

**ARI Research Note 91-06** 

# Short Range Air Defense (SHORAD) Engagement Performance Criteria Development and Validation

Andrew V. Barber

Science Applications International Corporation

for

Contracting Officer's Representative John M. Lockhart

> Field Unit at Fort Bliss, Texas Michael H. Strub, Chief

Systems Research Laboratory Robin L. Keesee, Director

October 1990





United States Army Research Institute for the Behavioral and Social Sciences

Approved for public release; distribution is unlimited.

10

186

90

# U.S. ARMY RESEARCH INSTITUTE FOR THE BEHAVIORAL AND SOCIAL SCIENCES

## A Field Operating Agency Under the Jurisdiction of the Deputy Chief of Staff for Personnel

EDGAR M. JOHNSON Technical Director JON W. BLADES COL, IN Commanding

Research accomplished under contract for the Department of the Army

Science Applications International Corporation

Technical review by

Michael W. Gero



## NOTICES

**DISTRIBUTION:** This report has been cleared for release to the Defense Technical Information Center (DTIC) to comply with regulatory requirements. It has been given no primary distribution other than to DTIC and will be available only through DTIC or the National Technical Information Service (NTIS).

FINAL DISPOSITION: This report may be destroyed when it is no longer needed. Please do not return it to the U.S. Army Research Institute for the Behavioral and Social Sciences.

**NOTE:** The views, opinions, and findings in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other authorized documents.

| UNCLASSIFIED                                                                                                                                                                                                             | F THIS PAGE                                                                                                                        | · · · · · · · · · · · · · · · · · · ·                                                                                                                      |                                                                                                                           |                                                                                                     |                                                                       |                                                          |                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------|
|                                                                                                                                                                                                                          | REPORT I                                                                                                                           | DOCUMENTATIO                                                                                                                                               | N PAGE                                                                                                                    |                                                                                                     |                                                                       |                                                          | Approved<br>No. 0704-0188                                        |
| 1a. REPORT SECURITY CLASS<br>Unclassified                                                                                                                                                                                | SIFICATION                                                                                                                         |                                                                                                                                                            | 15. RESTRICTIVE                                                                                                           | MARKING5                                                                                            |                                                                       |                                                          |                                                                  |
| 2a. SECURITY CLASSIFICATIO                                                                                                                                                                                               | N AUTHORITY                                                                                                                        |                                                                                                                                                            | 3. DISTRIBUTION<br>Approved fo                                                                                            |                                                                                                     |                                                                       |                                                          |                                                                  |
| 2b. DECLASSIFICATION / DOV                                                                                                                                                                                               | VNGRADING SCHEDU                                                                                                                   | LE                                                                                                                                                         | distributio                                                                                                               |                                                                                                     |                                                                       |                                                          |                                                                  |
| 4. PERFORMING ORGANIZAT                                                                                                                                                                                                  | TION REPORT NUMBE                                                                                                                  | R(S)                                                                                                                                                       | 5. MONITORING<br>ARI Researc                                                                                              |                                                                                                     |                                                                       | JMBER(S)                                                 |                                                                  |
| 6a. NAME OF PERFORMING<br>Science Applicatio<br>International Corp<br>6c. ADDRESS (City, State, an<br>5959 Gateway West,                                                                                                 | ons<br>oration<br>d ZIP Code)                                                                                                      | 6b. OFFICE SYMBOL<br>(If applicable)<br>——                                                                                                                 | 7a. NAME OF MC<br>U.S. Army R<br>Fort Bliss<br>7b. ADDRESS (Cit<br>P.O. Box 60<br>Fort Bliss,                             | Research Ins<br>Field Unit<br>(y, State, and ZIP<br>()57                                            | Stitute<br>Code)                                                      |                                                          |                                                                  |
| El Paso, TX 79925<br>Ba. NAME OF FUNDING/SPC<br>ORGANIZATION U.S.<br>Institute for the<br>and Social Science                                                                                                             | Army Research<br>Behavioral<br>s                                                                                                   | 8b. OFFICE SYMBOL<br>(If applicable)<br>PERI-S                                                                                                             | 9. procuremen<br>MDA903-85-C                                                                                              | t instrument ic<br>2–0460                                                                           | DENTIFICAT                                                            | ION NU                                                   | MBER                                                             |
| 8c. ADDRESS (City, State, and 5001 Eisenhower Av                                                                                                                                                                         |                                                                                                                                    |                                                                                                                                                            | 10. SOURCE OF F                                                                                                           | PROJECT                                                                                             | rs<br>Task                                                            |                                                          | WORK UNIT                                                        |
| Alexandria, VA 223                                                                                                                                                                                                       |                                                                                                                                    |                                                                                                                                                            | ELEMENT NO.<br>63007A                                                                                                     | NO.<br>793                                                                                          | NO.                                                                   | 1                                                        | ACCESSION NO.<br>CO1                                             |
| 11. TITLE (Include Security C<br>Short Range Air De<br>Development and Va<br>12. PERSONAL AUTHOR(S)                                                                                                                      | fense (SHORAD                                                                                                                      | ) Engagement Per                                                                                                                                           | formance Cri                                                                                                              | teria                                                                                               |                                                                       |                                                          |                                                                  |
| Barber, Andrew V.                                                                                                                                                                                                        |                                                                                                                                    |                                                                                                                                                            |                                                                                                                           |                                                                                                     |                                                                       |                                                          |                                                                  |
| 13a. TYPE OF REPORT<br>Final                                                                                                                                                                                             | 135. TIME CO<br>FROM <u>88</u>                                                                                                     | DVERED<br>/10TO_ <u>90/09</u>                                                                                                                              | 14. DATE OF REPO<br>1990, Octob                                                                                           |                                                                                                     | . <i>Day</i> ) 15                                                     | . PAGE C<br>121                                          | OUNT                                                             |
| 16. SUPPLEMENTARY NOTA<br>Contracting Office                                                                                                                                                                             | -                                                                                                                                  | ative, John M. L                                                                                                                                           | ockhart                                                                                                                   |                                                                                                     |                                                                       |                                                          |                                                                  |
| 17. COSATI                                                                                                                                                                                                               |                                                                                                                                    | 18. SUBJECT TERMS (                                                                                                                                        |                                                                                                                           |                                                                                                     |                                                                       |                                                          |                                                                  |
| FIELD GROUP<br>05 08                                                                                                                                                                                                     | SUB-GROUP                                                                                                                          | Short Range Air<br>Engagement simu                                                                                                                         |                                                                                                                           | IORAD)                                                                                              | Cha<br>Vul                                                            | parral                                                   |                                                                  |
| 05 09                                                                                                                                                                                                                    |                                                                                                                                    | Stinger                                                                                                                                                    |                                                                                                                           |                                                                                                     | vui                                                                   | can                                                      |                                                                  |
| 19. ABSTRACT (Continue on<br>The purpose of<br>Short Range Air De<br>and qualification<br>formance criteria<br>Defense Engagement<br>soldiers using the<br>mance varied as a<br>differences in abi<br>and scenario diffi | f this resear<br>fense task an<br>of Career Man<br>were subjecte<br>System (RADE<br>Stinger, Cha<br>function of e<br>lity and pers | ch was to valida<br>d summary engage<br>agement Field 16<br>d to multiple fi<br>S) and the Range<br>parral, and Vulc<br>xperience level,<br>onality. These | te and calib<br>ments for us<br>Series sold<br>eld test exp<br>Target Syst<br>an air defen<br>scenario di<br>results enab | e in the tr<br>iers. In l<br>eriments us<br>em (RTS).<br>ise weapons.<br>fficulty le<br>led the fir | aining<br>989, e<br>sing the<br>Partic<br>Enga<br>evel, a<br>se tunis | , eval<br>ngagem<br>e Real<br>ipants<br>gement<br>nd ind | uation,<br>went per-<br>istic Air<br>were<br>perfor-<br>lividual |
| $\Delta_{1,2}$                                                                                                                                                                                                           | · · · ·                                                                                                                            | •                                                                                                                                                          |                                                                                                                           | 1                                                                                                   |                                                                       |                                                          |                                                                  |
|                                                                                                                                                                                                                          |                                                                                                                                    | The former of the second se                                            | · · · · ·                                                                                                                 |                                                                                                     |                                                                       |                                                          | /1                                                               |
| 20. DISTRIBUTION / AVAILAB                                                                                                                                                                                               |                                                                                                                                    |                                                                                                                                                            | 21. ABSTRACT SE                                                                                                           |                                                                                                     | ATION                                                                 |                                                          |                                                                  |
| 22a. NAME OF RESPONSIBLE                                                                                                                                                                                                 |                                                                                                                                    | APT. DTIC USERS                                                                                                                                            | Unclassifi<br>22b TELEPHONE (A                                                                                            |                                                                                                     |                                                                       |                                                          |                                                                  |
| John M. Lockhart                                                                                                                                                                                                         |                                                                                                                                    |                                                                                                                                                            | (915) 568-4                                                                                                               | 491                                                                                                 | P                                                                     | ER1-SE                                                   |                                                                  |
| DD Form 1473, JUN 86                                                                                                                                                                                                     |                                                                                                                                    | Previous editions are                                                                                                                                      | obsolete.                                                                                                                 |                                                                                                     | CLASSIFIC                                                             |                                                          | F THIS PAGE                                                      |

- .

\_\_\_\_

 .

i

SHORT RANGE AIR DEFENSE (SHORAD) ENGAGEMENT PERFORMANCE CRITERIA DEVELOPMENT AND VALIDATION

#### EXECUTIVE SUMMARY

#### Requirement:

. .

The requirement was to validate and calibrate Short Range Air Defense (SHORAD) task and summary engagement performance criteria for use in the training, evaluation, and qualification of Career Management Field 16 Series soldiers. Validity was assessed in terms of the sensitivity of the criteria for discriminating between qualified and unqualified personnel. The calibration of the criteria involved establishing cutoff values as a function of scenario difficulty level. Task and summary performance measures and cutoff values were determined for Stinger, Chaparral, and Vulcan weapon systems personnel.

### Procedure:

Engagement performance criteria were subjected to multiple field test experiments employing the Realistic Air Defense Engagement System (RADES) and the Range Target System (RTS) during 1989. The tests were conducted by the U.S. Army Research Institute for the Behavioral and Social Sciences (ARI) and Science Applications International Corporation (SAIC). The participants were soldiers using the Stinger, Chaparral, or Vulcan weapons. Engagement simulation exercises were conducted to investigate the degree to which Task Performance Measures (TPM) and Summary Performance Measures (SPM) varied as a function of soldier proficiency under varying levels of scenario difficulty and experience. Further, TPM and SPM criterion performance cutoff scores were adjusted to reflect difficulty level.

#### Findings:

Given the results of prior experiments, it was predicted that performance on TPM and SPM would be affected by experience level, scenario difficulty level, and individual differences in ability and personality. These findings were replicated. There were main effects of experience and scenario difficulty level. The interaction of the two was marginally significant. Further, a number of individual abilities were found to be significantly correlated with performance. All of the above results enabled the fine tuning of performance and scenario difficulty criteria and their integration into the Army Air Defense Artillery training and qualification process. Consequently, the TPM, SPM, and associated cutoff scores could be used as diagnostic tools. This provided an added capability of objective performance assessment to the current system of training and qualification.

