WRDC-TR-90-5026

AD-A231 276

VHSIC HARDWARE DESCRIPTION LANGUAGE (VHDL)

BENCHMARK SUITE

CAPT KAREN M. SERAFINO
DESIGN BRANCH
M!CROELECTRONICS DIVISION

MICHAEL ALAN DUKES, M.S.E.E.
CAPTAIN, U.S. ARMY
AIR FORCE INSTITUTE OF TECHNOLOGY

October 1990

FINAL REFORT FOR PERIOD NOV 1989 TO OCT 1990

Approved for public release; distributicn unlimited.

ELECTRONIC TECHNOLOGY LABORATORY
WRIGHT RESEARCH AND DEVELOPMENT CENTER
AIR FORCE SYSTEMS COMMAND

WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6543

t PTC‘

JAN 181391,

O

UNCLASSIFIED
SECURITY CLASS.FICATION OF THIS PAGE
Form Approved
REPORT DOCUMENTATION PAGE OMB No 0704-0188
Ta REPORT i€ ittty 1 ALY ATION Th RESTRICTIVE MARKINGS
UNCLASSIFIED
2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release;
2b DECLASSIFICATION DOWNGRADING SCHEDULE distribution is unlimited
4 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)
WRDC-TR-90-5026
6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable)
WRDC/ELED WRDC/ELED
6¢. ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)
WRDC/ELED WRDC/ELED
Wright-Patterson AFB OH 45433-6543 Wright~Patterson AFB OH 45433-6543
8a NAME OF FUNDING ' SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)
IN-HOUSE
BC ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NC NO NO ACCESSION NO
62204F l 6096 40 18
11 TITLE (Include Security Classification)
VHSIC HARDWARE DESCRIPTION LANGUGAGE (VHDL) BENCHMARK SUITE
12 PERSONAL AUTHOR(S)
Serafino, Karen Marie, Dukes, Michael Alan
13a TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year, Month, Day} |15 PAGE COUNT
FINAL FROM NQV 89 7O QCT 90 1990 October 709

16 SUPPLEMENTARY NOTATION

The computer software contained herein are "harmless'". Already in the public domain.

17 COSATI CODES 18 SUBJECT TERMS [Continue on reverse if necessary and ideniify by block number)
FIELD GROUP SUB-GROUP
12 05 VHDL - IEEE 1076 - DESIGN LANGUAGE-HARDWARE DESCRIPTION
12 05 LANGUAGE .

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

=~ This report documents changes and additions made to the VHDL Benchmark Suite released in

| October 1989 (WRDC-TR-89-5046). Each benchmark is designed to test one or more of a set
of 71 VHDL language features in terms of the limitations of user's or vendor's system
architecture, operating system, and VHDL toolset. These limitations could include CPU
time and amount of memory required to simulate a test. Examples of language feature tests
are the maximum number of signal declarations allowed in an architecture or the maximum
size (number of characters) of a process label.

20 DISTRIBLTON AVAILABILITY OF ABSTRACT 21 ABSTRACT SFCURITY CLASSIFICATION
B uncoassrrpunomiten [same as gpr O oric Lsers UNCLASSIFIED
224 NAME OF RESPONSIBLF INDIVIDUAL 22b TELEPHONE (include Area Code) [22¢ OFFICE SYMBOL
CAPT KAREN M. SERAFINO 513-255-8635 WRDC/ELED
DO Form 1473, JUN 86 Previous editions are obsolete SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

....-..-..-..--..-..-..-.---.--IllllIlIllllIIIIIIIIIIIIIIIIIIIIIIIJ

erERERLLENY

Table of Conlents

Page
I Introduction L e 1
I1. VIIDL Benchmark Suite Organization 2
HI. Corrections and Additions oL, 3
IV. Using the VIDL Benchmark Suite System oo oo oo oo 4
V. Recommendations e e e e e 5
Appendix A. Category Matrix e 6
Appendix B. Test Descriptions, Shell Code, and Command Files 22
Appendix C. Code Generator e e 683
Appendix D. User’'s Information i i i e 701

Accession For

NTIS GRA:I

DTIC TAB O
Unannounced (]

Justificatione e

By
Distribution/
Avallability Codes

Aveil and/or
Dist Spoeoial

! *

1. Imtroduction

The VHDL Benchmark Sutte is a set of VADL models, each designed to test one or more
specified features of the language in terms of system architecture/operating system/VHDL toolset
limitations. These limitations include amount of memory and CPU time required for analyzing,
model generating, building, and simulating a model. Most tests have one or more parameters that
can be varied to observe their effect on timing and memory usage. Although the tests are referred
to as a benchmark suite, they differ from the computer science definition of benchmarks in that
they are designed to explore the robustness of a system’s architecture, operating system, and VHDL
environment, not to try to equalize these factors before comparing results between systems. They
attempt to test limitations of VHDL features of interest to design engineers.

VHDL vendors each have their own set of validation tests to use on their product, but no
standard suite exists for comparing capabilities and limitations between toolsets. This VHDL
Benchmark Suite is an attempt to provide a standard set of tests and make it available to vendors
and users. To date, the suite has 331 models, each tested on a VAX 8800 running the VMS
operating system, a UNIX-based SUN 4, and the Intermetrics, Inc Standard VHDL 1076 Support
Environment. This report covers the organization of the suite and how to use the benchmarks to
test toolset/system limitations.

II. VHDL Benchmark Suite Organization

VHDL Benchmark Suite data resides in three directorics, [.bench],
(VMS) or bench, coms, and readme (UNIX). Directory [.bench] contains the tests, [.coms] contains
the Intermetrics, Inc (VMS and UNIX) comnmand files, and [.readime] contains operating instructions
and other descriptive documentation. Tests in the VHDL Benchmark Snite are classified and
identified according to a ”category matrix.” There are 71 VIIDL, language categories, ranging from
ALIASED SIGNALS to FOR-LOOPS to ACCESS OPERATIONS. The categories are the row .
headings of the matrix. The tests are numbered and the numbers are used as column hieadings in the
matrix. A row/column cell contains an ”X” if the benchmark corresponding to that column’s test
number uses the category corresponding to that row’s language category. A listing of the matrix is
included in this report as Appendix A, and in [.readme]matrices.cdt (VMS) or readme/matrices.cdt
(UNIX) in the VHDL Benchmark Suite documentation.

[.coms]. and [.readine]

Each language category represents a subdirectory name. and each test is placed in the ap-
propriate subdirectory according to which language featurce(s) it uses. All source code is under
directory BENCH. For example, if a benchmark uses CONCURREN'T (subdirectory a) ASSERT
(subdirectory g2) statements in an ARCHITECTURE (subdircctory c), the test would reside in
[.bench.a.c.g2) for VMS, or bench/a/c/g2 for UNIX.

In most cases, a [.bench] subdirectory will contain one or more test shells (*.sh” filename
extension). The test shell is not a VDL source code file ready for analysis. It is input for a VADL
code generator named "gen.vhd” that resides in the directory [.bench]. This code generator is
written in VHDL, and when simulated, takes the test shell and operator-input generic parameters,
and produces syntactically correct VHDL source code. The generic parameters are what vary the
resultinvg VHDL source file. For example, a generic parameter could specify how long a model is
to be simulated, or how many signal assignment statements an architecture is to contain, ‘The
comments of each test shell include the author, the date of creation, an explanation of parameter
meaning(s), and an example of generated code resulting from a simulation of gen.vhd with the test
shell and specified inputs as generic parameters. There is also a version of the code generator for use
with VIIDL toolsets that do not allow generic parameters in a top-level entity : front_end.vhd and
alternate.gen.vhd., A brief description of ench test, along with its shell file appears in Appendix B.
Test descriptions are also in file [.readme]test.edt (VMS) or readme/test.edt (UNIX) in the VHDL
Benchmark Suite documentation. The VIIDL source for the code generator appears in Appendix
C and in directory [.bench] (VMS) or bench (UNIX).

The [.coms] directory has the same structure as [.bench)]. Ior cach subdirectory under {.bench]
that has a test, there is the same subdirectory in [.coms] that has the VMS and UNIX command
files to run that test. The command files to analyze, model generate, and build the code generator
are under [.coms).

1II. Corrections and Additions

This release of the VHDL Benchmark Suite includes corrected VHDL models and additional
VHDL models. The corrections and additions made to the previous VHDL Benchmark Suite fell
into one of several categories.

1. Corrections were made to the errant VHDL model.

2. Comments were included with the errant VHDL model stating why it was incorrect. The
errant VHDL model was not removed. A corrected version of the VHDL model was added
to the VHDL Benchmark Suite!.

3. “Global” errors were corrected throughout all VHDL models?.

4. VHDL models that include more VHDL language features were added to the VHDL Bench-
matk Suite.

5. “Realistic” VIIDL models of simple hardware designs were added to the VHDL Benchmark
Suite.

Some of the corrections made to VHDL models reflect recommendations made by the VASG.
The large parity generator VHDL models, added as tests 328 through 331, were designed to be
self-checking. Therefore, a dataflow-type Exclusive-OR equation is used to verify the correctness of
the large collection of gates used to calculate the parily. This helps to ensure the correct operation
of the target simulator when handling large structural descriptions.

Y The errant VHDL model may be used to ensure that the target VHDL envirorunent will flag the error indicated.
2e.g., Ons was changed to 0 ns.

1V. Using the VHDL Benchmark Suite System

Two "help files” exist that should be read before running any of the benchmarks. They are
[.readme]help.txt and [.readme]unixirfo.txt (VMS) or readme/help.txt and readme/unixinfo.tex
(UNIX). These files are included in this report as Appendix D. Only UNIX users must read unix.info.
It explains how to collect timing data using the UNIX ”set time” command. File help.txt explains
how to use the VHDL code generator, ”"gen.vhd,” to generate VHDL source code files from test
shells, then use the command files to analyze, model generate, build, and simulate the tests in
batch (VMS) or background (UNIX) mode.

V. Recommendations

After running the benchmarks with varying parameters, users can get an idea of which VDL
language features are best supported/implemented by their system and VHDL toolset, and can
compare their results with those obtained running the tests on different systems/VHDL toolsets.

Appendix A. Category Matrir

Author: Captain Michael A. Dukes
Date: 22 May 1989
Revisions:
25May89 Capt Karen M. Serafi.o
Added Block Asserts item G4
29May89 Capt Michael A. Dukes

Reconfigured For-loops (L) and While (0) tc ihe
category of loops (L). Under Loops exists "exits,"
“while," and "for." Added a category for
Attributes, (0). Added another category for label
size testing (T).

31May89 Capt Michael A. Dukes
Added a category (U) for consideration of the
number of waveforms that may be in a signal
assignment statement. Also added another category
for consideration of inertial versus transport (V).

6Jun89 Capt Karen M. Serafino
Added Procedure Asserts and Function Asserts items
G5 and G6.

8Jun89 Capt Karen M. Serafino
Added QOperators 'remainder," "absolute value," and
"exponentiation," items P13, P14, and P15
respectively.

14Feb80 Capt Karen M. Serafino
Added another category for configuration
specifications (W).

Benchmark Creation Environment:

Hardware Environment

Processor - Digital Equipment VAX 8820
Memory Size - 32M Bytes
Disk Type - RA-81

Dperating System ~ VAX/VMS 5.2

Vendor Toolset - Sta ard VHDL 1076 Support Environment
.nte: ~trics Inc., Bethesda, MD
Versicn 2.0 Septemher 1, 1989

Account Parameters

CPU Limit Infinit

Buffered I/0 Byte (ount (ntota .. 7190+
Timer Queue Entry Quota 50
Paging File Quota 123924
Default Page Fault Cluster 64
Enqueue Quota ceen 200
Max Detached Processes 0

Direct 1/0 Limit

Buffered I/0 Limit

Open File Quota
Subprocess Quota
AST Quota

Shared File Limit

Max Active Jobs

18
i8
59

78

\ Tes:
CATBOORY 1 2 3 & S 6 7 8 9 10 11 12 13 14 1S 16 17 18 1§ 26 21 21 23 24
Concurrent ’ x x x x 777 x T x x x x x x x X X

Guards

Reg. Reno!lved
Bus Resolved

|
|
Resolved :
|

Components |
w/ Ports]
w/o Ports !
w/ Geperice I x X
w/o Generics 1
Arscrts |
Entities |
Architecture 1
Process |
Block (X
Procecdure |
Function t X
Praceduren |
Entitics/Recursive |
Azchitecture/Recurnivel X X X R X X X
Process/Recuraive 1 X
Functions (
Entitien/Recursive [¢
Aichrtecture/Recurnivel X X X X
Proccon/Recursive | X

Operstors |
Addition !
Subtraction |
Miitiplication 1
Division |
Coacatenation !
AND f
R 1
NAND]
NOR |
XOR 1
NOT f
Modulea 1
Remsinder i
Absolute Vaiue I
Exponentiation I

Accecss Operatlions 1
(vec 3.3 &7 3.6, |

Labe! Size 1
Signs! |
Architecture !
Block |
Port t
Varisble |
Process |
Constant {
1

|

)

|

|

1

Types

Subtypes
Campanent Instant
Enti1y Labe)
Architecture Label
Block Label
Process Label

CATBORY 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 4, 47 48

I
Guards t

Resolved |

Reg. Resolved I

Bus Resovived t
Eoumerated Types |

(Large composite types)

w/ Generics
w/o Generice
Asrcris I
Entities
Architectu ¢ i
Process |
Block :
|

|
|
w/o Ports :
|

Procecdure
Function

Procedutes |
Eotities/Recursive i
Architecture/Recursivel
Process /Recursive

Funclions |
Entities/Recursive I
Architecture/Recursivel
Process/Recursive |

Operators !
Addition !
Sub(raction 1
Multiplication |
Division 1
Concstenation 1
AND |

OR |

|
}
|
|
i
i
I
|

NAND

NOR

XOK

NOT

Moduloe
Remsinder
Absolute Value
Exponentistion

Acceuy Operstaions |
(sec 3.3 & 7.3 6) 1

File 1/0 |
Recad]
Write I
Label Stize |
Signsl]
Architecture |
Biock |
Port I
Variable 1
Process 1
Constant :
:
|
i
1
|

Types

SUE\YPCI

Camponent I[nstant
Entity Label
Architecture Labe)
Block Labe!l
Process Labe!

Architecture |

Biocked i
Guards]
Resolved 1
Reg. Resolved |
Bus Resolved ¥
Eoumeratcd Types
(Large conposite

w/ Geperics
w/o Generics

i
|
Architecture |
Procens |
Block |
Procedure |
Fupciion !

Proccdutes
Entities/Recursive !
Architecture/Recursivel
Process/Reccursive

Punctions t
Eotitics/Recursive |
Architecture/Recursive!
Process/Recursive t

Opersiors |
Addition '
Subtrsctlion |
Muttiplication |
Division |
Concatenstion [
AND |
OR {
NAND |
NOR t
XOR !
NaT)
Modulo 1
Remapder |
Absolute Value]
Exponeptistion 1

49 50 51 52 S$3 S4 S5 56 57 58 59 60 61 62 63 64 65 66 67 68 69 0 7Ti 72

X X X X X
X X X X X

Access Operations |

(sec 3

File 10 1
Read]
Wirte t

J& 7.3 6 |

i
Signal 1
Archirtecture]
Block |
Port |
Varisble |
Process |
Constant 1
Tyﬁu |
Suhtypes |
Camponent lnstant |
Entity Label 1
Atchitecture Label i
Block Label t
Procens Label |
Weve (orms]
Inertaisl |

Configuration Spec |

10

CATEQOR 73 74 75 76 7 78 7% 80 81 82 83 84 85 856 87 88 89 90 91 92 93 94 95 96

|
!
Resolved i
Reg. Revolved |
Bus Resolved {

Enumersted Type" ’ |
(Large composite types)

w/ Geoerics
w/o Generics

Asscrts |
Entities |
Architecture i
Process !
Block |
Procedure {
Punction |

Procedures |
Entities/Recursive | X X X R X X X
Architecture/Recursivel
Process/Recursive

Functions !
Entities/Recursive | X X X X
Architecture/Recursivel
Process/Recursive i

Opcrators |
Addition |
Subtraction 1
Multiplication !
Division i
Concatenation |
AND |
OR |

NAND :

|
|
|
|
|
|

NOR

XOR

NOT

Moculo
Remainder
Absolute Value
Exponentiation

Access Operations 1
(sec 3.3 &7 3.6) |
Fae 1o T T
Rcad |
Write 1 X X X X

|
Signs! {
Architecture |
Block |
Port |
Veriable |
Procecos |
Constant !
Types i
Suglypel |
Camponent Instant {
Entity Label |
Architecture Label |
Biock Label |
P:oceos Label |

fnertasnl t

(_‘nnhpulnon‘Spec |

CATEGORY 97 98 99 100 101 102 103 104 105 166 107 108 2109 10 2111 112 113 114 115 116 117 118 119 120

Rest Rcesolved

Bus Recsolved
Enumerated Types !
(Large composite types)

|
{
Resolved :
|

w/ Generics
w/o Generics
Asscrts 1
Botities !
Architecture]
Process :
|
{

|
|
w/o Posts }
|

Block
Procedure
Function

Procedures |
Envities/Recursive I X X X X X X X X X X X
Architectare/Recursive!l X X X
Process/Recursive

Functions |
Entities/Recursive | X X X x X X X X
Architecture/Recursivel
Process/Recursive

Opecrators

Addition
Subtrection
Multiplication
Division
Concstenetion
AND

OR

1
{
)
|
‘l X x X X
|
|

NAND :
{
|
|
{
|
|

X X X X X X X X

NOR
XOR

NOT
Modulo
Remainder
Absoluie Vajue
Exponentistion
Aliascd Signals |
Access Operations !
(s¢c 3.3 &2 7.3.6) |
File 1/0 i
Recad |
Write I
Label Size |
Signs!]
Architecture !
Block |
Port |
Variable !
Process |
Cons lant :
I
|
|
|
1
!

Tygc-

Subtypea
Component Instant.
Entity Label
Architecture Label
Biock Label
Process Label

Configuration Spec. !

\ Teot
CATECXRY 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
Concurrent VU T T T x x x x x x x x X x X X X X X X X X
Sequentia T T i T
Architecture 1 X
Blocked g

Guards]

Resolved !

Reg. Resolved I

Bus Resolved i

Eosuncrated Types |
(Large composite types)
Components)
w/ Ports {
w/o Ports |
w/ Gecoerics f
w/o Gencrics |
Asscrts 3
Entities !
Architecture |
Process !
Block {
Proccdure |
Function i
Procedures]
Entities/Recursive | X X X X X X
Architecture/Recursivel X X X X X X
Process/Recursive |
Functions {
Entitics/Recursive i X X X X X X
Architectare/Recursive!
Proccss/Recursive |

Opcrators {
Addition |
Subtraction !
Multiplication |
Division I
Concatenstion |
AND |
R |
NAND 1 X X X X X X X X
NOR !
XOR]
NOT)
Modulo |
Remainder t
Absclute Value |
Exponentiation]

Acu“ op;";.';.; ' ...
(sec 3.3 &

~ -

File 110 |
Read I
Write 1

Label Size |
S)gns)]
Architecture |
Block |
Port !
Varisbice I
Process !
Constant |
Types |
Subtypes |
Camponent Instanut. |
Entity Labdel {
Acchitecture Label |
Block lLabe] 1
Process Label |

13

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168

Resolved
Reg. Resolved
Bus Resolved

Enumcrared Types

(Large composite typecs

Corponents
w/ Ports
w/o Ports
w/ Generics
w/o Generics

Asszcria
Entitics
Architecture
Process
Block
Procedure
Funcrion

Proccduses
Bouvities/Recursive

Architecture/Recursive

Process/Recursive

i

Functions
Eptities/Recursive

Architecture/Recursive

Process/Reccursive

Operators
Addition
Subtraction
Multiplication
Division
Concatenation
AND

R

NAND

NOR

XOR

NOT

Modulo

Remainder

Absoiute Value

Exponentistion

X X X X X X X X X

Access Opcrations
(sec 3.3 & 7.3.6)

Labei Si2e
Signal
Architeccture
Biock
Port
Varisbic
Procesns
Constant
Types
Suglypel
Component lostant.
Entity Label
Atchitecture Label
Block Lahe!
Proccsw Label

Configuration Spec.

CATEGORY 169 170 171 172 373 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192

Blocked |
Guards]
Resolved |
Reg. Resolved 1

Bus Resolved |

Enumerated Types 1
(Large composite types)

w/ Generics

|
|
w/o Ports :
w/o Genericse |

i
1
Architecture |
Process 1
Block 1
Procedure !
Function i

Procedutes |
Entities/Recursive |
Architecture/Recursivel
Process/Recursive !

Funztions]
Entitics/Recursive !
Architecture/Recursivel
Process/Recursive |

Operators I
Addition !
Subtraction |
Multiplication |
Division |
Concatenstion |
AND]
OR [4 X X
NAND !
NOR I
XOR |
NOT |
Modulo]
Remainder |
Absolute Value !
Exponentiation !

Access Operst
(sec 3.3 &

~-
w2
o

File 1/0]
Read |
Write |

Lebel Size i
Signal |

Architecture 1
Block }
Port |
Varisble |
Procens |
Conatant {
Types t
Subtypes |
Component Instsnt. |
Entity Label |
Atchitecture Label 1
Block Label !
Process Label i

Configurstion Spec. 1

CATEGORY 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 2i4 215 216

Blocked {
Guards \
Resolved !
Reg. Resolved |

Bus Resolved)

Enumerated Types |
(Large cooposite types)

w/ Generics
w/o Generics
Asserts !
Entitics |
Architecture |
Process |
i
]
]

|
1
w/o Ports :
i

Block
Procedure
Function
Procedurcs |
Entities/Recursive l X
Architecture /Recursivel
Process/Recursive 1 X
Functions !
Entities/Recursive | X
Architecture/Recursivel
Procesa/Recursive

Operators
Addition
Subtraction
Multiplication
Division
Concatenation
AND

|

|

|

{

|

{

|

OR !
NAND |
NOR !
XOR :
|

I

!

1

NOT

Modulo
Remsinder
Absolute Vslue
Exponentistion

Access Operations S
(sec 3.3 4 7.3.6) !

Lsbel Size |
Signsl |
Architecture |
Block i
Port 1
Varisbie i
Procesy |
Constant ! X
Types |
Suﬁlypcl 1
Camponent Instant. |
Entity Labe! !
Architecture Label]
Block Labe) }
Process Label 1

Configuration Spec {

16

CATEQORY 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240

|

!

Resolved i
Reg. Resolved |
Bus Resolved |
Enumerated Types |
(Large composite types)

Componcnts t
w/ Ports |
w/o Ports |
w/ Generics |
w/o Generics 1

Asserts {
Entities |
Architecture i
Praccus !
Block |
Procedure |
Function |
Procecdures I
Entities/Recursive { R X X
Architecture/Recursivel R X X
Process/Recursive ! R
Functions {
Entities/Recursive | R R X X
Architecture/Recarsivel
Process/Rccursive X R

Opcrators |
Addition 1
Subtraction |
Multiplication]
Division |
Concatenation |
AND I
OR i
NAND |
NOR |
XOR |
NOT t
Modulo |
Remainder]
Absolute Value 1
Exponcntistion 1

Access Opecrat
(vec 3.3 &

- -
w2
o

File 1/0]
Read i
Weite |

Lebel Size {
Signal |

Architeclure |
Block 1
Port)
Variable |
Process |
Constant |
ypes |
Subtypes }
onent Instant. {
Entity Label |
Architeciure Label {
Block Label 1
Process Label [

Configurstion Spec. |

\ Test
CATEGORY 241 242 243 244 245 246 247 248 249 250 231 252 253 254 285 256 257 258 259 260 261 262 263 264
Concurtent 1 x ’ X x x x x x ' x x x'x X
Sequential B A o X x x ' x x x
Architocture Ux X Tx T x T Tx T x x X x x x x x x x x x x x x x x x
Blncke; i -----------------------
Guards t

Resolved 1

Reg. Resolved |

Bus Resolved |

Enumersted Types) ’
(Large composite types)

i
t
w/o Ports |
w/ Generics |
w/o Generics |

Atserts |
Entities 1
Architecturse t
Process |
Bloca |
Procedure {
Function i
Procedures |
Entitics/Recursive | X X X
Architecture/Recursivel
Process/Recursive
Functions 1
Entities/Recursive | X X
Architecture/Recursivel
Proccss/Recursive !

Operators
Addition
Subtrection
Multiplication
Diviziun

|
|
|
\
|
Concatenation I
AND |
R |
NAND |
NOR |
XOR !
NOT |
Modulo]
Rema indet {
Absolute Vslue]
Exponentistion 1

Acccos Operations |
(sec 3.3 & 7.3.6) |

Labe] Size i
Signsl |
Architecture |
Block 1
Port |
Vatisble 1
Process]
Constant |
Types |
Subtypes |
Camponent lnstant. |
Entity Lsbel |
Architecture Label |
Block Label i
Process Label |

Configurstion Spec. |

18

CATEQORY 2685 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288

Reg. Resolved
Bus Resolved
Bnnn;rlt;; Types i ...
(Large composite types)

|
|
Resolved :
|

Components |
w/ Ports |
w/o Ports |
w/ Generice |
w/o Generics]
Asscriy 1
Entitics |
Architecture {
Process |
Block t
Proccdure |
Punction |
....... e e e e e et eme e eaa e aae e eaa e caneaas e s e e aacaaeeaae e aae e e ot
Procedurcs {
Entities/Recursive 1 X X X
Architecture/Recursive!
Proccss/Recursive |
Punctions
Entities/Recursive
Arcbitecture/Recursivel X X
Process/Recursive |

Operators]
Addition |
Subtraction t
Muftiplication i
Division {
C. ncatenation :
OR |
NAND |
NOR |
XOR |
NOT i
Modulo |
Rema inder i
Absolute Value |
Exponentiation |

X X X X X X X X X X X X X X X X x X Xx X X

Alissed Si

Ac““op”.“on‘ R
(sec 3.3 & 7.3.6) |

|
Signel !
Architecluse |
Biock |
Port t
Varisble |
Process |
Constant {
Tygel |
Subtypes |
Campanent Instant . |
Entity Label |
Architecture Label !
Biock Label |
Process Label |

Coafiguretion Spec.)

19

n W >

\ Test
CATEGORY

Concurreont

239 290 291 292 293 294 295 296 297 298 299 3¢

X X X X X

301 302 303 304 305 306 307 308 309 310 311 312

Guacds
Resolved
Reg. Resolved
Bus Rcaolved

Enumerated Types
(Large composite

Components
w/ Portas
wi/o Ports
w/ Generics
w/o Gencrics

Asscrie
Entities
Architecture
Process
Block
Procecdure
Function

Procedures

|
Entities/Recursive :

Architecture/Recu
Process/Recursive

functions

rsive

|
Entities/Recursive {

Architecture/Recu
Process/Recursive

ryive
{

Qperators
Additioen
Subtraction
Multiplication
Division
Concatenation

OR

NAND

NOR

XOR

NOT

Modulo
Remainder
Absolute Value
Exponestistion

Alias

Access Opergtions
(sec 3.3 & 7.3.6)

X X
X X
X

X
X X

Lebel Size

Signsl
Architecture
Block
Port

Variabie
Process

Constani

Types

Subtypes

Component Instant.

Entity Label
Architecture Labe
Block Label
Process Label

!

Configurstion Spec

20

CATEOORY 313 304 318 316 317 I1K 319 320 321 322 323 324 325 326 327 328 329 330 3N
i x x x x Tx Tx T x Tx ’ X X X X
......... e et
I'x X X X X x X X X X X X
‘ . .
!
Resolived { X
Reg. Resolved i X
Bus Resoived I X

Enumerated Types

|
(Large composite types)

w/o Poris
w/ Generics
w/o Generics

Asscrts
Entitics
Architecture
Process
Block
Procedure
Function

Procedutes
Entitics/Recursive

Architecture/Recursive

Process/Recursive

Functions
Entities/Recursive

Architecture/Recursive

Process/Recursive

Operators
Addition
Subiracticn
Myltiplication
Division
Concatenstion
AND
OR
NAND
NOR
XOR
NOT
Modulo
Remainder
Absolute Value
Exponentiation

Access Operat
(sec 3.3 &

-
w3
o

-~

File 1/0
Reand
Write

Label Size
Signsl
Architectiure
Block
Port
Varisble
Process
Constant
Types
Suhtypes
Companent Instant
Entity Lahel
Architecture Labe!
Black Lahel
Process Labe!

