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ABSTRACT

We have observed that the thermal conductivity of zinc-sulphide is

increased by adding large particles of highly conducting diamond, but

lowered by the addition of sub-micron size particles of diamond. This

effect is explained in terms of the interfacial thermal resistance which

becomes increasingly dominant as the particles become smaller (because

that increases their surface to volume ratio). A phenomenological model in

which the interfp.ce resistance is expressed as an effective Kapitza

radius, a,, is presented. The conductivity of the composite is analyzed

for different values of a, which is defined to be equal to the Kapitza

radius divided by the particle radius. If acl, that is, the actual

particle radius is equal to aK then the effective thermal conductivity of

the particles is equal to that of the matrix. If CL-xl, that is the

particles are very small, then the contribution of the particles to the

thermal conductivity of the composite is dominated by interfaces; if ac!

then the bulk property of the particles is important. Our measurements

yield a=1.5 pm for the ZnS-Diamond interface.
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1. INTRODUCTION

Most fundamental experimental studies of thermal boundary resistance

have been carried out on planar interfaces. The purpose of this paper is

to demonstrate that measurements of the thermal conductivity of

particulate composites provide an alternative simple means of obtaining

information n thermal boundary resistance. The (specific) boundary

resistance, Rd, is defined in terms of the heat flux, 0, and the

consequent temperature discontinuity, AT, across the interface by the

equation:

SAT (1)

The first measurements of thermal boundary resistance were carried out by

Kapitza [1] in 1941; his experiments on metal-liquid helium interfaces,

now known as a Kapitza boundary, have become the basis for the theoretical

development of R... The solid-liquid interface studied by Kapitza is still

an important point of reference because in contrast to solid-solid

interfaces, the solid-liquid interfaces are expected to be atomically

sharp and free of local damage.

An up to date review of theoretical models for R, is given in a

recent article by Swartz and Pohl [2] who also present results from

careful experiments on the thermal resistance of solid-solid, metal-

ceramic interfaces. The mechanisms of thermal conduction across

interfaces are revealed by measuring the resistance as function of

temperature, starting from temperatures well below the Debye temperature

of either of the constituents that form the interface. The thermal

resistance is observed to decrease as T-3 up to a temperature somewhat

below the lower of the Debye temperatures of the two materials, and then

become relatively temperature independent. The model usually put forward
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to explain this behvior is the acoustic mismatch model. In this model

the propagation of a phonon across an interface is treated in terms cf an

acoustic wave that is refracted at the interface subject to boundary

conditions of continuity of displacement and traction force. A

modification of the acoustic mismatch model is the diffuse scattering

model, in which all phonons arriving at the interface are randomly

scattered, the number of them going to one side or the other dependinq on

the density of states available to them in the two materials.

In the case of solid-solid interfaces, such as Rh:Fe/A 203 [2],

where the Debyp temperatures of the two consitutents differ widely, the

models give excellent agreement in the long wavelength limit when the

temperature is below the Debye temperature of the metal, but undere. timate

R, by nearly an order of magnitude above this temperature. This

discrepancy has been explained in terms of the structural features of the

interface. In the ZnS/D system we find a similar discrepancy between

theory and experiment at room temperature, which lies close to the Debye

temperature for ZnS but below that of diamond.

In this paper we draw a link between simple experiments with planar

geometries of interfaces and experiments with particulate composites where

interfaces are distributed in different configurations depending on the

microstructure. We put forward a model that relates R to the measurement

of the average thermal conductivity of the composite where particles of

one material are evenly dispersed in the matrix of the other. In this

geometry the thermal conductivity of the composite becomes dependent on

the particle size (diameter) of the dispersed phase if boundary resistance

is high (because the surface to volume ratio of the particles increases

with smaller particles). We account for this microstructure by defining a

non-dimensional parameter, a, as follows:

a- aK/a. (2)
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Here a is the radius of the dispersed particles, and aK ie the Kapitza

radius defined as:

a. - RwIK,,, (3)

where l(. is the thermal conductivity of the matrix.

Before proceeding to describe the model where the thermal

conductivity of the composite is analyzed in terms of a and the volume

fraction of the dispersed phase, it is illuminating to note a physical

interpretation for a, in terms of the acoustic mismatch theory. A simple

Debye model for Rd (2] yields:

4
R~d = (4)

where p is the density, C the specific heat and v the Debye velocity of

the matrix and 71 is the average probability for the transmission of the

phonons across the interface into the particles. On the same level of

approximation the thermal conductivity K. is often expressed as:

K,. pCva (5)

where I is the phonon mean free path. Combining Eqns (3), (4) and (5) one

obtains:

a. / (6)

Thus, the Kapitza radius is greater that the mean free path of phonons in

the matrix by a factor that is equal to the inverse of the probability

with which the phonons can be transmitted across the interface or, loosely

speaking the number of attempts before a phonon is succesful in crossing

the interface. A low probability will, therefore, lead to a large a,, and

from Eq (2), to a large a.



