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copriority gueue ¢ 2 fundamental data structure that is used in a large variety of

parailel algorithins, such as multiprocessor scheduling and parallel best-first search of
state-space graphs. This thesis addrosses the design and experimental evaluation of two
rovel concurrent priority queues: a parallel Fibonaccl heap and a concurrent priority
pool. and compares them with the concurrent binary heap. =~ parallel Fibonacci heap
Is based on the sequential Fibonaccl heap, which is theoreticaily the most efficient data
structure for sequential priority queues. This echeme not only preserves the efficient
aperation time bounds of its sequential counterpart, but also has very low contention
by astributing locks over the entire data structure. The experimental results show its
vinearly scatable throughput and speedup up to as many processors as tested (currently
INT. A concurrent access scheme for a doubly linked list is described as part of the
nrplernentation of the parallel Fibonacel heap. The concurrent priority pool is based
on the concurrent B-tree and the concurrent pool. The concurrent priority peol has the
bighest tiiroughpis among the prioniv queues studied. Like the parallel Fibonacci heap.
the concurrent priority pool scales linearly up to as many processors as tested. The
priority quenes are evaluated in terms of throughput and speedup. Some applications of
concurrent priority queues such as the vertex cover problem and the single source shortest
path problem are tested.
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Chapter 1
Introduction

e prionty cuene s o fundamental data structure that 1s used in a large variety of
parallel algonthms. <uch as multiprocessor scheduiing and parallet best-firs® search of
state-space graphs Winst, Nus0. Peaxd. KRR38[. (0 these algorithms. each process
performs an access-think cvele. Every process works on its current nos = (thinking),
then aceesses the shared priority queue o insert podes 1f 1t generated anv, ertract a
high priority node to work on next, increase the priorities of some nodes by decreasing
tiae kevs! and delete some nodes from the priority queue if the, no lonzer need to be
worxed on. Sequential priority quenes are usuallv represented as binary heaps, Fibonacci
heaps. or B-trees (see Chapter 2). Cor~urrent priotity queues ~re used in a large number
of parallel algorithms. An example 15 Seneff's speech recugnition parseriSen39], which
maintains a priority queue of unparsed gramr ir noues with astociated priorities. and
parses vranumar nodes with higher priorities firse.

We rall the extract vperation of a concurrent prior'ty queue strict if it extracts the
eleinent with the highest priority in the queue. Strict extract opereations requ're some kind
of seriatizacon of operations performed on a queue, which increases the contention on
the queue. As discussed in section 3.1, most applications only need to extract promising
elements that have high prio-ity instead of the highest priority; this fact -zn be used to
decrease contention on the pri~-ity queue. However, the promising quality of extracted
nodes should be controlled to satisfy the requiremerts of ditfferent applications.

Biswas and Browne [BB87] presert a scheme that allows parallel insertious and ex-
tractions in strict concurrent binary heaps. but 1t does not perform better than the serial

access scheme even for heaps with 1,000 nodes. In the serial access scheme, each operation

Hn this thesis, we use small keys to denote high priority.




locks the binary heap exciusively during the whole period of the operation. Rao and Ku-
mar [RK38b] describe a concurrent binary heap algorithm for concurrent priority queues
that has less overhead and provides strict extract operations. However, their scheme sat-
urates when the number of processes accessing the priority queue is greater than about
ten’. More recently. Kumar et al[KRR883] present several “distributed” formulations of
priority queues based on binary heaps with relaxed strictness ui priority.

This thesis presents the design and experimental evaluation of different implemnen-
tations of concurrent priority queues. We present a novel concurrent priority queue
mechanism based on the Fibonacci heap. which is theoretically the most eficient data
structure for the sequential priority queue. This parallel Fibonacci heap provides nper-
atious that are theoretically and practically more efficient than the concurrent binary
heap. A concurrent access scheme for o doubly linked list 1s described as part of the
[ibonacc heap implementation. We also describe a new concurrent priority queue, the
concurrent priority pool. that is based on concurrent B-trees [WW90],LY~1,.SS87} and
concurrent pools KE=9 Manx6l. As shown in Chapter 5, this scheme has the highest
throughp:t among all concurrent priority queues studied here. The performance of dif-
ferest concurrent priority queues s analyzed using the language Mul-TIKHMB89] on an
Encore Multivvazr shared memory multiprocessor. The performance indicates that both
the paraliel Fibonaccl heap and the concurrent priority pool are linearly scalable and
have larger thronghput than the concurrent binary heap. The single source shortest path
prohiem and the vertex cover problem are tested as applications of concurrent priority

quenes

1.1 Parallel Fibonacci Heap

“he para.lel Fibonacei heap 15 based on the sequential Fibonacci heap, which is theoreti-
cally the most eficient data structure for sequential priority queues. The critical sections
acquired by the operations on the parallel Fibonacci heap are small and distribited over
the entire data structure. Therefore, the parallel Fibonacci heap has low contention. The
insert operation takes constant time, the decrease key operation takes constant amor-
tized time, and the extract and delete operations take logarithmic time. This scheme
provides more scalable operations and higher throughput than current schemes such as

the concurrent binary heap. An algorithm for concurrent access to doubly linked lists is

IThis value depends on the length of the think time. Experimental results are shown in Chapter 5.
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described as part of the impiementation of parallel Fibonacci heaps.

1.2 Concurrent Priority Pool

Concurrent priority pools are based on concurrent B-trees and concurrent pools. Since
the concurrent priority queue employs a distributed-data structure(the pool), the insert
and extract &;:iations do not share critical resources in most cases. As shown in Chapter
5, concurrent priority pools have the highest throughput among all concurrent pril‘or‘}fy
queues investigated. Concurrent priority pools also allow tight control over the quality of
extracted nodes. [nsert operations run in logarithmic time. and extract operations take

logarithmic time in the worst case.

1.3 Experimental Environment

I performed most of the experiments on two Encore shared memory multiprocessors.
Oune of the Encore machines has 20 processors of which 18 processors can be used for
running Mul-T. The concurrent priority queues were implemented in Mul-T, a Lisp-like

programming language with futures and locking mechanisms.

1.4 Overview

Chapter 2 describes various implemen.ations of sequential priority queues, such as binary
heaps, binomuial heaps, Fibonacci heaps, and B-trees.

Chapter 3 presents the data structure and concurrent access algorithms for the parallel
Fibonacci heap. The concurrent operations on a doubly linked list are described as part
of the implementation.

(Chapter 4 presents the data structure of concurrent priority pools and coacurrent
operations on it.

Chapter 5 gives an experimental analysis of different implementations of concurrent
priority queues.

Chapter 6 presents a summary of what has been accomplished and discusses some

related research and directions for future research.

1!




Chapter 2

Preliminaries of Sequential Priority

Queues
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Binary heap | Binomial heap | Fibonacci heap B-tree
Operation | (worst-case) | (worst-case) (amortized) (worst-case)
INSERT ©(lg n) @(.’g n) O(1) O(lg n)
EXTRACT O(lg n) O(lg n) O(lg n) Allg n)
DECREASE O(lg n) O(lg n) o(l) O(lg n)
DELETE Qg n) O(lg n) Otlg n) O{lg n)
UNION O(n) O(lg n) o(1) Not well supported

Table 2.1: Time bounds of operations on different sequential priority queue implementa-
tions

the SSSP algorithm, a priority queue is used to monitor the distance of each vertex from
the source. and the algorithm always explores the “closest” vertex first. In the VCP, we
use a priority queue to keep track of the state-space search graph.

This chapter discusses different implementations of sequential priority queues, binary
heaps. binomial heaps. Fibonacci heaps, and B-trees. We adopt the notation from the
book Introduction to Algorithms|CLR90]. Table 2.1 shows the running times for opera-
tions on these four implementations of priority queues. The number of nodes in the heap

at the time of an operation is denoted by n.

2.1 Binary Heap

2.1.1 Data Structure

The binary heap can be viewed as a complete binary tree, as shown in Figure 2.1(a), each
node of which has a key. The heap satisfies the heap property: the value of a node is
at least as big as the value of its parent. Thus, the node with the smallest key in a heap
is stored at the root, and the subtrees rooted at a node contain larger values than the
node. The tree is completely filled on all levels except possibly the bottom level, which
is completely filled from the left up to a point.

Before presenting the access schemes for a binary heap, we first briefly describe an
efficient representation of a binary heap using an array, as shown in Figure 2.1(b). Each
node of the tree corresponds to an element of the array. The root occupies location 1

13




fulllevel=8 \astelem: 11

3 45
21417

7 8 9 10 11
14 ;16| 8| 10| 15

(-1 B=))

(b)

Figure 2.1: A binary heap (a) viewed as a binary tree (b) represented as an array. The
number within the circle representing a node in the tree is the value stored at that node.
The number next to a node is the corresponding index in the array.

and node 1 occupies location 1. The left child of node 1. LCHILD(i). occupies location
2¢ and its right child, RC HILD(1), occupies location 2i + 1. The parent of node 1 is at

2
is the index of the last non-empty node of the heap and fulllevel is the index of the

‘. Associated with the heap are data fields lasielem and fulllevel, in which lastelem

first node at the bottom level of the heap that contains at least one non-empty node.
For an empty heap, lastelem = fulllevel = 0. An empty node has a special key called
MAXINT whose value is co. Figure 2.1 shows a heap with 11 keys, and the values of

lastelem and fulllevel.

2.1.2 Operations on a Binary Heap

The operations usually performed on a binary heap are insertion and extraction. Here
we show the algorithms [RK88a] for doing insertions and deletions; both proceed from
the root to the bottom of a binary tree.

14




The insert operation adds a node into the binary heap. Let target be the first empty
node in the heap; this will be the last non-empty node after the insertion. The insertion
path is the path between the root and target. Figure 2.1(a) shows a ten node heap, to
which the eleventh node is being added. The insertion path can be traversed starting
from the root as follows. Let I be the displacement of target at the bottom level(i.e.,
I = lastelem — fulllevel) and P be the length of the insertion path. If we view I as a P
bit binary number, the bits of the binary representation of / (from the most significant
to the least significant) tell us whether to go right (if 1) or left (if 0) when we go from the
root downward. In the example in Figure 2.1(a), fulllevel = 8. target = 11.s0 [ =3 =
(011) in binary representation. This means that we can go from the root to the target
by following left, right, and right branches at successive levels. The algorithm is given in
Figure 2.2.

Figure 2.3 shows the pseudocode for the delete operation. It removes the root of the
heap and places the key of the last non-empty node of the heap at the root. The heap
property may now be violated at the root of the heap. Reheapification is performed by
repeatedly pushing this kev downward until the heap property is satisfied.

Since a heap of n nodes is based on a complete binary tree, its height is ©(Ig n). The
insert and extract operations run in time at most proportional to the height of the tree;

thus. these operations take O({g n) time.

2.2 Fibonacci Heap

Fibonacci heaps were introduced by Fredman and Tarjan[FT87]. The Fibonacci heap
has the best amortized time bound for all operations among the implementaticas listed
in Table 2.1. From a theoretical point of view, Fibonacci heaps are especially desirable
when the number of extract-min and delete operations is small relative to the number of
other operations performed. This situation arigses in many applications, such as comput-
ing minimum spanning trees{CLR90] and Dijkstra’s algorithm for finding single source
shortest paths{CLR90]. From a practical standpoint, the Fibonacci heap is generally
regarded as being only of theoretical interest because of its code complexity and con-
stant overhead. However, for parallel applications, the time spent on acquiring critical
resources, like locking and waiting, can be dominant over the constant overhead. In
fact, the experimental results in chapter 5 show that the parallel Fibonacci heap is more
scalable and efficient than the concurrent binary heap whose code is much shorter. We
first examine a simpler data structure, the binomial heap, which is the basis for the Fi-

15




proc  '1sert(heap, ukey)
% nser a nev nkey nlo heap

lastelem := lastelem + 1
target = lastelem
if (lastelem > fulllevels2) then
fulllevel .= lastelem
end
1= target — fulllevel % 1 1s the displacement of target
j = fulllevel/? %J’:?Ienplh of insertion path - 1
p =1 % p s the current position in the insertion path

- U e O3 KD =

[0 4

% Reheaprfication loop
9 while (j # 0)

10 if (kev(pl > nkey) then
11 Exchange(nkey. key[p])
12 end

13 f (1 > j) then

14 p = rchild(p)

15 1 =1~ )

16 else

17 p = lchild(p)

15 end

19 ) o= /2

20 end

21 key[p] := unkey

22 end insert

Figure 2.2: Insert operation on binary heap

bonacci heap. We then present an analysis of the data structure and the operations on

the Fibonacca heap.