Appendix B. Test Descriptions, Shell Code, und Command Files

TEST NUMBER : 1

PATHNAME : [.BENCH.A.C.F3.I1]JshellO.sh (see readme.txt in this directory)
(UNIX equivalent : bench/a/c/f3/i1/shell0.sh)

PURPOSE : Determine the number of signals allowed in the generic clause of
a component; determine the number of such components allowed in
an architecture with a recursive function in its entity declaration.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-- AUTHOR : Captain Michael A. Dukes
-- DATE : 25 May 1989

-- PARAMETER NUMBER MEANING :

-- 1 : number of signal declarations/signals (minus 1) per compoment
- generic map

-- must match value of parameter number 1 in "shelll.sh"

-- 2 : number of components

-- EXAMPLE :

-- $ sim gen/param='shell0.sh","test0.vhd",3,6

-- (UNIX equivalent : % sim gen -param=\"\shellO.sh\"\, \"\test0.vhd\"\,3,6)
-= will generate a model in file "test0.vhd" with an architecture

- in the form :

- entity vbm0 is

-- end vbmQ;
-- architecture vbm0 of vbmQ is
-- signal delay_time : integer := 1

-~ signal delay_timel : integer :=
-~ signal delay_time2 : integer :=
-~ signal delay_time3 : integer :=
-- component vbml

[T

-~ generic (delay : integer

- ; delayl : integer
- ; delay2 : integer
- ; delay2 : integer
--)i

-- end component;

-- for all : vbml use entity work.vbmil(vbmi);

-- begin

-- compl : vbml geaeric map (delay_time

-- , delay_t-mel
— , delay_time2
- , delay_time3

__)

-~ comp6 : vbml generic map (delay_time

-- P
- end vbmO;
entity vbmO is
end vbmO;
architecture vbmO of vbm0 is
signal delay_time : integer := 1;
#1(signal delay_time® : integer := 1;]

component vbml

generic (delay : integer#1[; delayQ :

),

end component;

for all : vbml use entity work.vbmi(vbmi);

begin

, delay_timel
, delay_time2
, delay_time3

integer]

#2(comp@ : vbml generic map (delay_time#1[, delay_timec]

);)
end vbmO;
~- AUTHOR : Captain Michael A. Dukes
-- DATE : 25 May 1989

-- PARAMETER NUMBER MEANING

-- 1 : number of signals (minus 1) in entity generic clause, number of
-- signal declarations/signal assignment statements in architecture

-- must match value of parameter number 1 in "shellO.sh"

-- EXAMPLE :

- $ sim gen/param="shelll.sh","test1.vhd",3
-- (UNIX equivalent : % sim gen -param=\"\shelll.sh\"\,\"\test1.vhd\"\,3)
-- will generate a model in file "testl vhd" with an architecture

-- in the form :

-- entity vbmi is

-- generic (delay : integer

-- ;delayl : integer
- ;delay2 : integer
-- ;delay3 : integer
--)i

- architecture vbmil of vbmi is

~~ signal go : bit;

~- signal clockl : bit;
- signal clock2 : bit;
-~ signal clock3 :@ bit;

~- begin

~-- go <= '0’, '1’ after delay_time(delay);

~- clockl <= ’1’ nand go after delay_time(delay1);
-- clock2 <= 1’ nand go after delay_time(delay2);
-- clock3 <= ’1’ nand go after delay_time(delay3);

-- end vbnmi;

entity vbml is
generic (delay : integer
#1(;delay® : integer]
)i

function delay_time (in_delay :

begin
return(in_delay * 1 mns);
end;

end vbmi;

architecture vbml of vbml is
signal go : bit;

#1(signal clock® : bit;]
begin

integer) return time is

go <= ’0’, '1’ after delay_time(delay);
#21{ clock® <= ’1’ nand go after delay_time(delay®);]

end vbmi;

21

TEST NUMBER : 2

PATHNAME : [.BENCH.A.C.F3.I2]shell0.sh (see readme.txt in this directory)
(UNIX equivalent : bench/a/c/13/12/shellO.sh)

PURPOSE : Determine the number of signals allowed in the generic clause of
a component; determine the number of such components allowed in
an architecture with a recursive function in its architecture body.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-- AUTHOR : Captain Michael A. Dukes
-- DATE : 25 May 1989

-~ PARAMETER NUMBER MEANING :

-- 1 : number of signal declarations/signals (minus 1) per component
-~ generic map

-- must match value of parameter number 1 in "shellil.sh"

-- 2 : number of components

-- EXAMPLE :

-- $ sim gen/param="shell0O.sh","test0.vhd",3,6

-- (UNIX equivalent : % sim gen -param=\"\shellO.sh\"\,\"\test0.vhd\"\,3,6)
-- will generate a model in file "testO.vhd" with an architecture

-- in the form :

-~ entity vbmO is

- end vbmO;
- architecture vbm0 of vbmO is
-- signal delay_time : integer := 1

== signal delay_timel : integer :=
- signal delay_time2 : integer :=
-- signal delay_time3 : integer :=
-~ component vbmi

PR

- e

-~ generic (delay : integer

-~ ; delayl : integer
-~ ; delay2 : integer
-- ; delay3 : integer
-)

-~ end component;

-- for all : vbml use entity work.vbmi(vbmi);

-- begin

-- compl : vbmi generic map (delay_time

- , delay_timel
-— , delay_time2
- , delay_time3

(7
23]

~- compé : vbmi generic map (delay_time

-~ , delay_timel
-- , delay_time2
- , delay_time3

-- end vbmO;

entity vbmO is

end vbmO;
architecture vbm0 of vbm0 is
signal delay_time : integer := §;

#1[signal delay_time® : integer := 1;]
component vbmi
generic (delay : integer#1i[; delay® : integer]
);

end component;

for all : vbml use entity work.vbmi(vbml);

begin
#2[comp® : vbmi generic map (delay_time#1[, delay_time®]
):]
end vbm0,

-- AUTHOR : Captain Michael A. Dukes
-- DATE : 25 May 1989

-~ PARAMETER NUMBER MEANING

-~ 1 : number of signals (minus 1) in entity generic clause, number of
-- signal declarations/signal assignment statements in architecture
- must match value of parameter number i in "shellO.sh"

-~ EXAMPLE :

- $ sim gen/param="shelll.sh”,6 "test1.vhd",3

-~ (UNIX equivalent : % sim gen -param=\"\shelll.sh\"\,\"\t.st1.vhd\"\,K3)
-= will generate a model in file "testl.vhd" with an architecture

-~ in the form :

-~ entity vbmi is

-- generic (delay : integer
- ;delayl : integer
- ;delay? : integer
- - ;delay3 : integer

==)’

-- architectire vbmi of vbmil is

26

-~ function delay_time (in_delay : integer) return time

-~ begin

-~ return(in_delay * 1 ns);

- end;

=T signal go : bit;

- signal clockl : bit;

-- signal clock2 : bit;

-- signal clock3 : bit;

-- begin

- go <= '0’, 1’ after delay_time(delay);

-- clocki <= ’1’ nand go after delay_time(delayl);
- clock2 <= ’1’ nand go after delay_time(delay2);
- clock3 <= ’1’ nand go after delay_time(delay3);
-- . end vbmi;

entity vbml is

generic (delay : integer
#1[;delay® : integer]
)
end vbmi;

architecture vbmi of voml is
function delay_time (in_delay : integer) return time is
begin
return(in_delay * 1 ns);
end;
signal go : bit;
#1[signal clock® : bit;]
begin
go <= ’0’, ’1’ after delay_time(delay);
#1[clock® <= '1’ nand go after delay_time(delayQ);]
end vbmi;

27

is

TEST NUMBER : 3

PATHNAME : [.BENCH.A.C.D]shell.sh

(UNIX equivalent : bench/a/c/d/shell.sh)

PURPOSE : Determine the maximum number of blocks allowed in an architecture;

determine the maximum number of signal declarations/signal
assignment statements allowed per block; determine the CPU time
required per block for analysis, model generation, build, and
simulation.

EXPECTED RESULTS :

UNITS QF MEASUREMENT : Seconds/block

AUTHOR : Captain Karen M. Serafino
DATE : 26 May 1989

PARAMETER NUMBER MEANING :
1 : number of blocks
2 : number of signal declarations/signal assignment statments per block
3 : length of time (nrs) to simulate model (must be > 1)

EXAMPLE :
$ sim gen/param="shell.sh",6 "test.vhd”",6§,4,7
(UNIX equivalent : % sim gen -param=\"\shell.sh\"\,\"\test.vhd\"\,5,4,7)
vwill generate a model in file "test.vhd" with an architecture
in the form :
entity blocks is end;

go <= '0’, ’1’ after 1 ns, ’0’ after 7 ns;
b1 : block

signal s1 : bit;

signal s2 : bit;

signal s3 : bit;

signal s4 : bit;
begin

$1 <= sl nand go after 1 ns;
82 <= s2 nand go after 1 ns;
83 <= 83 nand go after 1 ns;
84 <= s4 nand go after 1 ns;

end block bi;

bS : block
signal s1 : bit;
signal s2 : bit;
signal s3 : bit,;

28

-~ signal s4 : bit;
-- begin

-~ 81 <= 81 nand go after 1 ns;
- 82 <= 82 nand go after 1 ns;
-~ 83 <= 53 nand go after 1 ns;
-- 84 <= 84 nand go after 1 ns;

- end block bS5;
- end blocks;

entity blocks is end;

architecture blocks of blocks 1is
signal go : bit;

begin
go <= ’0’, ’1’ after 1 ns, ’0’ after %3% ns;

#1[b0 : block

#2[signal s@ : bit;]
begin

#2(s@ <= s® nand go after 1 ns;]
end block bQ;]

end blocks;

TEST NUMBER : 4

PATHNAME : [.BENCH.A.C.D.G4]shell.sh
(UNIX equivalent : bench/a/c/d/g4/shell.sh)

PURPOSE : Determine the maximum number of blocks allowed in an architecture;
determine the maximum number of signal declarations/signal
assignment statements/assertions (one per signal) allowed per block;
determine the CPU “ime required per block for analysis, model
generation, build, and simulation.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

== AUTHOR : Captain Karen M. Serafino
-- Date : 26 May 1989

-- PARAMETER NUMBER MEANING :
-~ 1 : number of blocks

-- 2 : number of signal declarations/signal assignment statements/assertions
-- per block
-- 3 : length of time (ns) to simulate model (must be > 1)

-- EXAMPLE :

29

- $ sim gen/param="shell.sh",6 "test.vhd",5,3,8

- (UNIX equivalent : % sim gen -param=\"\shell.sh\"\,\"\test.vhd\"\,5,3,8)
-- will generate a model in file "test.vhd" with an architecture

- in the form :

-- entity blocks is end;

- go <= ’0’, ’1’ after 1 ns, *'0°’ after 8 ns;

- b1l : block

-- signal s1 : bit;

-- signal 82 : bit;

~-= signal s3 : bit;

-- begin

-- - 81 <= s1 nand go after 1 ns;

- assert (sl= ’0’) or (si= '1’) severity error;
-- 82 <= s2 nand go after 1 ms;

-- assert (s2= ’0’) or (s2= ’1’) severity error;
-- 83 <= s3 nand go after 1 ns;

-- assert (s3= ’0’) or (s3= ’1’) severity error;
- end block bi;

-- b5 : block

- signal s1 : bit;

-- signal s2 : bit;

- signal s3 : bit;

-- begin

-~ sl <= s1 nand go after 1 ns;

- assert (si= ’0?) or (si1= ’1’) severity error;
-- §2 <= s2 nand go after 1 ns;

-~ assert (s2= ’0’) or (s2= ’1’) severity error;
-- 83 <= s3 nand go after 1 ns;

-~ assert (s3= ’0’) or (s3= ’1’) severity error;
-~ end block b5;

-~ end blocks;

entity blocks is end;
architecture blocks of blocks is
signal go : bit;
begin
go <= ’0’, '1’ after 1 mns, '0' after %3J ns;
#1[b : block
#2[signal 8@ : bit;]
begin
#2(8@ <= s0 nand go after 1 ns;
assert (s0= ’0’) or (s@= ’1’) severity error;]
end block b@;]
end blocks;

30

TEST NUMBER : &

PATHNAME : [.BENCH.B.C.K.L1.M]shell.sh
(UNIX equivalent : bench/b/c/k/11/m/shell.sh)

PURPOSE : Determine the effect on simulation CPU time when the following
factors are varied in an architecture consisting of a number of
processes and the same number of bit_vector signal declarations;
each process consists of a variable declaration of a bit_vector the
same size as the siganals above, a signal assignment statement, and
an if-then-else construct with for-loops in the ’if’ and ’else’
sections; the number of iterations of each for-loop is equal to the
size of the bit_vectors, and a variable assignment is made at each
iteration : number of processes/number of bit_vector signal
declarations, bit_vector size of the signals, and length of time
(in ns) to simulate the model.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-- AUTHOR : Captain Michael A. Dukes
-- DATE : 25 May 1989

—- PARAMETER NUMBER MEANING :

~-- 1 : number of signal/process repetitions

-- 2 : bit_vector size

-- 3 : length of time (ns) to simulate model (must be > 1)

-~ EXAMPLE :

-- $ sim gen/param="shell.sh","test.vhd",10,100,5

-- (UNIX equivalent : % sim gen -param=\"\shell.sh\"\,\"\test.vhd\"\,10,100,5)
-- will generate a model in file "test.vhd" with an architecture

-= in the form :

-~ entity test is

~- signal bigl : bit_vector(100 downto 1);

~= signal bigl0 : bit_vector (100 downto 1);
~- begin

-- go <= '1’ after 1 ns, 'O’ after 5 ns;

-- pl : process(go,bigl)

~= variable temp :@ bit_vector(bigi’range);

-~ bigl <= temp nand bigl after 1 ns;
-- end process pi;

31

-- P10 : process(go,bigi0)
-- variable temp : bit_vector(biglO’range);

- big10 <= temp nand bigl0 after 1 ns;
-- end process pi0;
- end test;

entity test is
end test;
architecture test of test is

signal go : bit;
#1[signal big® : bit_vector(%2% downto 1);]
begin
go <= ’1’ after 1 mns, ’0’ after %3% ns;
#1[p@ : process(go,big®)
variable temp : bit_vector(big®’range);
begin
if go = ’1’ then
for i in temp’range loop
temp(i) := ’1’;

end loop;
else
for i in temp’range loop
temp(i) := '0’;
end loop;
end if;

big® <= temp nand big® after 1 ns;
end process pe;]
end test;

32

TEST NUMBER : 6

PATHNAME : [.BENCH.B.C.K.Mlshell.sh
(UNIX equivalent : bench/b/c/k/m/shell.sh)

PURPOSE : Determine the effect on simulation CPU time when the following
factors are varied in an architecture consisting of a number of
processes and the same number of bit_vector signal declarations;
each process consists of a variable declaration of a bit_vector the
same size as the signals above and an if-then-else construct with
a signal assignment statement in the ’if’ section and a for-loop in
the ’else’ section; the number of iterations of the for-loop is
equal to the size of the bit_vectors, and a variable assignment is
made at each iteration : number of processes/number of bit_vector
signal declarations, bit_vector size of the signals, and length of
time (in ns) to simulate the model.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-- AUTHOR : Captain Michael A. Dukes
-- DATE : 26 May 1989

-- PARAMETER NUMBER MEANING :

-- 1 : number of signal/process repetitions

- 2 : bit_vector size

- 3 : length of time (ns) to simulate model (should be > 1)

-- EXAMPLE :

- $ sim gen/param="shell.sh","test.vhd",10,100,5

-- (UNIX equivalent : % sim gen -param=\"\shell.sh\"\,\"\test.vhd\"\,10,100,5)
-- will generate a model in file "test.vhd" with an architecture

-- in the form :

-- entity test is end;

-- signal bigl : bit_vector(100 downto 1);

-- signal bigl0 : bit_vector(100 downto 1);
-- begin

-- go <= ’'1’ after 1 ns,

-- stop <= ’1’ after 5 ns;

-- assert (stop = ’0’) severity error;

-- pi : process(go,bigl)

-- variable temp : bit_vector(bigl’range);
-- begin

-- if go = '1’ then

- *+igl <= temp nand bigl after 1 ns;
- end process pi;

-- P10 : process(go,bigl0)

-- variable temp : bit_vector(bigl0’range);
-- begin

-- if go = ’1’ then

-- bigl0 <= temp nand bigl0 after 1 ns;

- . end process plo;
_— end test;

entity test is end;
architecture test of test is
signal go : bit;
signal stop : bit;
#1[signal big@ : bit_vector(%24 downto 1);]
begin
go <= 1’ after 1 mns;
stop <= '1’ after %3 ns;
assert (stop = '0’) severity error;
#1[p® : process{go,big®)
variable temp : bit_vector(bigQ’range);
begin
if go = '1’ then
big® <= temp nand big® after 1 ns;
else
for i in temp’range loop
temp(i) := ’1°’;
end loop;
end if;
end process pQ;]
end test;

TEST NUMBER : 7

PATHNAME : [.BENCH.A.Clshell.sh

(UNIX equivalent : bench/a/c/shell.sh)

PURPOSE : Determine the maximum number of signal declarations/signal assignment

statements allowed in an architecture; determine the CPU time
required for simulating the model, varying the time before reaching
a quiescent state inside the description; determine the CPU time
required per signal for analysis, model generation, build, and
simulation.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

AUTHOR : Captain Michael A. Dukes
Date : 25 May 1989

PARAMETER NUMBER MEANING :
1 : number of signal declarations/signal assignment statements
2 : length of time (ns) to simulate model (must be > 1)

EXAMPLE :
$ sim gen/param="shell.sh","test.vhd",25,3
(UNIX equivalent : % sim gen -param=\"\shell.sh\"\,\"\test.vhd\"\,25,3)
will generate a model in file "test.vhd" with an architecture
in the form :
entity test is

signal clockl : bit;

signal clock25 : bit;

begin

go <= '1’' after 1 ns, '0’ after 3 ns;
clockl <= clock!l nand go after 1 ns;

clock25 <= clock25 nand go after 1 ns;
end testor;

entity test is
end test;
architecture testor of test is

signal go : bit;
#1[signal clock® : bit;]

begin
go <= ’1’ after 1 ns, '0’ after %2% ns;
#1{ clock® <= clock® nand go after 1 ns;]

end testor;

36

TEST NUMBER : 8

PATHNAME : [.BENCKH.B.K.M]shell.sh

(UNIX equivalent : bench/b/k/m/shell.sh)

PURPOSE : Determine the effect on simulation CPU time vhen the following

factors are varied in an architecture consisting of one bit_vector
signal declaration and a number of processes equal to the bit_vector
size of the signal; each process consists of an if-then-else
construct, where the 'if’ and ’else’ sections each contain a signal
assignment statement : bit_vector size/number of processes and length
of time (in ns) to simulate model.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

AUTHOR : Captain Michael A. Dukes
Date : 31 May 1989

PARAMETER NUMBER MEANING :
1 : bit_vector size/number of processes/number of ’if’ statements
2 : length of time (ns) to simulate model (must be > 1)

EXAMPLE :
$ sim gen/param="shell.sh","test.vhd",15,3
(UNIX equivalent : % sim gen -param=\"\shell.sh\"\,\"\test.vhd\"\,15,3)
will generate a model in file "test.vh<” with an architecture
in the form :
entity test is
end test;
architecture testor of test 1is
signal go : bit;
signal clock : bit_vector(15 downto 1);
begin
go <= ’1’ after 1 ns, ’0’ after 3 ns;
pri: process (go,clock(1))
constant zero : bit := ’0’;
begin
if(clock(1)=zero)then
clock(1) <= clock(1) nand go after 1 ns;
else
clock(1) <= clock(1) nand go after 1 ns;
end if,;
end process pri;

pri5: process (go,clock(15))
constant zero : bit := '0’;

begin
if(clock(15)=zero)then

clock(15) <= clock(15) nand go after 1 ns;

else

clock(15) <= clock(15) nand go after 1 ns;

end 1if;
end process pri5;
end testor;

entity test is

end

test;

architecture testor of test is

#1(

signal go : bit;
signal clock : bit_vector(%i} downto 1);

tegin

go <= ’1' after 1 ns, ’0’ after %2/ mns;

pre@: process (go,clock(Q))
constant zero : bit := ’0’;
begin
if(clock(@)=zero)then
clock(@) <= clock(®) nand go after 1 ns;
else
clock(@) <= clock(Q) nand go after 1 ns;
end if;
end process prQ;]
end testor;

38

TEST NUMBER : 9

PATHNAME : [{.BENCH.B.G6.H3.I3.M.Qlshell.sh
(UNIX equivalent : bench/b/g6/h3/i3/m/q/shell.sh)

PURPOSE : Determine the effect on CPU time when analyzing, model generating,
building, and simulating the following model : an architecture
consisting of a number of unaliased signal declarations, a number
of aliased signal declarations, and three types of processes. The
first type of process has two signal assignment statements. The
architecture contains one of this type, and a number of the other
two types of processes. The second process type has three viriadble
declarations, a procedure declaration, an if-then-else statement
where the "if" and "else" sections each have two variable assignment
statements, a procedure call, and an aliased signal assignment
statement. The procedure consists of one variable declaration, a
function declaration, a function call via a variable assignment
statement, and an if-then-else statement, where the "if" and "else"
sections each have a function call via a variable assignment
statement. The function has one variable declaration, an if-then-
else statement, where the "if" and "else" sections each have two
variable assignment statements, a return statement, and an assert
statement. The third process type has three variable declarations, a
procedure declaration, an if-then-else statement, where the "if" and
"else" sections each have a variable assignment statement, a
procedure call, and an unaliased signal assignment statement. The
procedure is identical to the one in the second type of process.

The function is identical to the one in the second type of process,
except it has one assert statement instead of two. The factors to
be varied are the number of unaliased signal declarations/number of
type two processes, the number of aliased signal declarations/number
of type three processes, and the length of time (in ns) to simulate
the model.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

~- AUTHOR : Michael Dukes
-- Date : 1 June 1989

-~ PARAMETER NUMBER MEANING :

-- 1 : number of signal declarations/processes not using an aliased signal
-- 2 : number of signal declarations/processes using an aliased signal

-- 3 : length of time to simulate model (ns)

-- EXAMPLE
-- $ si1m gen/param="shell.sh", "test.vhd",11,8,5
-- (UNIX equivalent : % sim gen -param=\"\shell.sh\"\,\"\test.vhd\"\,11,8,5)

30

will generate a model in file "test.vhd” with an architecture
in the form :
use work.mos_logic_package3.all;
entity nested is end;
architecture nested of nested is
signal go:mos_node;
alias ¢2 : mos_node is go;
signal sl : mos_node;

signal si1 : mos_node;
signal sal : mos_node;

signal sa8 : mos_node;
begin
process
begin
go.L.S <= ’D’ after 1 ns;
go.L.V <= 1"
,'0? after 1 ns
,'1? after 2 ns
,'0’ after 3 ns
,'1? after 4 ns
,’0’ after 5 ns
wait;
end process;

pral : process{g2)
variable vO,vi:integer:=0;
variable stmp : mos_node;
procedure f1(n1:integer;n4:out mos_node) is
variable n3:mos_node;
function f£2(n2:integer) return mos_node is
variable temp : mos_node;

begin
if (n2 mod 3 = 0) then temp.L.S := ’D’;temp.L.V := ’0’;
else temp.L.S := ’D’;temp.L.V := '0’;
end if;

return temp,
assert (n2 < 10000) severity error;
assert false severity error;
end £2;
begin
n3 := £2(v1);
if (n1 mod 2 = 0) then n4 := snot(snor(g2,n3));
else n4 := snot(snand(g2,n3));
end if;
end f1;
begin

40

it (g2.L.S = ’D’) and (g2.L.V = ’0’) then v0:=v0+1;
else vi:=vi+l;

end if;

11(v0,stmp);

sal <= stmp after 1 ns;

end process pral ;

pra8 : process(g2)
variable vO,vi:integer:=0;
variable stmp : mos_node;
procedur~ f1(n1:integer;n4:out mos_node) is
variable n3:mos_node;
function f2(n2:integer) return mos_node is
variable temp : mos_node;
begin
if (n2 mod 3 = 0) then temp.L.S := 'D’;temp.L.V := ’07;
else temp.L.S := 'D’;temp.L.V := ’'0’;
end if;
return temp;
assert (n2 < 10000) severity error;
assert false severity error;
end 12;
begin
n3 := £2(v1);
if (n1 mod 2 = 0) then n4 := snot(snor(g2,n3));
else n4 := snot(snand(g2,n3));
end if;
end f1;
begin
it (g2.L.S = ’D’) and (g2.L.V = ’0’) then v0:=v0+1;
else vi:=vi+l;
end if;
£1(v0,stmp);
sa8 <= stmp after 1 ns;
end process pra8 ;

prl : process(go)
variable vO,vi:integer:=0;
variable stmp : mos_node;
procedure fi(ni:integer;n4:out mos_node) is
variable n3.mos_node;
function £2(n2:integer) return mos_node is
variable temp : mos_node;

begin
if (n2 mod 3 = 0) then temp.L.S := 'D’;temp.L.V := '0’;
else temp.L.S := 'D’;temp.L.V := ’0’;
end if;

return temp,;
assert false severity error;

41

- end 1£2;

- begin

-— n3 := 12(v1);

~- if (n1 mod 2 = 0) then n4 := snot(snor(go,n3));
- else n4 := snot(snand(go,n3));

- end 1if;

- end f1;

-- begin

~- if (go.L.S = 'D?) and (go.L.V = '0’) then vO:=v0+1;
-~ else vii=vi+l;

~- end if;

- 11(v0,stmp);

~-- s1 <= stmp after 1 ns;

it - end process pril ;

-- pril : process(go)

-- variable vO,vl:integer:=0;

- variable stmp : mos_node;

-- procedure fi(n1:integer;n4:out mos_node) is
-- variable n3:mos_node;

-- function £2(n2:integer) return mos_node is
-- variable temp : mos_node;

-- begin

- if (n2 mod 3 = 0) then temp.L.S := ’D’;temp.L.V := ’0’;
-- else temp.L.S := *D’;temp.L.V := ’07;

-- end if;

-- return temp;
- assert false severity error;

- end £2;

-- begin

-- n3 := 12(vi1);

-- if (n1 mod 2 = 0) then n4 := snot(snor(go,n3));
-- else n4 := snot(snand(go,n3));

- end if;

- end f1;

-- begin

-- if (go.L.S = ’D’) and (go.L.V = ’0’) then v0:=v0+1;
- else vi:=vi+l,

-- end if;

- £1(v0,stmp) ;

- s11 <= stmp after 1 ns;

- end process pril ;

- end nested;

use work.mos_logic_package3.all;

entity nested is end;

architecture nested of nested is
signal go:mos_node;

42

alias g2 : mos_node is go;
#1[signal s€ :@ mos_node;]

#2[signal sa€ : mos_node;]
begin
process

begin
go.L.5 <= ’D’ after 1 ms;
go.L.V <= '1?

