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Abstract

!he vro , c- ( q nu i 2 ml aJ:lta data structure that is used in a large variety of
V urailel algorilthiiis, such a.s niultiroccessor scheduling and parallel best-first search of

I T ''pace graphs. This thesis addresses the design and experimental evaluation of two
novel ,concurrent priority queues: a parallel Fibonacci heap and a concurrent priority
pool. anid compares theem with the concurrent binary heap. - , parallel Fibonacci heap
is nased on t~he sequentia] Fibonacci heap, which is theoret'-aily the most efficient data

s'tructiire Ior sequential priority queues. This schece not only preserves the efficient
c, pilion time bounds of its sequential counterpart, but also has very low contention

L x Iii Arbuting locks over the entire data striture. The experimental results show its
1:,,,,,, scr'I,, throughiput and speedup up to as many processors as tested (currently

1}. :A couriurrent access scheme for a doubly linked list is described as part of the
i. of the ,;arallel Fibonacci heap. The concurrent priority pool is based

ol hco currentr B tree and the concurrent pool. The concurrent priority pool has the
Ii" am/noi t he p,- riority oluces studied. Like the parallel Fibonacci heal),
ho (on irrent pririty pool scaie, linearly up to as many processors as tested. The

priority queues are tvaluated in terins of throughput and speedup. Some applications of
,ricurroit priority qlieue, such as the vertex cover problem and the single source shortest
at ih problem are tested.

Keywords: parallel, concurrent, algorithm, priority queue, pool, B-tree, Fibonacci
heap. doubly linked list

Thesis Supervisor: William E. WeihI
Title: A.ssociate Professor of Computer Science
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Chapter 1

Introduction

1 rt r u o i ii rlamren tal dat a t ructutre t hai is- usedi in a large variety or

narac, ~ ru 11h.in. dirv a~ utprocessor scheduhi eg and b ale est-firs' searcn -,

stae-pce rans VriA. ui~i.Pea04, KRRS81. In these algorithmis, each process
r~e~our>an~ccsst hnkcyce.L ery proess worK, n1 its c:urrent no,'- ( thinki ng),

tIir acree the shared prioritv queue to Mnrt oe if it cerR'ratNI any, extract a

hr o~~ ry n-ode to work on next, ncrerise the priorities of some nodes by dect-easing

thet keys" & -d drc1 te s ome nodes from tle priority queue if the.,, no longer need to be

worsecit- or' eqiren tial Priority queues are usuallv rej resented as, binary heaps, Fibona cci

heaps, or B3-tree-s (see Chapter 2). Col'jurrenit priority queues t.re used in a large number

of parallel algorithm-s. An example is Seneff's speech recignitioni parser~SenS91. which

Iiiau i tau tis a prior: tv queue of uriparsed grarn, ir noules with aF~ociated priorities. and

ode it hIgeprritsfrs.

We rall the extract operation of a concurrent pridritv queue strict if it extracts the

e,'irtwith The highest priority in the qu,,ue. Strict extract opera tionis requ're some kind

4 sriaizainof operations performieJ on a queue, which increases the contention on

the queue. As discu.se in section 3.1, most applications only nieed to extract promrising

elemnitrts that have high prio-ltv instead of the highest priority; this fact -an be used to

dec'rease contention on the prio--Ity queue. However, the promising quality oi extracted

niode-s should be controlled to satisfy the requirements of different applications.

Biswas and Browne [BB87] present a scheme that allows parcilel insertions and ex-

tractions in strict concurrent binary heaps, but it does not perform better than the serial

access scheme even for heaps with 1 ,000 nodes. In the serial access scheme, each operation

In this thesis, we use sniall keys to d-note high priority.

9



locks the binary heap exciusively during the whole period of the optratior. tao and Ku.

mar [RK88b] describe a concurrent binary heap algorithm for concurrent priority queues

that has less overhead and provides strict extract operations. Howcver, their scheme sat-

urates when the number of processes accessing the priority queue is greater than about

ten,. More recently. Kumar et al[KRRSS) present several 'distributed" formulations of

priori-,, queues based on binary heaps with relaxed strictness v; priority.

This thesis presents the design and experimental evaluation of different implemnen-

tations of concurrent priority queues. We present a novel concurrent priority queue
mechanism based on the Fibonacci heap, which is theoretically the most fficient data

structure for the sequential priority queue. This parallel Fibonacci heap provides oper-

ations that are theoretically and practically more efficient than the concurrent binary

hcap. A cuticurrent acce-s scheme for a doubly linked list is described as part of the

Fibonacci heap implementation. We also describe a new concurrent priority queue, the

cnc.rre,,t priority pool. that is based on concurrent B-trees [WW901ILY',.IIILSS87 ] and

concurrent tcools IKE'W91 ManS6. As shown in (hapter 5, this scheme has the highest

hroughpit m,,ng ail concurrent priority queues studied here. The performance of dif-

f7r: t c 1 r rent prior:ty queues is ana!zed using the language Mul-T[KHM89j on an

Encorf ,fultf":ra sharel meniory multiprocessor. The performance indicates that both

the paraiiei F:Ibonacc: heap and the concurrent priority pool are linearly scalable and

have larver throlughput than the concurrent binary heap. The s;ngle source shortest path

pr,,bem ani te vertex cover problem are tested as applications of concurrent priority

1.1 Parallel Fibonacci Heap

The para'lol Fibonacci heap is based on the sequential Fibonacci heap, which is theoreti-

cally thlie most efficient data structure for sequential priority queues. The critical sections

acquired by the operations on the parallel Fibonacci heap are small and distributed over

the entire data structure. Therefore, the parallel Fibonacci heap has low contention. The

insert operation takes constant time, the decrease key operation takes constant amor-

tized time, and the extract and delete operations take logarithmic time. This scheme

provides more scalable operations and higher throughput than current schemes such as

the concurrent binary heap. An algorithm for concurrent access to doubly linked lists is

2rhis value depends on the length of the think time. Experimental results are shown in Chapter 5.

10



described as part of the Impiementation of parallel Fibonacci heaps.

1.2 Concurrent Priority Pool

Concurrent priority pools are based on concurrent B-trees and concurrent pools. Since
the concurrent priority queue employs a distributed-data structure(the pool), the insert

and extract ci,,.aiuns do not share critical resources in most cases. As shown in Chapter

5, concurrent priority pools have the highest throughput among all concurrent pror,,

queues investigat, d. Concu-rent priority pools also allow tight control over the quality of
extracted nodes. Insert operations run in logarithmic time. and extract operations take

logarithmic time in the worst case.

1.3 Experimental Environment

i performed most of the experiments on two Encore shared memory multiprocessors.

One of the Encore machines has 20 processors of which IS processors can be used for

running Mul-T. The concurrent priority queues were implemented in Mul-T, a Lisp-like

programming language with futures and locking mechan isms.

1.4 Overview

Chapter 2 describes various implementations of sequential priority queues, such as binary

heaps, binomial heaps, Fibonacci heaps, and B-trees.

Chapter 3 presents the data structure and concurrent access algorithms for the parallel
Fibonacci heap. The concurrent operations on a doubly linked list are described as part

of the implementation.

Chapter 4 presents the data structure of concurrent priority pools and concurrent

operations on it.

Chapter 5 gives an experimental analysis of different implementations of concurrent

priority queues.

Chapter 6 presents a summary of what has been accomplished and discusses some

related research and directions for future research.

11



Chapter 2

Preliminaries of Sequential Priort~v

Qtieies

-. >~- :D r'or:.ess Wh n a roc 2-

-- -- -- , r~a: Dr . D7 l2r~ ueule to WVor{ OnA~

~ i:i>.u s ~es~~- si~~ ~ichin~av Zaiao rih such as Diikstra's
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Binary heap Binomial heap Fibonacci heap B-tree
Operation (worst-case) (worst-case) (amortized) (worst-case)
INSERT 0(tg n) O(,g n) O(1) O(tg n)
EXTRACT O(Ig n) E)lg n) O(Ig n) 0(ly n)

DECREASE O(Zg n) O(lg n) )(1) O(Ig n)
DELETE Olg n) O(1g n) O(Ig n) 611g n)
UNION O(n) I (lg n) I (1) Not well supported

Table 2.1: Time bounds of operations on different sequential priority queue implernenta-
tions

the SSSP algorithm, a priority queue is used to monitor the distance of each vertex from

the source, and the algorithm always explores the "closest" vertex first. In the VCP, we

use a priority queue to keep track of the state-space search graph.

This chapter discusses different implementations of sequential priority queues, binary
heaps. binomial heaps, Fibonacci heaps, and B-trees. We adopt the notation from the

book Introduction to Algorithms[CLR90]. Table 2.1 shows the running times for opera-

tions on these four implementations of pr ,rty, queues. The number of nodes in the heap

at the time of aa operation is denoted by n.

2.1 Binary Heap

2.1.1 Data Structure

The binary heap can be viewed as a complete binary tree, as shown in Figure 2.1(a), each

node of which has a key. The heap satisfies the heap property: the value of a node is
at least as big as the value of its parent. Thus, the node with the smallest key in a heap

is stored at the root, and the subtrees rooted at a node contain larger values than the

node. The tree is completely filled on all levels except possibly the bottom level, which

is completely filled from the left up to a point.
Before presenting the access schemes for a binary heap, we first briefly describe an

efficient representation of a binary heap using an array, as shown in Figure 2.1(b). Each

node of the tree corresponds to an element of the array. The root occupies location 1

13



Insertion path

23

4 70 9 -4

fulllevel-8 astelem= I I

(a)

1 2 3 4 5 6 7 8 9 10 11

1 31 214171 9114_'16] 81 101 151

(b)

Figure 2.1: A binary heap (a) viewed as a binary tree (b) represented as an array. The
number within the circle representing a node in the tree is the value stored at that node.
The number next to a node is the corresponding index in the array.

and node i occupies location i. The left child of node i. LCHILD(i). occupies location

2z and its right child, RCHILD(i), occupies location 2i + 1. The parent of node i is at
I- Associated with the heap are data fields lastelern and fulllevel, in which iastelem

is the index of the last non-empty node of the heap and fullievel is the index of the

first node at the bottom level of the heap that contains at least one non-empty node.

For an empty heap, lastelem = fulllevel = 0. An empty node has a special key called

MAXINT whose value is cc. Figure 2.1 shows a heap with 11 keys, and the values of

lastelem and fulllevel.

2.1.2 Operations on a Binary Heap

The operations usually performed on a binary heap are insertion and extraction. Here

we show the algorithms [RK88a] for doing insertions and deletions; both proceed from

the root to the bottom of a binary tree.

14



The insert operation adds a node into the binary heap. Let target be the first empty
node in the heap; this will be the last non-empty node after the insertion. The insertion
path is the path between the root and target. Figure 2.1(a) shows a ten node heap, to
which the eleventh node is being added. The insertion path can be traversed starting

from the root as follows. Let I be the displacement of target at the bottom level(i.e.,
I = lastelem - fullievel) and P be the length of the insertion path. If we view I as a P
bit binary number, the bits of the binary representation of I (from the most significant
to the least significant) tell us whether to go right (if 1) or left (if 0) when we go from the
root downward. In the example in Figure 2.1(a), fulllevel = 8. target = 11. so I = 3 =
(011) in binary representation. This means that we can go from the root to the target
by following left, right, and right branches at successive levels. The algorithm is given in

Figure 2.2.
Figure 2.3 shows the pseudocode for the delete operation. It removes the root of the

heap and places the key of the last non-empty node of the heap at the root. The heap

property may now be violated at the root of the heap. Reheapification is performed by
repeatedly pushing this key downward until the heap property is satisfied.

Since a heap of n nodes is based on a complete binary tree, its height is ®(ig n). The
insert and extract operations run in time at most proportional to the height of the tree;

thus, these operations take O(lg n) time.

