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Abstract

I This study took a previously developed six state Kalman

* filter (designed for space-based tracking of a hypersonic

transatmospheric vehicle), tuned it, and performed a Monte

Carlo analysis. Three multiple model adaptive filters were

then developed, with sub-filters designed for quiescent

periods and periods with apparent acceleration. Next, a

smoother was developed using the six state filter as the

forward filter and a form of that same filter as the

backward filter. The smoother and all of the above filters

were compared for their ability to most accurately estimate

the transatmospheric vehicle's state, with special emphasis

on the acceleration states. This emphasis was motivated by

a desire to evaluate the Kalman filter's usefulness as a

real-time intelligence gathering tool. From the data

generated, it was concluded that neither the adaptive

filters nor the smoother improved upon the performance of

the six state Kalman filter.
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I
ADAPTIVE FILTERING AND SMOOTHING FOR TRACKING

A HYPERSONIC AIRCRAFT FROM A SPACE PLATFORM

I. IntroductionI
The transatmospheric vehicle (TAV) is envisioned as an

I air-breathing, horizontal take off, hypersonic craft capable

of using aircraft-style flight to ascend to and descend from

orbit. The TAV is seen as the next step in the evolution of

surface-to-orbit travel.

The infrared signature from air friction on the TAV, as

well as the signature from its necessarily hot and powerful

engines, should be a brilliant point source even when viewed

from geosynchronous orbit. Thus the very nature of the TAV,

its hypersonic speed, will readily betray its position to

virtually any orbital, infrared-sensing platform. That same

I speed would render conventional aircraft tracking useless.

A tracking algorithm using data from orbital sensors would

allow continuous tracking in the event of telemetry loss, in

the case of enemy/non-broadcasting TAVs, and when, for

national security reasons, the TAV does not wish to

I advertise its position through its transponder.

I Objectives

This thesis refines a previously developed TAV tracking

algorithm (Ziegler), and builds upon that work. The primary

objective is to estimate the TAV's position, heading,

velocity, and acceleration with minimal errors. A secondary

I 1-1
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3 objective is to compare the performance characteristics of a

basic Kalman filter, three different multiple-model adaptive

I Kalman filters, and a smoother, when applied to the problem

of estimating TAV state.

3 AProach

To properly develop the above filters, this thesis will

I model TAV dynamics, as well as data collection and

processing. Ziegler's six state Kalman filter will be

refined and subjected to a Monte Carlo analysis to allow

accurate filter tuning. Next, a reduced order, four state

filter will be designed with the intention of better

nmodeling periods without accelerations, and this filter will

be integrated with the six state filter as the two

sub-filters in various multiple-model adaptive filter

algorithms. Finally, a smoother will be evaluated as an

off-line alternative for estimating the TAV's state.

Overview

A geosynchronous infrared sensor of known accuracy will

supply position data to the various filters. The sensor

data will be preprocessed into longitude and latitude, and

3 the filters will utilize these position "measurements" to

estimate the TAV's state.

IThe TAV is assumed to be a brilliant, "...isotropically

radiating point source operating in the outer fringes of an

atmosphere surrounding a perfectly spherical and rotating

* 1-2



3 earth." (6:1-3) This thesis will ignore the altitude state

because F IV F when observed from a
TAV earth

o rb i talII geostationary orbit.
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3 II. Vehicle Dynamics (6:2-1 through 2-10)

3 A dynamics truth model is essential in properly

evaluating Kalman filter performance. The truth model

states must be compared to the filter's estimates to be sure

I the filter is properly estimating those states. For this

thesis, a truth model that ignores altitude is believed to

* be adequate since the radius of a low earth orbit is so

close in magnitude to the earth's radius. This section

I derives the equations of motion for the transatmospheric

3 vehicle under the above assumption.

State Variables

Six state variables have been chosen to represent the

TAV's overall state. Earth longitude, X, is defined

positive east of the Greenwich Meridian, and negative

westward. Earth latitude, 6, is defined as positive north

of the equator, and negative southward. Heading, h, is the

clockwise angle from the true north direction to the current

3 dire'ction of travel. Velocity is the speed along the

current direction of travel (and, by definition, there's no

component of velocity out of the direction of travel).

3 Intrack acceleration, a1 , is the rate of change in speed

along the direction of travel. Transverse acceleration, a ,

* is the rate of change in velocity along the line out the

left wing of the TAV (perpendicular to the current direction

of travel).

2-1



I
-(a/-, ) x (-/I ,I) (local zenith) (2.1)

3 Equations of Motion

To find velocity, basic dynamics states

I V = wr (2.2)

where r is the radius and w is the angular rate. From this

the TAV velocity can be stated

V V = = ( , Rcos6 (2.3)TAV V 6  W6 R :

where wX is the angular rate of change in the longitudinal

direction, and w6 is the angular rate of change in the

latitudinal direction. Over a sufficiently small period of

time, this spherical geometry problem about the earth can be

approximated by planar geometry

Northi

I]

3 VIAU>

Figure 2.1 Planar Representation of TAV Motion
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I
3 Call this small period of time dt and Equation (2.3) becomes

-V TAV (d6/dt).R

TTV VA V COS (d6/dt).R (2.4)

H Solving for i and

= (1/R). TAV in h /cos 6 (2.5)
AV .cos hTv

Correcting for the earth's rotation

( . [ (VTA sin h)/(R *cos 6) - w.(2 6
(V TAv * cos h)/R (

3 To find h and V, define the ENZ frame such that

E local eastward direction at TAV location

N = local northward direction at TAV location

Z = E x N (6:2-6)

Iand the b-frame (body frame) such that

B al/l i
B = a IiT I

B = B x B (6:2-6)I 2

I-
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IzB
h

IE

3 Figure 2.2. TAV Coordinate Frames (6:2-6)

E =sin hB -cos hEB (2.7a)

N = cos h B + sin h B 2(2.7b)

Z =ZB 3(2.7c)

UInertial accelera tion, as a function of inertial

velocity, expressed in the body frame is

-b d bV bi X b(2.8a)

I -~~3(V B)+jbi V (2.8b)

IV B + jbiX (V B )(2.8c)

I with

-bi -bENZ -EN7,i (2.9)

* 2-4



I
where

-- b angular rotation of the body frame

*N with respect to the inertial frame

bENZ angular rotation of body frame with

3 respect to ENZ-frame

SENZ ,i angular rotation of ENZ frame with

respect to inertial frame

From Figure 2.2

bENZ -(2.10)I3
Since the ENZ-frame motion is dependent upon TAV and earth

mot i on,

3 -ENZ -

-- ) ' = ) + ( 2. 1aS TAV

W w + 1 + T (2.11b)

W + iXcos 6 N - 6 E

+ i.sin 6 Z (2.11c)

where

w cos 6 N + ) *sin 6 Z (2.11d)

