
NASA Contractor Report 187501

ICASE Report No. 91-7

ICASE
0

N SHARED VERSUS DISTRIBUTED MEMORY
MULTIPROCESSORS

N

Harry F. Jordan

12i91
Contract No. NAS1-18605January 1991 E

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
H:ampton, Virginia 23665-5225

Operated by the Universities Space Research Association

NASA
!rncp AdminicImaion
Lanqley fleitearch Center
t lirnpfron, Virqnii 236 ,5- 5225

Approv.d for pubIc releIe;
Am_ _ _ _ _ d 3 0 3

Shared Versus Distributed Memory N1 tlt iproces!sors*

Harry F. Jordan

A13S TR ACT
The (.ue11stion of v~ heiher multiprocessors should hawe shared or dis.trimuted meieo-%

ha~ trr ~ ~g''~ de~i c4~accio;, S Cm teaicners argue S trongly tor Outiding (li15
tri huted memorv mi ach ines. wxhile others ar-tue jULst as strongly for programming shared

meornmltiprocessors. A orea-, deal of research IS underv. av on both ty pes of paralol
sytm.This paper ptits special emphasis on systems wkith a very large 1nmber of pro-

fo~rstr c~omputation iniensive tasks and considers research aind implementation1
trcnds. It appears that the two types of systemn \&II illkelv converge to a common form for

Ac cession PorI

NTIS L

Dji.' . /F rJ

Ibi Im %rk as siipoa rtd in parl b Iw ie Natrioti a I A cro[IAuucs and Spatc Admni ist rat ion under NASA com tt IN AS 1 1"1
'hilc tire author si4as in reodidecc at I(ASF. Maid Stop 132C, NASA Langley Research Center, Hampton, '%A 23665, atit in part h

the National S~icn..I tounidatton uinder ('iant NSF-G97- 171173.

What Are They?

The generic term. parallel processor covers a wide variety of architectures, including
SIMD machines, data flow computers and systolic arrays. The issue of shared versus dis-
tributed memory arises specifically in connection with MIMD computers or multiproces-
sors. These are sometimes referred to simply as "parallel" computers to distinguish them
from vector computers, but we prefer to be precise and call them multiprocessors to
avoid confusion with the generic use of the former word. Some similar sounding but dif-
ferent terms are often used in a confusing way. Multiprocessors are computers capable
of running multiple instruction streams simultaneously to cooperatively execute a single
program. Multiprogramming is the sharing of a computer by many independent jobs.
They interact only through their requests for the same resource. Multiprocessors can be
used to multiprogram single stream (sequential) programs. A process is a dynamic
instance of an instruction stream. it is a conbitnation of code and process state, e.g. pro-
gram counter and status word. Processes are also called tasks, threads, or virtual proces-
sors. The term Multiprocessing can be ambiguous It is either:

a) Prinnig a "' (perhaps sequential) on a multiprocessor or
b) Running a program which consists of several cooperating processes.

The interest here is in :hc second meaning of multiprocessing. We ,.'nt to gain high
speed in scientific computation by breaking the computation into pieces which are
independent enough to be performed in parallel using several processes running on
separate hardware units but cooperative enough that they solve a single problem.

There are two basic types of MIMD or multiprocessor architectures, commonly
called shared memory and distributed memory multiprocessors. Figure 1 shows block
diagrams of these two types, which are distinguished by the way in which values com-
puted by one processor reach another processor. Since architectures may have mixtures
of shared and private memories, we use the term "fragmented" to indicate lack of any

Shared Memory' Dispirltod cessoi-y

Multiprocessor Muhiprocessor

CP Mw~c CPMwth CU M

Dance Hall Boudoir
Architecture Architecture

Figure 1: Shared and distributed memory multiprocessors.

shared memory. Mixing memories private to specific processors with shared memory in
a system may well yield a better architecture, but the issues can be discussed easily with
respect to the two extremes: fully shared memory and fragmented memory.

A few characteristics are commonly used to distinguish shared and fragmented
memory multiprocessors. Starting with shared memory machines, communication of
data values between processors is by way of memory, supported by hardware in the
memory interface. Interfacing many processors may lead to long and variable memory
latency. Contributing to the latency is the fact that collisions are possible among refer-
ences to memory. As in uniprocessor systems with memory module interleaving, ran-
domization of requests may be used to reduce collisions. Distinguishing characteristics
of fragmented memory rest on the fact that communication is done in software by data
transmission instructions, so that the machine level instruction set has send/receive
instructions as well as read/write. The long and variable latency of the interconnection
network is not associated with the memory and may be masked by software which
assembles and transmits long messages. Collisions of long messages are not easily
managed by randomization, so careful management of communicat;ons is used instead.
The key question of how data values produced by one processor reach another to be used
by it as operands is illustrated in Fig. 2.

