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Abstract

This study took a previously developed six state Kalman
filter (designed for space-based tracking of a hypersonic
transatmospheric vehicle), tuned it, and performed a Monte
Carlo analysis. Three multiple model adaptive filters we:ze
then developed, with sub-filters designed for quiescent
periods and periods with apparent acceleration. Next, a
smoother was developed using the six state filter as the
forward filter and a form of that same filter as the
backward filter. The smoother and all of the above filters
were compared for their ability to most accurately estimate
the transatmospheric vehicle's state, with special emphasis
on the acceleration states. This emphasis was motivated by
a desire to evaluate the Kalman filter's usefulness as a
real-time intelligence gathering tool. From the data
generated, it was concluded that neither the adaptive
filters nor the smoother improved upon the performance of

the six state Kalman filter.
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ADAPTIVE FILTERING AND SMOOTHING FOR TRACKING
A HYPERSONIC AIRCRAFT FROM A SPACE PLATFORM

I. Introduction

The transatmospheric vehicle (TAV) is envisioned as an
air-breathing, horizontal take off, hypersonic craft capable
of using aircraft-style flight to ascend to and descend from
orbit. The TAV is seen as the next step in the evolution of
surface-to-orbit travel.

The infrared signature from air friction on the TAV, as
well as the signature from its necessarily hot and powerful
engines, should be a brilliant point source even when viewed
from geosynchronous orbit. Thus the very nature of the TavV,
its hypersonic speed, will readily betray its position to
virtually any orbital, infrared-sensing platform. That same
speed would render conventional aircraft tracking useless.

A tracking algorithm using data from orbital sensors would
allow continuous tracking in the event of telemetry loss, in
the case of enemy/non-broadcasting TAVs, and ghen, for
national security reasons, the TAV does not wish to

advertise its position through its transponder.

Objectives

This thesis refines a previously developed TAV tracking
algorithm (Ziegler), and builds upon that work. The primary
objective is to estimate the TAV's position, heading,

velocity, and acceleration with minimal errors. A secondary




objective is to compare the performance characteristics of a
basic Kalman filter, three different multiple-model adaptive
Kalman filters, and a smoother, when applied to the problem

of estimating TAV state.

Approach
To properly develop the above filters, this thesis will

model TAV dynamics, as well as data collection and
processing. 2Ziegler’'s six state Kalman filter will be
refined and subjected to a Monte Carlo analysis to allow
accurate filter tuning. Next, a reduced order, four state
filter will be designed with the intention of better
modeling periods without accelerations, and this filter will
be integrated with the six state filter as the two
sub-filters in various multiple-model adaptive filter
algorithms. Finally, a smoother will be evaluated as an

off-line alternative for estimating the TAV's state.

Overview

A geosynchronous infrared sensor of known accuracy will
supply position data to the various filters. The sensor
data will be preprocessed into longitude and latitude, and
the filters will utilize these position "measurements" to
estimate the TAV's state.

The TAV is assumed to be a brilliant, "...isotropically
radiating point source operating in the outer fringes of an

atmosphere surrounding a perfectly spherical and rotating




S E I G N D D e B =

earth." (6:1-3) This thesis will ignore the altitude state

because T 5 T when observed from a
TAV earth

orbital

geostationary orbit.




I11. Vehicle Dynamics (6:2-1 through 2-10)

A dynamics truth model is essential in properly
evaluating Kalman filter performance. The truth model
states must be compared to the filter's estimates to be sure
the filter is properly estimating those states. For this
thesis, a truth model that ignores altitude is believed to
be adequate since the radius of a low earth orbit is so
close in magnitude to the earth's radius. This section
derives the equations of motion for the transatmospheric

vehicle under the above assumption.

State Variables

Six state variables have been chosen to represent the
TAV's overall state. Earth longitude, A, is defined
positive east of the Greenwich Meridian, and negative
westward. Earth latitude, 6, is defined as positive north
of the equator, and negative southward. Heading, h, is the
clockwise angle from the true north direction to the current
direction of travel. Velocity is the speed along the
current direction of travel (and, by definition, there's no
component of velocity out of the direction of travel).
Intrack acceleration, al, is the rate of change in speed
along the direction of travel. Transverse acceleration, a_,
is the rate of change in velocity along the line out the
left wing of the TAV (perpendicular to the current direction

of travel).

2-1




(a /]a,]|) x (a /|a_|) = (local zenith) (2.1)

Equations of Motion

To find velocity, basic dynamics states
V= or (2.2)
where r is the radius and v is the angular rate. From this

the TAV velocity can be stated

Vx N Ra-cos )
vTAV = V& = [ Ws Ro (2.3)

where Wy is the angular rate of change in the longitudinal
direction, and W is the angular rate of change in the
latitudinal direction. Over a sufficiently small period of

time, this spherical geometry problem about the earth can be

approximated by planar geometry

Figure 2.1 Planar Representation of TAV Motion

2-2




Call this small period of time dt and Equation (2.3) becomes

\Y v .sin h (dr/dt)-R -cos &

G - Al TAV _ e
VTAV - [ \' } - { \' . cos h] - [ (dé/d4t) R ] (2.4)

) TAV e

Solving for A and §

i \' .8in h /cos &

= (1/R ).| TAVY (2.5)
3 ¢ \' .cos h
TAV

Correcting for the earth's rotation
. (v -sin h)/(R -cos §) - w
[ x] - [ TAV e ™ (2.6)
$ (VTAV-cos h)/Re

To find h and V, define the ENZ frame such that

local eastward direction at TAV location

local northward direction at TAV location

N> 22> I
"

E x N (6:2-6)

and the b-frame (body frame) such that

B1 = al/la”

B2 = aT/IaTI

B = B x B (6:2'6)
3 1 2




S5 & O N AE B 0 B e =

1\7
B, f
By
h
FE
Figure 2.2. TAV Coordinate Frames (6:2-6)
E = sin h B1 - cos h B2 (2.7a)
N = cos h B1 + sin h B2 (2.7b)
Z = 83 (2.7¢)
Inertial acceleration, as a function of inertial
velocity, expressed in the body frame is
B - 3T) s 5P X T (2.8a)
at .
- A R TR (2.8b
- at 1 W X . )
=V B, + 0% x (v B,) (2.8¢)
with
abl ab,ElZ +GENZ,1 (2.9)
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1

where
© ®!' = angular rotation of the body frame
with respect to the inertial frame
o P E"2 - angular rotation of body frame with
respect to ENZ-frame
ENZ, i

€l

= angular rotation of ENZ frame with
respect to inertial frame

From Figure 2.2

o PPENZ - g B, (2.10)