### Utilization of Findings:

This research enabled the validation and calibration of task and summary performance measure cutoff criteria. These criteria can be used to identify qualified and unqualified soldiers. Additionally, predictors of performance were identified that could be used to screen personnel for certain air defense occupations, career paths, or accelerated training programs. Additional research is recommended to adapt the developed and validated standards for operators of the emerging Forward Area Air Defense System (FAADS) weapons and operators as these weapons are brought into the inventory. The implementation of performance standards will be promulgated by the Directorate of Training and Development (DOTD), U.S. Army Air Defense Artillery School (USAADASCH), Fort Bliss, Texas.

# SHORT RANGE AIR DEFENSE (SHORAD) ENGAGEMENT PERFORMANCE CRITERIA DEVELOPMENT AND VALIDATION

## CONTENTS

,

..

|                                                                | Page                       |
|----------------------------------------------------------------|----------------------------|
| INTRODUCTION                                                   | 1                          |
| Operational Problems and Potential Solutions Objectives        | 1<br>2<br>3                |
| PROCEDURES                                                     | 7                          |
| Participants                                                   | 10<br>11<br>11<br>20<br>24 |
| RESULTS AND DISCUSSION                                         | 25                         |
| Summary Statistics                                             | 25<br>29<br>33             |
| CONCLUSIONS                                                    | 43                         |
| Scenario Difficulty                                            | 43<br>45<br>45             |
| REFERENCES                                                     | 49                         |
| APPENDIX A. SUMMARY STATISTICS FOR SUMMER,<br>1989 RADES TESTS | A-1                        |
| B. SUMMARY STATISTICS FOR FALL,<br>1989 RTS TESTS              | B <b>-</b> 1               |
| C. INDIVIDUAL DIFFERENCES STATISTICS                           | C-1                        |

CONTENTS (Continued)

r

. 1

## Page

## LIST OF TABLES

| Table | 1.  | Candidate Task Performance Measures<br>(TPM)                           |
|-------|-----|------------------------------------------------------------------------|
|       | 2.  | Candidate Summary Performance Measures<br>(SPM)                        |
|       | 3.  | Preliminary Task Performance Criteria<br>(Drewfs & Barber, 1990)       |
|       | 4.  | Preliminary Summary Performance Criteria<br>(Drewfs & Barber, 1990)    |
|       | 5.  | Summer 1989 RADES test scenarios                                       |
|       | 6.  | Summer 1989 RADES tests: Scenario<br>presentation scheme               |
|       | 7.  | Fall 1989 RTS test scenarios.      18                                  |
|       | 8.  | Fall 1989 RTS tests:Scenariopresentation scheme19                      |
|       | 9.  | Individual Differences Measures 21                                     |
|       | 10. | Aircraft familiarity, discriminability,<br>and identification accuracy |
|       | 11. | Air defense summary performance as compared to recommended standards   |
|       | 12. | Air defense task performance as compared to recommended standards      |
|       | 13. | Chaparral experimental effects<br>(Summer, 1989 RADES Test)            |
|       | 14. | Vulcan experimental effects<br>(Summer, 1989 RADES Test)               |
|       | 15. | Stinger experimental effects<br>(Fall, 1989 RTS Test)                  |
|       | 16. | Vulcan experimental effects<br>(Fall, 1989 RTS Test)                   |

CONTENTS (Continued)

| Table | 17. | Overall experimental effects of single versus multiple targets                                                | 38 |
|-------|-----|---------------------------------------------------------------------------------------------------------------|----|
|       | 18. | Additional performance comparisons by skill level (1,2,3) for medium difficulty scenarios                     | 39 |
|       | 19. | Performance comparisons by weapon type<br>for low to medium difficulty scenarios<br>(Summer, 1989 RADES Test) | 40 |
|       | 20. | Summary of individual differences<br>correlates                                                               | 41 |
|       | 21. | Scenario specifications by difficulty<br>level                                                                | 44 |
|       | 22. | Recommended task performance criteria                                                                         | 46 |
|       | 23. | Recommended summary performance criteria                                                                      | 47 |
|       |     |                                                                                                               |    |

Page

## LIST OF FIGURES

| Figure 1. | Range | layout. | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • |  | • |  | 8 |
|-----------|-------|---------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|--|---|--|---|
|-----------|-------|---------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|--|---|--|---|

## SHORT RANGE AIR DEFENSE (SHORAD) ENGAGEMENT PERFORMANCE CRITERIA DEVELOPMENT AND VALIDATION

### INTRODUCTION

### Operational Problems and Potential Solutions

The current method of training and qualifying Army Air Defense Artillery (ADA) personnel has a number of deficiencies.

- Current training methods and strategies focus on individual gunner tasks and gunner qualification (Headquarters, D.A., 1988). Consequently, squad leader tasks and collective crew tasks are neglected.
- Current trainers (two-dimensional) do not provide the realism or flexibility to ensure attainment and sustainment of individual and collective knowledge and skills. Additionally, current training devices do not exercise collective crews or platoons (USAADASCH, 1989).
- Live fire tests are inadequate for determining qualification of personnel. Further, there are insufficient resources to enable all ADA personnel to fire their weapons to qualify (Headquarters, D.A., 1988).
- The threat has changed rapidly due to the emergence of new technologies and capabilities (Daskal, 1990).
   Performance standards typically do not reflect the current threat, the presence of friendly and hostile aircraft, or associated doctrinal implications.
- Visual Aircraft Recognition training is limited (Rotchford & Daruwalla, 1987). Training media present two dimensional representations of aircraft, at close range, with high contrast, and with little variability in orientation.
- Thus, crew effectiveness cannot be accurately measured. Additionally, training effectiveness and costeffectiveness cannot be determined.

Improving upon the current training and qualification process is essential. A proficiency-based training system is needed. The Directorate of Training and Development (DOTD) of the US Army Air Defense Artillery School (USAADASCH), in cooperation with the US Army Research Institute (ARI) and the US Army Missile Command (MICOM), Targets Management Office (TMO) contracted for the integration and demonstration of a Range Target System (RTS). The purpose of the RTS was to provide excellence in ADA by eliminating the above deficiencies. This would be accomplished by providing cost-effective, collective crew engagement training, proficiency evaluation, qualification testing, and skill sustainment training for all Short Range Air Defense (SHORAD) personnel. A valid, reliable, and realistic simulator and testbed such as the RTS would constitute a proficiency-based training system that could be employed Army-wide. RTS is also meant to support future Forward Area Air Defense Systems (FAADS) with these same simulation and evaluation capabilities, once these weapons systems emerge into the active inventory.

Training standards reflecting current doctrine, tactics, and threat were needed. A critical component of the RTS was the SHORAD engagement task and summary performance measures and associated pass-fail performance criteria (i.e., standards). These criteria needed to be validated and calibrated before being used by the Army. Once approved, these criteria would be incorporated into range tables, to be integrated into the current Army training and qualification process.

Thus, by providing realistic and representative training, updated performance standards, and diagnostic performance evaluation tools, the current deficiencies in the training and qualification process could be eliminated, performance achieved could be determined and compared to standards, and proficiency and its sustainment could be enhanced. The engagement performance and scenario difficulty criterion cutoff levels, defined by prior research efforts, were subjected to validity testing and calibration within the present research effort.

#### Objectives

This program of research was coordinated between the US Army Air Defense Artillery School (USAADASCH) and the US Army Research Institute (ARI). The primary objectives were to develop and validate realistic, scenario-driven engagement performance criteria (draft standards) as a function of scenario difficulty. Secondary goals were to integrate state-of-the-art target presentation, crew performance measurement, and engagement simulation capabilities into a Range Target System (RTS) for ADA engagement training and evaluation. The scope of the present research was limited to validation and calibration of SHORAD crew and team engagement performance criteria in the RTS. This would be done for Stinger, Chaparral, and Vulcan weapon systems personnel. There were known differences attributable to the weapons and associated mission requirements. Attaining the above objectives would mean the following requirements were met:

- Discriminate ability level as a function of experience.
- Determine the level of performance necessary to declare a soldier qualified or unqualified.
- Test and evaluate crew, team, and operator performance to identify and focus corrective and sustainment training needs.
- Delineate the required operational and experimental test conditions for fair, accurate, and reliable application of the performance criteria.
- Establish (calibrate) the cutoff scores for varying levels of scenario difficulty (low, medium, and high), and determine the subsequent effect on the performance standards for each difficulty level.

#### Approach

The process of developing standards of performance began with the validation of the Realistic Air Defense Engagement System (RADES). This research demonstrated the validity of using scaled targets in a realistic three-dimensional battle simulation, where performance could be scored in terms of reaction time, aircraft range, and summary outcomes. Four years of research enabled the establishment of summary and task performance measures, baseline performance parameters for SHORAD soldiers, the identification of individual differences affecting performance (especially vision and experience), and the determination of conditional effects (e.g., environment, command and control, difficulty, doctrine, and tactics) on performance.

From this research, preliminary performance criteria and scenario difficulty scaling factors were derived. Factors reflecting scenario difficulty included target visibility (e.g., distance, contrast, aspect angle, etc.), workload (e.g., number of active targets), and cuing (e.g., timeliness, accuracy, and simplicity). The criteria development, validation, and calibration process followed. The requirement addressed by that research effort was to "Determine operator engagement task and summary performance parameters, scenarios, scenario difficulty scaling factors, performance measures, performance scoring, draft performance criteria, and test administrative procedures for applying qualification standards to Career Management Field 16S (Stinger), 16P (Chaparral), and 16R (Vulcan) soldiers." Criteria were established according to scenario difficulty level and were subjected to prevalidation experiments. The current effort was to further validate and calibrate the cutoffs for performance criteria and scenario difficulty levels.

Thus, this research subjected previously developed and tested engagement performance criteria to additional experimental tests. These experiments were conducted using RADES and the RTS prototype configuration. The effort involved the design and administration of field test experiments, reduction and analysis of field test data, interpretation of results, and subsequent validation and calibration of task and summary performance measures and scenario difficulty levels.

The outline which follows provides a synopsis of the air defense research results generated to date by ARI and Science Applications International Corporation (SAIC), and contributing to the development of the standards, difficulty indices, and performance predictors. This research culminated in the validation and calibration of SHORAD engagement standards.