2.2.1 Binomial Heap

A binomial heap is a collection of binomial trees. The binomial tree By is defined
recursively. The binomial tree By consists of a single node. The binomial tree By consists
of two binomial trees B,_; that are linked together: the root of one tree is the leftmost
child of the root of the other. The binomial tree B; has the following properties,

1. There are 2* nodes,

2. The height of the tree is k,

16




proc delete(heap)

1 if (lastelem = 0) then

2 return nil

J end

4 least = key[l] % root resides at the location I of the array
5 1:=1

6 ) := lastelem

7 lastelem = lastelem - 1

8 if (lastelem < fulllevel) then
9 fulllevel := fulllevel/2
10 end

1 if (g =1
12 key(l] := MAXINT
13 return least
14 end
15 key(l] = key[j]
16  key[] := MAXINT

% Reheapification loop
% let min—sonfi) be the indezr of ihe son of 1+ which has smaller key

17 while (key)] > key[min-son(i)]}) do

13 Exchange(key(i]. key[min—son(i)])
19 i := mn-son(i)
20 end

21 return least
22 end delete

Figure 2.3: Delete operation on biuary heap

3. The root has degree k, which is greater than that of any other node; if the children
of the root are numbered from left to right by k — 1,k — 2,...,0, child 7 is the root

of a subtree B;.

A binomial heap 4 is a set of binomial trees that satisfies the following binomial-

heap properties.

1. Each binomial tree in A is heap-ordered: the key of a node is greater than or

equal to the key of its parent.
2. There is at most one binomial tree in A whose root has a given degree.

The first property tells us that the root of a heap-ordered tree contains the smallest key
in the tree. The second property implies that an n-node binomial heap & consists of at

most [lg n] + 1 binomial trees.
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The insert operation on binomial heaps creates a new tree on its own of degree 0.
This may now violate the bionomial heap property 2 above, since there may be another
tree of degree 0. If there is another tree of degree 0. the two degree 0 trees are merged
into a single tree of degree 1 by making one tree a child of the other according to the
heap-order rule (i.e., the root of the tree with the larger key is made a child of the root
of the tree with the smaller key). This may again violate the bionomial heap property; if
0, we continue merging in recursive fashion. Thus, the insertion operation runs in time
at most proportional to the number of binomial trees, which is ©(lg n).

The extract operation is very similar to the insert operation, and also takes time
Ollg n). The worst-case time bounds for the binomial heap are shown in Table 2.1. In
particular, the U'nion operation takes only O(lg n) time to merge two binomial heaps
with a total of n elements. which is better than the O(n) time for the binary heap.

2.2.2 Structure of Fibonacci Heap

Like a binomial heap. a Fibonacci heap is a collection of trees. However, a Fibonacci
heap is a more “relaxed” data structure than a binomial heap: the trees in a Fibonacci
heap are not constrained to be as those in a binomial heap, in that there may be many
trees of a given degree as opposed to only one for a given degree in a binomial heap.
Furthermore, an interior node of a tree may lose at most one child after it becomes an
interior node and a root node may lose multiple children. This more relaxed structure
allows for improved operation time bounds by delaying work that maiztains the structure
until it is convenient to perform.

As Figure 2.4 shows, 2 [ibonacci heap is a collection of trees whose roots are linked
in & circular, doubly linked list called the root list; the heap is accessed through a min
pointer to the root of the tree containing a minimum key. An empty heap has a nil min
pointer. Each node r in a tree contains a pointer p{z] to its parent and a pointer child|r]
to any one of its children. The children of z are linked together in a circular, doubly
linked list called the child list of z. Each child y in a child list has pointers le ft[y] and
right(y] that point to y’s left and right siblings, respectively. The number of children in
the child list of node z is stored in degree[z]. The boolean-valued field mark[z] indicates
whether node z has lost a child since the last time z was made the child of another node.
The mark field is used only in decrease and delete operations.

Circular, doubly linked lists(DLL) have two advantages for use in Fibonacci heaps.
First, we can remove a node from a circular, doubly linked list in O(1) time. Second,

given two such lists, we can concatenate them into one circular, doubly linked list in O(1)
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min[h]

23 14 8) 17 24

18 52 30 44 26

44 39 50

Figure 2.4: An example of Fibonacci heap

time. | have designed a parallel access scheme for DLL, described in section 3.2, that

preserves the abo.e two advantages.

2.2.3 Insert Operation

To insert a node into a Fibonacci heap, we only need to insert the node into the root list
of the heap and return a pointer to it. If the heap was empty. or the newly inserted node
has a smaller key than that of the minimum node, min is changed to point to the new
node. The insertion only takes constant time compared to ©(lg n) in the binary heap

and the binomial heap. Figure 2.5 shows the pseudo code for the insert operation.

2.2.4 Extract Operation

The process of extracting the minimum node consists of two steps. The first step, finding
the minimum node and removing it from the heap, is not hard, since we have the min
pointer to the minimum node. The pseudo code for extracting the minimum node is
shown in Figure 2.6.

In the second step, as shown in Figure 2.7, we reduce the number of trees in the
Fibonacci heap and find a new minimum node by consolidating the root list of the
Fibonacci heap. Consolidating the root list consists of repeatedly executing the following
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proc 1nsert(h, x)
% nsert new node z into heap h

1 Initialize node x by updating its degree. p, child,
2 left, right, and mark fields properly

3 Put x into root list of h

4 if (minfh] = nil) or (key[x] < kev[min[h]]) then
5 minfh] = x

6 end

Figure 2.5: Insert operation of Fibonacci heap

steps until every root in the root list has a distinct degree value.

1. Find two roots r and y in the root list with the same degree, where key[z] < key[y].

2. Link y to z: remove y from the root list, and make y a child of r.

In lines 16-23, the consolidation process finds the current minimum node in the root

list. The amortized time taken by the extract operation is O(ig n).

2.2.5 Decrease Key Operation

The decrease key operation for a Fibonacc heap is shown in Figure 2.8. To decrease the
key of node r to a value k, we first replace z's key with & in lines 1-4. If the heap-order
is violated(i.e.. k < keyly] where y is the parent of r). we cut r from y in line 7, and
make r a root. From the Fibonacci heap constraints, an interior node can only lose one
child; further cascading cuts are performed at line 8 to satisfy this constraint. The

amortized cost of ihe decrease key operation is O(1).

2.2.6 Delete Operation

Deleting a node z from a Fibonacci heap can be viewed as making node r the minimum
node in the heap by decreasing its key to —oo, then removing node z from the Fibonacci
heap with the extract operation; this is shown in Figure 2.9.

The amortized time of delete is the sum of the O(1) amortized time of decrease key

and the O(lg n) amortized time of extract.
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proc extract(h)

1 z := minfh)
2 if (z # nil) then
3 for each child x of z do
4 add x to the root list of h
3 pix] = nil
) remove z from the root list of h
7 if (2 = right{z]) then
% : 1s the only node in the heap
N minfh] = nil
9 else
10 minfh] = nghtlz]
% consolidate the heap and find nert min
11 consolidate h)
12 end
13 end

14 end extract

Figure 2.6: Extract operation of Fibonacci heap

The delete operation could be improved by directly removing the node from the heap

instead of first putting it into root list and then taking it out. However, the amortized

time bound would not improve.

2.3 B-Tree

B-trees 'BS77][Com79! are balanced search trees designed to work well on magnetic disks
or other direct-access secondary storage devices. The guaranteed small search. insertion.
and deletion time of B-trees makes them quite appealing for database applications. Nev-
ertheless, we will see later on that the B*-tree[]MR85], a variant of the B-tree, could
also serve as a priority queue. In this section, we briefly describe the B*-tree that is
well suited for use in a concurrent database system. More information can be found in
[CLRI0J[LYR1][Wed74]. For simplicity, we denote B*-tree as B-tree in this thesis.
Figure 2.10 shows an example of B-tree internal and leaf nodes. A B-tree has the

following major properties:
1. Each path from the root to any leaf has the same length, h.

2. Each node contains at most 2k + 1 elements, in which & is a tree parameter. Each

node contains at least one element. There are other variations of B-trees that
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proc consolidate(h)

% nitsalize an array for rcompacting trees with the same degree
for 1 := 0 to DEGREE-UPPER~-BOUND dc

—

[ SR o)

-

All] = mil
o

% compact the trees with the same degree

for each node w in the root list of h do

X = w
d = degree(x,
while (Ald] £ nil) do
y = Ald
if (key[x] > key[y]) then

Exchange(x. )

link(h. v. x)
A'dl = il
4 = 4 + 1
end
end
~\d‘\ = X

% find the nert node with the mimimum key

minh, = mil

for 1 = 0 to DEGREE-UPPER-BOUND do

if ‘AL = nil) then

add A to the root hst of b
N
i

if vunh] = oili or (key[Aly] < keylmunfb]]) then

mun’h. = Al
end
end
end conscibdate

proc linkth v. x)

remove y from the root hst of h

make y a chud of x, ncrementing degreex]

mark(y] = false
end lnk

Figure 2.7: Consolidate operation of Fibonacci heap
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proc decrease(h, x. k)
% decrease the key of r to &k

if (k > key[x]) then
error “new key is grcater than current key”
end
keyix] = k
y = plx]
if (v # nil) and (key(x] < key[v]) then
% the heap order s tiolated
cutih. x. v)
cascading—cut(’ | vy}

end

if (key(x; < keynunfhj)) then
mnfh! = x

end

end decrease

proc cutth, x. y)

Remove x from the child lst of y. decreasing degreely,
Add x to the root hst of b

pex. = nil

mark[x] = false

end cut

proc cascading-cut{h, v}

z = ply]
if (z # nil) then
if imark(y] = false) then
% y has lost one chud

mark(y] := true

else
% y has lost two children
cut(h, vy, z)
cascading—cut(h, z)

end

end
end cascading-cut

Figure 2.83: Decrease operation of Fibonacci heap
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proc deleteth. x)
% delete node r from Fibonacct heap I

decreaseth. x. —x)

1
2 extract(h)
3 end delete
Figure 2.9: Delete operation of Fibonacci heap
P,| K, [P, K Pyl Ki,
(a) B-tree internal node
Ko K‘ Kz llllll K‘x‘z
Info | Info | Info Info
(b) B-tree leaf node
Figure 2.10: Structure of B-tree
require each node to contain at least k + 1 elements.

3. The kevs of all of the data in the B-tree are stored in the leaf nodes. Nonleaf nodes

contain pointers and the key values to be used in following those pointers.
4. Within each node, the keys are in ascending order.

In nonleaf nodes, each pointer, P,, points to a subtree T, whose root is the node
that P, points to. The values stored in T, are bounded by the two key values, K,
and K.,, to the “left” and “right” of P, in the node(i.e., the set of values stored
in subtree T; is bounded by K, < v < K, ;).

At

B-trees have internal nodes that look like those shown in Figure 2.10(a). The K, are
instances of the key duiuain, and the P, are pointers to other nodes. On the leaf level,
B-tree nodes, as shown in Figure 2.10(b), contain keys and other information associated

with them.




To insert a new node with key newkey into the B-tree, we start from the B-tree
root and move downwards from each nonleaf level following the pointer P, that has two
neighbors K, and K, satisfying K, < newkey < K,41. When a leaf is found, newkey
is inserted if there is room: otherwise. the leaf is split, and the split may propagate back
up the tree.

The delete operation first locates the leaf that stores the key oldkey to be deleted.
The locating process is just like that in the insert operation. Ounce the leaf is found.
oldkey is removed from it. If the leaf is then empty, it is merged with its neighbor. and
the merge may propagate back up the tree.

To use a B-tree as a priority queue, the insert operation remains the same; the extract
operation is implemented by deleting the smallest key from the leftmost leaf of the B-tree.
In fact. if we maintain a direct pointer to the leftmost leaf of the B-tree, we can avoid
the locating process used in the delete operation.

