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1 Introduction

Consider the construction of an expert system by encoding the knowledge of different
experts. Suppose the knowledge provided by each expert is encoded into a knowledge

base. Then the process of combining the knowledge of these different experts is an

important and non-trivial problem.

The problem is important because the user of the expert system so constructed should

have access to the knowledge of each of the experts. In particular, he/she should be
able to to use the knowledge of two different experts to jointly derive a fact that

neither of the experts, individually, knew. In other words, one important feature

involved in consulting multiple experts is to pool their knowledge together and thus

obtain knowledge that no individual expert previously had.

The problem is non-trivial because individual experts can, and often do, hold con-
flicting views on their domain of expertise. Two attorneys involved in a legal defense
may well hold conflicting views on the best possible defense strategy, just as two doc-

tors may well differ in their assessment of a patient's malady. In a logic knowledge

base, these conflicting opinions manifest themselves in the form of inconsistencies.
Classical logic would then indicate that the resulting knowledge base is meaningless

- a state of affairs that is clearly inappropriate in this context. Just as the attorneys

and doctors would work together to reconcile their views in the interests of the de-
fendent or patient, so should a knowledge base management system reconcile these
inconsistencies and allow sensible decisions to be drawn. The key problem here is:
how should these inconsistencies be reconciled? This is the problem addressed in this

paper.

Baral, Kraus and Minker [BKM89 formalize the notion of combining knowledge

bases when each knowledge base is a general Horn logic program (set of rules with
only atoms allowed in the head) and assume that the union of the knowledge bases
is stratified (no recursion through negation). They assume the presence of world

knowledge in the form of integrity constraints, which all the individual knowledge
bases satisfy, and the combined knowledge base is required to satisfy. They present

methods to obtain a maximally combined knowledge base with respect to the union
of knowledge bases that is consistent with respect to the integrity constraints. Since

they consider each knowledge base to be a general Horn logic program the union

of the knowledge bases is always consistent and the combined knowledge base they
obtain is maximal with respect to it.



In this paper we consider each knowledge base as a first order theory. The set of
integrity constraints is also assumed to be a first order theory. In this case the union

of the knowledge bases is not necessarily consistent. Because of this, in the absence
of integrity constraints, to have the combined knowledge base as the union of the
knowledge bases, we need a semantics for inconsistent theories. Many such seman-
tics have been suggested in the past [BS89, BS88, dCSV89, Gra74, Gra75, Gra77,
Gra78, Sub89, GL, KS]. In this paper we use the cautious approach of Grant and
Subrahmanian [GS90] to characterize the semantics of inconsistent theories. In the
cautious approach the semantics of an inconsistent theory is the semantics obtained
by considering all maximally consistent subsets of the inconsistent theory. A sentence
is considered true (flse) if it is true (false) in all maximally consistent subsets of the
original theory.

In the next section, we will present a scenario which will be used throughout the
paper to illustrate the basic intuitions behind our technical development. In section 3
of the paper, we discuss the cautious semantics of inconsistent theories in the presence
of integrity constraints. In the subsequent section we formalize combining a set of
theories having the same priority, in the presence of integrity constraints and its
relationship with view update approaches [FKUV86, FUV831. We then allow the
theories to be prioritized and formalize the notion of combining a set of prioritized
theories.

2 A Motivating Scenario

Inconsistencies can easily arise when multiple reasoning agents each arrive at a par-
ticular view of the world. While these individual views are usually self-consistent,
they often tend to conflict with one another. We now present a simple scenario which
we will use over and over again to motivate the basic ideas in the paper.

The Scenario: At 1:00 AM on January 14, 1990, Don was shot outside the Good

Times Bar in Washington. The street was more or less deserted (it being late in

the night) except for four people: Don (who got shot), the murderer, and two rather

drunk individuals, John and Bill, who were on the street. John is an eighty-five year

old man who was about 100 yards away from the shooting, while Bill is thirty years

old. Bill was about 75 yards away from the shooting. Their stories are the following:

John's Story:
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1. The murderer wore an orange coat.

2. The murderer wore no hat.

3. He knows the murderer got away in a car (as he heard the engine revving up

and the car taking off), but he was hiding in a doorway and was too scared to

look, and hence cannot tell us anything about the car.

Bill's Story:

1. The murderer wore a dark (probably black) coat.

2. The murderer wore no hat.

3. The murderer drove off in a pink Mercedes.

If we look at John's story and Bill's story, they are self-consistent. If Bill had not

been around, we would probably have accepted John's version of the story (and vice-

versa). However, their stories conflict with each other (if we make the reasonable

assumption that the murderer wore only one coat). This assumption has the status

of an integrity constraint: for the purposes of the story, it is a statement all parties

are willing to accept.

Integrity Constraints:

1. The murderer wore only one coat at the time of the murder.

2. Based on other evidence, the police present a convincing case that the murderer

knew the victim well.

3. Don's close cronies are Jeff, Ed and Tom.

4. There is no evidence that any of these three individuals had either borrowed or
bought a coat recently; so the only coats they could have worn were their own.

5. Both Jeff and Ed have pink Mercedes. Tom doesn't know how to drive.

6. Jeff has an orange coat.

7. Ed has a black coat.
yCodes

8. there is no possibility of any collusion between Jeff and Ed. j .djor

3 
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Based on the above story, we are led to suspect Ed or Jeff, but not both. Only one

of them was the murderer. If we accept John's story, then Jeff is the murderer. If we

accept Bill's story, then Ed is the murderer.