Since the ENZ-frame motion is dependent upon TAV and earth

motion,
e (2.11a)
=0 +i+é (2.11b)
=0, 4 i-cos 5N - & E
+ %.-sin & i (2.11c)
where
G. = ©_-cos § ﬁ + m.-sin ) i (2.114)

Expressed in the body frame this becomes
o ENZ.E o [-8~sin h+ (A +w)cosd: - cosh B,
e

+ [S-COS h+ (A 4+w)cos & -  cosh B,

~

+ (i + ue)-sin & 83 (2.12)
therefore
—b’j _ - A ~
w0 =W, 31+ w, Bz + W, B3 (2.13)
where
0, = -§.-8in h + (A + © )-cos & - cos h
©, = S§.cos h + (A + w.)ocos § - cos h
w = (A + w )-8in § -h
3 e




Substituting Equation (2.13) into Equation (2.8) gives

A=V B, + B, B, B, (2.14a)
0, 0, o
v 0 0
where |.| indicates a cross product. This becomes
K=VB +V.w B +V.o B (2.14b)
1 3 T2 2 3

Neglecting the 83 term in the previously assumed negligible
altitude direction gives

A=V B, + v-((i + w.)-sin s - ﬁ) B, (2.14c)

Now, substituting A from Equation (2.6)

- vZ .sin h -
K=VB + {( ;:Ycos % ]-sin & - v-ﬁ} B,
(2.144)
but
El = él component of inertial acceleration
ET = éz component of inertial acceleration
therefore
a = ' (2.15)
vZ.sin h .sin &
a_ = R Tco5 3 - v.-h (2.16)

Solving these equations for V and h gives

vV = a (2.17)

h = -ar/v + (V-sin h -sin & )/(R.-cos §) (2.18)

Finally, since changes in acceleration have no deterministic
model, impulsive changes in acceleration were assumed and
the rates of change for acceleration were set to gzero.

a = a_ =0 (2.19)




Summarizing Equations (2.6), (2.17), (2.18), and (2.19)

gives
F r .
| (V-sin h)/(R.-cos §) - w,
$ (V-cos h)/R_
h -a_/R_+ (V-sin h -sin 8)/(R_-cos &) -
= e ¢ = X (2.20)
v a
1
a 0
1
a 0
L T L. -

Propagating the Truth Model (6:2-10)

The six equations of motion are first order
differential equations of the form é = f(x,t). Given the
initial conditions, Equation (2.20) can be numerically
integrated to give a time history of the truth model states.

For this thesis, the Hamming predictor-corrector method
was used as the numerical integrator. "“Given initial
conditions, the time step size, and the right hand side of
the equations of motion, the Hamming algorithm produced
detailed time histories for 2, &, h, V, a, and aT."
(6:2-10) For all calculations, units of angles were
radians, units of velocity were DU/TU, and units of
acceleration were DU/TUZ. One DU is the average equatorial
radius of the earth, about 6378.145 kilometers. One TU is

approximately 806.8 seconds, resulting in one gravity (G)

equaling one DU/TUZ.




III1. Sensor (6:3-1 through 3-9)

This chapter deals wich the collection and processing
of the raw data from the geosynchronous sensor. Ziegler's
technique of preprocessing the data has been retained due to

its simplifying effect on the Kalman filter algorithms.

Raw Data

The geosynchronous satellite carrying the sensor, by
the nature of its orbit, remains at a constant longitude and
latitude. For this thesis, the sensor has been placed at 0°
longitude and 0° latitude. The thermal emissions of the TAV
are located in the sensor's field of view via azimuth (Az)
and elevation (El) as shown in Figure 3.1.

Rzimuth is the spherical angle from the northward
direction to the great circle containing the TAV. Elevation
is the angle seen by the sensor from the nadir to the TAV as
shown in Figure 3.2. From the geometry, 0 < El <« 8.6 .
(6:3-2)

Another component of the raw data is the uncertainty
associated with each measurement. No measurement is exact;
each one has error due to uncertainties in sensor position,
sensor attitude, atmospheric effects, vibrations, etc.
(6:3-2) According to the central limit theorem, these error

sources, when summed together, become zero-mean, Gaussian




North Pole

Equator

Great Circle

Figure 3.1. Azimuth and Elevation Data Angles (6:3-1)

Sensor

Earth

Figure 3.2. Planar View of Elevation




random variables. This thesis will carry forward the
standard deviations (o) of 3.5x10"° radians for azimuth
errors and 4.3x10°° radians for elevation errors. (4:3)
Assuming azimuth and elevation errors are statistically
independent of each other, the data covariance matrix can be

defined as

[Q) = [o2 o2 ] = [1.225x10°° 1.849x10"'']  (3.1)

Processed Data

The dynamics equations are, in part, functions of
longitude and latitude. A bit of foreknowledge allows the
simplification of the observation matrix, [H], in the Kalman
filter algorithms presented in later chapters. This
simplification of [H] was achieved by converting azimuth and
elevation into longitude and latitude. The data covariance,
[Q), was also converted. This section derives longitude and
latitude in terms of elevation and azimuth as well as the
Jacobian for converting [Q].

From Figure 3.2 and the planar law of sines

r/sin y = R./sin El (3.2)
(5:3-4)
where r is the distance from the sensor to the earth's
center and R is the radius of the earth.

Solving for y

y = sin"((r-sin El)/R.) (3.3)
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From the geometry, 90° < 7 < 180°, since a y < 90° would
indicate a TAV located behind the earth, and that would make
it unobservable. Solving for o« (from Figure 3.2.)
« = 180° - (El + y) (3.4)
The spherical geometry of this problem is represented

in Pigure 3.3.

North Pole

Great Circle N
@)

Sensor

Figure 3.3. Spherical Geometry of TAV Tracking Problem
(6:3-5)
The law of sines for oblique spherical triangles gives

(sin 6)/[sin(90° - Az) = (sin «)/sin 90° (3.5)




Solving for &
5 = sin"(sin a -cos Az) (3.6)

Combining Equations (3.3) and (3.4) with Equation (3.6)
S = sin"{sin[180°- (El + s8in"Y(r-sin El / R.)]]-cos Az}

(3.7a)
or
s = sin"[sin(zl + sin"(r-sin Bl / R.))-cos Az] (3.7b)
Also from Figure 3.3
sensor
where

sensor longitude

sensor

A

TAV longitude relative to sensor's
From spherical geometry
sin Ax = tan & -cot(90° - Az) (3.9a)
or
IN G sin"[tan & -cot(90° - Az)] (3.9b)
Substituting Equations (3.7b) and (3.9b) into Equation (3.8)

A=A + sin"{tan[sin"[sin(El + sin"[r-sin El /R ])
sensor -]
.Ccos Az)]-tan Az} (3.10)

Equations (3.7b) and (3.10) define the relation between El,
Az and A, 8. From the geometry, &§ and A\ are constrained to
be between -90° and 90°, so there is no uncertainty as to
the quadrant within which either angle resides. Therefore,
5 and A are completely defined.