- Drewfs, Barber, Johnson, & Frederickson, 1988
  Validation of RADES testbed
  Validation of scaled targets
- Johnson, Barber & Lockhart, 1988
  Target visibility (background contrast & aspect angle) effects identified
- Barber, 1987
  - Baseline performance parameters established
  - Validity of testbed and targets replicated
  - Early warning and cuing effects identified
  - Command, control, and communications (C3) effects identified (e.g., timeliness, accuracy, and brevity)
  - Effects of different cuing techniques identified (simple, two-dimensional graphics displays provided the minimum essential information required by the fire unit, thereby yielding the best performance)
  - Effects of conflicting C3 inputs caused a degradation in performance (also influenced by personality traits which typically emerge during uncertainty and confusion)
  - Performance improved with practice in RADES
  - Performance influenced by individual differences (in order of importance): experience (training level), visual sensation and perception, cognitive and psychomotor skills, personality attributes
  - Target visibility (size & aspect) effects on performance
  - Environmental conditions (temperature, wind, & visibility) effects identified
- Barber, Drewfs, & Lockhart, 1987
  - Validation of RADES testbed as training device
  - Visual ability effects on performance replicated
- Barber, Drewfs, & Johnson, 1987
  Validation of RADES testbed as training device replicated

- Drewfs & Barber, 1990
  - Optimum performance test measures and scoring methods identified
  - Preliminary performance criteria established
  - Performance test conditions established
  - Scenario difficulty indices determined
  - Target type (fixed or rotary wing), size, and intent (friend or hostile) effects on performance replicated
  - Multiple target effects on performance replicated
  - Target visibility (aspect, offset, speed, & elevation) effects on performance replicated
  - Scenario difficulty effects on performance identified
- Drewfs & Barber, 1988
  - Cuing effects on performance replicated
  - Weapon type effects on performance determined
  - Environmental conditions (wind, visibility, cloudiness, & temperature) effects on performance replicated
  - Target visibility (range, aspect, speed, & terrain) effects on performance replicated
  - Experience (training) level effects replicated
  - Preliminary calibration and validation of criteria
- Barber, 1990
  - Effects on performance of soldier vision, soldier experience, cuing, weapon type, environmental conditions, and target characteristics (i.e., visibility) replicated

### PROCEDURES

Performance in realistic air defense scenarios was evaluated to determine the degree to which Task Performance Measures (TPM) and Summary Performance Measures (SPM) could be used to assess individual operator and collective crew-team proficiency under varying levels of scenario difficulty. Tactical and doctrinal requirements (mission, procedures, and threat) were provided by ARI and DOTD, USAADASCH.

The dependent variables were the TPM and SPM. Independent variables were scenario difficulty level (low, medium, and high), and soldier experience level (low, medium, and high). Scenario difficulty was counterbalanced during execution of test scenarios. Predictor variables consisted of selected soldier individual differences measures.

There were six experiments. Soldiers from three weapon groups (Stinger, Chaparral, and Vulcan) participated in RADES simulations during Summer of 1989. Different soldiers from these same weapon groups participated in RTS simulations during Fall of 1989. All tests were conducted at Condron Field, White Sands Missile Range, NM. This range provided rolling, desert terrain consisting of vegetated sand dunes and mountains in the distance. Figure 1 illustrates the range layout employed in the experiments. The range area was 3 kilometers (km) wide (x), by 3-4 km long (y), by .5 km high (z). This mini-range layout realistically simulated a full scale maximum range of 20 km, and a full scale maximum ceiling (altitude) of 2.5 km.

Weapon teams received 12 scenario presentations, with each scenario having a predesignated difficulty level. Two groups of subjects participated each day, one in the morning and one in the afternoon. While one group participated in the air defense simulations, the other received individual differences testing. Two sets of different but equally difficult scenarios were used so that the group participating in the morning could not help the afternoon group during their lunch break.

Before participating in the simulations, the soldiers were briefed and given an operations order. Soldiers were assigned a 90 degree search sector defined by a left and right search limit, and a primary target line (PTL) at 12 o'clock. All targets were presented within this search sector and cued according to clock azimuth (e.g., ll:00, l2:00, or l:00). A practice scenario containing one fixed wing (FW) and one rotary wing (RW) target was presented as a warm up trial.



Figure 1. Range Layout

•

· •

,

FW scenarios were either ingressing or ingressing-crossing. RW targets popped-up within the search sector at predesignated locations and simulated a hover maneuver. RADES tests used 1/5 scale RW and 1/7 scale FW targets. RTS tests used 1/5 scale RW and FW targets. RW targets were presented 1 to 3 simulated full scale km from gun systems and 2 to 6.5 km from missile systems. FW targets flew within 1 simulated full scale km of gun systems and 2 km of missile systems. This was done because missile systems (i.e., Stinger and Chaparral) have a substantially greater range than gun systems (Vulcan with the simulated use of Product Improved Vulcan Air Defense System (PIVADS) ammunition).

Workload was kept at a moderate level to control for effects of fatigue and vigilance decrements. To control for target visibility, the tests were conducted during daylight, sky background, and clear weather conditions. To control for arousal level and different search strategies, alerting and cuing were employed. For multiple targets, the target cued was always the one posing the greatest threat (i.e., the hostile target, the closest hostile target, or the hostile target nearest the fire unit's PTL). To ensure all aircraft were visually identified, doctrinal controls were employed such as ADA Warning "Red", Weapons Control Status "Tight", and Identification Friend or Foe (IFF) interrogation "Unknown". These and other control specifications, which were necessary for fair application of the standards, are listed below.

- Sky Background
- Clear Day (20+ miles visibility)
- Stationary Weapon Position
- 90 Degree Search Sector
- Unaided Detection
- Aided Recognition (binoculars)
- Clock Azimuth Cuing (+/- 15 degrees)
- Early Warning Voice Message (20-60 seconds before availability)
- Air Defense Warning Red
- Weapons Control Status Tight
- IFF Return Unknown
- One Practice Trial
- No Trial-by-Trial Feedback (end of day feedback only)
- Windspeed Less Than 25 MPH
- Randomized Scenario Order
- Standardized Scenario Sets
- Standard Target Coloration
- Matched Target Sizes
- FW Airspeed: 80 to 90 MPH
- FW Availability: 20 Kilometers (Km)
- RW Range: Stinger = 2 to 6.5 Km; Chaparral = 2 to 6.5 Km;
  Vulcan = 1 to 3 Km
- 4-Hour Test Periods

#### Participants

Test participants were Stinger (16S), Chaparral (16P), and Vulcan (16R) personnel from the following military organizations:

- May-Jun 1989 (16R) -- 3rd Battalion (Bn), 56th ADA, 56th ADA Brigade (Bde), US Army Training Center (ATC), Ft. Bliss, TX; 5th Bn, 62nd ADA, 11th ADA Bde, Ft. Bliss, TX; 2nd Bn, 6th ADA Regiment (Regt), 6th ADA Bde, Ft. Bliss, TX; and 1st Bn, 188th ADA, North Dakota Army National Guard (ARNG).
- Jun 1989 (16P) -- 3rd and 6th Bn, 200th ADA, 111th ADA Bde, New Mexico ARNG.
- Jun 1989 (16S) -- 5th Bn, 62nd ADA, 11th ADA Bde.
- Sep 1989 (16R) -- 3rd Bn, 56th ADA, 56th Bde, US ATC; 5th Bn, 62nd ADA, 11th ADA Bde; and ADA Training Activity (ADATA), 200th ADA, New Mexico ARNG.
- Oct 1989 (16P) -- 2nd Bn, 200th ADA, 111th ADA Bde, New Mexico ARNG; ADATA, 200th ADA, New Mexico ARNG.
- Nov 1989 (165) -- Stinger Platoon, Regimental Headquarters (HQ), HQ Troop, 3rd Armored Cavalry Regt.

Soldiers varied in their degree of experience. There were three experience groups. Teams in the high experience group were comprised of a SSG or SFC Squad Leader and a SGT or SP4 Senior Gunner; teams in the moderate experience group were comprised of a SGT or SP4 acting as Team-Squad Leader, and a PFC Junior Gunner. Teams in the low experience group were comprised of PV1 to PV2 Advanced Individual Training (AIT) personnel.

During Summer 1989 RADES tests and Fall 1989 RTS tests, there were medium and high experience Chaparral troops from the National Guard, and high experience Stinger and Vulcan troops from Ft. Bliss, Texas. Vulcan AIT personnel (from USAADASCH, Ft. Bliss, TX) also participated during the 1989 RADES and RTS tests. Additional data from Stinger and Chaparral AIT personnel were available from prior tests (Spring 1988 RADES tests). Thus, for Chaparral, there were three experience groups (low, medium, and high), and for Vulcan and Stinger there were two experience groups

The following sample sizes were obtained for each test (indicates number of squad leader and gunner teams):

|                     | 1988 RADES | 1989 RADES | 1989 RTS |
|---------------------|------------|------------|----------|
| Stinger             | 64         | 10         | 20       |
| Chaparral<br>Vulcan | 21         | 24<br>24   | 8<br>16  |

#### Performance Measures

Table 1 defines the Task Performance Measures (TPM), and Table 2 defines the Summary Performance Measures (SPM) identified in previous research and used in all subsequent experiments (including the current effort). TPM are given in elapsed time (in seconds) or aircraft range (in simulated full scale kilometers). SPM are given in percentages. TPM reflect individual tasks. SPM usually reflect collective tasks, but can also reflect single scenario task performance (i.e. TPM). Individual TPM can be used diagnostically to identify the sources of failure to meet collective SPM pass-fail qualification criteria (standards).

Table 3 provides preliminary engagement performance criteria cutoff scores for TPM, and Table 4 provides preliminary criteria cutoff values for SPM. These preliminary criteria are taken from Drewfs & Barber (1990). As shown in these two tables, the criteria were established according to type of aircraft (e.g., rotary or fixed wing) and level of difficulty (high, medium, or low). Not all TPM and SPM were reliable as performance evaluation measures because they did not vary substantially, were highly correlated with other measures, or did not provide diagnostic information for evaluating performance. The recommended TPM and SPM and associated criteria reflected those measures determined to be most reliable and valid.

#### Scenarios and Presentation Schemes

Tables 5 and 6 describe the difficulty-indexed scenarios employed in the summer RADES experiments and the scenario presentation sequences, respectively. Tables 7 and 8 describe the scenarios employed during the fall RTS experiments and the scenario presentation sequences, respectively. Some of the scenarios and aircraft were the same and some were different between the RADES and RTS tests. However, difficulty level, overall, was about the same between the two tests, within weapon type. Whenever possible, the sequencing of fixed and rotary wing aircraft trials, and the sequencing of single, double, and triple aircraft trials, were counterbalanced within each of the samples.

1.

.

Candidate Task Performance Measures (TPM)

| - | CODE  | EVENT                                | DESCRIPTION                                                                | DUTY    |
|---|-------|--------------------------------------|----------------------------------------------------------------------------|---------|
| - | RDET  | Detection                            | FW slant range at detection                                                | SL & SG |
|   | RACQ  | Acquisition                          | FW slant range at weapon<br>acquisition (infrared or radar)                | SG      |
|   | RIFF  | Interrogation                        | FW slant range at interrogation                                            | SG      |
|   | RID   | Identification                       | FW slant range at identify                                                 | SL      |
|   | RENG  |                                      | FW slant range at command<br>engage or cease engagement                    | SL      |
|   | RLOCK | Lock-on                              | FW slant range at lock-on                                                  | SG      |
|   | RFIRE | Fire                                 | FW slant range at fire                                                     | SG      |
|   | TDET  | Detection                            | RW time interval from line of sight to detection                           | SL & SG |
|   | TACQ  | Acquisition                          | RW time interval from detect<br>to acquire (infrared or radar)             | SG      |
|   | TIFF  | Interrogation                        | RW time interval from detect to<br>IFF                                     | SG      |
|   | TID   | Identification                       | RW time interval from detect to identify                                   | SL      |
|   | TENG  | Command Engage<br>or Cease<br>Engage | RW time interval from identify<br>to command engage or cease<br>engagement | SL      |
|   | TLOCK | Lock-on                              | RW time interval from acquire<br>to lock-on                                | SG      |
|   | TFIRE | Fire                                 | RW time interval from acquire<br>to fire                                   | SG      |
|   | THAND | Hand-off                             | RW or FW time interval from identify to fire                               | SL & SG |
|   | TTOT  | Total                                | RW or FW time interval from<br>detect to fire                              | SL & SG |

. .