We are faced with the following problem: who did it ? There are numerous alterna-

tives:

Alternative 1: In a court of law the guilt of a person must be established beyond

ALL reasonable doubt. This cannot be established in this case. For example, if Jeff

is on trial for the murder of Don, then a reasonable doubt can be cast on his guilt

by the defense. A similar situation would occur if Ed was on trial. This situation

corresponds to the case where one views each and every possibility in the correctness

of the witnesses' statements. We accept a person as guilty iff he/she turns out to be

guilty in in all these different possible worlds.

Alternative 2: We may be led to doubt the correctness of John's statements. After

all, he is eighty-five years old, as compared to Bill's thirty years, and hence, pre-

sumably, Bill's eyesight is better. Furthermore, Bill was much closer to the sceni of

the crime, and hence, one may feel that his evidence is more credible. In deciding

who to prosecute (Ed or Jeff), the police may well decide that they can make a more

compelling case against Ed based on Bill's evidence. This alternative corresponds to

the assignment of a priority to Bill's evidence, rather than to John.

Alternative 3: The third alternative is to simply conclude that the evidence is incon-

clusive: we know for sure that cither Jeff or Ed did it, but cannot figure out which of

them was actually responsible. This may trigger a search for further evidence which

may, perhaps, yield something moe conclusive.

These are only three possible scenarios. Each of these represents a reasonable way of

reasoning about the body of evidence in front of us. We will illustrate the technical

development of the paper by frequent reference to this example.

3 Cautious Semantics for Inconsistent Theories

We consider a theory to be a finite set of well-formed formulas. Several semantics

for inconsistent theories have been discussed in [GS90]. One of the approaches to

characterize an inconsistent theory is to consider the maximally consistent subsets of

the inconsistent theory. A maximally consistent subset of an inconsistent theory T
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is a theory which is a consistent subset of T, and which becomes inconsistent if any

other sentence of T is added to it. Intuitively, each maximally consistent subset of

T corresponds to a consistent state of the world T is trying to characterize. In the

presence of a set of worlds, one can either be bold and pick one of them as the "real"

state of the world or one can be cautious (some call it skeptical) and consider all

of them. Hence, in the cautious characterization of inconsistent theories, the truth

value of a sentence L corresponds to the intuition: "Is L true w.r.t. each and every

maximally consistent state of affairs ?"

But, in the presence of integrity constraints (world knowledge which every theory

has to satisfy) we have to consider only those worlds that are consistent with respect

to the integrity constraints. The bold approach of doing it would be to consider only

those maximally consistent subsets that agree with the integrity constraints. The

cautious approach of doing it would be to subdivide a maximal consistent subset P

of the original theory to maximal consistent subsets of P, such that they are each

consistent with respect to the integrity constraints.

Example 3.1 With respect to the murder example described in the previous section,

the cautious semantics would accept the conclusion "X is the murderer" if X was the

murderer irrespective of whether we chose to believe John or Bill. Thus, according to

the cautious semantics, there would be no such individual X. However, the cautious

semantics would allow us to conclude the sentence "Either Ed is the murderer or Jeff

is the murderer" because this follows irrespective of whether we believe John or Bill.

In the following definitions MAXCONS(P) and MAXCONS(P, IC) are maxi-

mal consistent subsets of P and maximal consistent subsets of P with priority to IC.

By, maximal consistent subsets of P with priority to IC we mean maximal consistent

subsets of P U IC, which contain all elements of IC.

Definition 3.1 Let P be a theory and IC be a set of integrity constraints. A subset

Q C P U IC is said to be maximally consistent with priority to IC if Q is consistent,

IC _ Q and for every theory Q' such that Q C Q' C P U IC, it is the case that
Q' is inconsistent. MAXCONS(P, IC) is the set of maximally consistent subsets of

P U IC with priority to IC. When IC is an empty set then MAXCONS(P, IC) is

called MAXCONS(P) and is the set of maximally consistent subsets of P.
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Theorem 1 Suppose P is any first order theory and IC is any consistent set of

integrity constraints. Then P U IC has at least one maximally consistent subset P'

such that IC C P'. (Note in particular, that P may contain function symbols and P

may be infinite).

Proof. P U IC has at least one consistent subset that is a superset of IC, viz. IC

itself. Thus, let CONS(P, IC) denote the set {X I X C P U IC and X is consistent

and IC C X}. Thus, CONS(P, IC) # 0 because IC E CONS(P, IC). We show

below that every ascending chain of elements in CONS(P) has an upper bound in

CONS(P). The result then follows from Zorn's Lemma.

Suppose M1 C M2 C M3 9 ... is an ascending sequence of members of CONS(P),

i.e. each Mi is a consistent subset of P U IC and IC C Mi. Then M = U_ 1 Mi is an

upper bound for this ascending sequence. Moreover, M is consistent, IC C M and

M C P U IC, i.e. M E CONS(P). The only non-obvious part is the consistency of

M.