The transformation from [QAz,El] to [Qx,a] is simply

[Q] = [Q, 41 = [J1le, _ 103)° (3.11)

»
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where

[J] is the system Jacobian

Since Equations (3.7b) and (3.10) are of the form

A= fi(Az,El) (3.12a)
S5 = fz(Az,El) (3.12b)
then
I af af | ]
OAz JET
{J3] = (3.13)
afz afz
| 3%z 3ET

where (6:3-7 through 3-9)

of
1 _ - R | A | ) S
3z { 1 [tan[51n {El + sin ( & sin El)]cos Az})

-1/72

2
-tan Az] } -[secz(sin"{sin[El + sin"(—%:-sin El)]
' Coaf ‘ 2y -172
.COS Az})-[ l - {51n[E1 + sin (—§:-51n El)]cos Az} )

.(-sin Az)-(tan AZ)-{Sin[El + Sin-l( ; ‘sin El]]}

:(seczhz)-tan(sin"{sin[El + sin'i(—ﬁ_'Sin E])]cos Az})]

of 1 1({r
55} = { 1l - [tan(sin' {sin[El + sin” (1T"Sin El)]cos Az})

-tan Az]z}-ilz-[secz(sin"{sin[El + sin"(—§--sin El]]

ces A,}).[ 1 - {sin[El + sin"(—§:~sin El]].cos Az}z)

-1/72




.cos Az -cos[El + sin"(—é—-sin El)]
[ 3

-{ 1+ [ 1l - (—E—-sin El)z]-ilz-—E—-cos El}tan Az]

afz o ¢ 2\ -1/2
3hz ( l - {sin[El + sin” [ R .8in El)]-cos Az} )

-sin[El + sin"(-;—.-sin El)]-(-sin Az]

3

afz of 2y -1/2
( 1 - {sin[El + sin” ( R -sin El)]-cos Az} ]

.cos Az -cos[El + sin"(—%—-sin El)]

Equations (3.7b), (3.10), and (3.13) define the
necessary numerical tools for converting data and data
covariance from Az, El to A, 8. Their usage is presented in

the Kalman filter derivations in Chapters IV and V.




1v. ix State Kalman Filter

The Kalman filter developed by Ziegler has been revised
after a careful analysis of its performance when subjected
to measurements with zero-mean, Gaussian random variable
components. This chapter explains the motivation for a six
state Kalman filter, explains design and tuning, and

documents the filter's performance.

Motivation

The result of tracking a TAV should be useful
information about the current state of the vehicle and
apparent intentions in the next few moments. A reasonable
amount of data would be the TAV's position, its velocity and
heading, and any observable, applied accelerations. The six
states of this Kalman filter contain all of the above
information in longitude, latitude, velocity, heading,
intrack acceleration, and transverse acceleration. This
filter will estimate all of these states for every data

point.

State Equation

Equation (2.20), in a linear approximation, defines the

TAV dynamics.




[ 1] g ) 7 [ 7
x“j (V‘-31n h‘/ R‘-cos 6‘) "W, xi
Bi’i (V‘-cos hi)/ R. 6‘
h -a_ /v + [V -sin h -sind /(R -cosé )] h
iel Ti i i i i e i i
v "1l a Aty
i+l 14 i
a 0 a
1 1i
fie1
aT 0 aTi
1+1J _j
(4.1)

This equation is the filter's model of TAV flight dynamics

for all possible accelerations.

State Transition Matrix

Discrete time propagation of the state vector, X, in

Equation (4.1) is of the form

x . (t) = £[x (t),at] (4.2)
The state transition matrix is found by taking the gradient
[o(t  ,t)] = in(f[xi(t),t]) (4.3)

which, expanded, is




axl¢1 aliol allol aliol 61“1 31‘.1 W
ax‘ 88i ah‘ avi aal‘ aan
66101 66101 66141 86101 86101 66101
ax‘ 65i ah1 av‘ aa‘i aari
ahsoi ahxoa ah1¢1 ahxox ahioi ahxox
[¢] = ax‘ aa‘ ah‘ av‘ aa“ aa“
avloi ie¢1 i+t avioi avioi avloi
ax‘ 86‘ ah‘ av‘ aax‘ aaT‘
81101 aalioi alioi a!l‘l al£¢1 aa!£¢1
ox aé oh ov da da_
i i i i 1 Ti
aaTiol aaTtﬁl aaTloi aaTiol aaTi¢1 aaTl+1
| &, a8 4h eV, sa oa_ |
where
V .s8in h‘-sin )
il i At
66s R -coszé,
[ ] 1
an vV, -cos h
fe1 = . At
éh R .cos &
i e i
N sin h‘
fe+1 = . At
av R -cos §
1 e i
—V‘-sin h
i+ = i At
dh R
i )
cos h
fe1 _ 1. At
av R
i L)
ah V .sin h .sin2%s
—21 = { V,sin b+ L L }-éﬁ
86: c0328i R.

(4.4)




dh V .cos h -sin §
1e1 _ i At 4+ 1
ah R -cos &
i e i
ah“1 i [aTl X sin h‘-51n 6‘ ]-At
av‘ v? R ‘cos &
i e i
ah - At
1e1
Ja \'j
Ti 1
i+ = At
da
14
aXi01 - 86101 - avioi = aallo‘l = aa'l‘iﬁ‘l = 1
a 35 av da da

i i i 1i Ti

and all other partials are equal to gzero.

Measurements (3:44)

Data is assumed to consist of a deterministic portion

and a zero-mean, white Gaussian noise, vi.

T = h[i(ti),ti] + V‘ (4.5)
where
Ik

- _ 100000
hix(t).t] = [010000

and V‘ has strength

(el = (3lle,, 10317
with [J]) and [Q.I.I] defined in Equations (3.13) and (3.1).
[H] is defined as
aﬁlii(t‘).t.] . [
ax

o0
oo

(4.6)

o+
O
oo

(H] =

o o
e
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State Covariance (3:44)

To allow easy starting of the filter, each state at
t = 0 was assumed independent of the other states, and
covariance could be assumed to be of the form
_ 2 2 2 2 2 2
(p ] = fo, og o o, 0. o.TJ (4.7)
This allows the entry of six values as opposed to a fully

populated 6x6 matrix.
Covariance is propagated via
[P, 1 =1[o 1tp 1[e

T
i+ iel, ] + [Qn] (4.8)
where [¢i‘1i] is defined by Equation (4.4) and [Qn] is the

iet,1
dynamics noise matrix, which is the strength of the zero
mean Gaussian white noise representing the uncertainty in
the dynamics model. [Qn] is assumed to be diagonal.