The organizations of Fig. I and the transmission mechanisms of Fig. 2 lead to a
broad brush characterization of the differences in the appearance of the two typZs of
architecture to a user. A shared memory multiprocessor supports communication of data

CU write(loc. A) read(loc. A) C

Sharedt Memory[

Switch

a) Shared Memory Communication

M send(proc. Y) receive(proc. X) CP M

x Y7
Communications

Switch

b) Fragmented Memory Communication

Figure 2: Communication of data in multiprocessors.

2

entirely by hardware in the memory interface. It requires short and uniform latency for
access to any memory cell. The collisions which are inevitable when multiple processors
access memory can be reduced by randomizing the references, say by memory module
interleaving. A fragmented memory switching network involves software in data com-
itiunication by way of explicit send and receive instructions. Data items are packed into
large messages to mask long and variable latency. Since messages are long, communica-
tions scheduling instead of randomization is used to reduce collisions. To move an inter-
mediate datum from its producer to its consumer a fragmented memory machine ideally
sends it to the consumer as soon as it is produced, while a shared memory n-machine stcre,
it in memory to be picked up by the consumer when it is needed.

It can be seen from Fig. 1 that the switching network which communicates data
among processors occupies two different positions with respect to the classical, von Neu-
mann, single processor architecture. In shared memory, it occupies a position analogous
to that of the memory bus in a classical architecture. In the fragmented memory case, it
is independent of the processor to memory connection and more analogous to an I/O
interface. The use of send and receive instructions in the fragmented memory case also
contributes to the similarity to an 1/O interface. This memory bus versus 1/O channel
nature of the position of the switching network underlies the naive characterization of the
differences between the two types of network. A processor to memory interconnection
network involves one woid transfers with reliable transmission. The address (name) of
the datum controls a circuit switched connection with uniform access time to any loca-
tion. Since a read has no knowledge of a previous write, explicit synchronization is
needed to control data sharing. In contrast, a processor to processor interconnection net-
work supports large block transfers and error control protocols. Message switching
routes the information through the network on the basis of the receiving processor's
name. Delivery time varies with the source and destination pair, and the existence of a
message at the receiver provides an implicit form of synchronization.

From the user's perspective, there are two distinct naive programming models for
the two multiprocessor architectures. A fragmented memory machine requires mapping
data structures across processors and the communication of intermediate results using
send and receive. The data mapping must be available in a form which allows each pro-
cessor to determine the destinations for intermediate iesults which it produces. Large
message overhead encourages the user to gather many data items for the same destination
into long messages before transmission. If many processors transmit simultaneously, the
source/destination pairs should be disjoint and not cause congestion on specific paths in
the network. The user of a shared memory machine sees a shared address space and
explicit synchronization instructions to maintain consistency of shared data. Synchroni-
zation can be based on program control structures or associated with the data whose shar-
ing is being synchronized. There is no reasen to aggregate intermediate results unless
synchronization overhead is unusually large. Large synchronization overhead leads to a
programming style which uses one synchronization to satisfy many write before read
dependencies at once. Better performance can result from avoiding memory "hot spots"
by randomizing references so that no specific memory module is referenced simultane-
ously by many processors.

3

Why it Isn't That Simple

The naive views of the hardware characteristics and programming styles for shared
and fragmented memory multiprocessors just presented are oversimplified for several
reasons. First, as already mentioned, shared and private memories can be mixed in a sin-
gle architecture, as shown in Fig. 3. This corresponds to real aspects of multiprocessor
programs, where some data is conceptually private to the processor doing an individual
piece of work. The program, while normally shared by processors, is read only for each
and should be placed in a private memory, if only for caching purposes. The stack gen-
erated by most compilers normally contains only private data and need not be in shared
memory. In addition, analysis done by many parallel compilers identifies some shared
data as read only and thus cachable in private memory. Some multiprocessors share
memories among some, but not all, processors. Examples are the PAX[l] and
DIRMU{21 computers. These machines move intermediate data by having its producer
place it in the correct memory and its consumer retrieve it from there. The transmission
may be assisted by other processors if producer and consumer do not share a memory.