The insert operation takes time proportional to the height of the B-tree, O(lg n),
where n is the number of keys stored in the tree, and the extract operation takes time

O(lg n) including merging leaves and internal nodes.
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Chapter 3

Parallel Fibonacci Heap and

Concurrent Access Algorithms

In this chapter, we present our design for a parallel Fibonacci heap that is based on the
sequential Fibonacci heap described in Chapter 2. The parallel Fibonacci heap maintains
the advantages of its sequential counterpart, 1.e., its asymptotically more efficient oper-
ations, and it also has linearly scalable throughput as shown in Chapter 5. The parallel
Fibonacci heap reduces contention by weakening the semantics of the extract operation:
an extract operation need not return the minimum element in the heap, instead it can
return a promising element close to the minimum where the promising quality can be
controlled. The non-strict semantics of the extract operation for the parallel Fibonacci
heap is elaborated in Section 3.1. Section 3.2 presents a concurrent access algorithm for a
doubly linked list. Section 3.3 gives a description of the data structure of the parallel Fi-
bonacci heap. The concurrent access algorithms are presented in Section 3.4. Section 3.5

sumumarizes this chapter.

3.1 Semantics of Parallel Fibonacci Heap

The semantics of the insert, decrease, and delete operations on a parallel Fibonacci heap
remain the same as on a sequential Fibonacci heap presented in Section 2.2, but the

semauntics of the eztract operation are non-strict. The sequential Fibonacci heap has a

strict extract operation in the sense that it always extracts the minimum node from the
heap. However, for parallel Fibonacci heaps, since there are potentially many processes

extracting nodes concurrently, strict semantics are undesirable for two reasons:




¢ In terms of correctness, strict semantics are not required in most, if not all, parallel
priority queue applications. However, it is usually desirable to control the quality
of extracted nodes to meet applications’ requirement. The strict extract opera-
tion usually involves more contention, and doesn’t extract more promising nodes
overall. For example, suppose there are 5 processes concurrently trying to extract
nodes from a priority queue that contains 5 highest priority nodes nl, n2, n3, n4,
and nd. In the case of strict semantics, the extract operations have to be serialized
and get nl to n one at a time. This creates a bottleneck. If we adopt non-strict
semantics, we potentially can extract nl to n5 concurrently without blocking, azd
the extracted nodes n1 to n5 will be the same as those extracted with strict seman-
tics, although the order in which they are extracted may differ. The concurrent
access algorithms presented in Section 3.4 provide methods to control the promising

extent of extracted nodes.

o Realizing strict semantics for parallel implementation: .s expensive, since we have to
linearize all operations; this creates severe bottlenecks. There is a tradeoff between
strictness and contention. The stricter the semantics, the greater the contention
on a priority queue. The experiments in Chapter 5 show that a strict scheme for a
concurrent binar, neap saturates when the number of processes is more than about

eight.

Instead of having a min pointer to the minimum node in the heap, our parallel
Fibonacci heap has a promisting list that is an array of pointers to some promising nodes

in the root list. We will look into the extract operation in section 3.4.

3.2 Concurrent Operations on a Doubly Linked List

A doubly linked list(DLL) is a data structure in which the objects are arranged in
linear order and every object has a key field and two other fields: left and right. Given an
object zin a doubly linked list, right[z] points to its successor in the list, and left[z] points
to its predecessor. The insert and delete operations take only constant time provided that
we know where to insert an object and which object to delete. Searching an n-object list
takes O(n) tinie.

Concurrent insert and delete operations are more complicated than their sequential
counterparts. Let’s consider concurrent insertion, concurrent deletion, and concurrent

insertion and deletion separately.
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Figure 3.1: Concurrent insertion on DLL

3.2.1 Concurrent Insertion on DLL

Inserting a node NV into DLL LIST, as shown in Figure 3.1(a), takes two steps:

1. Find two neighbor nodes L and R in LIST to insert NV between.

2. Modify the right field of L, the left and right fields of N, and the left field of R.

In the second step, we have to ensure that the fields are updated atomically. Doing
so involves locking certain fields in some nodes (e.g., the right field of L). However, this
could cause a bottleneck if there are many processes trying to insert new nodes between
L and R, as they all have to lock the right field of L during insertion. Thus, it would
be better to spread out insertions among the nodes in LIST, preferably as evenly as
possible. One way to do this is to place a set of dummy nodes in LIST, as shown in
Figure 3.1(b). Dummy nodes are similar to normal nodes in the DLL, except they are
marked dummy, can be accessed directly’, and remain in the DLL all the time. We define

'For example, we can have an array of pointers to the dummy nodes so that they can be accessed
directly from the array.
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Figure 3.2: A scenario of concurrent deleting N and R of DLL without locking them

a section of DLL to be the sub-DLL between two dummy nodes as shown in Figure 3.1(b).

The insert operation on LIST is now the following:

1. Randomly choose a dummy node D. If D’s right field is locked, we can try another
dummy node; otherwise, lock D’s right field.

2. Insert the new node to the right of D, and update the right field of D, the left and
right fields of the newly inserted node, and the le: field of D’s old right neighbor.

The number of dumimy nodes needed in LIST depends on the access frequency and
applications. We will see in the following section that the dummy nodes also help the

delete operation.

3.2.2 Concurrent Deletion on DLL

Deleting node N from its two neighbors L and R, as shown in Figure 3.1(a), changes
the right field of L and the left field of R. The left and right fields of N may also need
to be changed. The right field of L and the left field of R have to be locked for proper
deletion. Moreover, the left and right fields of N must be locked too. Otherwise, the
following scenario may arise when deleting N and R concurrently, as shown Figure 3.2,

which results in a broken list.
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Delete N Delete R

Lock right[L] Lock right[N]

Lock left[R) Lock left]|J)

Set right{L] pointing to R | Set right[N] pointing to J
Set left{R] pointing to L | Set left[J] pointing to N
Clear le ft[N], right[N] Clear left{R], right[R]

To avoid deadlock, we lock the fields in a particular order: first lock the right field of
L, then the left and right fields of N, finally the left field of R. We could still deadlock
if we did not have dummy nodes in the LIST. One example is to delete the only node
N in a circular DLL. In this case, N itself is both its left and right neighbor, which will
cause the locking process, described above, to deadlock. This problem could be avoided
by keeping track of the number of nodes in the circular DLL, and treating deletion of
the only node in a circular DLL as a special case. However, there is another situation
that is similar to the dining philosophers problem and that can’t be gracefully avoided
without dummy nodes. Suppose there are n nodes in the circular DLL LIST and n
processes deleting nodes concurrently in a conspired way: each process is deleting a
different node, and each process is executing the locking process synchronously. This will
create a circular locking chain. Dummy nodes will prevent this form of deadlock chain.

Dummy nodes are not sufficient to prevent all locking problems. Consider the follow-
ing situation: while deleting N, we have to lock the right field of L. We find L by using
leftN]. But at the time of the lookup, left[N] has not been locked. which means the
field may be changed by another process. Although this problem can be overcome by
using complex locking methods, the method described below using scavenger processes

seems simpler and more elegant.

3.2.3 Concurrent Insertion and Deletion on DLL

The complexity of parallel operations on this relatively simple data structure is caused by
allowing the concurrent removal of nodes from the list. We can get better performance if
we disaliow concurrent removals in the following way: deleting N only marks N as dead,
and all dead nodes are actually removed from the DLL by scavenger process(es), which
run as background or periodic foreground processes. Each scavenger process locks one
section, and removes dead nodes from that section. Since the DLL is nicely divided by
the dummy nodes into sections, we avoid deadlock and interference problems by allowing
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proc insert(obj, dll)
% Insert an oby into doubly hnked hst dll

1 Randomly find a unlocked dummy node d in dll, and lock right[d]
2 Insert obj to the right of d
3 Unlock d
4 end insert
proc delete(obj, dil)
% Delete oby from doubly hnked list dil
1 Mark obj to be dead
2  QOccasionally do
3 Randomly find a unlocked section s and lock it
4 for every obj in s do
5 if (obj is not the right neighbor of a dummy node) and
6 (obj i marked dead) then
7 remove obj from dli
8 end
9 unlock s
10 end delete

Figure 3.3: Concurrent operations on doubly linked list

at most one scavenger process to operate on each section. This kind of distributed
scavenging method alleviates the complex locking problem described in the last section.

Figure 3.3 gives the pseudocode for concurrent operations on a DLL. The insertion
operation is the same as that described in Section 3.2.1. The delete operation occasionally
locks a section, and removes dead nodes in it. With the help of dummy nodes, there is
not much contention on the DLL. The insert and delete operations on a DLL still take

constant time.

3.3 Data Structure of Parallel Fibonacci Heap

A parallel Fibonacci heap, as shown in Figure 3.4, is a collection of trees whose roots
are linked in a circular DLL with dummy nodes as described in Section 3.2. Instead
of having one min pointer to the root of the tree containing a minimum key, there
is an array of pointers to the roots of the trees having promising keys. The array is
called the promising list. For convenience, we use “node in promusing list” to mean
“node pointed to by some pointer in the promising list” in this thesis. There is a lock
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root list

root list

A section

Figure 3.4: Structure of parallel Fibonacci heap

associated with each pointer in the promising list. The size of the promising list, mazpt,
is a parameter that can be controlled in the algorithm. Besides having the fields of their
sequential counterparts, such as left, right, parent, child, key, degree, and mark, the
nodes in a parallel Fibonacci heap have some synchronization fields — there are three
locks associated with the left, right, and key fields of a node, respectively. In addition, the
mark of a node can be one of dummy, dead, promising, unmarked, and marked. Dummy
means the node is a dummy node as described in section 3.2, dead means the node has
been deleted, promising means the node is a promising node, and unmarked and marked
are used in the same way as in the sequential algorithms to denote whether the node
has lost a child since it became an interior node. As in the DLL, a section of a parallel

Fibonacci heap contains the trees between two dummy nodes as shown in Figure 3.4.

3.4 Concurrent Access Algorithms

In this section, the concurrent access algorithms for the parallel Fibonacci heap are
presented. In these algorithms, we use a method to minimize blocking time and en-
hance throughput called the check-lock-verify method. The check-lock-verify method is
a high-level, efficient, non-blocking test&do atomic operation, which is described as the
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“cheating” method in [Bir89]. Here is a comparison of test&do and check-lock-verify:
check-lock-verify: test6do

If (conditions are met) then
Lock critical section Lock critical section

If (verify conditions are met) then | If (test conditions are met) then

do things in critical section do things in critical section
else else
Unlock and exit Unlock and exit
endif endif
endif

The check-lock-verify method asynchronously checks conditions before entering the
critical section, while test&do enters the critical section first. In this way, the check-lock-
verify method avoids some possible blocking time on the critical section, if the conditions
are not met. However. the semantics of the check-lock-verify method are different from
those of test&do in the sense that the latter is stricter. Test&do guarantees that the con-
ditions are checked inside a critical section, while the check-lock-verify method first checks
the conditions outside the critical section. Only when the conditions can be correctly
atomically read?, are the semantics of test&do and check-lock-verify the same. There
are many places in the algorithm where the check-lock-verify method can be used. The
check-lock-verify method makes programs look more complex and harder to understand.

thus. it is normally not included in the pseudocode listings presented in this section.

3.4.1 Insert Operation

As shown in Figure 3.3, inserting a new key k into a paralle] Fibonacci heap A is very
similar to inserting a key into a DLL. First a new heap node n is created with key k, and
the other fields are properly set. In lines 2-5, we randomly find a dummy node D in the
root list, lock the right field of D, and insert the new node to the right of D. Actually,
if we find that right[D] has already been locked while trying to lock it at line 3, another
dummy node can also be tried. The insert operation ensures that all nodes are inserted
evenly among the dummy nodes in the root list.

In lines 6-8, we check whether the newly inserted node n with key k is promising; this
is similar to checking whether the newly inserted node is better than min in the insert

2These features are often machine dependent. The programmer should always check these features
before taking advantages of them.
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proc 1nsert(id, h, k)
% Insert key k into parallel Fibonacct heap h. 1d 13 an 1ssued worker id

Initialize a new node n with key k
Randomly choose a dummy node D in the root list
Lock right[D]
Put n to the right of D
Unlock right[D]
if good(id, h, k) then
check—promising(h, n)
end
return n
end 1ansert

S WO - DU LD D —

—

proc good(id, h, k)
% a heurstic function that tests whether k has a good chance to be promising

if (k > last—extractid] = strictness) then
return NO

else
return YES

end

end good

D U da O D —

Figure 3.5: Insert operation on parallel Fibonacci heap

operation on a sequential Fibonacci heap. In order to avoid checking some “obvious” non-
promising nodes. a heuristic function good is designed to filter out most non-promising
nodes. If the heuristic function says k is good, then we actually check whether node n is
promising, as presented in the next section; otherwise, the node n still has a chance to
be put into the promising list by the consolidation process described in section 3.4.4.