Candidate Summary Performance Measures (SPM)

| CODE    | EVENT                                 | DESCRIPTION                                                                                                     | ן סנ | JTY | Ľ  |
|---------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------|------|-----|----|
| PDET    | Proportion of<br>Aircraft Detected    | Number of detections<br>divided by presentations                                                                | SL   | &   | SG |
| PID     | Proportion of<br>Aircraft Identified  | Number of identifications<br>divided by presentations                                                           | 3    | SL  |    |
| IDCOR   | Correctness of<br>Identifications     | Number of correct IDs<br>divided by presentations                                                               |      | SL  |    |
| FIDCOR  | Friendly Correct<br>Identifications   | Number of correct IDs<br>divided by presentations                                                               |      | SL  |    |
| HIDCOR  | Hostile Correct<br>Identifications    | Number of correct IDs<br>divided by presentations                                                               | 5    | SL  |    |
| FENG    | Friendlies Engaged                    | Number of engagements<br>divided by presentations                                                               | SL   | &   | SG |
| HENG    | Hostiles Engaged                      | Number of engagements<br>divided by presentations                                                               | SL   | æ   | SG |
| PKILL   | Engaged Aircraft<br>Destroyed         | Number of kills divided<br>by engagements                                                                       | SL   | æ   | SG |
| FKILL   | Fratricıde<br>(Friends Killed)        | Number of friendly kills<br>divided by f. presentations                                                         | SL   | &   | SG |
| HKILL   | Attrition<br>(Hostiles Killed)        | Number of hostile kills<br>divided by h. presentations                                                          | SL   | &   | SG |
| ORD     | Hostiles Releasing<br>Ordnance        | Number of ordnance<br>releases divided by<br>hostile presentations                                              | SL   | &   | SG |
| TRACK   | Tracking Accuracy<br>(Time on Target) | Amount of time infrared<br>acquisition was maintained<br>divided by availability<br>time window (Stinger;Chap.) |      | G   |    |
| AVEMISS | Average Miss<br>Distance in Meters    | Degree to which Vulcan or<br>PIVADS rounds are on target                                                        |      | SG  |    |
| BURSTS  | Number of Bursts                      | Number of Vulcan or PIVADS<br>bursts fired at the target                                                        | 5    | SG  |    |
| HITS    | Number of Rounds<br>on Target         | Number of Vulcan or PIVADS<br>rounds penetrating target<br>volume (10 hits = kill)                              | 9    | G   | •  |

1

## Preliminary Task Performance Criteria (Drewfs & Barber, 1990)

| 5                  | FIXED N     | <br>WING                     | RC                | <br>TARY    | WING                            |
|--------------------|-------------|------------------------------|-------------------|-------------|---------------------------------|
| TPM                | LOD         | VALUE                        | TPM               | LOD         | VALUE                           |
| Detect<br>(RDET)   | H<br>M<br>L | 8.0 km<br>11.0 km<br>14.0 km | Detect<br>(TDET)  | H<br>M<br>L | 10.0 sec<br>6.0 sec<br>4.0 sec  |
| Acquire<br>(RACQ)  | H<br>M<br>L | 5.0 km<br>6.0 km<br>7.0 km   | Acquire<br>(TACQ) | H<br>M<br>L | 6.0 sec<br>5.0 sec<br>4.0 sec   |
| Identify<br>(RID)  | H<br>M<br>L | 4.0 km<br>6.0 km<br>8.0 km   | Identify<br>(TID) | H<br>M<br>L | 9.0 sec<br>7.0 sec<br>5.0 sec   |
| Lock-On<br>(RLOCK) | H<br>M<br>L | 4.0 km<br>5.0 km<br>6.0 km   | Lock<br>(TLOCK)   | H<br>M<br>L | 6.0 sec<br>4.0 sec<br>2.0 sec   |
| Fire<br>(RFIRE)    | H<br>M<br>L | 2.0 km<br>4.0 km<br>5.0 km   | Fire<br>(TFIRE)   | H<br>M<br>L | 9.0 sec<br>7.0 sec<br>6.0 sec   |
| LOD = Leve         | el of I     | Difficulty                   | Total<br>(TTOT)   | H<br>M<br>L | 15.0 sec<br>12.0 sec<br>8.0 sec |

• •

## Preliminary Summary Performance Criteria (Drewfs & Barber, 1990)

| FIXE         | D WING |       | <br> | ROTARY WING  |     |       |  |  |  |  |
|--------------|--------|-------|------|--------------|-----|-------|--|--|--|--|
| SPM          | LOD    | VALUE |      | SPM          | LOD | VALUE |  |  |  |  |
| Identity     | H      | 7Ø%   |      | Identity     | H   | 70%   |  |  |  |  |
| Correctness  | M      | 75%   |      | Correctness  | M   | 75%   |  |  |  |  |
| (IDCOR)      | L      | 8Ø%   |      | (IDCOR)      | L   | 80%   |  |  |  |  |
| Friendly     | H      | 7Ø%   |      | Friendly     | H   | 70%   |  |  |  |  |
| IDCOR        | M      | 75%   |      | IDCOR        | M   | 75%   |  |  |  |  |
| (FIDCOR)     | L      | 8Ø%   |      | (FIDCOR)     | L   | 80%   |  |  |  |  |
| Hostile      | H      | 75%   |      | Hostile      | H   | 75%   |  |  |  |  |
| IDCOR        | M      | 80%   |      | IDCOR        | M   | 80%   |  |  |  |  |
| (HIDCOR)     | L      | 85%   |      | (HIDCOR)     | L   | 85%   |  |  |  |  |
| Friends      | H      | 3Ø8   |      | Friends      | H   | 30%   |  |  |  |  |
| Engaged      | M      | 258   |      | Engaged      | M   | 25%   |  |  |  |  |
| (FENG)       | L      | 2Ø8   |      | (FENG)       | L   | 20%   |  |  |  |  |
| Hostiles     | H      | 75%   |      | Hostiles     | H   | 75%   |  |  |  |  |
| Engaged      | M      | 80%   |      | Engaged      | M   | 80%   |  |  |  |  |
| (HENG)       | L      | 85%   |      | (HENG)       | L   | 85%   |  |  |  |  |
| Friendly     | H      | 25%   |      | Friendly     | H   | 25%   |  |  |  |  |
| Kills        | M      | 20%   |      | Kills        | M   | 20%   |  |  |  |  |
| (FKILL)      | L      | 15%   |      | (FKILL)      | L   | 15%   |  |  |  |  |
| Hostile      | H      | 45%   |      | Hostile      | H   | 55%   |  |  |  |  |
| Kills        | M      | 60%   |      | Kills        | M   | 70%   |  |  |  |  |
| (HKILL)      | L      | 75%   |      | (HKILL)      | L   | 80%   |  |  |  |  |
| Engaged Air. | H      | 6Ø%   |      | Engaged Air. | H   | 75%   |  |  |  |  |
| Destroyed    | M      | 75%   |      | Destroyed    | M   | 85%   |  |  |  |  |
| (PKILL)      | L      | 9Ø%   |      | (PKILL)      | L   | 95%   |  |  |  |  |
| Ordnance     | H      | 95%   |      | Ordnance     | H   | 95%   |  |  |  |  |
| Released     | M      | 75%   |      | Released     | M   | 75%   |  |  |  |  |
| (ORD)        | L      | 30%   |      | (ORD)        | L   | 30%   |  |  |  |  |

LOD = Level of Difficulty

| SCEN | NTARG | TIPE     | INTENT      | 1 40055      | DUR     | URDER   | ALIMUTH              | RANGE | ASPECT        | DIE   |
|------|-------|----------|-------------|--------------|---------|---------|----------------------|-------|---------------|-------|
| * 0  |       | FW       | H           | Su7          | 60      |         | 1                    | 20    | 45            | 4PW   |
| 1    | 1     | FW       | н           | MiG27        | 60      |         | 1                    | 20    | 45            | 4FW   |
| 2    | 1     | FW       | H           | Su25         | 60      |         | 12                   | 20    | 0             | 4PW   |
| 3    | 2     | MIX      | F/H         | A7/Ka?       | 60/40   | SEQ     | 11/12                | 20/5  | 315/315       | 4PW   |
| 4    | 2     | MIX      | н/н         | Su24/Mi8     | 60/40   | SEQ     | 11/11                | 20/3  | 315/315       | 4PW   |
| 5    |       | RW       | н           | Mi28         | 20      |         |                      | 1     | 90            | 1RW   |
| 6    | 1     | RW       | H           | Mi24         | 20      |         | 12                   | 2     | 45            | 1RW   |
| 7    | 2     | RW       | F/H         | UH1/Mi24     | 25      | SEQ     | 12/12                | 3/2   | 0/0           | 2RW   |
| 8    | 1     | RW       | P           | СНЗ          | 25      |         | 1                    | 4.5   | 45            | 2RW   |
| 9    | 1     | RW       | F           | AH 64        | 25      |         | 12                   | 6.5   | 45            | 3RW   |
| 10   | 2     | RW       | H/H         | Mi8/CH3      | 40      | SIM     | $\frac{11}{1}$       | 3/4.5 | 315/45        | 4RW   |
| 11   | 3     | RW       | H/H/F       | Mi8/Ka?/UH1  | 60      | SIM     | $117T_{2}/12$        | 5/5/3 | 270/270/90    |       |
| 12   | 3     | RW       | H/H/H       | Mi8/Mi8/Mi28 | 60      | SIM     | 11/ <u>11/1</u>      | 5/3/1 | 45/315/45     | 5RW   |
|      |       |          |             |              |         |         |                      |       |               |       |
|      |       |          |             | VUL          | CAN SCI | ENARIOS | 5                    |       |               |       |
| SCEN | NTARG | TYPE     | INTENT      | MODEL        | DUR     | ORDER   | AZIMUTH              | RANGE | ASPECT        | DIF   |
| * 3  | ļ 1   | FW       | Н           | Su7          | 60      |         | 1                    | 20    | 45            | 4 P W |
| 1    | 1     | PW       | н           | MiG27        | 60      |         | 1                    | 20    | 45            | 42W   |
| 2    | 1     | PW       | н           | Su25         | 60      |         | 12                   | 20    | Ø             | 4PW   |
| 3    | 2     | MIX      | F/H         | A7/Ka?       | 60/40   | SEQ     | 11/12                | 20/2  | 315/315       | 48W   |
| 4    | 2     | MIX      | H/H         | Su24/Mi28    | 60/40   | SEQ     | 11/1                 | 20/1  | 315/45        | 4PW   |
| 5    | 1     | RW       | H           | M128         | 2Ø      |         | 1                    | 1     | 90            | lRW   |
| 6    | 1     | RW       | H           | Mi24         | 20      |         | 12                   | 1.3   | 45            | 1RW   |
| 7    | 1     | RW       | P           | CH 3         | 2Ø      |         | 1                    | 2     | 45            | 1RW   |
|      |       |          | F/H         | UH1/Mi24     | 25      | SEQ     | 12/12                | 3/1.3 | 0/0           | 2RW   |
| 8    | 2     | RW       | <b>r</b> /n | 001/0124     | J       |         |                      |       |               |       |
| 8    | 2     | RW<br>RW | E/A<br>H/P  | Mi8/CH3      | 40      | SIM     | 11/1                 | 2/2   | 315/45        | 4RW   |
| -    |       |          |             |              |         | -       | $\frac{11/1}{11711}$ |       | 315/45<br>Ø/Ø |       |
| 9    | 2     | RW       | H/P         | Mi8/CH3      | 40      | SIM     | 11/1                 | 2/2   |               | 4RW   |

