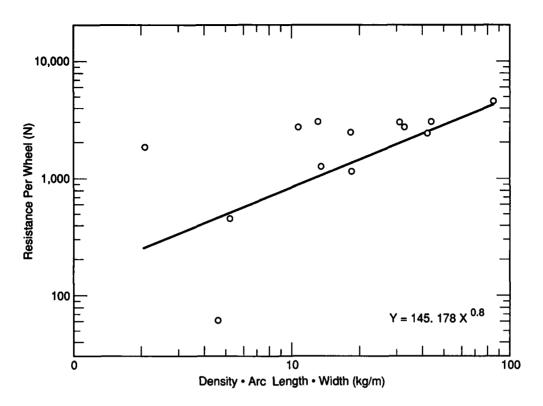

									ļ	1				
Date	Width Diamet (m) (m)	er	Arc (a) (m)	Density {p) (kg/m ³)	Depth (b) (cm)	pxbxa (kg/m)	Sinkage (cm)	Coeff.	Gross (N)	Net (N)	Est. resist.	Diff:* (%)	Est. resist.	Diff.* (%)
1. HMMWV (cont'd)	(cont'd)						;							
13 Jan (0.33 0.858	28	0.33	250	23.5	26.83	11.8	0.140	4683	978	1374	6	1040	9
		58	0.30	250	20.3	24.85	10.2	0.071	2375	401	1281	219	668	124
		58	0.30	250	20.6	25.04	10.3	0.086	2877	527	1290	145	912	73
		58	0.00	560	6.0	0.00	0.0	0.035	1171	<u>100</u>	0	-100	0	-100
		58	0.26	180	12.0	15.49	7.7	0.090	3011	560	832	48	605	90
		58	0.00	560	6.0	0.00	0.0	0.046	1539	192	0	-100	0	-100
		58	0.16	120	4.0	6.43	3.0	0.060	2007	309	373	21	206	-33
19 Jan (58	0.30	160	15.0	15.95	10.2	0.073	2442	418	854	104	770	84
		58	0.33	160	18.0	17.55	12.2	0.110	3680	728	932	28	924	27
23 Jan (58	0.29	061	15.0	18.05	9.3	0.077	2576	452	957	112	747	65
									5	Average:		51		2
										Standar	Standard deviation:	80		68
2. HEMTT														
1988														
-	0.429 1.234	34	0.20	8	3.5	5.06	3.1	0.04	10742	604	300	-50	217	\$
-	-	78	0.19	60	3.5	5.58	3.1	0.04	10742	6 04	327	¥	178	-71
	0.429 1.234	34	0.33	75	10.0	10.64	8.6	0.03	8057	269	590	120	643	139
	-	78	0.32	75	10.0	11.70	8.6	0.05	13428	940	6 4	-31	514	4
	-	34	0.35	80	11.0	11.85	9.4	0.05	13428	940	652	-31	714	-24
	_	78	0.34	80	0.11	13.04	9.4	0.06	16114	1276	711	ŧ	566	-56
		8	0.44	220	25.0	41.52	15.0	0.05	13428	940	2048	118	1593	20
	-	78	0.43	220	25.0	45.67	15.0	0.08	21485	1947	2234	15	1068	4
	0.429 1.234	3	0.38	200	18.0	32.81	11.5	0.05	13428	940	1652	76	1179	52
11 Feb (-	78	0.37	200	18.0	36.09	11.5	0.08	21485	1947	1802	L-	806	-59
1989														
14 Jam (-	78	0.36	250	20.0	43.98	10.9	0.08	21485	1947	2159	11	1209	-38
14 Jaun (-	5	0.38	250	21.0	41.01	11.5	0.08	21485	1947	2025	4	824	-58
18 Jann (0.429 1.234	34	0.00	560	6.0	0.00	0.0	0.08	21485	1947	0	-100	0	-100
18 Jan (34	0.19	230	5.0	18.79	2.9	0.08	21485	1947	992	9	1314	-33
16 Jan (-	통	0.00	560	6.0	0.00	0.0	0.08	21485	1947	0	-100	0	-100
		78	0.00	560	6.0	0.00	0.0	0.08	21485	1947	0	-100	0	-100
		34	0.12	220	2.0	11.51	1.2	0.08	21485	1947	635	-67	128	-93
	-	34	0.26	061	8.0	20.89	5.2	0.08	21485	1947	1093	4	530	-73
	-	3	0.32	210	13.0	28.71	8.0	0.08	21485	1947	1462	-25	841	-51
										A versue.		01-		F
										9m-11	n ruder			:

Table 8 (cont'd).


b. Wheeled vehicles (cont'd).