6

2. EFFECTIVE MEDIA THEORY FOR THE THERMAL CONDUCTIVITY OF A PARTICULATE
COMPOSITE

2a. Low Volume Fraction Limit

Theories for the transport properties of composite media date back

to the early investigations of Maxwell (3,4], whose analysis applies when

the second phase is dispersed in small volume fractions. The effect of

the thermal boundary resistance on the effective conductivity of the

composite has also been recognized for some time [5,6,7] but Maxwell's

theory has been modified to include this effect only recently by Hasselman

and Johnson [8] and Benveniste [9]. They consider a dispersal of

spherical particles of radius a, of a material having a thermal

conductivity Kd, occupying a volume fraction f, embedded in a matrix of

conductivity F,. Their results for the effective conductivity of the

composite, K,, can be written in the following form:

Ko dE (1- a -2E 1 ) -K l  (7)
7: K (I-" 2X) -2K- 4Kd ('-c-K4 a1

In the limit of small f, where Maxwell model is most appropriate, this

equation reduces to:

K - 3f Kd(1- )-K .J (8)
7: lKd (i-2ot) -2F]

Other interesting limits of Eq. (7) obtain when we consider a

composite where the intrinsic conductivity of the dispersed phase is much

greater than that of the matrix, as in the case of the ZnS/D composite.

Then, substituting (Kd/K))l into Eq. (7) we obtain that:

K . 1-2f(I-x)/(1-2) (9)
71: 1 -f ( I- a) /R (i-X)

Equation (9) further simplifies for limiting values of a. When the

interface resistance is very high, we get:
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K l-f1 .f (10)

and when the interface resistance is negligible, Eq. (9) reduces to:

. 1-2f , (11)

Next we consider Bruggeman theory for high volume fraction composites.

2b. High Volume Fraction Limit

An accurate calculation of the conductivity at high concentrations

would require extensive information about the correlations between the

positions of the particles and about their multipolar polarizabilities

etc. (10,4]. This is a formidable problem and as an interim measure an

approach along the lines of Bruggeman effective medium theory offers a

simple method of estimating the effects of these interactions.

Bruggeman theory proceeds from the premise that the fields of

neighboring particles can be taken into account by adding the dispersed

particles incrementally, taking the surrounding medium to be the existing

composite at each stage. Equation (8) is cast in the differential form

dK - 3K d(' "Kd(I-c) -12)( - Kd (-2) -2K

for this purpose. On integrating K between the limits ,. and K. and f'

between 0 and f one obtains

IfK-K,( 1- az)

A distribution of particle sizes can be accommodated by treating a in Eq.

(12) as a function of f'. A number of limiting cases are of interest.

The result
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(1_f)3 . K } (14)

is obtained by setting a -4 o, which applies in the limit wnere the

particles are much larger than the Kapitza radius or the interface

resistance vanishes. The opposite limit, a -- -, for particles small

compared to a, or large interface resistance, yields

(1-f) 3 a K} 2  (15)

Equations (14) and (15) correspond to the ordinary results of the

Bruggeman theory without consideration to the interface resistance.

Equation (14) is the general Bruggeman result, while Eq. (15) holds for

insulating particles.

In the context of ZnS/D composites it is interesting to consider the

limit for Eq. (13) when (Kd/K)il, that is when the dispersed phase is much

more conducting than the matrix. Then, we obtain the following result:

K 0 1 (16)R: (l-f) 3 7 -Zc1T u 2r*

Plots of Eqns (9) and (16) are given in Fig l(a) and (b). rney show

the effect of the particle radius and the interface resistance R,, on the

thermal conductivity of the composite, both these effects having been

normalized into one parameter a-aK/a, where the Kapitza radius aK is

proportional to Rd. Both results, Maxwell and Bruggeman, predict that the

effective thermal conductivity of the composite will be unchanged by the

particles if a-1, that is, if the radius of the dispersed particles is the

same as the Kapitza radius. The contribution of the interface resistance

is thei exactly balayced by the h4.gher thermal conductivity of the

particles. If the particles are smaller than the Kapitza radius, the
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effcctive conductivity of the composite is lowered by the particles even

4f the particles themselves have a higher conductivity than that of the

matrix. Thus the Kapitza radius becomes a physically important parameter

in the design of composites where the objective is to change the thermal

conductivity by mixing two different constituents. The equations here can

also be used to measure the Kapitza radius from particulate composites

through the determination of a. That then leads to the estimate of R.,

through Eq. (3), which is a result that can be related to the traditional

method of using planar, semi-infinite geometries for determining the

interface resistance.