2.2 Fibonacci Heap

Fibonacci heaps were introiuced by Fredman and Tarjan[FT87]. The Fibonacci heap
has the best amortized time bound for all operations among the implernentaticas listed
in Table 2.1. From a theoretical point of view, Fibonacci heaps are especially desirable
when the number of extract-min and delete operations is small relative to the number of
other operations performed. This situation arises in many applications, such as comput-

ing minimum spanning trees[CLR90] and Dijkstra's algorithm for finding single source
shortest paths[CLR90]. From a practical standpoint, the Fibonacci heap is generally
regarded as being only of theoretical interest because of its code complexity and con-

stant overhead. However, for parallel applications, the time spent on acquiring critical

resources, like locking and waiting, can be dominant over the constant overhead. In
fact, the experimental results in chapter 5 show that the parallel Fibonacci heap is more

scalable and efficient than the concurrent binary heap whose code is much shorter. We

first examine a simpler data structure, the binomial heap, which is the basis for the Fi-

15



proc , isert(heap, ukry)
% nse- a net" nkey into heap

I lastelem := llateiem + I

2 target := lastelem
3 if (laste!em > fulllevel,2) then
4 fullievel := lastelem
5 end
6 i ta-get - fuilevel % : is the displacement of target
7 i := fullevei/2 % j = 2 1eng h of ,..sertm path - I

8 p 1 % p is the current position in the insertion path

7cReheaptfication loop
9 while (j 5 0)

10 if (keyfpy > nkey) then
11 Exchange(nkey, key[p])
12 end
13 if (i > j) then
14 p = rchild(p)
15 1 = -j
16 else
17 p !child(p)
18 end
19 j/2
20 end
21 key[p] = nkey
22 end insert

Figure 2.2: Insert operation on binary heap

bonacci heap. We then present an analysis of the data structure and the operations on

the Fibonacci heap.

2.2.1 Binomial Heap

A binomial heap is a collection of binomial trees. The binomial tree Bk is defined

recursively. The binomial tree B0 consists of a single node. The binomial tree Bk consists

of two binomial trees Bk-1 that are linked together: the root of one tree is the leftmost

child of the root of the other. The binomial tree Bk has the following properties,

1. There are 2 k nodes,

2. The height of the tree is k,
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proc delete(heap)
1 if (lastelem =0) then
2 return nil
3 end
4 least :=keyfi) % root resides at the location I of the array
5 j 1
6 h lstelem

7lastelem :=lastelem - 1
8 if (lastelem < fulllevel) then

L9 fulllevel :=fulflevel/2
10 end
11 if (j =1)
12 key[l] : MAXINT
13 return least
14 end
15 key(1l] keyfj]
16 keyb] MAXINT

% Reheaptfication loop
%K let min-son(i) be the index of the son of i twhich has smaller key

17 while (key[ij > key~min-son(i)]) do
18 Exchange(key[ij, key[rnin-son(i)])
19 i :=min-son(i)
20 end
21 return least
22 end delete

Figure 2.3: Delete operation on biiaary heap

3. The root has degree k, which is greater than that of any other node; if the children

of the root are numbered from left to right by k - 1,I k - 2, ... , 0, child i is the root

of a subtree B,

A binomial heap h is a set of binomial trees that satisfies the fol-lowing binomi;-

heap properties.

1. Each binomi~al tree in h' is heap-ordered: the key of a node is greater than or

equal to the key of its parent.

2. There is at most one binomial tree in ht whose root has a given degree.

The first property tells us that the root of a heap-ordered tree contains the smallest key

in the tree. The second property implies that an n-node binomnial heap h consists of at

Most [ig nj + I binomial trees.
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The insert operation on binomial heaps creates a new tree on its own of degree 0.
This may now violate the bionomial heap property 2 above, since there may be another
tree of degree 0. If there is another tree of degree 0. the two degree 0. trees are merged
into a single tree of degree 1 by making one tree a child of the other according to the
heap-order rule (i.e., the root of the tree with the larger key is made a child of the root
of the tree with the smaller key). This may again violate the bionomial heap property; if
so, we continue merging in recursive fashion. Thus, the insertion operation runs in time
at most proportional to the number of binomial trees, which is O(Ig n).

The extract operation is very similar to the insert operation, and also takes time
O(lg n). The worst-case time bounds for the binomial heap are shown in Table 2.1. In
particular, the Unzon operation takes only O(!g n) time to merge two binomial heaps
with a total of n elements, which is better than the O(n) time for the binary heap.

2.2.2 Structure of Fibonacci Heap

Like a binomial heap. a Fibonacci heap is a collection of trees. However, a Fibonacci
heap is a more -relaxed" data structure than a binomial heap: the trees in a Fibonacci
heap are not constrained to be as those in a binomial heap, in that there may be many
trees of a given degree as opposed to only one for a given degree in a binomial heap.
Furthermore, an interior node of a tree may lose at most one child after it becomes an
interior node and a root node may lose multiple children. This more relaxed structure
allows for improved operation time bounds by delaying work that maintains the structure
until it is convenient to perform.

As Figure 2.4 show-, a fibonacci heap is a collection of trees whose roots are linked
in ci rcular, doubly linked list called the root list; the heap is accessed through a rnin
pointer to the root of the tree containing a minimum key. An empty heap has a nil mn
pointer. Each node x in a tree contains a pointer p[xJ to its parent and a pointer child[x]

to any one of its children. The children of z are linked together in a circular, doubly
linked list called the child list of x. Each child y in a child list has pointers leftjy] and
right[y] that point to y's left and right siblings, respectively. The number of children in

the child list of node x is stored in degree[x]. The boolean-valued field mark[x] indicates
whether node z has lost a child since the last time x was made the child of another node.

The mark field is used only in decrease and delete operations.

Circular, doubly linked lists(DLL) have two advantages for use in Fibonacci heaps.
First, we can remove a node from a circular, doubly linked list in 0(1) time. Second,
given two such lists, we can concatenate them into one circular, doubly linked list in 0(1)

18
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min[h]

Figure 2.4: An example of Fibonacci heap

time. I have designed a parallel access scheme for DLL, described in section 3.2, that

preserves the abo,'e two advantages.

2.2.3 Insert Operation

To insert a node into a Fibonacci heap, we only need to insert the node into the root list

of the heap and return a pointer to it. If the heap was empty, or the newly inserted node

has a smaller key than that of the minimum node, min is changed to point to the new

node. The insertion only takes constant time compared to E(lg n) in the binary heap

and the binomial heap. Figure 2.5 shows the pseudo code for the insert operation.

2.2.4 Extract Operation

The process of extracting the minimum node consists of two steps. The first step, finding

the minimum node and removing it from the heap, is not hard, since we have the min

pointer to the minimum node. The pseudo code for extracting the minimum node is

shown in Figure 2.6.

In the second step, as shown in Figure 2.7, we reduce the number of trees in the

Fibonacci heap and find a new minimum node by consolidating the root list of the

Fibonacci heap. Consolidating the root list consists of repeatedly executing the following

19



proc insert(h, x)
% insert new node r into heap h

I Initialize node x by updating its degree, p, child,
2 left, right, and mark fields properly
3 Put x into root list of h
4 if (minh] = nil) or (key[x] < key[rnn[hf]) then
5 rrmn[h] i= x
6 end

Figure 2.5: Insert operation of Fibonacci heap

steps until every root in the root list has a distinct degree value.

1. Find two roots x and y in the root list with the same degree, where kcy[x] < key[y].

2. Link y to x: remove y from the root list, and make y a child of x.

In lines 16-23, the consolidation process finds the current minimum node in the root

list. The amortized time taken by the extract operation is O(Ig n).

2.2.5 Decrease Key Operation

The decrease key operation for a Fibonacci heap is shown in Figure 2.8. To decrease the

key of node x to a value k, we first replace x's key with k in lines 1-4. If the heap-order

is violated(i.e.. k < key[y] where y is the parent of x), we cut x from y in line 7, and

make x a root. From the Fibonacci heap constraints, an interior node can only lose one

child; further cascading cuts are performed at line 8 to satisfy this constraint. The

amortized cost of ,he decrease key operation is 0(1).

2.2.6 Delete Operation

Deleting a node x from a Fibonacci heap can be viewed as making node x the minimum
node in the heap by decreasing its key to -cx, then removing node x from the Fibonacci
heap with the extract operation; this is shown in Figure 2.9.

The amortized time of delete is the sum of the 0(1) amortized time of decrease key

and the O(Ig n) amortized time of extract.
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7
proc extract(h)

1 z := min[h]
2 if (z * nil) then
3 for each child x of z do
4 add x to the root list of h
5p[x] := nil
6 remove z from the root list of h
7 if (z right[z)) then

.s the only node in the heap
8 rmn[h] nil
9 else

10 rrunihj rightlzi
% consolidate the heap and find nert mm

11 consohdate h)
12 end
13 end
14 end extract

Figure 26: Extract operation of Fibonacci heap

The delete operation could be improved by directly removing the node from the heap

instead of first putting it into root list and then taking it out. However, the amortized

time bound would not improve

2.3 B-Tree

R-trees 'BS77"Com791 are balanced search trees de-igned to work well on magnetic disks

or other direct-access secondary storage devices. The guaranteed small search, insertion.
and deletion time of B-trees makes them quite appealing for database applications. Nev-

ertheless, we will see later on that the B -treeMR851, a variant of the B-tree, could

also serve as a priority queue. In this section, we briefly describe the B+-tree that is

well suited for use in a concurrent database system. More information can be found in

[CLR90][LY81I(Wed74]. For simplicity, we denote B+-tree as B-tree in this thesis.

Figure 2.10 shows an example of B-tree internal and leaf nodes. A B-tree has the

following major properties:

1. Each path from the root to any leaf has the same length, h.

2. Each node contains at most 2k + I elements, in which k is a tree parameter. Each

node contains at least one element. There are other variations of B-trees that
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proc consolidate(b)

% intiahze an array for compacting trees wth the same degree

for 0 = O to DEGREE-UPPER-BOUND do
2 A[i] :=

% compact the trees with the same degree

3 for each node w in the root list of h do
4 x w

5 d degree[x
6 while (Ard] 6 nil) do

- ,Y = AI4
8 if (kevrxi > kevvl) then

Exchangetx. )
10 link(h, y, x)
11 A'd 2 nil
12 d = A - 1
13 end
14 end
15 Ad = x

7 find the nerl node uith the minimum key

16 rnmih' nil
17 for 1 2 0 to DEGREF-U'PPER-BOIND do

if A,11 z nil, then
adld A'i" to the r,),t list of h

if (linl nil! or (key ev i < ke'nrh))) then

. f rm 6  = ir
"'2 end

end
-A end on.*Ajidatt

proc Iinkfh v, x)

1 rornove y from the root list of h

2 make y a child of x, incrementing degree~x]
3 mark[y] = false
4 end hnk

Figure 2.7: Consolidate operation of Fibonacci heap
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proc decrease(h, x. k)

% decrease the key of r to k

I if (k > key~x)) then
error "new key is greater than current key"

3 end
4 ke x ] = k
5 y p[xj
6 if (y : nil) and (kevx] < key'Ly) then

% the heap order is violated
7 cutlh. x. y)

cascading-cutC' y)
, end

10 if (kevx' < kevrnunthl') then
11 rmn h1  x
12 end
13 end decrease

pro- cuth, x.

I Remove x from the child [ist of y. decreasing degree~y]
2 Add x to the root list of h

p x = nil
4 mark[x] = false
i end cut

proc c scading- cut(h, y)

I z - ry

2 if (z € nil) then
3 if (mark[y] = false) then

% y has lost one child
4 mark[y] := true
5 else

7 y has lost two children
6 cut(h, y, z)

cascading-cut(h, z)
8 end
9 end

10 end cascading-cut

Figure 2.8: Decrease operation of Fibonacci heap
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proc delett-th x)
% delete node x from Fibonacci heap r

I decrea eth, x -_x

2 extract(h )

3 end delete

Figure 2.9: Delete operation of Fibonacci heap

0K P1  K ,x P2 I K zK.l

(a) B-tree internal node

K K0  K K 4K-

Info Info Ino I

(b) B-tree leaf node

Figure 2.10: Structure of B-tree

-rn-re each node to contain at least k + I elements.

3 c he keys of all of the data in the B-tree are stored in the leaf nodes. Nonleaf nodes

contain pointers and the key values to be used in following those pointers.

-I. Within each node, the keys are in ascending order.

.5. In nonleaf nodes, each pointer, P,, points to a subtree 7, whose root is the node

that P, points to. The values stored in T, are bounded by the two key values, K,

and K,+,, to the "left" and "right" of P, in the node(i.e., the set of values stored

in subtree T is bounded by K, < v < K.,).

B-trees have internal nodes that look like those shown in Figure 2.10(a). The K, are

instances of the key domain, and the P, are pointers to other nodes. On the leaf level,

B-tree nodes, as shown in Figure 2.10(b), contain keys and other information associated

with them.
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To insert a new node with key newkey into the B-tree, we start from the B-tree

root and move downwards from each nonleaf level following the pointer P, that has two

neighbors K, and K,,, satisfying K, < newkey !S K,+I. When a leaf is found, newkey

is inserted if there is room: otherwise, the leaf is split, and the split may propagate back

up the tree.

The delete operation first locates the leaf that stores the key oldkey to be deleted.

The locating process is just like that in the insert operation. Once the leaf is found.

oldkey is removed from it. If the leaf is then empty, it is merged with its neighbor, and

the merge may propagate back up the tree.