(el =10 Qn Qn Q Q Qn ] (4.9)
n ™ ) h v Mal aT
The six diagonal elements of [Qn] will be adjusted through

the tuning process.

Filter Algorithm (5:100)

The extended Kalman filter equations are

-1
[K(t )] = [P(t;)J[n]’{[n][v(t;mn]’ + [Q]} (4.10)
[P(t])] = {[IJ - [K(t ) HH][P(E])] (4.11)

ai(t:) = ai(t;) + [K(t‘)] ?, - [n]ai(t;)} (4.12)

where
[K] = Kalman gain matrix
[P(t:)] = state covariance prior to update
[P(t:)] = state covariance after update
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[Q] = measurement noise strength

[I] = 6x6 identity matrix

6§(t;) = prior correction to state estimate é
6E(t:) = new correction to state estimate §
r = data residual

2

Equation (4.12) is iterated until the correction to each
state is less than .001% of the current estimate of that

state.

Tuning

All tuning was performed through Monte Carlo analyses.
Monte Carlo analysis consisted of a series of fifteen
trajectory simulations differing only in the random noise on
each measurement. The filter estimated the states through
all of these simulations, and the mean and covariance of
each state's error were calculated. The dynamics noise
strength was adjusted until the square root of the diagonal
components of the filter covariance matrix were slightly
more than the error magnitude. For example, raising the
strength of the dynamics noise would inform the filter that
it should trust the dynamics less, and the filter covariance
would thus increase via EBquation (4.8). This resulted in a
filter whose own estimate of it's error (the filter
covariance) was slightly pessimistic: it overestimated the
size of it's errors. The six state filter was tuned for one

second data intervals for the flight profile defined in




Table (IV.l), starting from the initial conditions in Table

(1v.2).

Table IV.1. Flight Profile, 1 G Accelerations
Time (sec) Time (TU) Maneuver
0 - 60 0 - .074 Constant Speed
61 - 180 .075 - .223 1 G Intrack Acceleration
181 - 300 .224 - .372 Constant Speed
301 - 420 .373 - .521 1l G Transverse Accel.
421 - 480 .522 - .595 Constant Speed
Table IV.2. Central Trajectory Initial Conditions
State Covariance
A= 0.0 rads Pu = 1.25e-5 rads?
5= 0.0 rads Pys = 1.25e-5 rads?
h = 0.7854 rads P, = 3.e3 rads?
V=0.5DU/TU P, = 3.e-2 (pu/TU?)?
a = 0.0 -DU/TU? P = 3.5e-2 (pu/TU?)?
a = 0.0 pu/TU? P_ = 2.5 (DU/TU?)?
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The dynamics noise matrix values that presented the
best performance are given in Table (IV.3). The square root
of the filter covariance and the average state error (from
fifteen Monte Carlo runs) for both heading and intrack
acceleration are presented in Figures (4.1) and (4.2) for
the one second data interval with 1 G accelerations. These
plots are representative of the filter's performance in
tracking all six states. Note the axis scale factors in the
corners of the plot. Also, the distinct peaks on both ﬁlots
are indicative of the filter's lag in detecting the

occurrence of accelerations.

Table IV.3. Dynamics Noise Strengths, Six State Filter,

One Second Interval

_ _ 2
Q5 7 l.e-14 (rads)
Q66 = 2.e-14 (rads)2

_ _ 2
th = l.e-13 (rads)

_ _ 2
vi = 6.e-11 (DU/TU)
Q, = 8.e-3 (pu/TU?)?

_ - 2,2
QTT = 4.5e~3 (DU/TU®)
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The gradual rise in both heading covariance and heading
error appeared to indicate an unstable filter where error
increases with time. A trajectory which flew backwards
towards the initial conditions showed reverse trends in
filter performance, indicating that filter performance is a
function of the distance from the sensor's projection upon
the earth's surface. The earth's curvature apparently
degrades the filter's performance.

Intrack acceleration error spiked at tne " eginning and
end of the 1 G maneuver. The narrowness of those spikes
indicate that the filter rapidly recognized the presence of
the maneuver.

The variation of state errors among the fifteen Monte
Carlo runs also indicate filter performance. Figures (4.3)
and (4.4) show that average heading and intrack acceleration
errors remained close to a mean of zero except when
maneuvers started or ended. The ! 1 o curves represent the
amount that errors varied among the Monte Carlo runs. The
relative tightness of the ! 1 o curves indicate that the six
state Kalman filter consistently estimated TAV states

throughout all the Monte Carlo runms.
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The other four states exhibited performance similar to
the two states above. These plots are presented in

Appendix A.

The ten second data interval also estimated the TAV's
state over the trajectory defined in Table (1IV.1l) from the
initial conditions listed in Table (IV.2). The dynamics
noise matrix for this filter is listed in Table (1V.4).
Heading and intrack acceleration covariance plots are given

in Pigures (4.5) and (4.6).

Table IV.4. Dynamics Noise Strengths, Six State Filter,

10 Second Data Interval

N U G & I B O e o e

- - 2
le = 3.e-10 (rads)
_ _ 2
l 956 = 5.e-10 (rads)
- _ 2
th z l.e-12 (rads)
- _ 2
l Q,, = 1.e-9 (DU/TU)
Q = 6.e-2 (pu/TU?)?
]I - _ 2,2
QTT = 6.e-2 (DU/TU)
. 4-12
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Monte Carlo error statistics for the ten second data
interval filter were slightly degraded compared to the one
second data interval filter. Heading and intrack
acceleration error statistics are presented in FPigures (4.7)
and (4.8). The other states' covariance plots are presented
in Appendix A. All remaining error ! o plots are presented

in Appendix C.
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Filter Performance

In order to evaluate the filter's ability to properly
estimate states for a TAV located anywhere within view of
the sensor, two additional sets of initial conditions were
used with the flight profile given in Table (IV.l) and the
dynamics noise matrix given in Table (IV.3). The first set
was a northward trajectory starting from a point closer to

the north pole.

4
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Table IV.5. North Trajectory Initial Conditions

State Covariance
2= 0.0 rads Pu = 1.25e-> rads?
5= 1.0472 rads Pgs = 1.25e-5 rads?
h = 0.0 rads Phh = 3.e-3 rads?
V=0.5 DU/TU P, = 3.e-2 (pu/TU?)?
a = 0.0 DU/TU? P = 3.5e-2 (pu/TU?)?
a_ = 0.0 DU/ TU? P_=2.5 (pu/Tu?)?
fele—e |
/!
e e v e -/
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= |
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Pigure 4.9. North Trajectory Longitude Covariance and

Error, 1 G, 1 Second Interval, Six State Filter




N SR &5 &G En s an o ow o

Longitude becomes less certain near the north pole due
to the longitude singularity at the pole, and Pigure (4.9)
is clearly consistent with this fact. As before, the other
states' covariance plots are presented in Appendix A.