#3[,'$8280%$1$° after @ ns]
vait;

end process;

#2[pra® : process(g2)
variable vO,vi:integer:=0;
variable stmp : mos_node;
procedure fi(ni:integer;n4:out mos_node) is
variable n3:mos_node;
function f2(n2:integer) return mos_node is
variable temp : mos_node;
begin
it (n2 mod 3 = 0) then temp.L.S := ’D’;temp.L.V := *0’;
else temp.L.S := 'D’;temp.L.V := ’0’;
end if;
return temp;
assert (n2 < 10000) severity error;
assert false severity error;

end £2;
begin
n3 := f£2(v1);
if (n1 mod 2 = 0) then n4 := snot(snor(g2,n3));
else n4 := snot(snand(g2,n3));
end if;
end f1;
begin

if (g2.L.S = 'D’) and (g2.L.V = ’0’) then v0:=v0+1;
else vi:=vi+l;
end if;
11(v0,stmp);
sa® <= stmp after 1 ns;
end process pra@ ;]
#1[pro : process(go)

variable vO,vl:integer:=0;

variable stmp : mos_node;

procedure f1(nl:integer;n4:out mos_node) is
variable n3:mos_node;
function 72(n2:integer) return mos_node is

variable temp : mos_node;

begin
it (n2 mod 3 = 0) then temp.L.S := ’D’;temp.L.V := '0’;
else temp.L.S := 'D’;temp.L.V := *0’;

43

end if;
return temp;
assert false severity error;

end £2;
begin
n3 = 12(v1);
if (n1 mod 2 = 0) then n4 := snot(snor(go,n3));
else nd := snot(snand(go,n3));
end if;
end f1;
begin

it (go.L.S = 'D’) and (go.L.V = ’0’) then v0:=v0+1;
else vi:=vi+i;
end 1f;
£1(v0,stmp);
sQ@ <= stmp after 1 ns;
end process pr@ ;]
end nested;

44

TEST NUMBER : 10

PATHNAME : [.BENCH.A.C.Ulshell.sh
(UNIX equivalent : bench/a/c/u/shell.sh)

PURPOSE : Determine the maximum number of values allowed in a waveform of a
signal assignment statement; determine the CPU time required for
analysis, model generation, build, and simulation of the model.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-- AUTHOR : Captain Karen M. Serafino
-- DATE : 2 June 1989

-- PARAMETER MEANING :
-- 1 : length of time to simulate model/number (-1) of waveforms in signal
-- assignment statement

-- EXAMPLE :

- $ sim gen/param="shell.sh","test.vhd",10

-- (UNIX equivalent : % sim gen -param=\"\shell.sh\"\,\"\test.vhd\"\,10)
-- will generate a model in file "test.vhd" with an architecture

-- in the form :

- entity test is end;

-- architecture test of test is

-- signal sig : bit;

- begin

-—— s:_g <=)Ol

- ,'17 after 1 ns
-- ,'0’ after 2 ns
-- ,'0’ after 10 ns
-- end test;

entity test 1is end;

architecture test of test is
signal sig : bit;

begin
sig <= '0’

#1[,’$281%08° after @ ns]

1]

end test;

TEST NUMBER : 11

PATHNAME : [.BENCH.A.C.H2.L1.M.S2)shell.sh
(UNIX equivalent : bench/a/c/h2/11/m/s2/shell.sh)

PURPOSE : Determine the simulation CPU time required to write characters to
an output file. The model simulated is an architecture
consisting of a procedure declaration and a procedure call. The
procedure consists of a for-loop containing a write statement
(one character) and an if-then construct containing a write
statement (one character). The factor to be varied is the number
of characters to write to the file during one simulation.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-- AUTHOR : Captain Karen M. Serafino
-- DATE : 2 June 1989

-~ PARAMETER MEANING :
-- 1 : number of characters to write to output file "data_file.dat";
-- after every 75 characters, a linefeed is written

-- EXAMPLE :

- $ sim gen/param="shell.sh","test.vhd", 100

- (UNIX equivalent : % sim gen -param=\"\shell.sh\"\,\"\test.vhd\"\,100)
-- will generate a model in file "test.vhd" with an architecture
- in the form :

-- entity test is end;

- architecture test of test is

- type char_file is file of character;

- file out_file : char_file is out "data_file.dat";

-- procedure write_file(number_of_characters : in integer) is
- begin

-- for i in 1 to number_of_characters loop

- write(out_file,’'*’);

- if (i mod 75) = O then

~-- write(out_file,lf);

-- end if,;

-- end loop;

-~ end write_file;

-- begin

-~ write_file(100);

-~ end test;

-- After simulating kernel test, "data_file.dat" will be as follows :

- EEREFRRR RSN E R R RER ARG R R R R LR R RN R R R RN AR R AR R R R R R R R ER R R R R R &
- AR R SRR 2l s]

46

entity test is end;
architecture test of test is
type char_file is file of character;
file out_file : char_file is out "data_file.dat";
procedure write_file(number_of_characters : in integer) is
begin
for i in 1 to number_of_characters loop
write(out_file,’*’);
if (i mod 75) = O then
- write(out_file,1f);
end if;
end loop;
end write_file;
begin
write_file(%1%);
end test;

47

TEST NUMBER : 12

PATHNAME : [.BENCH.B.C.S2]shell.sh

(UNIX equivalent : bench/b/c/s2/shell.sh)

PURPOSE : Determine the simulation CPU time required for writing characters

to an output file. The model simulated is an architecture consisting
of a process containing a number of write character/write linefeed
combinations. The factor to be varied is the number of write
character/write linefeed pairs.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

AUTHOR : Captain Karen M. Serafiro
DATE : 5 June 1989

PARAMETER MEANING :
1 : number of lines to write to output file "data_file.dat"; each
line consists of a "#*" followed by a linefeed

EXAMPLE :
$ sim gen/param="shell.sh","test.vhd",b 100
(UNIX equivalent : % sim gen ~param=\"\shell.sh\"\,\"\test.vhd\"\,100)
will generate a model in file "test.vhd" with an architecture
in the form (each write statement repeated 100 times) :
entity test is end;
architecture test of test is
type char_file is file of character;
file out_file : char_file is out '"data_file.dat";
begin
process
begin
write{out_file,’'%’);
write(out_file,1f);
write(out_file,’#*’);
write(out_file,11);

write(out_file,’'s’);
write(out_file,17);
write(out_file,’*’);
write(out_file,1f);
wait;
end process;
end test;

After simulating kernel test, "data_file.dat" will be as follows :

48

- (100 lines)
- *
- *

entity test is end;
architecture test of test is
type char_file is file of character;
file out_file : char_file is out “data_file.dat”;
begin
process
begin
#1[write(out_file,’s’);
write(out_file,1f);]
wait;
end process;
end test;

49

TEST NUMBER : 13

PATHNAME : [.BENCH.A.C.H2.L3.S2]shell.sh

PURPQSE :

(UNIX equivalent : bench/a/c/h2/13/8Z/shell.sh)

Determine the simulation CPU time required to write characters to

an output file. The model simulated is an architecture consisting of
a procedure declaration and a procedure call. The procedure consists
of a while~loop construct, where a write character/write linefeed
combination is executed at each iteration. The factor to be varied
is the number of iterations the wnile-loop will be executed.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-~ AUTHOR : Captain Karen M. Serafino

-~ DATE :

5 June 1989

-~ PARAMETER MEANING :

-~ 1 : number of lines to write to output file “data_file.dat"; each
-~ line consists of a "#*" followed by a linefeed

-~ EXAMPLE :

-~ $ sim gen/param="shell.sh","test.vhd",b100

- (UNIX equivalent : % sim gen -param=\"\shell.sh\"\,\"\test.vhd\"\,100)

will generate a model in file "test.vhd" with an architecture
in the form :
entity test is end,
architecture test of test is
type char_file is file of character;
file out_fils : char_file is out 'data_file.dat";
procedure write_file is
variable number_of_lines : integer := 100;
begin
while number_of_lines > 0 loop
write(out_file,’'*’);
write(out_file,1f);
number_of_lines := number_of_lines - 1;
end loop;
end write_file;
begin
write_file;
end test;

After simulating kernel test, "data_file.dat" will be as follows :

(100 lines)
*

»

50

entity test is end;
architecture test of test is
type char_file is file of character;
file out_file : char_file is ou* "data_file.dat";
procedure write_file is
variable number_of_lines : integer := %1%;
begin
while number_of_lines > O loop
write(out_file,’*');
write(.ut_file,1f);
number_of_lines := number_of_lines - 1;
end loop;
end write_£file;
begin
write_file;
end test;

TEST WUMBER : 14

PATHNAME : [.BENCH.A.C.H2.52]shell.sh

PURPOSE :

(UNIX equivalent : bench/a/c/h2/s2/shell.sh)

Determine the simulation CPU time required to write characters

to an output file. The model simulated is an architecture consisting
of a procedure declaration and a procedure call. The procedure
consists of a number of write character/write linefeed combinatioms.
The factor to be varied is the number of write character/write
linefeed pairs in the procedure.

EXPECTED RESULTS :

UKITS OF MEASUREMENT :

-- AUTHOR : Captain Karen M. Serafino

-- DATE

: 5 June 1989

-~ PARAMETER MEANING :

- 1 : number of lines to write to output file "data_file.dat"; each
-- line consists of a "*" followed by a linefeed

-- EXAMPLE .

-— $ sim gen/param="shell.sh”,"test.vhd",100

- (UNIX equivalent : % sim gen -param=\"\shell.sh\”\,\"\test.vhd\"\,100)

will generate a model in file "test.vhd" with an architecture
in the form :
entity test is end;
architecture test of test is
type char_file is file of character;
file out_file : char_file is out '"data_file.dat";
procedure write_file is

begin
write(out_file,’*’); (100
write(out_tfile,1lf); repetitions)

write(out_file,’*’);
write(out_file,1f);
end write_file;
begin
write_file;
end test;

After simulating kernel test, "data_file.dat" will be as follows
(100 lines)

L4

L]

entity test is end;

architecture test of test is
type char_file is file of character;
file out_file : char_file is out "data_file.dat";
procedure write_file is
begin

#1[write(out_file,’*’);

write(out_file,1f);]

end write_ziile;

begin
write_file;

end test;

TEST NUMBER : 15

PATHNAME : [.BENCH.A.C.H2R.M.S2)shell.sh

(UNIX equivalent : bench/a/c/h2r/m/s2/shell.sh)

PURPOSE : Determine the simulation CPU time required for writing characters

to an output file. The model simulated is an architecture consisting
of a procedure declaration and a procedure call. The procedure
consists of a write character/write linefeed combination and a
recursive call to itself. The factor to be varied is the number of
times the procedure will recursively call itself.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

AUTHOR : Captain Karen M. Serafino
DATE : § June 1989

PARAMETER MEANING :
1 : number of lines to write to output file '"data_file.dat"; each
line consists of a "#*" followed by a linefeed

EXAMPLE :
$ sim gen/param="shell.sh","test.vhd",b20
(UNIX equivalent : % sim gen -param=\"\shell.sh\"\,\"\test.vhd\"\,20)
vwill generate a model in file "test.vhd" with an architecture
in the form :
entity test is end;
architecture test of test is
type char_file is file of character;
file out_file : char_file is out "data_file.dat";
procedure write_file(number_of_lines : in integer) is
begin
write(out_file,’#*’);
write(out_tfile,1f);
if number_of_lines > 1 then
write_file(number_of_lines - 1);
end if;
end write_Tfile;
begin
write_file(20);
end test;

After simulating kernel test, "data_file.dat" will be as follows :
(20 lines)

*

*

entity test is end;
architecture test of test is
type char_file is file of character;
file out_file : char_file is out "data_file.dat";
procedure write_file(number_of_lines : in integer)
begin
write{out_file,'*’);
write(out_file,lf);
if number_of_lines > 1 then
write_file(number_of_lines - 1);
end if;
end write_file;
begin
write_file(%1%);
end test;

is

TEST NUMBER : 16

PATHNAME : [.BENCH.B.P1]shellO.sh

(UNIX equivalent : bench/b/p1/shell0.sh)

PURPOSE : Determine the simulation CPU time required to execute variable

addition statements. The model simulated is an architecture
consisting of a process. The process contains a number of
integer variable declarations and an addition statement for each
variable. The factor to be varied is the number of variable
declarations/addition statements in the process.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

AUTHOR : Captain Karen M. Serafino
DATE : 5§ June 1989

PARAMETER MEANING :
1 : number of variable declarations/variable addition statements in the
process

EXAMPLE :
$ sim gen/param="shellO.sh","test.vhd",20
(UNIX equivalent : % sim gen -param=\"\shellO.sh\"\,\"\test.vhd\"\,20)
will generate a model in file "test.vhd" with an architecture
in the form : .
entity test is end;
architecture test of test is
begin
process
variable varl : integer := 0;

variable var20 : integer := 0;
begin
varl := vari + 1;

var20 := var20 + 1;
wait;
end process;
end test;

entity test is end;
architecture test of test is

P

begin
process

#1[variable var® : integer
begin

#1[var® := varQ@ + 1;)

wait;

end process;

end test;

.=

0;]

TEST NUMBER : 17

PATHNAME : [.BENCHR.A.C.H2.P1]lshellO.sh
(UNIX equivalent : bench/a/c/h2/p1/shell0.sh)

PURPOSE : Determine the simulation CPU time required to execute variable
addition statements. The model simulated is an architecture
consisting of a procedure declaration and a procedure call. The
procedure consists of a number of integer variable declarations
and an addition statement for each variable. The factor to be varied
is the number of variable declarations/addition statements in the
procedure.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-- AUTHOR : Captain Karen M. Serafino
~- Date : 6 June 1989

-— PARAMETER NUMBER MEANING :
- 1 : number of variable declarations/variable addition statements in
- procedure

-- EXAMPLE :

-- $ sim gen/param="shell0.sh","test.vhd",20

-- (UNIX equivalent : % sim gen -param=\"\shellO.sh\"\,\"\test.vhd\"\,20)
- will generate a model in file "test.vhd" with an architecture

~-= in the form :

- entity test is end;

-- architecture test of test is

- procedure add is

- variable varl : integer := O;

- variable var20 : integer := 0;
-- begin
- varl := varl + 1;

- var20 := var20 + 1;
-- end add;

-- begin

~- add;

~- end test;

entity test is end;

N
P

architecture test of test is
procedure add is

#1(variable var® : integer :

begin

#1[var® := var® + 1;]
end add;

begin
add;

end test;

0;1]

r
of

i

TEST NUMBER : 18

PATHNAME : {.BENCH.A.C.12.P1]}shell0.sh
(UNIX equivalent : bench/a/c/i2/p1/shell0.sh)

PURPOSE : Determine the simulation CPU time required to execute variable
addition statements. The model simulated is an architecture
consisting of a function declaration and a function call. The
function consists of a number of integer variable declarations
and an addition statement for each variable. The factor to be varied
is the number of variable declarations/addition statements in the
function.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-- AUTHOR : Captain Karen M. Serafino
-- Date : 7 June 1989

-- PARAMETER NUMBEP. MEANING :

- 1 : number of variable declarations/variable addition statements in
- function

-- EXAMPLE :

-- $ sim gen/param="shell0O.sh","test.vhd",20

-— (UNIX equivalent : % sim gen -param=\"\shellO.sh\"\,\"\test.vhd\"\,20)
-- will generate a model in file "test.vhd" with an architecture

~- in the form :

-~ entity test is end;

~- architecture test of test is

-~ function add return boolean is
-- variable varl : integer := 0;
-- variable var20 : integer := 0;
~-- begin

- vari := varl + 1};

- var20 := var20 + 1;

- return true;

- end add;

- signal done : boolean := false;
-- begin

- done <= add;

- end test;

G0

entity test is end;
architecture test of test is
function add return boolean is
#1[variable var® : integer :=
begin
#1[var@ := var® + 1;]
return true;

end add;

signal done : boolean := false;
begin

done <= add;
end test;

0;]

6]

TEST NUMBER : 19

PATHNAME : [.BENCH.A.C.I2.P2]shell0.sh
(UNIX equivalent : bench/a/c/i2/p2/shell0.sh)

PURPOSE : Determine the simulation CPU time required to execute variable
subtraction statements. The model simulated is an architecture
consisting of a function declaration and a function call. The
function consists of a number of integer variable declarations
and a subtraction statement for each variable. The factor to be
varied is the number of variable declarations/subtraction statements
in the function.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-- AUTHOR : Captain Karen M. Serafino
-- Date : 7 June 1989

-~ PARAMETER NUMBER MEANING :
- 1 : number of variable declarations/variable subtraction statements in
- function

-- EXAMPLE :

-- $ sim gen/param="shellO.sh","test.vhd",20

- (UNIX equivalent : % sim gen -param=\"\shell0.sh\"\,\"\test.vhd\"\,20)
- will generate a model in file “test.vhd" with an architecture

- in the form :

-- entity test is end;

- architecture test of test is

-- function subtract return boolean is

~-- variable varl : integer := 0;

-- variable var20 : integer := 0;
-~ begin
- varl := varl - 1;

-— var20 := var20 - 1{;
- return true;
- end subtract;

~- signal done : boolean := false;
~- begin

-- done <= subtract;

-- end test;

62

entity test is end;
architecture test of test is
function subtract return boolean is
#1(variable var® : integer := 0;]
begin
#1(var® := var® - 1;]
return true;
end subtract;

signal done : boolean := false;
begin

done <= subtract;
end test;

63

TEST NUMBER : 20

PATHNAME : ([.BENCH.A.C.H2.P2]shell0.sh

(UNIX equivalent : bench/a/c/h2/p2/shell0.sh)

PURPOSE : Determine the simulation CPU time required to execute variable

subtraction statements. The model simulated is an architecture
consisting of a procedure declaration and a procedure call. The
procedure consists of a number of integer variable declarations
and a subtraction statement for each variable. The factor to be

varied is the number of variable declarations/subtraction statements

in the =rocedure.

g

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

AUTHOR : Captain Karen M. Serafino
Date : 7 June 1989

PARAMETER NUMBER MEANING :
1 : number of variable decla:iations/variable subtraction statements in
procedure

EXAMPLE :
$ sim gen/param="shell0.sh","te~t.vhd",20
(UNIX equivalent : % sim gen -param=\"\shellO.sh\"\,\"\test.vhd\"\,20)
will generate a model in file "test.vhd" with an architecture
in the form :
entity test is end;
architecture test of test is
procedure subtract is

variable varl : integer := 0;

variable var20 : integer := (;
begin

varl := varil - 1;

var20 := var20 - §;
end subtract;
begin
subtract;
end test;

entity test is end;

61

architecture test of test 1is
procedure subtract is

#1[variable var® : integer := 0;]
begin

#1(var@ := var® - 1:]
end subtract;

begin
subtract;

enc test;

TEST NUMBER : 21

PATHNAME : [.BENCH.B.P2lshellO.sh
(UNIX equivalent : bench/b/p2/shell0.sh)

PURPOSE : Determine the simulation CPU time required to execute variable
subtraction statements. The model simulated is an architecture
consisting of a process. The process contains a number of
integer variable declarations and a subtraction statement for each
variable. The factor to be varied is the number of variable
declarations/subtraction statements in the process.

EXPECTED RESULTS :

UMITS OF MEASUREMENT :

-~ AUTHOR : Captain Karen M. Serafino
-~ DATE . 7 June 1989

-~ PARAMETER MEANING . .
- 1 : number of variable declarations/variable subtraction statements in the
-~ process

-~ EXAMPLE :

-~ $ sim gen/param="shell0.sh","test.vhd",20

- (UNIX equivalent : % sim gen -param=\"\shellO.sh\"\,\"\test.vhd\"\,20)
-- will generate a model in file "test.vhd" with an architecture

-- in the form :

- entity test is end;

- architecture test of test is

- begin

- process

-- variable varl : integer := O;
- variable var20 : integer := O,
-- begin

-- varl := varl - 1,

-- var20 := var20 - 1;
- wait;

-- end process;

-- end test;

entity test 1is end;
architecture test of test 1is

6

begin
process

#1[variable var® : integer
begin

#1[var@ := var@ - 1;]

wait;

end process;

end test;

0;]

TEST NUMBER : 22

PATHNAME : [.BENCH.B.P3]shell0.sh
(UNIX equivalent : bench/b/p3/shell0.sh)

PURPOSE : Determine the simulation CPU time required to execute variable
multiplication statements. The model simulated is an architecture
consisting of a process. The process contains a number of
integer variable declarations and a multiplication statement for
each variable. The factor to be varied is the number of variable
Jdeclarations/multiplication statements in the process.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-~ AUTHOR : Captain Karen M. Serafino
-~ DATE : 8 June 1989

-~ PARAMETER MEANING :

- 1 : number of variable declarations/variable multiplication statements in
-~ the process

-- EXAMPLE :

-~ $ sim gen/param="shell0.sh","test.vhd",20

-~ (UNIX equivalent : % sim gen -param=\"\shellO.sh\"\,\"\test.vhd\"\,20)
-~ will generate a model in file '"test.vhd" with an architecture

-~ in the form :

- entity test is end;

-- architecture test of test is

- begin

- process

-- variable varl : integer := 5;
-- variable var20 : integer := §;
-- begin

-- varl := varl * 2;

- var20 := var20 * 2;
-- vait;

-- end process;

-- end test;

entity test is end,
architecture test of test 1is

6N

begin
process

#1(variable var@ :

begin

integer

#1[var® := var@ *= 2;)

wait;
end process;
end test;

5]

TEST NUMBER : 23

PATHENAME : [.BENCH.A.C.H2.P3]lshell0.sh
(UNIX equivalent : bench/a/c/h2/p3/shell0.sh)

PURPOSE : Determine the simulation CPU time required to execute variable
multiplication statements. The model simulated is an architecture
consisting of a procedure declaration and a procedure call. The
procedure consists of a number of integer variable declarations
and a multiplication statement for each variable. The factor to be
varied is the number of variable declarations/multiplication
statements in the procedure.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-~ AUTHOR : Captain Karen M. Serafino
-- Date : 8 June 1989

-~ PARAMETER NUMBER MEANING :
-~ 1 : number of variable declarations/variable multiplication statements in
-~ procedure

-~ EXAMPLE :

-- $ sim gen/param='"shellO.sh","test.vhd",20

-~ (UNIX equivalent : % sim gen -param=\"\shellO.sh\"\,\"\test.vhd\"\,20)
-- will generate a model in file "test.vhd" with an architecture

- in the form :

- entity test is end;

-- architecture test of test is

-— procedure multiply is

-— variable varl : integer := §;
- variable var20 : integer := §5;
-- b =in

- varl := varl * 2;

-- var20 := var20 * 2;
~- end multiply;

~- begin

~- multiply;

- end test;

entity test is end;

N

architecture test of test is
procedure multiply is

#1[variable var@ : integer :

begin

#1[var® := var® x 2;)
end multiply;

begin
multiply;

end test;

5;]

TEST NUMBER : 24

PATHNAME : [.BENCH.A.C.I2.P3]shellD.sh
(UNIX equivalent : bench/a/c/i2/p3/shell0.sh)
‘

PURPOSE : Determine the simulation CPU time required to execute variable
multiplication statements. The model simulated is an architecture
consisting of a function declaration and a function call. The
function consists of a number of integer variable declarations
and a multiplication statement for each variable. The factor to be
varied is the number of variable declarations/mulciplication
statements in the function.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-- AUTHOR : Captain Karen M. Serafino
-- Date : 8 June 1989

-- PARAMETER NUMBER MEANING :
-- 1 : number of variable declarations/variable multiplication statemenis in
-= function

-- EXAMPLE :

-- $ sim gen/param="shell0.sh", "test.vhd",20

- (UNIX equivalent : % sim gen -param=\"\shellO.sh\"\,\"\test.vhd\"\,20)
-- will generate a model in file "test.vhd" with an architecture

- in the form :

-- entity test is end;

-~ architecture test of test is

-- function multiply return boolean is

-- variable vari : integer := §;
- variable var20 : integer := §;
-- begin

- varl := vari * 2;

- var20 := var20 = 2;

- return true;
-~ end multiply;

-- signal done : boolean := false;
-~ begin

-- done <= multiply;

-- end test;

entity test is end;
architecture test of test is

function multiply return boolean is
#1(variable var@ : integer := 5;]

begin

#1[var® := var@ * 2;]
return true;

end multiply;

signal done : boolean := false;
begin

done <= multiply;
end test;

73

TEST NUMBER : 25

PATHNAME : [.BENCH.B.P4)shellO.sh
(UNIX equivalent : bench/b/p4/shell0.sh)

PURPOSE : Determine the simulation CPU time required to execute variable
division statements. The model simulated is an architecture
consisting of a process. The process contains a number of
integer variable declarations and a division statement for
each variable. The factor to be varied is the number of variable
declarations/division statements in the process.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-- AUTHOR : Captain Karen M. Serafino
-- DATE : 8 June 1989

-~ PARAMETER MEANING :
- 1 : number of variable declarations/variable division statements in
-- the process

-- EXAMPLE :

-~ $ sim gen/param="shellO.sh","test.vhd",b20

- (UNIX equivalent : % sim gen -param=\""\shell0.sh\"\,\”\test.vhd\"\,20)
~-- will generate a model in file "test.vhd” with an architecture

- in the form :

- entity test is end;

~- architecture test of test is

-- begin

- process

- variable varl : integer := 10;
-- variable var20 : integer := 10;
-- begin

-- vari := varl / 2;

-- var20 := var20 / 2;
- wait;

- end process;

-- end test;

entity test is end;
architecture test of test is

begin
process

#1[variable var®
begin

: integer

#1(var@ := var® / 2;]

wait;
end process;
end test;

1= 10;]

75

TEST NUMBER : 26

PATHNAME : ([.BENCH.A.C.B2.P4]shellO.sh
(UNIX equivalent : bench/a/c/h2/p4/shell0.sh)

PURPOSE : Determine the simulation CPU time required to execute variable
division statements. The model simulated is an architecture
consisting of a procedure declaration and a procedure call. The
procedure consists of a number of integer variable declarations
and a division statement for each variable. The factor to be
varied is the number of variable declarations/division
statements in the procedure.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

~- AUTHOR : Captain Karen M. Serafino
~-- Date : 8 June 1989

-— PARAMETER NUMBER MEANING :
-- i : number of variable declarations/variable division statements in
-- procedure

~- EXAMPLE :

-- $ sim gen/param="shell0.sh","test.vhd",20

~-- (UNIX equivalent : ¥ sim gen ~param=\"\shellO.sh\"\,\"\test.vhd\"\,20)
-- will generate a model in file "test.vhd" with an architecture

- in the form :

- entity test is end;

~-- architecture test of test is

~- procedure divide is

-- variable varl : integer := 10;

-- variable var20 : integer := 10;
- begin
-- varl := varl / 2;

- var20 := var20 / 2;
- end divide;

-- begin

-— divide;

-— end test;

entity test is end;

architecture test of test is
procedure divide is

#1[variable var® : integer := 10;]
begin

#1[var®@ := var®@ / 2:]
end divide;

begin
divide;

end test;

-1
~d

TEST NUMBER : 27

PATHNAME : [.BENCH.A.C.I2.P4]shell0.sh
(UNIX squivalent : bench/a/c/i2/p4/shell0.sh)

PURPOSE : Determine the sim-lation CPU time required to execute variable
division statements. ihe model simulated is a. architecture
consisting of a function declaration and a function call. The
fuanction consists of a number of integer variable declarations
and a division statement for each variable. The factor to be
varied is the number ¢f variable declarations/division
statements in the function.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-~ AUTHOR : Captain Karen M. Serafino
-- Date : 8 June 1989

-— PARAMETER NUMBER MEANING :
- 1 : number of variable declarations/variable division statements in
- function

-- EXAMPLE :

-- $ sim gen/param="shellO.sh","test.vhd",20

-- (UNIX equivalent : % sim gen -param=\'"\shellO.sh\"\,\"\test.vhd\"\,20)
~- will generate a model in file "test.vhd" with an architecture

-- in the form :

-- entity test is end;

-- architecture test of test is

-- function divide 1eturn boclean is

~= variable varl : integer := 10;
-- variable var20 : integer := 10;
-- begin

-- varl := varl / 2;

-- var20 := var20 / 2;
- return true;
-- end divide;

-- signal done : boolean := false;
-- begin

- done <= divide;

-- end test;

entity test 1is end;
architecture test of test is

function divide return boolean is
#1[variable varQ@ : integer := 10;]

=]
p A

begin

#1[var® := var® / 2]

return true;
end divide;
signal dons : boolean
begin
done <= divide;
end test;

:= false;

-

TEST NUMBER : 28

PATHNAME : [.BENCH.B.C.K.L1.P6)shellO.sh
(UNIX equivalent : bench/b/c/k/11/p6/shell0.sh)

PURPGSE : Determine the effect on simulation CPU time when the following
factors are varied in an architecture consisting of a number of
processes; each process consists of a variable bit_vector
declaration and a for-loop; the for-loop contains a logical AND
statoment, and the number of iterations of the loop is equal to
the size of the variable bit_vector : number of processes, bit_vector
size/number of iterations of for-loop.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-- AUTHOR : Captain Karen M. ferafino
-~ Date : & June 1989

-~ PARAMETER NUMBER MEANING :
-- 1 : bit_vector size/number of AND statement iterations per process
-= 2 : number of processes

-- EXAMPLE :

- $ sim gen/param="shell0.vhd","test.vhd",10,2

~-- (UNIX equivalent : % sim gen -param=\"\shellO.sh\"\,\"\test.vhd\"\,10,2)
~-- will generate a model in file "test.vhd" with an architecture

-= in the form :

~- entity test is end;

- architecture test of test is

~- begin

-- prl : process

- variable var : bit_vector(l to 10);

-- begin

-- for i in 1 to 10 loop

-- var(i) := var(i) AND var(i);
-- end loop;

-- wait;

- end process pri;
-- pr2 : process
-- variable var : bit_vector(l to 10);

-- begin

- for 1 in 1 to 10 loop

- var(i) := var(1) AND var(i);
- end loop;

-- vait;

-~ end process prz;
-- end test,

entity test is end;
architecture test of test is
begin
#2[pr® : process
variable var : bit_vector(1 to %1%);

begin
for i in 1 to %1% loop
var(i) := var(i) AND var(i);
end loop;
wait;

end process pro;]
end test;

X1

TEST NUMBER : 29

PATHNAME : [.BENCH.A.C.P6)shell0.sh
(UNIX equivalent : bench/a/c/p6/shell0.sh)

PURPOSE : Determine the simulation CPU time required to execute logical AND
operations on signals. The model simulated consists of a number of
signal declarations and one logical AND signal assignment statement
for each signal. The factor to be varied is the number of signal
declarations/number of logical AND signal assignment statements.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

==~ AUTHOR : Captain Karen M. Serafino
-~ Date : B June 1989

-~ PARAMETER NUMBER MEANING :
-~ 1 : number of signal declarations/AND statements

-- EXAMPLE :

- $ sim gen/param='shelld.vhd","test.vhd",10

-- (UNIX equivalent : % sim gen -param=\"\shel20.sh\"\,\"\test.vhd\"\,10)
- will generate a model in file "test.vhd" with an architecture

-- in the form :

-- entity test is end;

-- architecture test of test is

-- signal sig!l : bit := '0’;

- signal sigl0 : bit := '1°’;
-- begin
-~ sigl <= sigl AND sigi;

-- s1g10 <= sig10 AND sigl0;
-- end test;

entity test is end,

architecture test of test is

#1[sigral sig® : bit := ’$2$081%’;)
begin

#1[sigd <= sigd AND sigQ;]

end test;

82

TEST NUMBER : 30

PATHNAME : (.BENCH.B.C.P6]shell0.sh
(UNIX equivalent : bench/b/c/p6/shell0.sh)

PURPOSE : Determine the simulation CPU time required for executing logical
AND operations on variables. The model simulated is an architecture
consisting of a number of processes; ezch process consists of a
number of variable declarations and one logical AND variable
assignment statement for each variable. The factors to be varied
are the number of processes and the number of variable declarations/
number of logical AND variable assignment statements.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-- AUTHOR : Captain Karen M. Serafino
- Date : 8 June 1989

—-- PARAMETER NUMBER MEANING :
~-= 1 : number of variable declarations/AND statements per process
-- 2 : number of processes

-- EXAMPLE :

~- $ sim gen/param='"shell0.vhd","test.vhd",10,2

- (UNIX equivalent : % sim gen —param=\"\shellO.sh\"\,\"\test.vhd\"\,10,2)
-= will generate a model in file "test.vhd" with an architecture

~- in the form :

~- entity test is end;

~-- architecture test of test is

~- begin

~-= prl : process

~- variable varl : bit := ’0’;
-- variable vari0O : bit := ’1’;
-- begin

- varl .= varl AND varil;

-- varl0 := var10 AND vario;
~-- wait;

-- end process pril;

-~ pr2 : process

- variable varl : bit :

-- variable vari0 : bit := ’'1’;

83

-- begin
- varl := vari AND varil;

- vari0 := vari0 AND vario;
-- wvait;

- end process pr2;

- end test;

entity test is end;
architecture test of test is
begin .