3 Expressed in the body frame this becomes

ENZ,z -6.sin h + (i + w ).cos 6 cos h B

+ .cos h + (i + w ).cos 6 cos h B
e 2

teeo(i + w ).sin 6 B (2.12)

therefore

bi B + w B + w B (2.13)
1 1 2 2 (2.13

where

W -6.sin h + (i + w ).cos 6 cos h

W 2 .cos h + (i + w ).cos 6 cos h

W (. + w ).sin 6 -h

2-5
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Substituting Equation (2.13) into Equation (2.8) gives

A V B + 1 B2 B3 (2.14a)
1 2 3I0 0

where 1.1 indicates a cross product. This becomes

SV.3 B2 V.( B (2.14b)

Neglecting the B3 term in the previously assumed negligible

I altitude direction gives

+ V. + w ).sin 6 - B (2.14c)

Now, substituting X from Equation (2.6)

A=VBV -si h in6
A Vj RB hco sin 6 V.h} B

X 1  R Rocos 2

(2.14d)

but

a = B component of inertial accelerationI I

a B component of inertial acceleration
T 2

therefore

a = (2.15)

2V sin h -sin 6
a T R -cos 6 - V.h (2.16)Io

Solving these equations for V and h gives

i = a (2.17)

i-aT /V + (V-sin h *sin 6 )/(R .cos 6) (2.18)

Finally, since changes in acceleration have no deterministic

model, impulsive changes in acceleration were assumed and

the rates of change for acceleration were set to zero.

a a = 0 (2.19)
I T

* 2-6



Summarizing Equations (2.6), (2.17), (2.18), and (2.19)

gives

I 5. (V.sin h)/(R .cos 6) -

(V.cos h)/R

-aT/R + (V-sin h -sin 6)/(R -cos 6)
a • = (2.20)

Va

0

I0

Propaqating the Truth Model (6:2-10)

The six equations of motion are first order

differential equations of the form x = f(x,t). Given the

I initial conditions, Equation (2.20) can be numerically

integrated to give a time history of the truth model states.

For this thesis, the Hamming predictor-corrector method

was used as the numerical integrator. "Given initial

conditions, the time step size, and the right hand side of

I the equations of motion, the Hamming algorithm produced

detailed time histories for 1, 6, h, V, a,, and a ."

(6:2-10) For all calculations, units of angles were

radians, units of velocity were DU/TU, and units of

2acceleration were DU/TU . One DU is the average equatorial

I radius of the earth, about 6378.145 kilometers. One TU is

approximately 806.8 seconds, resulting in one gravity (G)

equaling one DU/TU 2.
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III. Sensor (6:3-1 through 3-9)

This chapter deals wich the collection and processing

of the raw data from the geosynchronous sensor. Ziegler's

technique of preprocessing the data has been retained due to

its simplifying effect on the Kalman filter algorithms.

Raw Data

The geosynchronous satellite carrying the sensor, by

the nature of its orbit, remains at a constant longitude and

latitude. For this thesis, the sensor has been placed at 0°

longitude and 00 latitude. The thermal emissions of the TAV

are located in the sensor's field of view via azimuth (Az)

and elevation (El) as shown in Figure 3.1.

Azimuth is the spherical angle from the northward

direction to the great circle containing the TAV. Elevation

is the angle seen by the sensor from the nadir to the TAV as

shown in Figure 3.2. From the geometry, 0 < El < 8.60.

I (6:3'-2)

Another component of the raw data is the uncertainty

associated with each measurement. No measurement is exact;

each one has error due to uncertainties in sensor position,

sensor attitude, atmospheric effects, vibrations, etc.

I (6:3-2) According to the central limit theorem, these error

sources, when summed together, become zero-mean, Gaussian
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I

random variables. This thesis will carry forward the

I standard deviations (o) of 3.5xi0 s5 radians for azimuth

errors and 4.3xI0 "6 radians for elevation errors. (4:3)

Assuming azimuth and elevation errors are statistically

independent of each other, the data covariance matrix can be

defined as

I [a 2  rl.225x109  1.849xO-"J (3.1)

I Processed Data

The dynamics equations are, in part, functions of

longitude and latitude. A bit of foreknowledge allows the

simplification of the observation matrix, [H], in the Kalman

filter algorithms presented in later chapters. This

simplification of [H] was achieved by converting azimuth and

elevation into longitude and latitude. The data covariance,

[Q], was also converted. This section derives longitude and

* latitude in terms of elevation and azimuth as well as the

Jacobian for converting [Q].

I From Figure 3.2 and the planar law of sines

r/sin I = R /sin El (3.2)

(5:3-4)

3 where r is the distance from the sensor to the earth's

center and R is the radius of the earth.

Solving for I

1 sin'((r.sin El)/R.) (3.3)
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I From the geometry, 900 < I < 1800, since a I < 900 would

indicate a TAV located behind the earth, and that would make

it unobservable. Solving for a (from Figure 3.2.)

a = 1800 - (El + 7) (3.4)

The spherical geometry of this problem is represented

I in Figure 3.3.

I

U North Pole
_-- TAV"

El,

Great Circle

Sensor

3 Figure 3.3. Spherical Geometry of TAV Tracking Problem

(6:3-5)

The law of sines for oblique spherical triangles gives

(sin 6)/(sin(90 ° - Az) = (sin a)/sin 900 (3.5)
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USolving for 6
6 = sin-'(sin c Cos Az) (3.6)

Combining Equations (3.3) and (3.4) with Equation (3.6)

6 = sin-{sin[180 ° - (El + sin 1 (r.sin El / R))] .cos Az}

(3.7a)

or

6 = sin-[sin(El + sin-1(r-sin El / R.)).cos Az] (3.7b)

Also from Figure 3.3

+ X (3.8)
Igohor

I where

wh eresensor longitude
aentor

I= TAV longitude relative to sensor's

From spherical geometry

I sin A = tan 6 .cot(90 ° - Az) (3.9a)3 or
orAx= sin~tan 6 .cot(900 - Az)] (3.9b)

Substituting Equations (3.7b) and (3.9b) into Equation (3.8)

+ sin-'{tan sin-'(sin( El + sin-1(r-sin El /R)

*cos Az)]. tan Az} (3.10)

Equations (3.7b) and (3.10) define the relation between El,

Az and X, 6. From the geometry, 6 and AX are constrained to

be between -90* and 900, so there is no uncertainty as to

the quadrant within which either angle resides. Therefore,

6 and I are completely defined.

