
Cs j~Y 0
Research Institutq for Advanced Computer Science

NASA Ames Research Center

CV)

Normalized Convergence Rates
for the PSMG Method

Paul 0. Frederickson Oliver A. McBryan

JAIN c
~JAICA

RIACS Technical Report 90.21 October 1990

To appear, SIAM Journal on Scientific and Statistical Computing (SISSC)

91 ~ 4017

Normalized Convergence Rates
for the PSMG Method

Paul 0. Frederickson Oliver A. McBryan

Statement "A" per telecon Paul Frederick. f
son. NASA Ames Research Center. Noffett
Field, CA 94035.

V H G ' ! ,1/17/91

The Research Institute of Advanced Computer Science is operated by Universities Space Research
Association, The American City Building, Suite 311, Columbia, MD 244, (301)730-2656

Work reported herein was supported by the NAS Systems Division of NASA and DARPA via Cooperative
Agreement NCC 2-387 between NASA and the University Space Research Association (USRA). Work was
performed at the Research Institute for Advanced Computer Science (RIACS), NASA Ames Research Center,
Moffett Field, CA 94035.

NORMALIZED CONVERGENCE RATES FOR THE PSMG METHOD

PAUL 0. FREDERICKSON' AND OLIVER A. MCBRYAN t

Ah*-trac.. L a previous paper we have introduced an efficient multiscale PDE

solver for massively parallel architectures, which we called Parallel Superconvergent

Multigrid, or PSMG. In this paper we derive sharp estimates for the normalized work

involved in PSMG solution - the number of parallel arithmetic and communication

operations required per digit of error reduction. PSMG is shown to provide fourth-

order accurate solutions of Poisson type equations at convergence rates of .00165 per
single relaxation iteration, and with parallel operation counts per grid level of 5.75

communications and 8.62 computations for each digit of crroz reduction. We show that

PSMG requires less than half as many arithmetic and one fifth as many communication

operations, per digit of error reduction, as a parallel standard multigrid algorithm

(RBTRB) presented recently by N. Decker. .

The work of the firsL author was supported by the NAS Systems Division of NASA and DARPA
via Cooperative Agreement NCC 2-387 between NASA and the University Space Research Association
(USRA). Work was performed at the Research institute for Advanced Computer Science (RIACS),
N. A A AMRes zi.Search Center, Moffett Field, CA 94035.

t Department of Computer Science, University of Colorado, Boulder, CO 80309. Work of the second
author was supported by the Air Force Office of ,Scientific Research, under grant AFOSR-89-0422.

1

1. Introduction. The PSMG totally parallel multiscale algorithm was introduced
in [1] where rigorous upper bounds on the convergence rates attainable were presented.
In this paper we present actual PSMG multigrid convergence rates, verified on grids of
up to 4 million points. We also provide details of the methods we use for implementing
the various PSMG linear operators in order to minimize parallel operation counts.
Based on these, we then quantify PSMG performance in terms of the number of parallel
operations required per digit of error reduction.

Most high performance (floating point) massively parallel computers require sub-
stantially longer to communicate a single number than to perform an arithmetic cp-
eration. Consequently we regard normalized communication performance as the most
relevant parameter. PSMG requires only 5.75 parallel communication operations per
grid level for each digit of convergence. Even if computation speed was much slower
than communication, PSMG uses only 8.62 arithmetic operations on each grid level per
digit of convergence. These normalized rates assume that there is one processor per
fine grid point.

As remarked in [2], PSMG is an example of an intrinsically parallel algorithm. It
is highly efficient if sufficient processors are available, but is extremely inefficient on
serial or low-parallelism computers. In situations where there are substantially more
fine grid points than processors, an effcient approach might use a hybrid algorithm -
using standard multigrid on the finest grids, but switching to PSMG on grid levels where
the number of processors approximates or exceeds the number of grid points. Perhaps
the most interesting feature of the PSMG method is not so much the computational
efficiency as the ease with which it can be analyzed theoretically, see for example [3].