#2{ pro : process

#1[variable var® : bit := *$2$0%1’;]
begin
#1(var® := var®@ AND var®;]
wait;
end process proe;l
end test;

&4

TEST NUMBER : 31

PATHNAME :

PURPOSE :

[.BENCH.B.P1]shelll.sh
(UNIX equivalent : bench/b/pi/shelll.sh)

Determine the simulation CPU time required to perform addition

operations on a variable; determine the number of addition
operations allowed in one variable assignment statement. The model
simulated is an architecture consisting of a process. The process
consists of an integer variable declaration and a variable
assignment statement containing a number of addition operations.
The factor to be varied is the number of addition operations
contained in the variable assignment statement.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-- AUTHOR : Captain Karen M. Serafino

-- DAYTE : 9 June 1989
~- PARAMETER MEANING :
- 1 : number of variable additions in one statement

-- EXAMPLE :

- $ sim gen/param="shelll.sh", "test.vhd",10

- (UNIX equivalent : % sim gen -param=\"\shelli.sh\"\,\"\test.vhd\"\,10)
-- will generate a model in file "test.vhd” with an architecture

-- in the form :

-- entity test is end;

-= architecture test of test is

~-- begin

-- process

-= variable var : integer := 0;
-- begin

-- var := var

-- + var
-- + var
-- + var
-- + var
-- + var
-- + var
-- + var
-- + var
-- + var
-- + var
- ;

-- wait;

- end process;

o
o

~- end test;

entity test is end;
architecture test of test is
begin
process
variable var : integer :
begin
var := var
#1[+ var)

wajit;
end process;
end test;

0;

TEST NUMBER : 32

PATHNAME : ([.BENCH.B.P2)shelli.sh
(UNIX equivalent : bench/b/p2/shelll.sh)

PURPOSE : Determine the simulation CPU time required to perform subtraction
operations on a variable; determine the number of subtraction
operations allowed in one variable assignment statement. The model
gimulated is an architecture consisting of a process. The process
consists of an integer variable declaration and a variable
assignment statement containing a number of &:btraction operatioms.
The factor to be varied is the number of subtraction operations
contained in the variable assignment statement.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

~- AUTHOR : Captain Karen M. Serafino
-~ DATE : 9 June 1989

~- PARAMETER MEANING :
- 1 : number of variable subtractions in one statenent

-- EXAMPLE :

-- $ sim gen/param="shelll.sh","test.vhd",10

-- (UNIX equivalent : % sim gen -param=\"\shelll.sh\"\,\"\test.vhd\"\,10)
- will generate a model in file "test.vhd” with an architecture

~= in the form :

- entity test is end;

-- architecture test of test is

- begin

- process

-- variable var : integer := O;
-- begin

- var := var

-- - var
-- - var
- - var
- - var
- - var
- - var
-- - var
-= - var
== - var
- - var
- ’

-- wait;

-- end process;

87

- end test;

entity test is end;
architecture test of test is
begin
process
variable var : integer := 0;
begin
var := var
#1[- var]

wait;
end process;
end test;

88

TEST WUMBER : 33

PATHNAME :

PURPOSE :

{.BENCE.B.P3)shelll.sh
(UNIX equivalent : bench/b/p3/shelll.sh)

Determine the simulation CPU time required to perform multiplication
operations on a variable; determine the number of multiplication
operations allowed in one variable assignment statement. The model
simulated is an architecture consisting of a process. The process
consists of an integer variable declaration and a variable
assignment statement containing a number of multiplication
operations. The factor to be varied is the number of
multiplication operations contained in the variable assignment
statement.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-- AUTHOR : Captain Karen M. Serafino

-- DATE :

9 June 1989

-- PARAMETER MEANING :

-- 1:

number of variable multiplications in one statement

-- EXAMPLE :
-- $ sim gen/param='"shelll.sh", "test.vhd", 10
- (UNIX equivalent : % sim gen -param=\"\shelll.sh\"\,\"\test.vhd\"\,10)

will generate a model in file "test.vhd" with an architecture
in the form :

entity test is end;
architecture test of test is

begin
process
variable var : integer := 1;
begin
var := var
* var
* var
* var
* var
* var
* var
* var
* var
* var
* var

wait;

- end process;
- end test;

entity test is end;
architecture test of test is
begin
process
variable var : integer := 1;
begin
var := var
#1(* var]
- H
wait;
end process;
end test;

TEST NUMBER : 34

PATHNAME : [.BERCH.B.P4)shelll.sh
(UNIX equivalent : bench/b/p4/shelll.sh)

PURPOSE : Determine the simulation CPU time required to perform division
operations on a variable; determine the number of division
operations allowed in one variable assignment statement. The model
simulated is an architecture consisting of a process. The process
consists of an integer variable declaration and a variable
assignment statement containing a number of division operations.
The factor to be varied is the number of division operations
contained in the variable assignment statement.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-- AUTHOR : Captain Karen M. Serafino
~- DATE : 9 June 1989

~- PARAMETER MEANING :
-- 1 : number of variable divisions in one statement

-- EXAMPLE :

- $ sim gen/param="shelll.sh","test.vhd",10

-- (UNIX equivalent : % sim gen -param=\"\shelll.sh\"\,\"\test.vhd\"\,10)
-- will generate a model in file "test.vhd" with an architecture

- in the form :

- entity tesi is end;

- architezture test of test is

-- begin

- process

-= variable var : integer := 1;
-- begin

- var := var

== / var
- / var
- / var
- / var
- / var
- / var
- / var
== / var
- / var
- / var
- ’

- vait;

-- end process;

91

-- end test;

entity test is end;
architecture test of test is
begin
process
variable var : integer := {;
begin
var := var
#1(/ ver]l

vait;
end process;
end test;

TEST NUMBER : 35

PATHNAME : [.BENCH.A.C.P1]shelld.sh
(UNIX equivalent : bench/a/c/p1/shell0.sh)

PURPOSE : Determine the simulation CPU time required to executs addition
operations on signals. The model simulated consists of a number of
signal declarations and one addition signal assignment statement
for each signal. The factor to be varied is the number of srignal
declarations/number of addition signal assignment statements.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-~ AUTHOR : Captain Karen M. Serafino
-~ Date : 9 June 1989

-- PARAMETER NUMBER MEANING :
-- 1 : number of signal declarations/signal addition statements

-~ EXAMPLE :

-- $ sim gen/param="shell0.vhd","test.vhd",10

-- (URIX equivalent : % sir gen -param=\"\shellO.sh\"\,\'"\test.vhd\"\,10)
-- will generate a model in file "test.vhd” with an architecture

-- in the form :

- entity test is end;

-- architecture test of test is

-- signal static_sig : integer := 1;

-- signal sigl : intczer := 0;

~- signal 8igl0 : integer := O;
-- begin
- s8igl <= static_sig + 1;

~= 8igl0 <= static_sig + 1;
~- end test;

entity test is end;

architecture test of test is
signal static_sig : integer := 1;

#1[signal sig® : integer := 0;]

begin

#1[sigd <= static_sig + 1;]

end test;

93

TEST NUMBER : 36

PATHNAME : [.BENCH.A.C.P1]shelll.sh

(UNIX equivalent : bench/a/c/p1/shelll.sh)

PURPOSE : Determine the simulation CPU time required to perform addition

operations on a signal; determine the number of addition operations
allowed in one signal assignment statement. The model simulated is
an architecture consisting of an integer signal declaration and a
signal assignment statement containing a number of addition
operations. The factor to be varied is the number of addition
operations contained in the signal assignment statement.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

AUTHOR : Captain Karen M. Serafino
Date : 9 June 1989

PARAMETER NUMBER MEANING :
1 : number of signal additions in one statement

EXAMPLE :
$ sim gen/param="shelll.vhd","test.vhd",10 :
(UNIX equivalent : % sim gen -param=\"\shelli.sh\"\,\"\test.vhd\"\,10)
will generate a model in file "test.vhd" with an architecture
in the form :
entity test is end;
architecture test of test is

signal static_sig : integer := 0;
signal sig : integer := O;
begin

sig <= static_sig

static_sig
static_sig
static_sig
static_sig
static_sig
static_sig
static_sig
static_sig
static_sig
static_sig

O I I s

end test;

94

entity test is end;
architecture test of test is
signal static_sig : integer := O;

signal sig : integer := 0;
begin
sig <= static_sig
#1(+ static_sig]

’
end test;

TEST NUMBER : 37

PATHNAME : [.BENCH.A.C.P2]shellO.sh
(UNIX equivalent : bench/a/c/p2/shell0.sh)

PURPOSE : Determine the simulation CPU time required to execute subtraction
operations on signals. The model simulated consists of a number of
signal declarations and one subtraction signal assignment statement
for each signal. The factor to be varied is the number of signal
declarations/number of subtraction signal assignment statements.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-- AUTHOR : Captain Karen M. Serafino
-- Date : 9 June 1989

-- PARAMETER NUMBER MEANING :
- 1 : number of signal declarations/signal subtraction statements

-- EXAMPLE :

- $ sim gen/param="shellO.vhd","test.vhd",10

- (UNIX equivalent : % sim gen -param=\"\shell0.sh\”\,\"\test.vhd\"\,10)
-- will generate a model in file "test.vhd" with an architecture

- in the form :

-- entity test is end;

- architecture test of test is

- signal static_sig : integer := 1;

-- signal sigl : integer := O;

-- signal sigl0 : integer := O;
-- begin
- sigl <= static_sig - 1;

-- sigl0 <= static_sig - 1;
- end test;

entity test is end;

architecture test of test is
signal static_sig : integer := 1;

#1[signal sigd : integer := 0;]

begin

#1[sig0d <= static_sig - 1;]

end test;

96

TEST NUMBER : 38

PATHNAME : [.BENCH.A.C.P2]shelll.sh
(UNIX equivalent : bench/a/c/p2/shelli.sh)

PURPOSE : Determine the simulation CPU time required to perform subtraction
operations on a signal; determine the number of subtraction
operations allowed in one signal assignment statement. The model
simulated is an architecture consisting of an integer signal
declaration and a signal assignment statemeunt containing a number of

. subtraction operations. The factor to be varied is the number of
subtraction operations contained in the signal assignment statement.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-- AUTHOR : Captain Karen M. Serafino
-- Date : 9 June 1989

—-- PARAMETER NUMBER MEANING :
-- 1 : number of signal subtractions in ore statement

-- EXAMPLE :

-- $ sim gen/param="shelll.vhd","test.vhd",10

-- (UNIX equivalent : % sim gen -param=\"\shelll.sh\"\,\"\test.vhd\"\,10)
- will generate a model in file “test.vhd" with an architecture

- in the form :

-~ entity test is end;

-- architecture test of test is

-~ signal static_sig : integer := O;
-- signal sig : integer := 0;
-- begin

-- sig <= static_sig

- - static_sig
-- - static_sig
- - static_sig
-- - static_sig
- - static_sig
- static_sig
-- ~ static_sig
-- - static_sig
-- - static_sig
-- - static_sig
;

-~ end test;

97

entity test is end;
architecture test of test is

signal static_sig : integer := O;
signal sig : integer := 0;
begin
sig <= static_sig
#1[- static_sig]
end test;

TEST NUMBER : 39

PATENAME : [.BENCH.A.C.P3)shell0.sh
(UNIX equivalent : bench/a/c/p3/shell0.sh)

PURPOSE : Determine the simulation CPU time required to execute multiplication
operations on signals. The model simulated consists of a number of
signal declarations and one multiplication signal assignment
statement for each signal. The factor to be varied is the number of
signal declarations/number of multiplication signal assignment
statements.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-~ AUTHOR : Captain Karen M. Serafino
-- Date : 9 June 1989

-- PARARETER NUMBER MEANING :
-- 1 : number of signal declarations/signal multiplication statements

-- EXAMPLE :

- $ sim gen/param="shellQ.vhd","test.vhd", 1]

- (UNIX equivalent : % sim gen -param=\"\shellO.sh\"\,\"\test.vhd\"\,10)
-- will generate a model in file "test.vhd" with an architecture

-- in the form :

-- entity test is end;

-- architecture test of test is

-- signal static_sig : integer := 1;

-- signal sigl : intager := O;

-- signal sigl0 : integer := O;
~-= begin
- sigl <= static_sig * 1;

- 8igl0 <= static_sig * 1;
-- end test;

entity test is end;
architecture test of test is

signal static_sig : integer := 1;
#1{ signal sig® : integer := 0;]
begin

#1[sigd <= static_sig * 1;]

99

end test;

100

TEST NUMBER : 40

PATENAME : [.BENCH.A.C.P3)shelll.sh
(UNIX equivalent : bench/a/c¢/p3/shellil.sh)

PURPOSE : Determine the simulation CPU time required to perform multiplication
operations on a signal; determine the number of multiplication
statements allowed in one signal assignment statement. The model
simulated is an architecture consisting of an integ.r signal
declaration and a signal assignment statement containing a number of
multiplication operations. The factor to be varied is the number of
multiplication operations contained in the signal assignment
statement.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-~ AUTHOR : Captain Karen M. Serafino
-- Date : 9 June 1989

~- PARAMETER NUMBER MEANING :
-- 1 : number of signal multiplications in one statement

-- EXAMPLE :

- $ sim gen/param="shelll.vhd","test.vhd",10

-- (UNIX equivalent : % sim gen -param=\'"\shelli.sh\"\,\"\test.vhd\"\,10)
-- will generate a model in file "test.vhd" with an architecture

- in the form :

-- entity test is end;

-- architecture test of test is

-- signal static_sig : integer := 1;
-- signal sig : integer := 0;
~-- begin

-- 8ig <= static_sig

static_sig
static_sig
static_sig
static_sig
static_sig
static_sig
static_sig

i
1
* % % * =

static_sig
static_sig
static_sig

*
*
- *
*

end test;

'

entity test is end;
architecture test of test is

signal static_sig : integer := 1;
signal sig : integer := 0;

begin
sig <= static_sig

#1[* static_sig]

end test;

102

TEST NUMBER : 41

PATHNAME : [.BENCH.A.C.P4]shellQ.sh
(UNTX equivalent : bench/a/c/p4/shello.sh)

PURPOSE : Determine the simulation CPU time required to execute division
operations on signals. The model simulated consists of a number of
signal declarations and one division signal assignment statement for
each signal. The factor to be varied is the number of signal
declarations/number of division signal assignment statements.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-~ AUTHOR : Captain Karen M. Serafino
-- Date : 9 June 1989

-- PARAMETER NUMBER MEANING :
-- 1 : number of signal declarations/signal division statements

-~ EXAMPLE :

-- $ sim gen/param="shell0.vhd", "test.vhd",10

-~ (UNIX equivalent : % sim gen -param=\"\shellO.sh\"\,\"\test.vhd\"\,10)
-~ will generate a model in file "test.vhd” with an architecture

-- in the form :

-- entity test is end;

-- architecture test of test is

-- signal static_sig :@ integer := 1;

-- signal sigl : integer := O;

-- signal sigl0 : integer := O;
-- begin
-~ sigl <= static_sig / 1;

-- 8ig10 <= static_sig / 1;
-- end test;

entity test is end;
architecture test of test is

signal static_sig : integer := 1;
#1[signal sig@ : integer := 0;]
begin

#1[sig® <= static_sig / 1;]
end test;

103

TEST NUMBER : 42

PATHNAME : [.BENCH.A.C.P4)shelll.sh

(UNIX equivalent : bench/a/c/p4/shelll.sh)

PURPOSE : Determine the simulation CPU time required to perform division

operations on a signal; determine the number of division operations
alloved in one signal assignment statement. The model simulated is
an architecture consisting of an integer signal declaration and a
signal assignment statement containing a number of division
operations. The factor to be varied is the number of division
operations contained in the signal assignment statement.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

AUTHOR : Captain Karen M. Serafino
Date : 9 June 1989

PARAMETER NUMBER MEANING :
1 : number of signal divisions in one statement

EXAMPLE :
$ sim gen/param="shelll.vhd","test.vhd",10
(UNIX equivalent : % sim gen -param=\"\shelll.sh\"\,\"\test.vha\"\,10)
vwill generate a model in file "test.vhd" with an architecture
in the form :
entity test is end;
architecture test of test is

signal static_sig : integer := 1;
signal sig : integer := O;
begin

sig <= static_sig

static_sig
static_sig
static_sig
static_saig
static_sig
static_sig
static_sig
static_sig
static_sig
static_sag

NN N N N N NN NN

end test;

101

entity test is end;
architecture test of test is

signal static_sig :@ integer := 1;
signal sig : integer := 0;
begin
sig <= static_sig
#1[/ static_sig]
end test;

100

TEST NUMBER : 43

PATHNAME : [.BENCH.A.C.P6]shelll.sh
(UNIX equivalent : bench/a/c/p6/shelll.sh)

PURPOSE : Determine the simulation CPU time required to perform logical AND
operations on a signal; determine the number of logical AND
operations allowed in one signal assignment statement. The model
simulated is an architecture consisting of a signal declaration and
a signal assignment statement containing a number of logical AND
operations. The factor to be varied is the number of logical AND
operations contained in the signal assignment statement.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-- AUTHOR : Captain Karen M. Serafino
-~ Date : 9 June 1989

~- PARAMETER NUMBER MEANING :
-- 1 : number of AND operations in one statement

-- EXAMPLE :

-- $ sim gen/param="shelll.vhd","test.vhd",10

- (UNIX equivalent : % sim gen ~-param=\"\shelli.sh\"\,\"\test.vhd\"\,)
-- w1ll generate a model in file "test.vhd" with an architecture

-- in the form :

-- entity test is end;

-- architecture test of test is

- signal sig : bit := '0’;
-- signal static_sig : bit := ’17;
-- begin

-- sig <= static_sig

- AND static_sig
- AND static_sig
-- AND static_sig
- AND static_sig
- AND static_sig
- AND static_sig
- AND static_sig
-- AND static_sig
- AND static_sig
- AND static_sig

- end test;

106

entity test is end;

architecture test of test is

signal sig : bit

signal static_sig :

begin
sig <=
#1[

static_sig

.
L]

end test;

=)01;

bit

1z 010

AND static_sig]

107

TEST NUMBER : 44

PATHNAME : [.BENCH.B.C.P6]shelll.sh

(UNIX equivalent : bench/b/c/p6/shelll.sh)

PURPOSE : Determine the simulation CPU time required to axecute logical AND

operations on variables; determine the number of logical AND
operations allowed in one variable assignment statement. The model
simulated is an architecture consisting of a number of processes;
each process consists of a variable declaration and a variable
assignment statement containing a number of logical AND operatioms.
The factors to be varied are the number of processes and the number
of logical AND operations in the variable assignment statement.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

AUTHOR : Captain Karen M. Serafino
Date : 9 June 1989

PARAMETER NUMBER MEANING :
1 : number of AND operations in one statement of a process
2 : number of processes

EXAMPLE :
$ sim gen/param="shelll.vhd","test.vhd",10,2
(UNIX equivalent : % sim gen -param=\"\shelli.sh\"\,\"\test.vhd\"\,10,2)
will generate a model in file "test.vhd" with an architecture
in the form :
entity test is end;
architecture test of test is

begin
prl : process
variable var : bit := ’'1’;
begin
var = var
AND var
(10 repetitions total)
AND var
wait;

end process pri;
pr2 . process

variable var : bit := ’'1’';
begin
var := var
AND var

- . (10 repetitions total)

-- AND var
-- H

-— vait;

- end process pr2;

-- end test;

entity test is end;
architecture test of test is

begin
#2[pr¢ : process
variable var : bit := ’1’;
begin
var := var
#1[AND var]
’
wait;
end process prdQ;]
end test;

109

TEST NUMBER : 45

PATHNAME : [.BENCH.A.C.I2.P4]shellil.sh
(UNIX equivalent : bench/a/c/i2/p4/shellil.sh)

PURPOSE : Determine the simulation CPU time required to execute variable
division operations in a function; determine the number of division
operations allowed in one variable assignment statement of a
function. The model simulated is an architecture consisting of a
function declaration and a function call; the function consists of
an integer variable declaration and a variable assignment statement
containing a number of addition operations. The factor to be varied
is the number of division operations contained in the variable
assignment statement.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-- AUTHOR : Captain Karen M. Serafino
-- Date : 9 June 1989

-- PARAMETER NUMBER MEANING :
-- 1 : number of variable division operations in one statement in
-- function

-- EXAMPLE :

- $ sim gen/param="shelll.sh","test.vhd",5

- (UNIX equivalent : % sim gen -param=\"\shelll.sh\"\,\"\test.vhd\"\,5)
-- will generate a model in file "test.vhd" with an architecture

-- in the form :

- entity test is end;

-- archivecture test of test is

-- function divide return boolean is

-- variable var : integer := 1;
-- begin

- var := var

-- / var

-- / var

- / var

- / var

-- / var;

- return true;
-- end divide;

- signal done : boolean := false;
- begin

-- done <= divide;

-- end test;

110

entity test is end;
architecture test of test is
function divide return boolean is

variable var : integer := 1;
begin ’
var := var
#1(/ varl;

return true;
end divide;
signal done : boolean := false;
begin
done <= divide;
end test;

111

TEST NUMBER : 46

PATHNAME : [.BENCH.A.C.H2.P4]
(UNIX equivalent :

shelll.sh
bench/a/c/h2/p4/shelll.sh)

PURPOSE : Determine the simulation CPU time required to execute variable
division operations in a procedure; determine the number of division

operations allowed

in one variable assignment statement of a

procedure. The model simulated is an architecture consisting of a
procedure declaration and a procedure call; the procedure consists of
an integer variable declaration and a variable assignment statement
containing a number of addition operations. The factor to be variad

is the number of di
. assignment statemen

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

—-- AUTHOR : Captain Karen M.
-~ Date : 9 June 1989

—- PARAMETER NUMBER MEANING :
- 1 : number of variable d

- procedure

-- EXAMPLE :
-- $ sim gen/param="shelll.

vision operations contained in the variable
t.

Serafino

ivision operations in one statement in

sh","test.vhd",5

- (UNIX equivalent : % sim gen -param=\"\shelli.sh\"\,\"\test.vhd\"\,5)

-- will generate a model
- in the form :

- entity test is end;
- architecture test of
-- procedure divide is

-- variable var : in
-- begin

- var := var

- / var
- / var
- / var
- / var
- / var;
-- end divide;

-- begin

-- divide;

- end test;

in file "test.vhd" with an architecture

test is

teger := 1;

112

entity test is end;
architecture test of test is
procedure divide is
variable var : integer := 1;

begin
var := var
#1[/ var);
end divide;
begin
divide;

end test;

113

TEST NUMBER : 47

PATHNAME : ([.BENCH.A.C.I2.P3)shelll.sh
(UNIX equivalent : bench/a/c/i2/p3/shelli.sh)

PURPOSE : Determine the simulation CPU time 1equired to execute variable
multiplication operations in a function; determine the number of
multiplication operations allowed in one variable assignment
statement of a function. The model simulated is an architecture
consisting of a function declaration and a function call; the
function consists of an integer variable declaration and a variable
assignment statement containing a number of addition operations.
The factor to be varied is the number of multiplication operations
contained in the variable assignment statement.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

—- AUTHOR : Captain Karen M. Serafino
-- Date . 9 June 1989

-- PARAMETER NUMBER MEANING :

-- 1 : number of variable multiplication operations in one statement in
-- function

-~ EXAMPLE :

-- $ sim gen/param="shelll.sh","test.vhd",5

-- (UNIX equivalent : % sim gen -param=\"\shelll.sh\"\,\"\test.vhd\"\,5)
-- will generate a model in file "test.vhd" with an architecture

-- in the form :

- entity test is end;

- architecture test of test is

-- function multiply return boolean is

- variable var : integer := 1;
- begin

-- var := var

-- * var

- * var

- * var

- * var

-- * var;

-- return true;

- end multiply;

-- signal done : boolean := false;
-- begin

-- done <= multiply;

- end test;

114

entity test is end;
architecture test of test is
function multiply return boolean is

variable var : integer := 1;
begin
var := var
#1(* var];

Teturn true;
end multiply;
signal done : boolean := false;
begin
done <= multiply;
end test;

TEST NUMBER : 48

PATHNAME : [.BENCH.A.C.H2.P3)shelll.sh
(UNIX equivalent : bench/a/c/h2/p3/shelll.sh)

PURPOSE : Determine the simulation CPU time required to execute variable
multiplication operations in a procedure; determine the number of
multiplication operations allowed in one variable assignment
statement of a procedure. The model simulated is an architecture
consisting of a procedure declaration and a procedure call; the
procedure consists of an integer variable declaration and a variable
assignment statement containing a number of addition operations.

The factor to be varied is the number of multiplication operations
contained in the variable assignment statement.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-- AUTHOR : Captain Karen M. Serafino
-- Date : 9 June 1989

~- PARAMETER NUMBER MEANING :
-- 1 : number of variable multiplication operations in one statement in
- procedure

-- EXAMPLE :

-- $ sim gen/param="shelll.sh","test.vhd",5

-- (UNIX equivalent : % sim gen -param=\"\shelll.sh\"\,\"\test.vhd\"\,5)
-- vwill generate a model in file "test.vhd" with an architecture

-- in the form :

- entity test is end;

-- architecture test of test is

-~ procedure multiply is

-- variable var : integer := 1;
-- begin

-- var := var

- * var

-- * var

-- * var

-- * var

-- * var;

-- end multiply;
-- begin

-- multiply;

-- end test;

116

entity test is end;
architecture test of test is
procedure multiply is
variable var : integer :
begin
var := var
#1(* var};
end multiply;
begin
multiply;
end test;

1

17

TEST NUMBER : 49

PATHNAME : [.BENCH.A.C.H2.P2)shelll.sh
(UNIX equivalent : bench/a/c/h2/p2/shelll.sh)

PURPOSE : Determine the simulation CPU time required to execute variable
subtraction operations in a procedure; determine the number of
subtraction operations allowed in one variable assignment
statement of a procedure. The model simulated is an architecture
consisting of a procedure declaration and a procedure call; the
procedure consists of an integer variable declaration and a variable
assignment statement containing a number of addition operations.