To see this, suppose M is not consistent. Then, by the Compactness Theorem, there

is a finite subset M' C M such that M' is inconsistent. Let M' = {1,..., Yn} for

some integer n. Hence, for each I < i < n, there is an integer, denoted ai such

that -y E M(j). Let a = max{a(1) ... ,a(n)}. Then M' C M,. Hence, as M' is

inconsistent, M. is also inconsistent, thus contradicting our assumption that each

Mi, j 1, is in CONS(P). 13

A weaker version of the above theorem has been established by Grant and Subrah-

manian [GS90] (cf. Corollary 3.1 below).

Corollary 3.1 [GS90] Every theory P has at least one maximally consistent subset.

Proof. Take IC to be the empty set in the proof of Theorem 1. 0

Definition 3.2 [GS90] Suppose P is a theory, and F is a formula. A notion of

entailment, hV based on the cautious approach is defined as follows:

P Ihv F iff P' = F for every maximal consistent subset P' C P.

Theorem 2 [GS90] Suppose P is a theory, and L, L1, L2 are ground literals. Then:

1. for all ground literals L, it is not the case that P I-v L and P F-v -,L.
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2. P Fy (Li & L 2) iff P 'v L1 and P I-V L2.

3. P Fv F for all tautologies F of classical logic. 0

Example 3.2 Let P be:

pV -,q

-'p V -,q

r

q

In this case, MAXCOA S, P) consists of three elements:

{pV -q; r; q},

{-'p V -q; r; q},

{p V -q; -p V -q; r}.

In this case, P I-v r. But P I/v q and P /v p and P iv -'q and P I/v -,p.

We now present algorithms to compute MAXCONS(P) aid MAXCONS(P, IC).

The algorithms assume that the theories have a finite Herbrand Base. Function-free

databases satisfy this condition. In other words it is decidable to determine their

consistency. When an inconsistent theory T consists of n sentences, Algorithm 3.1

constructs its maximal consistent subsets by determining the consistency of each

subset of T of cardinality n - 1. All such consistent subsets are stored in a set

S. For each inconsistent subset, its maximal consistent subsets are added to S.

The set of maximal elements of S is MAXCONS(P). Algorithm 3.2 is similar to

Algorithm 3.1 except that instead of testing the consistency of each subset of T, it

tests the consistency of the union of IC with, each of the subsets of T.

Algorithm 3.1 Procedure MAXCONS1(P)

MAXCON = 0
If P is consistent then MAXCONS1(P) = {P}.
else

begin

{ ** Let P be the set of sentences .C..., C,,}. *}
For i = 1...n do P1 := P- {C} od

7



For i = 1.-. n do MAXCON:= MAXCON U MAXCONS1(Pi) od

MAXCONS1(P) := maximal elements of MAXCON.

end

Theorem 3 MAXCONS(P) = MAXCONS1(P)

Proof: [MAXCONS(P) _ MAXCONSI(P)] Suppose X E MAXCONS(P).

Then X = P - {C 1,..., C,} for some integer r > 0 where {C 1,..., C,} C P. We

proceed by induction on r.

Base Case. (r = 0) In this case MAXCONS(P) = {P} = MAXCONS1(P).

Inductive Case. (r = k + 1) Consider P' = P - {Ck+1}. Then X is a maximal

consistent subset of P' and furthermore, X = P, - {C1,..., Ck}. Therefor, by the

induction hypothesis, X E MAXCONS1(P'). As X U {Ck+l } is inconsistent, X is

in MAXCONS1(P).

[MAXCONS1(P) c MAXCONS(P)] Similar. 0

Algorithm 3.2 Procedure MAXCONS1(P, IC)

MAXCON = 0

If P U IC is consistent then MAXCONSI(P, IC) = {P U IC}.

else

begin

{ ** Let P be the set of sentences {C,..-, C,. .}

For i = 1...n do Pi:= P -{Ci} od

For i = 1-.. n do MAXCON := MAXCON U MAXCONS1(P, IC) od

MAXCONS1(P, IC) := maximal elements of MAXCON.

end

Theorem 4 MAXCONS(P, IC) = MAXCONS1(P, IC)

Proof: Proceeds along exactly the same lines as the proof of Theorem 3. 0

Returning to the motivating murder example in Section 2, if we take P to be the

union of John's evidence and Bill's evidence, then MAXCONS(P, IC) consists of

two theories T1 and T2. T contains:

1. all integrity constraints and

8



2. sentences 1,2, 3 of John's story and sentences 2, 3 of Bill's story.

Likewise, T2 contains:

1. all integrity constraints and

2. sentences 2 and 3 of John's story and sentences 1,2, 3 of Bill's story.

Thus, using the MAXCONS(P, IC) semantics, we may conclude that the murderer

wore no hat (this being true in both T1 and T2 above). However, we may not conclude

anything about the color of the murderer's coat. We may also conclude that the

murderer drove away in a pink Mercedes.

We now discuss a technique for computing MAXCONS(P) in cases when P is a

finite set of clauses (a clause is a disjunction of literals). Throughout the rest of this

section, we consider only sets of clauses.

Definition 3.3 Suppose T is a consistent set of clauses and D is a clause such that

T U {D} is inconsistent. A refutation of D from T is a sequence Cl,..., Cn such that:

1. Cn is the empty clause 10 and

2. each Ci, 1 < i < n is either in T U {D} or is a resolvent of two clauses

C,C'E T u {D} U {C,,...,C-,_}.