Recent papers by N. Decker [4, 5] describe a parallel version of a variant (RBTRB)
of the standard red-black multigrid algorithm of Stfiben and Trottenberg [6]. We com-
pare that algorithm with PSMG in the Appendix, and show that it requires over twice
the arithmetic and over five times the communication, for the same level of error reduc-
tion. We also briefly analyze in the Appendix the parallelization of the conventionally
accepted fastest standard multigrid method for Poisson's equation [6]. While faster
than RBTRB it is still up to 4 times slower than PSMG.

A brief but complete description of the PSMG algorithm is presented in section
2 below while section 3 summarizes the results for convergence rates and normalized
operation counts. Section 4 describes the methods used to verify the convergence rates,
and section 5 provides the algorithms used to minimize the operation counts.

2. The PSMG Algorithm. The PSMG algorithm works with a single grid of
points G(L) of size 2 L in each dimension (called the level L grid, or the fluc grid),
but utilizes operators with different scales I < L on that grid. Thus the algorithm
is strictly speaking m,,Itiscale ra*her than multigrid. There ,- ti.zz: Lasic opci.m.c.rs.
a finite difference operator A, an interpolation operator Q and a smoot-ing operator
Z. All operators are periodic on the grid in each coordinate direction. The PSMG
algorithm extends naturally to both Neumann and Dirichlet boundary conditions, with
no increase in convergence rate. The simplest approach to implementing Neumann or

2

Dirichlet boundary conditions is to use reflection or anti-reflection boundary conditions
and an extended grid. However we will discuss only the periodic case here for simplicity.

The operators at scale level 1, denoted AM, Q), and Z(, couple points at a distance

at _- 2 L-1 . Each level I operator is defined at all points of the grid G(L). The basic steps
involved at level 1, 0 < I < L, for the solution of A(L)U = f, starting with an initial

guess u, are described by:

Algorithm PSMG(I,u,f):

1. Compute residual r = f- A(u
2. Project residual to coarse grid: r = r (trivial injection).

3. Solve coarse grid residual equation using PSMG: e = PSMG(l - 1, O,r)
4. Interpolate to fine grid: e' = Qte

5. Apply a relaxation: e" = (I - Z()A())e ' + Z(O1 r

6. Compute and return the new solution: u" = u + e"

An exact solver is utilized on the coarsest grid. The PSMG strategy is to choose Q() and
Z(Z) as functions of A(M in such a way as to optimize the convergence rate of the above

algorithm. Fxplicit choices for Q() and ZY1) are given in [1] for the cases where A(')
represents either the standard 5-point or Mehrstellen discretizations of the Laplacian.

In each case we provided upper bounds on the convergence rate for the procedure which

are uniform in 1.

3. PSMG Performance. In our paper [1] we -id not indicate good performance
for PSMG on a 5-point operator. The 5-point case was presented in [1] only because
the PSMG formalism was easiest to explain in that setting, while the details extended

naturally to more complex operators. Indeed the stated multigrid convergence rate
upper bound of .2115 per iteration given in [1] for PSMG5-9 was very uninspiring,

although we show here that actual 5-point convergence rates are substantially better.

In this note, as in [1], we will focus on multigrid convergence rates. For V-cycles,

as considered here, it is well known that two-grid rates are often a poor indicator of

multigrid convergence rates[6].
We indicated much improved performance in [1] for the Mehrstellen discretization

of the Laplacian, where convergence rate bounds as good as .0045 were shown. Thus
we had the interesting conclusion that in most cases someone wishing to solve Pois-

son's equation would be better off using the Mehrstellen discretization which would

yield a solution in much shorter time than if a 5-point discretization were used, while
providing for free a better (isotropic to fourth order) approximation to the Laplacian.