With Diameter Arc (a) Density (b) Rolfs Coeff Gross Net Est. Diffs Est. Est. Diffs Est. <th></th> <th>Ż</th> <th>Wheel</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Wot</th> <th>Motion resistance</th> <th>Le C</th> <th>Eq 10</th> <th>01</th> <th></th> <th>SSM2.0</th>		Ż	Wheel						Wot	Motion resistance	Le C	Eq 10	01		SSM2.0
0.333 0.89 0.00 550 5.0 0.00 0.00 550 5.0 0.00 0.0 0 <t< th=""><th>Date</th><th>Width (m)</th><th>Diameter (m)</th><th>Arc (a) (m)</th><th>Density (p) (kg/m³)</th><th>Depth (b) (cm)</th><th>pxbxa (kg/m)</th><th>Sinkage (cm)</th><th>Coeff.</th><th>Gross (N)</th><th>Net (N)</th><th>Est. resist.</th><th>Diff.* (%)</th><th>Est. resist.</th><th>Diff.* (%)</th></t<>	Date	Width (m)	Diameter (m)	Arc (a) (m)	Density (p) (kg/m ³)	Depth (b) (cm)	pxbxa (kg/m)	Sinkage (cm)	Coeff.	Gross (N)	Net (N)	Est. resist.	Diff.* (%)	Est. resist.	Diff.* (%)
0.353 0.89 0.00 550 5.0 0.00 0.05 6274 173 0 -100 0 0.378 0.83 0.00 550 5.0 0.00 0.00 0.05 6274 173 0 -100 0 0 0.378 0.83 0.17 60 3.5 3.55 3.11 0.06 7529 329 217 44 116 0.378 0.83 0.31 75 12.0 8.21 10.4 0.06 7529 329 217 44 116 0.378 0.89 0.31 75 12.0 8.21 10.4 0.06 7529 329 217 44 116 0.378 0.89 0.30 75 12.0 8.42 10.2 0.06 7529 329 477 110 180 0.378 0.89 0.29 0.31 75 12.0 8.74 406 169 466 466 466 466 466 466 466 466 466 406 466 <t< td=""><td>3. LAV</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	3. LAV														
0.353 0.89 0.00 550 5.0 0.00 550 5.0 0.00 500 0.00 0 0 1100 0 1100 0 1100 0 1100 0 1100 0 1100 0 1100 0 1100 0.00 0.00 0.00 <td>1988</td> <td></td>	1988														
0.378 0.83 0.00 550 5.0 0.00 5.0 0.00 5.0 0.00 5.0 0.00 5.0 0.00 5.0 0.00 0.00 7529 329 0 -100 0 0 0.378 0.89 0.17 60 3.5 3.55 3.1 0.06 7529 329 217 44 116 0.378 0.89 0.31 75 12.0 8.21 10.4 0.06 7529 329 217 44 116 0.378 0.89 0.30 75 12.0 8.21 10.4 0.06 7529 329 477 110 180 0.378 0.89 0.29 80 11.0 8.32 9.4 0.07 180 433 0.333 0.89 0.22 80 11.0 8.32 9.4 0.07 184 46 475 0.333 0.89 0.22 80 11.0 8.32 <	19 Jan	0.353	0.89	0.00	550	5.0	0.00	0.0	0.05	6274	173	0	-100	0	001-
0.333 0.89 0.17 60 3.5 3.1 0.06 7529 3.29 217 44 116 0.378 0.83 0.16 60 3.5 3.11 0.06 7529 329 217 44 116 0.378 0.89 0.31 75 12.0 8.21 10.4 0.06 7529 329 466 108 433 0.378 0.89 0.30 75 12.0 8.21 10.4 0.06 7529 329 477 110 180 0.373 0.89 0.29 80 11.10 8.32 9.4 0.07 8784 486 472 41 406 0.378 0.89 0.27 150 11.0 8.33 9.2 0.09 17294 800 486 472 41 406 0.378 0.89 0.27 150 11.0 8.33 9.2 0.09 17294 800 486 475 41 406 0.378 0.89 0.27 150 14.1 14.2	19 Jan	0.378	0.83	0.00	550	5.0	0.00	0.0	0.06	7529	329	0	-100	0	-100
0.378 0.83 0.16 60 3.5 3.64 3.1 0.06 7529 329 222 46 48 0.373 0.89 0.31 75 12.0 8.21 10.4 0.06 7529 329 466 108 433 0.378 0.89 0.30 75 12.0 8.42 10.2 0.06 7529 329 466 108 433 0.373 0.89 0.29 8.0 11.0 8.32 9.4 0.07 8784 486 477 110 180 0.373 0.89 0.29 80 11.0 8.33 9.2 0.09 11294 800 482 477 110 180 0.378 0.89 0.27 150 11.0 8.53 9.2 0.09 11294 800 486 472 41 406 0.378 0.89 0.27 150 11.0 14.35 8.0 0.07 1794 406 0.378 0.83 0.26 110 14.35 8.0 <td< td=""><td>21 Jan</td><td>0.353</td><td>0.89</td><td>0.17</td><td>8</td><td>3.5</td><td>3.55</td><td>3.1</td><td>0.06</td><td>7529</td><td>329</td><td>217</td><td>4</td><td>116</td><td>ŝ</td></td<>	21 Jan	0.353	0.89	0.17	8	3.5	3.55	3.1	0.06	7529	329	217	4	116	ŝ
0.353 0.89 0.31 75 12.0 8.21 10.4 0.06 7529 329 466 108 433 0.378 0.89 0.30 75 12.0 8.42 10.2 0.06 7529 329 477 110 180 0.378 0.89 0.29 80 11.0 8.32 9.4 0.07 8784 486 472 41 406 0.378 0.89 0.29 80 11.0 8.32 9.4 0.07 8784 486 472 41 406 0.378 0.89 0.27 150 11.0 8.32 9.4 0.07 8784 486 472 41 406 0.378 0.89 0.27 150 11.0 8.53 9.2 0.09 11294 800 486 776 79 464 0.378 0.89 0.27 150 11.0 14.55 7.7 0.11 1369 475 41 406 0.378 0.89 0.27 150 11.42 0	21 Jan	0.378	0.83	0.16	8	3.5	3.64	3.1	0.06	7529	329	222	8	48	-85
0.378 0.83 0.30 75 12.0 8.42 10.2 0.06 7529 329 477 110 180 0.353 0.89 0.29 80 11.0 8.32 9.4 0.07 8784 486 472 41 406 0.353 0.89 0.29 80 11.0 8.32 9.4 0.07 8784 486 472 41 406 0.353 0.89 0.29 80 11.0 8.32 9.4 0.07 8784 486 472 41 406 0.353 0.89 0.27 150 11.0 8.32 9.4 0.07 8784 486 776 79 464 0.378 0.89 0.27 150 11.0 14.35 8.0 0.07 8784 486 776 79 464 0.378 0.89 0.37 220 30.0 37.41 14.2 0.14 1766 176 179 464 0.378 0.83 0.33 0.30 37.41 14.2 <td< td=""><td>23 Jan</td><td>0.353</td><td>0.89</td><td>0.31</td><td>75</td><td>12.0</td><td>8.21</td><td>10.4</td><td>0.06</td><td>7529</td><td>329</td><td>466</td><td>108</td><td>433</td><td>32</td></td<>	23 Jan	0.353	0.89	0.31	75	12.0	8.21	10.4	0.06	7529	329	466	108	433	32
0.353 0.89 0.29 80 11.0 8.32 9.4 0.07 8784 486 472 41 406 0.378 0.83 0.29 80 11.0 8.33 9.2 0.09 11294 800 482 -13 169 0.378 0.83 0.29 80 11.0 8.53 9.2 0.09 11294 800 482 -13 169 0.378 0.83 0.20 11.0 8.53 9.2 0.09 11294 800 482 -13 169 0.378 0.89 0.27 150 11.0 8.53 9.2 0.09 11294 800 486 776 79 464 0.378 0.89 0.27 150 11.0 14.42 0.11 13803 1114 786 -21 193 0.378 0.89 0.37 290 30.03 36.37 12.66 0.09 11294 800 486 776 77 71 193 0.378 0.33 0.39 36.37	23 Jan	0.378	0.83	0.30	75	12.0	8.42	10.2	0.06	7529	329	477	110	180	Ą
0.378 0.83 0.28 80 11.0 8.53 9.2 0.09 11294 800 482 -13 169 0.353 0.89 0.29 80 11.0 8.32 9.4 0.07 8784 486 472 41 406 0.353 0.89 0.27 150 11.0 8.33 9.2 0.09 11294 800 482 -13 169 0.353 0.89 0.27 150 11.0 8.53 9.2 0.09 11294 800 486 776 79 464 0.378 0.89 0.27 150 11.0 14.35 8.7 0.11 13803 1114 786 -21 193 0.378 0.89 0.37 290 30.0 36.37 12.6 0.09 11294 800 486 776 79 464 0.378 0.33 0.30 37.41 14.2 0.14 17568 1862 -16 1010 0.378 0.89 0.33 0.30 36.37 12.6 </td <td>28 Jan</td> <td>0.353</td> <td>0.89</td> <td>0.29</td> <td>80</td> <td>11.0</td> <td>8.32</td> <td>9.4</td> <td>0.07</td> <td>8784</td> <td>486</td> <td>472</td> <td>41</td> <td>406</td> <td>-16</td>	28 Jan	0.353	0.89	0.29	80	11.0	8.32	9.4	0.07	8784	486	472	41	406	-16
0.353 0.89 0.29 80 11.0 8.32 9.4 0.07 8784 486 472 41 406 0.378 0.83 0.29 80 11.0 8.53 9.2 0.09 11294 800 482 -13 169 0.378 0.83 0.27 150 11.0 8.53 9.2 0.09 11294 800 482 -13 169 0.378 0.83 0.26 150 11.0 14.35 8.0 0.07 8784 486 776 79 464 0.378 0.89 0.37 290 30.0 37.41 14.2 0.14 17568 1584 1862 -16 1010 0.378 0.83 0.33 230 36.37 12.6 0.09 11294 800 1815 63 419 0.378 0.83 0.33 23.0 30.23 12.5 0.12 15058 1271 1516 -6 361 0.378 0.83 0.32.0 23.0 29.88 11.5	28 Jan	0.378	0.83	0.28	80	11.0	8.53	9.2	0.09	11294	800	482	-13	169	61-
0.378 0.83 0.28 80 11.0 8.53 9.2 0.09 11294 800 482 -13 169 0.353 0.89 0.27 150 11.0 14.35 8.0 0.07 8784 486 776 79 464 0.378 0.89 0.27 150 11.0 14.55 7.7 0.11 13803 1114 786 -21 193 0.378 0.89 0.37 290 30.0 37.41 14.2 0.14 17568 1584 1862 -16 1010 0.378 0.83 0.33 290 30.03 36.37 12.6 0.09 11294 800 1815 63 419 0.378 0.83 0.33 23.0 30.23 12.56 0.09 11294 800 1815 63 419 0.378 0.83 0.33 23.0 30.23 12.56 0.09 1815 63 419 0.378 0.83 0.31 11.5 0.12 15058 1271 1516	28 Jan	0.353	0.89	0.29	80	11.0	8.32	9.4	0.07	8784	486	472	41	406	-16
0.353 0.89 0.27 150 11.0 14.35 8.0 0.07 8784 486 776 79 464 0.378 0.83 0.26 150 11.0 14.55 7.7 0.11 13803 1114 786 -21 193 0.378 0.89 0.37 290 30.0 37.41 14.2 0.14 17568 1584 1862 -16 1010 0.378 0.83 0.33 290 30.0 37.41 14.2 0.14 17568 1584 1862 -16 1010 0.378 0.83 0.33 290 30.0 36.37 12.6 0.09 11294 800 1815 63 419 0.378 0.89 0.31 250 23.0 30.23 12.56 0.12 15058 1271 1516 -6 361 0.378 0.83 0.32 23.0 29.88 11.5 0.12 15058 1271 1516 -6 361 0.378 0.37 23.0 29.88 11.5 <td>28 Jan</td> <td>0.378</td> <td>0.83</td> <td>0.28</td> <td>80</td> <td>11.0</td> <td>8.53</td> <td>9.2</td> <td>0.09</td> <td>11294</td> <td>800</td> <td>482</td> <td>-13</td> <td>169</td> <td>62-</td>	28 Jan	0.378	0.83	0.28	80	11.0	8.53	9.2	0.09	11294	800	482	-13	169	62-
0.378 0.83 0.26 150 11.0 14.55 7.7 0.11 13803 1114 786 -21 193 0.353 0.89 0.37 290 300 37.41 14.2 0.14 17568 1584 1862 -16 1010 0.378 0.83 0.33 290 30.0 36.37 12.6 0.09 11294 800 1815 63 419 0.353 0.89 0.34 250 23.0 30.23 12.5 0.12 15058 1271 1532 -5 868 0.378 0.83 0.32 250 23.0 29.88 11.5 0.12 15058 1271 1516 -6 361 Average: -3 Average: -3	29 Jan	0.353	0.89	0.27	150	0.11	14.35	8.0	0.07	8784	486	776	<i>6L</i>	464	Ŷ
0.353 0.89 0.37 290 30.0 37.41 14.2 0.14 17568 1584 1862 -16 1010 0.378 0.83 0.33 290 30.0 36.37 12.6 0.09 11294 800 1815 63 419 0.353 0.89 0.34 250 23.0 30.23 12.5 0.12 15058 1271 1532 -5 868 0.378 0.83 0.32 250 23.0 29.88 11.5 0.12 15058 1271 1516 -6 361 Average: -3	29 Jan	0.378	0.83	0.26	150	11.0	14.55	7.7	0.11	13803	1114	786	-21	193	6 9
0.378 0.83 0.33 290 30.0 36.37 12.6 0.09 11294 800 1815 63 419 0.353 0.89 0.34 250 23.0 30.23 12.5 0.12 15058 1271 1532 -5 868 0.378 0.83 0.32 250 23.0 29.88 11.5 0.12 15058 1271 1516 -6 361 Average: -3	13 Feb	0.353	0.89	0.37	290	30.0	37.41	14.2	0.14	17568	1584	1862	-16	0101	-36
0.353 0.89 0.34 250 23.0 30.23 12.5 0.12 15058 1271 1532 -5 868 0.378 0.83 0.32 250 23.0 29.88 11.5 0.12 15058 1271 1516 -6 361 Average: -3	13 Feb	0.378	0.83	0.33	290	30.0	36.37	12.6	0.09	11294	800	1815	63	419	4
0.378 0.83 0.32 250 23.0 29.88 11.5 0.12 15058 1271 1516 -6 361 Average: -3	13 Feb	0.353	0.89	0.34	250	23.0	30.23	12.5	0.12	15058	1271	1532	ŝ	868	-32
۲ Y	13 Feb	0.378	0.83	0.32	250	23.0	29.88	11.5	0.12	15058	1271	1516	φ	361	-72
											Average		1		-57
											9				