The transformation from [QAz,El] to [Q),6 ] is simply

IQ] = [QI,6] = DIN AZE IIalT (3.11)
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where

[J] is the system Jacobian

i Since Equations (3.7b) and (3.10) are of the form

f (AzEl) (3.12a)II
6 f (Az,El) (3.12b)

*then

af af
BlAz Y
[a] 1 (3.13)
af af

where (6:3-7 through 3-9)

1i- tan sin-{El + sin r .-sin El cos Az

I -1/2
.tan AzJ 1  .[sec (sinIl{sin[El + sin--sin El

cos Az} ( 1- sin[El + sin-' ( . sin El cos Az2)-/2

I -(-sin Az).(tan Az).{sin[El + sin'(r-'sin El)])

S.*(sec2Az).tan sin-'{sin[El + sin-'r--..sin El] cos Az))]

I
1 

-f { [tan sin-'{sin [El + sin-' (T'sin El]cos Az)

-tat Az]n AZ-] .secz (sin-h sinEl + sin- .sin El

•ccs Az • I - sin El + sin-' .sin El .cos Az
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I -Cos A* cos [El + sin-' .sin El)

1 [ - sin El)] - cos El tan Az

IW
I 32 1 {sin El + sin" -.sin El -cos Az)

I .sin[El + sin'K .sin El].(-sin Az)

I
Oz - . in. co Az'7=f2 1 - sin[El + sin (---*sin El cos

I .cos Az .cos[El + sin'(.-- .sin El)]

1 [ I- .sin El]] .-2]. cos El}
I R e

Equations (3.7b), (3.10), and (3.13) define the

necessary numerical tools for converting data and data

3 covariance from Az, El to W, 6. Their usage is presented in

the Kalman filter derivations in Chapters IV and V.
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3 IV. Six State Kalman Filter

3 The Kalman filter developed by Ziegler has been revised

after a careful analysis of its performance when subjected

to measurements with zero-mean, Gaussian random variable

components. This chapter explains the motivation for a six

state Kalman filter, explains design and tuning, and

3 documents the filter's performance.

I Motivation

3 The result of tracking a TAV should be useful

information about the current state of the vehicle and

Sapparent intentions in the next few moments. A reasonable

amount of data would be the TAV's position, its velocity and

Iheading, and any observable, applied accelerations. The six

3 states of this Kalman filter contain all of the above

information in longitude, latitude, velocity, heading,

3 intrack acceleration, and transverse acceleration. This

filter will estimate all of these states for every data

I point.

State Eguation

Equation (2.20), in a linear approximation, defines the

TAV dynamics.

4-1
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S(V .sin h R .cos 6 ) -

(V .cos h )/ R 6

h -aT /V + [V -sin h .sin6 /(R .cos6 )J hi* T i i i e i

V a At+ V
i+1 Ili i

a I  all
a 1 0 a

T a141 aTI

I (4.1)

3 This equation is the filter's model of TAV flight dynamics

for all possible accelerations.

i State Transition Matrix

Discrete time propagation of the state vector, x, in

Equation (4.1) is of the form

(t) = f[i (t),At] (4.2)

The state transition matrix is found by taking the gradient

3 [(l t )]: V (f[X,(t),tJ) (4.3)

which, expanded, is

i
i
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axi+ axi ax L Iax i ax ax

ax6 6i a 0;' i al c

151~ C- 6sl C1 1ais, a * ~~

ax I~ ah aIIai aaTi

a), = a a6 O h O CV i IL a a T (4.4)

Nav,~ avi*, avl1 , av i Iavl*, avi~
x -a6 Och aIv aa cl

II i I I i T I

I3) ax1  a& l h a v 0;) a

________ Tisic~ Tisic~ Ti~ isi Ti.18 Tisi

L a a6 O )h 8;vi al aaTi

where

Ox V i sin h isin 6

3R *cos 6

06 -Vsin h

lsl -IAt

Oh R

06 Cos h

- - __ ___ . At
OIV R

ahiJ±.. V, sin h +V -sin h1 -sin 26~ At
06Cos 26 JR
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8h V .cos h .sin 6 . A + 1

ah R .cos 6

A 8haV sin h, sin6hi,1 T + i At

aV 2  R .cos 6

8h -At

8a V
Ti

aVI,1 At
8a

o%86 av 8a 8aMi __ _ _Ii 
W _1 Ti -1

a 86 aV 8a 8a3 ci i Ii Ti

and all other partials are equal to zero.

Measurements (3:44)

Data is assumed to consist of a deterministic portion

and a zero-mean, white Gaussian noise, vi.

h[-i(t),t i] + V (4.5)

3where
Fi-i(t ),t 1 0 0 0 0]

and has strength
Ii

[Q ] = J [Q z ][j] T

with [3] and [Q ] defined in Equations (3.13) and (3.1).IZO
[H] is defined as

[H] = 0 (4.6)0 1 0 0 0
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3 State Covariance (3:44)

To allow easy starting of the filter, each state at

3 t = 0 was assumed independent of the other states, and

covariance could be assumed to be of the form

I ] = r0 2 a2 a2 a 2 or 2 (4.7)
o X 6 h V ., oTJ

I This allows the entry of six values as opposed to a fully

populated 6x6 matrix.

3 Covariance is propagated via
[P 11= 1+I: tP t. ]T + [Q] (4.8)

where [ 0 is defined by Equation (4.4) and (Q ] is the
dynamics noise matrix, which is the strength of the zero

mean Gaussian white noise representing the uncertainty in

the dynamics model. [Q ] is assumed to be diagonal.

(Q nI Q " 'F1Q6 Q  Qn Q Q n J  (4.9)[Q] Q~ h v al aT

The six diagonal elements of [Q I will be adjusted through

3 the tuning process.

Filter Algorithm (5:100)

The extended Kalman filter equations are

[K(t )] = [P(t-)I[HIT [H][P(t )][H]T + [Q] (4.10)

[P(t*)] [I- [K(t )][H P(t)] (4.11)
I f L I

i(t;) :x(t-) + [K(t ) T - [H]6x(t) (4.12)

where

[K] = Kalman gain matrix

[P(t-)] = state covariance prior to update

[P(t*)] = state covariance after update
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[Q] = measurement noise strength

[I) = 6x6 identity matrix

i(t-) = prior correction to state estimate

(t ) = new correction to state estimate

Y = data residual
z

Equation (4.12) is iterated until the correction to each

state is less than .001% of the current estimate of that

* state.

I TuninQ

All tuning was performed through Monte Carlo analyses.

Monte Carlo analysis consisted of a series of fifteen

3 trajectory simulations differing only in the random noise on

each measurement. The filter estimated the states through

I all of these simulations, and the mean and covariance of

each state's error were calculated. The dynamics noise

strength was adjusted until the square root of the diagonal

3 components of the filter covariance matrix were slightly

more than the error magnitude. For example, raising the

3 strength of the dynamics noise would inform the filter that

it should trust the dynamics less, and the filter covariance

would thus increase via Equation (4.8). This resulted in a

-- filter whose own estimate of it's error (the filter

covariance) was slightly pessimistic: it overestimated the

size of it's errors. The six state filter was tuned for one

second data intervals for the flight profile defined in
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I
Table (IV.1), starting from the initial conditions in Table

(IV.2).I
Table IV.1. Flight Profile, 1 0 Accelerations

Time (sec) Time (TU) Maneuver

0 - 0- .074 Constant Speed

61 - 180 .075 - .223 1 G Intrack Acceleration

181 - 300 .224 - .372 Constant Speed

301 - 420 .373 - .521 1 G Transverse Accel.