Indeed a fourth ,- ... t.luto" i" ,,-., ; " b right haua sidc iE p ;-' ':ocesb:d

suitably[7J.
We have analyzed both 5-point and 9-point discretizations using the definition of

computation model given in [4, 5]. For several PSMG methods we present asymptotic

convergence rates, the number of parallel arithmetic and communication operations
3

required on each grid per iteration, and also the normalized operation count for arith-
metic and communication. If the asymptotic convergence rate of a method is p and the
method requires w operations per iteration, the normalized operation count is defined
as w/loglop, and measures the parallel work required per grid level to reduce the error
by a factor of 10, see [6]. We summarize the results for several simple cases in Table 1.

TABLE 1: PSMG CONVERGENCE RATES
Method Convergence Steps per Level Normalized Steps

Rate Comp. Comm. Comp. Comm.
PSMG 5-9 .08867 14 12 13.31 11.40
PSMG 5-25 .02504 22 16 13.74 9.99
PSMG 9-9 .02165 16 12 9.61 7.21
PSMG 9-25 .00165 24 16 8.62 5.75

The corresponding coefficients for the interpolation operator Q and the smoothing
operator Z are (in the notation of [1]):

PSMG5-9: qo=.25 q1=.125 qll=.0625
zo=.278079 z1=.0534577 zll=.0125615

PSMG5-25: qo=. 3 6 101 7 q1=.11458 ql 1 =.0625
q2=-.0309162 ql2=.00521024 q22=.00316188
z0=.361452 z1=.0891718 z11=.0293793

PSMG9-9: qo=. 2 5 q1=.125 q1 1=.0625
zo=.300589 z1=.0432465 z1 l=.0139994

PSMG9-25: qo=.34152 q1=.0995677 qii=.0625

qz=-.0199225 q12=.0127161 q22=-.00295755
zo=.283286 zl =.0323815 zl 1=.00835795

Using these coefficients and the definition of the PSMG algorithm given in section
2, one can verify the stated convergence rates. We have in fact verified all of the rates
for systems of up to 4 million processors. The method used to verify these rates is
described in section 4. The methods used to optimize and compute the numbers of
communication and computation steps presented in Table 1 are described in section 5.

4. Verification of Convergence Rates. To verify the rates in Table 1, we have
ezactly computed the spectral radius of the self-adjoint PSMG multigrid error reduction
operator M(L) for 11 grids G(L) with L ranging from 0 to 11. Here G(L) is a square
grid with n. = 2 L points on a side as in [1]. The verification is based on the iterative
formula:

(1) = Z (1 + (I - Z(')A g')) Q1) M (- l), I < I < L,
4

for the multigrid iteration op--rator M , piesented in section 2.4 of [1]. The :ecursion

begins on level 0 with M(M) -- A(°)M- . The operator MM is exactly the same as the
operator PSMG(l,0, f) defined in section 2 above. The multigrid error correction
contraction MM0 and the multigrid convergence rate i are defined in [1] as:

(2) M (
-

) = I - M(,)A () ,) t = sup IIM(L)fl
L

As in ri], we ust italics for the multigrid iteration operator MM which attempts to
approximate the inverse of A, while the multigrid error reduction operator MM') is
distinguished with bold typeface.

In a translation invariant problem (1) is most easily studied by Fourier transforma-
tion, in which case all quantities in (1) become multiplication operators by functions
AY1)k, Q(0k and Z('),, where k = (kl, k2) are the relevant frequencies for grid G(L):
0 < A; < n. Explicit formulae for these functions ("kernels") are given in [1] for
the various 5, 9 and 25 point operators used in the PSMG procedures in Table 1. One
final issue relates to the fact that the Poisson equation with periodic boundary data is
singular. The correct domain for the translation invariant Poisson equation is the set of
grid functions orthogonal to constants. In Fourier space this means that points aliased
to (0, 0) are omitted from the computation. Equivalently one defines M °) 0 Z 0 in (1).