Not only may a multiprocessor mix shared and private memories, but the same
memory structure may have different appearances when viewed at different system lev-
els. An important early multiprocessor was Cm*13], built at Carnegie Mellon University.
An abbreviated block diagram of the architecture is shown in Fig. 4. Processors were
attached by way of a local bus to memories and possibly 11O devices to form computer

T T . . T

K K . . K

S (high concurrency)

P - M .local P-M .local F -M .local

S (high concurrency)

M M M

Notation:
P -processor M - memory
S - switch K - controller
T - transducer (I/O device)

Figure 3. Sliared plus private memory architecture.

4

to other K.map

K .map

Cluster bus

S S

M K P (PDP- 11) M K P (PDP-1)

T T

Figure 4: Architecture of the Cm* multiprocessor.

modules. Several computer modules were linked into a cluster by a cluster bus. Proces-
sors could access the memory of other processors using the cluster bus. Proce,-rs in
different clusters communicated through interconnected mapping controllers, called
K.maps. The name K.map and some of the behavior of Cm* are easier to understand in
light of the fact that the PDP-11 had a very small physical address, so that address map-
ping was cssential to accessing any large physical memory, shared or not.

Not only does Cm* illustrate a mixture of shared and fragmented memory ideas, but
there are three answers to the question of whether Cm* is a shared or fragmented
memory multiprocessor. At the microcode level in the K.map, there are explicit send and
receive instructions and message passing software, thus making the Cm* appear to be a
fragmented me~noi machine. At the PDP-11 instruction set level, the machine has
shared memory. There were no send and receive instructions, and any memory cell
could be accessed by any processor. The page containing the memory address hat; to be
mapped into the processor's address space, but as mentioned, this was a standard
mechanism for the PDP- 11. A third answer to the question appeared at the level of pro-
grams running under an operating system. Two operating systems were built for Cm*.
The processes which these operating systems supported were not allowed to share any
memory. They communicated through operating system calls to pass messages between
processes. Thus at this level Cm* became a fragmented memory machine once more.

Taking the attitude that a machine architecture is characterized by its native instruc-
tion set, we should call Cm* a shared memory machine. A litmus test for a fragmented
memory machine could be the existence of distinct send and receive instructions for data
sharing in the processor instruction set. The Cm* is an example of shared memory
machines with non-uniform memory access time, sometimes called NUMA machines. If
access to a processor's local memory took one time unit, then access via the cluster bus
required about three units and access to memory in another cluster took about 20 units.
Writing programs under either operating system followed the programming paradigm for

d Hmw a aminmimlna li q H H I I - I: 5

fragmented memory multiprocessors, with explicit seind and receive of shared data, but
performance concerns favored large granularity cooperati,,, less strongly than in a truly
fragmented memory machine.

A more recent NUMA shared memory multiprocessor is the BBN Butterfly[41.
References to non-local memory take about three times as long as local references. The
Butterfly processor to memory interconnection network also contradicts the naive charac-
terization of shared memory switches. The network connecting N processors to N
memories is a multistage network with log 2N stages, and thus (N/2)log 2N individual
links. It thus has a potentially high concurrency, although collisions are possible when
two memory references require the same link. Read and write data are sent through the
network as messages with a self routing header which establishes a circuit over which the
data bits follow. Messages are pipelined a few bits at a time, and long data packets of
many words can use the circuit, once established. Thus, although single word transfers
are the norm, higher bandwidths can be achieved by packing data into a multiword
transmission. Messages attempting to reference a memory which is in use, or colliding
with others in the switch, fail and are retried by the processor.

Finally, the naive view of the difference between implicit synchronization in frag-
mented memory and the need for explicit synchronization with shared memory should be
challenged. A shared memory synchronization based on data rather than control struc-
tures is that of asynchronous variables. Asynchronous variables have a state as well as a
value. The state has two values, usually called full and empty, which control access to
the variable by two operations, produce and consume. Produce waits for the state to be
empty, writes the variable with a new value, and sets the state to full. Consume waits for
the state to be full, reads the value, and sets the tate to empty. Both are atomic opera-
tions, or in general obey the serialization principle. Void and copy operations are often
supplied to initialize the state to empty, and to wait for full, read and leave full, respec-
tively. The HEP151 and Cedar[6) computers supported these operations on memory cells
in hardware.

When data is put in memory by one processor using produce and read by another
using consume, the transaction behaves like a one word message from producer to consu-
mer, with minor differences. The memory cell serves as a one word buffer, and may be
occupied when produce is attempted. The producer need not name the consumer;
instead, both name a common item as when send and receive are linked to a common
communications channel name. Another difference is that one produce and multiple
copys suffice to deliver the same datum to multiple receivers.