STINGER AND CHAPARRAL SCENARIOS

SCEN NTARG TYPE INTENT MODEL DUR ORDER AZIMUTH RANGE ASPECT DIF

\_\_\_\_\_\_

1

--------

\_\_\_\_\_

## Summer 1989 RADES Test Scenarios

\_\_\_\_

\_\_\_\_\_

----------------

Table 5

## Table ó

## Summer 1989 RADES Tests: Scenario Presentation Scheme

|                                                                          |                                   | STINGE             | R AND CHAP                | ARRAL S                  | SCENARI          | to sequ            | UENCES            |                  | ******             |                   | *******          |
|--------------------------------------------------------------------------|-----------------------------------|--------------------|---------------------------|--------------------------|------------------|--------------------|-------------------|------------------|--------------------|-------------------|------------------|
| DAY   GROUP                                                              | DAY   GROUP    PRESENTATION ORDER |                    |                           |                          |                  |                    |                   |                  |                    |                   |                  |
| 1      AM/PM        2      AM/PM        3      AM/PM        4      AM/PM | 7<br>   12<br>   9<br>7           | 10<br>8<br>11<br>6 | 1 8<br>3 10<br>4 7<br>2 5 | 12<br>9<br>6<br>11       | 3<br>1<br>2<br>4 | 9<br>11<br>10<br>8 | 7<br>6<br>5<br>12 | 2<br>4<br>1<br>3 | 11<br>5<br>12<br>9 | 6<br>7<br>8<br>10 | 4<br>2<br>3<br>1 |
| SEQUENCE                                                                 | 1                                 | 2                  | 3   4                     | 5                        | 6                | 7                  | 8                 | 9                | 10                 | 11                | 12               |
|                                                                          |                                   | 11111111           |                           |                          |                  |                    |                   |                  | 11111              |                   |                  |
|                                                                          |                                   |                    | VULCAN S                  | CENARIO                  | SEQUE            | ENCES              |                   |                  |                    |                   |                  |
| DAY   GROUP                                                              |                                   |                    | P                         | RESENT                   | ATION (          | ORDER              |                   | _                |                    |                   |                  |
| 1      AM/PM        2      AM/PM        3      AM/PM        4      AM/PM | 5<br>12<br>7<br>9                 | 10<br>8<br>11<br>6 | 1 8<br>3 10<br>4 9<br>2 5 | 12<br>  7<br>  6<br>  11 | 3<br>1<br>2<br>4 | 7<br>11<br>10<br>8 | 9<br>6<br>5<br>12 | 2<br>4<br>1<br>3 | 11<br>5<br>12<br>7 | 6<br>9<br>8<br>10 | 4<br>2<br>3<br>1 |
| SEQUENCE                                                                 | 1                                 | 2                  | 3   4                     | 5                        | 6                | 7                  | 8                 | 9                | 10                 | 11                | 12               |

• •

# Fall 1989 RTS Test Scenarios

| SCEN | NTARG | TYPE | INTENT | MODEL           | DUR   | ORDER | AZIMUTH              | RANGE    | ASPECT     | DI         |
|------|-------|------|--------|-----------------|-------|-------|----------------------|----------|------------|------------|
| * 2  | 2     | MIX  | F/H    | F111/Ka?        | 60/40 | SEQ   | 12/1                 | 20/2     | 0/45       | 41         |
| 1    | 1     | EW   | F      | F16             | 60    |       | 11                   | 2Ø       | 315        | 4F         |
| 2    | 1     | FW   | н      | MiG27           | 60    |       | 1                    | 2Ø       | 45         | 4F         |
| 3    | 1     | FW   | H      | Su25            | 60    |       | 12                   | 20       | Ø          | 4F         |
| 4    | 2     | MIX  | ₽/H    | A7/Mi8          | 60/40 | SEQ   | 1/11                 | 20/2     | 45/315     | 48         |
| 5    | 2     | MIX  | H/H    | Sul7/Mi28       | 60/40 | SEQ   | 11/1                 | 20/2     | 315/0      | 48         |
| 6    | 3     | MIX  | F/H/H  | A10/M18/M128    | 60/60 | SQ/SM | 12/11/1              | 20/2/2   | 0/270/45   | 4F         |
| 7    | 3     | MIX  | H/F/H  | MIG27/AH64/M124 | 60/60 | SQ/SM | 11/12/1              | 20/3/4.5 | 315/45/90  | 42         |
| 8    | 1     | RW   | H      | Su24 **         | 60    |       | 11                   | 2Ø       | 315        | 48         |
| 9    | 1     | RW   | H      | M128            | 20    |       | 11                   | 1.3      | 315        | [1R        |
| 10   | 1     | RW   | н      | Mi24            | 20    |       | 1                    | 1        | 45         | 1R         |
| 11   | 1     | RW   | F      | CH3             | 20    |       | 12                   | 2        | 315        | 1R         |
| 12   | 1     | RW   | H      | MiB             | 20    |       | 11                   | 2        | 45         | 11         |
| 13   | 1     | RW   | H      | M128            | 20    |       | 1                    | 2        | 315        | 11         |
| 14   | 1     | RW   | F      | CH3             | 20    |       | 12                   | 3        | 45         | 28         |
| 15   | 1     | RW   | H      | M128            | 20    |       | 11                   | 3        | 45         | 23         |
| 16   | 1     | RW   | н      | Mi24            | 20    |       | 12                   | 3        | 315        | 2R         |
| 17   | 1     | RW   | H      | Mi24            | 20    |       | 12                   | 5        | 45         | ี้ 3 R     |
| 18   | 2     | RW   | F/H/P  | AH1/Mi8/UH1     | 20    | SEQ   | 12/1/11              | 3/2/2    | 315/315/90 | 3R         |
| 19   | 2     | RW   | H/P    | Mi24/UH1        | 40    | SIM   | 12/1                 | 2/1      | 315/0      | 4 <b>R</b> |
| 2Ø   | 2     | RW   | P/H    | UH1/Mi28        | 40    | SIM   | 12/1                 | 5/2      | 315/0      | 4R         |
| 21   | 2     | RW   | H/H    | Mi8/Mi8         | 40    | SIM   | 11/12                | 2/2      | 0/90       | 4R         |
| 22   | 2     | RW   | H/H    | M124/M128       | 40    | SIM   | 1171                 | 1.3/1    | 45/0       | 4R         |
| 23   | 2     | RW   | H/H    | Mi24/Mi28       | 40    | SIM   | 12/1                 | 5/4.5    | 270/315    | 48         |
| 24   | 2     | RW   | H/H    | Mi8/Mi24        | 40    | SIM   | $\overline{\Pi/1}$   | 3/4.5    | 0/315      | 4R         |
| 25   | 3     | RW   | F/H/F  | AH1/Mi24/AH64   | 60    | SIM   | 11712/1              | 2/2/2    | 315/0/270  | 58         |
| 26   | 3     | RW   | F/H/H  | UH1/Mi24/Mi8    | 60    | SIM   | 11/12/1              | 2/2/2    | 315/45/45  | 5R         |
| 27   | 3     | RW   | H/F/H  | Mi8/AH64/Mi28   | 60    | SIM   | 11/12/1              | 3/3/4.5  | 315/90/270 | 5R         |
| 28   | 3     | RW   | F/H/H  | CH3/Mi24/Mi28   | 60    | SIM   | $\frac{11}{11}/12/1$ | 3/3/4.5  | 315/45/90  | 5R         |
| 29   | 3     | RW   | H/H/H  | M124/M124/M128  | 60    | SIM   | 11/12/1              | 1.3/2/1  | 270/0/315  | 58         |
| 30   | 3     | RW   | 8/8/8  | M128/M18/M124   | 60    | SIM   | 11/12/1              | 1.3/2/1  | 45/45/0    | 5R         |
| 31   | 3     | RW   | н/н/н  | M128/M124/M128  | 60    | SIM   | 11/12/1              | 3/5/4.5  | 90/315/0   | 5R         |
| 32   | 3     | RW   | H/H/H  | M128/M124/M18   | 60    | SIM   | $\frac{11}{11}/12/1$ | 3/5/2    | 0/0/0      | 5R         |
|      |       |      |        |                 |       |       |                      |          |            |            |

•

. .

## Fall 1989 RTS Tests: Scenario Presentation Scheme

|     | ST               | INGER | AND CHAPARRAL SCENARIO SEQUENCES                                           |
|-----|------------------|-------|----------------------------------------------------------------------------|
|     | SET A:<br>SET B: |       | 4, 7, 8, 12, 13, 17, 20, 24, 27, 31<br>5, 6, 8, 12, 15, 16, 18, 23, 28, 32 |
| DAY | GROUP            | SET   | SEQUENCE                                                                   |
| 1   | 1 AM             | A     | 13, 8, 27, 4, 17, 12, 2, 31, 1, 20, 24, 7                                  |
| 1   | 2 PM             | B     | 16, 5, 28, 8, 15, 3, 12, 6, 32, 1, 18, 23                                  |
| 2   | 1 AM             | B     | 23, 18, 1, 32, 6, 12, 3, 15, 8, 28, 5, 16                                  |
| 2   | 2 PM             | A     | 20, 1, 31, 2, 27, 8, 13, 7, 12, 24, 4, 17                                  |
| 3   | 1 AM             | A     | 17, 4, 24, 12, 7, 13, 8, 27, 2, 31, 1, 20                                  |
| 3   | 2 PM             | B     | 18, 8, 12, 1, 32, 5, 15, 16, 6, 23, 3, 28                                  |
| 4   | 1 AM             | B     | 28, 3, 23, 6, 16, 15, 5, 32, 1, 12, 8, 18                                  |
| 4   | 2 PM             | A     | 7, 24, 20, 1, 31, 2, 12, 17, 4, 27, 8, 13                                  |
|     |                  | VU    | LCAN SCENARIO SEQUENCES *                                                  |
|     | SET A:<br>SET B: |       | 5, 6, 8, 9, 10, 14, 19, 21, 25, 30<br>4, 5, 8, 11, 12, 13, 18, 22, 26, 29  |
| DAY | GROUP            | SET   | SEQUENCE                                                                   |
| 1   | 1 AM             | A     | 14, 19, 1, 25, 2, 9, 30, 5, 21, 8, 10, 6                                   |
|     | 2 PM             | B     | 11, 3, 22, 18, 1, 26, 8, 12, 5, 29, 4, 13                                  |
| 2   | 1 AM             | B     | 13, 4, 29, 5, 12, 8, 26, 1, 18, 22, 3, 11                                  |
| 2   | 2 PM             | A     | 30, 5, 21, 1, 10, 14, 6, 19, 8, 25, 2, 9                                   |
| 3   | 1 AM             | A     | 9, 2, 25, 8, 19, 6, 14, 10, 1, 21, 5, 30                                   |
| 3   | 2 PM             | B     | 5, 12, 3, 11, 13, 29, 4, 22, 18, 8, 26, 1                                  |
|     | 1 AM             | B     | 1, 26, 8, 18, 22, 4, 29, 13, 11, 3, 12, 5                                  |