Another trajectory used the flight profile in Table
(IV.1) with the initial conditions given in Table (IV.6).
This east trajectory gave additional support that the six
state filter remained viable near the eastward (and
westward) limits of sensor view. All covariance plots for

this trajectory are presented in Appendix A.

Table IV.6. East Trajectory Initial Conditions

State Covariance
A = 1.0472 rads P,, = 1.25e-5 rads?
& = 0.1745 rads Pes = 1.25e-5 rads?
h = 1.5708 rads P = 3.e-3 rads®
V=0.5DU/TU P, = 3.e-2 (pu/TU?)?
a = 0.0 DU/ TU? P = 3.5e-2 (pu/TU?)?
a_= 0.0 DU/TU? P = 2.5 (DU/TU®)?

A 9 G acceleration profile, Table (IV.7), was also
investigated using the central trajectory initial conditions
of Table (1V.l) and the appropriate dynamics noise matrices

for the one and ten second interval filters. Although these
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two filters had degraded performance, they still made
adequate estimates of TAV states. 1Intrack acceleration
curves, Pigures (4.10) and (4.11), demonstrate adequate
state estimation by both the one and ten second interval
filters. The curves for the remaining five states are

presented in Appendix B.

Table 1V.7. Plight Profile, 9 G Accelerations

Time (sec) Time (TU) Maneuver
0 - 60 0 - .074 Constant Speed
61 - 180 .075 - .223 9 G Intrack Acceleration
181 - 300 .224 - .372 Constant Speed
301 - 420 .373 - .521 9 G Transverse Accel.
421 - 480 .522 - .595 Constant Speed
4-18
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The six state filter, executed at both one and ten
second data intervals, was found to adequately estimate all
TAV states through 1 G and 9 G maneuvers. The remainder of
this study sought a filtering algorithm which could exceed

the six state filter's performance.
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V. Four State Kal.ian Filter

The second filter developed for this tracking problem
was a reduaced order, four state Kalman filter. This chapter
relates the motivation for a four state filter, the design

and tuning process, and the filter's performance.

Motivation

The six state filter tracks the transatmospheric
vehicle through periods with acceleration and periods
without acceleration. Most current aircraft fly long
periods of "cruise" at an essentially constant speed. The
transatmospheric vehicle would also cruise in this manner
when flying point-to-point missions, to alicn its ascent to
orbit with a rendezvous target, and to return to its base
after missions. Duting these guiescent (without intrack or
transverse acceleration) periods, the two acceleration
states are carried along in the six state filter for no
useful purpose. The four state filter is designed to track
the target during -hese less computationally taxing periods,
taking advantage of the reduced number of states by assuming
zero acceleration, thus eliminating calculations containing

any acceleration terms.




State Equation

With the elimination of the acceleration states, the
dynamics of the transatmospheric vehicle, Equation (2.20),

reduce to the linear approximation

Tx“; r(V‘-sin hi/Re-cos 8‘) ", L
5“1 (V‘-cos hi)/ R. 8i
h, . ||-a, / V, +[V -sin h -sins /(R.coss )14 (n {(3+1)
i io‘lJ -alt ~ -V‘J

Assuming that acceleration will be zero during the use of

this filter further reduces the state equation to

_ - _ o . ) 1 -
1‘01 (Vl sin hi/ (R° cos 8i)) ©_ 1;
6“1 (Vi-cos h‘)/ Re 5‘
h = (v .sin h .sin 6 )/ (R -cos & ) Aty (5.2)
i+ i i i e i i
vV 0 v
| xoli i ] L i-‘

This equation is a model of the transatmospheric vehicle in
a gquiescent period. No attempt is made to accommodate
accelerations because, in the presence of accelerations, the
total, adaptive filter will execute the six state filter to

properly estimate the acceleration states.

State Transition Matrix

Discrete time propagation of the state vector, x, in

Equation (5.2) is of the form

i'm(t) = f[’i‘(t),At] (5.3)




The state transition matrix is found by taking the gradient
ot .t 01 = v, (£I% (6), t]] (5.4)
i+1 i x‘ Y

which, expanded, is

] )
oA a a aa
ie1 fe1 fe1 fe1
ax‘ 88i ah‘ av'
8é aé 1) aé
1¢1 i+ i+ 141
axi 68‘ oh av
[(¢] = ! ! (5.5)
dh dh éh ah
iel i+1 141 i+l
o 38 3k v
av av av av
ie1 isl i+l i+l
1Y Y] ah. av
i i i i
where
P22 Vv .sin h :s8in &
ie1 o 4 i i oAt
86: R .cos?s
e i
a V .cos h
i+1 = i i i At
3h R ~cos &
i [ i
(a1 sir h‘
3% - K .cos & at
i e i
3% -V .sin h
i1 = i i . At
=5 —
5 [
3 cos h
141 ——E—_l . At
i [
ah“i V‘-sin h‘-sinza‘ At
355 = V -sin h + .
i . ! coszé‘ k_.
ah“1 Vi-cos h‘-sin 6‘
) v "R -co8 o - at + 1
i ) i
5-3




v, cos - At
oA o6 av
i+ = ied = e =1
ll i i
ahl#i ale‘I = avio‘l = 1+1 = i+1 _ 0
81‘ C oA 861 ahl axi

Measurements (3:44)

Data is assumed to consist of a deterministic portion
and a zero-mean, white Gaussian noise, VvV .
1

T = h[?(ti),ti] + Vi (5.6)

)=

[l = [allo,, 03]
with [J] and [Q.z.1] defined in Equations (3.13) and (3.1).

where
- _f1000
Rix(t ).t ] = [o 100

and V‘ has strength

[H] is defined as

[H] . aﬁ[X(t‘):t‘] - [ 100 o] (5.7)
3% 0100
State Covariance (3:44)

For convenience in starting the filter, each state
variable at t = 0 is assumed independent of the other
states, or

- 2 2 2 2
[Pol [oX o5 Oy oyJ (5.8)

This allows the entry of four values as opposed to a fully

populated 4x4 matrix.




Covariance is propagated via
_ T

[Pioil - [0101,1][P;][°1¢1,s] + [Qn] (5.9)

where [O“’i] is defined by Equation (5.5) and [Qn] is the

dynamics noise matrix, which is assumed to be diagonal.
[Qn] s ran Q“G th anJ (5.10)
The four diagonal elements of [Qn] will be adjusted through

the tuning process.