To use a B-tree as a priority queue, the insert operation remains the same; the extract

operation is implemented by deleting the smallest key from the leftmost leaf of the B-tree.
in fact, if we maintain a direct pointer to the leftmost leaf of the B-tree, we can avoid

the locating process used in the delete operation.

The insert operation takes time proportional to the height of the B-tree, O(Ig n),

where n is the number of key's stored in the tree, and the extract operation takes time

O(Ilg rz) including merging leaves and internal nodes.
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Chapter 3

Parallel Fibonacci Heap and

Concurrent Access Algorithms

In this chapter, we present our design for a parallel Fibonacci heap that is based on the

sequential Fibonacci heap described in Chapter 2. The parallel Fibonacci heap maintains

the advantages of its sequential counterpart, i.e., its asymptotically more efficient oper-

ations, and it also has linearly scalable throughput as shown in Chapter .5. The parallel

Fibonacci heap reduces contention by weakening the semantics of the extract operation:

an extract operation need not return the minimum element in the heap, instead it can

return a promising element close to the minimum where the promising quality can be

controlled. The non-strict semantics of the extract operation for the parallel Fibonacci

heap is elaborated in Section 3.1. Section 3.2 presents a concurrent access algorithm for a

doublv linked list. Section 3.3 gives a description of the data structure of the parallel Fi-

bonacci heap. The concurrent access algorithms are presented in Section 3.4. Section 3.5

summarizes this chapter.

3.1 Semantics of Parallel Fibonacci Heap

The semantics of the insert, decrease, and delete operations on a parallel Fibonacci heap

remain the same as on a sequential Fibonacci heap presented in Section 2.2, but the

semantics of the extract operation are non-strict. The sequential Fibonacci heap has a

strict extract operation in the sense that it always extracts the minimum node from the

heap. However, for parallel Fibonacci heaps, since there are potentially many processes

extracting nodes concurrently, strict semantics are undesirable for two reasons:
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In terms of correctness, strict semantics are not required in most, if not all, parallel

priority queue applications. However, it is usually desirable to control the quality
of extracted nodes to meet applications' requirement. The strict extract opera-
tion usually involves more contention, and doesn't extract more promising nodes
overall. For example, suppose there are 5 processes concurrently trying to extract

nodes from a priority queue that contains 5 highest priority nodes n1, n2, n3, n4,
and n5. In the case of strict semantics, the extract operations have to be serialized
and get n1 to n5 one at a time. This creates a bottleneck. If we adopt non-strict

semantics, we potentially can extract n1 to n5 concurrently without blocking, and
the extracted nodes n1 to n5 will be the same as those extracted with strict seman-

tics, although the order in which they are extracted may differ. The concurrent
access algorithms presented in Section 3.4 provide methods to control the promising

extent of extracted nodes.

* Realizing strict semantics for parallel implementation: :s expensive, since we have to
linearize all operations; this creates severe bottlenecks. There is a tradeoff between
strictness and contention. The stz:cter the semantics, the greater the contention

on a priority queue. The experiments in Chapter 5 show that a strict scheme for a
concurrent binpr, neap saturates when the number of processes is more than about

eight.

Instead of having a min pointer to the minimum node in the heap, our parallel
Fibonacci heap has a promisng list that is an array of pointers to some promising nodes
in the root list. We will look into the extract operation in section 3.4.

3.2 Concurrent Operations on a Doubly Linked List

A doubly linked list(DLL) is a data structure in which the objects are arranged in
linear order and every object has a key field and two other fields: left and right. Given an
object z in a doubly linked list, right[z] points to its successor in the list, and left[z] points

to its predecessor. The insert and delete operations take only constant time provided that

we know where to insert an object and which object to delete. Searching an n-object list

takes 0(n) time.

Concurrent insert and delete operations are more complicated than their sequential

counterparts. Let's consider concurrent insertion, concurrent deletion, and concurrent
insertion and deletion separately.
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Insert NN

Delete N

.2 LYJ RB...R ..

Dummy Dummy

A section

(b)

Figure 3.1: Concurrent insertion on DLL

3.2.1 Concurrent Insertion on DLL

Inserting a node N into DLL LIST, as shown in Figure 3.1(a), takes two steps:

1. Find two neighbor nodes L and R in LIST to insert N between.

2. Modify the right field of L, the left and right fields of N, and the left field of R.

In the second step, we have to ensure that the fields are updated atomically. Doing

so involves locking certain fields in some nodes (e.g., the right field of L). However, this

could cause a bottleneck if there are many processes trying to insert new nodes between

L and R, as they all have to lock the right field of L during insertion. Thus, it would

be better to spread out insertions among the nodes in LIST, preferably as evenly as

possible. One way to do this is to place a set of dummy nodes in LIST, as shown in

Figure 3.1(b). Dummy nodes are similar to normal nodes in the DLL, except they are

marked dummy, can be accessed directly', and remain in the DLL all the time. We define

'For example, we can have an array of pointers to the dummy nodes so that they can be accessed
directly from the array.
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Figure 3.2: A scenario of concurrent deleting N and R of DLL without locking them

a section of DLL to be the sub-DLL between two dummy nodes as shown in Figure 3.1(b).

The insert operation on LIST is now the following:

1. Randomly choose a dummy node D. If D's right field is locked, we can try another

dummy node; otherwise, lock D's right field.

2. Insert the new node to the right of D, and update the right field of D, the left and

right fields of the newly inserted node, and the le: field of D's old right neighbor.

The number of dununiy nodes needed in LIST depends on the access frequency and

applications. We will see in the following section that the dummy nodes also help the

delete operation.

3.2.2 Concurrent Deletion on DLL

Deleting node N from ts two neighbors L and R, as shown in Figure 3.1(a), changes
the right field of L and the left field of R. The left and right fielis of N may also need

to be changed. The right field of L and the left field of R have to be locked for proper

deletion. Moreover, the left and right fields of N must be locked too. Otherwise, the

following scenario may arise when deleting N and R concurrently, as shown Figure 3.2,

which results in a broken list.
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Delete N Delete R

Lock right[L] Lock right[N]

Lock left[R] Lock left[J)

Set right[L] pointing to R Set right[N] pointing to J

Set left(R] pointing to L Set left[J] pointing to N

Clear left[N], right[Nl Clear left[R], right(R]

To avoid deadlock, we lock the fields in a particular order: first lock the right field of
L, then the left and right fields of N, finally the left field of R. We could still deadlock
if we did not have dummy nodes in the LIST. One example is to delete the only node
N in a circular DLL. In this case, N itself is both its left and right neighbor, which will
cause the locking process, described above, to deadlock. This problem could be avoided
by keeping track of the number of nodes in the circular DLL, and treating deletion of
the only node in a circular DLL as a special case. However, there is another situation
that is similar to the dining philosophers problem and that can't be gracefully avoided
without dummy nodes. Suppose there are n nodes in the circular DLL LIST and n

processes deleting nodes concurrently in a conspired way: each process is deleting a

different node, and each process is executing the locking process synchronously. This will
create a circular locking chain. Dummy nodes will prevent this form of deadlock chain.

Dummy nodes are not sufficient to prevent all locking problems. Consider the follow-
ing situation: while deleting N, we have to lock the right field of L. We find L by using

leftf.%']. But at the t:me of the lookup, left[N] has not been locked, which means the
field may be changed by another process. Although this problem can be overcome by

using complex locking methods, the method described below using scavenger processes

seems simpler and more elegant.

3.2.3 Concurrent Insertion and Deletion on DLL

The complexity of parallel operations on this relatively simple data structure is caused by
allowing the concurrent removal of nodes from the list. We can get better performance if
we disailow concurrent removals in the following way: deleting N only marks N as dead,

and all dead nodes are actually removed from the DLL by scavenger process(es), which

run as background or periodic foreground processes. Each scavenger process locks one

section, and removes dead nodes from that section. Since the DLL is nicely divided by
the dummy nodes into sections, we avoid deadlock and interference problems by allowing
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proc insert(obj, dll)

% Insert an obj into doubly linked list dli

1 Randomly find a unlocked dummy node d in dll, and lock right[d]
2 Insert obj to the right of d
3 Unlock d
4 end insert

proc delete(obj, dil)
% Delete obj from doubly linked list dli

1 Mark obj to be dead
2 Occasionally do
3 Randomly find a unlocked section s and lock it
4 for every obj in s do
5 if (obj is not the right neighbor of a dummy node) and
6 (obj is marked dead) then
7 remove obj from dll

8 end
9 unlock s

10 end delete

Figure 3.3: Concurrent operations on doubly linked list

at most one scavenger process to operate on each section. This kind of distributed

scavenging method alleviates the complex locking problem described in the last section.

Figure 3.3 gives the pseudocode for concurrent operations on a DLL. The insertion

operation is the same as that described in Section 3.2.1. The delete operation occasionally

locks a section, and removes dead nodes in it. With the help of dummy nodes, there is

not much contention on the DLL. The insert and delete operations on a DLL still take

constant time.

3.3 Data Structure of Parallel Fibonacci Heap

A parallel Fibonacci heap, as shown in Figure 3.4, is a collection of trees whose roots

are linked in a circular DLL with dummy nodes as described in Section 3.2. Instead

of having one min pointer to the root of the tree containing a minimum key, there

is an array of pointers to the roots of the trees having promising keys. The array is

called the promising list. For convenience, we use "node in promising list" to mean
"node pointed to by some pointer in the promising list" in this thesis. There is a lock
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Figure 3.4: Structure of parallel Fibonacci heap

associated with each pointer in the promising list. The size of the promising list, mazpt,

is a parameter that can be controlled in the algorithm. Besides having the fields of t]eir

sequential counterparts, such as left, right, parent, child, key, degree, and mark, the

nodes in a parallel Fibonacci heap have some synchronization fields - there are three

locks associated with the left, right, and key fields of a node, respectively. In addition, the

mark of a node can be one of dummy, dead, promising, unmarked, and marked. Dummy

means the node is a dummy node as described in section 3.2, dead means the node has

been deleted, promising means the node is a promising node, and unmarked and marked

are used in the same way as in the sequential algorithms to denote whether the node

has lost a child since it became an interior node. As in the DLL, a section of a parallel

Fibonacci heap contains the trees between two dummy nodes as shown in Figure 3.4.

3.4 Concurrent Access Algorithms

In this section, the concurrent access algorithms for the parallel Fibonacci heap are

presented. In these algorithms, we use a method to minimize blocking time and en-

hance throughput called the check-lock-verify method. The check-lock-verify method is

a high-level, efficient, non-blocking test&do atomic operation, which is described as the
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cheating" method in [BirS9]. Here is a comparison of test&do and check-lock-verify:

check-lock-ver*f, test&do

If (conditions are met) then

Lock critical section Lock critical section

If (verify conditions are met) then If (test conditions are met) then

do things in critical section do things in critical section

else else

Unlock and exit Unlock and exit

endif endif

endif
The check-lock-verify method asynchronously checks conditions before entering the

critical section. while test&do enters the critical section first. In this way, the check-lock-

verify method avoids some possible blocking time on the critical section, if the conditions

are not met. However, the semantics of the check-lock-verify method are different from

those of test&do in the sense that the latter is stricter. Test&do guarantees that the con-

ditions are checked inside a critical section, while the check-lock-verify method first checks

the conditions outside the critical section. Only when the conditions can be correctly

atomically read ' , are the semantics of test&do and check-lock-verify the same. There

are many places in the algorithm where the check-lock-verify method can be used. The

check-lock-verify method makes programs look more complex and harder to understand,

thus, it is normally not included in the pseudocode listings presented in this section.

3.4.1 Insert Operation

As shown in Figure 3.5, inserting a new key k into a parallel Fibonacci heap h is very

similar to inserting a key into a DLL. First a new heap node n is created with key k, and

the other fields are properly set. In lines 2-5, we randomly find a dummy node D in the

root list, lock the right field of D, and insert the new node to the right of D. Actually,

if we find that right[Dj has already been locked while trying to lock it at line 3, another

dummy node can also be tried. The insert operation ensures that all nodes are inserted

evenly among the dummy nodes in the root list.

In lines 6-8, we check whether the newly inserted :ode n with key k is promising; this

is similar to checking whether the newly inserted node is better than min in the insert

2These features are often machine dependent. The programmer should always check these features
before taking advantages of them.
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proc insert(id, h, k)

% Insert key k into parallel Fibonacci heap h. ad is an issued worker ad

1 Initialize a new node n with key k
2 Randomly choose a dummy node D in the root list
3 Lock right[D]
4 Put n to the right of D
5 Unlock right[D]
6 if good(id, h, k) then
7 check-promising(h, n)
8 end
9 return n

10 end insert

proc good(id, h, k)
a heuristic funct:on that tests whether k has a good chance to be promis:ng

1 if (k > last-extract[id] * strictness) then
2 return NO
3 else
4 return YES
5 end
6 end good

Figure 3.5: Insert operation on parallel Fibonacci heap

operation on a sequential Fibonacci heap. In order to avoid checking some "obvious" non-

promising nodes. a heuristic function good is designed to filter out most non-promising
nodes. If the heuristic function says k is good, then we actually check whether node n is
promising, as presented in the next section; otherwise, the node n still has a chance to
be put into the promising list by the consolidation process described in section 3.4.4.