* Percent difference from the measured net resistance.



a. Linear scale.

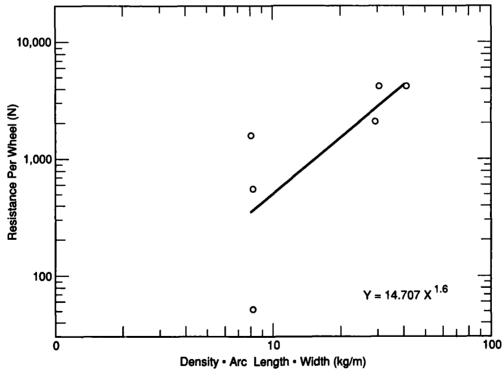
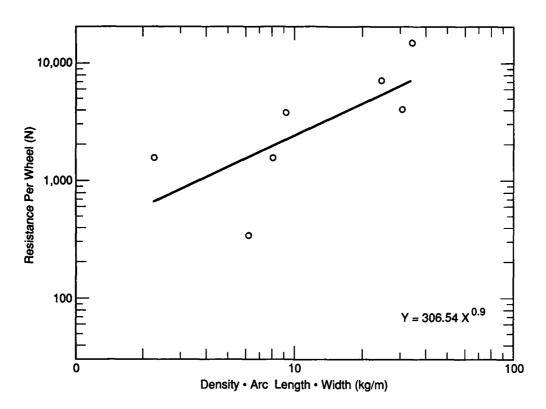
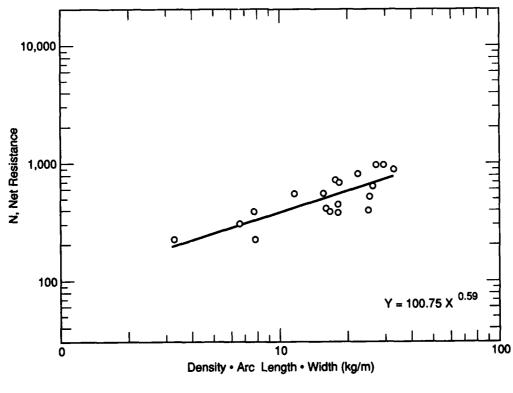

b. Log-log scale.

Figure 6. CIV resistance data.

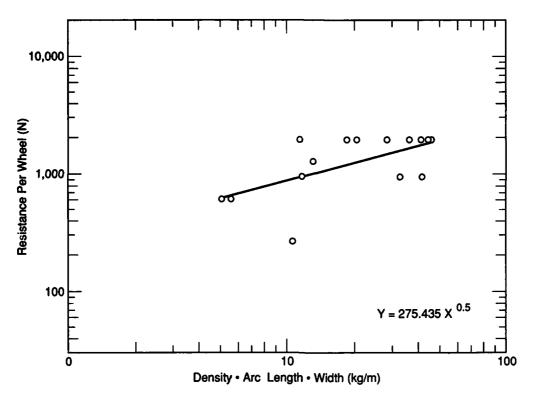

ï

a. SUSV.

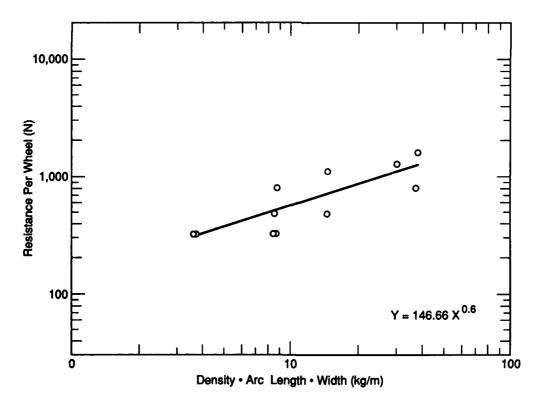


b. M113.

Figure 7. Resistance data for military vehicles.



c. Bradley.



d. HMMWV.

Figure 7 (cont'd). Resistance data for military vehicles.

e. HEMTT.

f. LAV.

Figure 7 (cont'd).

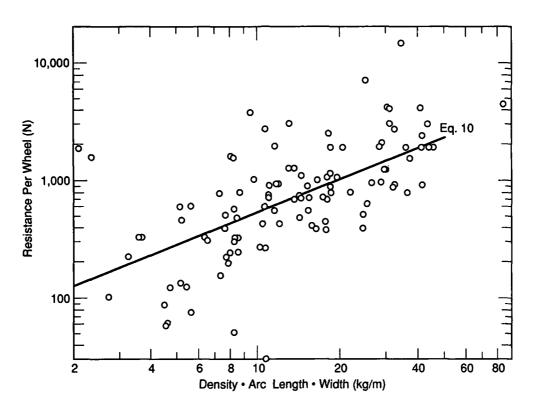


Figure 8. Resistance data for all vehicles.