I have designed a simple “distributed” heuristic function as shown in Figure 3.5.
Suppose there is a fixed number of workers doing operations concurrently on the parallel
Fibonacci heap (see chapter 5); each worker is assigned an id to distinguish it from
the others. If a given application doesn’t fit this worker model, we can still map the
operations performed by the application on the parallel Fibonacci heap to some number
of virtual workers. Worker td keeps track of the key of the node it most recently extracted
in last — eztract(id); this is used as a rough measure of whether a key k is good or
not. If k is greater than last — eztract[id] x strictness, in which strictness is a tunable
parameter(usually set to be around 1), then k is not treated as good. The heuristic
function gives real promising nodes a chance to bypass the consolidation process and
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proc check—promising(h, n)
% Check 1f node n 15 more promising than any already promising node prom—one, then

% replace prom—one with n in the promasing hst.
1 for every pointer prom-pt in promising list do
2 Lock prom—pt % if prom—pt 1s locked, we can try nert
3 if prom—pt = nil then
4 Lock key(n]
5 if (mark(n] # dead) and (mark[n] # promising)
6 and (parent{n] = mil) then
v mark[n] := promising
8 prom—pt = &n
9 Unlock key!n]
10 Unlock prom-pt
11 return YES
12 end
13 Unlock key[n]
14 Unlock prom—pt
15 else
16 prom-—one = sprom-pt
17 Lock key{prom-one;
18 Lock key|n]
19 if ({mark[n] # dead)
20 and (mark[n] # promusing)
21 and (parent{n] = nil)
22 and ((mark[prom—one] = dead)
23 or ({(mark{prom—one| = promsing)
24 and (key[prom—one] > key[n])))) then
25 mark([n] := promising
26 if mark[prom—one] = promising then
27 mark{prom—one] ‘= unmarked
% end
29 prom—pt = &n
30 Unlock key/n]
31 Unlock key{prom-one]
32 Unlock prom-pt
33 return YES
34 end
35 Unlock key|n|
36 Unlock key[prom—one]
37 Unlock prom-pt
38 end

39 return NO
40 end check—promising

Figure 3.6: Check whether a node is promising in parallel Fibonacci heap
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directly be put into the promising list. We can tune strictness to control the quality of
nodes in the promising list. The smaller the value of strictness, the better the nodes in
the promising list, and possibly the longer it takes to find a promising node. So, there is a
tradeoff here between strictness and contention on the queue. The experiments described
in Chapter 5 show how the throughput varies with strictness. Morecver, strictness can be
made adaptive depending on the feedback of check-promising: if check-promising always
returns ves which means the heuristic function may be too strict. then strictness can be
loosened to some degree: if check-promising always returns no. which means the heuristic

function may be too loose, then strictness can be tightened a bit.

3.4.2 Check-Promising

Figure 3.6 shows how to check if node n is more promising than one of the already
promising nodes in a parallel Fibonacci heap h. Basically. n is compared with every node
in the promusing list: if a nil pointer in the promising list or a promising node with key
larger than key{n] is found. theu r is put in the promising list; otherwise n is simply
left in the root list. In the pseudocode, lines 1-2 loop over all pointers in the promising
list. and try to lock each one before checking. In fact, if the pointer prom-pt is found
already locked in line 2, we can try other pointers in the promising list. If prom-pt is a
nil pointer. lines 4-14 check if n 1s not dead or promising and n is in the root list, then
put n into the promusing list by changing prom-pt to point to n. If prom-pt is not nil,
lines 16-39 test if n is more promising than node prom-one pointed by prom-pt. then
replace prom-one with n. Lines 19-21. like lines 5-6. make sure that n is not dead, is not
already promusing. and is in the root list before making it promising.

The check-promising procedure is non-blocking in the sense that it does not block
on a locked pointer in the promising list; instead it always tries to find a free promising
pointer to lock. Also, since the heuristic function good filters out most non-promising
noces from being checked, there should not be much contention on the promising list.

The time taken to check whether a node is promising is constant, O(mazpt).

3.4.3 Extract Operation

Figure 3.7 shows how to extract a node from a parallel Fibonacci heap h. Since we already
have the promising list, if it is not empty then we can randomly remove a promusing
node from it; otherwise, we find several promising nodes to put in the promising list by

consolidating a section of the heap, and retry the extract operation.
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Line 1 randomly chooses a pointer prom-pt from the promusing list. Then we try
to lock prom-pt in line 6; if it has already been locked, we try another pointer in the
prorusing list. Line 7 checks if prom-pt is nil; if it is, we pick up another pointer from
the promising list and repeat the process of locking and checking prom-pt. Otherwise, we
lock the node prom-one pointed to by prom-pt. If prom-one is indeed a promising node.
we put its children, if any, into the root list, and take prom-one out of the promising
list by marking it dead in lines 14-21. If prom-one is not promising. we simply try other
pointers in the promising list in lines 23-25. If after trying “enough”™ times, we still fail
to find a promising node, then it is time to consolidate the heap in lines 3-5; that will
compact trees together, and find some promising nodes to put in the promising list.

The promising list is implemented as an array in which each pointer can be directiyv
accessed, and the size of the promising list can be controlled® to reduce contention. The
extract operation never blocks on a locked pointer in the promising list: therefore. we
do not expect much contention on grabbing a pointer from the promising list. The ime
taken to extract a promising node is constant, if we successfully find a promising node
in the promising list. Otherwise, the extract time is the time spent consohdating a
section of the parallel Fibonacci heap. This, we will see in next section. is logarithmic
in the number of nodes in thet section. Thus, the time taken to do eyiract operation is

Ol(lg |section!).

3.4.4 Consolidate the Parallel fibonacci Heap

When a process performing an extract operation cannot find n promising node in the
promusing list after some number of probes, it consolidates the heap, actually a section
of the heap. as described in Figure 3.8. The consolidate process randomly chooses a
section that is not already being consolidated by another process and locks the section.
The process then walks through the nodes in the root list of the section. If a :oot
node 1s marked as dead, we remove it in lines 10-14. Since there is always at most one
consolidation process in a section, there is at most one removal operation running in a
sectic., so we don't have to lock a dead node’s neighbors while removing it from the
DLL. When a dead node and a dummy node are neighbors, between which there may be
insertions going on, we just choose not to remove the dead node.

The consolidation process keeps track of several good nodes that are not already in
the promising list by comparing all the non-promising and non-dead nodes in the root

3The size is usually chosen to be the number of processes accessing the heap.
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list of the section. and puts them in buffer 8. We can then “flood™ B into the promising
list by running check-promisingon all the nodes in B after finishing the walk through the
section in lines 19-20. Buffe- B is implemented as a sorted array of fixed size, buffersize.
A smaller buffersize means the nodes in the buffer tend to be more promusing. We show
the results of experiments that vary buffersize in Chapter 5.

The consolidate process also performs normal consolidation like its sequential coun-
terpart. [t merges trees of the same degree to reduce the numkter of trees in the root
list. If the root node of a tree is dead or promising, then it won't be merged with other
trees. When merging two trees rooted at r and y respectively, we have to lock key{r; and
keyly! first. The reason for locking is that there may be delets and decrease operations
going ou that will interfere with the consolidate process.

The consolidation time for the parallel Fibonacci heap is basically the same as the time
taken for the sequential consolidation, because there is only one consolidation process in
each section. and the consolidation process only does a little more work than its sequential
counterpart: it finds more promusing candidates (buffersize per process), and there are
some locks required when merging trees. These locks are used to prevent operations like
delete and decrease key from getting in. The delete and decrease key operations can be
operated on all nodes in the Fibonacci heap, not just nodes in the root list. In fact, most
of these operations. like deleting some non-promising nodes and decreasing keys of some
non-promising nodes. tend to happen to nodes not in the root list. Thus, we expect little
contention on the locks the consolidate process acquires while merging trees. Overall.

each consolidation process runs in time O(lg [section|) time.

3.4.5 Controlling the Quality of Extracted Nodes

There are several parameters that control the promising quality of extracted nodes:
marpt. buffersize, and strictness. Mazpt is the size of the promising list, buffersize is
the size of the buffer used during the consolidation process to gather candidates for the
promising list, and strictness is used in the heuristic function good. We can see that a
smaller value of mazrpt means that the nodes in the promising list are more promising.
The extreme case is that mazpt equals | — there is only one pointer as in the sequential
Fibonacci heap. On the other hand, a smaller mazpt implies more contention on the
promising list. A good value of mazpt might be the number of “workers” on the paraliel
Fibonacci heap.

In the consolidation process, the top buffersize number of non-promising nodes in the
root list of a section are gathered in a buffer, and are checked if they are promising.
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The smaller buffersize is, the better the nodes the buffer contains, the fewer candidate
nodes there will be for the promising list, and the longer the time it takes to extract a
promising node. On the other hand, larger buffersize incurs more traffic on the promising
list. because there will be more check-promising processes trying to put nodes into the
promising list.

The effect of the parameter strictness is explained in Section 3.4.1. Experiments that

vary these parameters are presented in Chapter 5.

3.4.6 Decrease Key Operation

Figure 3.9 shows the pseudocode for decreasing the key of node z to k. Like the sequential
decrease keyv operation discussed in Chapter 2, the idea of the concurrent decrease ke
operation is to check if £ is smailer than z’s old key, and then change z’s key to k. Atter
the keyv change. if the heap order property is violated, then cut z from its parent: if
an internal node loses more than one child then perform cascading cuts. Cut(h,z) will
change r’s parent link and its parent y’s child link. Both r and y have to be locked during
the operation. The order of locking is important here; the wrong locking order can cause
deadlock. Consider the case of locking in bottom-up order where y is a promising node
in the root list, r is one of y’s children, and there is a decrease key operation thai is
tryving to cut r from y. Suppose the decrease key operation has already locked z, and is
trying to lock y. In the mean time, another process is doing an extract operation on y,
having locked y, and is trying to put y’s children, including z, into the root list. In the
process of putting y’s children into the root list, z's parent field will be updated. If we
require locking r before updating its parent field, then this results in a deadlock. If we
update r's parent link without locking it, it would be dangerous for the decrease process
to read it.

Figure 3.9 shows a way to lock in a top-down order that avoids the problem described
above. This locking order also makes the extract operation easier. When we put y’s
children into the root list in the extract operation as described above, we only need to
lock y, because in the top down locking order, y’s children won’t be updated unless y has
been locked. The decrease key operation works in two phases: Phase 1 locks z, locates
its parent y if there is one, and unlocks z. Phase 2 locks y then z, verifies y is still z's
parent, and does things as in the sequential case. If y is no longer z’s parent in phase
2. we go back to phase 1 to locate z’s parent again. In phase 1, lines 5-10 lock z, check
whether z has a parent. If not, line 13 sets z’s key; otherwise, line 17 sets the variable
has-parent? to be true for use in phase 2. Phase 2 checks if variable has-parent? is true,
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then locks y and z. After y and z have been locked, we verify if y is still z’s parent, then
change z’s key and do the cut in lines 29-36 as in the sequential decrease key operation.
Finally, cascading-cuts are done if needed in lines 43-44. If it turns out that y is no longer
z’s parent in phase 2, then we go back to phase 1 to find z’s current parent, and repeat
the whole process until z’s true parent is found.

If there is no other operation updating z or y between phases 1 and 2, which is
likely to be the common case, the parental relationship between y and z does not change
between phases | and 2. Thus, in most cases, the decrease key operation succeeds without
repeating phase | and 2. Also, the contention on z and y should be relatively small, since
it should be rare that different workers are doing operations on the same r and y. The

time taken to do the decrease operation is O(1).

3.4.7 Delete Operation

The delete operation, as shown iu Figure 3.10, is similar to the decrease key operation.
Instead of cutting z and putting it in the root list as in the decrease key operation, we
put z's children into the root list in lines 12 and 28, and mark r to be dead in line 13 if

z is in the root list; or remove z in line 29 in case it is an interior node.

3.4.8 Algorithm Validation

We informally show that the algorithms for the parallel Fibonacci heap are deadlock-free
as follows. Horizoutally, the root list of the parallel Fibonacci heap is a DLL with dummy
nodes, and we have shown that the operations on a DLL are deadlock-free in Section 3.2.
Vertically, the paralle] Fibonacci heap is a forest of trees, and we always lock nodes in a
top-down order in the algorithms.