I have designed a simple "distributed" heuristic function as shown in Figure 3.5.
Suppose there is a fixed number of workers doing operations concurrently on the parallel
Fibonacci heap (see chapter 5); each worker is assigned an id to distinguish it from
the others. If a given application doesn't fit this worker model, we can still map the
operations performed by the application on the parallel Fibonacci heap to some number
of virtual workers. Worker id keeps track of the key of the node it most recently extracted
in last - extract[id]; this is used as a rough measure of whether a key k is good or
not. If k is greater than last - extract[id] x strictness, in which strictness is a tunable
parameter(usually set to be around 1), then k is not treated as good. The heuristic

function gives real promising nodes a chance to bypass the consolidation process and
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proc check-promising(h, n)
% Check if node n is more promising than any already promising node prom-one, then
% replace prom-one with n in the promising list.

I for every pointer prom-pt in promising list do
2 Lock prom-pt % if prom-pt is locked, we can try nert
3 if prom-pt = nil then
4 Lock key[n}
5 if (mark[ni : dead) and (mark(n $ promising)
6 and (parent[n= nil) then
7 mark[nl promising
8 prom-pt :&n
9 Unlock keyrn}

10 Unlock prom-pt
11 return YES
12 end
13 Unlock key~n]
14 Unlock prom-pt
15 else
16 prom-one = prom-pt
17 Lock keyprom-one
18 Lock key[n}
19 if ((mark[n] i dead)
20 and (mark[n} ?# promising)
21 and (parent[n] = nil)
22 and ((mark[prom-one] = dead)
23 or ((mark[prom-one] = promising)
24 and (key[prom-onej > keyfnj)))) then
25 mark[n] := promising
26 if mark[prom-one} = promising then
27 markprom-one} -= unmarked

end
29 prom-pt := &n
30 Unlock key[n]
31 Unlock key[prom-one]
32 Unlock prom-pt
33 return YES
34 end
35 Unlock key[n]
36 Unlock key[prom-one]
37 Unlock prom-pt
38 end
39 return NO
40 end check-promising

Figure 3.6: Check whether a node is promising in parallel Fibonacci heap
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directly be put into the promising List. We can tune strictness to control the quality of

nodes in the promising list. The smaller the value of strictness, the better the nodes in
the promising list, and possibly the longer it takes to find a promising node. So, there is a
tradeoff here between strictness and contention on the queue. The experiments described
in Chapter 5 show how the throughput varies with strictness. Moreover, strictness can be

made adaptive depending on the feedback of check-promising: if check-promising always
returns yes which means the heuristic function may be too strict, then strictness can be
loosened to some degree: if check-promising always returns no, which means the heuristic
function may be too loose, then strictness can be tightened a bit.

3.4.2 Check-Promising

Figure 3.6 shows how to check if node n is more promising than one of the already
promising nodes in a parallel Fibonacci heap h. Basically, n is compared with every node
in the prormsing list: if a nil pointer in the promising list or a promising node with key
larger than keyn] is found, tien r. is put in the promising list: otherwise n is simply

left in the root list. In the pseudocode, lines 1-2 loop over all pointers in the promising
list, and try to lock each one before checking. In fact, if the pointer prom-pt is found
alreadv locked in line 2, we can try other pointers in the promising list. If prom-pt is a
nil pointer, lines 4-14 check if n is not dead or promising and n is in the root list, then
put n into the promising fist by changing prom-pt to point to n. If prom-pt is not nil,

lines 16-39 test if n is more promising than node porn-one pointed by prom-pt, then

replace promrI-one with n. Lines 19-21, like lines 5-6. make sure that n is not dead, is not

a ready promising. and is in the root list before making it promising.
The check-promising procedure is non-blocking in the sense that it does not block

on a locked pointer in the promising list; instead i. always tries to find a free promising

pointer to lock. Also, since the heuristic finction good filters out most non-promising
nodc ; from being checked, there should not be much contention on the promising list.
The time taken to check whether a node is promising is constant, O(marpt).

3.4.3 Extract Operation

Figure 3.7 shows how to extract a node from a parallel Fibonacci heap h. Since we already

have the promising list, if it is not empty then we can randomly remove a promising
node from it; otherwise, we find several promising nodes to put in the promising list by

consolidating a section of the heap, and retry the extract operation.
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Line 1 randomly chooses a pointer prom-pt from the prorrising list. Then we try
to lock prom-pt in line 6; if it has already been locked, we try another pointer in the
promising fist. Line 7 checks if prom-pt is nil; if it is, we pick up another pointer from
the promising list and repeat the process of locking and checking prom-'t. Otherwise, we

lock the node prom-one pointed to by prom-pt. If prom-one is indeed a promising node.
we put its children, if any, into the root list, and take prom-one out of the promising

list by marking it dead in lines 14-21. If prom-one is not promising, we simply try other
pointers in the promising list in lines 23-25. If after trying -enough" times, we still fail
to find a promising node, then it is time to consolidate the heap in lines 3-5; that widl
compact trees together, and find some promising nodes to put in the promising list.

The promising list is implemented as an array in which each pointer can be directly

accessed, and the size of the promising list can be controlled3 to reduce contention. The
extract operation never blocks on a locked pointer in the promising list: therefore. w&
do not expect much contenLion on grabbing a pointer from the promising list. The ime

taken to extract a promising node is constant, if we successfully find a promising node
in the prormising list. Otherwise, the extract time is the time spent consolidating a
section of the parallel Fibonacci heap. This, we will see in next section, is logarithmic
in the number of nodes in that section. Thus, the time taken to do e> tract operation is

0(ig sectton'.

3.4.4 Consolidate the Parallel Fibonacci Heap

When a process performing an extract operation cannot find _ promising node in the

promising list after some number of probes, it consolidates the heap, actually a section
of t e h-ap, as described in Figure 3.8. The consolidate process randomvly chooses a

section that is not already being consolidated by another process and locks the section.

The process then walks through the nodes in the root list of the section. If a root
node is marked as dead, we remove it in lines 10-14. Since there is always at most one

consolidation process in a section, there is at most one removal operation running in a
sectio.., so we don't have to lock a dead node's neighbors while removing it from the
DLL. When a dead node and a dummy node are neighbors, between which there may be
insertions going on, we just choose not to remove the dead node.

The consolidation process keeps track of several good nodes that are not already in
the promising list by comparing all the non-promising and non-dead nodes in the root

3 The size is usually chosen to be the number of processes accessing the heap.
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list of the section. and puts them in buffer 9. We can then -flood" B into the promising

list by running check-promising on all the nodes in B after finishing the walk through the
section in lines 19-20. Buffe- B is implemented as a sorted array of fixed size, buffersize.

A smaller buffersize means the nodes in the buffer tend to be more promising. We show
the results of experiments that vary buffersize in Chapter 5.

The consolidate process also performs normal consolidation like its sequential coun-
terpart. It merges trees of the same degree to reduce the number of trees in the root

list. If the root node of a tree is dead or promising, then it won't be merged with other
trees. When merging two trees rooted at x and y respectively, we have to lock key jx and
kcy[yl first. The reason for locking is that there may be delete and decrease operatirum

going on that will interfere with the consolidate process.
The consolidation time for the parallel Fibonacci heap is basically the same as the time

taken for the sequential consolidation, because there is only one consolidation process in
each section, and the consolidation process only does a little more work than its sequential
counterpart: it finds more promising candidates (buffersize per process), and there are
some locks required when merging trees. These locks are used to prevent operations like
delete and decrease key from getting in. The delete and decrease key operations can be
operated on all nodes in the Fibonacci heap. not just nodes in the root list. In fact, most
of these operations. like deleting some non-promising nodes and decreasing keys of some
non-promising nodes, tend to happen to nodes not in the root list. Thus, we expect little
contention on the locks the consolidate process acquires while merging trees. Overall,

each consolidation process runs in time O(Ig IsectZonl) time.

3.4.5 Controlling the Quality of Extracted Nodes

There are several parameters that control the promising quality of extracted nodes:
inaxpt. buffer-size, and strictness. Maxpt is the size of the promising list, buffersize is
the size of the buffer used during the consolidation process to gather candidates for the
promising list, and strictness is used in the heuristic function good. We can see that a
smaller value of mazpt means that the nodes in the promising list are more promising.
The extreme case is that maxpt equals I - there is only one pointer as in the sequential
Fibonacci heap. On the other hand, a smaller mazpt implies more contention on the
promising list. A good value of mazpt might be the number of "workers" on the parallel

Fibonacci heap.
In the consolidation process, the top buffersize number of non-promising nodes in the

root list of a section are gathered in a buffer, and are checked if they are promising.
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The smaller buffersize is, the better the nodes the buffer contains, the fewer candidate
nodes there will be for the promising list, and the longer the time it takes to extract a
promising node. On the other hand, larger buffersize incurs more traffic on the promising

list, because there will be more check-promising processes trying to put nodes into the
promising list.

The effect of the parameter strictness is explained in Section 3.4.1. Experiments that
vary these parameters are presented in Chapter 5.

3.4.6 Decrease Key Operation

Figure 3.9 shows the pseudocode for decreasing the key of node x to k. Like the sequential
decrease key operation discussed in Chapter 2, the idea of the concurrent decrease key

operation is to check if k is smaller than x's old key, and then change x's key to k. Atter
the key change. if the heap order property is violated, then cut x from its parent: if
an internal node loses more than one child then perform cascading cuts. Cut(h, x) will
change x's parent link and its parent y's child link. Both x and y have to be locked during
the operation. The order of locking is important here; the wrong locking order can cause
deadlock. Consider the case of locking in bottom-up order where y is a promising node
in the root list, x is one of y's children, and there is a decrease key operation that is

trying to cut x from Y. Suppose the decrease key operation has already locked x, and is
trying to lock y. In the mean time, another process is doing an extract operation on y,

having locked y, and is trying to put y's children, including x, into the root list. In the
process of putting y's children into the root list, x's parent field will be updated. If we
require locking x before updating its parent field, then this results in a deadlock. If we
update x's parent link without locking it, it would be dangerous for the decrease process

to read it.

Figure 3.9 shows a way to lock in a top-down order that avoids the problem described
above. This locking order also makes the extract operation easier. When we put y's
children into the root list in the extract operation as described above, we only need to
lock y, because in the top down locking order, y's children won't be updated unless y has
been locked. The decrease key operation works in two phases: Phase 1 locks x, locates

its parent y if there is one, and unlocks z. Phase 2 locks y then x, verifies y is still x's
parent, and does things as in the sequential case. If y is no longer x's parent in phase

2. we go back to phase 1 to locate x's parent again. In phase 1, lines 5-10 lock x, check
whether x has a parent. If not, line 13 sets x's key; otherwise, line 17 sets the variable

has-parent? to be true for use in phase 2. Phase 2 checks if variable has-parent? is true,
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then locks y and x. After y and x have been locked, we verify if y is still x's parent, then
change x's key and do the cut in lines 29-36 as in the sequential decrease key operation.
Finally, cascading-cuts are done if needed in lines 43-44. If it turns out that y is no longer
x's parent in phase 2, then we go back to phase 1 to find x's current parent, and repet
the whole process until x's true parent is found.

If Lilere is no other operation updating x or y between phases 1 and 2, which is
likely to be the common case, the parental relationship between y and z does not change

between phases 1 and 2. Thus, in most cases, the decrease key operation succeeds without
repeating phase 1 and 2. Also, the contention on x and y should be relatively small, since
it should be rare that different workers are doing operations on the same x and y. The
time taken to do the decrease operation is 0(1).

3.4.7 Delete Operation

The delete operation, as shown i, Figure 3.10, is similar to the decrease key operation.
Instead of cutting z and putting it in the root list as in the decrease key operation, we
put x's children into the root list in lines 12 and 28, and mark x to be dead in line 13 if
x is in the root list; or remove x in line 29 in case it is an interior node.

3.4.8 Algorithm Validation

We informally show that the algorithms for the parallel Fibonacci heap are deadlock-free
as follows. Horizorntally, the root list of the parallel Fibonacci heap is a DLL with dummy
nodes, and we have shown that the operations on a DLL are deadlock-free in Section 3.2.
Vertically, the parallel Fibonacci heap is a forest of trees, and we always lock nodes in a
top-down order in the algorithms.