Table 9. Summary of percent differences between resistance calculations.

	SSA	12.0	Eq	10
	Average	Standard deviation	Average	Standard deviation
susv	-52	-110	102	909
CIV	36	156	60	98
M113	66	296	92	312
Bradley	-81	20	-74	32
HMMWV	22	68	51	80
LAV	-52	36	-3	56
HEMTT	-41	59	-19	63
Avg.	-15	75	30	221
Min.	-8 i	-110	-3	32
Max.	66	296	102	909
Average of absolute values:	50		57	

CONCLUSIONS AND RECOMMENDATIONS

In this study we have developed some empirical equations that further define gross vehicle traction, specifically for conditions of hard-packed snow and for snow over ice.

The sinkage equation used in the SSM2.0 was shown to produce good results and no improvement was ob-

tained by modifying the equation based on field observations of snow compaction.

The data base of resistance measurements for vehicles in snow has been increased and a parameter developed that appears to describe the wheel-or track-snow interaction well. Vehicle-specific empirical analysis produced promising results; however, when all the vehicle data are combined, an adequate predictive relationship is still not obtained. Vehicle motion resistance using SSM2.0 is only predicted to within 50% on average.

The primary problem with resistance analysis seems to be with trailing tires and how their resistance should be handled. The assumption used here that trailing tires produce as much resistance as leading tires needs to be confirmed experimentally. Future shallow snow mobility work should concentrate in this area.

LITERATURE CITED

Abele, G. (1970) Deformation of snow under rigid plates at a constant rate of penetration. USA Cold Regions Research and Engineering Laboratory, Research Report 273.

Blaisdell, G.L. (1983) CRREL instrumented vehicle, hardware and software. USA Cold Regions Research and Engineering Laboratory, Special Report 83-3.

Blaisdell, G.L. and W. Harrison (1981) Winter tire tests: 1980–81. USA Cold Regions Research and Engineering Laboratory, Technical Note (unpublished).

Blaisdell, G.L., P.W. Richmond, S.A. Shoop, C. Green and R.G. Alger (1990) Wheels and tracks in snow: validation study of the CRREL shallow snow mobility model. USA Cold Regions Research and Engineering Laboratory, CRREL Report 90-9.

Green, C.E. and G. L. Blaisdell (in press) U.S. Army wheeled versus tracked vehicle snow mobility program. USA Waterways Experiment Station/USA Cold Regions Research and Engineering Laboratory, Technical Report (Special Publication, Waterways Experiment Station, Vicksburg, Mississippi).

Liston, R.A. (1974) Operation of the M151 1/4 ton truck in shallow snow. USA Cold Regions Research and Engineering Laboratory, Technical Note (unpublished). Mellor, M. (1964) Properties of snow. USA Cold Regions Research and Engineering Laboratory, Cold Regions Science and Engineering Monograph III-A1.

Yong, R.N. and M. Fukue (1977) Performance of snow under confined compression. *Journal of Terramechanics*, **14**(2): 59–82.

APPENDIX A: SHALLOW SNOW MOBILITY MODEL (SSM2.0)

Description

The two principal quantities governing mobility are gross traction T_g and external motion resistance R_s . This model produces estimates of both T_g and R_s and calculates net traction T_n from their difference

$$T_{\rm n} = T_{\rm g} - R_{\rm s} \,. \tag{A1}$$

If the net traction is greater than 0 the vehicle is mobile, otherwise it is immobilized.

Motion resistance (R_s) is the resistance generated by terrain deformation, in our case by snow compaction. Compaction is partially the result of vertical forces (vehicle weight) applied to the snow surface by the tire; however, it takes place along a curved path and, therefore, horizontal forces are also applied. When compaction occurs, it can be witnessed by the presence of a rut in the snow following vehicle passage.

Motion resistance R_s is a function of many parameters. A partial list includes the load, contact pressure, snow strength and depth, and width of the tire or track. During the past 30 years, several resistance models have been proposed in the literature for deformable materials. With the goal of keeping SSM2.0 simple (i.e., a model that has a short list of input parameters that are easily obtained) and allowing it to address a broad range of vehicle and snow conditions, these resistance expressions were scrutinized. The vehicle data required by each of these expressions are similar from model to model, and are readily accessible. The snow data required to process any of these expressions, however, vary considerably. The only model that requires snow data that can be quickly and routinely obtained in the field is that of Liston (1974).

Liston assumes that a hyperbolic relationship exists between compacting pressure and volume. Applying energetics, he then integrates between the initial and final volumes of snow to obtain the work of snow compaction. If no volume change occurs (no sinkage z), no work is done. Finally, the work of compaction is equated to external motion resistance R_s times the horizontal distance traveled.

If we assume that lateral flow of the snow during compaction is insignificant (i.e., compaction is confined to the width of the tire or track), volume change in the snow can be expressed in terms of the sinkage z. Further, if the total mass of the snow does not change during compaction, then initial and final volumes of snow can be related to the initial and final densities of snow. We can then write

$$R_{s} = pbh\rho_{o} \left\{ \left[1/(\rho_{f} - \rho_{o}) \right] \ln \left(\rho_{f}/\rho_{o} \right) - \left(1/\rho_{0} \right) \right\}, \qquad \rho_{o} < \rho_{f} (z > 0)$$

$$R_{s} = 0 \qquad \qquad \rho_{o} = \rho_{f} (z = 0)$$
(A2)

where p = tire inflation pressure

b = maximum tire or track width

- h =snow depth
- ρ = snow density after passage of a given tire

1

- ρ_0 = initial snow density (prior to tire or track passage)
- ρ_f = maximum (final) snow density (after vehicle passage)
- z = sinkage.

Equation A2 is used in SSM2.0 for the calculation of motion resistance attributable to snow compaction.

Driving traction is also a sum of the interaction of many snow and vehicle parameters. Those that were mentioned above for resistance still apply, along with more detailed features of the tire or track (e.g., tread pattern, tire or track "rubber" compound, grouser spacing and height, grouser or tread geometry). The number of traction models proposed in the literature is fewer than is the case for motion resistance. These models seem to fall into two categories, either they are very simplistic, lumping many parameters together into a few constants, or they are exceedingly detailed.

The SSM2.0 uses the Mohr-Coulomb failure criteria relationship obtained by Blaisdell et al. (1990) to determine gross traction

$$T_g = 0.851 \, N^{0.823} \tag{A3}$$

where N is the normal stress under a tire (track) in kilopascals. This equation is based on data from a wide range of vehicles, but was limited to initially undisturbed snow conditions and for tracked vehicles or wheeled vehicles equipped with tires.

The mobility expressions given by eq A1–A3 should be thought of for a single tire or traction element. For a mobility model to be flexible, neither the specific nor general configuration of a vehicle should be limited by the model. Being per tire or per track, the relationships for traction and resistance given here are used on the vehicle's tires or tracks one at a time in SSM2.0 until all of the traction elements have been accounted for. In this way, tires or tracks with different loads, inflation pressures, sizes, configurations (dual or single, driven or free-wheeling), degree of tracking and position on the vehicle are all accommodated for with one set of equations. Placed in a loop in SSM2.0, these expressions are used for each station, and a running sum for the whole vehicle is accumulated to produce a measure of the net performance of the vehicle. A station is defined here as a transverse section of the vehicle including a single axle (single or dual tires) or track loop (i.e., both sides of the vehicle are assumed to be similar).