Filter Algorithm (5:100)

The extended Kalman filter equations are

-1
[R(t )] = [P(t;)][H]’{[HJ[P(t;)][H]T + [Q]} (5.11)
[B(t])] = {m - [K(ti)][H]}[P(t;)] (5.12)
&x(t}) = Sx(t]) + [K(t‘)]{ r - [H]a“i(t;)} (5.13)

which is the same as presented in Chapter 1V.

Tuning

Just as in the case of the six state filter, the
dynamics noise matrix, [Qn], was adjusted until the square
root of the diagonal components of the filter's covariance
matrix (after the measurement update) were just slightly
higher than the average error found via Monte Carlo
analysis. The four state filter was tuned for a flight
profile without any applied accelerations. The initial
conditions are the same as the central trajectory initial
conditions from Chapter IV and are repeated in Table (v.1).

The dynamics noise matrix values used for this study are
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listed in Table (V.2) for the one second interval and in

Table (V.3) for the ten second interval.

Table V.1. Central Trajectory Initial Conditions,
Pour State Pilter
State Covariance
A= 0.0 rads Pn = 1.25e-5 rads?
& = 0.0 rads P66 = 1.25e-5 rads®
h = 0.7854 rads Phh = 3.e-3 rads?
V= 0.5 DU/TU P, = 3.e-3 (Du/TU)?
a = 0.0 pU/TU?
a_ = 0.0 pu/TU?
Table V.2. Dynamics Noise Strengths, Four State Filter,

One Second Data Interval

0.0 rads?
0.0 rads?
1l.e-26 rads?

1.e-26 (DU/TU)?




Table V.3. Dynamics Noise Strengths, Four State Filter,

Ten Second Data Interval

- 2
Qn = 0.0 rads

- 2
Q&& = 0.0 rads

= 1.e-16 rads?

hh

_ _ 2

vi = l.e-16 (DU/TU)

The four state filter's performance was demonstrated by
the longitude covariance plots, Figures (5.1) and (5.2), for
the one and ten second interval four state filters.

Although the one second interval plot shows the error
exceeding the square root of covariance halfway through the
plot, this version of the four state filter gave the best

performance when integrated into the adaptive filters.
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VI. Multiple Model Adaptive Kalman Filters

When a system model itself may be subject to change,
multiple model adaptive filtering can be used to compare the
performance of several filters, each based upon a different
system model. Sub-filter estimates could be used either
individually or in weighted averages of those estimates.
This section presents three different approaches for the
application of adaptive filtering to this estimation
problem. All of the adaptive filters presented estimated
the states for the 1 G flight profile starting from the

central trajectory initial conditions.

Acceleration Switched Adaptive Filter

The four state filter developed in chapter V was meant
to model TAV dynamics in the absence of applied
accelerations. The six state filter modeled the presence of
accelerations. Rather than running both the six state and
four state filters simultaneously, the first attempt at
adaptation was to switch from the six state to the four
state and back again based upon the six state estimate of
acceleration and the four state filter's residuals.
Residuals were measured before the measurement updates for
each data interval. This was intended to decrease estimate
errors and minimize computer time reguired for the adaptive

filter.
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The algorithm for the acceleration switched adaptive
filter begins with the six state Kalman filter Equations
(4.10), (4.11) and (4.12), repeated here with the subscript

'6' to indicate the six state filter.

-1
[K (t )] = [P _(t])] [HGJT{[HG][PS(t;)][HGJT + [951} (6.1)

[P (t])] {[16] - [xs(ti)][nﬁl}tps(t;)] (6.2)

’

8;6(t:) = B;G(t;) + [Ks(tx)]{;z 6 - [Hslsis(t:)} (6.3)

Normal six state filter operations continued until both

;r and ET estimates dropped below 0.02 G's. At that point

the accelerations were assumed to be zero and the four state
filter was initiated using the first four components of the
six-state state vector along with the corresponding 4x4
section of the covariance matrix. The remaining covariance
values were stored to allow the six state filter to restart
in the future. The four state filter equations (5.11),

(5.12), and (5.13) are repeated below.

-1
[K,(t )] = [P (t])] [H‘]’{[HJ[P‘(t;)][H‘]T + [941} (6.4)

[p, ()] {[143 - [x4(t‘)][H‘J}IP4(t;)] (6.5)

6§‘(t:) = 5?4(1:;) + [K‘(t‘)]{?z ‘- [H‘]a'i"(t;)} (6.6)

The four state filter continued to operate until either
the average of the last two longitude residuals or the
average of the last two latitude residuals exceeded 7 x 10°°

radians. At this point, the four state filter was assumed

to be diverging, and the four-state state vector augmented




with two zeroes was fed into the six-state state vector.

The four state covariance matrix, augmented with the unused
values discussed above, was inserted into the six state
covariance, and the adaptive filter switched back to six
state filter operations until accelerations once again
dropped below the lower bound. The two switching bounds,
0.02 G's for acceleration and 7 x 10~° radians for position,
were found to give the best state estimates for this
algorithm.

Unfortunately, this ad hoc approach to adaptive
filtering did not markedly decrease filter errors, nor was
it an improvement during gquiescent periods. Figure (6.1)
depicts slight increases in heading covariance during the
four state filter's activity. The rest of the curve is

essentially the same as the curve for the six state filter.
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Residual Switched Adaptive Filter

This second attempt at adaptation abandoned the idea of
running only one filter at a time. For this adaptation the
longitude and latitude residuals were monitored in order to
choose which filter (model) best represented the TAV's
dynamics during the current data interval.

The root-mean-squares of the longitude and latitude
residuals for both the six state and four state filters were
calculated. Residuals were measured before the —easurement

updates.

2l

- 2 2
RMS, = /o.s.(r“+ r2,) (6.7)
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“

- 2 2
RMS_ = ,/o.s-(r“»f r2.) (6.8)

The smaller of the two RMS's would indicate the
sub-filter whose estimate was chosen for that time interval.
If the four state filter was chosen, the current
acceleration estimates would be set to zero.