We also validated the correctness of operations experimentally: we occasionally ran
a verify-form procedure to check the syntactic correctness of the heap (i.e., whether the
number of nodes in the heap, the number of nodes in the root list, and the number of
promising nodes are correct) and the semantic correctness of the heap (i.e., that the
parallel Fibonacci heap is in correct heap-order, and satisfies the heap constraints).

3.5 Summary

The parallel Fibonacci heap presented in this chapter is based on the sequential Fibonacci

heap described in Chapter 2. The parallel Fibonacci heap maintains the asymptotic time
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bounds of its sequential counterpart, and it also achieves linearly scalable performance.

The parallel Fibonacci heap has the following properties:

1. The locks each operation acquires are evenly distributed over the entire data struc-

ture and the time each operation takes while holding a lock is small. Assuming

the size of the structure is relatively large compared with the number of processes

accessing it, then there is very little centention on the structure and we expect lin-

early scalable throughput. This scalability is reflected in the performance analyses

in Chapter 5.

2. Ignoring contention, the sequential operations' time bounds have been preserved:

an insert operation takes only constant time, an extract operation takes O(lg n)

time, a decrease keyoperation takes constant amortized time, and a delete operation

takes O(lg n) time.

3. The priority queue is non-strict in the sense that an extract operation does not

necessarily return the most promising node, but the promising quality can be con-

trolied as described in Section 3.4.5. These non-strict semantics are compatible

with most parallel applications, if not all, and they are also one of the reasons that

the parallel Fibonacci heap has relatively low conz :tion.
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proc extract(id. h)
% eztract a promising node from parallel Fibonacci heap h
% id is a preassigned worker id

1 Randomly choose a pointer prom-pt from the promising list
2 (label#try)
3 if we have tried "enough" time but still fail to find a promising node then

% "enough" can be tuned here
4 consolidate(id, h)
5 end
6 Lock prom-pt % if prom-pt is locked, we can try another

7 if prom-pt = nil then
8 Unlock prom-pt
9 prom-pt := another pointer in the promising list

10 goto (label#try)
11 else
12 prom-one := sprom-pt
13 Lock key[prom-one)
14 if mark[prom-onel = promising then
15 if prom-one has any children then
16 put its children into the root list
17 end
9 markj[prom-one] "= dead

19 Unlock keyprom-one]
20 Unlock prom-pt
21 return prom-one
22 else
23 Unlock prom-one
24 prom-pt := another pointer in the promising list
25 goto (label#try)
26 en d
27 end
28 end extract

Figure 3.7: Extract operation on parallel Fibonacci heap
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proc consolidate(id, h)
% Consolhdate a secton (or multiple sections) of the parallel Fibonacci heap h
% and find candidates for the promising list

I Randomly find a section not being consolidated by other processes and lock it
2 for every node x in the section do
3 case mark[x]:
4 unmarked. marked:
5 Merge trees like in the sequential consolidation. Don't merge dead

6 or promising nodes.
7 Maintain a buffer B of top buffersize number of
8 candidate nodes(non-promising nodes) for the promising list.

% buffersize here is tunable parameter
9 dead:

10 if x's left neighbor is not a dummy node then
il1 Lock key[x]
12 Remove x from root list
13 Unlock key[x]

14 ,-nd
15 prormsin.:
16 dummy:
17 end
IS Unlock section
19 for every node n in buffer B do
20 check-pro-iising(h, ::;
21 end consolidate

Figure 3.8: Consolidate process on parallel Fibonacci heap
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proc decrease-key(id, h, x, k)
% Decrease the key value of x to k in parallel Fibonacci heap h

1 done? := false % done? means whether the decreasi opemton has been accomplished or not
2 has-parent? := false % has-parent? indicates whether node z has parent or not
3 cascading-cut? := false % cascading-cut? indicates whether cascading-cut is needed
4 Repeat % %%%% %%%% %%% Phase 1
5 Lock key~x]
6 if mark[x] = dead then
7 Unlock key(x]
8 return
9 else

10 y := parent[x]
11 if y = nil then % r doesn't have parent, it is in the root list
12 if (k < key[x]) then
13 key[x] := k
14 end
15 done? := true
16 else
17 has-parent? := true
S end

19 end
20 Unlock key[x]

%%cco%%%%%%%%%%%%o%%% Phase 2
21 if has-parent? then
22 Lock keyLv] % y was x's parent, but may not be now, which happens rarely
23 Lock key[x]
24 if (parent[x] = y) then
25 if mark[x] = dead then
26 Unlock key~xj
27 return
28 else
29 if (k < key[x]) ther
30 key[x] := k
31 end
32 done? := true
33 if (key[x] < key[y]) then % heap order has been vwlated
34 cut(h, x)
35 cascading-cut? := true
36 end
37 end
38 end
39 Unlock key[x]
40 Unlock key[y]
41 end
42 Until done?
43 If cascading-cut? then
44 cascading-cut(id, h, y)
45 end
46 end decrease-key

Figure 3.9: Decrease key operation on parallel Fibonacci heap
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proc delete(id, h, x)
% Delete the node r from parallel Fibonacci heap h

1 done? := false % done? means whether the delete operation has been accomplished or not

2 has-parent? := false % has-parent? ind:cates whether node z has parent or not

3 cascading-cut? := false % cascading-cut? indicates whether cascading-cut is needed

4 Repeat %%%%%%%%%%%% Phase 1

5 Lock key[x]
6 if mark[x] = dead then
7 Unlock key[x]
8return
9 else

10 y := parent[x]
11 if y = nil then % x doesn't have parent

12 Put x's children into root list if there are any

13 mark[xl := dead
14 done? := true
15 else
16 has-parent? := true
17 end
18 end
19 Unlock key[x]

% %% % %%7ooo 9o o%% Phase 2

20 if has-parent? then
21 Lock key[yj %y was z's parent, but may not be now, which happens rarely

22 Lock key[x]
23 if (parent[x] = y) then
24 if mark[x] = drad then

25 Unlock key[x]
26 return
27 else
28 Put x's children into root list if there are any

29 Remove x from y's children list

30 cascading-cut' ? true

31 done? := true
32 end
33 end
34 Unlock key[x]
35 Unlock key[y]
36 end
37 Until done?
38 If cascading-cut? then
39 cascading-cut(id, h, y)
40 end
41 end delete

Figure 3.10: Delete operation on parallel Fibonacci heap
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Chapter 4

Concurrent Priority Pool

In this chapter we present another kind of concurrent priority queue, which is imple-

mented as a combination of a concurrent B-tree and a concurrent pool. We call this

priority queue a "concurrent priority pool". The concurrent priority pool supports in-

sert and extract operations like the parallel Fibonacci heap. The extract operation is

non-strict, as described in section 3.1, but there is a straightforward way of controlling

the promising quality of extracted keys. The insert and extract operations do not share

critical resources in most cases, so that the concurrent priority pool has the highest

throughput among all the priority queues studied, as shown by the experimental results

in Chapter 5. Section 4.1 briefly describes the concurrent B-tree. Section 4.2 gives an

introduction to the concurrent pool. The concurrent priority pool and access algorithms

are presented in section 4.3. Finally, Section 4.4 summarizes this chapter.

4.1 Concurrent B-Trees

The Concurrent B-Tree described here is mainly based on [Wan9O, WW90, LS86, LYS1].

This algorithm allows symmetric insertion and deletion in which each process locks at

most one node at a time, except in rare cases.

4.1.1 Data Structure

The concurrent B-tree data structure is similar to the sequential B-tree described in

Chapter 2. Figure 4.1 shows an example of a concurrent B-tree: A B-link structure is

added into the sequential B-tree by connecting nodes on each level into a singly linked

list. Each node has a right link that points to its right neighbor. Operations can go
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Figure 4.1: An example of a concurrent B-tree

across the linked list horizontally instead of vertically. An anchor, an array of pointers to
the leftmost node on each level of the B-tree, is added Hrito the sequential B-tree. With

the anchor and the B-link structure, a node can be reac .,d not only from its parent, but

also from its left neighbors or the anchor.

4.1.2 Insert Operation

Inserting a new key k into a concurrent B-tree invokes two phases: the locate phase
and the insert phase. The locate phase, which is similar to its sequential counterpart,

traverses the B-tree from the root to the leaf level by following pointers P, in the internal
nodes that have two neighbors K, and K,+, satisfying Ki < k < Kj+1 . In the locate

phase, only one internal node is locked at a time. In fact, the nodes only need to be
read locked, since the nodes are not changed. After a leaf node n is located, we insert

key k into n. If n is full, we split n as shown in Figure 4.2. The split operation is

done in two steps: a half-split as si.own in Figure 4.2(b), followed by a complete-split

as shown in Figure 4.2(c). Half-split creates a new node n', inserts n' to the right of
n, and moves some data from n to n'. Complete-split goes up the tree, inserting a new
< left bound, pointer > into n's parent m. If m is full, then we split m in the same
way as we split n. This split process can propagate from the leaf level up to the tree
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Figure 4.2: Split a concurrent B-tree node (a) Before inserting key 10 into n (b) Half
split n (c) Complete split n

root, which might result in creating a new root, and increasing the B-tree height. In all

situations, we write lock a node before updating it.

4.1.3 Delete Operation

The delete operation on a concurrent B-tree is symmetric to the insert operation. It
consists of two phases: the locate phase and the delete phase. The locate phase is the
same as that in the insert operation; it locates the node n containing the key k to be
deleted. The delete phase removes k from n; if n is then empty, it merges n's right

neighbor n' into n. The merge is also done in two steps: a half-merge as shown in
Figure 4.3(b), and a complete-merge as shown in Figure 4.3(c). Half-merge first write

locks n and n' and removes n' from its level's linked list. It then moves data from n' to
n and sets the right link of n' to n before unlocking n and n'. Processes that try to find
data in n' still can find them through its right pointer that forwards to n. Complete-
merge removes a <left bound, pointer> pair from n's parent m. If m is then empty, we
merge rn with rn's right neighbor. This merge process can propagate up to the tree root,
which will possibly decrease the height of the tree. There is a special case when complete

merging n and n': if n and n' do not have the same parent; this case is explained in

[Wan9o1.
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Figure 4.3: Merge two concurrent B-tree nodes (a) Before taking key 10 out of n (b) Half

merge n (c) Complete merge n

4.2 Concurrent Pools

Concurrent pools[Man86][KE89] are largely used in the assignment of resources and tasks

to processors in a distributed or parallel system that needs to balance the load on each

processor. A pool is a collection of items that grows and shrinks with the demands

of the processes. A process may add an element to the pool or request an element

from the pool at any time; the element removed from the pool is chosen arbitrarily.

A concurrent pool attempts to spread the elements out over the processors so that

accesses are less likely to interfere with each other. The basic idea of the concurrent pool

is to allow most operations to be done within the local components of the distributed

data structure. When a request cannot be satisfied locally, it becomes necessary to access

remotely stored components.

4.3 Concurrent Priority Pools

The concurrent priority pool is based on the concurrent B-tree and the concurrent pool.

It is similar to the concurrent B-tree, except that the leaves of the B-tree are replaced

with concurrent pool-like data structures. An insertion into the priority pool is like the

insertion into the B-tree, which takes 0(19 n) time. The extract minimum operation on

the priority pool is similar to the delete operation on the B-tree, but we always delete

elements from the promising pools - the leftmost leaf in the B-tree.
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Figure 4.4: Data structure of concurrent priority pools

4.3.1 Data Structure

The concurrent B-tree is the basis for the cencurrent priority pool. Each leaf of the

priority pool is similar to a concurrent pool A leaf contains segnurn number of data
segmnents. Each segment consists of segsize number of keys and associated data. The

segment is the smallest unit that is locked during the insert and extract operations.

Even when splits and merges happen, leaves are only locked briefly, as we will see in the

next few sections. There can be different operations running concurrently on different

segments in the same leaf.

As shown in Figure 4.4(a), a segment has an array of keys and associated data, a

status indicator, a local separator, a lock and a local right link. The segment local

separator is usually equal to the right bound of the leaf the segment is in, except in the

middle of splitting or merging. The segment right link points to the leaf that contains

keys equal to or larger than the segment separator; that is usually the right neighbor of
the leaf containing the segment. The status indicator indicates whether the segment is in
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normal mode or has been deleted. The segment can only be changed when the segment

lock is acquired.

The keys in a segment are stored in an array that is ordered from largest to smallest.

This simplifies extracting the smallest key: we only need to return the rightmost elenent

of the array and decrease the array size by one. Keeping segments sorted also makes it

easier to find a medium key in a segment, which is used in spiitting the segment. On the

other hand, it is more expensive to insert a key in a sorted segment and to merge two

sorted segments.