failed; thus, PW scenarios could not be presented to Vulcan

In the scenario tables (Tables 5 and 7), single and multiple target scenario information is repeated for each target. "NTARG" refers to the number of targets presented in the scenario. In the "TYPE" column, "FW" refers to flying fixed wing and "RW" refers to pop-up rotary wing targets. "INTENT" refers either to "MODEL" refers to aircraft hostile (H) or friendly (F) targets. model type. "DUR" refers to the duration of time (in seconds) targets were available (unmasked) to the weapon position. "ORDER" refers to multiple target scenario presentations which were either sequential (SEQ), simultaneous (SIM), or both (SQ/SM); both refers to a FW target followed sequentially by two simultaneous RW targets. "AZIMUTH" refers to the o'clock position of the target as referenced from the search sector. The PTL was at 12:00, facing south, at 180°. "RANGE" values indicate ranges at which the targets were first presented (RW targets did "ASPECT" refers to the orientation angle at not vary in range). which the targets were presented, as observed from the weapon position. For RW targets: Ø degrees is head-on, 45 degrees is an oblique left view, 90 degrees is a full left view, 270 is a full right view, and 315 is an oblique right view. For FW, all targets began at  $\emptyset$  aspec: (head-on), but then may have crossed at identification range, thereby becoming an oblique  $(45^{\circ} \text{ or } 315^{\circ})$ "LOD" or Level of Difficulty defines the scenario view. performance difficulty index (high=5, modium=3, low=1). FW scenarios were considered more difficult than RW, so the LOD indices were dealt with separately. The techniques employed to determine scenario difficulty level were described and empirically validated in Drewfs and Barber (1990).

## Individual Difference Variables

Soldiers were administered a battery of tests and questionnaires (see Table 9), either before or after engagement exercises (AM or PM). For 16S soldiers, teams exchanged roles at midday during the fall test, for a different set of equally difficult scenarios, and therefore did not recieve these tests. Variables represented the following domains: visual perception, psychomotor, personality (predispositions), and recent training. Armed Services Vocational Aptitude Battery (ASVAB) scale scores were also used as predictors: Armed Forces Qualification Test (AFQT), Electronics (EL), Mechanical Maintenance (MM), and Operator and Food Handling (OF). Individual differences were correlated with performance. It was anticipated that variance unexplained by the independent variables (e.g., experience and scenario difficulty) would be largely explained by individual difference variables.

• •

Individual Differences Measures

|                         | VISUAL SENSATI                                                                                 |                                                                             |                                                                 |
|-------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------|
| VARIABLE                | DESCRIPTION                                                                                    | CODE                                                                        | UNIT OF MEASUREMENT                                             |
| Foveal Visual<br>Acuity | Visual acuity measured<br>with a Tumbling E chart<br>presented at 20 feet                      | FVA                                                                         | Scores range from 6<br>to 30 with 20=20/20                      |
| Contrast<br>Sensitivity | Sensitivity to sine<br>wave gratings varying<br>in cycles per degree<br>(cpd) of spatial       | CSl                                                                         | Lowest detectable<br>contrast interval<br>for 1.5 cpd           |
|                         | frequency and contrast<br>ratio (5 frequencies<br>with 8 contrast                              | CS 2                                                                        | Lowest detectable contrast for 3 cpd                            |
|                         | intervals each; score<br>for each frequency<br>recorded as 1 8)                                | CS 3                                                                        | Lowest detectable<br>contrast for 6 cpd                         |
|                         | recorded as 1 o/                                                                               | CS4                                                                         | Lowest detectable<br>contrast for 12 cpd                        |
|                         |                                                                                                | CS 5                                                                        | Lowest detectable<br>contrast for 18 cpd                        |
|                         |                                                                                                | CSL                                                                         | Mean of CSl and CS2                                             |
|                         |                                                                                                | CSH                                                                         | Mean of CS4 and CS5                                             |
| Resting Focus           | ocal point when eyes DF<br>re at rest; also<br>corresponds to point of<br>learest focus (i.e., | Dark focus measured<br>with a polarized<br>vernier optometer in<br>diopters |                                                                 |
|                         | fulcrum of focal range)                                                                        | CF                                                                          | Clear focus measured<br>in diopters using a<br>focus stimulator |
|                         |                                                                                                | RF                                                                          | Mean of DF and CF                                               |
| Visual<br>Flexibility   | Accommodation range<br>of the eyes (lens)                                                      | NP                                                                          | Nearest clear focal point measured in diopters                  |
|                         |                                                                                                | FP                                                                          | Farthest clear focal point                                      |
|                         |                                                                                                | FR                                                                          | Focal range (NP-FP)                                             |

# Table 9 (Continued)

1

.

| VISUAL SENSATION                 |                                                                          |      |                                            |  |  |  |  |  |  |
|----------------------------------|--------------------------------------------------------------------------|------|--------------------------------------------|--|--|--|--|--|--|
| VARIABLE                         | DESCRIPTION                                                              | CODE | UNIT OF MEASUREMENT                        |  |  |  |  |  |  |
| Blur<br>Interpretation           | Ability to interpret<br>images presented with a<br>slide projector which | BIl  | Identification of<br>  a picture of a rose |  |  |  |  |  |  |
|                                  | are blurred using a<br>focus stimulator<br>(score is the distance -      | BI2  | Identification of a picture of a jet       |  |  |  |  |  |  |
|                                  | in diopters from the resting focus when the image is                     | BIP  | Identification of the letter P             |  |  |  |  |  |  |
|                                  | discriminated)                                                           | BIW  | Identification of<br>the letter W          |  |  |  |  |  |  |
|                                  |                                                                          | BIZ  | Identification of<br>the letter Z          |  |  |  |  |  |  |
|                                  |                                                                          | BIA  | Mean of BIl and BI2                        |  |  |  |  |  |  |
|                                  |                                                                          | BIB  | Mean of BIP, BIW<br>and BIZ                |  |  |  |  |  |  |
|                                  | PERCEPTION                                                               |      |                                            |  |  |  |  |  |  |
| VARIABLE                         | DESCRIPTION                                                              | CODE | UNIT OF MEASUREMENT                        |  |  |  |  |  |  |
| Field Indepen-<br>dent/Dependent | Tendency to view scene<br>in detail or as a whole                        | GEF  | Group Embedded<br>Figures Test             |  |  |  |  |  |  |
| Spatial<br>Ability               | Ability to interpret<br>spatial relations                                | SV   | Space Visualization<br>Test                |  |  |  |  |  |  |
| Visual Pursuit                   | Ability to follow a<br>schematic diagram                                 | ΥP   | Visual Pursuit Test                        |  |  |  |  |  |  |
|                                  | PSYCHOMOTOR                                                              |      |                                            |  |  |  |  |  |  |
| VARIABLE                         | DESCRIPTION                                                              | CODE | UNIT OF MEASUREMENT                        |  |  |  |  |  |  |
| Eye-Hand<br>Coordination         | Speed and accuracy of<br>tracking by placing<br>pencil dots in shapes    | MSA  | Manual Speed and<br>Accuracy Test          |  |  |  |  |  |  |
|                                  | in specific order                                                        | TSA  | Tracking Speed and<br>Accuracy Test        |  |  |  |  |  |  |

22

# Table 9 (Continued)

н., <sup>н</sup>

i -

|                                 | PERSONALITY                                 |       |                                        |
|---------------------------------|---------------------------------------------|-------|----------------------------------------|
| VARIABLE                        | DESCRIPTION                                 | CODE  | UNIT OF MEASUREMENT                    |
| Gambling                        | Gambling Propensity                         | GAMB  | Playing the Odds<br>Questionnaire      |
|                                 | EXPERIENCE                                  |       |                                        |
| VARIABLE                        | DESCRIPTION                                 | CODE  | UNIT OF MEASUREMENT                    |
| Age                             | Years of age                                | AGE   | Years                                  |
| Service Grade                   | Military rank                               | RANK  | El, E2, E7                             |
| Time Served                     | Months in military                          | TSERV | El, E2, E7                             |
| Time in MOS                     | Months in current job                       | TMOS  | El, E2, E7                             |
| Time in Grade                   | Months in current rank                      | TRANK | El, E2, E7                             |
| Tracking<br>Practice (SG)       | Tracking of aerial<br>targets with weapon   | TAT   | Days of practice<br>over the last year |
| Live Fire<br>Practice (SG)      | Engaging aerial targets<br>with live rounds | LFR   | Days of practice<br>over the last year |
| Detection<br>Practice (SL)      | Detecting aerial<br>targets                 | DET   | Days of practice<br>over the last year |
| Identification<br>Practice (SL) | Identifying aerial<br>targets               | ID    | Days of practice<br>over the last year |
| Hand-off<br>Practice (SL)       | Handing-off aerial<br>targets to gunner     | HND   | Days of practice<br>over the last year |
| Command<br>Practice (SL)        | Issuing engagement<br>commands to gunner    | CMD   | Days of practice<br>over the last year |

23

#### Data Analysis

The primary goal of this research was to generate performance standards which differentiated qualified from unqualified soldiers. Thus, validation reflected the degree to which the performance criteria discriminated differences in performance (i.e., level of ability). Differences due to experience were the primary criteria. Three levels of experience were employed (see Participants section). These levels differed with respect to recency and intensity of training. Performance on the TPM and SPM was compared as a function of these variables. Significant differences in performance were predicted.

Another goal of this research was to determine criteria cutoff scores for different levels of scenario difficulty. Thus, the second principal validation criterion was the degree to which performance on the TPM and SPM differed as a function of scenario difficulty. The three levels of difficulty were also to be calibrated (i.e., determine where to draw the line between levels in terms of the effects on performance). It was necessary to determine which TPM and SPM were affected by difficulty level, in what direction, and to what extent. The interaction of difficulty and experience level was also to be examined.

It was anticipated that the vast majority of variance not accounted for by the independent variables of experience and difficulty would be accounted for by the individual differences predictor measures. It was expected that experienced soldiers not meeting the performance standards would be those scoring lower on certain abilities. Validation of the performance criteria (standards) included the examination of individual differences variables.