421 - 480 .522 - .595 Constant Speed

Table IV.2. Central Trajectory Initial Conditions

State CovarianceI
0.0 rads P 1.25e-5 rads 2

6 = 0.0 rads P66 = 1.25e-5 rads 2

h = 0.7854 rads Phh= 3.e-3 rad

V = 0.5 DU/TU P = 3.e-2 (DU/TU2)2

a 0.0 DU/TU2  P 3.5e-2 (DU/TU 2 ) 2

a 0.0 DU/TU 2  P T 2.5 (DU/TU 2)2
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The dynamics noise matrix values that presented the

best performance are given in Table (IV.3). The square root

of the filter covariance and the average state error (from

fifteen Monte Carlo runs) for both heading and intrack

acceleration are presented in Figures (4.1) and (4.2) for

the one second data interval with 1 G accelerations. These

plots are representative of the filter's performance in

tracking all six states. Note the axis scale factors in the

corners of the plot. Also, the distinct peaks on both plots

I are indicative of the filter's lag in detecting the

occurrence of accelerations.

-- Table IV.3. Dynamics Noise Strengths, Six State Filter,

One Second Interval

I.e-14 (rads )
2

Q66 = 2. e-14 (rads)
2

Qhh = 1.e-13 (rads) 2

Qv Y= 6.e-11 (DU/TU)2

QI1 = 8.e-3 (DU/TU2) 2

QTT = 4.5e-3 (DU/TU2)2
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The gradual rise in both heading covariance and heading

error appeared to indicate an unstable filter where error

increases with time. A trajectory which flew backwards

I towards the initial conditions showed reverse trends in

filter performance, indicating that filter performance is a

function of the distance from the sensor's projection upon

the earth's surface. The earth's curvature apparently

degrades the filter's performance.

I Intrack acceleration error spiked at the 'ginning and

end of the 1 G maneuver. The narrowness of those spikes

indicate that the filter rapidly recognized the presence of

* the maneuver.

The variation of state errors among the fifteen Monte

Carlo runs also indicate filter performance. Figures (4.3)

and (4.4) show that average heading and intrack acceleration

errors remained close to a mean of zero except when

maneuvers started or ended. The - 1 o curves represent the

amount that errors varied among the Monte Carlo runs. The

relative tightness of the * 1 curves indicate that the six

state Kalman filter consistently estimated TAV states

I throughout all the Monte Carlo runs.

4
I
I
I
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The other four states exhibited performance similar to

the two states above. These plots are presented in

Appendix A.

The ten second data interval also estimated the TAV's

state over the trajectory defined in Table (IV.1) from the

initial conditions listed in Table (IV.2). The dynamics

noise matrix for this filter is listed in Table (IV.4).

Heading and intrack acceleration covariance plots are given

I in Figures (4.5) and (4.6).

I
Table IV.4. Dynamics Noise Strengths, Six State Filter,

10 Second Data Interval

I Q = 3.e-10 (rads) 2

Q6 = 5.e-10 (rads) 2

Qhh = 1.e-12 (rads) 2

I VV = 1.e-9 (DU/TU)2

Q1 = 6.e-2 (DU/TU2 )2

QTT = 6.e-2 (DU/TU2)
2

I
I
I
I
I
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I

Monte Carlo error statistics for the ten second data

interval filter were slightly degraded compared to the one

second data interval filter. Heading and intrack

acceleration error statistics are presented in Figures (4.7)

and (4.8). The other states' covariance plots are presented

in Appendix A. All remaining error a plots are presented

i in Appendix C.

Fu 4.1 e oHe

,I /

i Sigure 1.tev/ Sx Sa F

I

II
II
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Figure 4.8. Monte Carlo a Error statistics, 1 G,I ,

I 10 Second Interval, Six State Filter

Filter Performance

m In order to evaluate the filter's ability to properly

estimate states for a TAV located anywhere within view of

m the sensor, two additional sets of initial conditions were

used with the flight profile given in Table (IV.1) and the

dynamics noise matrix given in Table (IV.3). The first set

m was a northward trajectory starting from a point closer to

the north pole.

4-15



Table IV.5. North Trajectory Initial Conditions

NState Covariance

X= 0.0 rads P 1.25e-.- rnds 2

6 =1.0472 rads p 6 1.25e-5 rads 2

h =0.0 rads P =3.e-3 rads 2
hh

V = 0.5 DU/TU P V=3.e-2 (DU/TJ 2)2

a = .0 U/T 2 11= 35e- (D/U2 2

aT = 0.0 DU/TU 2  P TT .5e2. (DU/TU )

X -2X ;0C 24C 3OC 3&X 4-X 49C S*I60

Fiue49Iot rjcoyLniueCvrac n
ErrrI G 1SeondIneralSi SateF 22e

a =0.0DU/U 2 P 25 4LJ16



i
3 Longitude becomes less certain near the north pole due

to the longitude singularity at the pole, and Figure (4.9)

is clearly consistent with this fact. As before, the other

states' covariance plots are presented in Appendix A.

Another trajectory used the flight profile in Table

5(IV.1) with the initial conditions given in Table (IV.6).
This east trajectory gave additional support that the six

3state filter remained viable near the eastward (and
westward) limits of sensor view. All covariance plots for

I this trajectory are presented in Appendix A.

Table IV.6. East Trajectory Initial Conditions

State Covariance

3 1.0472 rads P = 1.25e-5 rads2

6 = 0.1745 rads P = 1.25e-5 rads2

h = 1.5708 rads P = 3.e-3 rads 2

V = 0.5 DU/TU P = 3.e-2 (DU/TU2)2

a = 0.0 DU/TU 2  P = 3.5e-2 (DU/TU 2)2
I I

a = 0.0 DU/TU 2  PTT = 2.5 (DU/TU2 )2
T T

A 9 G acceleration profile, Table (IV.7), was also

investigated using the central trajectory initial conditions

of Table (IV.1) and the appropriate dynamics noise matrices

for the one and ten second interval filters. Although these
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two filters had degraded performance, they still made

adequate estimates of TAV states. Intrack acceleration

curves, Figures (4.10) and (4.11), demonstrate adequate

state estimation by both the one and ten second interval

filters. The curves for the remaining five states are

_3 presented in Appendix B.