The factor to be varied is the number of subtraction operations
contained in the variable assignment statement.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-- AUTHOR : Captain Karen M. Serafino
-~ Date : 9 June 1989

-- PARAMETER NUMBER MEANING :
-- 1 : number of variable subtraction operations in one statement in
-- procedure

-- EXAMPLE :

-- $ sim gen/param="shelll.sh","test.vhd",5

- (UNIX equivalent : % sim gen —param:\“\shelll.sh\”\.\"\test.vhd\"\,S)
-- will generate a model in file "test.vhd” with an architecture

-- in the form :

- entity test is end;

-- architecture test of test 1is

-- procedure subtract is

- variable var : integer := O;
- begin

-= var := var

- - var
- - var
- - var
- - var
- - var;
-- end subtract;

-= begin

- subtract;

- end test;

entity test is end;
architecture test of tezt is
procedure subtract is
variable var : integer := 0;
begin
var := var #1[- var);
end subtract;
begin
subtract;
end test;

119

TEST NUMBER : 50

PATHNAME : [.BENCH.A.C.I2.P2])shelll.sh
(UNIX equivalent : bench/a/c/i2/p2/shelll.sh)

PURPOSE : Determine the simulation CPU time required to execute variable
subtraction operations in a function; determine the number of
subtraction operations allowed in one variable assignment
statement of a function. The model simulated is an architecture
consisting of a function declaration and a function call; the
function consists of an integer variable declaration and a variable
assignment statement containing a number of addition operations.
The factor to be varied is the number of subtraction operations
contained in the variable assignment statement.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-- AUTHOR : Captain Karen M. Serafino
-~ Date : 9 June 1989

-- PARAMETER NUMBER MEANING :

-- 1 : number of variable subtraction operations in one statement in
-- function

~- EXAMPLE :

- $ sim gen/param="shelll.sh","test.vhd",5

-- (UNIX equivalent : % sim gen -param=\"\shelll.sh\"\,\"\test.vhd\"\,5)
-- will generate a model in file "test.vhd" with an architecture

-- in the form :

- entity test is end;

-- architecture test of test is

- function subtract return boolean is

-- variable var : integer := 0;
- begin

- var := var

_— - var

- - var

. - var

- - var

- - var;

- return true;

- end subtract;

-- signal done : boolean := false;
-- begin

-- done <= subtract;

- end test;

entity test is end;
architecture test cf test is
function subtract return boolean is

variable var : integer := 0;
begin
var := var #1[- varl;

return true;
end subtract;

signal done : boolean := false;
begin

done <= subtract;
end test;

121

TEST NUMBER : 51

PATHNAME : [.BENCH.A.C.I2.P1]shelll.sh
(UNIX equivalent : bench/a/c/i2/p1/shelll.sh)

PURPOSE : Determine the simulation CPU time required to execute variable
addition operations in a function; determine the number of
addition operations allowed in one variable assignment
statement of a function. The model simulated 1s an architecture
consisting of a function declaration and a function call; the
function consists of an integer variable declaration and a variable
assignment statement containing a number of addition operations.
The factor tc be varied is the number of addition operations

- contained in the variable assignment statement.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

—-- AUTHOR : Captain Karen M. Serafino
-- Date : 9 June 1989

—-- PARAMETER NUMBER MEANING :
- 1 : number of variable addition operations in one statement in
-- function

-- EXAMPLE :

-- $ sim gen/param="shelll.sh","test.vhd",5

- (UNIX equivalent : % sim gen -param=\"\shelll.sh\"\,\"\test.vhd\"\,5)
- will generate a model in file "test.vhd" with an architecture

-- in the form :

-- entity test is end;

- architecture test of test is

- function add return boolean is

-= variable var : integer := O;
- begin

- var := var

-= + var

-- + var

- + var

- + var

-- + var;

== return true;

- end add;

== signal done : boolean := false;
-- begin

-- done <= add;

-- end test;

entity test is end;
architecture test of test is
function add return boolean is

variable var : integer := O;
begin
var := var #i[+ var];
return true;
end add;
signal done : boolean := false;
begin
done <= add;
end test;

123

TEST NUMBER : 52

PATHNAME :

PURPOSE :

[.BENCH.A.C.H2.P1]shelll.sh
(UNIX equivalent : bench/a/c/h2/p1/shelll.sh)

Determine the simulation CPU time required to execute variable
addition operations in a procedure; determine the number of

addition operations allowed in one variable assignment statement of
a procedure. The model simulated is an architecture consisting of a
procedure declaration and a procedure call; the procedure consists
of an integer variable declaration and a variable assignment
statement containing a number of addition operations. The factor to
be varied is the number of addition operations contained in the
variable assignment statement.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-- AUTHOR : Captain Karen M. Serafino

-- Date :

9 June 1989

-- PARAMETER NUMBER MEANING :

-- 1 : number of variable addition operations in one statement in
- procedure
~-- EXAMPLE :

-- $ sim gen/param="shelll.sh","test.vhd",5

-- (UNIX equivalent : J, sim gen -param=\"\shelll.sh\"\,\"\test.vhd\"\,5)
- will generate a model in file "test.vhd" with an architecture

- in the form :

entity test is end;
architecture test of test is
procedure add is

variable var : integer := O;
begin
var := var
+ var
+ var
+ var
+ var
+ var;
end add;
begin
add;

end test;

124

entity test is end;
architecture test of test is
procedure add is
variable var : integer := 0;
begin
var := var #1[+ var);
end add;
begin
add;
end test;

125

TEST NUMBER : &3

PATHNAME : [.BENCH.B.C.P7)shellO.sh
(UNIX equivalent : bench/b/c/p7/shellO.sh)

PURPOSE : Determine the simulation CPU time rcquired for executing logical
OR operations on variables. The model simulated is an architecture
consisting of a number of processes; each process consists of a
number of variable declarations and one logical OR variable
assignment statement for each variable. The factors to be varied
are the number of processes and the number of variable declarations/
number of logical OR variable assignment statements.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-- AUTHOR : Captain Karen M. Serafino
-- Date : 12 June 1989

-- PARAMETER NUMBER MEANING :
-- 1 : number of variable declarations/0OR statements per process
-- 2 : number of processes

~~ EXAMPLE :

- $ sim gen/param="shellO.vhd","test.vhd",5,2

-- (UNIX equivalent : % sim gen -param=\"\shellO.sh\"\,\"\test.vhd\"\,5,2)
-- will generate a model in file "test.vhd" with an architecture

-- in the form :

- entity test is end;

-- architecture test of test is

-- begin

- prl : process

- variable varl : bit := ’0’;
- variable var2 : bit := ’1’;
- variable var3 : bit := ’0’;
- variable var4 : bit := ’1’;
- variable varb5 : bit := ’0’;
-~ begin

-- varl := varl OR vari;

-- var? := var2 OR var?2;

- var3 := var3 OR var3;

- var4 := var4 OR vars;

-- var5 := var5 OR var$;

- wait;

-- end process pri;

-- pPr2 . process

- variable varil : bit := ’0’;
-- variable var2 : bit := ’1’;

126

- variable var3 : bit := ’0°’;

-- variable var4 : bit := *}1’;
-- variable var5 : bit := '0’;
-- begin

-- varl := varl OR varil,;

- var2 := var2 OR var2;

- var3 := var3 OR var3,;
- var4 := var4 OR varg;
-- var5 := var5 OR var$;
- vait;

-- end process pr2;

- end test;

entity test is end;

architecture test of test is

begin

#2[pro : process

#1[variable var® : bit := ’$280%$13$’;]

begin
#1[var® := var@ OR varQ;]
wait;
end process pro;]
end test;

127

TEST NUMBER : 54

PATHNAME :

PURPOSE :

[.BENCH.B.C.K.L1.P7]shell0.sh
(UNIX equivalent : bench/b/c/k/11/p7/shellO.sh)

Determine the effect on simulation CPU time when the following
factors are varied in an architecture consisting of a number of
processes; each process consists of a variable bit_vector
declaration and a for-loop; the for-loop contains a logical OR
statement, and the number of iterations of the loop is equal to

the size of the variable bit_vector : number of processes, bit_vector
size/number of iterations of for-loop.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-- AUTHOR :

-- Date :

Captain Karen M. Serafino

12 June 1989

—-- PARAMETER NUMBER MEANING :
- 1 : bit_vector size/number of OR statement iterations per process
-- 2 : number of processes

-- EXAMPLE :

- $ sim gen/param="shell0.vhd","test.vhd",3,2

- (UNIX equivalent : % sim gen -param=\"\shellO.sh\"\,\"\test.vhd\"\,3,2)
-- will generate a model in file "test.vhd" with an architecture

- in

the form :

entity test is end;
architecture test of test is

-- begin

prl : process
variable var : bit_vector(1l to 3);

begin
for i in 1 to 3 loop
var(i) := var(i) OR var(i);
end loop;
wait;

end process pri;
pPr2 : process
variable var : bit_vector(1l to 3);

begin
for i in 1 to 3 loop
var(i) := var(i) OR var(i);
end loop;
wait;

end process pr2;

end test;

entity test is end;
architecture test of test is
begin
#2{ pro : process
variable var : bit_vector(1 to %1%);
begin
for i in 1 to %1% loop
var(i) := var(i) OR var(i);
end loop;
vait;
end process pr@;]
end test;

129

TEST WUMBER : 55

PATHNAME : [.BENCE.A.C.P7]shellO.sh
(UNIX equivalent : bench/a/c/p7/shellO.sh)

PURPOSE : Determine the simulation CPU time required to execute logical OR
operations on signals. The model simulated consists of a number of
signal declarations and one logical OR signal assignment statement
for each signal. The factor to be varied is the number of signal
declarations/number of logical OR signal assignment statements.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

—-- AUTHOR : Captain Karen M. Serafino
-- Date : 12 June 1989

-- PARAMETER NUMBER MEANING :
- 1 : number of signal declarations/OR statements

-- EXAMPLE :

- $ sim gen/param="shell0.vhd","test.vhd",3

-- (UNIX equivalent : 7 sim gen -param=\"\shellO.sh\"\,\"\test.vhd\"\,3)
- will generate a model in file "test.vhd" with an architecture

-- in the form :

- entity test is end;

-- architecture test of test is

-= signal sigl : bit := ’0’;

== signal sig2 : bit := ’1’;
-- signal sig3 : bit := ’0’;
-- begin

-- sigl <= sigl OR sigl;
-- sig2 <= sig2 OR sig2;
-- sig3 <= sig3 OR sig3;
- end test;

entity test is end;
architecture test of test is

#1[signal sig®@ : bit := *$2$08$1%°;]
begin

#1[sig® <= sigl OR sigQ;]

end test;

130

TEST NUMBER : &6

PATHNAME : ([.BENCB.A.C.P7]lshelli.sh

(UNIX equivalent : bench/a/c/p7/shelll.sh)

PURPOSE : Determine the simulation CPU time required to perform logical OR

operations on a signal; determine the number of logical OR
operations allowed in one signal assignment statement. The model
simulated is an architecture consisting of a signal declaration and
a signal assignment statement containing a number of logical OR
operations. The factor to be varied is the number of logical OR
operations contained in the signal assignment statement.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

AUTHOR : Captain Karen M. Serafino
Date : 12 June 1989

PARAMETER NUMBER MEANING :
1 : number of OR operations in one statement

EXAMPLE :
$ sim gen/param="shelll.vhd","test.vhd",3
(UNIX equivalent : % sim gen -param=\"\shelli.sh\"\,\"\test.vhd\"\,3)
will generate a model in file "test.vhd" with an architecture
in the form :
entity test is end;
architecture test of test is
signal sig : bit := ’0’;
signal static_sig : bit := ’'1°’;
begin
sig <= static_sig
OR static_sig
OR static_sig
OR static_sig;
end test;

entity test is end;
architecture test of test is

signal sig : bit := ’0’;
signal static_sig : bit := '1’;
begin

sig <= static_sig
#1[

OR static_sig);

end test;

131

TEST NUMBER : 57

PATHNAME : [.BENCH.B.C.P7)shelll.sh
(UNIX equivalent : bench/b’/c/p7/shelll.sh)

PURPOSE : Determine the simulation CPU time required to execute logical OR
operations on variables; determine the number of logical OR
operations allowed in one variable assignment statement. The model
simulated is an architecture consisting of a number of processes;
each process consists of a variable declaration and a variable
assignment statement containing a number of logical OR operations.
The factors to be varied are the number of processes and the number
of logical OR operations in the variable assignment statement.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-- AUTHOR : Captain Xaren M. Serafino
-- Date : 12 June 1989

-- PARAMETER NUMBER MEANING :
-- 1 : number of OR operations in one statement of a process
-- 2 : number of processes

-- EXAMPLE :

- $ sim gen/param="shelll.vhd","test.vhd",3,2

- (UNIX equivalent : % sim gen -param=\"\shelll.sh\"\,\"\test.vhd\"\,3,2)
-- will generate a model in file "test.vhd" with an architecture

-- in the form :

- entity test is end;

-- architecture test of test is

- begin

-- pri : process

-— variable var : bit := ’1’;
- begin

- var = var

-- OR var

- OR var

-- OR var;

-- vait;

-- end process pri;
~-- pr2 : process

- variable var : bit := '1’;
~-- begin

-- var := var

-- OR var

-~ OR var

- OR var;

-- wait;
-- end process pr2;
- end test;

entity test is end;
architecture test of test is

begin
#2[pre@ : process
variable var : bit := ’1’;
begin
var := var
#1[OR var];
wait;

end process prQ;]
end test;

134

TEST NUMBER : 658

PATHNAME : [.BENCH.B.C.P8)shellO.sh
(UNIX equivalent : bench/b/z/p8/shell0.sh)

PURPOSE : Determine the simulation CPU time required for executing logical
NAND operations on variables. The model simulated is an architecture
consisting of a number of processes; each process consists of a
number of variable declarations and one logical NAND variable
assignment statement for each variable. The factors to be varied
are the number of processes and the number of variable declarations/
number of logical NAND variable assignment statements.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

~-- AUTHOR : Captain Karen M. Serafino
-- Date : 12 June 19€9

-- PARAMETER NUMBER MEANING :
-- 1 : number oi variable declarations/NAND statements per process
- 2 : number of processes

-- EXAMPLE :

-- $ sim gen/param="shellO.vhd","test.vhd",3,2

- (UNIX equivalent : % sim gen -param=\"\shellO.sh\"\,\"\test.vhd\"\,3,2)
-- will generate a model in file "test.vhd" with an architecture

-- in the form :

- entity test is end;

-- architecture test of test is

-- begin

-- pri : process

-- variable varil : bit := ’0’;
- variable var2 : bit := ’1’;
-- variable var3 : bit := ’0’;
-- begin

- varl := varl NAND vari;

- var2 := var2 NAND var2;

- var3 := var3 NAND var3;

- wvait;

~-- end process pri;
-- pr2 : process

- variable vari : bit := '0’;
- variable var2 : bit := '1’;
-— variable var3 : bit := '0’;
-- begin

-- vari := varl NAND vari;

- var2 := var2 NAND var2;

134

- var3 := var3 NAND var3;
- wait;

- end process pr2;

- end test;

entity test is end;

architecture test of test is

begin

#2[pre : process

#1[variable var® : bit := '$28$0$1$’;])

begin
#1[.var® := var® NAND varQ;]
wait;
end process pro;]
end test;

135

TEST NUMBER : &9

PATHNAME : [.BENCE.B.C.K.L1.P8]shell0.sh
(UNIX equivalent : bench/b/c/k/11/p8/shell0.sh)

PURPOSE : Determine the effect on simulation CPU time when the following
factors are varied in an architecture consisting of a number of
processes; each process consists of a variable bit_vector
declaration and a for-loop; the for-loop contains a logical NAND
statement, and the number of iterations of the loop is equal to
the size of the variable bit_vector : number of processes, bit_vector
size/number of iterations of for-loop.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-- AUTHOR : Captain Karen M. Serafino
-- Date : 12 June 1989

-- PARAMETER NUMBER MEANING : :
- 1 : bit_vector size/number of NAND statement iterations per process
-- 2 : number of processes

~- EXAMPLE :

-- $ sim gen/param=''shellO.vhd","test.vhd",3,2
- (UNIX equivalent : % sim gen -param=\"\shell0.sh\"\,\"\test.vhd\"\,3,2)
-- will generate a model in file "test.vhd" with an architecture
-- in the form :

-- entity test is end;

-- architecture test of test is

-- begin

-~ pr1 : process

- variable var : bit_vector(1 to 3);
-- begin

-- for i in 1 to 3 loop

-- var{(i) := var(i) NAND var(i);

-- end loop;

-- wait;

~- end process pri;

-- pPr2 : process

-- variable var : bit_vector(1 to 3);
-- begin

-- for i in 1 to 3 loop

-- var(i) := var(i) NAND var(i);

-- end loop;

-~ wvait;

-- end process pr2;

-- end test;

136

entity test is end;
architecture test of test is
begin
#2[pro : process
variable var : bit_vector(1l to %1%);
begin
for i in 1 to %1% loop
var(i) := var(i) NAND var(i);
end loop;
vait;
end process pre;]
end test;

137

TEST NUMBER : 60

PATHNAME : [.BENCH.A.C.P8]shell0.sh
(UNIX equivalent : bench/a/c/p8/shell0.sh)

PURPOSE : Determine the simulation CPU time required to execute logical NAND
operations on signals. The model simulated consists of a number of
signal declarations and one logical NAND signal assignment statement
for each signal. The factor to be varied is the number of signal
declarations/number of logical NAND signal assignment statements.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-- AUTHOR : Captain Karen M. Serafino
-- Date : 12 June 1989

-- PARAMETER NUMBER MEANING :
-- 1 : number of signal declarations/NAND statements

~-- EXAMPLE :

-- $ sim gen/param="shellO.vhd","test.vhd",3

-- (UNIX equivalent : J sim gen -paramz=\'"\shellO.sh\"\,\"\test.vhd\"\,3)
-- will generate a model in file "test.vhd" with an architecture

- in the form :

-- entity test is end;

- architecture test of test is

- signal sigl : bit := ’1’;

-- signal sig2 : bit := ’17;
- signal sig3 : bit := ’1’;
-- begin

-- sigl <= sigl NAND °0’;
-- sig2 <= sig2 NAND '0’;
-- sig3d <= sig3 NAND '0’;
-- end test;

entity test is end;
architecture test of test is
#1[signal sig@ : bit := ’17’;]
begin

#1[8igQ@ <= sig® NAND ’0’;]
end test;

TEST NUMBER : 61

PATHNAME : [.BENCH.A.C.P8)shelll.sh

(UNIX equivalent :

PURPOSE :

bench/a/c/p8/shelll.sh)

Determine the simulation CPU time required to perform logical NAND

operations on a signal; determine the number of logical NAND

operations allowed in one signal assignment statement.

The model

simulated is an architecture consisting of a signal declaration and
a signal assignment statement containing a number of logical NAND

operations.

The factor to be varied is the number of logical NAND

operations contained in the signal assignment statement.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-- AUTHOR : Captain Karen M. Serafino

-- Date : 12 June 1989

-~ PARAMETER NUMBER MEANING :
- 1

-- EXAMPLE :

: number of NAND operations in one statement

- $ sim gen/param="shelll.vhd","test.vhd",3

- (UNIX equivalent :

% sim gen -param=\"\shelll.sh\"\,\"\test.vhd\"\,3)

-- will generate a model in file "test.vhd" with an architecture

-- in the form :

-- entity test is end;

-- architecture test of test is
- signal sig : bit := ’0’;
-- signal static_sig
-- begin

-- sig <= static_sig

- NAND (static_sig
- NAND (static_sig
- NAND (static_sig

-- end test;

entity test is end;
architecture test of test is
signal sig : bit := ’0’;
signal static_sig : bit
begin

1= 107

139

: bit = 20,

sig <= static_sig
#1[
end test;

FAND (static_sigl#1[)];

110

TEST NUMBER : 62

PATHNAME : [.BENCH.B.C.P8]shelll.sh
(UKIX equivalent : bench/b/c/p8/shelll.sh)

PURPOSE : Determine the simulation CPU time required to execute logical NAKND
operations on variables; determine the number of lngical NAND
operations allowed in one variable assignment statement. The model
simulated is an architecture consisting of a number of processes;
each process consists of a variable declaration and a variable
assignment statement containing a number of logical NAND operationms.
The factors to be varied are the number of processes and the number
of logical NAND operations in the variable assignment statement.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-- AUTHOR : Captain Karen M. Serafino
-- Date : 12 June 1989

-~ PARAMETER NUMBER MEANING :
-- 1 : number of NAND operations in one statement of a process
-- 2 : number of processes

-- EXAMPLE :

-~ $ sim gen/param="shelll.vhd","test.vhd",3,2

-- (UNIX equivalent : % sim gen -param=\"\shelll.sh\"\,\"\test.vhd\"\,3,2)
-- will generate a model in file "test.vhd" with an architecture

-- in the form :

-- entity test is end;

-- architecture test of test is

-- begin

- pPrl : process

-- variable var : bit := ’1’;
-- begin

-- var := var

-- NAND (var
-~ NAND (var
-~ NAND (var
--)
-)
--);
-- wait;

-- end process pri;

-~ pr2 : process

- variable var : bit := ’1’;
-- begin

-= var := var

141

- FNAND (var

- NAND (var
- NAND (var
--)
-)
-);
- wait;

- end process pr2;

- end test;

entity test is end;
architecture test of test is

begin
#2[pro : process
variable var : bit := ’1’;
begin
var = var
#1[NAND (var]
#1()15
wvait;

end process pr@;]
end test;

142

TEST NUMBER : 63

PATHNAME : ([.BENCH.B.C.P9]shell0.sh
(UNIX equivalent : bench/b/c/p9/shell0.sh)

PURPOSE : Determine the simulation CPU time required for executing logical
NOR operations on variables. The model simulated is an architecture
consisting of a number of processes; each process consists of a
number of variable declarations and one logical NOR variable
assignment statement for each variable. The factors to be varied
are the number of processes and the number of variable declarations/
number of logical NOR variable assignment statements.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-- AUTHOR : Captain Karen M. Serafino
-~ Date : 13 June 1989

-~ PARAMETER NUMBER MEANING :
- 1 : number of variable declarations/NOR statements per process
.- 2 : number of processes

-~ EXAMPLE :

- $ sim gen/param="shell0.vhd","test.vhd",3,2

- (UNIX equivalent : % sim gen -param=\"\shellO.sh\"\,\"\test.vhd\"\,3,2)
-- will generate a model in file "test.vhd" with an architecture

-- in the form :

-- entity test is end;

-- architecture test of test is

- begin

-- pPr1 : process

- variable vari : bit := ?0’;
- variable var2 : bit := ’17;
-~ variable var3 : bit := ’0’;
-- begin

- varl := varil NOR vari;

-- var2 := var2 NOR var2;

- var3d := var3 NOR var3;

-- wait;

-- end process pri;
-~ pr2 : process

-- variable varil : bit := '0’;
- variable var2 : bit := ’1’;
-- 7ariable var3 . bit := '0’;
~-- begin

-- varl := varl NOR varil;

-- varz := var2 NOR var2;

143

- var3 := var3 NOR var3;

- wait;
-- end process pr2,;
- end test;

entity test is end;
architecture test of test is
begin

#2[pro : process

#1{ variable var® : bit :=
begin
#1(var® := var® NOR var@;]
wait;

end process prQ;]
end test;

1$2%$0%1¢° ;]

144

TEST NUMBER :

PATHNAME :

PURPOSE :

64

[.BENCH.B.C.K.L1.P9}shell0.sh
(UNIX equivalent : bench/b/c/k/11/p9/shell0.sh)

Determine the effect on simulation CPU time when the following
fa~*org are varied in an architecture consisting of a number of
processes; each process consists of a variable bit_vector
declaration and a for-loop; the for-loop contains a logical NOR
statement, and the number of iterations of the loop is equel to

the size of the variable bit_vector : number of processes, bit_vector
size/number of iterations of for-loop.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-- AUTHOR :

-~ Date :

Captain Karen M. Serafino

13 June 1989

-- PARAMETER KRUMBER MEANING :
-- 1 : bit_vector size/number of NOR statement iterations per process
-- 2 : number of processes

-- EXAMPLE :
-~ $ sim gen/param="shell0O.vhd",6 "test.vhd",K3,2
-- (UNIX equivalent : % sim gen -param=\"\shellO.sh\"\,\"\test.vhd\"\,3,2)

- wil
- in
-~ e

1l generate a model in file "test.vhd" with an architecture
the form :
ntity test is end;

- architecture test of test is
- begin

-= e

prl . process
variable var : bit_vector(l to 3);

begin
for i in 1 to 3 loop
var(i) := var(i) NOR var(i);
end loop;
wait;

end process pri;
pr2 . process
variable var : bit_vector(1l to 3);

begin
for i in 1 to 3 loop
var(i) := var(i) NOR var(i);
end loop;
vait;
end process pr2;

nd test;

145

entity test is end;
architecture test of test is
begin
#2[pro® : process
variable var : bit_vector(1 to %i%)
begin
for i in 1 to %1% loop
var(i) := var(i) NOR var(i);
end loop;
wait;
end process prQ;]
end test;

TEST NUMBER : 65

PATHNAME : [.BENCH.A.C.P9)shell0.sh
(UNIX equivalent : bench/a/c/p9/shell0.sh)

PURPOSE : Determine the simulation CPU time required to execute logical NOR
operations on signals. The model simulated consists of a number of
signal declarations and one logical NOR signal assignment statement
for each signal. The factor to be varied is the numbar of signal
declarations/number of logical NOR signal assignment statements.