Analysis of variance and t-tests were used to identify main and interaction effects of independent variables. However, if sample sizes were very small, nonparametric tests were performed (Mann-Whitney, Sign, Fisher, or Cochran). Two-tailed probabilities were employed while investigating main effects because of uncertainty as to which performance variables would be affected by the independent measures and the direction of these effects and because of small sample sizes and sampling bias. Correlation (Pearson and Spearman) analysis was used to identify individual difference predictors (one-tailed probabilities). Principal components and correlation analyses were employed to determine the degree to which predictor variables clustered together.

Analyses were performed according to weapon system because of differences in weapons, procedures, tactics, and performance. For example, while target detection and identification performance standards may be similar for all SHORAD personnel, range of engagement and probability of kill differ widely for different weapons. Thus, range tables had to be generated separately for each of the three weapons being tested.

### RESULTS AND DISCUSSION

#### Summary Statistics

The most noteworthy finding from the descriptive statistics was the variability in aircraft identification accuracy. There are three possible reasons for this: aircraft familiarity (some aircraft are emphasized more in current training); aircraft discriminability (some aircraft have features in common with their hostile-friendly counterparts) (see FM 44-30, Headquarters, US Army, 1986); and a lack of current Visual Aircraft Recognition (VACR) training (Rotchford & Daruwalla, 1987). Overall identification accuracy (high, medium, or low) across the samples obtained for this research, and associated familiarity and discriminabilty of aircraft, are summarized in Table 10. There is an apparent relationship among familiarity, discriminability, and overall identification accuracy. Descriptive statistics on Appendix A all TPM and SPM are provided in Appendices A and B. provides performance data on Stinger, Chaparral, and Vulcan scenarios for the Summer 1989 RADES tests. Appendix B provides these same data for the Fall 1989 RTS tests.

In general, the average identification performance for all samples was below the recommended standards. This is reflected in Tables 11 and 12 (note that data are compared to revised standards presented at the end of this report). Table 12 demonstrates that the soldiers were not detecting and identifying aircraft soon enough to complete the engagement in time to maximize hostile kills and prevent hostile ordnance release. Table 11 demonstrates the deficiencies in accurately identifying the aircraft. These deficiencies resulted in fewer hostiles engaged, low hostile attrition and ordnance prevention, and more friends engaged with accompanying higher fratricide.

These tables also illustrate large differences in TPM and SPM performance between weapon groups. These differences were attributed to differences in training level and ability. Stinger troops performed slightly better than Vulcan. Both performed considerably better than Chaparral during the Summer RADES tests. During the Fall RTS tests, the Vulcan troops performed slightly better than Stinger. Again, both performed considerably better than Chaparral. This reflected the lack of training received by the National Guard Chaparral personnel.

. .

ľ

L

## Aircraft Familiarity, Discriminability, and Identification Accuracy

## Aircraft Familiarity and Discriminability (Numerical order in soldier evaluation guide, Headquarters, US Army, 1989)

| Hostile                                             |                                                  | Friendly                        | Aircraft                                      |
|-----------------------------------------------------|--------------------------------------------------|---------------------------------|-----------------------------------------------|
| Fixed Wing                                          |                                                  | Fixed Wing                      | Rotary Wing                                   |
| MiG27 (4)*<br>Sul7 (8)*<br>Su25 (10)*<br>Su24 (16)* | Mi24 (2)<br>Mi8 (6)*<br>Mi28 (41)*<br>Ka?? (N/A) | A1Ø (3)<br>A7 (12)<br>F16 (17)* | AH1 (1)<br>UH1 (5)<br>CH3 (38)*<br>AH64 (39)* |

\* Denotes aircraft having features in common with a counterpart

## Overall Observed Identification Accuracy

|                                               | le Aircraft<br>g Rotary Wing | Friendly<br>Fixed Wing |                                           |
|-----------------------------------------------|------------------------------|------------------------|-------------------------------------------|
| MiG27 (H)<br>Sul7 (H)<br>Su24 (MH<br>Su25 (MH | Mi8 (M)<br>) Mi28 (ML)       | A7 (M)                 | UH1 (M)<br>AH1 (M)<br>AH64 (L)<br>CH3 (L) |

\*\* The Hokum aircraft has not been numerically designated

26

•

• •

# Air Defense Summary Performance as Compared to Recommended Standards

| SW Scenar                                          | 105                                    | Summer,                                    | 1989 RADE                                        | S Tests                                             | Fall, 1989 RTS Tests                               |                                                  |                                                   |
|----------------------------------------------------|----------------------------------------|--------------------------------------------|--------------------------------------------------|-----------------------------------------------------|----------------------------------------------------|--------------------------------------------------|---------------------------------------------------|
| Variable                                           | Stndrd                                 | STNG                                       | CHAP                                             | VULC                                                | STNG                                               | CHAP                                             | VULC                                              |
| IDCOR                                              | .70                                    | .84                                        | .73                                              | .70                                                 | .82                                                | .72                                              |                                                   |
| FIDCOR                                             | .70                                    | .43*                                       | .35*                                             | .26*                                                | .69*                                               | .62*                                             |                                                   |
| HIDCOR                                             | .75                                    | .98                                        | .83                                              | .36                                                 | .95                                                | .92                                              |                                                   |
| FENG                                               | . 30                                   | .50+                                       | .45*                                             | .78*                                                | .18                                                | .43*                                             |                                                   |
| HENG                                               | .75                                    | .93                                        | .56*                                             | .78                                                 | .50*                                               | .64*                                             |                                                   |
| PKILL                                              | .65/.20                                | .65                                        | .78                                              | . 34 *                                              | .36                                                | .87                                              |                                                   |
| FKILL                                              | .30                                    | .29                                        | .35*                                             | . 34                                                | .16                                                | .29                                              |                                                   |
| HKILL                                              | .50/.10                                | .77                                        | .41*                                             | .23*                                                | .34*                                               | .64                                              |                                                   |
| ORD                                                | .55/.30                                | .98*                                       | .92*                                             | N/A                                                 | .34                                                | .71*                                             |                                                   |
| RW Scenar                                          | 109                                    | Summer,                                    | 1989 RADI                                        | S Tests                                             | Fall,                                              | 1989 RTS                                         | Tests                                             |
| Variable                                           | Stndrd                                 | STNG                                       | CHAP                                             | VULC                                                | STNG                                               | CHAP                                             | VULC                                              |
|                                                    |                                        |                                            |                                                  |                                                     |                                                    |                                                  |                                                   |
| IDCOR                                              | . 75                                   | .70*                                       | .61*                                             | .66*                                                | .68*                                               | .64*                                             | .76                                               |
| IDCOR<br>FIDCOR                                    | .75                                    | .70*<br>.47*                               | .61*<br>.38*                                     | .66*<br>.51*                                        | .68*<br>.37*                                       | .64*<br>.50*                                     | .76<br>.56*                                       |
| IDCOR<br>FIDCOR<br>HIDCOR                          | .75<br>.75<br>.80                      |                                            |                                                  | -                                                   | -                                                  | .50*<br>.92                                      | .56*<br>.83                                       |
| FIDCOR<br>HIDCOR                                   | .75                                    | .47*                                       | .38*                                             | .51*                                                | .37*                                               | .50*<br>.92<br>.20                               | .56*<br>.83<br>.60*                               |
| FIDCOR                                             | .75<br>.80                             | .47*<br>.84                                | .38*<br>.78*                                     | .51*<br>.75*                                        | .37*                                               | .50*<br>.92                                      | .56*<br>.83                                       |
| FIDCOR<br>HIDCOR<br>FENG                           | .75<br>.80<br>.25                      | .47*<br>.84<br>.39*                        | .38*<br>.78*<br>.30*                             | .51*<br>.75*<br>.34*                                | .37*<br>.95<br>.44*                                | .50*<br>.92<br>.20                               | .56*<br>.83<br>.60*                               |
| FIDCOR<br>HIDCOR<br>FENG<br>HENG                   | .75<br>.80<br>.25<br>.80               | .47*<br>.84<br>.39*<br>.75*                | .38*<br>.78*<br>.30*<br>.53*                     | .51*<br>.75*<br>.34*<br>.73*                        | .37*<br>.95<br>.44*<br>.67*                        | .50*<br>.92<br>.20<br>.50*                       | .56*<br>.83<br>.60*<br>.84<br>.30*<br>.04         |
| FIDCOR<br>HIDCOR<br>FENG<br>HENG<br>PKILL          | .75<br>.80<br>.25<br>.80<br>.75        | .47*<br>.84<br>.39*<br>.75*<br>.91         | .38 *<br>.78 *<br>.30 *<br>.53 *<br>.59 *        | .51*<br>.75*<br>.34*<br>.73*<br>.73*<br>.25<br>.63* | .37*<br>.95<br>.44*<br>.67*<br>.99<br>.44*<br>.66* | .50*<br>.92<br>.20<br>.50*<br>.99<br>.25<br>.50* | .56*<br>.83<br>.60*<br>.84<br>.30*<br>.04<br>.28* |
| FIDCOR<br>HIDCOR<br>FENG<br>HENG<br>PKILL<br>FKILL | .75<br>.80<br>.25<br>.80<br>.75<br>.25 | .47*<br>.84<br>.39*<br>.75*<br>.91<br>.37* | .38 *<br>.78 *<br>.30 *<br>.53 *<br>.59 *<br>.28 | .51*<br>.75*<br>.34*<br>.73*<br>.73*<br>.25         | .37*<br>.95<br>.44*<br>.67*<br>.99<br>.44*         | .50*<br>.92<br>.20<br>.50*<br>.99<br>.25         | .56*<br>.83<br>.60*<br>.84<br>.30*<br>.04         |

Average Observed Summary Performance

Note. Results reflect first or single target performance.

Note. Standards for FW variables PKILL, HKILL and ORD are different between STNG-CHAP and VULC.

Note. For Summer VULC, the average performance exceeded the criterion for the following RW variables after eliminating low experience subjects: HIDCOR (.89), PKILL (.83), HITS (10.8).

Air Defense Task Performance as Compared to Recommended Standards

| FW Scenari                           | .05                                        | Summer,                          | 1989 RADES                                                   | Tests            | Fall,                            | 1989 RTS                         | Tests   |
|--------------------------------------|--------------------------------------------|----------------------------------|--------------------------------------------------------------|------------------|----------------------------------|----------------------------------|---------|
| Variable                             | Stndrd                                     | STNG                             | CHAP                                                         | VULC             | STNG                             | CHAP                             | VULC    |
| RDET<br>RID<br>RACQ<br>RFIRE         | 4/2.5 km<br>5 km                           | 3.8(.40)<br>4.7(.30)             | 5.4(.22)<br>2.9(.23)<br>3.4(.20)<br>3.1(.45)                 | 2.5(.41)         | 3.8(.30)<br>6.3(.53)             | 4.4(.44)<br>2.9(.00)             |         |
| RW Scenari                           | los                                        | Summer,                          | 1989 RADES                                                   | Tests            | Fall,                            | 1989 RTS                         | Tests   |
| Variable                             | Stndrd                                     | STNG                             | ј снар ј                                                     | VULC             | STNG                             | CHAP                             | VULC    |
| TDET<br>TID<br>TACQ<br>TFIRE<br>TTOT | 6 sec<br>7 sec<br>5 sec<br>7 sec<br>12 sec | 8.5(.62)<br>6.6(.60)<br>9.3(.52) | 8.2(.52)<br>10.6(.47 7<br>8.7(.82)<br>8.6(.61)<br>14.2(.49 8 | 7.7(.61)<br><br> | 11.0(.46<br>6.6(.69)<br>9.2(.49) | 9.8(.37)<br>5.1(.50)<br>9.4(.47) | 6.7(.71 |

Average Observed Task Performance (Percentage Exceeding the Criteria)

Note. Standard for FW variables RDET, RID, and RFIRE are different between STNG-CHAP and VULC.