The plots in Fig. 1 show that the insulating limit, that is when the

particles are very small is nearly realized when the particle radius is

one seventh of the Kapitza radius, and the conducting limit reached when

the particles are about ten times the Kapitza radius. Thus for example, if

the Kapitza radi'is for the ZnS-D interface is 1 pm (see below) then the

maximum benefit of the diamond inclusions to the thermal conductivity

would be obtained if the diamond particles have a radius of about 10 Pm.

Such guidelines can be useful in the design of composite materials.

We now proceed to present experimental results for the ZnS/D

composites for two different particle size of diamond, which lie on either

side of the Kapitza radius for the zinc-sulphide/diamond interface.

3. EXPERIMENTS

Diamond has the highest known thermal conductivity of all materials

[12], exceeding 2000 W m-' K in very pure specimens. Enrichment with 2C

isotope has been found to increase its conductivity even further (13].

Even in sintered, polycrystalline diamond conductivities as high as 600 W

m-' K have been realized. Diamond is, therefore, a natural constituent

in the design of composites that are electrically insulating but have high
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thermal conductivity. For example, thermal pastes consisting of fine

diamond particles dispersed in an organic liquid have been found to have

conductivities far in excess of the liauid alone (15].

We have investigated the thermal conductivity of particulate

composites made from zinc-sulphide and diamond. Two types of diamond

powders, one having the particle size (defined as twice the particle

radius a) in the range 0.1 im to 1.0 pm, and the other having particles in

the range of 1.0 pm to 8.0 pm were used to make two sets of composites.

The composites were p:epared by powder processing techniques. The

powders of zinc-sulphide and diamond were intimately mixed. The mixture

was then hot pressed in a mildly reducing atmosphere at a temperature that

ranged from 900 to 1000*C under a pressure of 200 MPa. The details of th-

processing method are described in Ref. (16].

In hot pressing of ceramics porosity can be essentially removed

completely because even very small pores at interfaces become filled by

diffusional transport of atoms in the solid state, irrespective of the

complexity of the shape of the interfaces. The measurement of the

mechanical and optical properties of these composite, also reported in

Ref. [16], suggest not only complete but also strong bonding at the ZnS-D

interface.

The thermal transport properties of ZnS/D composites was measured at

room temperature by the flash diffusivity technique (17,18], using a

glass-Nd laser as the flash source and a liquid nitrogen cooled InSb

detector to measure the transient temperature response of the sample. For

these measurements, the specimens were in the form of approximately 10 mm

diameter discs with a tbickness of about 1.5 mm. In order to eliminate

direct transmission of the laser pulse through the specimen, the samples

were sputter coated with gcld to a thickness of approximately 100 nm. In

turn, the gold was lightly coated with a layer of colloidal carbon in
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order to enhance the thermal coupling between the sample, laser-pulse and

the detector.

The measurements of the thermal diffusivity of the two sets of

composites are shown in Fig. 2. They show that the small diamond

particles, having an average radius of 0.25 gm lower the therm.

diffusivity, while the larger particles, having an average radius of 2 Pm

produce a small increase in the thermal diffusivity relative to pure zinc

sulphide. (Our measurement of the thermal diffusivity of pure zinc

sulphide is in agreement with the value reported by Lugueva et al.[19]).

The decrease in the thermal conductivity cannot be explained in terms of

cracking at the ZnS-Diamond interface due to thermal expansion mismatch,

since the cracks are much more likely -.o form with the larger particles,

which runs contrary to the measurements.

4. COMPARISON OF THEORY AND EXPERIMENT

4a. Estimate of the Kapitza Radius for The Zns-D Interface

We calculate the Kapitza radius for the ZnS-D interface, az0, in two

ways. The objective is to estimate the value of Rd for the ZnS-D

interface at room temperature, which lies close to the Debye temperature

for ZnS (D=315 K) but is well below the Debye temperature for diamond

(OD-2230 K).