ITable IV.7. Flight Profile, 9 G Accelerations

Time (sec) Time (TU) Maneuver

0 - 60 0 - .074 Constant Speed

61 - 180 .075 - .223 9 G Intrack Acceleration

181 - 300 .224 - .372 Constant Speed

301 - 420 .373 - .521 9 G Transverse Accel.

421 - 480 .522 - .595 Constant Speed
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too

- emrtue of svwISO ar~

906 gO& t of fiter Covea'

::D

al

CrF

0.00 0.600 100 .00 2.400 3.0 SAM 4-2010 COW 5.400 &COO

TIME (TUs)

Figure 4.10. a Covariance and Error, 9 G, 1 Second

3 Interval, Six State Filter

.d-rwt of file Orc e J~

I i7

f.X 0.600 .200 1.W 2.40C 3.0 3.6010 4-200 4.800 5.400 6.O3 TIME (TUs)

Figure 4.11. a ICovariance and Error, 9 G, 10 Second

Interval, Six State Filter

3 4-19



I
I

The six state filter, executed at both one and ten

second data intervals, was found to adequately estimate all

TAV states through 1 G and 9 G maneuvers. The remainder of

this study sought a filtering algorithm which could exceed

* the six state filter's performance.

I
I
I
I
I
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H V. Four State Kal.aan FilterI
The second filter developed for this tracking problem

was a rediced order, four state Kalman filter. This chapter

relates the motivation for a four state filter, the design

and tuning process, and the filter's performance.

Motivation

The six state filter tracks the transatmospheric

vehicle through periods with acceleration and periods

I without acceleration. Most current aircraft fly long

periods of "cruise" at an essentially constant speed. The

transatmospheric vehicle would also cruise in this manner

when flying point-to-point missions, to alicn its ascent to

orbit with a rendezvous target, and to return to its base

after missions. During these quiescent (without intrack or

transverse acceleration) periods, the two acceleration

states are carried along in the six state filter for no

useful purpose. The four state filter is designed to track

the target during these less computationally taxing periods,

taking advantage of the reduced number of states by assuming

zero acceleration, thus eliminating calculations containing

any acceleration terms.
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State Equation

With the elimination of the acceleration states, the

dynamics of the transatmospheric vehicle, Equation (2.20),

reduce to the linear approximation

'(V *sin h /R .cos 6 ) -

61,1 (V -cos h )/ R

hi+ 1  -aTi / VI +[V .sin h Isin6 /(R~cos6)] .At+ h (51)

V1+J a1 V '

Assuming that acceleration will be zero during the use of

this filter further reduces the state equation to

(V *sin hi (R .cos 6)) -

6 (V .cos h )/ &

I h (V *sin h -sin 6)/ (R .cos 6 ) h-i41 i ii e I i

V 0 V
I i*1 i

This equation is a model of the transatmospheric vehicle in

a quiescent period. No attempt is made to accommodate

accelerations because, in the presence of accelerations, the

total, adaptive filter will execute the six state filter to

properly estimate the acceleration states.

Itbt Transition Matrix

Discrete time propagation of the state vector, x, in

I Equation (5.2) is of the form

M (t) = f(i (t),at] (5.3)
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The state transition matrix is found by taking the gradient

[O(t t ) = v (f[i,(t), t] (5.4)

which, expanded, is

.x 1  ax 1  ax a,

*v~ axi~ a1i7l a i4

ax as alF

i I i

V 1i -i 1 1  Ah 1  ah 1

M i R i OS25

ah Rh co 
ha

-- ~ i Ai

av av av
i ax.a1i av

where

I -V .sin h.sin6
ah I _ . At
a i l - R c os 6o i

11 V -sin h sin.a

S=IC R6.cos"

i A sirh
i41 - i__ __ _ At

i I R .cos6

a6 -V • sin At

I 1

861c cosh
-At

(h ' V *sin h si i .

Vi £ os8 ].
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ah 1+ sin h -sin 6

5V R • cos6 At

i W i a-1 - 0'- 1

i i
Iah 1  arV 86V,1

Measurements (3:44)

Data is assumed to consist of a deterministic portion

I and a zero-mean, white Gaussian noise, .

where h[i(t ),t ] + V (5.6)

where

i t0 1 0 00

and has strengthIA

with [J] and [Q I,*] defined in Equations (3.13) and (3.1).

[H] is defined as

I [H A8[i(t ),t ([H] 0 1 0 0 (5.7

I State Covariance (3:44)

For convenience in starting the filter, each state

3 variable at t = 0 is assumed independent of the other

states, or

I [P 0  2 02 2 021 (5.8)

3 This allows the entry of four values as opposed to a fully

populated 4x4 matrix.

I
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I
Covariance is propagated via

[P 1 1= + 1,1 It I T + IQ 1 (5.9)3 where [i 1] is defined by Equation (5.5) and [Q I is the
dynamics noise matrix, which is assumed to be diagonal.

IQ"] I "N Q Q Q J (5.10)
n n n6 nh nV

The four diagonal elements of [Q I will be adjusted through

the tuning process.

Filter Algorithm (5:100)

The extended Kalman filter equations are

[K(t )) [P(t )][H] T[H][P(t )][H]T + [Q]} (5.11)

[P(t)] = [I] - [K(t )][H]}[P(t-)] (5.12)

S6(t*) 6-(t-) + [K(t T [H)f(t-) (5.13)

which is the same as presented in Chapter IV.

I
T n Just as in the case of the six state filter, the

dynamics noise matrix, [Q 1, was adjusted until the square

root of the diagonal components of the filter's covariance

3 matrix (after the measurement update) were just slightly

higher than the average error found via Monte Carlo

I analysis. The four state filter was tuned for a flight

profile without any applied accelerations. The initial

conditions are the same as the central trajectory initial

conditions from Chapter IV and are repeated in Table (V.1).

The dynamics noise matrix values used for this study are

5
I 5-5



3 listed in Table (V.2) for the one second interval and in

Table (V.3) for the ten second interval.

Table V.I.. Central Trajectory Initial Conditions,

U Four State Filter

State Covari ance

3)0.0Orads p x=1.25e-5 radS2

6 0.0 rads P 6 = 1.25e-5 rads 2

Ih =0.7854 rads P hh=3.e-3 rads 2

V = 0.5 DU/TU P VV= 3.e-3 (DU/TU )2

a =0.0 DtJ/TU2

a T = 0.0 DU/TU 2

I Table V.2. Dynamics Noise Strengths, Four State Filter,

One Second Data Interval

Q x=0.0 rads2

Q3 0.0 rads 2

Q 1h= .e-26 rads 2

QIV 1.e-26 (DU/TU) 2
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Table V.3. Dynamics Noise Strengths, Four State Filter,

I Ten Second Data Interval

I Q = 0.0 rads 2

Q66 = 0.0 rads2

I hh = 1.e-16 rads 2

QV = 1.e-16 (DU/TU)
2

I
The four state filter's performance was demonstrated by

the longitude covariance plots, Figures (5.1) and (5.2), for

the one and ten second interval four state filters.