This attempt at adaptation suffered from the same
problem as the previous attempt: the four state model did
not adequately improve the estimate even during gquiescent
periods. Figure 6.2 demonstrates behavior much worse than
the six state filter's performance. This adaptive filter

exhibited large errors and was abandoned.
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Probability Weighting Adaptive Filter

Both the six state and four state sub-filters generate
state estimates for each data point. Probability weighting
used the sub-filters' residuals to generate the probability
that either sub-filter model was the correct model for the
system at any given time. The probability density, fn'

associated with the sub-filters is given by

1 1 —1 -1 =
f (t ) = . exp{— r. [a] r } (6.9)
ki 2nl[§.]|1’2 Z Tk k x (3:132)
where
- - T
(A 1= (1 I[P (£)IH 1T + [Q]

[HI[P (t7)I[H]T + [Q]

[ P 0
k,11
= + [Q]
0 P
| k,22
Pk,ll* Q11 Q‘IZ
[Ak] = (6.10)
L QZi Ph,22+ Q22

Equation (6.9) is of the form
- 1=t -1 =
fk(ti) = B - exp{ 5 I, [ék] rk} (6.11)

The 8 term is commonly set to one in order to enhance the
sensitivity of the adaptive filter to the inadequacies of
the sub-filters. (l1:a) With g set to one the adaptive
filter switches more quickly to the more correct sub-filter,
and the probability density becomes

fk(t‘) = exp{-% ?: [5‘]" ?k} (6.12)




The probability that the k-state sub-filter is the best
model is given by
p(t)=¢£ (¢t )P (t )
{f4(t‘)-P‘(ti_1) + fs(tx)'Ps(tx-a)} (6.13)
Adaptive filter state estimates are given by

R(td) = p () - R (&) +p (t ) - R (t]) (6.13)
(3:131)

and covariance by
[P(t)] = P (L)) - {[P,(t;)l + IR, (t]) - Rt
[%,(t]) - Q(t;>1’} + P (L) {[p5<t;)1
IR () - (D] - (R (2 - Q(t;)]} (6.14)
(3:131)

For this application, the sub-filiters should be tuned
optimistically as opposed to the pessimistic tunings
performed in chapter IV. By allowing sub-filter covariance
to be close to, or slightly less than, the actual error, the
residuals should more clearly indicate the relative
"goodness" of the sub-filter models. Best adaptive filter
estimates, however, occurred when the six state filter
utilized the dynamics noise matrices presented in Tables
(1v.3) and (1V.4), and when the four state filter retained
the dynamics noise matrices presented in Tables (V.2) and
(v.3). These four matrices are summarized in Tables (VI.1)

and (vI1.2).




Table VI.1.

Adaptive Filter Dynamics Noise Matrices,

1l Second Data Interval

Six State Filter

.e-14 rads?®

Pt

.e-14 rads?
.e-13 rads?
(DU/TU)?

.e-3 (DU/TU?)?

S [+ ] N (o N
o
|
[
[

.5e-3 (DU/TU?)?

Adaptive Pilter Dynamics Noise Matrices,

10 Second Data Interval

Six State Filter

Four State Pilter
2
le 0.0 rads
2
966 0.0 rads
Q 1.e-26 rads?
hh
_ 2
vi l.e-26 (DU/TU)
Qxx N/R
er N/A
Table VI.2.
Four State Pilter
2
Qn 0.0 rads
Q66 0.0 rads?
_ 2
th l.e-26 rads
_ 2
%v l.e-26 (DU/TU)
Qll N/A
Q" N/A

3.e-10 rads®
5.e-10 rads?
.e-12 rads?
.e-9 (DU/TU)?

.e-2 (DU/TU?)?

Nh O =

.e-2 (DU/TU?)?




The heading and intrack acceleration covariance plots
for the one and ten second interval adaptive filters,
Figures (6.3) through (6.6), demonstrated a slight
improvement in intrack acceleration for a short period with
some degradation in heading. The other states were also
slightly improved or degraded, but there was little overall
improvement as compared to the six state Kalman filter of
Chapter 1IV. Por the sake of completeness, this adaptive
filter was carried forward into Chapter VII's comparisons.

The other two adaptive filters were not.
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V1I. Smoother

A Kalman filter estimates the current state based upon
the data collected prior to the current time. After
collecting all of the data, another filter could be run
backwards in time from the end of the data to estimate the
state based upon all of the data collected from the current
time until the end of the data. The two estimates could be
optimally combined to produce an estimate of the state based
upon all of the data collected. This process is called
smoothing, and the algorithm is known as a smoother. (2:2)
This chapter explains the motivation for the smoother and

its derivation.

Motivation

All of the previous methods were potentially real-time
algorithms that would take TAV position data and immediately
estimate the six state variables. Adaptation failed to
decrease errors, necessitating another approach to better
estimate acceleration states. A smoother, although a form
of Kalman filter, is a "post-flight" analysis tool also

known to improve state estimates, including the acceleration

states.

Forward Pilter

The forward filter is the same as the six state filter

developed in Chapter V where




(t) = £[X_ (t),at] (7.1)

;F,t¢1
o (¢, e 01 = v [(£IF,  (e).at] ) (7.2)
F,i !
-1
(K (t )] = [Pr(t;)lfﬂl’{[H][P,(t;)J[HJ’ + [Q]} (7.3)
(P (t])] = {[1] - [KF(t‘)][H]}[PF(t;)] (7.4)

SIF(t:) = GIF(t:) + [Kr(ti)]{ ?r,z - [H]-S;F(t;)} (7.5)

Backward Filter

While Equation (7.1) propagates the system dynamics
forward in time, replacing the At with -~At will propagate

the system backward in time.

IB"_’(t) = f[ia"(t),-At] (7.6)

Thus
o (t  .t)]= va i{ f[?a'x(t),-At] ) (7.7)
[K (t )] = tpa(t;>1[a1T{[u][PB(t;)1[31’ . [o]}" (7.9)
[P (t%)] = {[x] - [x8<t‘)1[n1}[pa<t;)1 (7.10)

§En(t:) = 6§B(t:) + [xa(t‘)]{ ?B’z - [H]-ain(t;)} (7.11)

Combining the Estimates

Smoothed covariance was found via least squares where
-1
_ -1 -1
[p.] = {[PF] + [P,] } (7.12)

The smoothed state vector was also found via least squares

where

;s = [Ps]-{[PF]'1--x—F + [PB]'i-;B} (7.13)




This algorithm uses the "current"” data point in both
the forward and the backwards filters. This causes a double
weighting of that data point in the smoother estimates.