The first method is is a semi-empirical estimate based on the

acoustic mismatch theory for solid-solid interfaces in the long wavelength

limit [203, which yields:

Rld A, (17)
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where A is a constant that is determined by the acoustic properties of the

two solids in contact and to a lesser extent the boundary conditions

assumed. Values of A calculated by Swartz and Pohl (2] for a variety of

diamond:metal contacts range between 0.006 and 0.009 K m2 W-'. Whether

specular or diffuse boundaries are assumed makes no more than about a 10%

difference to these ralues.

Experimental investigations based on sapphire:metal contacts show

that the predictions of the acoustic mismatch model are borne out up to

about 50K. Beyond this temperature there is a levelling off of the

boundary resistance [2]. This is partly because the dominant phonons are

nearing the Debye cutoff in frequency and the heat capacity is approaching

a limit. However, Swartz and Pohl [2] report levelling off at a higher

value of the resistance.than expected on this basis and they attribute

this to the scattering of the higher frequency phonons by subsurface

damage. On the basis of the above findings one might expect the ZnS:D

room temperature boundary resistance to be of the order of R - 0.0075/503

- 6x10-8 m 2 K W-'.

In the second method we use Eq. (4) to estimate R,. For ZnS p -

4100 kg m-3 and C - 472 J kg-' K and since transverse phonons carry most

of the heat, we will take v - FC,7- - 3300 m s 1, while for diamond p' =

3520 kg m-3 and v' - 12800 m s-'. Only phonons incident on the interface

within the critical angle 0. from the ZnS side have the opportunity of

being transmitted. These constitute a fraction q of the incident phonons

given by

q 1sin2 0o - 1(v/v') 2 . 0.033. (18)
7-

The probability that a phonon inident within the critical angle will be

transmitted can be estimated from (2]
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4ZZ' p - ,(19)
(Z'Z')2

where Z = pv - 13.5 x 106 kg m-2 s"I is the acoustic impedance of ZnS and Z'

- p'v' - 45.1 x 10' kg m-2 s-1 is that of diamond, which yields p - 0.71.

Hence 11 - pq - 0.023 and R, - 2.7 x 10-1 M 2 K W-1. This value may be

considered an underestimate since it ignores the effect of velocity

dispersion.

Recently Young and Maris (21] and Pettersson and Mahan [22] have

carried out lattice dynamical calculations of the Kapitza resistance

between fcc lattices which encompass dispersion as well as the nature of

the interfacial bonding. While their results are not immediately

applicable to the ZnS-D interface, they are not greatly out of line with

the above estimates. These model calculations reveal that increasing the

strength of the bonding between the atoms of the two lattices has a

relatively small effect on the Kapitza resistance, but weakening the

bonding significantly reduces the transmission of the higher frequency

phonons and increases the boundary resistance.

A theoretical estimate of the Kapitza radius for the ZnS-D

interface, aZD-RK., may be obtained by substituting the higher of the two

values for R,, i.e. R -6xl0 -8 m2 K W-', and taking K.-17.4 W m-1 K (see

below), this gives a theoretical value of 1 pm for the Kapitza radius.

4b. Experimental Estimate of the Kapitza Radius for the ZnS-D Interface

The data for the thermal diffusivity of the composites were

converted to thermal conductivity using the equation that (thermal

conductivity)-(thermal diffusivity x p x C) where p is the density and C

is the heat capacity. The following numerical values were used for ZnS:

p-4100 kg m-3 and C-472 J kg-' K -1 at 298 K, and for diamond: p-3520 kg m-'

and C-509 J kg-' K-1 at 298 K. The effective value of pC for the composite

was obtained using cule of mixtures, that is, (pC)CO.P,.t-(PC)di.,df +
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(pC), ,(l-f) . From the measured value of 8.9 x 10
-
6 m2 s-1 for the

diffusivity of pure ZnS one obtains K.(ZnS) - 17.4 W m-1 K-I.

The experimental measurements of the thermal conductivity of the

composite, normalized with respect to the thermal conductivity of ZnS, are

shown in Fig. 3. Plots of K,/K. for (X-+- lies above the data for the small

diamond particles, whereas cv.0.75 provide good fit with the data for the

large diamond particles. Since the average radius of the diamond

particles in the (=0.75 fit was 2 gm, we estimate the experimental value

of the Kapitza radius to be azD=l. 5 gm, which is comparable to the semi-

empirical theoretical estimate, derived in the previous section, of azD=I

Jim.

6. DISCUSSION

The work we have presented here seeks to bridge the gap between the

fundamental measurements of thermal boundary resistance from planar

geometries and the understanding of how this resistance affects the

thermal conductivity of particulate composites. This link allows us to

include the effect of the microstructure on the properties of composites,

a need that is not fulfilled by the ordinary Maxwell and Bruggeman models.