EXPECTED RESULTS :

UNITS QF MEASUREMENT :

=- AUTHOR : Captain Karen M. Serafino
-- Date : 13 June 1989

=— PARAMETER NUMBER MEANING :
-- 1 : number of signal declarations/NOR statements

-- EXAMPLE :

-- $ sim gen/param="shellO.vhd","test.vhd",3

-- (UNIX equivalent : % sim gen -param=\"\shell0.sh\”\,\"\test.vhd\"\,3)
-- will generate a model in file "test.vhd" with an architecture
-= in the form :

-- entity test is end;

-- architecture test of test is

-- signal sigl : bit := '0’;

-- signal sig2 : bit := *0’;

-- signal sig3 : bit := ’0’;

-- begin

-- sigl <= sigil NOR '1’;

-- sig2 <= sig2 NOR '1’;

-- 8ig3 <= sig3 NOR ’1’;

- end test;

entity test is end;
architecture test of test is
#1[.ignal sig® : bit := ’0’;]
begin

#:[s8ig® <= sigd NOR '1';)

end test;

TEST NUMBER : 66

PATHNAME : [.BENCH.A.C.P9]lshelll.sh
(UNIX equivalent : bench/a/c/p9/shelll.sh)

PURPOSE : Determine the simulation CPU time required to perform logical KOR
operations on a signal; determine the number of logical NOR
operations allowed in one signal assignment statement. The model
simulated is an architecture consisting of a signal declaration and
a signal assignment statement containing a number of logical NOR
operations. The factor to be varied is the number of logical NOR
operations contained in the signal assignment statement.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

== AUTuLOR : Captain Karen M. Serafino
-- Date : 13 June 1989

-- PARAMETER NUMBER MEANING :
- 1 : numoer of NOR operations in one statement

-- EXAMPLE :
-- $ sim gen/param="shelli.vhd","test.vhd",3
- (UNIX equivalent : % sim gen -param=\"\shellil.sh\"\,\"\test.vhd\"\,3)
-= will generate a model in file "test.vhd" with an architecture
-- in the form :
- entity test is end;
- architecture test of test is

- signal sig : bit := ’0’;
-- signal static_sig : bit := ’0’;
- begin

-- sig <= static_sig

-- NOR (static_sig
-- NOR (static_sig
-- NOR (static_sig
--)
--)
--);

- end test;

entity test is end;
architecture test of test is

signal sig : bit := '0’;
signal static_sig : bit := '0’;
begin

148

sig <= static_sig
#1(NOR (static_sigl#i[)];
end test;

149

TEST NUMBER : 67

PATHNAME : [.BENCH.B.C.P9]shelli.sh
(UNIX equivalent : bench/b/c/p9/shelll.sh)

PURPOSE : Determine the simulation CPU time required to execute logical NOR
operations on variables; determine the number of logical NOR
operations allowed in one variable assignment statement. The model
gimulated is an architecture consisting of a number of processes;
each process consists of a variable declaration and a variable
assignment statement containing a number of logical NOR operations.
The factors to be varied are the number of processes and the number
of logical NOR operations in the variable assignment statement.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-- AUTHOR : Captain Karen M. Serafino
-- Date : 13 June 1989

-- PARAMETER NUMBER MEANING :
-- 1 : number of NOR operations in one statement of a process
-- 2 : number of processes

-- [EXAMPLE :

- $ sim gen/param="shelll.vhd","test.vhd",3,2

-- (UNIX equivalent : % sim gen ~param=\"\shelli.sh\"\,\"\test.vhd\"\,3,2)
-- will generate a model in file "test.vhd" with an architecture

-- in the form :

- entity test is end;

-- architecture test of test is

-- begin

-- prl : process

-- variable var : bit := ’1’;
-- begin

- var := var

-- NOR (var
- NOR (var
- NOR (var
-)
--)
--);
-- vait;

- end process pri;

-- pPr2 : process

-- variable var : bit := *'1’;
-= begin

-- var := var

150

- NOR (var

-- NOR (var
-- NOR (var
--)
--)
--)i
-- wait;

-- end process pr2;

- end test;

entity test is end;
architecture test of test is

begin
#2[pre : process
variable var : bit := ’1’;
begin
var := var
#1[NOR (var]
#11)Y
wait;

end process pro;]
end test;

TEST NUMBER : 68

PATHNAME : [.BENCH.B.C.P10]shellO.sh
(UNIX equivalent : bench/b/c/p10/shell0.sh)

PURPOSE : Determine the simulation CPU time required for executing logical
XOR operations on variables. The model simulated is an architecture
consisting of a number of processes; each process consists of a
number of variable declarations and one logical XOR variable
assignment statement for each variable. The factors to be varied
are the number of processes and the number of variable declarations/
number of logical XOR variable assignment statements.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-— AUTHOR : Captain Karen M. Serafino
-- Date : 13 June 1989

—- PARAMETER NUMBER MEANING :
-- { : number of variable declarations/XOR statements per process
- 2 : number of processes

-~ EXAMPLE :

- $ sim gen/param="she110.vhd",“test.vhd".3,2

- (UNIX equivalent : % sim gen —param=\"\she110.sh\"\,\"\test.vhd\"\,3,2)
-- will generate a model in file "test.vhd” with an architecture

-- in the form :

- entity test is end;

- architecture test of test is

-- begin

-- prl : process

- variable varl : bit := ’0’;
-- variable var2 : bit := ’1’;
- variable var3 : bit := '0’;
-- begin

-- varl := varl XOR vari;

-~ var2 := var2 XOR var2;

~- var3 := var3 XOR var3;

- wait;

~- end process prl;
~- pr2 : process

~- variable varl : bit := '0’;
- variable var2 : bit := ’1’;
-- variable var3 : bit := '0’;
- begin

- varl := varil XOR varil;

-- var2 := var2 XOR var2;

-- var3 := var3 XOR var3;
- wait;

-- end process pr2;

-—- end test;

entity test is end;
architecture test of test is
begin
#2[pre@ : process
#1[variable var® : bit := ’'$2$08$1%;]
begin
#1[.var@ := var® XOR var®;]
vait;
end process prQ;]
end test;

154

TEST NUMBER : 69

PATHNAME : [.BENCE.B.C.K.L1.P10]shell0.sh

(UNIX equivalent : bench/b/c/k/11/p10/shell0.sh)

PURPOSE : Determine the effect on simulation CPU time when the following

factors are varied in an architecture consisting of a number of
processes; each process consists of a variable bit_vector
declaration and a for-loop; the for-loop contains a logical XOR
statement, and the number of iterations of the loop is equal to

the size of the variable bit_vector : number of processes, bit_vector
size/number of iterations of for-loop.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

AUTHOR : Captain Karen M. Serafino
Date : 13 June 1989

PARAMETER NUMBER MEANING :
1 : bit_vector size/number of XOR statement iterations per process
2 : number of processes

EXAMPLE :
$ sim gen/param="shellO.vhd","test.vhd",3,2
(UNIX equivalent : % sim gen -param=\"\shellO.sh\"\,\"\test.vhd\"\,3,2)
will generate a model in file "test.vhd" with an architecture
in the form :
entity test is end;
architecture test of test is
begin
pri1 : process
variable var : bit_vector(i to 3);

begin
for i in 1 to 3 loop
var{i) := var(i) XOR var(i);
end loop;
vait;

end process pri;
Pr2 . process
variable var : bit_vector(1l to 3);
begin
for i in 1 to 3 loop
var(i) := var(i) XOR var(i);
end loop;
wait;
end process pr2;
end test;

154

entity test is end;
architecture test of test is
begin
#2[pro : process
variable var : bit_vector(1l to %1%);

begin
for i in 1 to %1% loop
var(i) := var(i) XOR var(i);
end loop;
wait,;

end process pr@;]
end test;

[}

-t

TEST NUMBER : 70

PATENAME : [.BENCH.A.C.P10]lshellO.sh
(UNIX equivalent : bench/a/c/p10/shell0.sh)

PURPOSE : Determine the simulation CPU time required to execute logical XOR
operations on signals. The model simulated consists of a number of
signal declarations and one logical XOR signal assignment statement
for each signal. The factor to be varied is the number of signal
declarations/number of logical XOR signal assignment statements.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-- AUTHOR : Captain Karen M. Serafino
-- Date : 13 June 1989

-- PARAMETER NUMBER MEANING :
-- 1 : number of signal declarations/XOR statements

-~ EXAMPLE :

- $ sim gen/param="shellO.vhd","test.vhd",3

-- (UNIX equivalent : % sim gen -param=\"\shellO.sh\"\,\"\test.vhd\"\,3)
-- will generate a model in file "test.vhd" with an architecture

- in the form :

- entity tec. i3 end;

-- architecture test of test is

- signal sigl : bit := ’1’;
-- signal sig2 : bit := ’1’;
-- signal sig3 : bit := ’'1’;
- begin

~-= sigl <= sigl XOR '0’;
-- sig2 <= sig2 XOR ’0’;
== sig3 <= sig3 XOR ’0’;
- end test;

entity test is end;
architecture test of test is

#1[signal sig@ : bit := ’1’;]
begin

#1{ sigd <= sig® XOR ’0’;]

end test;

156

TEST NUMBER : 71

PATHNAME : [.BENCH.A.C.P10]shelll.sh

(UNIX equivalent : bench/a/c/p10/shelli.sh)

PURPOSE : Determine the simulation CPU time required to perform logical XOR

operations on a signal; determine the number of logical XOR
operations allowed in one signal assignment statement. The model
simulated is an architecture consisting of a signal declaration and
a signal assignment statement containing a number of logical XOR
operations. The factor to be varied is the number of logical XOR
operations contained in the signal assignment statement.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

AUTHOR : Captain Karen M. Serafino
Date : 13 June 1989

PARAMETER NUMBER MEANING :
1 : number of XOR operations in one statement

EXAMPLE :
$ sim gen/param='"shelll.vhd","test.vhd",3
(UNIX equivalent : % sim gen -param=\"\shelll.sh\"\,\"\test.vhd\"\,3)
will gener=te 2 mcdel in file "test.vhd" with an architecture
in the form :
entity test is end;
architecture test of test is

signal sig : bit := '0’;
signal static_sig : bit := ’0Q?;
begin

sig <= static_sig
XOR static_sig
XOR static_sig
XOR static_sig;
end test;

entity test is end;
architecture test of test is

signal sig : bit := '0’;
signal static_sig : bit := '0’;
begin

sig <= static_sig
#1[

XOR static_sig];

end test;

TEST NUMBER : 72

PATHNAME : [.BENCH.B.C.P10]shelll.sh
(UNIX equivalent : bench/b/c/p10/shelli.sh)

PURPOSE : Determine the simulation CPU time required to execute logical XOR
operations on variables; determine the number of logical XOR
operations allowed in one variable assignment statement. The model
simulated is an architecture consisting of a number of processes;
each process consists of a variable declaration and a variable

- assignment statement containing a number of logical XOR operations.
The factors to be varied are the number of processes and the number
of logical XOR operations in the variable assignment statement.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-~ AUTHOR : Captain Karen M. Serafino
-~ late . i3 Junc 18€3

-~ PARAMETER NUMBER MEANING :
-~ 1 : number of XOR operations in one statement of a process
-~ 2 : number of processes

-~ EXAMPLE :

-~ $ sim gen/param="shelll.vhd","test.vhd",3,2

-~ (UNIX equivalent : % sim gen -param=\"\shellil.sh\"\,\"\test.vhd\"\,3,2)
-~ will generate a model in file '"test.vhd" with an architecture

-~ in the form :

- entity test is end,

-- architecture test of test is

-- begin

-- prl : process

-— variable var : bit := ’'1’;
-~ begin

- var := var

- XOR var

- XOR var

- XOR var;

-- wait;

-- end process pri;

-- pr2 : process

- variable var : bit := ’1’;
-- begin

-- var := var

- XOR var

- XOR var
- XOR var;
- wait;

-= end process pr2;

- end test;

entity test is end;
architecture test of test is

begin
#2[pr@ : process
variable var : bit := ’1’;
begin
var := var
#1[XOR var];
wait;

end process prQ;])
end test;

159

TEST NUMBER : 73

PATHNAME : [.BENCH.B.C.P11]shellO.sh
(UNIX equivalent : bench/b/c/p11/shell0.sh)

PURPOSE : Determine the simulation CPU time required for executing logical
NOT operations on variables. The model simulated is an architecture
consisting of a number of processes; each process consists of a
number of variable declarations and one logical NOT variable
assignment statement for each variable. The factors to be varied
are the number of processes and the number of variable declarations/
number of logical NOT variable assignment statements.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

~-- 'AUTHOR : Captain Karen M. Serafino
~- Date : 13 June 1989

~~ PARAMETER NUMBER MEANING :
- 1 : number of variable dec arations/NOT statements per process
~-- 2 : number of processes

~- EXAMPLE :

~-- $ sim gen/param="shell0.vhd","test.vhd",3,2

-- (UNIX equivalent : % sim gen -param=\"\shell0.sh\"\,\"\test.vhd\"\,3,2)
-- will generate a model in file "test.vhd" with an architecture

- in the form :

-- entity test is end;

- architecture test of test is

-- begin

- pri : process
- variable varl : bit := '0’}
-- variable var2 : bit := ’1’;
-— variable var3 : bit := ’0’;
-- begin
-- varl := NOT varl;
- var2 := NOT var2;
- var3 := NOT var3;
- vait;

-- end process pri;
- pr2 : process

~-- variable varl : bit := '0’;
- variable var? : bit := ’'1’;
- variable var3 : bit := ’0’;
- begin

-~ varl := NOT varl;

- var2 := NOT var2;

160

- var3 := NOT var3;
- wait;

-- end process pr2;

- end test;

entity test is end;
architecture test of test is
begin

#2[pro : process

#1[variable var® : bit := '$2%0%1$’
begin
#1[var® := NOT var@Q;)
wait;

end process pre;]
end test;

i1

161

TEST NUMBER : 74

PATHNAME :

PURPOSE :

[.BENCH.B.C.K.L1.P11}shell0.sh

{(UNIX equivalent : bench/b/c/k/11/p11/shell0.sh)

Determine the effect on simulation CPU time when the following
factors are varied in an architecture consisting of a number of
processes; each process consists of a variable bit_vector
declaration and a for-loop; the for-loop contains a logical NOT
statement, and the number of iterations of the loop is equal to

: number of processes, bit_vector

the size of the variable bit_vector
size/number of iterations of for-loop.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

~~ AUTHOR : Captain Karen M. Serafino

-~ Date :

13 June 1989

~~ PARAMETER NUMBER MEANING :

bit_vector size/number of NOT statement iterations per process

-~ 1:
-- 2 : number of processes
-~ EXAMPLE :

-~ $ sim gen/param=''shellO.vhd","test.vhd",3,2

-~ (UNIX equivalent :

entity test is end;
architerture test of test is
begin
prl : process
variable var : bit_vector(1l to 3);

begin
for 1 in 1 to 3 loop
var(i) := NOT var(i);
end loop;
wait;

end process pri;
pre . process
variable var : bit_vector(? to 3);
begin
for i in 1 to 3 loop
var(i) := NOT var(i);
end loop;
vait;
end process pr2;
end test;

162

% sim gen -param=\"\shellO sh\"\,\"\test.vhd\"\,3,2)
-~ will generate a model in file '"test.vhd" with an architecture
in the form :

entity test is end;
architecture test of test is
begin
#2[pro : process
variable var : bit_vector(1l to %1%);
begin
for i in 1 to %1% loop
var(i) := NOT var(i);
end loop;
wait;
end process prd;]
end test;

163

TEST NUMBER : 75

PATHNAME : [.BENCH.A.C.P11]shell0.sh
(UNIX equivalent : bench/a/c¢/p11/shell0.sh)

PURPOSE : Determine the simulation CPU time required to execute logical NOT
operations on signals. The model simulated consists of a number of
signal declarations and one logical NOT signal assignment statement
for each signal. The factor to be varied is the number of signal
declarations/number of logical NOT signal assignment statements.

EXPECTED RESULTS :

UNITS QF MEASUREMENT :

-- AUTHOR : Captain Karen M. Serafino
-- Date : 13 June 1989

-- PARAMETER NUMBER MEANING :
-- 1 : number of signal declarations/NOT statements

-- EXAMPLE :

-- $ sim gen/param="shellO.vhd","test.vhd",3

-- (UNIX equivalent : % sim gen -param=\'"\shellO.sh\"\,\"\test.vhd\"\,3)
-- will generate a model in file “test.vhd" with an architecture

-- in the form :

-- entity test is end;

-- architecture test of test is

~- signal static_sig : bit := ’1’;

-- signal sigl : bit := ’1’;
~-- signal sig2 : bit := ’1’;
~-- signal sig3 : bit := ’1’;

~= begin

~-- sigl <= NOT static_sig;
-- sig2 <= NOT static_sig;
-- sig3 <= NOT static_sig;
- end test;

entity test is end;
architecture test of test is

signal static_sig : bit := ’1?;
#1[signal sig0 : bit := ’1°;]
begin

#1[sig® <= NOT static_sig;]
end test;

164

TEST NUMBER : 76

PATHNAME : [.BENCH.A.C.P11]lshelll.sh
(UNIX equivalent : bench/a/c/p11/shelll.sh)

PURPOSE : Determine the simulation CPU time required to perform logical NOT
operations on a signal; determine the number of logical NOT
operations allowed in one signal assignment statement. The model
simulated is an architecture consisting of a signal declaration and
a signal assignment statement containing a number of logical NOT
operations. The factor to be varied is the number of logical NOT
operations contained in the signal assignment statement.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

== AUTHOR : Captain Karen M. Serafino
-- Date : 13 June 1989

~- PARAMETER NUMBER MEANING :
-- 1 : number of NOT operations in one statement

—-- EXAMPLE :

- $ sim gen/param="shelll.vhd","test.vhd",3

-~ (UNIX equivalent : % sim gen -param=\"\shelll.sh\"\,\"\test.vhd\"\,3)
-- will generate a model in file "test.vhd" with an architecture

-- in the form :

- entity test is end;

-- architecture test of test is

-- signal sig : bit := '0’;
-- signal static_sig : bit := '0’;
-- begin

- sig <=

-- NOT (

-- NOT (

-- NOT (

-- static_sig

-~)

--)

-)i
- end test,

entity test 1s end;

architecture test of test is
signal) sig : bit := '0’;
signal static_sig :@ bit := '0’;

165

begin

sig <=
#1[NOT (]
static_sig
#1[));

end test;

166

TEST NUMBER : 77

PATHNAME : [.BENCH.B.C.P11]shelll.sh
(UNIX equivalent : bench/b/c/p11/shelll.sh)

PURPOSE : Determine the simulation CPU time required to execute logical NOT
operations on variables; determine the number of logical NOT
operations allowed in one variable assignment statement. The model
simulated is an architecture consisting of a number of processes;
each process consists of a variable declaration and a variable
assignment statement containing a number of logical NOT operations.
The factors to be varied are the number of processes and the number
of logical NOT operations in the variable assignment statement.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-- AUTHOR : Captain Karen M. Serafino
-- Date : 13 June 1989

== PARAMETER NUMBER MEANING :
- 1 : number of NOT operations in one statement of a process
-- 2 : number of processes

-- EXAMPLE :

- $ sim gen/param:"shelli.vhd",”test.vhd",3,2

- (UNIX equivalent : % sim gen -param=\"\shellil.sh\"\,\"\test.vhd\"\,3,2)
-- will generate a model in file "test.vhd" with an architecture
-- in the form :

-- entity test is end;

- architecture test of test is

-- begin

-- pri . process

- variable var : bit := ’1’;

-- begin

-- var :=

-- NOT (

-- NOT (

-- NOT (

-- wait;

- end process pri;

it pPr2 : process

- variable var : bit := 'i’;
~-- bagin

67

- NOT (

- NOT «

-- NOT (

- var
-)
--)
-)i
- wait;

-- end process pr2;

- end test;

entity test is end;

architecture test of test is

begin
#2[pro : process
variable var :
begin
var :=
#1(NoT (1
var
#1[
wait;

end process prQ;]
end test;

bit

)3 N

1=)1!;

168

TEST NUMBER : 78

PATHNAME : [.BENCH.A.C.PS5)shellO.sh
(UNIX equivalent : bench/a/c/p5/shell0.sh)

PURPOSE : Determine the simulation CPU time required to execute concatenation
operations on string signals. The model simulated consists of a
number of string signal declarations and one concatenation signal
assignment statement for each signal. The factors to be varied are
the number of signal declarations/number of concatenation signal
assignment statements and the lengths of the strings to be
concatenated.

EXPECTBD RESULTS :

UNITS OF MEASUREMENT :

==~ AUTHOR : Captain Karen M. Serafino
-- Date : 14 June 1989

-- PARAMETER NUMBER MEANING :

- 1 : length of string_1

== 2 : length of string_2

- 3 : number of result_string declarations/number of concatenation
- statements

-- EXAMPLE : .

-- $ sim gen/param="shellO.vhd","test.vhd",10,5,3

-- (UNIX equivalent : % sim gen -param=\"\shell0.sh\"\,\"\test.vhd\"\,10,5,3)
- will generate a model in file "test.vhd" with an architecture
-- in the form :

-- entity test is end;

-- architecture test of test is

-- signal string_1 : string(1l to 10) := "ABCDEFGHIJ";

-- signal string_2 : string(l to 5) := "ABCDE";

-- signal result_stringl : string(l to (10 + 5));

-= signal result_string2 : string(l to (10 + 5));

-- signal result_string3 : string(l to (10 + 5));

-- begin

- result_stringl <= string_1 & string_2;

- result_string?2 <= string_1 & string_2;

-— result_string3 <= string_1l & string_2;

-- end test;

entity test is end;
crihitecturs %27t ~f test is

signal string_1 : string(1l to %1%) -= "717";

169

signal string_2 : string(1l to %2%) := "727";

#3[signal result_string0 :

begin

string(1 to (%1% + %2%));]

#30 result_string® <= string_1 & string_2;]

end test;

TEST NUMBER : 79

PATHNAME : [.BENCH.A.C.P5]shelli.sh
(UNIX equivalent : bench/a/c/p5/shelll.sh)

PURPOSE : Determine the simulation CPU time required to perform concatenatio:x
operations on a signal; determine the number of concatenation
operations allowed in one signal assignment statement. The model
simulated is an architecture consisting of a string signal
declaration and a signal assignment statement containing a number of
concatenation operations. The factors to be varied are the number
of concatenation operations contained in the signal assignment
statement and the length of the string used in the concatenatioms.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-- AUTHOR : Captain Karen M. Serafino
-- Date : 14 June 1989

-~ PARAMETER NUMBER MEANING :
-- 1 : length of string used in concatenation operations
-- 2 : number of concatenation operations in one statement

-- EXAMPLE :

- $ sim gen/param="shelll.vhd","test.vhd",10,3

- (UNIX equivalent : % sim gen -param=\"\shelll.sh\"\,\"\test.vhd\"\,10,3)
-- will generate a model in file "test.vhd" with an architecture

- in the form :

- entity test is end;

-- architecture test of test is

- signal op_string : string(1 to 10) := "ABCDEFGHIJ";
-- signal result_string : string(i to (10 * (3 + 1)));
-- begin

-- result_string <= op_string

-- & op_string
-- & op_string
-- ¥ op_string,
-- end test;

entity test is end;
architecture test of test ais

signal op_string : string(! to %Y%) := "717";
signal result_string : string(1 to (%1% + (%2% + 1)));
begin

result_string <= op_string

#2(¢ op_stringl;
end test;

TEST NUMBER : 80

PATHNAME : [.BENCH.B.C.P5)shell0.sh
(UNIX equivalent : bench/b/c/p5/shell0.sh)

PURPOSE : Determine the simulation CPU time required for executing
concatenation operations on variables. The model simulated is an
architecture consisting of a number of processes; each process
consists of a number of string variable declarations and one
concatenation variable assignment statement for each variable. The
factors to be varied are the number of processes, the number of
variable declarations/number of concatenation variable assignment
statements, and the length of the string used in the concatenations.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

—-- AUTHOR : Captain Karen M. Serafino
-- Date : 15 June 1989

-- PARAMETER NUMBER MEANING :

-- 1 : length of strings

-- 2 : number of variable declarations/concatenation statements per process
-- 3 : number of processes

-- EXAMPLE :

-- $ sim gen/param="shell0.vhd", "test.vhd",10,2,2

-- (UNIX equivalent : % sim gen -param=\"\shell0O.sh\"\,\"\test.vhd\"\,10,2,2)
-- will generate a model in file "test.vhd" with an architecture

-~ in the form :

~-- entity test is end;

- architecture test of test is

-- begin
-- pri : process
-- variable static_var : string(l to 10) := "ABCDEFGHIJ";

- variable varl : string(1l to (10 + 10));
-- variable var2 : string(1l to (10 + iC))};

-- begin

- var] := static_var & static_var;
-- var? := static_var & static_var;
-- wait;

-- end process pri;

- Pr2 : process

-- variable static_var : straing(i to 10) := "ABCDEFGHIJ";
-- variable varl : string(l to (10 + 10));

-- variable var2 : stiing(l tc (10 + 10));

-- begin

-- varl := static_var & static_var;

- var2 := static_var & static_var;
- wait;

- end process pr2;

- end test;

entity test is end,;
architecture test of test is

begin
#3[pro : process
variable static_var : string(1l to %1%) := "717";
#2[variable var@ : string(1 to (%1% + %1%));]
begin
#2fl var@ := static_var & static_var;]
wait;
end process pr@;]
end test;

TEST NUMBER : 81

PATHNAME : [.BENCH.B.C.P5)shelli.sh
(UNIX equivalent : bench/b/c/p5/shelll.sh)

PURPOSE : Determine the simulation CPU time required to execute concatenation
operations on variables; determine the number of concatenation
operations allowed in one variable assignment statement. The model
simulated is an architecture consisting of a number of processes;
each process consists of two string variable declarations and a
variable assignment statement containing a number of concatenation
operations. The factors to be varied are the number of processes,
the number of concatenation operations in the variable assignment
statement, and the length of the string used in the concatenations.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-- AUTHOR : Captain Karen M. Serafino
-- Date : 15 June 1989

~- PARAMETER NUMBER MEANING :

-- 1 : length of strings

-- 2 : number of concatenation operations in one statement of a process
-- 3 : number of processes

~- EXAMPLE :

-- $ sim gen/param='"shelll.vhd","test.vhd",10,3,2

- (UNIX equivalent : % sim gen -param=\"\shelll.sh\"\,\"\test.vhd\"\,10,3,2)
-- will generate a model in file “test.vhd" with an architecture

-- in the form :

- entity test is end;

-- architecture test of test is

-- begin

- pri : process

- variable static_var : string(i to 10) := "ABCDEFGHIJ";
-- variable var : string(1l to (10 * (3 + 1)));

-- begin

-- var := static_var

-- & static_var

-- & static_var

-- & static_var;

-- wait;

-= end process pri;

-- pr2 : process

~- variable static_var : string(1l to 10) := "ABCDEFGHIJ",
-- variable var : string(1 to (10 * (3 + 1)));

-- begin

-- var := static_var

- & static_var
- & static_var
- & static_var;
- wait,;

-- end process pr2;

-- end test;

entity test is end;
architecture test of test is

begin
#3[pre : process
variable static_var : string(1l to %1%) := "717";
variable var : string(1l to (%1% = (U2% + 1)));
begin
var := static_var
#2(& static_var];
vait;

end process pre;]
end test;

TEST NUMBER : 82

PATHNAME :

PURPOSE :

(.BENCH.A.C.H2.P5]shell0.sh
(UNIX equivalent : bench/a/c/h2/p5/shell0.sh)

Determine the simulation CPU time required to execute variable
concatenation statements. The model simulated is an architecture
consisting of a procedure declaration and a procedure call. The
procedure consists of a number of string variable declarations

and 2 concatenation statement for each variable. The factors to be
varied are the number of variable declarations/concatenation
statements in the procedure and the length of the strings used in
the concatenations.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-- AUTHOR : Captain Karen M. Serafino

-— Date :

15 June 1989

-~ PARAMETER NUMBER MEANING :

-- 1 : length of strings

- 2 : number of variable declarations/variable concatenation statements in
-- procedure

-- EXAMPLE :

-- ¢ sim gen/param="shellO.sh", "test.vhd",610,3
- (UNIX equivalent : % sim gen -param=\"\shellO.sh\"\,\"\test.vhd\"\,10,3)

will generate a model in file "test.vhd" with an architecture
in the form :

entity test is end;
architecture test of test is
procedure concatenate is
variable static_var : string(1 to 10) := "ABCDEFGHIJ";
variable varl : string(1l to (10 + 10));
variable var2 : string(1l to (10 + 10));
variable var3 : string(1l to (10 + 10));

begin
varl := static_var & static_var,
var2 := static_var & static_var;
var3 := static_var & static_var;
end concatenate;
begin
concatenate;
end test;

entity test is end;
architecture test of test is
procedure concatenate is

variable static_var : string(l to %1%) := "71?";
#2(variable var® : string(1 to (%1% + %1%));]
begin
#2[vard := static_var & static_var;]
end concatenate;
begin
concatenate;

end test;

TEST NUMBER : 83

PATHNAME :

PURPOSE :

[.BENCH.A.C.H2.P5]shelll.sh
(UNIX equivalent : bench/a/c/h2/p5/shelll.sh)

Determine the simulation CPU time required to execute variable
concatenation operations in a procedure; determine the number of
concatenation operations allowed in one variable assignment
statement of a procedure. The model simulated is an architecture
consisting of a procedure declaration and a procedure call; the
procedure consists of a string variable declaration and a variable
assignment statement containing a number of concatenation operations.
The factors to be varied are the number of concatenation operations
contained in the variable assignment statement and the length of the
string used in the concatenations.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-- AUTHOR : Captain Karen M. Serafino

-~ Date :

15 June 1989

-- PARAMETER NUMBER MEANING :

-- 1 : length of strings

-= 2 : number of variable concatenation operations in one statement in
-- procedure

-~ EXAMPLE :

-- $ sim gen/param="shelll.sh","test.vhd",610,3
-- (UNIX equivalent : % sim gen -param=\"\shelll.sh\"\,\"\test.vhd\"\,10,3)
-- will generate a model in file "test.vhd" with an architecture

in the form :

entity test is end;
architecture test of test is
procedure concatenate is

variable static_var : string(l to 10) := "ABCDEFGHIJ";
variable var : string(1 to (10 * (3 + 1)));

begin
Jjar := static_var

& static_var
& static_var
& static_var;
end concatenate;
begin
concatenate;
end test,

entity test is end;
architecture test of test is
procedure concatenate is
variable static_var : string(l to %i%) := "717";
variable var : string(1 to (%1% * (%2% + 1)));
begin
var := static_var #2[& static_var];
end concatenate;
begin
concatenate;
end test;

X0

TEST NUMBER : 84

PATHNAME : [.BENCH.A.C.I2.P5]shellO.sh
(UNIX equivalent : bench/a/c/i2/p5/shell0.sh)

PURPOSE : Determine the simulation CPU time required to execute variable
concatenation statements. The model simulated is an architecture
consisting of a function declaration and a function call. The
function consists of a number of string variable declarations
and a concatenation statement for each variable. The factors to be
varied are the number of variable declarations/concatenation
statements in the function and the length of the string used in the
concatenations.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

~-- AUTHOR : Captain Karen M. Serafino
-- Date : 15 June 1989

—- PARAMETER NUMBER MEANING :

-- 1 : length of strings

- 2 : number of variable declarations/variable concatenation statements in
- function

~-- EXAMPLE :

-- $ sim gen/param="shell0.sh","test.vhd",10,3

- (UNIX equivalent : % sim gen -param=\"\shell0.sh\"\,\"\test.vhd\"\,10,3)
- will generate a model in file 'test.vhd" with an architecture
- in the form :

-- entity test is end;

-~ architecture test of test is

- function concatenate return boolean is

- variable static_var : string(1l to 10) := "ABCDEFGHIJ";
- variable varl : string(1l to (10 + 10));

-- variable var2 : string(1l to (10 + 10));