C,... ,Cn is called a minimal refutation of D from T if there is no strict subse-

quence of Ci,..., CC which is also a refutation of D from T, i.e. there is no sequence

D1,..., Dm such that {D 1,... ,Dr} C fC,..., Cn} and if Di = Cj and Di+I = Ck,

then j < k.

Definition 3.4 Suppose T is a consistent set of clauses and D is a clause such that

T U {D} is inconsistent. Let R be some minimal refutation of D from T. Then the

set R nl T is said to be a potential cause of D.

Example 3.3 Suppose T is the following set of clauses:

Cl: a V b

9



C2: a V -b

C3: a V c

C4: a V -c

and D - -'a. There are two minimal refutations *I and R2 of D from T where:

R, = C1, C2, a, D, o

R2 = C3, C4, a, D, O

(Actually a few more minimal refutations may be obtained by re-arranging the oc-

currences of some of the clauses in R1, R2). Thus the potential causes of D are:

PC, = {C1, C2, } and PC2 = {C3, C4} corresponding to R1, R2 respectively.

In the context of the murder scenario outlined in Section 2, there is only one potential

cause of the inconsistency, viz. the following three sentences:

1. John: The murderer wore an orange coat.

2. Bill: The murderer wore a black coat.

3. IC: The murderer wore only one coat at the time of the murder.

If T is itself inconsistent, we may talk of refutations of the empty clause, 0, from T.

This refers simply to different refutations of 01 from T. In this case, each minimal

refutation of T gives rise to a potential cause of the inconsistency of T, viz. the

potential cause of 0 w.r.t. the refutation we are currently considering.

Algorithm 3.3 Procedure MAXCONS2(P)

Let there be n potential causes of the inconsistency of P.

If n = 0 then MAXCONS2(P) = {P}.

else

begin

For i = 1 .-. n do Si := the i 'th potential cause of the inconsistency of P od

S:=S1 x.X ×Sn
S' : { a ,. ,a} I (a,..., a) E S}

MINS := minimal elements of S' w.r.t inclusion

MAXCONS2(P) = {P - Y, I Y E MINS}

end

10



In the remaining Lemma and Theorems of this section, any unexplained notation will

refer to the notation used in the MAXCONS2 algorithm.

Lemma 3.1 Suppose P is a set of clauses and Z E MINS. Then (P - Z) is
consistent.

Proof. Suppose (P - Z) is inconsistent. Then there is a minimal refutation of
(P - Z). Let zl,..., z,. be the members of (P - Z) (and hence of P) occurring in
this refutation. Therefore, there exists an 1 < i < n such that Si = {zi, ... , zm }. But

then, as Z E MINS, there must exist a 1 < j _< m such that zi E Z. This implies
that zi 0 (P - Z); a contradiction. 0

Theorem 5 MAXCONS(P) = MAXCONS2(P)

Proof: [MAXCONS(P) . MAXCONS2(P)] Suppose X E MAXCONS(P). It
suffices to show that (P - X) E MINS. To do this, we need to show two things.

I. First we show that (P-X) n Si 6 0 for all 1 < i < n. Suppose (P-X) n Sj = 0 for

some 1 < i < n. Then Si C X which contradicts the assumption that X is consistent.

II. Next, we show that (P - X) is a minimal element of S' w.r.t. inclusion. Suppose

not. Then there is a Z E MINS such that Z C (P - X). In particular, there exists

an a E (P - X) - Z. But then, by Lemma 3.1, (P - Z) would be a consistent subset
of P. But X C (P - Z) thus contradicting the maximality of X.

[MAXCONS2(P) C MAXCONS(P)j Suppose X E MAXCONS2(P). Let Sj,...,Sn
be all the potential causes of the inconsistency of P. If n = 0, then X = P E
MAXCONS2(P).

So assume n > 0. Then X = (P- Y) where Y= {a,...,an} and for all <i< n,
ai E Si and Y E MINS.

Claim 1: X is consistent.
Proof of Claim 1: Suppose not. Then there exists an 1 < i < n such that Si C X.
In addition, ai E Si. But ai 0 X because X = (P - Y). But this contradicts the

statement that Si C X.

Claim 2: X is maximally consistent.
Proof of Claim 2: Suppose not, i.e. there exists a maximal consistent X' such that

XCX'CP. letX=(P-Y) andX'=(P-Y'). AsXCX',Y'cY. AsX'isa

11



maximal consistent subset of P, by the [MAXCONS(P) 9 MAXCONS2(P)] part

of the proof, X' E MAXCONS2(P). Thus, Y' E MINS. But Y E MINS also.

But this is a contradiction because Y' C Y. 0

Algorithm 3.4 Procedure MAXCONS2(P, IC)

Let there be n potential causes of the inconsistency of P U IC

If n = 0 then MAXCONS2(P, IC) = {P U IC}.

else

begin

For i = 1 ... n do S := (the i 'th potential cause of the inconsistency) - IC od

S:= Six x...xS

S' := {{Ia,..., a,} I (a an...,a,) E S}
MINS := minimal elements of S' w.r.t. inclusion

MAXCONS2(P, IC) = {(P - Y) U IC I Y E MINS}

end

Theorem 6 MAXCONS(P, IC) = MAXCONS2(P, IC)

Proof: Similar to the proof of Theorem 5. 0

4 Combining General Theories

The problem of combining general theories is formalized as follows. We have a set

of consistent theories and a set of integrity constraints. Each theory satisfies the

integrity constraints. We would like to combine the given set of theories so that

the combined theory is also consistent with respect to the integrity constraints and

-ontains as much consistent information as possible.