We also validated the correctness of operations experimentally: we occasionally ran
a verify-form procedure to check the syntactic correctness of the heap (i.e., whether the
number of nodes in the heap, the number of nodes in the root list, and the number of
promising nodes are correct) and the semantic correctness of the heap (i.e., that the
parallel Fibonacci heap is in correct heap-order, and satisfies the heap constraints).

3.5 Summary

The parallel Fibonacci heap presented in this chapter is based on the sequential Fibonacci
heap described in Chapter 2. The parallel Fibonacci heap maintains the asymptotic time
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bounds of its sequential counterpart, and it also achieves linearly scalable performance.

The parallel Fibonacci heap has the following properties:

1.

(S

The locks each operation acquires are evenly distributed over the entire data struc-
ture and the time each operation takes while holding a lock is small. Assuming
the size of the structure is relatively large compared with the number of processes
accessing it, then there is very little contention on the structure and we expect lin-
early scalable throughput. This scalability is reflected in the performance analyses
in Chapter 5.

Ignoring contention, the sequential operations’ time bounds have been preserved:
an insert operation takes only constant time, an eziract operation takes O(lg n)
time. a decrease keyoperation takes constant amortized time, and a delete operation

takes O(lg n) time.

The priority queue is non-strict in the sense that an extract operation does not
necessarily return the most promising node, but the promising quality can be con-
trolied as described in Section 3.4.5. These non-strict semantics are compatible
with most parallel applications, if not all, and they are also one of the reasons that

the parallel Fibonacci heap has relatively low cont :tion.
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proc extract(id. h)
% ertract a promising node from parullel Fibonacci heap h
% 1d 13 a preassigned worker id

Randomly choose a pointer prom—pt from the promusing list
(label#try)
if we have tried “enough” timee but still fail to find a promusing ncde then

end

% “enough” can be tuned here
consolidate(id, h)

Lock prom—pt % if prom—pt s locked, we can try another
if prom~pt = nil then

end

Unlock prom-pt
prom—pt = another pointer in the promising Llist
goto (label#try)

ptom—one := xprom-—pt
Lock key[prom—one]
if mark[prom—one] = promusing then

if prom—one has any children then
put its children into the root list

end

mark{prom—one] = dead

Unlock key{prom-one]

Unlock prom-pt

return prom-—one

else
Unlock prom-—one
prom—pt := another pointer in the promising list
goto (label#try)

end

end extract

Figure 3.7: Extract operation on parallel Fibonacci heap
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proc consolidate(id, h)
% Consolrdate a section (or multiple sections) of the parallel Fibonaccs heap h
% and find candidates for the promising hst

Randomly find a section not being consolidated by other processes and lock it
for every node x in the section do
case mark[x]:
unmarked. marked:
Merge trees like in the sequential consolidation. Don't merge dead
or promising nodes.
Maintain a buffer B of top buffersize number of
candidate nodes{non—promising nodes) for the promising list.
% buffersize here 13 tunable parameter

dead:
if x’s left neighbor is not a dummy node then
Lock key(x]
Remove x from root list
Unlock key{x]
~nd
pronusiny’:
dummy:

end
Unlock section
for every node n in buffer B do
check -prorusing(h, =,
end consolidate

Figure 3.8: Consolidate process on parallel Fibonacci heap
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proc decrease—key(id, h, x, k)
% Decrease the key value of r to k n parallel Fibonacc: heap h
done? := false % done? means whether the decreasé operalion has been accomplished or not
has—parent? := false % has—parent? indicates whether node z Ahas parent or not
cascading—cut? := false % cascading—cut? indicates whether cascading—cut is needed
Repeat %% %% % %% %% %% %% %% %% % %% Phase 1

Lock key(x]

if mark(x] = dead then

Unlock key[x]

return
else
y = parent|[x]
if y = nil then % z doesn't have parent, st 1s in the root lst
if (k < key[x]) then
key[x] = k
end
done? := true
else
has—parent? := true
end
end
Unlock keylx]

%R %RRTFRRTRN GRS B %% %% Phase 2
if has—parent? then
Lock keyly] % y was z's parent, bul may not be now, which happens rarely
Lock key[x]
if (parent{x] = y) then
if mark{x] = dead then
Uualock key(x]

return
else
if (k < key[x]) ther
key[x] == k
end
done? := true
if (key[x] < key[y]) then % heap order has been violated
cut(h, x)
cascading—cut? = true
end
end
end
Unlock key(x]
Unlock keyly]

end
Until done?
If cascading—cut? then
cascading—cut(id, h, y)
end
end decrease—key

Figure 3.9: Decrease key operation on parallel Fibonacci heap
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proc delete(id, h, x)
% Delete the node r from parallel Fibonaces heap h

done? := false % done? means whether the delete operation has been accomplished or not
has—parent? := false % has—parent? indicates whether node z has parent or not
cascading—cut? .= false % cascading—cut? indicates whether cascading—cut 13 needed
Repeat %% %A% %% %% %% %% %% %% % %% Phase 1
Lock key[x}
if mark[x] = dead then
Unlock key(x]

return
else
y = parent{x]
if y = nil then % z doesn't have parent
Put x’s children into root list if there are any
mark{x] := dead
done? := true
else
has—parent? := true
end
end

Unlock key|x]
%%%%%%%%%h %% I %N %% % %% Phase 2
if has—parent? then
Lock keyly] %y was z's parent, but may not be now, which happens rarely
Lock key[x]
if (parent{x] = y) then
if mark|x] = dgad then
Unlock key[x]

return
else
Put x's children into root list if there are any
Remove x from y's children list
cascading—cut? := true
done? := true
end
end
Unlock key(x]
Unlock keyly]

end
Until dope?
If cascading—cut? then
cascading—cut(id, h, y)
end
end delete

Figure 3.10: Delete operation on parallel Fibonacci heap
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Chapter 4
Concurrent Priority Pool

In this chapter we present another kind of concurrent priority queue, which is imple-
mented as a combination of a concurrent B-tree and a concurrent pool. We call this
priority queue a “concurrent priority pool”. The concurrent priority pool supports in-
sert and extract operations like the parallel Fibonacci heap. The extract operation is
non-strict, as described in section 3.1, but there is a straightforward way of controlling
the promising quality of extracted keys. The insert and extract operations do not share
critical resources in most cases, so that the concurrent priority pool has the highest
throughput among all the priority queues studied, as shown by the experimental results
in Chapter 5. Section 4.1 briefly describes the concurrent B-tree. Section 4.2 gives an
introduction to the concurrent pool. The concurrent priority pool and access algorithms
are presented in section 4.3. Finally, Section 4.4 summarizes this chapter.

4.1 Concurrent B-Trees

The Concurrent B-Tree described here is mainly based on [Wan90, WW90, LS86, LY81].
This algorithm allows symmetric insertion and deletion in which each process locks at

most one node at a time, except in rare cases.

4.1.1 Data Structure

The concurrent B-tree data structure is similar to the sequential B-tree described in
Chapter 2. Figure 4.1 shows an example of a concurrent B-tree: A B-link structure is
added into the sequential B-tree by connecting nodes on each level into a singly linked
list. Each node has a right link that points to its right neighbor. Operations can go
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Figure 4.1: An example of a concurrent B-tree

across the linked list horizontally instead of vertically. An anchor, an array of pointers to
the leftmost node on each level of the B-tree, is added ‘nto the sequential B-tree. With
the anchor and the B-link structure, a node can be reac' »d not only from its parent, but
also from its left neighbors or the anchor.

4.1.2 Insert Operation

Inserting a new key k into a concurrent B-tree invokes two phases: the locate phase
and the insert phase. The locate phase, which is similar to its sequential counterpart,
traverses the B-tree from the root to the leaf level by following pointers P, in the internal
nodes that have two neighbors K; and K,,; satisfying K; < k < Kiy;. In the locate
phase, only one internal node is locked at a time. In fact, the nodes only need to be
read locked, since the nodes are not changed. After a leaf node n is located, we insert
key k into n. If n is full, we split n as shown in Figure 4.2. The split operation is
done in two steps: a half-split as shown in Figure 4.2(b), followed by a complete-split
as shown in Figure 4.2(c). Half-split creates a new node n', inserts n' to the right of
n, and moves some data from n to n’. Complete-split goes up the tree, inserting a new
< left bound, pointer > into n's parent m. If m is full, then we split m in the same

way as we split n. This split process can propagate from the leaf level up to the tree
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Figure 4.2: Split a concurrent B-tree node (a) Before inserting key 10 into n (b) Half
split n (¢) Complete split n

root, which might result in creating a new root, and increasing the B-tree height. In all

situations. we write lock a node before updating it.

4.1.3 Delete Operation

The delete operation on a concurrent B-tree is symmetric to the insert operation. It
consists of two phases: the locate phase and the delete phase. The locate phase is the
same as that in the insert operation; it locates the node n containing the key k to be
deleted. The delete phase removes k from n; if n is then empty, it merges n's right
neighbor n’ into n. The merge is also done in two steps: a half-merge as shown in
Figure 4.3(b), and a complete-merge as shown in Figure 4.3(c). Half-merge first write
locks n and n’ and removes n’ from its level's linked list. It then moves data from n' to
n and sets the right link of n’ to n before unlocking n and n’. Processes that try to find
data in n’ still can find them through its right pointer that forwards to n. Complete-
merge removes a <left bound, pointer> pair from n’s parent m. If m is then empty, we
merge m with m’s right neighbor. This merge process can propagate up to the tree root,
which will possibly decrease the height of the tree. There is a special case when complete
merging n and n’: if n and n’ do not have the same parent; this case is explained in
(Wan90].
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Figure 4.3: Merge two concurrent B-tree nodes (a) Before taking key 10 out of n (b) Half
merge n (c) Complete merge n

4.2 Concurrent Pools

Concurrent pools/Man86][KE89] are largely used in the assignment of resources and tasks
to processors in a distributed or parallel system that needs to balance the load on each
processor. A pool is a collection of items that grows and shrinks with the demands
of the processes. A process may add an element to the pool or request an element
from the pool at any time; the element removed from the pool is chosen arbitrarily.
A concurrent pool attempts to spread the elements out over the processors so that
accesses are less likely to interfere with each other. The basic idea of the concurrent pool
is to allow most operations to be done within the local components of the distributed
data structure. When a request cannot be satisfied locally, it becomes necessary to access

remotely stored components.

4.3 Concurrent Priority Pools

The concurrent priority pool is based on the concurrent B-tree and the concurrent pool.
It is similar to the concurrent B-tree, except that the leaves of the B-tree are replaced
with concurrent pool-like data structures. An insertion into the priority pool is like the
insertion into the B-tree, which takes O(lg n) time. The extract minimum operation on
the priority pool is similar to the delete operation on the B-tree, but we always delete

elements from the promising pools — the leftmost leaf in the B-tree.
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Figure 4.4: Data structure of concurrent priority pools

4.3.1 Data Structure

The concurrent B-tree is the basis for the cencurrent priority pool. Each leaf of the
priority pool is similar to a concurrent pool A leaf contains segnum number of data
segments. Each segment consists of segsize number of keys and associated data. The
segment is the smallest unit that is locked during the insert and extract operations.
Even when splits and merges happen, leaves are only locked briefly, as we will see in the
next few sections. There can be different operations running concurrently on different
segments in the same leaf.

As shown in Figure 4.4(a), a segment has an array of keys and associated data, a
status indicator, a local separator, a lock and a local right link. The segment local
separator is usually equal to the right bound of the leaf the segment is in, except in the
middle of splitting or merging. The segment right link points to the leaf that contains
keys equal to or larger than the segment separator; that is usually the right neighbor of
the leaf containing the segment. The status indicator indicates whether the segment is in
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normal mode or has been deleted. The segment can only be changed when the segient
lock is acquired.

The keys in a segment are stored in an array that is ordered from largest to smallest.
This simplifies extracting the smallest key: we only need to return the rightmost elen:ent
of the array and decrease the array size by one. Keeping segments sorted also makes it
easier to find a medium key in a segment, which is used in sphitting the segment. On the
other hand, it is more expensive to insert a key in a sorted segment and to merge two
sorted segments.