Abstraction of Characteristics

The cssence of the problem to be addressed by the sw*.tching network in both shared
and fragmented memory multiprocessors is the communication of data from a processor
producing it to one which will use it. This process can slow parallel computation when
either the producer is delayed in transmitting or when the consumer is delayed in receiv-
ing. This process can be abstracted in terms of four characteristics: initiation of transmis-
sion to the data's destination, synchronization of production and use of the data, binding
of the data's source to its destination, and how transmission latency is dealt with. Table
I summarizes these characteristics and tabulates them for the traditional views of shared

6

I

Characteristics Fragmented Memory Shared Memory
Initiation Producer Consumer
Synchronization Implicit by message existence Explicit
Binding Processor name Data name
Latency Masked by early send Consumer waits

Table 1: Data Sharing in Multiprocessors.

and fragmented memory multiprocessors.
The initiation of data delivery to its consumer is a key characteristic and influences

the others. Producer initiated delivery characterizes the programming model of frag-
mented memory multiprocessors. It implies that the producer knows the identity of the
consumer, so that binding by processor name can be used, and provides the possibility of
implicit synchronization when the consumer is informed of the arrival of data. If a pro-
ducer in a shared memory multiprocessor were forced to write data into an asynchronous
variable in a section of memory uniquely associated with the consumer, the programming
model would be much the same as for fragmented memory. Consumer initiated access to
data assumes a binding where the identity of the data allows a determination of where it
resides. Since the consumer operation is decoupled from the data's writing by its pro-
ducer, explicit synchronization is needed to guarantee validity. One can imagine a frag-
mented memory system in which part of a data item's address specifies its producer and a
sharing protocol in which the consumer sends a request message to the owner (producer)
of a required operand. An interrupt could cause the owner to satisfy the consumer's
request, yielding a consumer initiated data transmission. Such a fragmented memory
system would be programmed like a shared memory machine. Binding is by data name,
and the consumer has no implicit way of knowing the data it requests has been written
yet, so explicit synchronization is required.

Too many explicit synchronization mechanisms are possible to attempt a complete
treatment, and sufficient characterization for our purposes has already been given. Since
message delivery is less often thought of in terms of synchronization, Table 2 summar-
izes the types synchronization associated with message delivery. Different requirements
are placed on the operating or run-.time system and different precedence constraints are
imposed by the possible combinations of blocking and non-blocking send and receive
operations.

Types of binding between producer and consumer in fragmented memory systems
include: source/destination pair, channel, and destination/type. In the case of
source/destination, the send operation names the destination and receive names the
source. A message can be broadcast, or sent to multiple receivers, but not received from
multiple sources. Source thus designates a single processor while destination might
specify one or more. Message delivery can also be through a "channel" or mailbox. In
this case send and receive are connected because both specify the same channel. A chan-
nel holds a sequence of messages, limited by the channel capacity. To facilitate a
receiver handling messages from several sources, a sender can specify a "type" for the
message and the receiver ask for the next message of that type. The source is then not
explicitly specified by the receiver but may be supplied to it as part of the message.

7

Message System
Synchronization Requirements Precedence Constr:aints

Send: nonblocking Message buffering None, unless message is
Receive: nonblocking Fail return from receive received successfully

Send: nonblocking Message ,uffering Actions before send precede
Receive: blocking Termination detection those after receive

Send: blocking Termination detection Actions before receive precede
Receive: nonblocking Fail return from receive those after send

Send: blocking Termination detection Actions before rendezvous
Receive: blocking Termination detection precede ones after it

in both processes.

Table 2: Summary of the types of message synchronization.

Binding in shared memory is normally by data location, but note that the Linda[7] shared
tuple memory uses content addressability, which is somewl-at like the "type" binding just
mentioned.

The problem of latency in sharing data and how it is dealt with is the most impor-
tant issue in the performance of multiprocessors. At the lowes. level it is tied up with the
latency and concurrency of the switch. Two slightly different concepts should be dis-
tinguished. If T, is the time at which a send is issued in a message passing system and
T, is the time at which the corresponding receive returns data, then the latency is
TL = Tr - T. The transmission time for messages often has an initial startup overhead
and a time per unit of information in the message, of the form ti + k,, where k is the
number of units transmitted. The startup time ti is less than TL, but is otherwise unre-
lated. In particular, if TL is large, several messages can be sent before the first one is
received. The granularity of data sharing is determined by the relationship of t i to t. If
ti >> t, good performance dictates k >> 1, making the granularity coarse. If ti - t, the
fine granularity case of k = I suffers little performance degradation. Read and write in a
shared memory switch must at least have small ti so that data transmissions with small k
perform well. A fine granularity switch with small startup ti may still have a large
latency TL, and this is the concern of the fourth characteristic in Table 1.