To apply the traction and resistance equations above to even a single tire or track, it is necessary that we calculate or measure several parameters. The determination of T_g requires only the hard

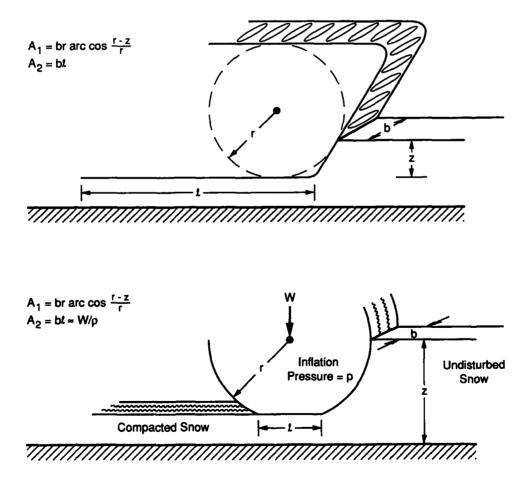


Figure A1. Tire and track dimensions.

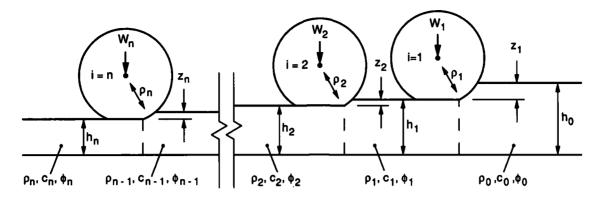
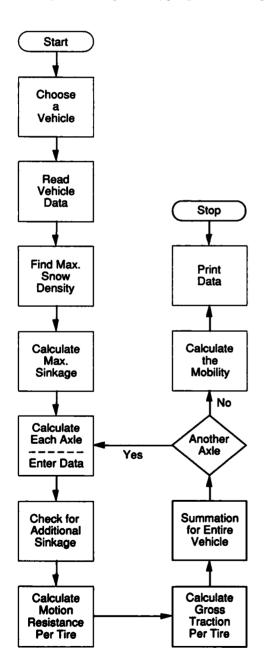



Figure A2. Depiction of progressive change in snow parameters with tire or track passage.

contact area of the tire or track and the vehicle weight. To calculate R_s , initial and final densities associated with the passage of a tire or track are necessary. In the following paragraphs, we first describe how these densities are determined and then proceed to show how the mobility equations are adapted for application to a whole vehicle in SSM2.0.

At each station, the vehicle parameters p, W (for wheeled vehicles only), ℓ (for tracked vehicles only), b and r of the tire or track are required (see Fig A1).

For the snow, it is required that we know the sinkage of each wheel (track). To determine the sinkage, it is assumed that compaction (within the realm of loads that are most common for vehicles) only occurs in the vertical dimension. First, we assume that the maximum sinkage (z_{max}) that occurs as the result of vehicle passage can be calculated from

$$z_{\max} = h_0 \left(1 - \frac{\rho_0}{\rho_f} \right)$$
(A4)

where h_0 = depth of the undisturbed snow

 $\rho_f = \text{maximum or final density (Yong and Fukue 1977) in any rut following vehicle passage.}$

It is reasonable to believe that z_{max} and thus ρ_f will occur under the tire or track applying the largest ground pressure. ρ_f is thus determined in the SSM2.0 based on the highest pressure (p_{max}) exerted by any tire or track on the vehicle. The four major categories are based on experience and are defined in Table 1.

Figure A3. Flow chart for shallow snow mobility model.

Intermediate values of sinkage z for tires or tracks with contact pressures (p) less than p_{max} were determined by applying the ratio of (p/p_{max}) to z_{max} . Since the pressure-sinkage relationship is obviously not linear for compressible snow (less than 500 kg/m³) (Abele 1970), we assume that a power function relates ground pressure to sinkage. SSM2.0 calculates sinkage (referenced to the original snow depth h_0) for a given station from

$$z = z_{\max}(p/p_{\max})^{0.5} \tag{A5}$$

(see Mellor 1964, Fig. III-34).

The sinkage z, at a given station i on the vehicle, can then be calculated from

$$z_{i} = z_{\max} (p / p_{\max})^{0.5} - \sum_{j=1}^{i-1} z_{j} \qquad \rho_{i} > \rho_{i-1'} \rho_{i-2'} \cdots \rho_{o} \qquad (A6)$$
$$z_{i} = 0 \qquad \rho_{i} \le \rho_{i-1'} \rho_{i-2'} \cdots \rho_{o}.$$

To calculate motion resistance R_s we need to know the intermediate values of snow density as compaction progresses from initial density ρ_0 to final density ρ_f . We have already stated that ρ_f is associated with maximum sinkage ($z = z_{max}$) and ρ_0 corresponds to a sinkage of z = 0. Recalling eq A4, and the assumptions that it is based on, we can find the density beneath a particular station *i* from

$$\rho_{i} = \frac{\rho_{i-1}}{1 - (z_{i}/h_{i-1})}$$
(A7)

where ρ_{i-1} and h_{i-1} are the snow density and depth prior to the passage of the tire or track at station *i*, and z_i (eq A7) is the sinkage produced at the current station (Fig. A2).

Lastly, we recognize that not all of the tires or tracks on a particular vehicle may be traveling in undisturbed snow. Some tires or tracks may follow exactly in the path of a preceding element, or may operate in undisturbed snow (e.g., a narrow or wide trailer behind a vehicle) or may encounter both compacted and uncompacted snow (e.g., dual tires following a single tire). We need then to account for the possibility of tires (tracks) having some percentage (α) of their width compacting new snow while the remainder is traveling in a previously created rut. The equations for R_s and T_g are therefore modified to become

$$R_{s_{i}} = \alpha \left[p_{i} b_{i} h_{o} \rho_{o} \left(\frac{1}{\rho_{i} - \rho_{o}} \ln \frac{\rho_{i}}{\rho_{o}} - \frac{1}{\rho_{i}} \right) \right]$$

$$+ (1 - \alpha) \left[pb_{i} h_{i-1} \rho_{i-1} \left(\frac{1}{\rho_{i} - \rho_{i-1}} \ln \frac{\rho_{i}}{\rho_{i-1}} - \frac{1}{\rho_{i}} \right) \right]$$
for $\rho_{i} > \rho_{i-1}$

$$R_{s_{i}} = \alpha \left[p_{i} b_{i} h_{o} \rho_{o} \left(\frac{1}{\rho_{i} - \rho_{o}} \ln \frac{\rho_{i}}{\rho_{o}} - \frac{1}{\rho_{i}} \right) \right]$$
for $\rho_{i} = \rho_{i-1}$

$$R_{s_{i}} = 0$$
for $\rho_{i} < \rho_{i-1}$

$$T_{g} = 0.851 N^{0.823}.$$
(A9)

Equations A8 and A9 provide the essence of the SSM2.0. These equations are executed for each station of the vehicle and a running sum for traction and resistance accumulated. The ultimate ability of the vehicle to move (total net traction T_n) is then determined from

$$T_{n} = \sum_{i=1}^{n} T_{g_{i}} - R_{s_{i}}$$
(A10)

where *n* is the total number of stations on the vehicle. If T_n is positive, the vehicle is mobile and has the capacity to accelerate, climb hills or pull a payload in proportion with the magnitude of T_n . A value of 0 indicates impending immobilization, and a negative value of T_n predicts a definite no-go situation. A copy of the SSM2.0, in HP Basic computer code follows, along with the output from sample runs, and a flow chart is provided in Figure A3. Vehicle data for the SSM2.0 is in Table A1.

Table A1. Vehicle data for SSM2.0.