Definition 4.1 A theory is a finite set of sentences in first order logic. A flock (a

term borrowed from [FKUV86]) is a set of theories, and the flock corresponding to

an inconsistent theory T is the set of maximally consistent subsets of T.

Definition 4.2 Relation between flocks

Let F and F 2 be flocks.

1. -: F <, F2 iff (VT F1 )(3T'E 2): T C T'.

2. <2: F1 :52 F2 iff (VT E FI)(3T' E F2 ): Cn(T) 9 Cn(T'), where Cn(T) is the set

of consequences of T.

12



Definition 4.3 Consistency

A flock F is said to be consistent with respect to a set of integrity constraints IC,

iff for every theory T present in F, T U IC is consistent. 0

Definition 4.4 Correctness

A theory T is said to be <I-correct with respect to theories TI,--, T, if {T} :51

{T1 U ... U Tk}. <2-correctness is defined analogously. 0

Definition 4.5 Combination of Theories

Let T1,-.., Tk be a set of theories and IC a set of integrity constraints; where each

Ti satisfies IC. A combination function C is a mapping from a set of theories and a

set of integrity constraints into a flock satisfying the following three criteria.

1.(identity) C({T}, IC) - T.
2.(consistency) C({T, Tk}, IC) is consistent with respect to IC.

3.(correctness) C({T1,.. , Tk}, IC) is <I-correct with respect to the theories T1, , Tk.

Another useful property is associativity, which is defined as follows.

C( {T 1 , * . , Tj, C({ Tj+1,, . . , Tk}, IC) }, IC)

=m C({Tj+1 ,. ., Tk, C({T," . , T}, IC)},IC)

m C( {T 1,.. ., Tk }, IC); where P =,m Q means Cn(P) = Cn(Q). 0

We now define three combination functions. The first two are skeptical in nature.

The first combination function takes the union of the theories and the integrity con-

straints and looks at the maximal consistent subsets of this union with priority to the

integrity constraints. More formally,

Definition 4.6 Comb({T,..., Tk}, IC) If MAXCONS(T1 U... U Tk, IC).

Theorem 7 Comb, is a combination function, i.e. it satisfies the identity, consis-
tency and correctness criteria. 0

Note that thz! combination function Comb1 takes the union of theories T1 , ... , Tk and

then finds the maximal subsets that are consistent with the integrity constraints,IC.

The second combination function takes the union of the theories and finds its maximal

consistent subsets. It then looks at all the theories in MAXCONS(Y, IC) for all

Y E MAXCONS(T U ... U Tk).
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Definition 4.7 Comb2({T,..., T}, IC) V maximal elements of S, where S = {X:
X E MAXCONS(Y,IC) where Yi E MAXCONS(T u ... uTk)}.

The following example illustrates the two approaches.

Example 4.1 Let the union of the theories T be:

a

b
C

-,a V -b

and the set of integrity constraints be IC = {-,a V -c}

MAXCONS(T, IC) = { {a, b, -'a V-',c}, {a, -a V-c, -,a V--b}, {b, c, -a V -'c, -,a V',b}}
MAXCONS(T) = {T, = {a,b,c},T 2 = {a,c,-a V -b},T 3 = {b,c,-'a V-'b}}

MAXCONS(T, IC) = {{a, b, -'a V -c}, {c, b, -a V -c}}

MAXCONS(T2, IC) = {{a, -,a V -,c, -,a V -,b}, {c, -a V -,c, -,a V -,b} }
MAXCONS(T 2,IC) = {{b,c,-,a V -'c,-'a V -'b}}

Hence, in this example MAXCONS(T, IC) = maximal members of the set

UTiEMAXCONS(T) MAXCONS(T, IC).
a V b is true in all models of members of MAXCONS(T, IC) and hence it is true
with respect to the combination of these theories.

To see how Comb2 behaves w.r.t. the murder scenario of Section 2, Comb2 would

first construct MAXCONS(P) where P is the union of John's story and Bill's story.
Note that P is perfectly consistent and hence MAXCONS(P) = {P}. (The fact
that the murderer wore only one coat at the time of the murder is neccessary for
the inconsistency to arise). Comb2 now computes the maximal elements of {X I X E

MAXCONS(Y, IC) where Y E MAXCONS(P)}. In this case, this leads to exactly
the same results as Comb1. That these two seemingly different combination functions

are indeed actually the same is now shown in the following theorem.

Theorem 8 MAXCONS(T, IC) = maximal members of the set S:
where, S = {X: X E MAXCONS(T, IC) where Tj E MAXCONS(T)}

Proof:

Let X E MAXCONS(T, IC). Then there exists a Y in MAXCONS(T) such that:

14



(1) X n T C Y and (2) X E MAXCONS(Y, IC)

Consider such a Y. Suppose X V MAXCONS(Y, IC). Since, X U IC is con-

sistent, this means that there is an X' such that X C X', and such that X' E

MAXCONS(Y, IC), but then our assumption that X E MAXCONS(T, IC) is

contradicted. Hence, X E MAXCONS(Y, IC).

This proves that X E S. Since, X E MAXCONS(T, IC), it has to be a maximal

member of S.