- variable var3 : string(1l to (10 + 10));

-- begin

-= var! := static_var & static_var;
-- var?2 := static_var & static_var;
-= var3d := static_var & static_var;

- return true;
- end concatenate;

-- signal return_sig : boolean := false,
-= begin
== return_sig <= concatenate;
-- end test;
181

entity test is end,
architecture test of test is
function concatenate return boolean is

variable static_var : string(1l to %1%) := "717";
#2(variable ve @ : string(1 to (%1% + %1%));]
begin
#2[var@ := static_var & static_var;]

return true;
end concatenate;

signal return_sig : boolean := false;
begin

return_sig <= concatenate;
end teét;

TEST NUMBER : 85

PATHNAME : [.BENCH.A.C.I2.P5]shelll.sh
(UNIX equivalent : bench/a/c/i2/p5/shelll.sh)

PURPOSE : Determine the simulation CPU time required to execute variable
concatenation operations in a function; determine the number of
concatenation operations allowed in one variable assignment
statement of a function. The model simulated is an architecture
consisting of a function declaration and a function call; the
function consists of two string variable declarations and a variable
assignment statement containing a number of concatenation operations.
The factors to be varied are the number of concatenation operations
contained in the variable assignment statement and the length of the
string used in the concatenations.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-- AUTHOR : Captain Karen M. Serafino
-- Date : 15 June 1989

-~ PARAMETER NUMBER MEANING :

-- 1 : length of strings

-~ 2 . number of variable concatenation operations in one statement in
-- function

-~ EXAMPLE :

- $ sim gen/param="shelll.sh","test.vhd",10,3

- (UNIX equivalent : % sim gen -param=\"\shelll.sh\"\,\"\test.vhd\"\,10,3)
-- will generate a model in file "test.vhd" with an architecture

-- in the form :

- entity test is end;

-- architecture test of test is

-- function concatenate return boolean is

- variable static_var : string(1l to 10) := "ABCDEFGHIJ";
-- variable var : string(1 to (10 * (3 + 1)));

-- begin

- var := static_var

-- & static_var
-- & static_var
-~ & static_var;
-- return true;

-- end concatenate;

-- signal return_sig : boolean := false;
-- begin

-- return_sig <= concatenate,

-- and test;

183

entity test is end;
architecture test of test is
function concatenate return boolean is

variable static_var : string(1l to %1%) := "717";
variable var : string(1 to (%1% * (%2% + 1)));
begin

var := static_var #2[& static_var];
return true;
end concatenate;
signal return_sig : boolean := false;
begin
retufn_sig <= conciiiuate;
end test;

TEST NUMBER : 86

PATHNAME : [.BENCH.A.C.H1.L1.M.S2]shell.sh
(UNIX equivalent : bench/a/c/h1/11/m/s2/shell.sh)

PURPOSE : Determine the simulation CPU time required for writing characters
to an output file. The model simulated is an entity consisting of a
procedure declaration and an architecture consisting of a procedure
call. The procedure consists of a for-loop whose number of
iterations is equal to the number of characters to write (excluding
linefeeds). The for-loop contains a write character statement and
an if-then construct containing a write linefeed statement. The
factor to be varied is the number of non-linefeed characters to
write.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-- AUTHOR : Captain Karen M. Serafino
=~ DATE : 15 June 1989

-~ PARAMETER MEANING :
-= 1 . number of characters to write to output file "data_file.dat";
-- after every 75 characters, a linefeed is written

-- EXAMPLE :

-- $ sim gen/param="shell.sh","test.vhd",6 100

- (UNIX equivalent : % sim gen -param=\"\shell.sh\"\,\"\test.vhd\"\,100)
-- will generate a model in file "test.vhd" with an architecture
-- in the form :

- entity test is

-- type char_file is file of character;

-- file out_file : char_file 1s out "data_file.dat";

-- procedure write_file(number_of_characters : in integer) is
-- begin

- for i in 1 to number_of_characters loop

- write(out_file,’=’);

- it (1 mod 75) = O then

- write(out_file,1f);

-= end 1f;

- end loop;

-- end write_file;

-- end test;

-- architecture test of test is

-- begin

-- write_file(100);

-- end test,

185

-- After simulating kernel test, "data_file.dat' will be as follows
- AREEEEERESE RS RERE R RN R R R R AR SRR KRR R R R R R AR T AR RIS AR R RN RS SR RN R h kR
—— RRRRRRRREERRRER R Rk

entity test is
type char_file is file of character;
file out_file : char_file is out "data_file.dat";
procedure write_file(number_of_characters : in integer) is
begin
for i in 1 to number_of_characters loop
write(out_file,’*’);
if (i mod 75) = 0 then
write(out_file,1f);
end if;
end loop;
end write_Tfile;
end test;
architecture test of test is
begin
write_tfile(%1%);
end test;

186G

TEST NUMBER : 87

PATHNAME : [.BENCH.A.C.H1.L3.S52]shell.sh

(UNIX equivalent : bench/a/c/h1/13/s2/shell.sh)

PURPOSE : Determine the simulation CPU time required for writing characters

to an output file. The model simulated is an entity consisting of
a procedure declaration and an architecture consisting of a
procedure call. The procedure consists of a while-loop whose number
of iterations is equal to the number of non-linefeed characters to
write. The while-loop contains a write character/write linefeed
combination and a subtraction statement to decrement the loop-
counter. The factor to be varied is the number of non-linefeed

. characters to write.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

AUTHOR : Cartain Karen M. Serafino
DATE : 15 June 1989

PARAMETER MEANING :
1 : number of lines to write to output file "data_file.dat'; each
line consists of a "#*" followed by a linefeed

EXAHPLE :
$ sim gen/param="shell.sh",“test.vhd",100
(UNIX equivalent : % sim gen -param=\"\shell.sh\"\,\"\test.vhd\"\,100)
will generate a model in file "test.vhd" with an architecture
in the form :
entity test is
type char_file is file of character;
file out_file : char_file is out "data_file.dat";
procedure write_file is
variable number_of_lines : integer := 100;
begin
vhile number_of_lines > 0 loop
write(out_file,’*’);
write(out_file,1f);

number_of _lines := number_of_lines - 1;
end loop;
end write_file;
end test;
architecture test of test is

begin
write_Tfile;
end test;

187

- After simulating kernel test, "data_file.dat" will be as follows :
- (100 lines)
—— *
- *

entity test is
type char_file is file of character;
file out_file : char_file is out "data_file.dat";
procedure write_file is
variable number_of_lines : integer := %1%;
begin
while number_of_lines > 0 loop
write(out_file,’*’);
write(out_file,1f);
number_of_lines := number_of_lines - 1;
end loop;
end write_file;
end test;
architecture test of test is
begin
write_file;
end tast;

18R

TEST NUMBER : 88

PATHNAME : [.BENCH.A.C.H1.S2)shell.sh

(UNIX equivalent : bench/a/c/h1/s2/shell.sh)

PURPOSE : Determine the simulation CPU time required to write characters

to an output file. The model simulated is an entity consisting of
a procedure declaration and an architecture consisting of a

a procedure call. The procedure consists of a number of write
character/write linefeed combinations. The factor to te varied is
the number of write character/write linefeed pairs in the procedure.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

AUTHOR : Captain Karen M. Serafino
DATE : 15 June 1989

PARAMETER MEANING :
1 : number of lines to write to output file "data_file.dat"; each
line consists of a "#+" followed by a linefeed

EXAMPLE :
$ sim gen/param="shell.sh","test.vhd",b 100
(UNIX equivalent : % sim gen -param=\"\shell.sh\"\,\"\test.vhd\"\,100)
will generate a model in file "test.vhd" with an architecture
in the form :
eniity test is
type char_file is file of character;
file out_file : char_file is out *"data_file.dat';
procedure write_file is
begin
write(out_file,'*’);
write(out_file,11);

(100 repetitions)

write(out_file,’*’);
write(out_file,1f);
end write_file;
end test;
architecture test of test 1is
begin
write_Tfile;
end test;

Aft.: simulating kernel test, "data_file.dat" will be as follows
(100 lines)

189

entity test is
type char_file is file of character;
file out_file : char_file is out "data_file.dat";
procedure write_file is
begin

#1[write(out_file,’*’);

write(out_file,11);]

end write_file;

end test;

architecture test of test is

begin
write_file;

end test;

190

TEST NUMBER : 89

PATHNAME : [.BENCH.A.C.H1R.M.S2]shell.sh
(UNIX equivalent : bench/a/c/hir/m/s2/shell.sh)

PURPOSE : Determine the simulation CPU time required for writing characters
to an output file. The model simulated is an entity consisting of
a procedure declaration and an architecture consisting ot a
procedure call. The procedure consists of a write character/write
linefeed combination and a recursive call to itself. The factor to
be varied is the n mber of times the procedure will recursively call
itself.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-- AUTHOR : Captain Karen M. Serafino
-- DATE . 15 June 1989

—-- PARAMETER MEANING :
- 1 : number of lines to write to output file "data_file.dat"; each
- line consists of a “*" followed by a linefeed

-~ EXAMPLE :

-- $ sim gen/param="shell.sh","test.vhd",4

-- (UNIX equivalent : % sim gen -param=\"\shell.sh\"\,\"\test.vhd\"\,4)
-- will generate a model in file "test.vhd" with an architecture
-- in the form :

-- entity test is

- type char_file is file of character;

- file out_file : char_file is out "data_filie.dat";

-- procedure write_file(number_of_lines : in integer) is
-- begin

- write(out_file,’*’);

- write(out_file,1f);

-- if number_of_lines > 1 then

-- write_tile(number_of_lines ~ 1);

-- end if;

- end write_file;

- end test;

-- architecture test of test 1s

-- begin

-- write_file(4);

- end test;

- After simulating kernel test, ''data_file.dat" will be as follows :
- *

- *

191

entity test is
type char_file is file of character;

file out_file : char_file is out "data_file.dat”;

procedure write_file(number_of_lines :

begin
write(out_file,’*’);
write(out_file,1f);
if number_of_lines > 1 then
write_file(number_of_lines - 1);
end if,
end write_file;
end test;
architecture test of test is
begin
write_file(%14);
end test;

in integer)

is

TEST NUMBER : 90

PATHNAME : [.BENCH.A.C.H1.P1)shellO.sh
(UNIX equivalent : bench/a/c/h1/pi/shell0.sh)

PURPOSE : Determine the simulation CPU time required to execute variable
addition statements. The model simulated is an entity consisting
of a procedure declaration and an architecture consisting of a
procedure call. The procedure consists of a number Sf integer
variable declarations and an addition statement for each variable.
The factor to be varied is the number of variable declarations/
addition statements in the procedure.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-- AUTHOR : Captain Karen M. Serafino
-- Date : 15 June 1989

-- PARAMETER NUMBER MEANING :
- 1 : number of variable declarations/variable addition statements in
- procedure

-- EXAMPLE :

-- $ sim gen/param="shellO.sh","test.vhd",3

-- (UNIX equivalent : % sim gen -param=\"\shellO.sh\"\,\"\test.vhd\"\,3)
-- vwill generate a model in file "test.vhd" with an architecture

-- in the form :

-- entity test is

-- procedure add is

-- variable varl : integer := O;
~- variable var2 : integer := 0O;
-- variable var3 : integer := O;
-- begin

~- vari := varl + 1;

-- var?2 := var2 + 1;

- var3 := var3 + 1;

-- end add;

- end test;

~= architecture test of test is

~- begin

~= add;

-~ end test;

entity test is
procedure add is

193

#11 variable var@ : integer := 0;]
begin

#1[var®@ := var@ + 1;]
end add;

end test;

architecture test of test is

begin
add;

end test;

194

TEST WUMBER : 91

PATHNAME :

PURPOSE :

[.BENCHR.A.C.H1.P1}shelll.sh
(UNIX equivalent : bench/a/c/h1/p1/shelll.sh)

Determine the simulation CPU time required to execute variable
addition operations in a procedure; determine the number of
addition operations allowed in one variable assignment -.tatement of
a procedure. The model simulated is an entity consisting of a
procedure declaration and an architecture consisting of a procedure
call; the procedure consists of an integer variable declaration and
a variable assignment statement containing a number of addition
operations. The factor to be varied is the number of addition
operations contained in the variable assignment statement.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-- AUTHOR : Captain Karen M. Serafiro

-~ Date :

15 June 1989

-~ PARAMETER NUMBER MEANING :

! number of variable addition operations in one statement in

-~ 1
-~ procedure
-~ EXAMPLE :

-~ $ sim gen/param="shelll.sh","test.vhd",3
-~ (UNIX equivalent : % sim gen -param=\"\shelll.sh\"\,\"\test.vhd\"\,3)

will generate a model in file "test.vhd" with an architecture
in the form :

entity test is
procedure add is

variable var : integer := 0;
begin
var := var
+ var
+ var
+ var;
end add;
end test;
architecture test of test is
begin
add;
end test;

entity test is

procedure add is
variable var : integer := O;
begin
var := var #1[+ varl;
end add;
end test;
architecture test of test is
begin
add;
end test;

106

TEST NUMBER : 92

PATHNAME : [.BENCH.A.C.I1.P1)shelld.sh
(UNIX equivalent : bench/a/c/i1/pi1/shell0.sh)

PURFJUSE : Determine the simulation CPU time required to execute variable
addition statements. The model simulated is an entity consisting
of a function declaration and an architecture consisting of a
function call. The function consists of a number of integer
variable declarations and an addition statement for each variable.
The factor to be varied is the number of variable declarations/
addition statements in the function.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-- AUTHOR : Captain Karen M. Serafino
-- Date : 15 June 1989

-- PARAMETER NUMBER MEANING :
- 1 : number of variable declarations/variable addition statements in
-- function

-- EXAMPLE :

-- $ sim gen/param="snell0.sh", "test.vhd",3

- (UNIX equivalent : % sim gen -param=\"\shell0.sh\"\,\"\test.vhd\"\,3)
-= will generate a model in file "test.vhd" with an architecture

-- in the form :

- entity test is

-- function add return boolean is

- variable varl : integer := O;
-- variable var2 : integer := O;
-- variable var3 : integer := 0;
-- begin

-- vari := varl + 1;

- var2 := var2 + 1;

~-- var3d := var3d + 1;

- return true,

-~ end add,

- end test;

-- architecture test of test is

- signal done : boolean := false;
-- begin

-- done <= add;

-- end test;

entity test is

function add return boolean is
#1{ variable var@ : integer := 0;]
begin
#1[var@ := var® + 1;]
return true;
end add;
end test;
architecture test of test is
signal done : boolean := false;
begin
done <= add;
end test,;

198

TEST NUMBER : 93

PATHNAME :

PURPOSE :

[.BEECH.A.C.I1.Pilshelll.sh
(UNIX equivalent : bench/a/c/i1/pi1/shelll.sh)

Determine .he simulation CPU time required to exe-ute variable
addition operations in a function, determine the number of

addition operations allowed in one vari~ble assignment

statement of a function. The model simulated is an entity
consisting of a function declaration and an architecture consisting
of a function call; the function consists of an integer variable
declaration and a variable assignment statement containing a number
of addition operations. The factor to be varied is the number of
addition operations contained in the variable assignment statement.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-- AUTHOR : Captain Karen M. Serafino

-- Date :

15 June 1989

-- PARAMETER NUMBER MEANING :

: number of variable addition operations in one statement in

-- 1
- function
--— EXAMPLE :

-- $ sim gen/param="shelll.sh","test.vhd",3
- (UNIX equivalent : % sim gen -param=\"\shelll.sh\"\,\"\test.vhd\"\,3)

will generate a model in file "test.vhd"” with an architecture
in the form :

entity test is
function add return boolean is

variable var : integer := O;
begin
var := var
+ var
+ var
+ var;
return true;
end add;
end test;
architecture test of test is
signal done : boolean := false;
begin

done <= add;
end test;

199

entity test is
function add return boolean is

variable var : intege~ := O;
begin
var := var #i[+ var];
return true;
end add;
end test;
architecture test of test is
signal done : boolean := false;
begin
done <= add;
end test;

200

TEST NUMBER : 94

PATHNAME : [.BENCH.A.C.I1.P2)shellO.sh

(""'NIX equivalent : bench/a/c/11/p2/shell0.sh)

PURPOSE : Determine the simulation CPU time required to execute viriable

subtraction statements. The model simulated is an entity consisting
of a function declaration and an architecture consisting of a
function call. The function consists of a number of integer
variable dec. rati ns ard1 a subtraction statement for each variable.
The factor to be varied is the number of variable declarations/
subtraction statements in the function.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

AUTHOR : Captain Karen M. Serafino
Datz2 : 15 June 1989

PARAMETER NUMBER MEANING :
1 : number of variable declarations/variable subtraction statements in
function

EXAMPLE :
$ sim gen/param='"shellO.sh", "test.vhd", K3
(UNIX equivalen : % sim gen -param=\"\shellO.sh\"\,\"\test.vhd\"\,3)
will generate a model in file "test.vhd" with an architecture
in the form :
entity test is
function subtract return boolean 1is

variable varl : integer := 0;
variable var2 : integer := O;
variable var3 : integer := 0;
begin
varl := varl - 1;
var2 := var2 - 1,
var3 := var3d - 1;
return true,;
end subtract;
end test;
architecture test of test is
signal done : boolean := false;
begin
done <= subtract;
end test;

ent.ty test is

A

function subtract return boolean is

#1[variable varQ® : integer :=
begin
#1(var®@ := var® - 1;]
return true;
end subtract;

end test;
architecture test of test is
signal done : boolean := false;
begin
done <= subtract;
end test;

0;]

202

TEST NUMBER : 95

PATHNAME : (.BERCH.A.C.I1.P2]shellil.sh

(UNIX equivalent : bench/a/c/i1/p2/shelll.sh)

PURPOSE : Determine the simulation CPU time required to execute variable

subtraction operations in a runction; determine the number of
subtraction operations allowed in one variable assignment

statement of a function. The model simulated is an entity
consisting of a function declaration and an architecture consisting
of a function call; the function consists of an integer variable
declaration and a variable assignment statement containing a number
of subtraction operations. The factor to be varied is the number of
subtraction operations contained in the variable assignment
statement.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

AUTHOR : Captain Karen M. Serafino
Date : 15 June 1989

PARAMETER NUMBER MEANING :
1 : number of variable subtraction operations in one statement in
function

EXAMPLE :
$ sim gen/param="shelll.sh","test.vhd",K3
(UNIX equivalent : % sim gen -param=\"\shelll.sh\"\,\"\test.vhd\"\,3)
will generate a model in file "test.vhd" with an architecture
in the form :
entity test 1is
function subtract return boolean is

variable var : integer := O0;
begin
var := var
- var
- var
- var;

return true;
end subtract;

end test;

architecture test of test is
signal done : boolean := false;

begin

done <= subtract;
end test;

203

entity test is
function subtract return boolean is

variable var : integer := O;
begin
var := var #1[- varl;

return true;
end subtract;

end test;

architecture test of test is
signal done : boolean := false;

begin

done <= subtract;
end test;

201

TEST NUMBER : 96

PATHNAME : [.BENCH.A.C.H1.P2lshellO.sh
(UNIX equivalent : bench/a/c/hi1/p2/shellO.sh)

PURPOSE : Determine the simulation CPU time required to execute variable
subtraction statements. The model simulated is an entity consisting
of a procedure declaration and an architecture consisting of a
procedure call. The procedure consists of a number of integer
variable declarations and a subtraction statement for each variable.
The factor to be varied is the number of variable declarations/
subtraction statements in the procedure.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-~ AUTHOR : Captain Karen M. Serafino
-- Date : 15 June 1989

~- PARAMETER NUMBER MEANING :
- 1 : number of variable declarations/variable subtraction statements in
-- procedure

-- EXAMPLE :

-— $ sim gen/param=“shellO.sh"”,"test.vhd",3

-- (UNIX equivalent : % sim gen -param=\"\shell0.sh\"\,\"\test.vhd\"\,3)
-- will generate a model in file "test.vhd” with an architecture

-- in the form :

-- entity test is

-- procedure subtract is

-- variable varl : integer := O;

- variable var2 : integer := 0;

-- variable var3 : integer := O0;

-- begin

-- varl := varl - 1;

-— var2 := var?2 - 1;

-- var3 := var3 - 1;

-- end subtract;

-- end test;

-- architecture test of test is
begin

-- subtract;

-- erd test;

entity test is
procedure subtract is

200

#1(variable varQ@ : integer := 0;]
begin

#1[var® := var® - 1;]
end subtract;

end test;

architecture test of test is

begin
subtract;

end test;

206

TEST NUMBER : 97

PATHNAME :

PURPOSE :

[.BENCH.A.C.H1.P2)shelll.sh
(UNIX equivalent : bench/a/c/h1/p2/shelll.sh)

Determine the simulation CPU time required to execute variable
subtraction operations in a procedure; determine the number of
subtraction operations allowed in one variable assignment statement
of a procedure. The model simulated is an entity consisting of a
procedure declaration and an architecture consisting of a procedure
call; the procedure consists of an integer variable declaration and
a variable assignment statement containing a number of subtraction
operations. The factor to be varied is the number of subtraction
operations contained in the variable assignment statement.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-- AUTHOR : Captain Karen M. Serafino

-- Date :

15 June 1989

-- PARAMETER NUMBER MEANING :

: number of variable subtraction operations in one statement in

-- 1
-~ procedure
-- EXAMPLE :

-— $ sim gen/param="shelll.sh", "test.vhd", 3
-- (UNIX equivalent : % sim gen -param=\"\shelll.sh\"\,\"\test.vhd\"\,3)
-- will generate a model in file "test.vhd" with an architecture

in the form :

entity test is
procedure subtract is

variable var : integer := 0;
begin
var := var
- var
- var
- var;
end subtract;
end test;
architecture test of test is
begin
subtract;
end test;

entity test is

207

procedure subtract is
variable var : integer := 0;
begin
var := var #1[~ var];
end subtract;
end test;
architecture test of test is
begin
subtract;
end test;

TEST NUMBER : 98

PATHNAME : [.BENCH.A.C.H1.P3]shell0.sh
(UNIX equivalent : bench/a/c¢/h1/p3/shell0.sh)

PURPOSE : Determine the simulation CPU time required to execute variable
multiplication statements. The model simulated is an entity
consisting of a procedure declaration and an architecture consisting
of a procedure call. The procedure consists of a number of integer
variable declarations and a multiplication statement for each
variable. The factor to be varied is the number of variable
declarations/multiplication statements in the procedure.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-~ AUTHOR : Captain Karen M. Serafino
-~ Date : 15 June 1989

-- PARAMETER NUMBER MEANING :
-- 1 : number of variable declarations/variable multiplication statements in
-- procedure

-- EXAMPLE :

-- $ sim gen/param="shellO.sh”,"test.vhd",3

-- (UNIX equivalent : % sim gen -param=\"\shellO.sh\"\,\"\test.vhd\"\,3)
-- will generate a model in file "test.vhd" with an architecture

-- in the form :

-- entity test is

-- procedure multiply is

-- variable varl : integer := 5;
-- variable var2 : integer := 5;
-- variable var3 : integer := 5;
-= begin

-- varl := varl » 2;

-- var2 := var2 * 2;

-- var3 := var3 * 2;

- end multiply;

- end test;

- architecture test of test is

-- begin

- multiply;

-= end test;

entity test is
procedure multiply is

200

#1[variable var® : integer := §;]
begin

#1(var® := var® = 2;]
end multiply;

end test;

architecture test of test is

begin
multiply;

end test;

210

TEST NUMBER : 99

PATHNAME :

PURPOSE :

{.BENCH.A.C.H1.P3]}shelll.sh
(UNIX equivalent : bench/a/c/h1/p3/shelll.sh)

Determine the simulation CPU time required to execute variable
multiplication operations in a procedure; determine the number of
multiplication operations allowed in one variable assignment
statement of a procedure. The model simulated is an entity
consisting of a procedure declaration and an architecture consisting
of a procedure call; the procedure consists of an integer variable
declaration and a variable assignment statement containing a number
of multiplication operations. The factor to be varied is the number
of multiplication operations contained in the variable assignment
statement.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-- AUTHOR : Captain Karen M. Serafino

-~ Date :

15 June 1989

~- PARAMETER NUMBER MEANING :

-- 1 : number of variable multiplication operations in one statement in
- procedure
-~ EXAMPLE :

-- $ sim gen/param="shelll.sh", "test.vhd",3
-- (UNIX equivalent : % sim gen -param=\"\shelll.sh\"\,\"\test.vhd\"\,3)

will generate a model in file "test.vhd" with an architecture
in the form :

entity test is
procedure multiply is

variable var : integer := 1,
begin
var := var
* var
* var
* var;
end multiply;
end test;
architecture test of test is
begin
multiply;

end test;

entity test is
procedure multiply is
variable var : integer := 1;
begin
var := var
#1[* var];
end multiply;
end test;
architecture test of test is
begin
multiply;
end test;

~

[

TEST NUMBER : 100

PATHNAME : [.BENCH.A.C.I1.P3)shellO.sh
(UNIX equivalent : bench/a/c/i1/p3/shell0.sh)

PURPOSE : Determine the simulation CPU time required to execute variable
multiplication statements. The model simulated is an entity
consisting of a function declaration and an architecture consisting
of a function call. The function consists of a number of integer
variable declarations and a multiplication statement for each
variable. The factor to be varied is the number of variable
declarations/multiplication statements in the function.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-- AUTHOR : Captain Karen M. Serafino
-- Date : 15 June 1989

-- PARAMETER NUMBER MEANING :
-- 1 : number of variable declarations/variable multiplication statements in
-- function

-- EXAMPLE :

-- $ sim gen/param="shellQ.sh","test.vhd",3

-- (UNIX equivalent : % sim gen -param=\"\shell0.sh\"\,\"\test.vhd\"\,3)
- will generate a moael in file "test.vhd" with an architecture

- in the form :

-- entity test is

-- function multiply return boolean 1s

-~ variable vari : integer := 5;
- variable var2 : integer := §;
-- variable var3 : integer := §5;
-- begin

- varl := varil = 2,

-- var2 := var2 * 2;

- var3 := var3 *» 2,

- return true;

-- end multiply;

-- end test;

-- architecture test of test is

-- signal done : boolean := false;
-- begin

- done <= multiply;

-- end test;

entity test is

Zunction multiply return boolean is
#1(variable var® : integer := 5;]
begin
#i[var@ := var® = 2;)
return true;
end multiply;

end test;

architecture test of test is
signal done : boolean := false;

begin

done <= multiply;
end test;

214

TEST NUMBER : 101

PATHNAME : [.BENCH.A.C.I1.P3]shelll.sh
(UNIX equivalent : beach/a/c/i1/p3/shelll.sh)

PURPOSE : Determine the simulation CPU time required to execute variable
multiplication operations in a function; determine the number of
multiplication operations allowed in one variable assignment
statement of a function. The model simulated is an entity
consisting of a function declarution and an architecture consisting
of a function call; the function consists of an integer variable
declaration and a variable assignment statement containing a number
of multiplication operations. The factor to be varied is the number
ot multiplication operations contained in the variable assignment
statement.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-- AUTHOR : Captain Karen M. Serafino
~- Date : 15 June 1989

-- PARAMETER NUMBER MEANING :
-- 1 : number of variable multiplication operations in one s*atement in
-- function

-- EXAMPLE -

-- $ sim gen/parar="shelll.sh","test.vhd",3

-- (UNIX equivalent : % sim gen -param=\"\shelll.sh\"\,\"\test.vhd\"\,3)
-- will generate a model in file "test.vhd" with an architecture

-~ in the form :

-- entity test ic

- function multiply return boolean 1is

-- variable var : integer := 1;
-- begin

-~ var := var

- * var

- * var

. * var,

-- return true;
-- end multiply;

-- end test;

-- architecture test of test is

-- signal done : boolean := false;
-- begin

-- done <= multiply,;
-~ end test;

entity test is

function multiply return boolean 1is

variable var : integer := 1;
begin
var := var
#1(* var];

return true;
end multiply;

end test;

architecture test of test is
signal done : boolean := false;

begin

done .<= multiply;
end test;

216

TEST NUMBER : 102

PATHNAME : [.BENCH.A.C.H1.P4)shellO.sh
(UNIX equivalent : bench/a/c/h1/p4/shell0.sh)

PURPOSE : Determine the simulation CPU time required to execute variable
division statements. The model simulated is an entity consisting of
a procedure declaration and an architecture consisting of a
procedure call. The procedure consists of a number of integer
variable declarations and a division statement for each variable.
The factor to be varied is the number of variable declarations/
division statements in the procedure.