Latency must grow with the number of processors in a system, if only because its
physical size grows and signal transmission is limited by the speed of light. As the sys-
tem size grows, the key question is how the inevitable latency is dealt with. An architec-
ture in which latency does not slow down individual processors as the number of them
increases is called scalable. Scalability is a function both of how latency grows and how
it is managed. Message latency can be masked by overlapping it with useful computa-
tion. Figure 5 shows a send/receive transaction in a fragmented memory system. In part
a) message latency is successfully overlapped by computation in the consumer whereas
in part b) the consumer does not have enough to do before needing the data in order to
completely mask the latency. In reference to Fig. 5, scalability is is a function of how the

8

Produce Ser.J
Producer intermediate to Compute

result consumer
Channel Message

latency
Receive

Consumer Compute independent of producer intermediateI result

Time -i

a) Message latency well masked by :omputation.

Produce Send
Producer intermedia:e to Compute

result consumer
Channel Message

latency
WRec,:ive

Consumer Compute Wait for message intermedia,
_ Jresult

Time

b) Poorly: masked message latency.

Figure 5: Masking message latency by computation.

program doing the sends and receives i organized. The ratio of ava.iable overlapping
computation to message latency decreases as system size grows, bo:h because latency
grows and because computation is more finely divided.

In shared memory multiprxcessors the consumer initiation of access to data when
needed ei'minates the possibility of arranging the program so that sends occur early
enough to mask latency. Latency can be managed in this ease, as in the other, by reduc-
ing it or by masking it with useful computation. Latency reduction in the shared memory
hardware regime is done by caching and latency masking by pipelining or multiprogram-
ming. In the naive view, scalability is a hardware concern in shared memory but more a
function of program structure in fragmented memory, leading to the notion of software
scalability. Assuming infinitely fast transmission, networks with P p.,:es.iors and a rea-
sonable number of switching nodes usually have latency on the order of logm P, where "I
is the number of input and output ports per switch node. If finite speed of sig;,i
transmission is an issue, latency is proportional to the cube root of P for a svsiem build-
able in three dimensional space and to the square root of P if messages uc, spy volume.

Concurrency of the switch also has an influence on latency. J: must clearly have a
concurrency much greater than one for any multiprocessor with more than a very few
processors. Using a single bus for this switch is inadmissible in all but the smallest of
systems. For scalability, concurrency should grow linearly with the number of

9

,.rces ;ors: other-vise the lack of physical network paths will lead to long latncies when
many processors use the switch ,+imultaneously. Even with order P links, collisions
between messages can occur under unfavorable access patterns. The way to controi col-
lisions is a function of granularity. Ni a fine granularity network, randomization whic-,
distributes the small :ransactiois unikor ly over the network is usually appropriate.
With large ganclarity transactions, randomization is le-;s effective, and scheduiing of the
transactions may be required.

Thus the abstract differences between shared and fragmented memory multiproces-
>ors rest on tne four characteristics of Table 1, with the selection of producer or con,;u-
nmer .nitiation of data delivery having a strong influence on the other three. Consumer
nitiation is naively associated with explicit synchronization, data name binding, and

latency reduction. Producer initiation suggests implicit synchronization, processor name
binding, and latency tolerance by executing scuds early.

Conve ?nee

The direction of current developments in sharedt and fragmented memory multipro-
cessors is generally toward convergence. The desire to write programs with a shar.J
name space for fragmented memory machines is supported both by research on virtual
shared memory using paging techniques and by automatic compiled or preprocessed gen-
eration of sends and receives for remote data references. Multiprogramming the nodes of
a fragmented memory multi-'rocessor can also increase the amount of computation avail-
able to mask latency. Virtual processors make use of the idea of parallel slackness, or
using of some of a problem's inherent parallelism to control latency. In shared memory
multiprocessors, considerable work is Icing applied to multiprocessor caching, wthich
distributes shared data among processcrs to reduce latency. Hardware cache manage-
ment, software rachabilitv analysis, and correct placement and copying in NUMA
mmachines have been considered. Much attention has been given to fast, packet switched,
multistage interconnection networks for use in the processor to memory interface, and
pipelining techniques have been applied to tolerate the inevitably large latency of such
net- orks connecting many processors

Sup..ort for a shared name space on fragmented memory multiproces,,ors takes
several forms. Lil has considered using paging techniques to produce a shared
memory address space on a fragmented machine. If the paging is heavily supported by
hardware convergence is easily seen between this work and the work on multiprocessor
caching exemplified by 191. Another approach uses program analysis to automatically
generate the sends and receives required to move data from its producer to its consumer.
For regular acces;s patterns, the user can specify data mapping and a language like
DINOI 10) can generate message transmissions to satisfy non-local references. When
regular access patterns are generated by loops in automatic paralielization of a sequential
program[11, the more constrained structure allows even more of the mapping and data
movement to be generated automatically by the compiler.