CIV, 179 kPa WHEELED GVW = 24696.4 N MAXIMUM GROUND (INFLATION) PRESSURE 179.30 kPa AVERAGE HARD SURFACE CONTACT AREA 0.028 m^2

STATION	RADIUS (cm)	WIDTH (cm)	WEIGHT PER WHEEL (N)		DRIVEN		NEW SNOW PERCENT
1 2	35.6	25.4	6174.1	179.3	Y	N	100
	35.6	25.4	6174.1	179.3	N	N	0

CIV, 103 kPa WHEELED GVW = 24696.4 N MAXIMUM GROUND (INFLATION) PRESSURE 110.30 kPa AVERAGE HARD SURFACE CONTACT AREA 0.0345 m²

STATION	RADIUS (cm)	WIDTH (cm)	WEIGHT PER WHEEL (N)	TIRE PRES. (kPa)	DRIVEN		NEW SNOW PERCENT
1 2	34.9	26.7	6174.1	110.3	Y	N	100
	34.9	26.7	6174.1	110.3	N	N	0

HEMIT, 207/276 kPa WHEELED GVW = 268560.1 NMAXIMUM GROUND (INFLATION) PRESSURE 275.80 kPa AVERAGE HARD SURFACE CONTACT AREA 0.149 m²

STATION	RADIUS (cm)	WIDTH (cm)	WEIGHT PER WHEEL (N)	TIRE PRES. (kPa)	DRIVEN	DUALS	NEW SNOW PERCENT
1	61.7	46.5	31004.0	241.3	Y	N	100
2	61.7	46.5	31459.9	241.3	Y	N	0
3	61.7	47.5	35785.8	275.8	Y	N	0
4	61.7	47.5	36030.4	275.8	Y	N	0

Table A1 (cont'd). Vehicle data for SSM2.0.

HEMIT, 138/207 kPa WHEELED GVW = 268560.1 N MAXIMUM GROUND (INFLATION) PRESSURE 206.80 kPa AVERAGE HARD SURFACE CONTACT AREA 0.171 m²

STATION	RADIUS (cm)	WIDTH (cm)	WEIGHT PER WHEEL (N)	TIRE PRES. (kPa)	DRIVEN	DUALS	NEW SNOW PERCENT
1	58.9	48.9	31004.0	137.9	Y	N	100
2	58.9	48.9	31459.9	137.9	Y	N	0
3	58.9	48.3	35785.8	206.8	Y	N	0
4	58.9	48.3	36030.4	206.8	Y	N	0

HYMWV, 138/152 kPa WHEELED GVW = 33450.5 N MAXIMUM GROUND (INFLATION) PRESSURE 151.70 kPa AVERAGE HARD SURFACE CONTACT AREA 0.074 m²

STATION	RADIUS (cm)	WIDTH (cm)	WEIGHT PER WHEEL (N)	TIRE PRES. (kPa)	DRIVEN		NEW SNOW PERCENT
1 2	42.9	32.0	7228.3	137.9	Y	N	100
	42.9	33.0	9496.9	151.7	Y	N	0

LAV, (12.5X20) 207 kPa WHEELED GVW = 125483.7 N MAXIMUM GROUND (INFLATION) PRESSURE 206.80 kPa AVERAGE HARD SURFACE CONTACT AREA 0.100 m²

STATION	RADIUS (cm)	WIDTH (cm)	WEIGHT PER WHEEL (N)	TIRE PRES. (kPa)	DRIVEN		NEW SNOW PERCENT
1	44.5	35.3	16102.5	206.8	Y	N	100
2	44.5	35.3	17281.3	206.8	Y	N	0
3	44.5	35.3	14501.1	206.8	Y	N	0
4	44.5	35.3	14857.0	206.8	Y	N	0

LAV, (12.5X20) 103 kPa WHEELED GVW = 125483.7 N MAXIMUM GROUND (INFLATION) PRESSURE 103.40 kPa AVERAGE HARD SURFACE CONTACT AREA 0.141 m²

STATION	RADIUS (cm)	WIDTH (cm)	WEIGHT PER WHEEL (N)	TIRE PRES. (kPa)	DRIVEN	DUALS	NEW SNOW PERCENT
1	41.4	37.8	16102.5	103.4	Y	N	100
2	41.4	37.8	17281.3	103.4	Y	N	0
3	41.4	37.8	14501.1	103.4	Y	N	0
4	41.4	37.8	14857.0	103.4	Y	N	0

LAV, (11X16) 289 kPa WHEELED GVW = 119634.3 N MAXIMUM GROUND (INFLATION) PRESSURE 289.60 kPa AVERAGE HARD SURFACE CONTACT AREA 0.058 m²

			WEIGHT PER	TIRE			NEW SNOW
STATION	RADIUS (cm)	WIDTH (cm)	WHEEL (N)	PRES. (kPa)	DRIVEN	DUALS	PERCENT
							100
1	43.4	31.4	15346.3	289.6	¥	N	100
2	43.4	31.4	16480.6	289.6	Y	N	0
3	43.4	31.4	13822.8	289.6	Y	N	0
4	43.4	31.4	14167.5	289.6	Y	N	0

LAV, (11X16) 165 kPa WHEELED GVW = 119634.3 N MAXIMUM GROUND (INFLATION) PRESSURE 165.50 kPa AVERAGE HARD SURFACE CONTACT AREA 0.102 m²

			WEIGHT PER TIRE			NEW SNOW		
STATION	RADIUS (cm)	WIDTH (cm)	WHEEL (N)	PRES. (kPa)	DRIVEN	DUALS	PERCENT	
1	41.7	33.2	15346.3	165.5	Y	N	100	
2	41.7	33.2	16480.6	165.5	Y	N	0	
3	41.7	33.2	13822.8	165.5	Y	N	0	
4	41.7	33.2	14167.5	165.5	Y	N	0	

SUSV TRACKED GVW = 61340.7 N MAXIMUM GROUND (INFLATION) PRESSURE 13.20 kPa AVERAGE HARD SURFACE CONTACT AREA 1.180 m²

STATION	RADIUS (cm)	WIDIH (cm)	WEIGHT PER TRACK (N)	TRACK LENGTH (cm)	NEW SNOW PERCENT
1 2	26.40 26.40	60.96 60.96	15390.80 15279.60		100.00

M113 TRACKED GVW = 104087.9 N MAXIMUM GROUND (INFLATION) PRESSURE 51.02 kPa AVERAGE HARD SURFACE CONTACT AREA 1.020 m²

STATION	RADIUS (cm)	WIDIH (cm)	WEIGHT PER TRACK (N)	TRACK LENGTH (cm)	NEW SNOW PERCENT
1	36.80	38.10	52043.50	266.70	100.00

BRADLEY TRACKED

GW = 223299.6 N MAXIMUM GROUND (INFLATION) PRESSURE 53.09 kPa AVERAGE HARD SURFACE CONTACT AREA 2.090 m^2

STATION	RADIUS (cm)	WIDIH (cm)	WEIGHT PER TRACK (N)	TRACK LENGIH (cm)	NEW SNOW PERCENT
1	35.60	53.34	111649.75	391.2	0 100.00

5-ION, 207 kPa WHEELED GVW = 105778.2 N MAXIMUM GROUND (INFLATION) PRESSURE 206.80 kPa AVERAGE HARD SURFACE CONTACT AREA 0.171 m²

			WEIGHT PER				NEW SNOW
STATION	RADIUS (cm)	WIDTH (cm)	WHEEL (N)	PRES. (kPa)	DRIVEN	DUALS	PERCENT
1	55.4	40.8	23842.4	206.8	Y	N	100
2	55.4	39.2	14523.4	206.8	Y	N	0
3	55.4	39.2	14523.4	206.8	Y	N	0

Computer code

```
18 !
20 1
      SSM/2.01
30 1
                    (trig tr sinkage and snow density function of cont. pr.)
                    (manual input of all vehicle and snow data)
40 1
50 1
                    (Liston's resis; best-fit power curve for traction)
60 I
70 net=0
80 RR=0
90 DB=0
100 90=0
110 pl=0
120 z=0
130 sumz=0
140 DISP "vehicle?"
150 INPUT Veh$
160 DISP "wheeled (w) or tracked (t)?"
170 INPUT type$
180 DISP "highest station ground pressure (kPa)="
190 INPUT pmax
200 pmax=pmax=0.1 ! convert from kPa to N/cm^2
210 1
220 ! ** establish final density based on largest footprint pressure **
230 sigmaf=0.5
240 IF pmax>21 THEN sigmaf=0.55
250 IF pmax>35 THEN sigmaf=0.6
260 IF pmax>70 THEN sigmaf=0.65
270 !
280 DISP "snow depth (cm) ="
290 INPUT h0
300 DISP "snow density (g/cm^3) ="
310 INPUT sigma0
320 sigmal=sigma?
330 sigma2=sigma0
340 h1=h0
350 (
360 PRINT "Vehicle: ";Veh$
370 PRINT *
380 PRINT USING formati ; "initial state: snow depth =";h0;" cm"
390 PRINT USING format2 ; "
                                           snow density ="isigma0;" g/cm^3"
400 1
410
      _zmax=h0+(1-sigma0/sigmaf) ! calculate maximum sinkage
420 IF zmax<0 THEN zmax=0
430 !
440 RAD ! compute in radians units for trig functions
450 1
460 1
470 ! ** enter vehicle data one tire station at a time **
480 DISP "how many wheel or track stations on each side of the vehicle?"
490 INPUT N
500
510 FOR I=1 TO N
520 DISP ""
530 DISP "station ";I
540 DISP "wheel radius or approx radius of compacting portion of track cm) ="
550 INPUT rada
560 DISP "single time on track width at this location (cm) ="
570 INPUT wid
580 DISP "single tire or track load (N) ="
590 INPUT loa
```