Suppose X is a maximal element of S. Then there is a T E MAXCONS(T) such that
X E MAXCONS(T, IC) and Y such that X C Y and Y E MAXCONS(T, IC)

for some T E MAXCONS(T). This implies that X is consistent (note that by

definition of MAXCONS, IC C X and so X is consistent w.r.t. IC).

Suppose X V MAXCONS(T, IC). Then there is an a such that X C a and

a E MAXCONS(T, IC). By the first part of the theorem, this means, that a E

MAXCONS(T, IC), for some T E MAXCONS(T). This violates our initial as-

sumption about X, which says that no such T exists. A contradiction. Hence,
X E MAXCONS(T, IC). 0

Corollary 4.1 Comb2 is a combination function. 0

The third function uses a bold approach. Here we consider any maximal consistent
subset of the union of the given theories, which satisfy the Integrity Constraints. It

is defined as:

Com ({T 1 ,... , Tk}, IC) 42 {X : X E MAXCONS(T) and X U IC is consistent. }

Considering Example 4.1 we have MAXCONS(T) = {T, = {a,b,c},T2 =

{a,c,-'a V -b},T 3 = {b,c,-,a V -'b}}

Of the three theories in MAXCONS(T) only T3 is consistent with respect to IC =

{-'a V -'c}. Hence, the third approach considers only T3.

Theorem 9 Comb3 is a combination function. 0
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4.1 A More Practical Approach

In all the previous combination functions we searched for all the maximally consistent

subsets of the inconsistent theories. This is an extremely time consuming process since
it requires consistency checks in each step of the algorithm (Algorithm 3.2). In this

section we would like to present a more practical algorithm.

In addition we are motivated by the following argument. We are combining several
theories. Each of them is consistent and the inconsistency arose from the union of
the theories and we do not know which of the theories being combined contains

erroneous information. We would like to search for a combination that will include

as much information as possible from the original theories. By "as much", we mean

as many clauses as possible, i.e. theories that are maximal w.r.t. cardinality rather
than with respect to inclusion.

The following MAXCONS3 serves both purposes.

Algorithm 4.1 Procedure MAXCONS3(P, IC)

MAXCON = 0.
CHECK = {P}.
Found = false

While not Found

begin

TEMP =0.
For all P E CHECK do

Begin

If P U IC is consistent then

Begin

Found=True.

MAXCON = MAXCON U {Pi U IC}.

End

else

begin

{ ** Let P be the set of sentences {Cil,-. -Cr}. **}

For j = 1...n do TEMP = TEMPU {P -{Ci}} od

End

End CHECK = TEMP.

End
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MAXCONS3(P, IC) := maximal elements of MAXCON.

ead

Definition 4.8 Comb4 T, , Tk}, IC) V MAXCONS3(T, U ... U Tk, IC).

Theorem 10 Comb4({T,... , }, IC) = maximal sets WRT cardinality of

Comb({T1,... , Tk}, IC).

The following example illustrates the difference between this approach and the MAXCONS(P)

approach.

Example 4.2 Consider the theory P below:

d

-d

de
d .-. -' e

MAXCONS3(P) contains exactly one element, viz. {-d, d --* e, d - -e}. Note,

however, that in addition to this set, MAXCONS(P) contains {d, d }, {d, d
- e}, {-,d,d -- -,e}, {d,d --+ -c}, {d,d --+ e, {-d,d - el.

The following result is easy to establish.

Corollary 4.2 Let P be any first order theory. MAXCONS3(P) 9 MAXCON(P).

0

We note that the inferences of MAXCONS3 is less cautious and more optimistic

than those MAXCONS, i.e. everything that is infered from MAXCONS is also

inferred from MAXCONS3, but there is more information that is inferred from

MAXCONS3 than from MAXCONS.

4.2 Relationship with Updating of Theories

The problem of updating theories and revising beliefs has been extensively studied

[FUV83, FKUV86, Gar88, Da188, KM89, GM88, Sat88]. In brief, an update may take

one of two forms:
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1. An Insertion: In this, some new information is added to T.

2. A Deletion: Here, either a formula F in T is deleted, or a formula entailed by

T is deleted.

Inserting a formula F into T may lead to an inconsistency. In this case, the result of

the insertion must be defined in such a way that the inconsistency is properly handled.

Deletions do not give rise to inconsistencies (unless T was already inconsistent).

There is some resemblance between insertions and the combination of theories we

have discussed earlier. Insertions into theories may be viewed as a special case of

our framework: take the sentence F to be inserted to be an integrity constraint, i.e.

IC = {F} and now compute MAXCONS(T, IC). This is the gist of Theorem 12

below.

One may wonder whether combining theory T with theory T2 may be accom-

plished by inserting each element of T2 into T1. This is not true in general (cf.

Example 4.3 below). The reason for this is that we do not ha'e any priorities over

the set of the combined theories.1 For example when we insert elements of T2 into

T, one by one, then the last element of T 2 to be inserted is accorded the status of

an integrity constraint, even though this last element of T2 may not be present in all

maximal consistent subsets of T U T2.

Fagin, Ullman and Vardi [FUV83 present a theory of updating theories. Before

discussing the relationship between updating and combining we discuss the theory

updating approach of Fagin, Ullman and Vardi [FUV83].