A leaf has three major parts. as shown in Figure 4.4(b) : synchronization data.

sequential data, and segnum number of segments. Sequential data consists of segnum.

segsize, right bound, mark, right link, and separator. The right bound of the leaf is

usually the largest key in the leaf. This is not true in two cases: when the leaf is being

split, in which case there may be some larger keys that have not been moved to the right

neighbor yet; or the when the leaf is being merged, in which case the right bound may be

]a ger than all the keys in the leaf. The leaf mark is one of dead, orphan, dead-orphan,

or nil: dead means the leaf has been deleted; orphan means that there is another leaf

with the same right bound as this leaf, and the orphan leaves do not hav parents as

described in Section 4.3.2: dead-orphan means the leaf is both dead and an orphan.

Synchronization data consists of a leaf lock, a status indicator, and a merging-leaf field

that points to the leaf, if any, that has been merged with this one. The status indicator

is one of normal, split, merging, split-merging, and deleted: normal means the leaf is in

normal mode, split means the leaf is being split, merging indicates that the leaf is now

merging with another leaf, deleted indicates the leaf has been deleted, and split-merging,

means there is a split and a merge concurrently going on in the leaf. Figure 4.5 depicts

the possible status transitions of a leaf. The leaf sequential data and synchronization

data can be changed only when the leaf-lock is acquired.

4.3.2 Duplicate Keys

The concurrent B-tree, the basis for the concurren. priority pool, is changed to allow

duplicate keys. On the leaf level of the B-tree, we allow multiple leaves with the same

right bound; only one of the leaves can be directly reachable from internal nodes, and the

rest of them axe mdrked as orphans. Thus, there are no duplicate separators in internal

nodes. The original concurrent B-tree algorithms are changed slightly:
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Figure 4.5: Concurrent priority pool leaf status transition graph

While doing -complete-split" as shown in Figure 4.2(b), which tries to add a
< separator, pointer > pair into internal node m, if we find there already exists a

separator in rn, then instead of adding the pair in, we mark the leaf pointed to by

pozriter as an orphan.

2. While doing -complete-merge" as shown in Figure 4.3(b), which tries to delete a

< separator, ponter > pair from an internal node, if we find the leaf pointed to by

pointer is marked as an orphan. then we know the pair is not in an internal node.

Thus. we -an quit irom complete-merge.

This method treats all leaves, whether orphan or not, quite uniformly while doing
inert and extract operations. It also keeps the structure of internal nodes the same, so

that the original concurrent B-tre, algorithms on internal nodes are still applicable.

4.3.3 Insert Operation

Inserting a key into a priority pool invokes two steps: first, locating a leaf as in the

concurrent B-tree algorithms; second, as described in this section, inserting the new key

into the leaf, and performing split operations if necessary. Here we only present the
algorithms on the leaves of the priority pool, since the algorithms on the internal nodes

are the same as those for a concurrent B-tree. Figure 4.6 shows the pseudocode for

inserting a key in leaf I of tree. We first randomly locate a segment s in leaf 1, and lock

it in lines 1-2. Line 3 checks whether segment s is the right one to insert key in - if key

is larger than separatorfs], then we insert key into the leaf that is pointed to by right[s].
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proc insert(l, key, tree)
% insert a new key into leaf I of tree

1 (label#O) Randomly locate a segment s in leaf 1
2 (label#1) Lock s
3 if (key > separator[s)
4 1 := right[s]
5 Uniock s
6 goto (label#0)
7 else
8 case indicator[s]
9 normal:

10 if s is not full then
11 insert key into segment s
12 Unlock s
13 else
14 if we have not tried twice(or some other number) then
15 Unlock s
16 s := another segment in leaf I
17 goto (label#1)

else
19 Lock I
20 case indicatorq]:
21 normal:
22 Unlock s
23 originate-split(l, key)
24 split, split-merging:
25 Unlock 1
26 split(s, 1, 1'% separator[l], k.

% V is l's right neighbor; assume 1' and separatori]
% are read before I is unlocked

27 Unlock s
28 s := another segment, goto (label#1)
29 merging:
30 Unlock s
31 originate-split(l, key)
32 deleted:
33 Unlock s
34 Unlock I
35 insert(l', key, tree) % ' is pointed by the right link of 1
36 end
37 end
38 end
39 deleted:
40 insert(right(s], key, tree)
41 end
42 end
43 end insert

Figure 4.6: Insert operation on concurrent priority pool
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We check indicator[s] in line 8: if s is deleted, then we insert key into the leaf pointed

to by right[s] in fines 39-40. If s is in normal mode, we do "normal insertion" in lines

10-38. Line 10 checks whether s is full; if not, we directly insert key into s. Otherwise,

we try to find other segments in leaf I to do the insertion in lines 15-17. If we still can

not find a non-full segment in leaf I to insert key after some number of tries, we try to

split leaf 1 in lines 19-3G. Leaf I is locked in line 19 to check the indicator of 1. In case

indicator[l] is normal, the originate-split procedure is called to originate splitting leaf 1.

In case indicator[l] is split or split-merging, which means leaf I is already being split, we

unlock i and help split segment s in lines 25-26. We try to insert again in line 28. In case

leaf 1 is merging with another leaf, l is split by calling originate-split in line 31. In case I

has been deleted, though s has not been deleted yet, we insert key in the leaf pointed to

by rightill in line 35.

Figure 4.7 shows the pseudocode of splitting a leaf of a concurrent priority pool.

Procedure or-ginate-split splits leaf I and inserts k into the priority pool. Procedure 4plit

splits a segment.

At the entry of originate-split, we assume I has been locked. Line 1 check.3 indicator[l]

and changes it as depicted in Figure 4.5: if it is normal, then it is changed to split; if it

is merging, it is changed to split-merging. Line 6 creates a new empty leaf ' with right

bound, right link. segnum, segsize set to the same as those in leaf 1. Line 7 chooses a

separator for leaf 1, and puts it in separator[l]. Line 8 unlocks 1; note that the leaf lock

is held for a relatively shoit time (lines 1-8). Lines 9-12 split all segments in 1. While the

originate-split process is splitting segments in 1, there can be other processes helping split

segments in I - see line 27 of the insert procedure in Figure 4.6. After all the segments

are split. I is locked to change indicator[l] back as shown in Figure 4.5. Once again, the

leaf is locked for only a brief time. In line 20, key k is inserted into 1 or ' depending on

the chosen separator: if k is larger than sep, we insert k into ' and vice versa. Line 21

does complete-split by trying to add a new < separator[l], ' > pair in l's parent.

Procedure split in Figure 4.7 splits segment s if it hasn't been split yet - separator[s] >

separator[l], or it has been split - separator[s] = separator[l] and s is stil full. In either

case, we move some data from s to its right neighbor 1'.

The time taken to insert a key into a concurrent priority pool is composed of the

time taken to go from the tree root down to the leaf level, the time taken to insert the

key into a leaf, and the time to do complete-split. We have seen that the leaf does nGt

need to be locked if it is not split, and is only locked very briefly to change the indicator

and link fields if a split happens. Thus, there is very little contention on inserting a
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proc originate-split(l, k)
% Oiginate splitting leaf 1, k is a key to be inserted.

1 if (indicatorl] = normal)
2 indicator[l] := split
3 else

%% indicator is merging
4 indicatorl] i= split-merging
5 end
6 Create a new empty leaf I' and link it to the right of I
7 separator[l] := choose-separator(s, I)
8 unlock 1
9 forall segment s in I do

10 lock s
11 split(s, 1, P', separaterpl], k)

12 unlock s
13 lock I
14 if (indicatorp] = split)
15 indicator[l] := normal
16 else

%9 indicator is splt-memng here
17 indicatorl] := merging
18 end
19 unlock I
20 insert k depending on sep
21 Do complete-split as in the concurrent B-tree
22 end originate-split.

proc split(s, 1, 1'. sep k)
%% Assume s has been locked
% Split segment s in leaf I depending on separator sep.

I right[s] := &V
2 if ((separator[s] > sep) or
3 ((sepaxators] = sep) and
5 full(s))) then
6 separator[s] := sep
7 move some data from I to ' using
8 sep as a filter --- like the insert operation as futures
9 end

10 end split

Figure 4.7: Split a leaf of concurrent priority pool
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key into a leaf if there are enough segments in a leaf. The overall time taken to do the

insert operation should be comparable to the time taken to do insertion in the concurrent

B-tree, O(!g N), where N is the number of keys in the priority pool.

4.3.4 Extract Operation

The leftmost leaf of a concurrent priority pool contains keys smaller than keys in other

!ea-eg. TLt .-xtract operation on a concurrent priority pool always extracts a key from the

leftmost leaf. Since the anchor contains direct pointers to the leftmost node on each level,

we can locate the leftmost leaf without going down from the tree root. This decreases

the traffic through the root.

The number of keys a leaf contains can be controlled, hence, the promising quality

of extracted keys can be controlled - we can vary segnum and segsize to control the

number of promising elements in the leftmost leaf. The extract opeia ion always finds a

key that is one of the segnum * segsize smallest keys in the concurrent priority pool. In

practise, the extracted key is usually better than the given bound, because the smallest

key in a segment is extracted first.

Figure 4.8 shows the pseudocode for the extract operation. First, we randomly pick

up a segment s in leaf I and lock it. We check whether s is in normal mode in line

3. If not, we go to the leaf pointed to by s's right link to do the extract operation in

lines 38-40. Otherwise, we do "normal deletion" as following. If s is not empty then we

extract the smallest key from s in line 5. If s is empty, then we can try other segments

in lines 9-11. If we fail to find a non-empty segment in I after several tries, we merge I

with its right neighbor in lines 13-34. We lock I to check indicator[ in line 14. In case it

is normal, the originate-merge procedure is called to start merging. In case indicator[l]

is merging, we help merge some segments in leaf I by calling the help-merging procedure

at line 27. In case leaf I has been deleted, we go to l's right neighbor to do the extract

in lines 29-33. If leaf l is being split, we simply go back to try other segments, because

we have not found a non-empty segm- ' yet, so we can not help the split; if we find a

non-empty segment, then the extract operation will be done.

Figure 4.9 shows the pseudocode of the procedure originate-merging, which merges

two leaves in the concurrent priority pool. We assume leaf I is locked upon entrance. Line

1 finds I's right neighbor ' and locks it. Line 2 tests the indicator of '. If it is normal,

we merge 1 and 1' in lines 4-21, do complete-merge as in the concurrent B-tree, and redo

the extract operation in lines 22-23. The locks of leaves I and ' are acquired only to

change their indicator and right fields in lines 4-8. Lines 11-14 mc:ge all segments in I'
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proc extract(l)
%,% extract a key from leaf I in the concurrent priority pool

1 (label#O) randomly pick up a segment s in 1
2 (abel#1) lock s
3 if indicator[s] = normal then
4 if s is not empty then
5 extract the smallest key f&cm s
6 unlock s
7 else
8 if we have not tried to delete enough times then
9 unlock s

10 s := another segment in I
11 goto (label#l)
12 else

%% do merge here
13 lock 1
14 case indicatorl]:
15 normal:

%9 normal merge
16 unlock s
17 if I is not the rightmost leaf then
is originate -merge(l)
19 end
20 split:
21 unlock 1
22 unlock s
23 s := another segment; goto (label#l)
24 merging:
25 unlock s
26 unlock 1
27 help-merging(l, merging-leaffl], rightpl])

% The merging-leaf and right fields of I should be
% read before unlocking I

28 goto (label#O)
29 deleted:
30 unlock s
31 unlock 1
32 1 := right[l] % right?] should be read before unlocking I
33 goto (label#O)
34 end
35 end
36 end
37 else

%% indicator[s]=- deleted
38 1 := right[s]
39 unlock s
40 goto (label#O)
41 end
42 end extract

Figure 4.8: Extract operation on concurrent priority pool
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proc originate-merging(l)
%9 try to merge l's right neighbor ' with I

assume I is locked at entry

I (label#l) lock 1' % ' is the right neighbor of I
2 case indicator[']
3 normal:
4 indicator[l] := merging
5 indicator[l'] deleted
6 merging-leaf l] := &I'
7 right[l] = right[l']
8 rightp'] &=
9 unlock I'

10 unlock I
11 forall segments s' in I' do
12 lock s'
13 match-merge(s', , I', 1")

%5 1" ts the right neighbor of 1 and should be read before unlocking 1
14 unlock s'
15 lock 1
16 if (indicator[l] = merging)
17 indicator[l] := normal
18 else

%% indicator is split-merging
19 indicatortq] := split
20 end
21 unlock 1
22 Do complete merge like in the concurrent B-tree
23 extract(l)
24 split, split-merging:
25 unlock '
26 unlock 1
27 extract(l)

%9 This is a rarely happening loop. We cannot help split here,
%9o since 1', the destination leaf, is unlocked and may be merged again.