600 DISP "contact area (m^2) =" 610 INPUT area 620 IF type\$="t" fPEN GOTO skip1 630 DISP "inflation pressure (kPa) =" 640 INPUT pres 650 pres=pres+0.1 ! convert from kPa to N/cm² 660 GOTO skip2 670 skip1: pres=loa/area/10000 + convert from N/m² to N/cm² 680 690 skip2: DISP "driven?" 700 INPUT r\$ 710 IF type\$="t" THEN GOTO skip3 720 DISP "duals ?" 730 INPUT R\$ 740 IF R\$<>"y" AND R\$<>"Y" THEN GOTO 780 750 wid=wid+2 760 loa=loa+2 770 ! 780 skip3: DISP "percent of width compacting virgin snow (%) =" 790 INPUT pront 800 ! 810 IF pres>pl AND sigma2<sigmaf AND h0>0 THEN GOTO 870 ! added sink. here? 820 z=0 830 tempres=0 840 IF pront>0 AND sigma2>sigma0 THEN GOTO 960 850 resis=0 860 GOTO 1019 870 z=(pres/pmax)^0.5*zmax-sumz ! calculate additional sinkage this station 880 ! 890 ! ** set rut bottom values ** 900 h2=h1-z 910 sigma2=sigma1/(1-z/h1) 920 1 930 1 ++ calculate resistance parameter ++ 940 tempres=1/(sigma2-sigma1)+LOG(sigma2/sigma1)-1/sigma2 ! in rut 950 1 960 ! ** calculate motion resistance at this station ** 970 resis=pront/100+(pres+wid+h0+sigma0) ! in virgin snow 980 resis=resis+(1/(sigma2-sigma0)+LOG(sigma2/sigma0)-1/sigma2) !virgin snow 990 moreres=tempres*(1-prcnt/100)*(pres*wid*hl*sigmal) ! in rut 1000 resis=resis+moreres 1010 1 ! ** calculate gross traction at this station ** 1020 1030 trac=0.851*(loa/area/1000)^0.823 ! in kPa 1040 trac=trac+area+1000 ! in N 1050 1060 IF rs="n" OR rs="N" THEN trac=0 ! no traction if not driven 1070 1 1080 ! ** double to account for both sides of the vehicle ** 1090 arrea=2+area 1100 trac=2+trac 1110 resis=2+resis 1120 1 1130 ! ++ print output for this station ** 1140 PRINT " 1150 PRINT "station ":I 1160 PRINT USING format1 ; " additional sinkage =";z;" cm" 1170 PRINT USING formatl ; " total area=";arrea;" m^2" 1180 PRINT USING format1 : " snow resis =";resis;" N" 1190 PRINT USING format1 : " snow trac ="stracs" N"

```
1200
1210 ! ** running summation for whole vehicle **
1220 RR=RR+resis ! sum for whole vehicle
1230 DB=DB+trac ! sum for whole vehicle
1240 net=trac-resis | calculate net traction for individual station
1250 PRINT USING format1 ; " net snow traction for station = ";net;" N"
1260 PRINT USING format1 ; "
                              rut bottom: depth#";h2;" cm"
1270 PRINT USING format2 ; "
                                             density="ssigma2;" g/cm^3"
1280 go=go+net ! sum net traction for vehicle
1290 1
1300 | ** save last station values for next iteration **
1310 IF pres>pl THEN pl=pres
1320 sigmal=sigma2
1330 h1=h2
1340 sumz=sumz+z
1350 !
1360 NEXT I
1370 !
1380 ! ++ calculate mobility in English units for output ++
1390 eRR=RR/4.448222
1400 eDB=DB/4.448222
1410 ego=go/4.448222
1420 ez=sumz/2.54
1430 !
1440 ! ** print out whole vehicle results **
1450 PRINT "
1460 PRINT * *
1470 PRINT USING format1 ; " total sinkage for vehicle= ";sumz;" cm (";ez;" in
)"
1480 PRINT USING format1 ; " total snown resistance = ";RR;" N (";eRR;" 1b)"
1490 PRINT USING format1 ; " total snow traction =";DB;" N (";eDB;" 1b)"
1500 PRINT " "
1510 PRINT USING format1 ; " net traction for vehicle = ";go;" N (";ego;" 1b)"
1520 PRINT "
1530 PRINT " "
1540 PRINT " "
1550 !
1560 format1: IMAGE 3(K,DDDDDD.DD)
1570 format2: IMAGE 3(K,DZ.D000)
1580
1590 END
```

```
Vehicle: HMMWV
initial state: snow depth = 5.00 cm
               snow density = 0.5500 g/cm^3
station 1
 additional sinkage =
                         0.00 cm
 total area= 0.1480 m^2
 snow resis = 0.00 N
 snow trac = 5467.65 N
net snow traction for station = 5467.65 N
   rut bottom: depth= 0.00 cm
                 density= 0.5500 g/cm^3
station 2
 additional sinkage =
                        0.00 cm
 total area= 0.1480 m^2
 snow resis = 0.00 N
 snow trac = 6844.84 N
net snow traction for station = 6844.84 N
    rut bottom: depth= 0.00 cm
                density= 0.5500 g/cm^3
total sinkage for vehicle= 0.00 cm ( 0.00 i
total snown resistance = 0.00 N ( 0.00 lb)
                              0.00 cm ( 0.00 in)
 total snow traction = 12312.49 N ( 2767.96 1b)
 net traction for vehicle = 12312.49 N ( 2767.96 1b)
Vehicle: HEMTT (241/276)
                             25.00 cm
initial state: snow depth =
               snow density = 0.2200 g/cm^3
station T
  additional sinkage = 14.03 cm
  total area= 0.2980 m^2
  snow resis = 11515.55 N
  snow trac = 20514.00 N
 net snow traction for station = 8998.45 N
     rut bottom: depth≠ 10.97 cm
                 density= 0.5014 g/cm^3
station 2
                         0.00 cm
  additional sinkage =
  total area= 0.2980 m^2
  snow resis = 0.00 N
  snow trac = 20761.93 N
 net snow traction for station = 20761.93 N
     rut bottom: depth= 10.97 cm
                 density= 0.5014 g/cm^3
station 3
  additional sinkage =
                          .97 cm
  total area= 0.2980 m^2
  snow resis = 1230.94 N
  snow trac = 23084.34 N
 net snow traction for station = 21853.40 N
    rut bottom: depth= 10.00 cm
                 density= 0.5500 g/cm^3
```

```
Vehicle: HEMIT (241/276) (cont'd).
initial state: snow depth = 25.00 cm
               snow density \approx 0.2200 g/cm<sup>3</sup>
station 4
 additional sinkage =
                       0.00 cm
 total area≈ 0.2980 m^2
               0.00 N
 snow resis =
 snow trac = 23214.12 N
 net snow traction for station = 23214.12 N
    rut bottom: depth= 10.00 cm
                density= 0.5500 g/cm^3
                             15.00 cm ( 5.91 in)
 total sinkage for vehicle=
 total snown resistance = 12746.49 N ( 2865.52 lb)
 total snow traction = 87574.39 N ( 19687.50 1b)
 net traction for vehicle = 74827.90 N ( 16821.98 lb)
 Vehicle: SUSV
 initial state: snow depth =
                              9.00 cm
                snow density = 0.1480 g/cm^3
 station 1
   additional sinkage = 6.30 cm
   total area= 2.36 m<sup>2</sup>
                309.13 N
   snow resis =
  snow trac = 16626.42 N
  net snow traction for station = 16317.29 N
    rut bottom: depth= 2.70 cm
                 density= 0.4930 g/cm^3
 station 2
   additional sinkage = 0.00 cm
   total area= 2.36 m^2
                  0.00 N
  snow resis =
  snow trac = 16527.49 N
  net snow traction for station = 15527.49 N
     rut bottom: depth= 2.70 cm
                  density= 0.4930 g/cm^3
  total sinkage for vehicle=
                              6.30 cm ( 2.48 in)
  total snown resistance = 309.13 N ( 59.49 lb)
  total snow traction = 33153.90 N ( 7453.29 lb)
  net traction for vehicle = 32844.78 N ( 7383.80 lb)
```