In the paper [1] we introduced a quantity A* which is a rigorous upper bound for
i (see section 4.2 of [1]), and then proceeded to give numerically derived estimates

for u*. The bound j*, evaluated in frequency space, involves the supremum over all
possible grid levels of a functional of the kernels A, Q, Z, which in turn are simple
trigonometric polynomials of the allowed frequencies on a grid - indeed polynomials in
the quantities xi = cos(2rkid/n) where k, and k2 are the frequencies. The numerical
approximation used in [1] was to evaluate a* by choosing 1000 values for each zi,
uniformly distributed in [-1,1]; i.e. we searched for the maximum on a 1000 x 1000
grid embedded in the domain [-1,11 x [-1,1] of the (trigonometric) polynomials. Thus
there were two sources of inaccuracy in the convergence rates: 1) the fact that p was
only an upper bound and 2) the fact that u* was itself approximated numerically.

In order to get a more realistic view of PSMG convergence rates, as needed for
an effective comparison to the papers [4, 5], we have attempted to compute A directly
rather than through upper bounds. To be specific, we exactly compute the quantity:

(3) (L) = IIM(L)lI

on grid G(L). We compute jL(L) by evaluating the recurrence (1) from I = 0 to 1 = L in

Fourier space for every frequency pair kl,k 2 appropriate to G(L) - i.e. for 0 5 ki < 2
The only approximation in this procedure is that the kernels are evaluated in double
precision rather than infinite precision arithmetic.

The convergence rates given in Table 1 are the maximum values of ji(L) for 0 < L <
11 and therefore bound the exact convergence rates for all grids up to size 4 million
points. In practice we find that the convergence rates u(L) are unchanged to several
digits of precision beyond about level L = 6. We therefore are confident, although this

5

does not constitute a proof, that the convergence rates in Table 1 extend to arbitrary
numbers of grid levels. As a final check we have solved the Poisson equation using
PSMG, with zero right hand side and a random initial guess, and in each case verified
the convergeuce rates of Table 1.

We have used the same nonlinear optimizer in these measurements as was used in
[1]. The only difference from [1] is that here we are optimizing u(L) rather than the
substantially less expensive bound A*. Indeed we introduced i* in [1] solely to provide
a cheap evaluation function for the optimization. The fact that actual convergence
rates were substantially faster than indicated by p* was known fiom nume-ical tests
of the PSMG algorithm. The parameters given above that yield the convergence rate
of .00165, yield a value of .00365 for p* in close agreement with the value given in [1].
We have computed I" exactly for all grids up to 4 million points, thereby removing the
error 2) discussed above introduced by numerical approximation in [1].

5. Operation Counts. We have followed Decker [4, 5] in o'ir definition of the
model computational problem and operation counts. In particular a single computation
is defined as a parallel add, a multiply, or an add/multiply pair [4, 5]. Furthermore
direct communication is allowed only with four nearest neighbors. All arithmetic and
communication operations are required to be SIMD. As in [2,3] the operation counts
will be those for intermediate grids and the communication unit is grid level dependent
- the cost for communication between "nearest neighbors" at that grid level. Notation
in this section for the A, Q and Z operators and their parameters follows 11.

Lemma 1 relates the cost of a PSMG intermediate level to the costs of the individual
A (difference), Q (interpolation) and Z (smoothing) operators that are utilized. In
Table 2 below, we present the operation counts for each of the individual operators
encountered in the four PSMG algorithms of Table 1. Thus the operation counts in
Table 1 may be verified by combining Lemma 1 with Table 2.

Some of the operation counts in Table 2 may be found in [4, 5], or are slightly
sharper than counts given in [4, 5]. To maintain brevity, we will present in Lemmas
2 and 3 a complete accounting of all of the operators in Table 2 that are required to
verify the costs for the two best algorithms in Table 1: PSMG9-9 and PSMG9-25. The
counts for the 5-point cases are derived from similar but simpler lemmas.