One and ten second data interval smoothers estimated
the states for the 1 G flight profile from the central
trajectory initial conditions. Longitude and latitude
estimates suffered large errors for both data intervals as
demonstrated in Pigures (7.1) and (7.2). Acceleration
states were fairly well estimated for the one second data
interval as shown in the intrack acceleration covariance
plot, Figure (7.3). The ten second interval smoother showed
some bias in acceleration estimates during accelerations, as
shown in Figure (7.4). The other states' covariance plots

are presented in Appendix A.
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Theoretically, smoother estimates should be no worse
than the forward filter. 1Investigation indicated that the
biases in the acceleration states may have been due to
forward and backward filter oscillations in response to step
changes in acceleration. All of the states suffered from
the numerical imprecision inherent in the standard Kalman
filter. This imprecision may have been worsened by the
multiple matrix inversions in Equation (7.12). Longitude

and latitude covariance magnitudes were approximately 10~ 1°

2, but acceleration covariances were as large as 107!

radians
(DU/TUZ)Z. Such a matrix is poorly suited for numerical

inversion routines and may have induced estimate errors.
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VIII. Filter Comparisons

In order to compare the smoother, probability weighting
adaptive filter, and the six state Kalman filter, Monte Carlo
average error magnitudes for all three estimators were
plotted on the same graphs. Smoother errors during
accelerations were consistently the largest. This is well
demonstrated by the longitude error plot, Pigure (8.1),
which shows smoother error of approximately 4x10"* radians.
This equates to roughly 2.5 kilometers, as compared tc 76

meters for the six state filter's position errors.
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Figure 8.1. Longitude Error Comparison, 1 Second Interval
The adaptive filter showed slightly lower heading

errors, Pigures (8.2) and (8.3), but had performance similar

to the six state filter for the remaining states.
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The distinct spikes in Figure (8.4) demonstrate the
smoother's superior ability to follow abrupt changes in
acceleration, but the six state Kalman filter had the lowest
errors overall. The attempts at adaptation and smoothing,
then, were no improvement over the six state Kalman filter.

Appendix D presents the remaining error comparison plots.
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.440
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Figure 8.4. Intrack Acceleration Error Comparison,

1 Second Data Interval




IX. Recommendations

Attempts at adaptation and smoothing were no
improvement over the six state Kalman filter. Numerical
imprecision problems could be lessened by rescaling the
problem such that the covariance values for all states had
similar magnitudes. This would allow more accurate
covariance matrix inversion and possibly improved smoother
performance. Numerical precision for all of the estimators
could be improved Ly using a factored form of the Kalman
filter. 1In a factored form, the Cholesky square root of the
covariance matrix is propagated, preventing the loss of
significant digits when the covariance magnitude is much
less than one.

The probability weighting adaptive filter could be
improved by using the exponential of the unweighted square
of the residuals in the probability density in Equation
(6.12). This further enhances quick recognition of changes
in the appropriateness of the sub-filter system
models. (1l:b)

Further effort to validate the six state Kalman filter
could focus on applying the filter to data generated from
actual, high-speed aircraft flights. This would expose any
inadequacies in the truth model. This actual data could be
corrupted by mathematical representations of atmospheric

effects.

9-1




Singularities exist in the dynamics equations near the
poles where many military flights are likely to orbit. A
second Kalman filter could be derived using a coordinate
system 90° away from the longitude/latitude system. This
filter could be used when the TAV flies near the poles, or
it could be combined in a multiple model adaptive filter
much the same as the four and six state filters were

combined in Chapter VI.

Finally, although the adaptive filters presented in
this thesis gave no appreciable improvement, a bank of six
state filters (tuned to best estimate various accelerations)
could still be tried as a multiple mndel adaptive
filter. (6:8-2) By already having a sub-filter tuned for
various accelerations, multiple model adaptive filters

generally have faster response to changes in acceleration.




Appendix A:

This appendix provides covariance plots for the six

state Kalman filter,

filter, and the

[ S A AN 2 311043

smoother.

Tables

the probability weighting adaptive

iepresenting

conditions are presented before each grouping of plots.

Table A.1. Flight Profile, 1 G Accelerations
Time (sec) Time (TU) Maneuver
0 - 60 0 - .074 Constant Speed
61 - 180 .075 - .223 1 G Intrack Acceleration
181 - 300 .224 - .372 Constant Speed
301 - 420 .373 - .521 1 G Transverse Accel.
421 - 480 .522 - .595 Constant Speed
Table A.2. Central Trajectory Initial Conditions
State Covariance
A= 0.0 rads Pu = 1.25e-5 rads?
8§ = 0.0 rads P&G = 1.25e-5 rads®
h = 0.7854 rads Phh = 3.e-3 rads?
V=0.5DU/TU P, = 3.e-2 (pu/TU)?
a = 0.0 DU/ TU? P = 3.5e-2 (pu/TU?)?
a_ = 0.0 pu/TU? P_ = 2.5 (pu/TU?)?

initial
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Table A.3. North Trajectory Initial Conditions

State Covariance
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V=0.5DU/TU P, = 3.e-2 (pu/TU)?
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Table A.4. East Trajectory Initial Conditions

State Covariance
1 = 1.0472 rads P,, = 1.25e-5 rads?
& = 0.1745 rads Pys = 1.25e-5 rads®
h = 1.5708 rads P, = 3.e3 rads?
V=0.5DU/TU P, = 3.e2 (pu/TU)?
a =0.0 pU/TU? P = 3.5e-2 (pu/TU?)?
a_=0.0 pu/TU? P_ = 2.5 (pu/TU?)?
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Appendix B: 9 G Covariance and Error Plots
Chapter 4 applied the six state Kalman filter to a 9 G
flight profile. The covariance plots for the one and ten

second data interval filters are presented below.

Table B.1. Flight Profile, 9 G Accelerations

Time (sec) Time (TU) Maneuver

0 - 60 0 - .074 Constant Speed

61 - 180 .075 - .223 9 G Intrack Acceleration
181 - 300 .224 - .372 Constant Speed
301 - 420 .373 - .521 9 G Transverse Accel.
421 - 480 .522 - .595 Constant Speed

Table B.2. Central Trajectory Initial Conditions

State Covariance
A= 0.0 rads P, = 1.25e—5_rads2
5 = 0.0 rads Pos = 1.25e-5 rads?
h = 0.7854 rads Phh = 3.e-3 rads?
V=0.5DU/TU P, = 3.e-2 (pu/To)?
a = 0.0 DU/TG? P = 3.5e-2 (pu/TUu?)?
a_ = 0.0 pu/TU? P_ = 2.5 (pu/Tu?)?
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Appendix C: Error E 1l o Plots, Central Trajectory

To show the consistency in state estimation for the six
state Kalman filter, Chapter 4 ©presented four error
statistics plots. All six states' plots for both the one

and ten second interval filters are presented below.

Table C.1. Central Trajectory Initial Conditions

State Covariance
A = 0.0 rads Pn = 1.25e-5 rads?
5 = 0.0 rads Pys = 1.25e-5 rads?
h = 0.7854 rads Phh = 3.e-3 rads?
V=0.5DU/TU P, = 3.e-2 (DU/TU)?
a = 0.0 pu/TU? P = 3.5e-2 (pu/TU?)?
a_ = 0.0 DU/TU® P = 2.5 (DU/TU?)?
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Appendix D: Comparison of Errors, Central Trajectory

Chapter 8 compared the six stete Kalman filter, the
probability weighting adaptive filter, and the smoother via
plots of the average magnitude of their errors. All of the
error comparison plots for the one and ten second data

interval estimators are presented below.
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