APPENDIX B: TIRE TREAD FOOTPRINTS FOR TRACTION ANALYSIS

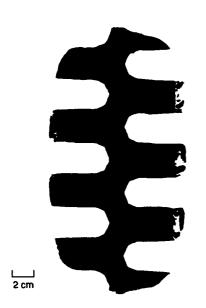


Figure B1. Tire B (NDCC 700-16LW; bias ply; 234-kPa inflation pressure; 0.0238-m² contact area).

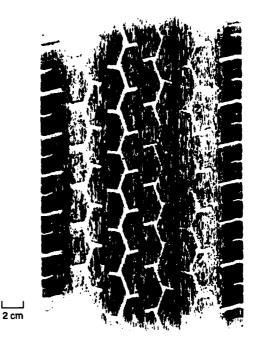


Figure B3. Tire a (buffed Michelin LT 235XCH4; radial, all-season; 179-kPa inflation pressure; 0.0443-m² contact area).

Figure B2. Tire A (Michelin LT 235XCH4; radial, all-season; 179-kPa inflation pressure; 0.0412-m² contact area).

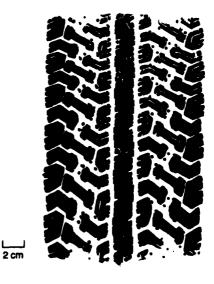
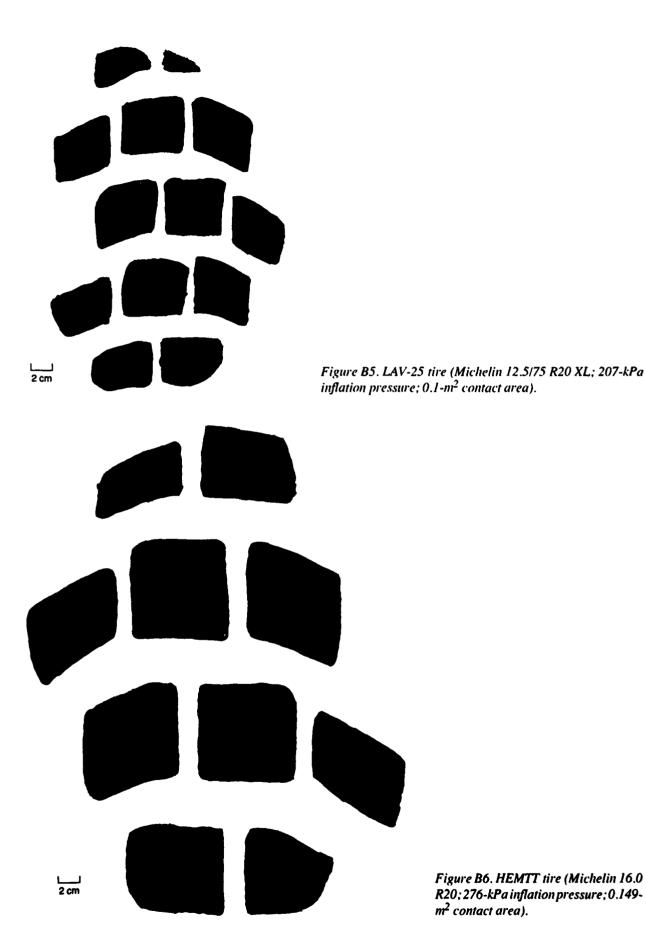



Figure B4. Tire E (Goodyear Tiempo P225/75R15; radial, all-season; 179kPa inflation pressure; 0.028-m² contact area).

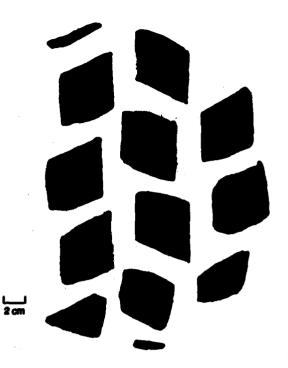


Figure B7. HMMWV tire (Michelin 37.00 X12.5 R 16.5L; 241-kPa inflation pressure; 0.149-m² contact area).

REPORT DC	CUMENTATION P	AGE	Form Approved OMB No. 0704-0188
maintaining the data needed, and completing and re	wiewing the collection of information. Send commen shington Headquarters Services, Directorate for Info	ts regarding this burden estim comation Operations and Repo	Instructions, searching existing data sources, gathering and nate or any other aspect of this collection of information, orts, 1215 Jefferson Davis Highway, Suite 1204, Arlington,
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE December 1990	3. REPORT TY	PE AND DATES COVERED
4. TITLE AND SUBTITLE	L		5. FUNDING NUMBERS
Wheels and Tracks in Snow: Se Shallow Snow Mobility Model 6. AUTHORS	cond Validation Study of the CRR	.EL	PE: 6.27.8A PR: 4A762784AT42 TA: CS
Paul W. Richmond, George L. 1	Blaisdell and Charles E. Green		WU: 040
7. PERFORMING ORGANIZATION NAME(S	6) AND ADDRESS(ES) arch and Engineering Laboratory		8. PERFORMING ORGANIZATION REPORT NUMBER
72 Lyme Road Hanover, New Hampshire 0375			CRREL Report 90-13
9. SPONSORING/MONITORING AGENCY N Office of the Chief of Engineers Washington, D.C. 20314-1000			10. SPONSORING/MONITORING AGENCY REPORT NUMBER
11. SUPPLEMENTARY NOTES			•
12a. DISTRIBUTION/AVAILABILITY STATE			12b. DISTRIBUTION CODE
Approved for public release; dis	stribution is unlimited.		
Available from NTIS, Springfie	ld, Virginia 22161		
13. ABSTRACT (Maximum 200 words)			.
Research Center, Houghton, Mi and the CRREL instrumented ver- these data are compared with are observed. Resistance data obtai empirical equation based on this	chigan. Traction data (1989) for the ehicle, are presented for hard-packed in equation for undisturbed snow over ined in 1988 and in 1989 are evalue s parameter and data from all the vel	HMMWV, HEMT ed snow and for und ver soil or packed sn ated based on a con hicles, including the	s of 1988 and 1989 at the Keweenaw T, SUSV and M60 military vehicles, listurbed snow overlaying ice. When now, slight reductions in traction are nbined vehicle-snow parameter. An c CRREL instrumented vehicle using ance equation are compared with the

several different width tires, is developed. The resistance data and the empirical resistance equation are compared with the CRREL shallow snow mobility model (SSM2.0). The SSM2.0 predicted resistance is within 50% on average. The empirically derived resistance equation is slightly worse. The report recommends further research on vehicle motion resistance in snow.

14. SUBJECT TERMS Computer modeling	Mobility predictions	Snow strength	15. NUMBER OF PAGES 45
Drawbar pull Instrumented vehicles	Motion resistance Snow	Vehicle traction Vehicles	16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT
UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED	UL
			Othersdand From 000 (Days 0.00

NSN 7540-01-280-5500

☆ U. S. GOVERNMENT PRINTING OFFICE: 1991--500-063--22063

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. 239-18 298-102