28 merging:
29 unlock I'
30 unlock I
31 help-merging(l', merging-lea4l'], right['])

% assume merge-leaf/P] and right/'] are read before unlocking I'
32 extraCt(l)
33 deleted: error
34 end
35 end originate-merge

Figure 4.9: Merge two leaves of concurrent priority pool
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with segments in leaf 1. The match-merge procedure, which is described later, is called

to ensure that every segment in 1 will be updated. While the originate-merging process

is merging the segments in I' into 1, other processes can help to do the merge as shown

in line 31. Lines 15-21 lock I to change its indicator back to normal or split. Once again,

the leaf lock is held briefly. If indicator[l'] is split or split-merging, we just go back to

extract again in line 27. If indicator[l' is merging, we help merge some segments in

lines 28-32. The indicator of I' cannot be deleted, because deleted leaves are moved out

of the linked list - they cannot be l's right neighbor.

Procedure match-merge, as shown in Figure 4.10, merges segment s' of leaf I' with

the corresponding segment s of leaf 1. Because there are the same number of segments

in every leaf, it is not hard to create a one-to-one correspondence between segments in

two leaves. Leaf " was the right neighbor of 1, but may be not now. Consider the

example shown in Figure 4.11, in which leaf I is changed to the split-merging state from

the merging state, and a new leaf lnew is created between I and I". Segment sl in l has

been split, so sl's right link points to Inew. Segment sO in I has not been either split or

merged yet, so its right ink points to I'. Segment s2 in I has been merged but has not

been split yet - its right link points to I". The right links of segments in leaf l are set

to point to I" if the segments have not been split or merged; otherwise, the right links

are left unchanged. The spit process, concurrently goinc on with the match-merge, will

change the right links of all segments in I to point to new as shown in line 1 of the split

procedure in Figure 4.7. Thus, the match-merge procedure will change sO's right ink

to point to " because it has not been either split or merged; sl's right link will not be

changed since it has been split; segment s2's right link will be changed to point to Inew

by the concurrent split process.

Figure 4.10 also shows the pseudocode for the help-merging procedure. This help-

merging procedure randomly picks up a segment s' from leaf ', locks it, and calls match-

merge to merge the segment if a' is in normal mode and non-empty, then unlocks it.

Actually, we could help to merge more segments in the help-merging procedure.

Assume there are enough number of segments in a leaf, so that there is not much

contention on grabbing a segment from the leaf. If the segment is not empty, then the

rAt ICL uper.tion Lies uniy constant time - it can just take the smallest key in the

segment. If the segment is empty and we cannot find a non-empty one after several tries,

we need to merge the leftmost leaf with its neighbor, which takes O(segnum * segsize)

time. If we count in the time taken to do complete-merge, O(lg N), the extract operation

takes time O(lg N).
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4.4 Summary

This chapter presents another new concurrent priority queue called the concurrent pri-

ority pool, which is based on concurrent B-trees and concurrent pools. The concurrent

priority pool supports insert and extract operations like the parallel Fibonacci heap. The

structure of the concurrent priority pool is very similar to the concurrent B-tree, except

the leaves are replaced with concurrent pool-like data structures. Each leaf of a concur-

rent priority pool consists of several segments, each of which contains a fixed number of

keys. There can be different operations going on different segments in the same leaf. The

lock granularity of normal insert and extract operations is pushed down to the level of seg-

ments instead of leaves. Even when splits and merges happen, the leaves are locked only

briefly. The insert and extract operations do not share critical resources in most cases,

which is one of the reasons why the concurrent priority pool has the largest throughput

among all the priority queues studied, as shown by the experimental results in Chapter

5. Also, the concurrent priority pool provides a straightforward way of controlling the

promising quality of extracted keys.

60



proc match-merge(s', 1, ', I")
%o Match-merge moves data from segment s' of leaf 1' into the
% % corresponding segment in leaf 1.

I Lock s % s is the segment in I corresponding to s' in '
2 if (right[s] = I') then

% s hasn't been either merged or splitted
3 right(s] := &1"
4 separator[s] := right-boundp']
5 end
6 Transfer data from segment s' in ' to s.

95c' In this way, we are sure that every segment in I is touched.
7 If it does not all fit, insert the rest normally by calling insert procedure as futures.
8 Unlock s
9 indicator(s'] := deleted

10 end match-merge

proc help-merging(l, I', ")

I Choose a segment s' in '
2 Lock s'
3 if ((indicator[s'] = normal)
4 and (not empty(s'))) then
5 match-merge(s' 1, 1, 1")
6 end
7 Unlock s'
8 end help-merging

Figure 4.10: Match merge corresponding segments in two leaves on concurrent priority
pool
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Figure 4.11: Match-merging two leaves 1 and U
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Chapter 5

Experimental Evaluation

In this chapter we present the experimental evaluation of the parallel Fibonacci heap and

the concurrent priority pool and compare them with the concurrent binary heap. Section

5.1 describes the experimental environment and model. Section 5.2 shows the effects of

different parameters on the parallel Fibonacci heap. Section 5.3 shows the the effects

of different parameters on the concurrent priority pool. Section 5.4 compares different

concurrent priority queues in terms of throughput. Section 5.5 presents two applications

of concurrent priority queues: the single source shortest path problem(SSSP) and the

vertex cover problem(VCP). Finally, Section 5.6 summarizes this chapter.

5.1 Experimental Environment

Experiments have been performed on Encore Multimaxes. The language used is Mul-T

[KHM89I, a Lisp-like programming language with futures and lock mechanisms. Two En-

core machines have been used in the experiments: one with ten processors at LCS/MIT,

where most of the debugging tests were done; one with twenty processors at the Argonne

National Lab '.

In most of the experiments, the master-worker model is used: a master spawns a fixed

number of workers, each of which performs access-think cycles. An access can be an insert,

extract, decrease key or delete on a concurrent priority queue. Think time is modeled

by a simple delay in a loop; the number of iterations denotes the think time. Think =

0 means the workers do not think at all, and think = 1000 means think consists of 1000

'Only 18 processors can be used for running MuI-T. Due to some unknown errors, running Mul-T
with large number of processors has caused the Encore at Argonne Lab to crash. Thus, we did not get
aJJ po suble data up to 18 procesors.
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loop iterations. Since the decrease key and delete operations are not supported well on

binary-heap-based concurrent priority queues and concurrent priority pools, we compare

them by measuring only the insert and extract operations. In most trials described in

this chapter, the following worker model is used unless otherwise stated: the number

of workers is equal to the number of processors available; each worker performs access-

think cycles on a heap initially containing 1000 keys2 , and access to the priority queue
is composed of 55% inserts and 45% extrcts. The keys inserted are randomly chosen

from the range 9 to 10000. All workers are started at approximately the same time,

and the first worker that finishes 1000 access-think cycles will stop other workers. The

throughput is the total number of cycles performed by all the workers divided by the

elapsed time. I used the timer facilities of Mul-T version 25 to collect data.

5.2 Parallel Fibonacci Heap

The parallel Fibonacci heap has three parameters: marpt, buffersize, and strictness as

described in section 3.4.5. We have tested different combinations of buffersize and strict-

ness, with maxpt set to be the same as the number of processors. Figure 5.1 shows the

throughput (cycles/second) vs. the number of processors, while the think time is 0. We

can see that the throughput in the trials is linearly increasing with the number of proces-

sors, from around 70 with 2 processors to around 680 with 18 processors. We can roughly

see from Figure 5.1 that all the curves are very close to each other, which indicates that

the parameters buffersize and strictness do not affect the throughput too much. Trials

with larger buffersize and str-ictnes have a little larger throughput. However, strictness

has more impact than buffersize. Note in Figure 5.1 that the throughput is quite good

when buffersize = 1, and strictness = 1. Buffersize = 1 means only the least key in a

parallel Fibonacci section is selected as a candidate for the promising list in the process of

consolidation, and strictness = 1 means the promising list will only get better candidates

from direct promise-checking since the good heuristic function filters out almost all keys

worse than keys in the promising list.

Figure 5.2 shows the throughput vs. the number of processors when think = 1000,

and different buffersize and strictness. The curves are quite similar to the case of think

= 0, except the throughput is less due to the think time. Figure 5.2 also shows the trials

with strictness equal to 1. It shows the throughput of the parallel Fibonacci heap does

'This avoids extracting from an empty priority queue
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Figure 5.1: Parallel Fibonacci heap: Throughput (cycles/second) vs. number of proces-
sors while think =0, different 'dues of parameters buff sze and strictness

riot clanre too much with different buffer when strictness = 1.

5.3 Concurrent Priority Pool

The concurrent priority pool has two parameters: segnum, which is the number of seg-
ments in a leaf. and segsize, which is the number of keys conitained in each segment and
the number of < pointer, bound > pairs in an interior node. We have done some exper-
iments on different values of segnum and segsize. In the experiments, ordinary blocking
locks are uscil instead of read-write locks (see Section 4.1). Using read write locks should
reduce the contention on interior nodes of the B-tree. F'ure 5.3 shows the throughput
vs. the number of processors when think = 0, segsize = ", and different segnum. Fig-
ure 5.4 shows the throughput vs. the number of processors when think = 0, segsize =
5, and various segnum. Figure 5.5 shows the curves when think = 0, segsize = 7, and
different segnum. These three graphs have one thing in common: the throughput are
linearly increasing with the number of processors, and all the curves are close to each
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5.4 Comparing Different Concurrent Priority Queues

\\ have f-nT how the parallel Fibonacci heap and the concurrent pool perform on differ-

ent parameters. Here, we consider how they compare with each other, and how they com-

pare with other kinds of concurrent priority queues, such as the concurrent binary heap.

The concurrent binary heap compared here was developed by Rao and Kumnar[R.K88b].

They proposed a method of performing insert and delete operations concurrently in a

top down order on a balanced binary heap. The insert operation locks one node at a

tir- c, and the delete operation locks three nodt-s, a parent and two children, at a time.

Their scheme has strict semantics for the extract operation, which means the extract

operation always retrieves the most promising key. The problems with strict semantics

have been discussed in Section 3.1.

Figure .5.6 shows a comparison of the throughput of different priority queues: the
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Figure 5.3: Concurrent priority pool: think = 0, segsize =3, different segnum

sequential binary heap, the concurrent binary heap, the concurrent priority pool, and the
parallel Fibonacci heap. Each operation on the sequential binary heap has an exclusive
lock on the whole heap during the entire period of the operation. The parallel Fibonacci
heap tested here is an average one, with buffersize and strictness both equal to one. The
concurrent priority pool tested has segnum equal to the number of processors, and segsize
equal to 5. The graph shows that the throughput of the parallel Fibonacci heap and the
concurrent priority pool are both linearly scalable, and that the concurrent priority pool
has the largest throughput among these four priority queues. The concurrent binary
heap's throughput saturates when the nuinber of workers is more than about eight.

Since the sequential binary heap holds a lock on the entire heap during an operation, its

throughput decreases as the number of processor increases. Because all the insert and
extract operations of a concurrent binary heap both have to go through and lock the

tree root, the tree root becomes a bottleneck when the number of processes accessing

the concurrent binary heap increases. This bottleneck problem is reflected in Figure 5.6,
which shows that the throughput of a concurrent binary heap saturates quickly. Overall,

the concurrent binary heap is not as scalable and efficient as either the parallel Fibonacci
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Figure 5.4: Concurrent priority pool: think = 0, segsize = 5, different segnum

heap or the concurrent priority pool.
Figure 5.7 shows the comparison when think = 1000. The contention on the priority

queues is less than that of think = 0; this helps slow down the saturation of the less
scalable priority queues.

5.5 App!ications

Two kinds of applications of concurrent priority queues are presented in this section. One
is the single source shortest path problem which is in the computational class P. The
other one is the vertex cover problem which is in the computational class NP-complete.

5.5.1 Single Source Shortest Path Problem

The single source shortest path problem is as follows: given a source vertex s in a weighted
graph G =< V, E >, find a path of minimum weight from s to every v E V. We choose
Dijkstra's algorithm as our basis[CLR90]. As shown in Figure 5.8, we keep a priority

68



dw z 10 Segpze 7

1.00-SS MP"p b

0.90I

0.80.-

070-

0,60..-

0.50 K-

0.40

0. //

/ /7

0 I0 ---

0,10-
5.OO I0.00 15.00

Figure 5.5: Concurrent priority pool: think = 0, segsize = 7, different segnum

queue Q of vertices in V. The priority of a vertex in Q is its distance from the source

vertex s. The algorithm always chooses the vertex u that is the closest to s to add into

S. For each vertex u's neighbor v, we check if a shorter path has been found: if so,

we update d[v] in line 11. Note that vertices are never added to Q, and each vertex is

extracted from Q and added to S exactly once.