Although the one second interval plot shows the error

exceeding the square root of covariance halfway through the

plot, this version of the four state filter gave the best

3 performance when integrated into the adaptive filters.

I
I
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Figure 5.1. Longitude Covariance arnd Error, 1 G, 1 Second

Data Interval, Four State Filter
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Figure 5.2. Longitude Covariance and Error, 1 G,

I 10 Second Data Interval, Four State Filter
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U
VI. Multiple Model Adaptive Kalman Filters

3 When a system model itself may be subject to change,

multiple model adaptive filtering can be used to compare the

3 performance of several filters, each based upon a different

system model. Sub-filter estimates could be used either

individually or in weighted averages of those estimates.

3 This section presents three different approaches for the

application of adaptive filtering to this estimation

3 problem. All of the adaptive filters presented estimated

the states for the 1 G flight profile starting from the

* central trajectory initial conditions.

Acceleration Switched Adaptive Filter

The four state filter developed in chapter V was meant

to model TAV dynamics in the absence of applied

I accelerations. The six state filter modeled the presence of

accelerations. Rather than running both the six state and

four state filters simultaneously, the first attempt at

adaptation was to switch from the six state to the four

state and back again based upon the six state estimate of

acceleration and the four state filter's residuals.

Residuals were measured before the measurement updates for

each data interval. This was intended to decrease estimate

3 errors and minimize computer time required for the adaptive

filter.
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3 The algorithm for the acceleration switched adaptive

filter begins with the six state Kalman filter Equations

3 (4.10), (4.11) and (4.12), repeated here with the subscript

3 '6' to indicate the six state filter.

[K6(t f] = dP6 (t)] [H6 ]T [H6 [P6 (t-)][H ]T + [Q6] (6.1)

[P (t*)]  {[i - [K (t )][H J}[P (t)J (6.2)
6 1i 6 6 i 6 P ( i

6i (t*) 6 (t) + [K (t )7 [H 6 (t) (6.3)

6 6 1 6 1 1 z,6 6 6k)

3 Normal six state filter operations continued until both

T and a estimates dropped below 0.02 G's. At that point

the accelerations were assumed to be zero and the four state

3 filter was initiated using the first four components of the

six-state state vector along with the corresponding 4x4

section of the covariance matrix. The remaining covariance

values were stored to allow the six state filter to restart

I in the future. The four state filter equations (5.11),

(5.12), and (5.13) are repeated below.
[K4 (t = [P4(t-)] [H 4T CH ][P4(t-)][H ]T + (6.4)

4 []t) [ 4)f {( 4  4 1 4] 4 )

[P(*]= [I [K (t )][HJ}P t) (6.5)

6ix (t*) = 6x (t) + IK (t)] - [HJ64(t) (6.6)
4 A 4 1 4 i1 1 zD,4 4 4 1)

3 The four state filter continued to operate until either

the average of the last two longitude residuals or the

average of the last two latitude residuals exceeded 7 x 10 6

3 radians. At this point, the four state filter was assumed

to be diverging, and the four-state state vector augmented
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I
with two zeroes was fed into the six-state state vector.

The four state covariance matrix, augmented with the unused

3 values discussed above, was inserted into the six state

covariance, and the adaptive filter switched back to six

I state filter operations until accelerations once again

dropped below the lower bound. The two switching bounds,

0.02 O's for acceleration and 7 x 10-6 radians for position,

3 were found to give the best state estimates for this

algorithm.

3 Unfortunately, this ad hoc approach to adaptive

filtering did not markedly decrease filter errors, nor was

it an improvement during quiescent periods. Figure (6.1)

3 depicts slight increases in heading covariance during the

four state filter's activity. The rest of the curve is

* essentially the same as the curve for the six state filter.

I
I
I
I
I
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Figure 6.1 Heading Covariance and Error, 1 G, 1 Second

Interval, Acceleration Switched Adaptation

Residual Switched Adaptive Filter

This second attempt at adaptation abandoned the idea of

running only one filter at a time. For this adaptation the

longitude and latitude residuals were monitored in order to

3 choose which filter (model) best represented the TAV's

dynamics during the current data interval.

3 The root-mean-squares of the longitude and latitude

residuals for both the six state and four state filters were

calculated. Residuals were measured before the -,-,asurement

updates.

4 .. r2 + r2 ) (6.7)
4  4 64
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RO S6( ) . 6 r ) (6.8)

The smaller of the two RMS's would indicate the

sub-filter whose estimate was chosen for that time interval.

If the four state filter was chosen, the current

acceleration estimates would be set to zero.

I This attempt at adaptation suffered from the same

3 problem as the previous attempt: the four state model did

not adequately improve the estimate even during quiescent

periods. Figure 6.2 demonstrates behavior much worse than

the six state filter's performance. This adaptive filter

exhibited large errors and was abandoned.

.fl e o r *a r
so = roct of fOtdr co=V CCe

ohm 0.SO) 1" A 2.400 VW~ IWO) 420W 4800 5.00 &Me

TIME (TUs)

Figure 6.2 Heading Covariance and Error, 1 G, 1 Second

i Interval, Residual Switched Adaptation
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Probability Weichtina Adaptive Filter

Both the six state and four state sub-filters generate

state estimates for each data point. Probability weighting

used the sub-filters' residuals to generate the probability

I that either sub-filter model was the correct model for the

system at any given time. The probability density, f k

associated with the sub-filters is given by

I ~(t 1 2t I[A exp{A r [A 1 k (6.9)

k (3:132)

I where

[Ak] [Hk [P (tI))[HhIT + [Q I

[HJ[P (t )][H] T + [Q]

k 1 1 +
I [ k l + [ 12'

[Ak] Q 21 P k.22+ Qj (6.10)

Equation (6.9) is of the form

I(t exp{-, rk [AkJ] k} (6.11)

The 0 term is commonly set to one in order to enhance the

sensitivity of the adaptive filter to the inadequacies of

the sub-filters. (1:a) With P set to one the adaptive

filter switches more quickly to the more correct sub-filter,

and the probability density becomes

fI(t )= exp{-j . [A] k -) (6.12)
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The probability that the k-state sub-filter is the best

model is given by

P k(tI = f (tI .A k (t1-1

{f 4(t ).P 4(tiI) + f 6(t ).P6 (t i- )} (6.13)

Adaptive filter state estimates are given by

OW ) = pt) (t) + p6 (t W () (6.13)
I 4 1 4 6 1

(3:131)

and covariance by

[P(t*)] = P(t) {[P (t+)] + 0(t) -

W (t1)- (t1)} + P (t) P (t4))