Automating data mapping across distributed memories has a long history and might
be typified by the work of Berman and Snyder[121. If access patterns are data dependent,
as in computations on machine generated grids, they may still be constant over long
periods. It may then be beneficial to bind addresses and generate data movement using a

10

4

preprocessor[13] which acts at run-time, after data affecting addresses is known, but
before the bulk of the computation, which is often iterative, is carried out. Preprocessor
work can thus be amortized over many iterations with the same access pattern. Conver-
gent work for shared memory has taken place in connection with NUMA architectures.
The BBN Butterfly provides support for placement and copying to reduce the penalty for
long memory references. Software places private data in the local memory of its proces-
sor and randomizes references to structures such as arrays over memory modules to avoid
memory "hot spots"[141.

Finally, convergence in latency hiding techniques is seen between the use of virtual
processors in fragmented memory and pipelining in shared memory multiprocessors. If
we attempt to use consumer initiation in fragmented memory by interrupting the owner
of a datum with a request for transmission, we see a behavior like that of Fig. 6 a). In
order to make use of the long wait resulting from consumer initiation of the delivery, the
processor executing the consumer process can be switched to another process, as shown
in Fig. 6 b). If the process is associated with a different program, we have the standard
technique of masking latency by multiprogramming, which is used in masking disk
latency in virtual memory systems. If the extra process is associated with the same paral-
lel program, we have a partly time multiplexed fon of multiprocessing often

Compute, including Send
Producer production of to Compute

intermediate result consumer
Channel Request Reply

message message

Request
Consumer intermediate Wait Compute

result
Time --

a) Latency results in consumer wait.

Producer Pro:ess A: compute Send
processor and produce to Process A: compute

intermediate result consumer
Channel Request Reply

message message
Consumer Process B: Process 13:
processor request Process C: compute compute

result
Time

b) Latency masked by multiprocessing.

Figure 6: Consumer initiated transmission in a fragmented memory system.

II

characterized by the ,,am, virtual processors. The use of virtual processors to enhance
performance has recently been most frequently discussed in relation to an SIMD archi-
tecture, the Connection Machine[151, where it is important for masking latency arising
from several different sources. If each processor of a fragmented memory multiprocessor
time multiplexes several processes so that message latency in the communication net-
work is overlapped with useful computation, a time snapshot of message traffic and pro-
cessor activity might appear as in Fig. 7.

An early use of multiprocessing to mask memory latency, as opposed to I/O latency,
was in the peripheral processors of the CDC 6600[161. Ten slow peripheral processor
memories were accommodated by time multiplexing ten virtual processors on a single set
of fast processor logic. Process contexts were switched on a minor cycle basis. Later,
the Denelcor HEP used fine grained multiprocessing to mask latency in a shared, pipe-
lined data memory. The concept of pipelined multiprocessing is illustrated in Fig. 8.
Round robin issuing of a set of process states into the unified pipeline is done on a minor
cycle basis. Processes making memory references are queued separately to be returned
to the execution queue when satisfied. Pipeline interlocks are largely unnecessary since
instructions which occupy the pipeline simultaneously come from different processes and
can only depend on each other through explicit synchronization.

For latency to be masked by satisfying requests at a higher rate than processor-
memory latency would imply, many requests must be in progress simultaneously. This
implies a pipelined switch between processors and memory, and possibly pipelining the
memory also. Pipelining and single word access together imply a low overhead, message
switched network. Variable traffic in the shared network requires a completion report for
each transaction, regardless of whether it is a read or write. Whether the memory
modules themselves are pipelined or not depends on the ratio of the module response
time to the step time of the pipelined switch. If the memory module responds
significantly slower than the switching network can deliver requests, memory mapping

Processor I Processor 2 Processor 3 Processor 4
Run Wait Run Wait Run Wait Run Wait

Active Active Q Active Q Q Active Q
P1T P2 P4 P7_ I lO t PEl2

2P11
Send Rcv Send Rcv _ Send Rcv Send Rcv

Figure 7: Masking Message Transmission with Multiprogramming.