The parallel single source shortest algorithm is presented in Figure 5.9. Independent

workers work on a concurrent priority queue. These workers perform the same job as

their sequential counterparts: extract a close vertex n from the queue and check all

n's neighbors to see if closer paths have been found. Unlike the sequential Dijkstra's

algorithm, when we extract a vertex from the concurrent priority queue, the vertex does

not necessarily have to be the closest one from the source. In this way, a node may

be inserted into the queue several times if a better path is found later on. However,
the expe-iments show that on average each node is inserted no more than 1.3 times.

Similarly, more decrease key operations are performed.

This algorithm requires the use of the decrease key operation; since the decrease key

operation cannot be effectively implemented on the concurrent binary heap, we only
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Figure 5.6: Comparing different priority queues: think = 0

compare the sequential binary heap, the parallel Fibonacci heap, and the concurrent

priority pool. For the concurrent priority pool, the decrease key operation is implemented

as a combination of delete and insert operations: first we delete the old key from the

pool. then we insert the new key into the pool. In this way, a decrease key operation

for the concurrent priority pool consists of two accesses whereas it is a simple operation

with amortized constant cost for the parallel Fibonacci heap. In the implementations,

we hdve kept track of where a key is in a priority queue to avoid searching when we do

decrease key operations.

Figure 5.10 shows the speedup graph of the single source shortest path problem. The

graph has 1000 vertices and the degree of each vertex is randomly chosen from 0 to

either 10 or 50. The sequential binary heap is used to compute speedup. The sequential

program is ver ,'fficient (it is in computational class P) and always finds the shortest

path to any vertex in shorter steps as compared to the case of concurrent priority queues

where we do some extra work such as inserting a vertex in the queue several times and

decreasing the distance of a vertex more often. As expected, the speedup ranges from

around 0.3 with one processor to about 4.5 with fifteen processors. The parallel Fibonacci
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proc Dijkstra(G. s)
'/c Find the shortest path from source s

1 for each vertex v in V[G]
2 do d[vJ :=o % initialize distance to be $\:nfty$
3 d~s] 0
4 S .=

5 Q V[G]
6 while Q t- do
7 u extract-mio(Q)
8 S SU(ul
9 for each vertex v in Adj[u] do % relaz edge (u, v)

ii if div] > d~u] + w~u, v] then
11d[v] : d(u] + w~u, v] % ths is a decrease key operution

12 end
13 end Dijktra

Figure 5.8: Dijkstra's single source shortest path algorithm
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heap has slightly greater speedup than the concurrent priority pool on large number of

processors (around ten). This could be caused by the fact that the decrease key operation
on the parallel Fibonacci heap is more efficient.

5.5.2 Vertex Cover Problem

A vertex cover of an undirected graph G = (V, E) is a subset V' E V such that if (u, v)
is an edge of G, then either u E V' or v E V' or both. The size of a vertex cover is the
number of vertices in it. The vertex cover problem (VCP) is finding a minimal vertex
cover for G [VorS7, PS82, CLR90, KRR88. VCP is an NP-complete problem [CLR90].
As many other NP-complete problems, VCP can be attacked with branch-and-bound

algorithms [LW66, jLW84, LS84].

Figure 5.11 shows a parallel branch-and-bound algorithm for VCP. In line 1 of the
master procedure, an upper bound Co of the VCP is found by using a greedy algorithm,
i.e., picking vertices with larger degree first to get a cover. We start from an empty
cover and fork off some workers to search the state space of the VCP. The priority queue
Q keeps track of all the partial subcovers that have better lower bound than Co. Each
worker repeatedly takes subcovers out of Q and puts bigger subcovers that have lower
bounds smaller than Co into Q until the smaliest vertex cover is found. In the pseudocode
for the workers, line 2 extracts a subcover C. Line 6 finds a ver.cx a not in C that covers
edges not already covered by C. We generate C's two successors C, and C2 by either

including x or excluding x in lines 7-10. Excluding x is equivalent to including all x's
neighbors into the cover. In line 11, we compute the lower bounds for the newly generated
subcovers. A lower bound b for a subcover C means that every vertex cover for G that

contains C will be of size at least 6. Intuitively, b = ICf + the least number of vertices
that have to be added into C to form a cover. We compute the second item by finding

a match M of the graph uncovered by C'. Because at least one of the two endpoints of
each edge in M has to be included in a vertex cover, b = JCl + IMl. In line 12, if we find

a vertex cover that has better bound than the global bound Co, then we replace Co with
the new cover. We insert subcovers that have better lower bound than Co back into Q.

Figure 5.12 shows the speedup graph of VCP on a 50 vertex graph with degree
randomly chosen from 0 to either 10 or 16. The sequential binary heap is used as the
basis to compute speedup. The concurrent priority pool and the parallel Fibonacci heap

3A match is a set of independent edges, i.e., edges that do not share common vertex. We can use any
kind of match to compute the lower bound here; the maximal match gives the best bound, but takes
more time to find. In the experiments, a simple greedy match is used.
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both have good scalable speedup whereas the concurrent binary heap saturates when

the number of processors is more than ten. The graph also shows that the concurrent

priority pool has slightly greater speedup than that of the parallel Fibonacci heap. Both

the concurrent priority pool and the parallel Fibonacci heap have greater throughput
when the degree upper bound of the vertices is bigger (i.e., 16 in the graph). The results

are quite consistent with the synthetic data presented in the last few sections.

5.6 Summary

Some experimental results on different concurrent priority queues have been presented in
this chapter. For the parallel Fibonacci heap, the parameters buffersize and strictness do

not affect the running time much. In fact, the parallel Fibonacci heap performs fairly well
in the quite strict case, when buffersize = 1 and strictness = 1. For the concurrent

priority pool, the effects of the parameters segnum and segsize do not seem to affect

the throughput much either. The comparison of different concurrent priority queues,

as shown in Figure 5.6, indicates that the parallel Fibonacci heap has linearly scalable

throughput; the concurrent priority pool has the largest throughput and at the same
time it has a linearly scalable performance. The throughput of the concurrent binary

heap saturates when the number of processes accessing it is more than about eight. The

sequential binary heap's throughput decreases as the number of processors increases.

Two different types of applications of concurrent priority queues, namely single source

shortest path problem and vertex cover problem, have been implemented. The single

source shortest path problem is in the computational class P and can be efficiently solved

by using sequential binary heaps. Both the parallel Fibonacci heap and the concurrent

priority pool have good scalable speedup, although it is around 0.3 with 1 processor and

4.5 with 15 processors. The vertex cover problem is an NP-complete problem. Both the

parallel Fibonacci heap and the concurrent priority pool have good scalable speedup.

When the degrees of vertices in the graph are relatively large, the speedup is close to

linear. The concurrent binary heap's speedup saturates when the number of processors is

more than about ten. The results on applications are quite consistent with the synthetic

data.
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%76 pseudocode for the single source shortest path problem
%% Find the shortest paths from source s to all other nodes in the graph
%% Data structure: the graph ,s represented as an adjecent ...

proc worker(q)

1 loop
2 n := extract-min(q)
3 if n = nil then

%7c q is empty
4 Termination test; see if the worker can quit
5 else
6 mark[n] := not-in-queue

l; n has been taken out of q
7 For each neighbor in adj[n] do
8 lock neighbor
9 if d(n) + w(n, neighboi) . d(neighbor) then

10 if mark[neighbor] = not-in-queue then
11 insert neighbor into q with new-distance
12 else
13 decrease-key(neighbor, new-distance)
14 end
15 end
16 unlock neighbor
17 end
18 end
19 end worker

proc master

I Q
2 Put source s in Q with priority 0
3 Fork off some workers to work on q
4 end master

Figure 5.9: Parallel single source shortest path algorithm
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Speedup graph of the SSSP problem
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Figure 5.10: The speedup graph for the SSSP problem
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proc worker(Q)

1 loop
2 subcover := extract-rnin(Q)

% subcover = (C, b) where C is the set of vertices and
% b is the lower bound (i.e., the key in Q).

3 if subcover = nl then
% Q is empty

4 Termination test; see if the worker can quit
5 else
6 Find a vertex x not in the cover C such that x covers
7 edges that are not already covered by C

Generate two subcovers C1 and C2
9 C1 includes vertex x

10 C2 includes x's neighbors
11 Compute the corresponding lower bounds b, and b2
12 if one of the new subcovers forms a vertex cover that
13 is smaller than the current cover Co then
14 replace the current cover with the new one

15 if newly generated subcovers have better bound than the current
16 one then insert them into Q
17 end
18 end worker

proc master(G)

I Generate an initial cover Co using greedy algorithm
2 Q := empty cover with bound 0
3 Fork off some worker(Q)

4 end master

Figure 5.11: The branch-and-bound algorithm for the vertex cover problem
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Figure 5.12: The speedup graph of the VCP
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Chapter 6

Conclusion and Future Directions

6.1 Contributions

This thesis presented two novel concurrent priority queues: the parallel Fibonacci hetp

and the concurrent priority pool, both of which have non-strict semantics (see section

3.1). The parallel Fibonacci heap is based on the sequential Fibonacci heap, theoreti-

cally the most efficient data structure for sequential priority queues. This scheme employs

distributed small critical sections -o that it has linearly scalable throughput. The experi-

mental results in Chapter 5 showed that the parallel Fibonacci heap has linearly scalable

:hroughput that is larger than that of the concurrent binary heap with Pven small num-

ber of processors. A concurrent access scheme for a doubly linked list was described as

part of the Fibonacci heap.

The concurrent priority pool. based on the concurrent B-tree and the concurrent pool,

has the largest throughput among all of the priority queues tested, besides providing

a easy way to control the quality of extracted nodes. The experiments showed that

the concurrent priority pool also has linearly scalable throughput. The three kinds of

concurrent priority queues, namely the parallel Fibonacci heap, the concurrent priority

pool, and the concurrent binary heap, were evaluated on an Encore machine using the

language Mul-T.

Two different types of applications of concurrent priority queues have been tested.

One is the single source shortest path problem, which belongs to the computational class

P. The other one is the vertex cover problem, an NP-complete problem. The results show

that the parallel Fibonacci heap and the concurrent priority pool both have good scalble

speedup on the applications whereas the concurrent binary heap saturates quickly. The

speedup is larger on VCP than on SSSP.
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6.2 Future Directions

6.2.1 More experiments

More experiments will be done when the simulator asim becomes practically usable.

6.2.2 Distributed Memory Model

The concurrent priority queLs discussed in this thesis are mainly based on the shared
memory model. Here, we discuss see how they can be modified to use a distributed

memory model.

The parallel Fibonacci heap is nicely divided into many sections. In a distributed

memory model, each processor can have a section in its local memory and the promising

list r.v be replicated. The promising list does not have to be updated synchronously on
all processors. The insert operation can insert in the process' local section, or randomly

pik up a remote section to insert in depending on the network communication cost.

The extract operaion first tries to extract a local promising node. If there are no local

promising nodes, the extract process finds remote promising nodes through the promising

list. If tle consolidation process finds that the quality of local nodes is not as good as
nodes at remote processors, then some trees can be moved to balance the quality of nodes

on different prucessors. Since a parallel Fibonacci section is a forest of trees linked in a
doublv linked list, it is easier to move data around than if a section were a binary heap.

For the concurrent priority pool whose skeleton is a concurrent B-tree, we can imple-
ment each B-tree interior node and segment as an object. Since all the insert operations

go through the B tree root, we may want to replicate interior nodes close to the root

on different I -cessors to diffuse the traffic on the upper part of the B-tree '. Similarly,
because all ex,±act-mixi operations go through the leftmost leaf, it would be desirable to

put different segments in the leftmost le-.f on different processors.

6.2.3 Other Related Research

Kumar et al [KRR88] introduced several distributed binary heaps. They used three kinds

of communication methods among processors to balance load: blackboard, random, and
rtng, and pointed out that the blackboard approach is the best.

'This problem is examined in Paul Wang's thesis[Wan0].
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Driscoll et al [DGSTSS have proposed a parallel priority queue for SIMD machines
that is called a -relaxed heap". Van Emde Boas presented sequential priority queues
[vEB75] that support insert, extract, d'ete and other operations in worst-case time

O(Ig Ig n), if all the keys in the priority queue are restricted in the set {1, 2, ..., n}. It
would be interesting to see if a more efficient parallel priority queue caa be built using

this as a base.
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