A leaf has three major parts. as shown in Figure 4.4(b) : synchromzation data.
sequential data. and segnum number of segments. Sequential data consists of segnum.
segsize, right bound. mark, right link, and separator. The right bound of the leaf is
usually the largest key in the leaf. This is not true in two cases: when the leaf 1s being
split, in which case there may be some larger keys that have not been maved to the right
neighbor yet; or the when the leaf is being merged, in which case the right bound may be
la ger than all the keys in the leaf. The leaf mark is one of dead, orphan, dead-orphan,
or nil: dead means the leaf has been deleted; orphan means that there is another leaf
with the same right bound as this leaf, and the orphan leaves do not have parents as
described in Section 4.3.2: dead-orphan means the leaf is both dead and an orphan.

Svnchronization data consists of a leaf lock, a status indicator, and a merging-leaf field
that points to the leaf, if any, that has been merged with this one. The status indicator
is one of normal. split. merging, split:merging, and deleted: normal means the leaf is in
pormal mode, split means the leaf is being split, merging indicates that the leaf is now
merging with another leaf, deleted indicates the leaf has been deleted. and split-merging
means there is a split and a merge concurrently going on in the leaf. Figure 4.5 depicts
the possible status transitions of a leaf. The leaf sequential data and synchronization

data can be changed only when the leaf-lock is acquired.

4.3.2 Duplicate Keys

The concurrent B-tree, the basis for the concurren. priority pool, is changed to allow
duplicate keys. On the leaf level of the B-iree, we allow multiple leaves with the same
right bound; only one of the leaves can be directly reachable from internal nodes, and the
rest of them are marked as orphans. Thus, there are no duplicate separators in internal

nodes. The original concurrent B-tree algorithms are changed slightly:
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Figure 4.5: Concurrent priority pool leaf status transition graph
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. While doing “complete-split” as shown in Figure 4.2(b), which tries to add a
< separator  pointer > pair into internal node m, if we find there already exists a
separator in m, then instead of adding the pair in, we mark the leaf pointed to by

pointer as an orphan.

(8%

. While doing “complete-merge” as shown in Figure 4.3(b), which tries to delete a
< separator, pointer > pair from an internal node, if we find the leaf pointed to by
pointer is marked as an orphan, then we know the pair is not in an internal node.

Thus. we ~an quit rrom complete-merge.

This method treats all leaves, whether orphan or not, quite uniformly while doing
insert and extract operations. [t also keeps the structure of internal nodes the same, so

that the original concurrent B-trev algorithms on internal nodes are still applicable.

4.3.3 Insert Operation

Inserting a key into a priority pool invokes two steps: first, locating a leaf as in the
concurrent B-tree algorithms; second, as described in this section, inserting the new key
into the leaf, and performing split operations if necessary. Here we only present the
algorithms or the leaves of the priority pool, since the algorithms on the internal nodes
are the same as those for a concurrent B-tree. Figure 4.6 shows the pseudocode for
inserting a key in leaf [ of tree. We first randomly locate a segment s in leaf [, and lock
it in lines 1-2. Line 3 checks whether segment s is the right one to insert key in — if key
is larger than separator(s], then we insert key into the leaf that is pointed to by right{s].
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proc iusert(l, key, tree)

% nsert a new key into leaf | of tree
(label#0) Randomly locate a segment s in leaf |
(label#1) Lock s

if (key > separatorfs))

| := right[s]
Uniock s
goto (label#0)
else
case indicator(s]
normal:
if s is not full then
insert key into segment s
Unlock s
else
if we have not tried twice(or some other number) then
Unlock s
s := another segment in leaf 1
goto (label#l)
else
Lock |
case indicator{l]:
normal:
Unlock s
originate—split(l, key)
split, split—merging:
Unlock 1
split(s, 1, I', separator(l], & .
% I' 1s I's right neighbor; assume I’ and separator]l)
%  are read before | 13 unlocked
Unlock s
8 ‘= another segment, goto (label#1)
merging:
Unlock s
originate—split(l, key)
deleted:
Unlock s
Unlock |
insert(l’, key, tree} % !’ is pointed by the right link of {
end
end
end
deleted:
wnsert(tight(s], key, tree)
end
end
end insert

Figure 4.6: Insert operation on concurrent priority pool
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We check indicator[s] in line 8: if s is deleted, then we insert key into the leaf pointed
to by right[s] in lines 39-40. If s is in normal mode, we do “normal insertion” in lines
10-38. Line 10 checks whether s is full; if not, we directly insert key into s. Otherwise,
we try to find other segments in leaf ! to do the insertion in lines 15-17. If we still can
not find a non-full segment in leaf ! to insert key after some number of tries, we try to
split leaf { in lines 19-36. Leaf [ is locked in line 19 to check the indicator of . In case
indicator|l] is normal, the originate-split procedure is called to originate splitting leaf I.
Iu case indicator(l] is split or split-merging, which means leaf ! is already being split, we
unlock ¢ and help split segment s in lines 25-26. We try to insert again in line 28. In case
leaf | is merging with another leaf, [ is split by calling originate-split in line 31. In case [
has been deleted, though s has not been deleted yet, we insert key in the leaf pointed to
by right{l] in line 33.

Figure 4.7 shows the pseudocode of splitting a leaf of a concurrent priority pool.
Procedure originate-split splits leal | and inserts & iuto the priority pool. Procedure spiit
splits a segment.

At the entry of originate-split, we assume [ has been locked. Line 1 checks indicator|l]
and changes it as depicted in Figure 4.5: if it is normal, then it is changed to split; if it
is merging, it is changed to split-merging. Line 6 creates a new empty leaf I’ with right
bound, right link. segnum, segsize set to the same as those in leaf /. Line 7 chooses a
separator for leaf I, and puts it in separator(l]. Line 8 unlocks I; note that the leaf lock
is held for a relatively shoit time (lines 1-8)}. Lines 9-12 split all segments in I. While the
originate-split process is splitting segments in /, there can be other processes helping split
segments in { — see line 27 of the insert procedure in Figure 4.6. After all the segments
are split. | is locked to change indicator(l] back as shown in Figure 4.5. Once again. the
leaf is locked for only a brief time. In line 20, key k is inserted into ! or I’ depending on
the chosen separator: if k is larger than sep, we insert k into I’ and vice versa. Line 21
does complete-split by trying to add a new < separator(l], I' > pair in I's parent.

Procedure split in Figure 4.7 splits segment s if it hasn’t been split yet — separator(s] >
separator(l], or it has been split — separator[s] = separator(l] and s is still full. In either
case, we move some data from s to its right neighbor /'.

The time taken to insert a key into a concurrent priority pool is composed of the
time taken to go from the tree root down to the leaf level, the time taken to insert the
key into a leaf, and the time to do complete-split. We have seen that the leaf does nct
need to be locked if it is not split, and is only locked very briefly to change the indicator
and link fields if a split happens. Thus, there is very little contention on inserting a
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proc originate—split(l, k)
% Onginate splitting leaf | k 15 a key to be inserted.

if (indicator(l] = normal)
indicatorl] := split
else
%% indicator is merging
indicator{l] := split—merging
end
Create a new empty leaf ' and link it to the right of |
separator(l] := choose—separator(s, 1)
unlock 1
forall segment s in | do
lock s
split(s. I, 1", separater[l], k)
unlock s
lock |
if (indicator[! = split)
indicator{l] := normal
else
%% indicator 18 split—merging here
indicator(l] := merging
end
unlock 1
insert k depending on sep
Do complete—split as in the concurrent B—tree
end originate—split.

proc split(s, I, I'. sep k)
%% Assume s has been locked
%% Split segment s in leaf | depending on separator sep.

right(s] = &I’
if ((separator(s] > sep) or
((separator(s] = sep) and
full(s))) them
separator[s] := sep
move some data from | to |’ using

sep a8 a filter ——~ like the insert operation as futures

end
end split

Figure 4.7: Split a leaf of concurrent priority pool
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key into a leaf if there are enough segments in a leaf. The overall time taken to do the
insert operation should be comparable to the time taken to do insertion in the concurrent
B-tree, O(lg N), where N is the number of keys in the priority pool.

4.3.4 Extract Operation

The leftmost leaf of a concurrent priority pool contains keys smaller than keys in other
leaves. The cxtract operation on a concurrent priority pool always extracts a key from the
leftmost leaf. Since the anchor contains direct pointers to the leftmost node on each level,
we can locate the leftmost leaf without going down from the tree root. This decreases
the traffic through the root.

The number of keys a leaf contains can be controlled, hence, the promising quality
of extracted keys can be controlled — we can vary segnum and segsize to control the
number of promising elements in the leftmost leaf. The extract operaiion always finds a
key that is one of the segnum * segsize smallest keys in the concurrent priority pool. In
practise, the extracted key is usually better than the given bound, because the smallest
key in a segment is extracted first.

Figure 4.8 shows the pseudocode for the extract operation. First, we randomly pick
up a segment s in leaf { and lock it. We check whether s is in normal mode in line
3. If not, we go to the leaf pointed to by s's right link to do the extract operation in
lines 38-40. Otherwise. we do “normal deletion” as following. If s is not empty then we
extract the smallest key from s in line 5. If s is empty, then we can try other segments
in lines 9-11. If we fail to find a non-empty segment in / after several tries, we merge {
with its right neighbor in lines 13-34. We lock I to check indicator(l] in line 14. In case it
is normal. the originate-merge procedure is called to start merging. In case indicator(l]
is merging, we help merge some segments in leaf [ by calling the help-merging procedure
at line 27. In case leaf | has been deleted, we go to !’s right neighbor to do the extract
in lines 29-33. If leaf { is being split, we simply go back to try other segments, because
we have not found a non-empty segm- '+ yet, so we can not help the split; if we find a
non-empty segment, then the extract operation will be done.

Figure 4.9 shows the pseudocode of the procedure originate-merging, which merges
two leaves in the concurrent priority pool. We assume leaf ! is locked upon entrance. Line
1 finds I's right neighbor I and locks it. Line 2 tests the indicator of I'. If it is normal,
we merge [ and /' in lines 4-21, do complete-merge as in the concurrent B-tree, and redo
the extract operation in lines 22-23. The locks of leaves [ and I are acquired only to
change their indicator and right fields in lines 4-8. Lines 11-14 mc.ge all segments in !’
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proc extract(l)
%% ertract a key from leaf | 1n the concurrent priomity pool

(label#0) randomly pick up a segment s in |
(label#1) lock s
if indicator{s] = normal then
if s is not empty then
extract the smallest key frem g

unlock s
else
if we have not tried to delete enocugh times then
unlock s
8 := another segment in |
goto (label#l])
else
%% do merge here
lock 1
case indicatorll):
normal:
%% normal merge
unlock s
if | s not the rightmost leaf then
originate —merge(l)
end
split:
unlock |
unlock s
s := another segment; goto (label#1l)
merging: .
unlock s
unlock |
help—merging(l, merging—leafll], right[l])
% The merging—leaf and rght fields of | should be
%  read before unlocking |
goto (label#0)
deleted:
unlock s
unlock |
I := rightl] % right{l] should be read before unlocking |
goto (label#0)
end
end
end
else
%% indicatorfs]= deleted
| := rights]
unlock s
goto (label#0)
end
end extract

Figure 4.8: Extract operation on concurrent priority pool
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proc originate—merging(l)
%% try to merge I's right neighbor I' with |
%% assume [ is locked at entry

(label#1) lock " % !’ is the right neighbor of |
case indicatorfl’)

normal:
indicator(l] := merging
indicator[l'] := deleted

merging—leaffl] := &P
right(l] := right[l")
rightl’) = &l
unlock I’
unlock 1
forall segments s’ in 1I' do
lock ¢’
match—merge(s’, 1, ', ")
%% 1”7 1s the right neighdor of | and should be read before unlocking |

unlock s’

lock 1

if (indicator{l] = merging)
indicator(l] := normal

else
%% indicator is split—merging
indicator{l] := split

end

unlock 1|

Do complete merge like in the concurrent B—tree

extract(l)

split, split~merging:

unlock I’

unlock |

extract(l)

%% This 1s a rarely happening loop. We cannot help split here,
%% swmce I, the destination leaf, 1s unlocked and may be merged again.
metging:
unlock I’
unlock |
help—-merging(l’, merging—~leafll’}, right[l’])
%% assume merge—leafl’] and rghtl’] are read before unlocking I’
extract(l)
deleted: error
end
end originate—-merge

Figure 4.9: Merge two leaves of concurrent priority pool
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with segments in leaf [. The match-merge procedure, which is described later, is called
to ensure that every segment in ! will be updated. While the originate-merging process
is merging the segments in I’ into /, other processes can help to do the merge as shown
in line 31. Lines 15-21 lock ! to change its indicator back to normal or split. Once again,
the leaf lock is held briefly. If indicator[l'] is split or split-merging, we just go back to
extract again in line 27. If indicator[l'] is merging, we help merge some segments in
lines 28-32. The indicator of I’ cannot be deleted, because deleted leaves are moved out
of the linked list — they cannot be {’s right neighbor.