The fact that we find a reasonable agreement between the value of the

Kapitza radius for the ZnS-D interface obtained from composites and the

value estimated from experiments with planar geometries, gives us

confidence in modified Bruggeman model developed in this paper.

We now return to a result in Fig. 3 showing that the experimental

measurements of thermal conductivity of the composite lie below the limit

of completely insulating interfaces, that is below a-4-. This discrepancy

can be explained either in terms of a change in the intrinsic thermal

conductivity of the ZnS matrix with the presence of the diamond particles,
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7.CONCLUDING REMARKS

Recent experiments with metal-ceramic interfaces bave sought to

probe the relationship between the atomic structure and the cohesive

strength of interfaces [23]. It is conceivable that a greater mechanical

strength of interfaces will be related to its thermal boundary resistance.

One approach would be to estimate the frequency of the dominant phonon

that carries heat across the interface. The inverse cube dependence .f the

thermal boundary resistance on temperature means that only a small shift

in the effective transition temperature (which is normally the Debye

temperature in the acoustic mismatch theory) can produce a very large

increase in the thermal boundary resistance in the high temperature

regime. Since the dominant phonon frequency is proportional to

temperature, even a small change in the effective elastic constant at the.

interface can produce a significant change in the transition temperature

where the thermal boundary resistance changes from T-3 behavior to

temperature independent behavior. Since the phonon wavelengths near the

Debye temperature are of the order of the lattice spacing, even narrow

interfaces could have a measurable influence on the scattering of the high

frequency phonons near the transition temperature. Perhaps, the time has

come to think of boundary thermal resistance in terms of our recent

understanding of the structure and mechanical properties of interfaces.
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Figure Captions

1. Plots of equations (9) and (16) fe'r the modified Maxwell and

Bruggeman medtils showing the effect of the microstructure, in

this case the particle size, on the conductivity of the

composite. The sensitivity to the microstructure arises

because of the high thermal resistance of the interfaces. The

parameter a=aK/a combines the effect of the interface

resistance, through the Kapitz radius a,, and the particle

radius on the thermal conductivity of the composite. When a=i,

the effective conductivity of the particles is the --me 6

that of the matrix because the higher conductivity of the

particles is exactly balanced by the higher resistance of the

interfaces.

2. Measurements of the thermal diffusivity of the ZnS/D composite

as a function of the volume fraction of the diamond, for two

different particle sizes of diamond. Note that the small

particles lower the thermal conductivity of the composite even

though diamond itself is much more conducting than ZnS.

3. A comparison of the data presented in Fig. 2 and the modified

Bruggeman model that assumes spherical particle shapes. The

small particle data is believed to lie below the a-4- limit

because of the nonspherical shape of the diamond particles.

4. A silhoutte of a scanning-electron-micrograph of diamonA

particles diamond particles embedded in a polycrystalline ZnS

matrix. This specimen contained 30 vol % diamond. Although the

individual diamond particles themselves are not greatly non-
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spherical, the fact that they are distributed in a network

configuraton may make them effectively more anisotropic.
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1. Plots of equations (9) and (16) for the modified Maxwell and Bruggeman

models showing the effect of the microstructure, in this case the particle

size, on the conductivity of the composite. The sensitivity to the

microstructure arises because of the high thermal resistance of the

interfaces. The parameter oax/a combines the effect of the interface

resistance, through the Kapitz radius a,, and the particle radius on the

thermal conductivity of the compooqie. When 0=1, the effective

cnnductivity of the particles i3 the same as that of the matri:: because

the higher conductiv.ity of the particles is exactly balanced by the higher

resistance of the interfaces.
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2. Measurements of the thermal diffusivity of the ZnS/D composite
as a function of the volume fraction of the diamond, for two
different particle sizes of diamond. Note that the small
particles lower the thermal conductivity of the composite even
though diamond itself is much more conducting than ZnS.
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3. A comparison of the data presented in Fig. 2 and the modified
Bruggeman model that assumes spherical particle shapes. The

small pa~t4- 1 e data is believed to lie below the a-4- limit

because of the nonspherical shape of the diamond particles.
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1 m

DIAMOND PARTICLES IN POLYCRYSTALLINE ZnS

4. A silhoutte of a scanning-electron-micro.raph 
of diamond

particles diamond paricl- Pmrn-Hdei - po!ycrystalline ZnS

matrix. This specimen contained 30 vol % diamond. 
Although the

individual diamond particles themselves are 
not greatly non-

spherical, the fact that they are distributed in a network

configuraton may make them effectively more 
anisotropic.