Definition 4.9 [FUV83] Let T be a theory and T* be the set of clauses logically

implied by T. A theory S is said to accomplish the insertion of a clause or into T if

0r E S. A theory S is said to accomplish the deletion of a clause a into T if a V S*.

Definition 4.10 [FUV83] Let T, T and T2 be theories. T, has fewer insertions

than T2, if T, - T C T2 - T. T has no more insertions than T2, with respect to T, if

T-T C T2 -T. T has the same insertions as T2 , with respect to T, if T 1 - T = T2 -T

Let T, T, and T2 be theories. T has fewer deletions than T2, if T - T C T - T2. T

has no more deletions than T2, with respect to T, if T - T, g T - T2. T has the

same deletions as 7'2, with respect to T, if T - T, _ T - T2.

'Using Girdenfors' terminology, our combination functions do not satisfy axiom K+ ([Gar88]
page 48)
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Definition 4.11 [FUV83] Let T, T, and T2 be theories. T, accomplishes an update

u (could be an insertion or a deletion) of T with a smaller change than T2 if both T

and T2 accomplish u, and either T , has fewer deletions than T2 or T has the same

deletions as T2 but T, has fewer insertions than T2.

Definition 4.12 [FUV83] A theory S accomplishes an update u of a theory T min-

imally if there is no theory S' that accomplishes u with a smaller change than S.

Theorem 11 [FUV83] Let S and T be theories and let a be a sentence. Then,

1. S accomplishes the deletion of o from T minimally if and only if S is a maximal

subset of T that is consistent with -,a, and

2. S accomplishes the insertion of o from T minimally if and only if S n T is a

maximal subset of T that is consistent with a. 0

The following theorem describes a relationship between combining theories and

updating theories, when the union of the theories to be combined is consistent.

Theorem 12 Let T, --. , T I, be theories to be combined in the presence of a finite

set IC of integrity constraints. Let ai, be the conjunction of the integrity constraints

in IC. If 7 U .-. U T k is consistent then, Combl({TI,... , T k}, {o'i,}) = { XJX ac-

complishes the insertion of ai, into T1 U '". U Tk minimally. } 0

Proof: [Combi({TI,.. . , Tk}, ai,) g {XJX -accomplishes the insertion of aic into T, U

... U Tk minimally }] Suppose X E Comb 1({T,..., Tk}, aic). Then X is a maximally

consistent set such that {ai C X C T, U ... U Tk, U {oi}. Hence, ,ic E X. It

now suffices to show that X is a maximally consistent subset of T, U... T k U laic}.

But this is true. Hence X E {XIX accomplishes the insertion of aic into T, U... U T k

minimally }.

[ { XIX accomplishes the insertion of aic into T U. -UTk minimally } Comb( {T 1, , T k}, aio:)]

The proof is similar. 0

Theorem 12 above demonstrates that the Fagin et. al. [FKUV86] framework for

inserting sentences into theories may be captured in our framework. The example

below shows that successive insertions of sentences of theory T2 into theory T, does

not correctly capture the combination of theories.
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Example 4.3 Suppose T1 = {
a -c,

a -1b

a bit

and T2 = {a}. Inserting a into T gives us two sets that accomplish this inser-

tion: S = {a
a - c

a -'b}

andS2= { a

a -. c

a b}

c is true in both S, and 52. Note however, that according to MAXCONS(T 1 U T2),

c is not true in T which is a maximally consistent subset of '1 u T2.

We now the use of the theory developed by Fagin et al. [FKUV86 for updates in

flocks to compare with our problem of combining theories.

Definition 4.13 [FKUV86] Let S = {S, ..- , S, } be a flock. A flock T = {T1,., T }

accomplishes an update u of S minimally if T accomplishes the update of Si mini-

mally. 0

Definition 4.14 [FKUV86] Let S be a flock and S1,.." ,Sk be the flocks that ac-

complish an update u of S minimally. Then the result of u is the flock ,<i<k Si.
0

We would like to change iDefinition 4.14 so that the resulting flock consists of

maximal elements only. Formally,

Definition 4.15 Let S be a flock and S1, -," ,Sk be the flocks that accomplish an

update u of S minimally. Then the result of u is the flock consisting maximal elements

of UI <i<k Si. 0

The following result is immediate.
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Theorem 13 Let T1,-, Tk be a set of theories and let IC be a finite set of integrity

constraints. Let T be the flock MAXCONS(T 1 U.. UTk). Let ai, be the conjunction

of the integrity constraints in IC. Comb,({T,... , Tk}, {ai}) = the flock obtained

by updating T with ori by using Definition 4.15. 0

5 Combining Prioritized Theories

The different knowledge bases that have to be combined might have different priorities

associated with them. Intuitively, there might be compelling reasons that cause

one knowledge base to be preferable to another. In such a case we would like to

use this priority information while combining the knowledge bases. For example, if

a knowledge base with higher priority or believability directly contradicts another

knowledge base with a lower priority, with respect to a certain aspect we might want

the combined theory to contain the point of view of the knowledge base with the

higher priority. In this section we formalize what we mean by combining prioritized

theories.

In the context of the murder example of Section 2, the information provided by

Bill (the younger witness who was also closer to the scene of action) may seem more

credible to the police who may then pursue further investigations based on his version

of events as opposed to John's version.