Procedure match-merge, as shown in Figure 4.10, merges segment s’ of leaf I' with
the corresponding segiment s of leaf {. Because there are the same number of segments
in every leaf, it is not hard to create a one-to-one correspondence between segments in
two leaves. Leaf [ was the right neighbor of I, but may be not now. Consider the
example shown in Figure 4.11, in which leaf [ is changed to the split-merging state from
the merging state. and a new leaf Inew is created between [ and !". Segment sl in / has
been split, so s1’s right link points to Inew. Segment s0 in ! has not been either split or
merged yet, so its right link points to !. Segment s2 in ! has been merged but has not
been split yet — its right link points to {”. The right links of segments in leaf [ are set
to point to I” if the segments have not been split or merged; otherwise, the right links
are left unchanged. The split process, concurrently goine on with the match-merge, will
change the right links of all segments in [ to point to Inew as shown in line 1 of the split
procedure in Figure 4.7. Thus, the match-merge procedure will change s0’s right link
to point to I because it has not been either split or merged; s1’s right link will not be
changed since it has been split; segment $2's right link will be changed to point to Inew
by the concurrent split process.

Figare 4.10 also shows the pseudocode for the help-merging procedure. This help-
merging procedure randomly picks up a segment ' from leaf I', locks it, and calls match-
merge to merge the segment if &' is in normal mode and non-empty, then unlocks it.
Actually, we could help to merge more segments in the help-merging procedure.

Assume there are enough number of segments in a leaf, so that there is not much
contention on grabbing a segment from the leaf. If the segment is not empty, then the
callaci UPEration lakes uniy constant time — it can just take the smallest key in the
segment. If the segment is empty and we cannot find a non-empty one after several tries,
we need to merge the leftmost leaf with its neighbor, which takes O(segnum * segsize)
time. If we count in the time taken to do complete-merge, O(lg N), the extract operation
takes time O(lg N).
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4.4 Summary

This chapter presents another new concurrent priority queue called the concurrent pri-
ority pool, which is based on concurrent B-trees and concurrent pools. The concurrent
priority pool supports insert and extract operations like the parallel Fibonacci heap. The
structure of the concurrent priority pool is very similar to the concurrent B-tree, except
the leaves are replaced with concurrent pool-like data structures. Each leaf of a concur-
rent priority pool consists of several segments, each of which contains a fixed number of
kevs. There can be different operations going on different segments in the same leaf. The
lock granularity of normal insert and extract operations is pushed down to the level of seg-
ments instead of leaves. Even when splits and merges happen, the leaves are locked only
briefly. The insert and extract operations do not share critical resources in most cases,
which is one of the reasons why the concurrent priority pool has the largest throughput
among all the priority queues studied, as shown by the experimental results in Chapter
5. Also. the concurrent priority pool provides a straightforward way of controlling the

promising quality of extracted keys.
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proc match—rmerge(s’, I, I, 1")
%% Match—merge moves data from segment s’ of leaf I’ into the
%% corresponding segment in leaf .

1 Lock s %% s 1s the segment in ! corresponding to s’ {'
2 if (right[s] = I') then
%% s hasn't been esther merged or splitted
3 right(s] = &I
4 separatorfs] := right~bound[l’]
5 end
6 Transfer data from segment 8’ in ' to s,
RZ In this way. we are sure that every segment in ! 13 touched.
7 If it does not all fit, insert the rest normally by calling insert procedure as futures.
3 Unlock s
9 indicator(s’] = deleted
10 end match—merge
proc help—merging(l, I', I")
1 Choose a segment s’ in I’
2 Lock s’
3 if ((indicator{s'} = normal)
4 and (not empty(s'))) then
5 match—merge(s’, |, I', I")
6 end
7 Unlock ¢
8 end help—merging

Figure 4.10: Match merge corresponding segments in two leaves on concurrent priority
pool
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Figure 4.11: Match-merging two leaves | and I’
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Chapter 5

Experimental Evaluation

In this chapter we present the experimental evaluation of the parallel Fibonacci heap and
the concurrent priority pool and compare them with the concurrent binary heap. Section
5.1 describes the experimental environment and model. Section 5.2 shows the effects of
different parameters on the parallel Fibonacci heap. Section 5.3 shows the the effects
of different parameters on the concurrent priority pool. Section 5.4 coinpares different
concurrent priority queues in terms of throughput. Section 5.5 presents two applications
of concurrent priority queues: the single source shortest path problem(SSSP) and the
vertex cover problem(VCP). Finally, Section 5.6 summarizes this chapter.

5.1 Experimental Environment

Experiments have been performed on Encore Multimaxes. The language used is Mul-T
(KHM®9]. a Lisp-like programming language with futures and lock mechanisms. Two En-
core machines have been used in the experiments: one with ten processors at LCS/MIT,
where most of the debugging tests were done; one with twenty processors at the Argonne
National Lab !.

In most of the experiments, the master-worker model is used: a master spawns a fixed
number of workers, each of which performs access-think cycles. An access can be an insert,
extract, decrease key or delete on a concurrent priority queue. Think time is modeled
by a simple delay in a loop; the number of iterations denotes the think time. Think =
0 means the workers do not think at all, and think = 1000 means think consists of 1000

'Only 18 processors can be used for running Mul-T. Due to some unknown errors, running Mul-T
with large number of processors has caused the Encore at Argonne Lab to crash. Thus, we did not get
all possible data up to 18 processors.
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loop iterations. Since the decrease key and delete operations are not supported well on
binary-heap-based concurrent priority queues and concurrent priority pools, we compare
them by measuring only the insert and extract operations. In most trials described in
this chapter, the following worker model is used unless otherwise stated: the number
of workers is equal to the number of processors available; each worker performs access-
think cycles on a heap initially containing 1000 keys?, and access to the priority queue
is composed of 55% inserts and 45% extructs. The keys inserted are randomly chosen
from the range 9 to 10000. All workers are started at approximately the same time,
and the first worker that finishes 1000 access-think cycles will stop other workers. The
throughput is the total number of cvcles performed by all the workers divided by the

elapsed time. [ used the timer facilities of Mul-T version 25 to collect data.

5.2 Parallel Fibonacci Heap

The parallel Fibonacci heap has three parameters: mazpt, buffersize, and strictness as
described in section 3.4.5. We have tested different combinations of buffersize and strict-
ness, with mazpt set to be the same as the number of processors. Figure 5.1 shows the
throughput (cycles/second) vs. the number of processors, while the think time is 0. We
can see that the throughput in the trials is linearly increasing with the number of proces-
sors, from around 70 with 2 processors to around 680 with 18 processors. We can roughly
see from Figure 5.1 that all the curves are very close to each other, which indicates that
the parameters buffersize and strictness do not affect the throughput too much. Trials
with larger buffersize and strictness have a little larger throughput. However, strictness
has more impact than buffersize. Note in Figure 5.1 that the throughput is quite good
when buffersize = 1, and strictness = 1. Buffersize = 1 means only the least key in a
parallel Fibonacci section is selected as a candidate for the promising list in the process of
consolidation, and strictness = 1 meaus the promising list will only get better candidates
from direct promise-checking since the good heuristic function filters out almost all keys
worse than keys in the promising list.

Figure 5.2 shows the throughput vs. the nuinber of processors when think = 1000,
and different buffersize and strictness. The curves are quite similar to the case of think
= 0. except the throughput is less due to the think time. Figure 5.2 also shows the trials
with strictness equal to 1. [t shows the throughput of the parallel Fibonacci heap does

?This avoids extracting from an empty priority queue.
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Figure 5.1: Paralle!l Fibopaca heap: Throughput (cycles/second) vs. number of proces-
sors while think =0, different v ilues of parameters buff size and strictness

not change too much with different buffer when strictness = 1.

5.3 Concurrent Priority Pool

The concurrent priority pool Las two parameters: segnum, which is the numnber of seg-
ments in a leaf, and segsize, which is the number of keys coutained in each segment and
the number of < pointer, bound > pairs in an interior node. We have done some exper-
iments on different values of segnum and segsize. In the experiments, ordinary blocking
locks are uscd instead of read-write locks (see Section 4.1). Using read write locks should
reduce the contention on interior nodes of the B-tree. F'zure 5.3 shows the throughput
vs. the number of processors when think = 0, segsize = 3, and different segnum. Fig-
ure 5.4 shows the throughput vs. the number of processors when think = 0, segsize =
5. and various segnum. Figure 5.5 shows the curves when think = 0, segsize = 7, and
different segnum. These three graphs have one thing in common: the throughput are
linearly increasing with the number of processors, and all the curves are close to each
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Figure 5.2: Parallel Fibonacci heap: Throughput (cycles/second) vs. number of proces-
sors while think = 1000. different values of parameters buffersize and strictness

other, which means the parameters o not affect the throughput too much.

5.4 Comparing Different Concurrent Priority Queues

Wo have seen how the parallel Fibonace) heap and the concurrent pool perform on differ-
ent parameters. Here, we consider how they compare with each other, and how they com-
pare with other kinds of concurrent priority queues, such as the concurrent binary heap.
The concurrent binary heap compared here was developed by Rao and Kumar[RK88b).
They proposed a method of performing insert and delete operations concurrently in a

top down order on a balanced binary heap. The insert operation locks one node at a

tir e, and the delete operation locks three nodes, a parent and two children, at a time.
’ Their scheme has strict semantics for the extract operation, which means the extract
operation always retrieves the most promising key. The problems with strict semantics
have been discussed in Section 3.1.

Figure 5.6 shows a comparison of the throughput of different priority queues: the
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Figure 5.3: Concurrent priority pool: think = 0, segsize = 3, different segnum

sequential binary heap, the concurrent binary heap, the concurrent priority pool, and the
parallel Fibonacci heap. Each operation on the sequential binary heap has an exclusive
lock on the whole heap during the entire period of the operation. The parallel Fibonacci
heap tested here 1s an average one. with buffersize and strictness both equal to one. The
concurrent priority pool tested has segnum equal to the number of processors, and segsize
equal to 5. The graph shows that the throughput of the parallel Fibonacci heap and the
concurrent priority pool are both linearly scalable, and that the concurrent priority pool
has the largest throughput among these four priority queues. The concurrent binary
heap's throughput saturates when the nuinber of workers is more than about eight.
Since the sequential binary heap holds a lock on the entire heap during an operation, its
throughput decreases as the number of processor increases. Because all the insert and
extract operations of a concurrent binary heap both have to go through and lock the
tree root, the tree root becomes a bottleneck when the number of processes accessing
the concurrent binary heap increases. This bottleneck problem is reflected in Figure 5.6,
which shows that the throughput of a concurrent binary heap saturates quickly. Overall,
the concurrent binary heap is not as scalable and efficient as either the parallel Fibonacci
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Figure 5.4: Concurrent priority pool: think = 0, segsize = 5, different segnum

heap or the concurrent priority pool.
Figure 5.7 shows the comparison when think = 1000. The contention on the priority
queues is less than that of think = 0; this helps slow down the saturation of the less

scalable priority queues.

5.5 Applications

Two kinds of applications of concurrent priority queues are presented in this section. One
13 the single source shortest path problem which is in the computational class P. The
other one is the vertex cover problem which is in the computational class NP-complete.

5.5.1 Single Source Shortest Path Problem

The single source shortest path problem is as fcllows: given a source vertex s in a weighted
graph G =< V| E >, find a path of minimum weight from s to every v € V. We choose
Dijkstra's algorithm as our basis{CLR90]. As shown in Figure 5.8, we keep a priority
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Figure 5.5: Concurrent priority pool: think = 0, segsize = 7, different segnum

queue @ of vertices in V. The prioritv of a vertex in Q is its distance from the source
vertex s. The algorithm always chooses the vertex u that is the closest to s to add into
S. For each vertex u's neighbor v, we check if a shorter path has been found: if so,
we update d[v] in line 11. Note that vertices are never added to Q, and each vertex is
extracted from @ and added to S exactly once.