(3:131)

For this application, the sub-filters should be tuned

optimistically as opposed to the pessimistic tunings

performed in chapter IV. By allowing sub-filter covariance

to be close to, or slightly less than, the actual error, the

residuals should more clearly indicate the relative

"goodness" of the sub-filter models. Best adaptive filter

estimates, however, occurred when the six state filter

utilized the dynamics noise matrices presented in Tables

(IV.3) and (IV.4), and when the four state filter retained

the dynamics noise matrices presented in Tables (V.2) and

(V.3). These four matrices are summarized in Tables (VI.1)

and (VI.2).
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Table VI.1. Adaptive Filter Dynamics Noise Matrices,

1 Second Data Interval

IFour State Filter Six State Filter

IU 0.0 rads 2  1.e-14 rd

Q60.0 rads 2  2.e-14 rads 2

I hh 1.e-26 rads 2  1.e-13 rads2

QV1.e-26 (DU/TU) 2 6.e-11 (DU/TU) 2

Q1N/A 8.e-3 (DU/TU2)2

Q ~TT N/A 4.5e-3 (DU/TU2)2

Table VI.2. Adaptive Filter Dynamics Noise Matrices,

1 10 Second Data Interval

our State Filter Six State Filter

0.0 rads 2  3.e-10 rads 2

II6 0.0 rads 2  5.e-10 radS2

QIh 1.e-26 rads 2  1.e-12 rads 2

QV 1.e-26 (DU/TU)2  1.e-9 (DU/TU)2

IQ1 N/A 6.e-2 (DU/TU 2 )2

Q TT N/A 6.e-2 (DU/TU 2 )2
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I
The heading and intrack acceleration covariance plots

for the one and ten second interval adaptive filters,

3 Figures (6.3) through (6.6), demonstrated a slight

improvement in intrack acceleration for a short period with

some degradation in heading. The other states were also

slightly improved or degraded, but there was little overall

improvement as compared to the six state Kalman filter of

Chapter IV. For the sake of completeness, this adaptive

filter was carried forward into Chapter VII's comparisons.

I The other two adaptive filters were not.

I

' .~ ~... ' e tfe of ever.4e .In-r

0 : o 'to ter covrcce

I V1

- J\ .10

0 34 .6Ot, I1 C LamO 2.400 3.000 U.oMO 4.2M 4.800 5.4Or 5.00m

TIME JTUs

Figure 6.3. Heading Covariance and Error, 1 Second

Interval, Probability Weighting Adaptation
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VII. Smoother

A Kalman filter estimates the current state based upon

the data collected prior to the current time. After

I collecting all of the data, another filter could be run

* backwards in time from the end of the data to estimate the

state based upon all of the data collected from the current

time until the end of the data. The two estimates could be

optimally combined to produce an estimate of the state based

upon all of the data collected. This process is called

smoothing, and the algorithm is known as a smoother. (2:2)

This chapter explains the motivation for the smoother and

its derivation.

Motivation

All of the previous methods were potentially real-time

algorithms that would take TAV position data and irmmediately

estimate the six state variables. Adaptation failed to

decrease errors, necessitating another approach to better

estimate acceleration states. A smoother, although a form

of Kalman filter, is a "post-flight" analysis tool also

known to improve state estimates, including the acceleration

states.

Forward Filter

The forward filter is the same as the six state filter

developed in Chapter V where
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F ,.I(t) f[i F,(t),At] (7.1)

t F (t i t i)] x V j f[xi ,l(t),atl (7.2)i |+1 F,i

[K (t )] = (P (t-)][H] T [H][P (t')][H] T + [Q} (7.3)F F i F

[P I ] - [K (t )][H] [P (t-)] (7.4)

6-x A()J5 (t+) =65- (t-) + IK~ r F, - (HJ.6i(t-) (7.5)I I i

Backward Filter

While Equation (7.1) propagates the system dynamics

forward in time, replacing the At with -At will propagate

the system backward in time.

x B,1(t) f[x ,i(t),-At] (7.6)
Thus

[8e(t ,t )] = , t f[xei (t),-AtJ ) (7.7)

IK B(ti) =,[PB(t )][H]T [HJ[PB(t )][H]T + [Q] (7.9)

I [P9(t) = {[I ] - [K (t )][H)}[PB(t-)] (7.10)

Si (t+ ) = 6x (t-) + [K((tt){z (7.11)

B A B 1 r 1 BHJSZ B D}

Combining the Estimates

Smoothed covariance was found via least squares where

[P {= f [PJI-1 + [PB 1- (7.12)

The smoothed state vector was also found via least squares

where -h = [I{PFI - -F + (P B]-x } (7.13)
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This algorithm uses the "current" data point in both

the forward and the backwards filters. This causes a double

weighting of that data point in the smoother estimates.

One and ten second data interval smoothers estimated

3 the states for the 1 G flight profile from the central

trajectory initial conditions. Longitude and latitude

estimates suffered large errors for both data intervals as

I demonstrated in Figures (7.1) and (7.2). Acceleration

states were fairly well estimated for the one second data

3 interval as shown in the intrack acceleration covariance

plot, Figure (7.3). The ten secone interval smoother showed

I some bias in acceleration estimates during accelerations, as

3 shown in Figure (7.4). The other states' covariance plots

are presented in Appendix A.

I,

I - : rwt O
f 

0atw coy e

..................

I I i Ij 10-

TIME (TUs)

Figure 7.1. Longitude Covariance and Error, 1 G, 1 Second

Data Interval, Smoother
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Figure 7.4. Covariance and Error, 10 Second

Data Interval, Smoothera
3 Theoretically, smoother estimates should be no worse

than the forward filter. Investigation indicated that the

biases in the acceleration states may have been due to

forward and backward filter oscillations in response to step

changes in acceleration. All of the states suffered from

the numerical imprecision inherent in the standard Kalman

filter. This imprecision may have been worsened by the

multiple matrix inversions in Equation (7.12). Longitude

and latitude covariance magnitudes were approximately 10-10

radians 2 , but acceleration covariances were as large as 10 - 1

(DU/TU2 )2 . Such a matrix is poorly suited for numerical

inversion routines and may have induced estimate errors.
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VIII. Filter Comparisons

i In order to compare the smoother, probability weighting

adaptive filter, and the six state Kalman filter, Monte Carlo

average error magnitudes for all three estimators were

plotted on the same graphs. Smoother errors during

accelerations were consistently the largest. This is well

demonstrated by the longitude error plot, Figure (8.1),

which shows smoother error of approximately 4x10 "4 radians.

I This equates to roughly 2.5 kilometers, 4s compared to 76

meters for the six state filter'i position errors.