12

Switch CPU C C ((((--

II il P r c e ss

Queue

Memory

Reference Queue

Figure 8: One execution unit of a pipelined multiprocessor.

and address decoding are obvious places to use pipelining within the memory itself. Fig-
ure 9, which bears an intentional resemblance to Fig. 7, shows an activity snapshot in a
system built of multiple pipelined multiprocessors which mask the latency of multiple
read and write operations in the processor to memory switch.

Processor 1 Processor 2 Processor 3 Processor 4
Run Run Run Run

Running ue Running ueue Running Queue Running Queue

P12
P 5 P9 P11

Figure 8: Pipelined Multiprocessors in a Shared Memory Multiprocessor System.

13

Convergence can also be seen in switching network research. Packet switched pro-
cessor to memory interconnections such as that in the NYU Ultracomputer[17] bear a
strong resemblance to communication networks used in message passing distributed
memory computers. Previously, the store and forward style of contention resolution was
only seen in communications networks carrying information packets much larger than
one memory word. There is also a strong resemblance between the "cut-through rout-
ing"[181 recently introduced in fragmented memory multiprocessors and the previously
mentioned header switched connections made by messages in the BBN Butterfly shared
memory switch.

Conclusions
The question of what one concludes from all this is really a question of what one is

led to predict for the future of multiprocessors. The predictions can be formulated as the
answers to three questions: What will be the programming model and style for multipro-
cessors? How will the system architecture support this model of computation? What
will be the split between hardware and software in contributing to this system architec-
ture?

The programmer will surely reference a global name space. This feature
corresponds too closely to the way we formulate problems, and too much progress has
been made toward supporting it on widely different multiprocessor architectures, for us
to give it up. It also seems that most synchronization will be data based rather than con-
trol based. Associating the synchronization with the objects whose consistency it is sup-
posed to preserve is more direct and less error prone than associating it with the control
flow of one or more processes. Programs will have more parallelism than the number of
physical processors in the multiprocessor expected to run them, with the extra parallelism
being used to mask latency.

Multiprocessor architecture will consist of many processors connected to many
memories. A portion of the memory will be globally interconnected by way of a high
concurrency switch. The switch will have a latency which scales as logmP for moderate
speed systems, with m probably greater than two. For the highest speed systems, the
latency will scale as P /2. Multiprocessors wil 1 use a Harvard architecture, separating the
program memory from data memory to take advantage of its very different acLess pat-
terns. Data memory private to each processor will be used to store the stack, other pro-
cess private data and copies of read only shared data. Only truly shared data will reside
in the shared memory.

A combination of software and hardware techniques will be used to mask the
latency inherent in data sharing. Compiler analysis will be the main mechanism for
determining what data is truly shared. It may even generate code to dynamically migrate
data into private memories for a long program section during which it is not shared. The
hardware will time multiplex (pipeline) multiple processes on each processor at a very
fine granularity in order to support latency masking by multiplexed computation. Some
of the multiprocessor cache research may find use in partially supporting the data migra-
tion with hardware, but a knowledge of reference patterns is so important to data sharing
that it is unlikely that the hardware will forego the increasingly effective assistance avail-
able from the compiler.

14

In short, the hardware, absisted by the c4,,kiler, of multiprocessor systems can do
much more than we currently ask of it. Moving software mechanisms into hardware pro-
duces a significant performance gain, and should be done when a mechanism is well
understood, proven effective and of reasonably low complexity. Finally, although
automatic parallelization has been poorly treated in this paper, it is perhaps possible to
say that, in spite of the excellent work done in turning sequential programs into parallel
ones, a user should not take great pains in a new program to artificially sequentialize
naturally parallel operations so that they can be done on a computer.

15

REFERENCES

[1] T. Hoshino, "An invitation to the world of PAX," IEEE Computer, V. 19, pp. 68-79
(May 1986).

[21 W. Haendler, E. Maehle and K. Wirl, "DIRMU multiprocessor configurations,"
Proc. 1985 Int'nl Conf. on Parallel Processing, pp. 652-656 (Aug. 1985).

[3] E.F. Gehringer, D.P. Siewiorek and Z. Segall, Parallel Processing The Cm* Experi-
ence, Digital Press, Billerica, MA (1987).

141 R.H. Thomas, "Behavior of the Butterfly parallel processor in the presence of
memory hot spots," Proc. of the 1986 int'nl Conf. on Parallel Processing, pp. 46-50
(Aug. 1986).