LEMMA 1. At intermediate grid levels (0 < I < L), the parallel communication and
computation costs for the PSMG algorithm are given by:

cornm(PSMG(l)) = comm(Q) + comm(A) + comm(Z).
comp(PSMG(l)) - comp(Q) + comp(A) + comp(Z) + 2.

Proof: The PSMG algorithm was described as 6 separate steps in section 2 above
to which we now refer. For intermediate grids (0 < I < L) the initial guess is taken
to be 0 so that step 1 is not needed. Similarly step 6 is relevant only to the top level
grid L. Step 2 is free because PSMG uses injection, while step 3 is counted at level
I - 1 or lower. Thus only steps 4-5 are to be counted at level 1. Apart from the 3

6

operators involved, we note that no communication is required in these steps while two
computations are required in step 5. This completes the proof.

Based on LLmma 1, the critical issue is therefore the count of computation and
communication costs for the application of the A, Q and Z operators. A careful analysis
provides the following values for the various cases of A, Q and Z op.,rators used in our

algorithms.

TABLE 2: OPERATION COUNTS FOR A, Q, AND Z

Operator Comp. Steps Comm. Steps
5-pt A (Laplacian) 3 4
9-pt A (Laplacian) 5 4
9-pt Q (Interpolation) 4 4
25-pt Q (Interpolation) 12 8
9-pt Z (Relaxation) 5 4

We present here all of the algorithms needed to verify the counts in Table 2 for the case
of the optimal f'SMC9 9 and PSMG9-25 algorithms. We will prove the counts of Table
2 for the cases 9-pt A, Q, Z in Lemma 2 and for the 25-pt Q in Lemma 3. Decker [4, 51
has also presented an optimal algorithm for the case of bilinear interpolation.

Each of A(M, Q('), Z) is translation invaxiant, and is represented as a difference
star in the notation of [6]. We assume a symmetric form for Q and Z, given by the
following representations of thL. upper right quadrants of the stars:

Qq2 q12q22 [91]izi[6 q, q j q12 Z0 =z

q0 ql q2

LEMMA 2. Evaluation of w = Zu where Z is the symmetric 9-point operator

with three parameters zo, zi, z11 , may be accomplished in parallel with 5 computational
and 4 communication steps. The computations reduce to 4 if z1

2 = ZoZ11, as is the case
for the 9-pt Q.

Proof: If zil 3 0, we precompute a = z/zilil and b = Zo - z1
2/z11. The algorithm

then consists of the following 3 steps, *beginning with a function u on the grid and
ending with the function w = Zu. Each step is executed in parallel on all processors
(points i,j). In case z1

2 = z0z11 , the third step is not needed. (The case zj, = 0, not
relevant here, is even simpler, and may be accomplished with 3 computations and 4
communications).

7

Operation Comp. Comm.

v(i,j) = z1*((- 1,j) + u(i + 1,j)) + z1 *u(i,j) 2 2
w(i,j) = v(i,j-1) + v(i,j+l) + a*v(i,j) 2 2
w(ij) = w(i,j) + b*t(i,j) 1 0

Total Cost for all Steps: 5 4

LEMMA 3. Evaluation of w = Qu where Q is the symmetric 25-point operator
with six parameters qo, qj, q11, q2, q12, q22, may be accomplished in parallel with 12
computational and 8 communication steps.

Proof: If q12 j4 0, we precompute a = q,2/q 12, b = q11/q12, C = q2/q 1 2, and
d = ql/ql2 . The algorithm then consists of the following 9 steps, beginning with a
function u on the grid and ending with the function w = Qu. Each step is executed
in parallel on all processors (points ij). (The case q12 = 0, not relevant to this paper,
is even simpler, involving only a 17-point operator, and may be accomplished with 10

computations and 8 communications).