-__ . tate ite

o-----------t----------

TIME (TUs)

Figure 8.1. Longitude Error Comparison, 1 Second Interval

The adaptive filter showed slightly lower heading

errors, Figures (8.2) and (8.3), but had performance similar

to the six state filter for the remaining states.
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The distinct spikes in Figure (8.4) demonstrate the

smoother's superior ability to follow abrupt changes in

acceleration, but the six state Kalman filter had the lowest

errors overall. The attempts at adaptation and smoothing,

I then, were no improvement over the six state Kalman filter.

Appendix D presents the remaining error comparison plots.

I-

II
II

s 1Sc D aterval

o0,Doc 0.600 I.- oo 2.400 3.00 B0 XM 4.lo0 4.BO SAW0 6.000

I TIME (TUs)

Figure 8.4. Intrack Acceleration Error Comparison,

I I Second Data Interval
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IX. Recommendations

Attempts at adaptation and smoothing were no

improvement over the six state Kalman filter. Numerical

imprecision problems could be lessened by rescaling the

problem such that the covariance values for all states had

similar magnitudes. This would allow more accurate

covariance matrix inversion and possibly improved smoother

performance. Numerical precision for all of the estimators

could be improved by using a factored form of the Kalman

filter. In a factored form, the Cholesky square root of the

covariance matrix is propagated, preventing the loss of

significant digits when the covariance magnitude is much

less than one.

The probability weighting adaptive filter could be

improved by using the exponential of the unweighted square

of the residuals in the probability density in Equation

(6.12). This further enhances quick recognition of changes

in the appropriateness of the sub-filter system

models. (1:b)

I Further effort to validate the six state Kalman filter

could focus on applying the filter to data generated from

actual, high-speed aircraft flights. This would expose any

inadequacies in the truth model. This actual data could be

I corrupted by mathematical representations of atmospheric

effects.
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Singularities exist in the dynamics equations near the

poles where many military flights are likely to orbit. A

second Kalman filter could be derived using a coordinate

system 900 away from the longitude/latitude system. This

filter could be used when the TAV flies near the poles, or

it could be combined in a multiple model adaptive filter

much the same as the four and six state filters were

combined in Chapter VI.

Finally, although the adaptive filters presented in

this thesis gave no appreciable improvement, a bank of six

state filters (tuned to best estimate various accelerations)

could still be tried as a multiple model adaptive

filter. (6:8-2) By already having a sub-filter tuned for

various accelerations, multiple -nodel adaptive filters

generally have faster response to changes in acceleration.
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Appendix A: 1 G Covariance and Error Plots

This appendix provides covariance plots for the six

state Kalman filter, the probability weighting adaptive

filter, and the smoother. Tables iepresenting initial

conditions are presented before each grouping of plots.

Table A.1. Flight Profile, 1 G Accelerations

Time (sec) Time (TU) Maneuver

0 - 60 0 - .074 Constant Speed

61 - 180 .075 - .223 1 G Intrack Acceleration

181 - 300 .224 - .372 Constant Speed

301 - 420 .373 - .521 1 G Transverse Accel.

421 - 480 .522 - .595 Constant Speed

Table A.2. Central Trajectory Initial Conditions

State Covariance

I 0.0 rads P = 1.25e-5 rads 2

6=0.0 rads P66 = 1.25e-5 rads2

h = 0.7854 rads P = 3.e-3 rads2
hh

V = 0.5 DU/TU P = 3.e-2 (DU/TU ) 2

a 0.0 DU/TU 2  P = 3.5e-2 (DU/TU2)2
I Ii

a 0.0 DU/TU 2  P = 2.5 (DU/TU £)2
T TT
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Table A.3. North Trajectory initial Conditions

State Covariance

I= 0.0 rads = 1.25e-5 rads2

6 =1.0472 rads p 6= 1.25e-5 rinds2

h =0.0 rinds P = 3.e-3 rinds 2

V = 0.5 DU/TU P VV=3.e-2 (DU/TU )2

a =0.0DU/U 2P 1 = .5e2 (U/Tv2v

aT = 0.0 DU/TU 2  P 3.5e-2. (DU/TU 2 )2

4 
II

aab =m 0.0 DU/TU2  22w
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Figure A.38. Latitude Covariance and Error, 1 G, 1 Second
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Table A.4. East Trajectory Initial Conditions

State Covari ance

X = 1.0472 rads p 1.25e-5 rads 2

6 = 0.1745 rads p 1. 25e-5 rads 2

h = 1.5708 rads P =3.e-3 rads2

V = 0.5 DU/TU p V 3.e-2 (DU/TU) 2

a 0.0 DU/TU 2  P 1=3.5e-2 (DU/TU 2 )2

a 0.0 DU/TU 2  p T 2.5 (DU/TU 2 )2
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I Appendix B: 9 G Covariance and Error Plots.

Chapter 4 applied the six state Kalman filter to a 9 G

flight profile. The covariance plots for the one and ten

I second data interval filters are presented below.

Table B.1. Plight Profile, 9 G Accelerations

Time (sec) Time (TU) Maneuver

0 0-60 0 - .074 Constant Speed

61. - 180 .075 - .223 9 G Intrack Acceleration

181 - 300 .224 - .372 Constant Speed

301 - 420 .373 - .521 9 G Transverse Accel.

421 - 480 .522 - .595 Constant Speed

Table B.2. Central Trajectory Initial Conditions

IState Covariance

X =0.0 rads P = 1.25e-5 radS2

6 =0.0 rads P~ = 1.25e-5 rad s2

h = 0.7854 rads P =3.e-3 rads 2

V =0.5 DU/TU P VV=3.e-2 (DU/TU )2

a = 0.0 DU/TU 2  P 11= 3.5e-2 (DU/TU 2)2

a T= 0.0 DUT 2PTT =2.5 (DU/TU 2)2
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Appendix C: Error !1 a Plots, Central Trajectory

U To show the consistency in state estimation for the six

3 state Kalman filter, Chapter 4 presented four error

statistics plots. All six states' plots for both the one

3 and ten second interval filters are presented below.

I Table C.1. Central Trajectory Initial Conditions

State Covari ance

3 ~0.0Orads P~ 1.25e-5 rads 2

6 = 0.0 rads P 66=1.25e-5 rads 2

3h = 0.7854 rads P hh=3.e-3 rads 2

V = 0.5 DU/TU P V = 3.e-2 (DU/TU )2

aI=0.0 DU/TU 2  P 11= 3.5e-2 (DU/TLY 2 2

a'T = 0.0 DU/TU 2  P TT= 2.5 (DU/TU2 )2
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I
Appendix D: Comparison of Errors, Central Trajectory

Chapter 8 compared the six stete Kalman filter, the

probability weighting adaptive filter, and the smoother via

I plots of the average magnitude of their errors. All of the

error comparison plots for the one and ten second data

interval estimators are presented below.
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Figure D.1. Longitude Error Comparison, I Second Interval
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