[51 J. S. Kowalik, Ed., Parallel MIMD Computation: The HEP Supercomputer and its

Applications, MIT Press (1985).

161 D. Gajski et el., "Cedar," Proc. Compcon, pp. 306-309 (Spring 19S9).

171 S. Ahuja, N. Carriero and D. Gelernter, "Linda and friends," IEEE Computer, V. 19,
pp. 26-34 (1986).

181 K. Li, Shared Virttual Memory on Loosely Coupled Multiprocessors, Ph.D. Thesis,
Yale Univ. New Haven, CT (Sept. 1986).

[91 J.-L. Baer and W.-H. Wang, "Multilevel cache Hierarchies: Organizations, proto-
cols, and performance," J. Parallel and Distributed Computing, V. 6, No. 3, pp.
451-476 (June 1989).

[10] M. Rosing, R.W. Schnabel and R.P. Weaver, "Expressing complex parallel algo-
rithms in DINO," Proc. 4th Conf. on Hypercubes, Concurrent Computers & Appli-
cations, pp. 553-560 (1989).

[11] D. Callahan and K. Kennedy, "Compiling programs for distributed-memory inul-
tiprocessors," J. of Supercomputing, V. 2, pp. 131-169 (1988).

[12] F. Berman and L. Snyder, "On mapping parallel algorithms into parallel architec-
tures," Proc. 1984 Int'nl Conf. on Parallel Processing, pp. 307-309 (1984).

[13] J. Saltz, K. Crowley, R. Mirchandaney and H. Berryman, "Run-time scheduling and
execution of loops on message passing machines," J. Parallel and Distributed Com-
puting, V. 8, pp. 303-312 (1990).

[141 R. Rettberg and R. Thomas, "Contention is no obstacle to shared-memory multipro-
cessing," Communications of the ACM, V. 29, No. 12, pp. 1202-1212 (Dec. 1 '36).

[151 L.W. Tucker and G.G. Robertson, "Architecture and applications of the Connection
Machine," Computer, V. 21, pp. 26-38 (Aug. 1988).

1161 J. E. Thornton, Design of a Computer: The Control Data 6600, Scott, Foresman and
Co., Glenview, I11. (1970).

16

[17] A. Gottlieb, R. Grishman, C.P. Kruskal, K.P. McAuliffe, L. Rudolph and M. Snir,
"The NYU Ultracomputer-Designing an MIMD shared memory parallel com-
puter," IEEE Trans. on Computers, v. C-32, No. 2, pp. 175-189 (Feb. 1983).

[18] W.J. Dally and C.L. Seitz, "The Torus routing chip," Distributed Computing, V. 1,
pp. 187-196 (1986).

17

fReport Documentation Page

1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.

NASA CR-187501
ICASE Report No. 91-7

4. Title and Subtitle 5. Report Date

SHARED VERSUS DISTRIBUTED MEMORY MULTIPROCESSORS January 1991
6. Performing Organization Code

7. Author(s) 8. Performing Organization Report No.

Harry F. Jordan 91-7
10. Work Unit No.

9. Performing Organization Name and Address 505-90-52-01
Institute for Computer Applications in Science 11. ContractorGrantNo.

and Engineering
Mail Stop 132C, NASA Langley Research Center NASI-18605
Iampton, VA 23665-5225 13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration Contractor Report
Langley Research Center 14. Sponsoring Agency Code

Hampton, VA 23665-5225

15. Supplementary Notes
To appear in Proc. of European Centre forLarldy Technanl MonMedium Range Weather Forecasts workshop on
Use of Parallel Processors in Meteorology,

Nov. 26-30, 1990.

Final Report
16. Abstract

The question of whether multiprocessors should have shared or distributed mem-
ory has attracted a great deal of attention. Some esearchers argue strongly for
building distributed memory machines, while others :irgue just as strongly for pro-
gramming shared memory multiprocessors. A great de;il of research is underway on bot
types of parallel systems. This paper puts special emphasis on systems with a very
large number of processors for computation intensivo tasks and considers research
and implementation trends. It appears that the two types os systems will likely con
verge to a common form for large scale multiprocessors.

17. Key Words (Suggested by Author(s)l 18. Distribution Statement
60 - Computer Operations and Hardware

multiprocessors, shared memory, distribu- 61 - Computer Programming and Software
ted memory 62 - Computer Systems

Unclassified - Unlimited
19. Security Clasalf. (of this report) 20. Security Clasiif. (of this page) 21. No. of pages 22, Price
Unclassifled . Unclassified 19 A03

NASA FORM IM OCT K6 NASA.AqIky, Io t