Operation Comp. Comm.

f(i,j) = u(i + Y ,j) 0 1
g(i,j) = u(i - 1,j) 0 1
r(i,j) = Z2* (f(i,j) + 9(i,j)) 1 '
s(i,j) = z2* (f(i + ,j) + g(i - 1,j)) 1 2
t(i,j) = a* s(ij) + r(ij) + z2 * u(i,j) 2 0
z(i,j) = s(ij) + b*r(i,j) + z *u(ij) 2 0
y(ij) = z(ij) + t(i,j + 1) 1 1
z(i,j) = z(ij) + t(i,j - 1) 1 1
w(ij) = Y(i, + 1) + z(i,j - 1) + c * s(ij)

+d*r(i,j) + zo*u(i,j) 4 2

Total Cost for all Steps: 12 8

6. Conclusions. PSMG is shown to provide solutions of Poisson type equations
at convergence rates of .00165 per iteration, and with paralkl operation counts per digit
of error reduction as low as 5.75 communications and 8.62 computations on each grid
level.

7. Appendix: Comparisons to Standard Multigrid. Recent papers by N.
Decker [4, 5] describe a parallel version of a variant (RBTRB) of the standard red-black
multigrid algorithm of Stfiben and Trottenberg 16). The papers 14, 5) provide an ex-
tremely efficient parallel RBTRB implementation, using a very clever rolling together

8

of several phases cf the multigrid proceddre for RBTRB. Furthermore those pa-trs
introduce the correct method of comparing PSMG and standard multigrid - by com-
parison of normalized convergence rates for communication and computation, rather
than comparing absolute convergence rates. We differ however with [5] and [4] on sev-
eral key points, as outlined respectively in the following two paragraphs The effect is to
produce a qualitative difference from [4] and a smaller quantitative but still significant
difference from the more recent paper [5]1.

While [5] used the convergence rate upper bounds from [1], PSMG actually con-
verges faster than those theoretical bounds as shown here in Table 1. Furthermore,
optimal parallel algorithms for various PSMG steps (relaxation and interpolation) were
not used in [5], but are provided here in Lemmas 2 and 3. The effect of these differences
is to reduce the normalized PSMJ9-25 costs from 12.3 computations and 8.5 commu-
nications as reported in [5] to F.62 computations and 5.75 communications as reported
here. The differences for the 5-point operators are even larger, approaching a factor of
two.

We note in passing that .everal further differences existed between the original
technical report [41 and the published paper [5]. These resulted in the report's conclusion
that RBTRB is as fast as PSMG even when there are as many processors as fine grid
points. In part this was because the report [4] omitted from consideration the PSMG9-
!; and PSMG9-25 methods, known from [1] to have the fastest convergence rates, and
shown here to be the most efficient. Additionally [4] used a two-grid RBTRB rate
of .074 in the comparisons rather than the multigrid rate of .19 used here and in [5].
Finally the report assigned the same cost to diagonal communications as to nearest
neighbor communications in analyzing the RBTRB method. While these differences
qualitatively affected the results of [4], the basic approach to comparing the PSMG and
standard multigrid methods outlined in [4] is not in dis- , 'e, and the RBTRB algorithm
as presented in [4] stands as the most efficient standard MG implementation that we
have seen.

A comparison of Table 1 in [4, 5] and in this papei shows the effects of these dif-
ferences on PSMG performance relative to RBTRB. As shown in [5], RBTRB requires
13 arithmet;: and 21 communication operations for a multigrid convergence rate of
.19, yielding normalized values of 18.02 parallel arithmetic and 29.12 parallel commu-
niclition operations per digit of error reduction. Comparing with the PSMG figures
presented here in Table 1, we see that RBTRB requires 2.09 times as much arithmetic
and 5.15 times as much conut-unication as PSMG. The algorithm BRTBR has a multi-
grid convergence rate of .12, and would appear to provide a slightly better method than
RBTRB, although communication costs differ somewhat.