The parallel single source shortest algorithm is presented in Figure 5.9. Independent
workers work on a concurrent priority queue. These workers perform the same job as
their sequential counterparts: extract a close vertex n from the queue and check all
n's neighbors to see if closer paths have been found. Unlike the sequential Dijkstra’s
algorithm, when we extract a vertex from the concurrent priority queue, the vertex does
not necessarily have to be the closest one from the source. In this way, a node may
be inserted into the queue several times if a better path is found later on. However,
the expe-iments show that on average each node is inserted no more than 1.3 times.
Similarly, more decrease key operations are performed.

This algorithm requires the use of the decrease key operation; since the decrease key

operation cannot be effectively implemented on the concurrent binary heap, we only
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Figure 5.6: Comparing different priority queues: think = 0

compare the sequential binary heap, the parallel Fibonacci heap, and the concurrent
priority pool. For the concurrent priority pool, the decrease key operation is implemented
as a combination of delete and insert operations: first we delete the old key from the
pool. then we insert the new key into the pool. In this way, a decrease key operation
for the concurrent priority pool consists of two accesses whereas it i3 a simple operation
with amortized constant cost for the parallel Fibonacci heap. In the implementations,
we have kept track of where a key is in a priority queue to avoid searching when we do
decrease key operations.

Figure 5.10 shows the speedup graph of the single source shortest path problem. The
graph has 1000 vertices and the degree of each vertex is randomly chosen from 0 to
either 10 or 50. The sequential binary heap is used to compute speedup. The sequential
program is very <fficient (it is in computational class P) and always finds the shortest
path to any vertex in shorter steps as compared to the case of concurrent priority queues
where we do some extra work such as inserting a vertex in the queue several times and
decreasing the distance of a vertex more often. As expected, the speedup ranges from
around 0.3 with one processor to about 4.5 with fifteen processors. The parallel Fibonacci
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proc Dijkstra(G. s)
% Find the shortest path from source s

for each vertex v in V[G]
do d[v] := oo % nitsahze distance to be $\infty$

dls] == 0
S =19
Q = V[G]
while Q #0 do
u = extract—min(Q)
S = SU{u}
for each vertex v in Adjlu] do % relaz edge (u, v)
if dfv] > d{u] + wlu, v} then
d[v] == d[u] + w[u, v] % this s a decrease key operation
end
end Dijkstra

Figure 5.8: Dijkstra’s single source shortest path algorithm
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heap has slightly greater speedup than the concurrent priority pool on large number of
processors (around ten). This could be caused by the fact that the decrease key operation
on the parallel Fibonacci heap is more efficient. '

5.5.2 Vertex Cover Problem

A vertex cover of an undirected graph G = (V, E) is a subset V' € V such that if (u, v)
is an edge of G, then either u € V' or v € V' or both. The size of a vertex cover is the
number of vertices in it. The vertex cover problem (VCP) is finding a minimal vertex
cover for G [Vor87, PS82, CLR90, KRR88]. VCP is an NP-complete problem [CLR90).
As many other NP-complete problems, VCP can be attacked with branch-and-bound
algorithms [LW66, jJLW84, LS84].

Figure 5.11 shows a parallel branch-and-bound algorithm for VCP. In line 1 of the
master procedure, an upper bound Cy of the VCP is found by using a greedy algorithm,
i.e.. picking vertices with larger degree first to get a cover. We start from an empty
cover and fork off some workers to search the state space of the VCP. The priority queue
@ keeps track of all the partial subcovers that have better lower bound than Cy. Each
worker repeatedly takes subcovers out of @) and puts bigger subcovers that have lower
bounds smaller than Cy into @ until the smalizst vertex cover is found. In the pseudocode
for the workers, line 2 extracts a subcover C. Line 6 finds a ver.cx z not in C that covers
edges not already covered by C. We generate C’s two successors Cy and C; by either
including r or excluding z in lines 7-10. Excluding z is equivalent to including all z's
neighbors into the cover. In line 11, we compute the lower bounds for the newly generated
subcovers. A lower bound b for a subcover C' means that every vertex cover for G that
contains C will be of size at least 6. Intuitively, b6 = {C{ + the least number of vertices
that have to be added into C to form a cover. We compute the second item by finding
a match M of the graph uncovered by C*. Because at least one of the two endpoints of
each edge in M has to be included in a vertex cover, b = |C| + |M|. In line 12, if we find
a vertex cover that has better bound than the global bound Cy, then we replace Cp with
the new cover. We insert subcovers that have better lower bound than Cp back into Q.

Figure 5.12 shows the speedup graph of VCP on a 50 vertex graph with degree
randomly chosen from 0 to either 10 or 16. The sequential binary heap is used as the
basis to compute speedup. The concurrent priority pool and the parallel Fibonacci heap

3A match is a set of independent edges, i.e., edges that do not share common vertex. We can use any
kind of match to compute the lower bound here; the maximal match gives the best bound, but takes
more time to find. In the experiments, a simple greedy match is used.
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both have good scalable speedup whereas the concurrent binary heap saturates when
the number of processors is more than ten. The graph also shows that the concurrent
priority pool has slightly greater speedup than that of the parallel Fibonacci heap. Both
the concurrent priority pool and the parallel Fibonacci heap have greater throughput
when the degree upper bound of the vertices is bigger (i.e., 16 in the graph). The results
are quite consistent with the synthetic data presented in the last few sections.

5.6 Summary

Some experimental results on different concurrent priority queues have been presented in
this chapter. For the parallel Fibonacci heap, the parameters buffersize and strictness do
not affect the running time much. In fact, the parallel Fibonacci heap performs fairly well
in the quite strict case, when buf fersize = 1 and strictness = 1. For the concurrent
priority pool, the effects of the parameters segnum and segsize do not seem to affect
the throughput much either. The comparison of different concurrent priority queues,
as shown in Figure 5.6, indicates that the parallel Fibonacci heap has linearly scalable
throughput; the concurrent priority pool has the largest throughput and at the same
time it has a linearly scalable performance. The throughput of the concurrent binary
heap saturates when the number of processes accessing it is more than about eight. The
sequential binary heap’s throughput decreases as the number of processors increases.

Two different types of applications of concurrent priority queues, namely single source
shortest path problem and vertex cover problem, have been implemented. The single
source shortest path problem is in the computational class P and can be efficiently solved
by using sequential binary heaps. Both the parallel Fibonacci heap and the concurrent
priority pool have good scalable speedup, although it is around 0.3 with 1 processor and
4.5 with 15 processors. The vertex cover problem is an NP-complete problem. Both the
parallel Fibonacci heap and the concurrent priority pool have good scalable speedup.
When the degrees of vertices in the graph are relatively large, the speedup is close to
linear. The concurrent binary heap’s speedup saturates when the number of processors is
more than about ten. The results on applications are quite consistent with the synthetic
data.
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%% pseudocode for the single source shortest path problem
%% Find the shortest paths from source s to all other nodes in the graph
%% Data structure: the graph 1s represented as an adjecent ...

proc worker(q)

loop
0 = extract—min(q)
if o0 = nil then
%% q 15 emply
Termination test; see if the worker can quit

else
mark{n] := not—in—queue
%% n has been taken out of g
For each neighbor in adj[n] do
lock neighbor
if d(n) + w(n, neighbor) < d(neighbor) then
if mark[neighbor] = not—in—queue then
insert neighbor into q with new—distance
else
decrease—key(neighbor, new—distance)
end
end
unlock neighbor
end

end
end worker

proc master

Q=290

Put source s in Q with priority 0
Fork off some workers to work on q
end master

Figure 5.9: Parallel single source shortest path algorithm
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Figure 5.10: The speedup graph for the SSSP problem
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proc worker(Q)

1 loop
2 subcover := extract—min(Q)
% subcover = (C, b) where C 1s the set of vertices and
% b 1s the lower bound (ie., the key in Q).
3 if subcover = nil then

% @ is empty

4 Termination test; see if the worker can quit

5 else

6 Find a vertex x not in the cover C such that x covers
7 edges that are not already covered by C

R Generate two subcovers C; and C,

9 C, includes vertex x

10 C, includes x’s neighbors

11 Compute the corresponding lower bounds b, and b;

12 if one of the new subcovers forms a vertex cover that
13 is smaller than the current cover Co then

14 replace the current cover with the new one

15 if newly generated subcovers have better bound than the current
16 one then insert them into Q

17  end

18 end worker

proc master{G)

1  Generate an initial cover Co using greedy algorithm
Q := empty cover with bound 0

3 Fork off some worker(Q)

4 end master

Figure 5.11: The branch-and-bound algorithm for the vertex cover problem
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Speedup graph of the VCP
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Figure 5.12: The speedup graph of the VCP
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Chapter 6

Conclusion and Future Directions

6.1 Contributions

This thesis presented two novel concurrent priority queues: the parallel Fibonacci heap
and the concurrent priority pool, both of which have non-strict semantics (see section
3.1). The parallel Fibonacci heap is based on the sequential Fibonacci heap, theoreti-
cally the most efficient data structure for sequential priority queues. This scheme employs
distributed small critical sections so that it has linearly scalable throughput. The experi-
mental results in Chapter 5 showed that the parallel Fibonacci heap has linearly scalable
‘hroughput that is larger than that of the concurrent binary heap with even small num-
ber of processors. A concurrent access scheme for a doubly linked list was described as
part of the Fibonacc: heap.

The concurrent priority pool, based on the concurrent B-tree and the concurrert pool,
has the largest throughput among all of the priority queues tested, besides providing
a easy way to control the quality of extracted nodes. The experiments showed that
the concurrent priority pool also has linearly scalable throughput. The three kinds of
concurrent priority queues, namely the parallel Fibonacci heap, the concurrent priority
pool, and the concurrent binary heap, were evaluated on an Encore machine using the
language Mul-T.

Two different types of applications of concurrent priority queues have been tested.
One is the single source shortest path problem, which belongs to the computational class
P. The other one is the vertex cover problem, an NP-complete problem. The results show
that the parallel Fibonacci heap and the concurrent priority pool both have good scaleble
speedup on the applications whereas the concurrent binary heap saturates quickly. The

speedup is larger on VCP than on SSSP.
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6.2 Future Directions

6.2.1 More experiments

More experiments will be done when the simulator asim becomes practically usable.

6.2.2 Distributed Memory Model

The concurrent priority quev=s discussed in this thesis are mainly based on the shared
memory model. Here, we discuss see how they can be modified to use a distributed
memory model.

The parallel Fibonacci heap is nicely divided into many sections. In a distributed
memory model, each processor can have a section in its local memory and the promising
list m.y be replicated. The promising list does not have to be updated synchronously on
all processors. The insert operation can insert in the process’ local section, or randomly
pick up a remote section to insert in depending on the network communication cost.
The extract operaiion first tries to extract a local promising node. If there are no local
promising nodes, the extract process finds remote promising nodes through the promising
list. If the consolidation process finds that the quality of local nodes is not as good as
rodes at remote processors, then some trees can be moved to balance the quality of nodes
on different processors. Since a parallel Fibonacci section is a forest of trees linked in a
doubly linked list, it i1s easier to move data around than if a section were a binary heap.

For the concurrent priority pool whose skeleton is a concurrent B-tree, we can imple-
ment each B-tree interior node and segment as an object. Since all the insert operations
go through the B-tree root, we may want to replicate interior nodes close to the root
on different | Jcessors to diffuse the traffic on the upper part of the B-tree !. Similarly,
because all ex.ract-min operations go through the leftmost leaf, it would be desirable to

put different segments in the leftmost leaf on different processors.

6.2.3 Other Related Research
Kumar et al [KRR88] introduced several distributed binary heaps. They used three kinds

of communication methods among processors to balance load: blackboard, random, and
ring, and pointed out that the blackboard approach is the best.

'This problem 18 examined in Paul Wang’s thesis[Wan90).
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Driscoll et al [DGST88] have proposed a parallel priority queue for SIMD machines
that 1s called a “relaxed heap™. Van Emde Boas presented sequential priority queues
[VEB75] that support insert, extract, delete and other operations in worst-case time
O(lg lg n), if all the keys in the priority queue are restricted in the set {1, 2, ..., n}. It
would be interesting to see if a more efficient parallel priority queue caa be built using

this as a base.
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