As a first step suppose we have theories T1,. , Tk to be combined with the priority

relation (a total order) where the priority of Ti is less than priority of Tj iff i < j. With

a slight abuse of notation it can be written as, T1 -< T2 -< ... -.< Tk. As always the

integrity constraints have the highest priority, i.e. T k -< IC. There are two distinct
approaches to combine the theories that come to mind immediately; bottom-up and

top-down.

In the bottom-up approach we start by combining T, and T2 with preference to

T2. The combined theory is then a set of theories defined as {T : T2 C T and T - T2

is a maximal subset of T, such that T is consistent}. The result is then combined

with T3 with preference to T3. This means that each theory in the result is combined

with T3 and the final result is the set which is the union of particular results (each

result is a set). This continues until T k. The result is then combined with IC with

preference to IC.
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Algorithm 5.1 Procedure Comb - botup(Comnbi, T" , "" Tk, IC)

Tk+1 = IC

Comb - {T1 }

For i = 1 to k do

begin
Temp =0

For all T in Comb do

Temp = Temp U Cornbi({T},T+i)

Comb = maximal elements of Temp

end

Output(Comb)

In the top-down approach we start with combining Tk and IC with preference to

IC. The result is combined with T k - with preference to the theories in the result.

This is continued until T1.

Algorithm 5.2 Procedure Comb - topdn(Combi, T, - . Tk, IC)
T k+i = IC

Comb {T k+l}

For i = k to 1 do

begin
Temp =0

For all T in Comb do

Temp = Temp U Combi( {T,}, T)

Comb = maximal elements of Temp

end

Output(Comb)

Example 5.1 Consider, T3 = {-,d}, T2 = {c - -d; d}, T1 = {c}, and IC = 0, with

the priorities IC -< T3 -< T2 -< Ti.

Top-down:

Combining T3 and T2 we obtain T32 = {{c -4 -'d; -,d}}.

Combining T32 with T, we obtain T321 = {{c - -,d; -'d; c}}.

Bottom-up:

Combining T, and T2 we obtain T12 = {c --7d; d}, Combining T12 with T3 we obtain
123= {c - -d; -d},
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Hence in this case the result obtained by the top-down approach is different from

the result obtained by the bottom-up approach. We note also, that even though in

our case there is only one maximal consistent set in each of the combinations, it is

not the case in general.

Here, again, one may wonder whether the combining of prioritized theories is

similar to the updating problem. Since the motivations for the two problems are

different so are the results. The updating problem can be simulated by the bottom-up

procedure for combining prioritized theories which is different from both the top-down

procedure and the procedure for combining non-prioritized theories. 0

While speaking of the combination of prioritized theories, we briefly mention that it

is possible that we have prioritized groups of theories G1, ... , Gn. Any two theories in

the same group have the same priority; however, the groups themselves have priorities

G, -< G2 -< " -< G,. The most straightforward way of combining the resulting

multitude of theories is to proceed as follows:

Step 1: For all 1 < i < n, set Si = MAXCON(UTEG, T). Thus, at this stage, for

any 1 < i < n, all theories in the group Gi have been combined together. Each Si is

thus a set of theories.

Step 2. Construct S = (St x ... x Sn), i.e. S is the Cartesian product of the Si's.

Step 3. Let S = {',. .. , V} where each V is of the form (S,..., sn) where ss E Sj

for all 1 <j <n.

Step 4. Combine theories S1,.. ,n with priorities s, -< S2 -- -s,. Do this for all

Vi E S. Let the resulting theories be {TH1 ... , THk}.

Step 5. Choose the maximal elements of {TH1 ..., THk}.

A detailed discussion about combining prioritized groups of theories is beyond the

scope of this paper.

In order to see how the work described thus far relates to existing work on reasoning

with inconsistency, consider the following program P:

p
-'p

p - q
-,p--2 q
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p& -p -+ r

Using the annotated logic semantics of Blair and Subrahmanian [BS88, BS89] and
later improved by Kifer and Lozinskii [KL89], it would be possible to infer r even

though r depends on a somewhat shaky justification, viz. (p & -,p). However, the

annotated logic semantics does not allow us to conclude --'r or -'q. Clearly, the fact

that -'r and -,q cannot be inferred corresponds quite well with our intuition. The

MAXCONS(P) approach would allow us to conclude r. At the same time, neither

-'r nor -'q can be concluded.

Considering the same program P, the semantics of Gelfond and Lifschitz [GL] and

Kowalski and Sadri [KS] allows us to conclude everything. In particular, r can be
concluded (in the same way as in [BS88, BS89]), but in addition, both -'r and -,q

may be concluded.

One advantage of the Blair and Subrahmanian [BS88, BS89, KL89] approach is that

in the case of programs containing function symbols, their semantics leads to a semi-
decidable consequence relation. When function symbols are present, this does not

appear to be true for the MAXCONS(P) semantics.

6 Conclusions

In this paper, we have developed formal techniques for combining multiple knowledge
bases. This is directly related to the construction of expert systems because knowledge

contributed by different experts may be mutually conflicting. This may be due to

carelessness or perhaps a lack of knowledge or, more seriously, due to a genuine

disagreement amongst the experts.

Based on the cautious semantics suggested by Grant and Subrahmanian [GS90], we

have developed various ways of reasoning about combinations of theories in the pres-

ence of integrity constraints. We have argued that these different methods are de-

sirable under different circumstances. It is up to the individual researcher to decide
which semantics is most appropriate for his/heruse.
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