-

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-- AUTHOR : Captain Karen M. Serafino
-~ Date : 15 June 1989

-- PARAMETER NUMBER MEANING :
- 1 : number of variable declarations/variable division statements in
- procedure

-~ EXAMPLE :

-- $ sim gen/param="shell0.sh","test.vhd",3

- (UNIX equivalent : % sim gen -param=\"\shellO.sh\"\,\"\test.vhd\"\,3)
-- will generate a model in file "test.vhd" with an architecture

-- in the form :

- entity test is

-- procedure divide is

-- variable varl : integer := 10;
-- variable var2 : integer := 10;
-- variable var3 : integer := 10;
-- begin

- varl := varl / 2;

-- var2 := var2 / 2;

-- var3 := var3 / 2;

-- end divide;

-- end test;

- architecture test of test is

-- begin

-- divide;

-- end test;

entity test 1is
procedure divide 1s

o
=1

#1[variable var® : integer := 10;]
begin

#1(var® := var® / 2;]
end divide;

end test;

architecture test of test is

begin
divide;

end test;

218

TEST NUMBER : 103

PATHNAME : [.BENCH.A.C.H1.P4]shelll.sh
(UNIX equivalent : bench/a/c/h1/p4/shelll.sh)

PURPOSE : Determine the simulation CPU time required to execute variable
division operations in a procedure; determine the number of
division operations allowed in one variable assignment
statement of a procedure. The model simulated is an entity
consisting of a procedure declaration and an architecture consisting
of a procedure call; the procedure consists of an integer variable
declaration and a variable assignment statement containing a number
of division operations. The factor to be varied is the number
of division operations contained in the variable assignment
statement.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-- AUTHOR : Captain Karen K. Serafino
-- Date : 15 Juae 1989

-- TARAMETER NUMBER MEANING :
-- 1 : number of variable division operations in one statement in
- procedure

-~ EXAMPLE :

-- $ sim gen/param='shelll.sh", “test.vhd",3

- (UNIX equivalent : % sim gen ~param=\"\shelli.sh\"\,\"\test.vhd\"\,3)
-- will generate a model in file "test.vhd" with an architecture

-- in the form :

-- entity test is

- procedure divide is

-- variable var : integer := 1,
-- begin

-- var := var

-- / var

- / var

-- / var;

-- end divide;

- end test;

-- architecture test of test 1is
-- begin

-- divide;

-- end test;

219

entity test is
procedure divide is
variable var : integer := 1;
begin
var = var
#1[/ var];
end divide;
end test;
architecture test of test is
begin
divide;
end test;

220

TEST WUMBER : 104

PATHNAME : [.BENCH.A.C.I11.P4]shell0.sh
(UNIX equivalent : bench/a/c/i1/p4/shell0.sh)

PURPOSE : Determine the simulation CPU time required to execute variable
division statements. The model simulated is an entity consisting of
a function declaration and an architecture consisting of a function
call. The function consists of a number of integer variable
declarations and a division statement for each variable. The
factor to be varied is the number of variable declarations/division
statements iu the func.ion.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-=- AUTHOR : Captain Karen M. Serafino
-- Date : 15 June 1989

-- PARAMETER NUMBER MEANING :
- 1 : number of variable declarations/variable division statements in
-- function

-~ EXAMPLE :

-- $ sim gen/param="shellO.sh","test.vhd",3

-- (UNIX equivalent : % sim gen -param=\"\shellO.sh\"\,\"\test.vhd\"\,3)
-- will generate a model in file "test.vhd” with an architecture

-- in the form :

-- entity test is

-= function divide return boolean is

-— variable varil : integer := 10;
- variable var2 : integer := 10;
-~ variable var3 : integer := 10;
- begin

-- varl := varl / 2;

-- var2 := var2 / 2;

- var3 := var3d / 2;

-- return true;
-= end divide;

-- end test;

-- architecture test of test is

-- signal done : boolean := false;
- begin

-- done <= divide;

- end test;

entity test is

rs
re

function divide return boolean is
#1[variable var® : integer := 10;]
begin
#10 var® := var® / 2;]
return true;
end divide;

end test;
architecture test of test is
signal done : boolean := false;
begin
done <= divide;
end test;

220

TEST NUMBER : 105

PATHNAME : [.BENCH.A.C.I1.P4)shelli.sh

(UNIX equivalent : bench/a/c/i1/p4/shelll.sh)

PURPOSE : Determine the simulation CPU time required to execute variable

division operations in a function; determine the number of
division operations allowed in one variable assignment statement of
a function. The model simulated is an entity consisting of a
function declaration and an architecture consisting of a function
call; the function consists of an integer variable declaration and
a variable assignment statement containing a number of division
operations. The factor to be varied is the number of division
operations contained in the variable assignment statement.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

AUTHOR : Captain Karen M. Serafino
Date : 15 June 1989

PARAMETER NUMBER MEANING :
1 : number of variable division operations in one statement in
function

EXAMPLE :
$ sim gen/param="shelll.sh","test.vhd",3
(UNIX equivalent : % sim gen -param=\"\shelli.sh\"\,\"\test.vhd\"\,3)
will generate a model in file "test.vhd" with an architecture
in the form :
entity test 1is
function divide return boolean is

variable var : integer := 1;
begin
var := var
/ var
/ var
/ var;

return true;
end divide;

end test;

architecture test of test is
signal done : boolean := false;

begin

done <= divide;
end test;

[N
[
o~

entity test is
function divide return boolean is

variable var : integer := 1;
begin
var := var
#1[/ varl;

return true;
end divide;
end test;
architecture test of test is
signal done : boolean := false;
begin
done <= divide;
end test;

TEST NUMBER : 106

PATHNAME : [.BENCH.A.C.I1.P5]shell0.sh
(UNIX equivalent : bench/a/c/i1/p5/shell0.sh)

PURPOSE : Determine the simulation CPU time required to execute variable
concatenation statements. The model simulated is an entity
consisting of a function declaration and an architecture consisting
of a function call. The function consists of a number of string
variable declarations and a concatenation statement for each
variable. The factors to be varied are the number of variable
declarations/concatenation statements in the function and the length
of the string used in the concatenations.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-- AUTHOR : Captain Karen M. Serafino
== Date : 15 June 1989

-~ PARAMETER NUMBER MEANING :

-- 1 : length of strings

-- 2 : number of variable declarations/variable concatenation statements in
- function

-~ EXAMPLE :

- $ sim gen/param="shell0.sh","test.vhd", 10,3

-- (UNIX equivalent : % sim gen -param=\"\shellO.sh\"\,\"\test.vhd\"\,10,3)
-- will generate a model in file "test.vhd" with an architecture
- in the form :

--= entity test is

- function concatenate return boolean is

- variable static_var : string(1l to 10) := "ABCDEFGHIJ";
- variable varl : string(1l to (10 + 10));

-- variable var2 : string(1 to (10 + 10));

-- variable var3 : string(1l to (10 + 10));

-- begin

-- varl := static_var & static_var,;
- var?2 := static_var & static_var;
~- var3 := static_var & static_var;

-- return true;
-- end concatenate;

~--= end test;

-= architecture test of test 1is

-- signal done : boolean := false;
-- begin

~- done <= concatenate;
-- end test;

ro
ro
D

entity test is
function concatenate return boolean is

variable static_var : string(1 to %1%} := »?1?»;
#2[variable var® : string(1 to (%1% + %1%));]
begin
#2(var® := static_var & static_var;]

return true;
end concatenate;

end test;

architecture test of test is
signal done : boclean := false;

begin -

done <= concatenate;
end test;

TEST NUMBER : 107

PATHNAME : [.BENCH.A.C.I1.PS]shelll.sh
(UNIX equivalent : bench/a/c/i1/p5/shelll.sh)

PURPOSE : Determine the simulation CPU time required to execute variable
concatenation operations in a function; determine the number of
concatenation operations allowed in one variable assignment
statement of a function. The model simulated is an entity
consisting of a function declaration and an architecture consisting
of a function call; the function consists of two string variable
declarations and a variable assignment statement containiag a number
of concatenation operations. The factors to be varied are the
number of concatenation operations contained in the variable
assignment statement and the length of the string used in the
concatenations.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-- AUTHOR : Captain Karen M. Serafino
-- Date : 15 June 1989

-- PARAMETER NUMBER MEANING :

-- 1 : length of strings

-- 2 : number of variable concatenation operations in one statement in
-- function

-- EXAMPLE :

- $ sim gen/param="shelll.sh","test.vhd",10,3

-~ (UNIX equivalent : % sim gen -param=\"\shelll.sh\"\,\"\test.vhd\"\,10,3)
~-- will generate a model in file "test.vhd” with an architecture

- in the form :

-- entity test is

- function concatenate return boolean is

-- variable var : string(1l to 10) := "ABCDEFGHIJ";

-- variable result_var : string(1l to (10 * (3 + 1)));
-- begin

-- result_var := var

-- & var

-- & var

-- & var,

-- return true;
-~ end concatenate;

-~ end test;
- architecture test of test is
~-- signal done : boolean := false;

-- begin

re

- done <= concatenate;
-— end test;

entity test is
function concatenate return boolean is

variable var : string(1 to %1%) := "717";
variable result_var : string(1 to (%1% *» (%2% + 1)));
begin
result_var := var
#2(& var];

return true,
end concatenate;

end test,;
architecture test of test is
signal done : boolean := false;
begin
done <= concatenate;
end test;

TEST NUMBER : 108

PATHNAME : [.BENCH.A.C.H1.P5]shellO.sh
(UNIX equivalent : bench/a/c/hi/p5/shell0.sh)

PURPOSE : Determine the simulation CPU time required to execute variable
concatenation statements. The model simulated is an entity
consisting of a procedure declaration and an architecture consisting
of a procedure call. The procedure consists of a number of string
variable declarations and a concatenation statement for each
variable. The factors to be varied are the number of variable
declarations/concatenation statements in the procedure and the
length of the strings used in the concatenations.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-- AUTHOR : Captain Karen M. Serafino
-- Date : 15 June 1989

-- PARAMETER NUMBER MEANING

-- 1 : length of strings

-- 2 : number of variable declarations/variable concatenation statements in
-- procedure

-- EXAMPLE :

- $ sim gen/param="shell0.sh","test.vhd",610,2

- (UNIX equivalent : % sim gen -param=\"\shell0.sh\"\,\"\test.vhd\"\,10,3)
- will generate a model in file "test.vhd" with an architecture

-- in the form

- entity test is

-- procedure concatenate 1s

-- variable varl : strang(1l to (10 + 10));

-- variable var2 : string(1l to (10 + 10));

-- variable var3 : string(! to (10 + 10));

-- variable static_var : strang(l to 10) := "ABCDEFGHIJ";
-- begin

-- varl := static_var & static_var,;

-- var2 := static_var & static_var;

-- var3 := static_var & static_var;

-- end concatenate;

-- end test;

-- architecture test of test 1s

-- begin

-- concatenate;
-- end test;

MU

entity test is
procedure concatenate is
#2[variable var® : string(i to (%1% + %1%));)

vaziable static_var : string(1l to %1%) := "717";
begin
#2(var® := static_var & static_var;]
end concatenate;
end test;
architecture test of test 1is
begin
concatenate;
end test;

240

TEST NUMBER : 109

PATHNAME : [.BENCH.A.C.H1.P5)shelll.sh
(UNIX equivalent : bench/a/c/h1/p5/shelll.sh)

PURPOSE : Determine the simulation CPU time required to execute variable
concatenation operations in a procedure; determine tne number of
concatenation operations allowed in one variable assignment
statement of a procedure. The model simulated is an entity
consisting of a procedure declaration and an architecture consisting
of a procedure call; the procedure consists of a string variable
declaration and a variable assignment statement containing a number
of concatenation operations. The factors to be varied are the
number of concatenation operations contained in the variable
assignment statement and the length of the string used in the
concatenations.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-- AUTHOR : Captain Karen M. Serafino
-- Date : 15 June 1989

-- PARAMETER NUMBER MEANING :

-- 1 : length of strings

-- 2 : number of variable concatenation operations in one statement in
-- procedure

-- EXAMPLE :

-- $ sim gen/param="shelll.sh",6"test.vhd", 10,3

-- (UNIX equivalent : % sim gen -param=\"\shelll.sh\"\,\"\test.vhd\"\,10,3)
-- will generate a model in file "test.vhd" with an architecture

-- in the form :

-= entity test is

-- procedure concatenate is

-- variable result_var : string(1 to (10 * (3 + 1)));

-- variable var : string(1 to 10) := "ABCDEFGRIJ";
-- begin

- result_var := var

-- & var
-- & var
-- & var;
-- end concatenate;

- end test;

-- architecture test of test is
-- begin

-- concatenate;

-- end test;

231

entity test is
procedure concatenate is
variable result_var : string(1 to (%1% = (%2% + 1)));
variable var : string(1l to %1%) := “717";
begin
result_var := var
#2[& var];
end concatenate;
end test;
architecture test of test is
begin
concatenate;
end test;

TEST NUMBER : 110

PATHNAME : [.BENCH.A.C.H1.P6]shellO.sh
bench/a/c/h1/p6/shell0.sh)

(UNIX equivalent :

PURPOSE : Determine the simulation CPU time required to execute variable

logical AND statements.

The model simulated is an entity consisting

of a procedure declaration and an architecture consisting of a
procedure call. The procedure consists of a number of variable
declarations and a logical AND statement for each variable. The
factor to be varied is the number of variable declarations/logical
AND statements in the procedure.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

--— AUTHOR : Captain Karen M.

-- Date : 15 June 1989

-- PARAMETER NUMBER MEANING :

Serafino

-- 1 : number of variable declarations/AND statements in procedure

-- EXAMPLE :

- $ sim gen/param="shellO.sh","test.vhd",3
-- (UNIX equivalent : % sim gen -param=\"\shellO.sh\"\,\"\test.vhd\"\,3)
-- will generate a model in file "test.vhd" with an architecture

-- in the form :
-~ entity test is

-- procedure bool_and is

1)

lo’;
!1);
)0!;

-- variable varl : bit

-~ variable var2 : bit
-— variable var3 : bit

-- begin

-- vari := varil AND varil;
-- var2 := var2 AND var?2;
-- var3 := var3 AND var3;
-- end bool_and;

-- end test;

-- architecture test of test 1s
-- begin

-- bool_and;

-= end test;

entity test is
procedure bool_and 1is
#1(variable varQ : bit :=

1§280¢813%° ;)

KBRS

begin
#1(var® := var® AND var®;]
end bool_and;
end test;
architecture test of test is
begin
bool_and;
end test;

231

TEST NUMBER : 111

PATHNAME : [.BENCH.A.C.H1.P6)shelll.sh
(UNIX equivalent : bench/a/c/h1/p6/shelll.sh)

PURPOSE : Determine the simulation CPU time required to execute variable
logical AND operations in a procedure; determine the number of
logical AND operations allowed in one variable assignment
statement of a procedure. The model simulated is an entity
consisting of a procedure declaration and an architecture consisting
of a procedure call; the procedure consists of a variable
declaration and a variable assignment statement containing a number
of logical AND operations. The factor to be varied is the number

. of logical AND operations contained in the variable assignment
statement.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

~= AUTHOR : Captain Karen M. Serafino
~- Date : 15 June 1989

~- PARAMETER NUMBER MEANING :
-- 1 : number of variable AND operations in one statement in procedure

~- EXAMPLE :

-~ $ sim gen/param="shelll.sh","test.vhd",3

-- (UNIX equivalent : % sim gen -param=\"\shelll.sh\"\,\'"\test.vhd\"\,3)
-- will generate a model in file "test.vhd" with an architecture

-- in the form :

- entity test is

-- procedure bool_and is

-- variable var : bit;

-— begin

- var := var

-- AND var
-- AND var
-- AND var;
- end bool_and;

-- end test;

~-- architecture test of test 1is
-- begin

- bool_and;

-- end test;

entity test is

235

procedure bool_and is
variable var : bit;
begin
var := var
#1(AND var];
end bool_and;
end test;
architecture test of test is
begin
bool_and;
end test;

236

TEST WUMBER : 112

PATHNAME :

PURPOSE :

[.BENCH.A.C.H2.P6]shellO.sh
(UNIX equivalent : bench/a/c/h2/p6/shell0.sh)

Determine the simulation CPU time required to execute variable

logical AND statements.

The model simulated is an architecture

consisting of a procedure declaration and a procedure call. The
procedure consists of a number of variable declarations and a
logical AND statement for each variable. The factor to be varied is
the number of variable declarations/logical AND statements in the

procedure.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

== AUTHOR : Captain Karen M. Serafino

-- Date :

15 June 1989

-= PARAMETER NUMBER MEANING :

- 1

procedure

-~ EXAMPLE :
-- $ sim gen/param="shell0.sh","test.vhd",3

-- (UNIX equivalent :

entity test is end;

: number of variable declarations/variable AND statements in

% sim gen -param=\"\shellO.sh\"\,\"\test.vhd\"\,3)
will generate a model in file "test.vhd" with an architecture
in the form :

architecture test of test is

procedure bool_and is
variable vari : bit
variable var2 : bit
variable var3 : bit
begin

varl := varl AND vari;
var2 := var2 AND var2;
var3 := var3 AND var3;
end bool_and;
begin
bool_and;
end test;

entity test is end;
architecture test of test is
procedure bool_and is

)o);
111;
)Oi;

237

#1(variable var® : bit := ’$2$0%$1%’;]
begin

#1[var® := var® AND varQ;]
end bool_and;

begin
bool_and;

end test;

TEST NUMBER : 113

PATHNAME :

PURPOSE :

[.BENCH.A.C.H2.P6])shelll.sh
(UNIX equivalent : bench/a/c/h2/p6/shelll.sh)

Determine the simulation CPU time required to execute variable
logical AND operations in a procedure; determine the number of
logical AND operations allowed in one variable assignment statement
of a procedure. The model simulated is an architecture consisting
of a procedure declaration and a procedure call; the procedure
consists of a variable declaration and a variable assignment
statement containing a number of addition operations. The factor to
be varied is the number of logical AND operations contained in the
variable assignment statement.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-- AUTHOR : Captain Karen M. Serafino

-- Date :

15 June 1989

-- PARAMETER NUMBER MEANING :

- 1

: number of variable AND operations in one statement in procedure

-- EXAMPLE :

-- $ sim gen/param="shelll.sh", "test.vhd",3

-- (UNIX equivalent : % sim gen -param=\"\shelll.sh\"\,\"\test.vhd\"\,3)
-- will generate a model in file "test.vhd” with an architecture

in the form :

entity test is end,;
architecture test of test is
procedure bool_and is
variable var : bit;

begin
var := var
AND var
AND var
AND var;
end bool_and;
begin
bool_and;
end test;

entity test is end;
architecture test of test is
procedure bool_and is

230

variable var :

begin
var := var
#1(
end bool_and;
begin
bool_and;
end test;

bit;

AND var];

240

TEST NUMBER : 114

PATHNAME : [.BENCH.A.C.I1.P6)shell0.sh
(UNIX equivalent : bench/a/c/i1/p6/shell0.sh)

PURPOSE : Determine the simulation CPU time required to execute variable
logical AND statements. The model simulated is an entity consisting
of a function declaration and an architecture consisting of a
function call. The function consists of a number of variable
declarations and a logical AND statement for each variable. The
factor to be varied is the number of variable declarations/logical
AND statements in the function.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-- AUTHOR : Captain Karen M. Serafino
-- Date : 15 June 1989

-- PARAMETER NUMBER MEANING :
- 1 : number of variable declarations/variable AND statements in
- function

-- EXAMPLE :

-- $ sim gen/param="shellO.sh","test.vhd",3

-- (UNIX equivalent : % sim gen -param=\"\shellO.sh\"\,\"\test.vhd\"\,3)
-- will generate a model in file "test.vhd" with an architecture

-- in the form :

- entity test is

-- function bool_and return boolean 1is

- variable var!l : bit := '0’;
- var.able var2 : bit := '1’;
- variable var3 : bit := ’0’;
-- begin

-- varl := varil AND vari;

~-- var2 := var2 AND var?2;

-- var3 := var3 AND var3;

- return true;
-- end bool_and;

-- end test;

-- architecture test of test is

-- signal done : boolean := false,;
-- begin

-- done <= bool_and;

-~ end test;

entity test is

211

function bool_and return boolean is

#1[variable var® : bit := ’$280%$1%$’;]

begin
#1[var® := var® AND var®;]
return true;
end bool_and;

end test;

a2rchitecture test of test is
signal done : boolean := false;

begin

done <= bool_and;
end test;

s

[

TEST NUMBER : 115

PATHNAME : [.BENCH.A.C.I1.P6]shelll.sh
(UNIX equivalent : bench/a/c/i1/p6/shelli.sh)

PURPOSE : Determine the simulation CPU time reqrired to execute variable
logical AND operations in a functi 'n; determine the number of
logical AND operations allowed in one variable assignment statement
of a function. The model simulated is an entity consisting of a
function declaration and an architecture consisting of a function
call; the function consists »f a variable declaration and a variable
assignment statement containing a number ¢f logical AND operaiions.
The factor to be varied is the number of logical AND operations
contained in the variable assignment statement.

EXPECTED RESVLTS

UNITS OF MEASUREMENT :

-- AUTHOR : Captain Karen M. Serafino
-- Date : 15 June 1989

-- PARAMETER NUMBER MEANING
-- 1 : number of variable AND operations in ore statement in function

-- EXAMPLE :

-- $ sim gen/param="shel11.sh", "test.vhd",3

-- (UNIX equivalent : % sim gen ~param=\"\shelli.sh\"\,\"\test.vhd\"\,3)
-~ will generate a model in file "test.vhd" with an architecture

-- in the form :

- entity test is

--= function bool_and return boolean is

-- variable var : bit;

-- begin

- var := var

- AND var
-- AND var
-- AND var;

-- return true,
-- end bool_and;

-- end test,

-- architecture test of test 1s

-- signal done : bcolean := false,;
-- begin

-- done <= bool_and;

-- end test;

entity test 1s

214

function bool_and return boolean is
variable var : bit;
begin
var := var
#1[AND var];
return true,;
end bool_and;

end test;

architecture test of test is
signal done : boolean := false;

begin

done <= bool_and;
end test;

2

TEST NUMBER : 116

PATHNAME : [.BENCH.A.C.I2.P6]shell0.sh

(UNIX equivalent : bench/a/c/i2/p6/shellO.sh)

PURPOSE : Determine the simulation CPU time required to execute variable

logical AND statements. The model simulated is an architecture
consisting of a function declaration and a function call. The
function consists of a number of variable declarations and a logical
AND statement for each variable. The factor to be varied is the
number of variable declarations/logical AND statements in the
function.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

AUTHOR : Captain Karen M. Serafino
Date : 15 June 1989

PARAMETER NUMBER MEANING :
1 : number of variable declarations/variable AND statements in
function

EXAMPLE :
$ sim gen/param="shellO.sh","test.vhd",3
(UNIX equivalent : % sim gen -param=\"\shellO.sh\"\,\"\test.vhd\"\,3)
will generate a model in file "test.vhd' with an architecture
in the form :
entity test is end;
architecture test of test is
function bool_and return boolean is

variable varl : bit := '0’;

variable var2 : bit := ’1’;

variable var3 : bit := ’0’;
begin

varl := varl AND varil;

var2 := var2 AND var2;

var3 := var3 AND var3;

return true;
end bool_and;

signal done : boolean := false,;
begin

done <= bool_and;
end test;

entity test is end;
architecture test of test is

function bool_and return boolean is

#1[variable var® : bit := ’$2%$0%$1%’

begin
#1(var® := varQ@ AND var®;)
return true;
end bool_and;

signal done : boolean := false;
begin

done <= bool_and;
end test;

i)

2416

TEST NUMBER : 117

PATHNAME : ([.BENCH.A.C.I2.P6lshellt.sh
(UNIX equivalent : bench/a/c/i2/p6/shelll.sh)

PURPOSE : Determine the simulation CPU time required to execute variable
logical AND operations in a function; determine the number of
logical AND operations allowed in one variable assignment statement
of a function. The model simulated is an architecture consisting of
a function declaration and a function call; the function consists of
a variable declaration and a variable assignment statement
containing a number of logical AND operations. The factor to be
varied is the number of logical AND operations contained in the
variable assignment statement.

EXPECTED RESULTS :

UNITS OF MEASUREMENT

-~ AUTHOR : Captain Karen M. Serafino
-- Date : 15 June 1989

-~ PARAMETER NUMBER MEANING :
-- 1 : number of variable AND operations in one statement in function

-- EXAMPLE :

-- $ sim gen/param="shelll.sh", "test.vhd",3

-- (UNIX equivalent : % sim gen ~param=\"\shelll.sh\"\,\"\test.vhd\"\,3)
-- will generate a model in file "test.vhd" with an architecture

- in the form :

-- entity test is end;

- architecture test of test is

- function bool_and return boolean 1is

- variable var : bit;

-- begin

- var := var

-- AND var
~- AND var
-- AND var;

-- return true,;
-- end bool_and;

-- signal done : boolean := false;
~-- begin

-- done <= bool_and;

~- end test;

entity test is end;
architecture test of test is

e
-1

function bool_and return boolean

variable var : bit;
begin
var := var
#1[AND var];
return true;
end bool_and;

signal done : boolean := false;
begin

done <= bool_and;
end test;

is

248

TEST NUMBER : 118

PATHNAME :

PURPOSE :

[.BENCH.A.C.H1.P7]shellO.sh
(UNIX equivalent : bench/a/c/h1/p7/shell0.sh)

Determine the simulation CPU time required to execute variable
logical OR statements. The model simulated is an entity consisting
of a procedure declaration and an architecture consisting of a
procedure call. The procedure consists of a number of variable
declarations and a logical OR statement for each variable. The
factor to be varied is the number of variable declarations/logical
OR statements in the procedure.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

-- AUTHOR :

-- Date :

Captain Karen M. Serafino

15 June 1989

-~ PARAMETER NUMBER MEANING :

- 1

: number of variable declarations/OR statements in procedure

-- EXAMPLE :

-- $ sim gen/param='"shell0.sh","test.vhd",3

-~ (UNIX equivalent : % sim gen —param=\"\shellO.sh\"\,\"\test.vhd\"\,3)
-- will generate a model in file '"test.vhd" with an architecture

in the form :

entity test is
procedure bool_or is

variable varl : bit := '0’;
variable var2 : bit := ’1’;
variable var3 : bit := '0’;
begin
vart := varl OR vari;
var2 := var2 OR var2;
var3 := var3 OR var3;
end bool_or;
end test;
architecture test of test 1is
begin
bool _or;
end test;

entity test 1is
procedure bool_or is
#1[variable var®@ : bit := ’$2$0%$1%’;]

219

begin
#1[var® := var® OR varO®;]
end bool_or;
end test;
architecture test of test is
begin
bool_or,;
end test;

250

TEST NUMBER : 118

PATHNAME : [.BENCH.A.C.H1.P7]shelll.sh
(UNIX equivalent : bench/a/c/h1/p7/shelll.sh)
PURPOSE : Determine the simulation CPU time required to execute variable

logical OR operations in a procedure; determine the number of
logical OR operations allowed in one variable assignment

statement of a procedure. The model simulated is an entity
consisting of a procedure declaration and an architecture consisting
of a procedure call; the procedure consists of a variable
declaration and a variable assignment statement containing a number
of logical OR operations. The factor to be varied is the number

of logical OR operations contained in the variable assignment
statement.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

AUTHOR : Captain Karen M. Serafino

Date : 15 June 1989
PARAMETER NUMBER MEANING :
1 : number of variable OR operations in one statement in procedure

EXAMPLE :
$ sim gen/param="shelll.sh", "test.vhd",3
(UNIX equivalent : % sim gen -param=\"\shelll.sh\”\,\”\test.vhd\"\,3)
will generate a model in file "test.vhd'" with an architecture
in the form :
entity test is
procedure bool_or is

entity test is

- variable var : bit;
-- begin

- var .= var

-- OR var
-- OR var
-- DR var;
- end bool_or;

-- end test;

-- architecture test of test is
- begin

-- bool _or;

-- end test;

251

procedure bool_or is
variable var : bit;
begin
var := var
#1(OR var];
end bool_or;
end test;
architecture test of test
begin
bool_or;
end test;

is

TEST NUMBER : 120

PATHNAME : [.BENCH.A.C.H2.P7]shell0.sh
(UNIX equivalent : bench/a/c/h2/p7/shell0.sh)

PURPOSE : Determine the simulation CPU time required to execute variable
logical OR statements. The model simulated is an architecture
consisting of a procedure declaration and a procedure call. The
procedure consists of a number of variable declarations and a
logical OR statement for each variable. The factor to be varied is
the number of variable declarations/logical OR statements in the
procedure.

EXPECTED RESULTS :

UNITS OF MEASUREMENT :

—-- AUTHOR : Captain Karen M. Serafino
-- Date : 15 June <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>