One possibility for a faster parallel standard multigrid would be to use what is con-

I In June 1990, the SISSC editor provided a paper described as the final version of [5] accepted for
publication. However changes to that version occurred in October 1990. Their nature was communi-
cated to us by the editor although we have not seen the final text. The comments in the Appendix
are based on the information we have about the October version. A previous version of this report,
dated June 1990, differed by referring to the June 1990 Decker paper, but our results on PSMG are
unchanged.

9

ventionally regarded as the fastest serial multigrid solver fcr .he Poisson equation [6].
The algorithxr, wh; h we will call BR3, uses two BR sweeps, half-weighting restriction,
bilinear interpolation and one final BR sweep (we are using reverse operator notation
here as in [5]). This algorithm has a multigrid convergence rate of .059 [6]. For the first
red (R) sweep the initial guess is 0 on intermediate grids, allowing the red sweep to be
folded in with the black sweep (u = ',2f/4) as in [51, which requires 3 arithmetic and
4 communication steps, ,,bre iated as 3+4 below. Each of the following red and black
steps is a 4-po'nt average which also requires 3+4 operations (3imilar to application
of the 5-point A). The residual computation, r = f - A-,, requires 4+4 operations.
Because the black residuals are zero, the half-weighting restriction reduces to injection
of red values, multiplied b,- .5. This requires zero operations as the multiply can be
absorbed in the previous residual step. The bilinear interpolation is an application of
the 3 x 3 Q and therefore costs 4+4 operations. However this may be reduced to 2+4
by observing that only the values at black points are actually required for the following
red sweep. The final BR sweep consumes 3+4 operations for each phase. The total
operation count for intermediate grids is therefore 21+28, wit ' corresponding normal-
ized rates of 17.09 arithmetic and 22.78 communications per digit of error reduction,
a substantial improvement over RBTRB, especially if communication dominates. It is
likely that with care these numbers may be optimized somewhat. HoTever it is doubtful
that they could approach the 5.75 communication rate of PSMG 9-25.

We do not address in this paper the questior of whether other standard multigrid
cycles may give better parallel performance than BR13. We refer to [8] for a detailed
comparison of several hundred red-black standard multigrid methods, including several
that qxe somewhat more efficient than the BR3 method.

REFERENCES

[1] P. FREDERICKSON AND O. MCBRYAN, Parallei super onvergent multigrid, in Multigrid Methods,
S. McCormick, ed., Marcel Dekker, New York, 1988.

[2] 0. McBRYAN, New Architectures: Performance highlights and new algorithms, Parallel Comput-
ing 7, (1988) 477-499.

[3] P. FREDERICKSON AND O. McBRYAN,)Zecent Developments for Paraael Multigrid, Proceedings
of the Third European Conference on Multigrid Methods, October 1990, to appear.

(4] N. DECKER, On the Parallel Efficiency of the Frederickson-McBryan Multigrid, ICASE Report
No. 90-17, Feb 1990.

[5] N. DECKER, A Note on the Parallel Effici.ncy of the Prederickson-McBrjan Multigrid Algorithm,
SIAM Journal on Scientific and Statistical Computing, to appear. (See footnote 1 in the
Appendix of this paper).

[6] K. STOREN AND U. TROTTENBERG, Multigrid Methods: Fundamental algorithms, model vroblem
analysis and applications, in Multigrid Methods, W. Hackbusch and U. Trottenberg, eds.,
Perlin, 1981, Springer-Verlag, pp. 1-176. Lecture Notes in Mathematics 960.

[7] L. COLLATZ, The numerical treatment of differential equations, Springer-Verlag 1966, pp. 542.
(8] 0. MCBRYAN, Sequential and Parallel Efficiency of Multigrid Fast Solvers, University of Colorado

CS Dept. Tech Report, Sept 1990.

10