Note. Standards represent medium (RW) to medium-high (FW) difficulty.

It was anticipated that Vulcan squad leaders would have shorter FW identification ranges due to the range limits of their weapon, and this was found. Vulcan FW identifications averaged about 2.5 kilometers. The maximum range reach of the weapon is about 2 kilometers. Thus, the squad leaders were waiting until the aircraft was closer to increase identification accuracy. Chaparral and Stinger systems are capable of engaging at hostile ordnance delivery range. To realize this capability, commanders must necessarily identify the target farther away. The mission requirements are different because of the different ranges of the weapons, and this is the principal reason that the recommended criteria differ between gun and missile systems.

Past and current research indicate that experienced air defense soldiers are capable of achieving the criteria. This is particularly true for gunner performance. Research has shown little variation in gunner tasks and negligible deficiencies in gunner performance (Barber, 1990; Barber, et al., 1987). In the current research, undesirable performance appeared to reflect This insufficient training rather than poorly selected criteria. is likely because current training methods do not adequately address the observed performance deficiencies: identification accuracy, fratricide, hostile attrition and ordnance prevention, and collective crew-team interactions. Current training and training devices focus primarily on gunnery tasks, which is probably why gunner performance met the criteria.

#### Experimental Effects

Effects of scenario difficulty factors and soldier experience level are discussed in turn, followed by interaction effects. Main and interaction effects are presented in Tables 13 through 18 at the end of this section. In these tables, effects of scenario difficulty are indicated as "DIF" and effects of soldier experience are indicated as "EXP".

Scenario Difficulty Level. Past research (Barber, 1987; Drewfs & Barber, 1990) suggested which factors made a scenario easier or harder. These factors were incorporated into the difficulty indices ascribed to scenarios prior to the tests. These indices produced occasional main effects in the predicted direction. In this research, the difficulty factors which seemed to contribute the most to variations in performance were target visibility, number of targets, and aircraft model type. The influence of each of these factors will be discussed in turn.

Target visibility can be varied by changing any of the following variables: target aspect angle, range, elevation (above mask), offset (from PTL or cued azimuth), size, velocity, contrast and coloration (background and camouflage), and weather conditions (i.e., atmospheric transmissivity). Effects of these variables on air defense performance have been found on numerous occasions (Barber, 1987; Barber, 1990; Drewfs & Barber, 1988; Drewfs & Barber, 1990, Johnson, Barber, & Lockhart, 1988). The current study was no exception.
For example, increases in aircraft range and decreases in aircraft size were associated with increases in RW detection times (TDET) and RW identification times (TID). As shown in Table 15, it took longer to detect and identify the Mi28 when it was more distant, resulting in more hostile ordnance releases (scenario 13 versus 15). It took longer to identify (TID) and to complete the engagement (TTOT) on the Mi24 when it was more distant, resulting in more incorrect identifications and fewer hostile kills (scenario 16 versus 17).

Further, increases in offset affected detection time as shown in Table 14. This is evidenced by the fact that when the second target of a multiple target scenario appeared at the same azimuth as the first target (as in scenario 10), detection occurred more quickly than when the second target appeared at the other side of the search sector (as in scenario 9).

<u>Multiple targets</u> appearing simultaneously can adversely affect performance in two distinct ways: hesitation or haste. The soldier may become confused about which target to engage, or may hasten his responses in order to engage as many as possible. The more targets per unit time to deal with, the more difficult the scenario become producing a negative effect on performance.

In this releich, first RW target detection times (TDET) were longer when there were multiple targets (Table 14, scenarios 5, 6 versus 11, 12; and Table 15, scenario 12 versus 24, 27, 32). The more targets, the more delay in communicating detection. This was also true for second RW target detections (see Table 14, scenarios 9, 10 versus 11, 12). Perhaps confusion or distraction as to which target to engage first caused a delay in the detection response.

Second and third RW target identifications (TID) were significantly faster than first target identifications, for all three weapons, for both summer and fall tests, as shown in Table 17. Total engagement times (TTOT) were also shorter for subsequent targets (see Table 17). Apparently, subsequent identification decisions and engagements were hastened due to time pressure. Consequently, performance in identifying aircraft and obtaining hostile kills decreased with second and third targets (see Table 17).

Familiarity and discriminability of the aircraft was another primary factor in determining the outcome of the engagement. The participants were generally poorer at identifying friends than hostiles. This result is consistent with the interpretation that participants identified aircraft as hostile when they were in doubt. Some model types were more familiar than others and some were easier to identify (i.e., had obvious features) making those scenarios less difficult.

For example, the most familiar and salient RW model type was the hostile Mi24, so it was no surprise that this model yielded the highest identification accuracy. The Mi8 was also a familiar target and yielded high identification accuracy. However, the accuracy in identifying the hostile Mi28 (Havoc) and Ka? (Hokum) was much lower. While they have obvious features, they are newer targets and are less familiar. Further, with respect to friendly RW aircraft, the AHl and UHl are the most familiar and oldest. These aircraft yielded better identification accuracy than the AH64 and CH3 models. Also, AH64 and CH3 features tend to resemble those of the hostile Mi28 and Mi8, respectively. For FW targets, the familiar MiG27 (and hostile FW in general) yielded high identification accuracy. The friendly AlØ with its obvious features (dual engines and dual tail) yielded better identification accuracy than the A7 and F16.

Support for these effects on aircraft identification accuracy is provided in Tables 13 and 14. The more familiar and discriminable the aircraft model, the more accurate the identification. The less familiar and discriminable the aircraft, the more likely it was called a hostile. More familiar and discriminable aircraft also elicited faster identification times and farther identification ranges. This consequently resulted in more hostile kills and fewer fratricides.

Soldier Experience Level. Experience, as measured in terms of service grade and time in service, was not a strong predictor. Experience, as measured in terms of extent and intensity of recent training or practice, was a strong predictor. While the former produced some of the predicted effects, effects attributed to the latter prevailed. Soldiers receiving recent and intense training performed better than those with insufficient training and were therefore more apt to meet the performance standards (see Table 11). It was necessary to determine the extent of this difference in order to establish where the performance standard cutoffs should be placed.

Typically, large variations in single target detection time and gunner tracking ability have not been found (Barber, 1990; Barber, et al., 1987). There are two likely reasons for this: (1) These tasks can be performed with basic or average skills (as evidenced by very little variance or effect of psychomotor ability on gunner performance). (2) These tasks are currently stressed in training, at the neglect of other important tasks such as visual aircraft recognition, engagement of aircraft (simulated or live fire), and collective crew tasks. Consequently, there is usually more variance in these latter Identification, being the most critical task, tends to tasks. affect all subsequent tasks and outcomes. The more experienced and better trained soldiers tended to be faster and more accurate in identifying aircraft, and better at obtaining kills.

The expected effect of experience (EXP) on fast and accurate identifications occurred for Vulcan (Table 14). Experienced Vulcan troops also detected the second of multiple targets sooner (Table 14), completed the engagement sooner (Table 16), and were more on target when firing the weapon (Table 14), thereby obtaining more kills (Table 14). Stinger experience comparisons produced mixed results (Table 18). The RADES high experience group performed better than their AIT counterparts in identifying and engaging aircraft. The RTS high experience group performed about the same as their AIT counterparts with two exceptions: (1) Experienced troops were more accurate in identifying the Mi24. (2) Inexperienced (AIT) troops detected FW targets farther out and engaged more FW targets.

The reverse trend occurred for Chaparral. Higher ranking Chaparral observers took longer to detect and identify aircraft than lower ranking ones (see Tables 13 and 18) and engaged fewer hostile aircraft (Table 18). This may have occurred due to the more experienced group having recently transitioned to Chaparral. This may also have been a result of the less experienced soldiers taking less time, by defaulting to a decision of hostile.

The best performance was exhibited by the Summer 1989 Stinger troops and the Fall 1989 Vulcan troops (for example, see Tables 11, 12, and 19). These soldiers were from active duty air defense units. AIT troops performed at a level below them but commensurate with the Summer Vulcan and Fall Stinger personnel. National Guard (i.e., Chaparral) troops performed the poorest. The above differences have been ascribed to the degree of recent training. All of these groups would benefit from more focused and extensive sustainment training.

Interaction Effects. It was hypothesized that the effects of experience and difficulty on engagement performance would interact on those tasks with which experienced personnel receive concentrated training or inexperienced personnel receive little or no training. The hypothesis was supported on the fire task for Vulcan gunners (see Table 14). Superior firing accuracy (AVEMISS) exhibited by experienced gunners was unaffected with increased scenario difficulty. Average or poor firing accuracy exhibited by less experienced gunners worsened with increased difficulty.

#### Individual Differences Effects

Ability and attribute variables grouped into logical factors suggested from previous research (Barber, 1987; 1990). Results of principal components analyses are provided in Appendix C (Table C2). The six primary domains are as follows: sensory, perceptual, cognitive, psychomotor, personality, and experience. It was anticipated that soldier differences would account for variance in performance not accounted for by the independent variables and could help explain the results when reverse effects emerged. These predictions were supported. Significant relationships found have been summarized in Table 20. The importance ascribed to the relationships in this table (L, M, or H) reflects the extent to which the relationship could be demonstrated repeatedly and the magnitude of the correlation. Descriptive statistics on individual differences measures are provided in Appendix C (Table Cl).

The variables demonstrating consistent and significant relationships related to the following domains (in order of importance). Specific correlations are provided in Appendix C (Table C3).

- Sensory (i.e., vision) -- resting focus (RF), nearest focal point (NP), foveal visual acuity (FVA), contrast sensitivity (CS), blur interpretation (BIZ);
- Experience -- age, time in service (TSERV), live fire practice (LFR);
- Perceptual -- field independence (GEF);
- Psychomotor -- manual speed and accuracy (MSA).

The best predictors related to the visual ability of the soldier, thereby replicating previous research findings (Barber, 1987; 1990). The resting focus was highly related to RW detection. Those with an intermediate RF detected the target faster. Further, those with a higher near point (more flexible focal range) detected the RW target earlier. Foveal acuity was an excellent predictor of performance. Better acuity was associated with more accurate FW and RW identifications, and faster RW identification reaction time. Contrast sensitivity, which is correlated with acuity, was also associated with farther FW engagement ranges (RFIRE), more accurate RW identifications, and shorter engagement times (TTOT). Good blur interpretation performance was associated with slower RW detection times, and with better RW identification accuracy, more hostile RW kills, and more hostile RW ordnance prevention. In past research (Barber, 1987; 1990), field dependent people (GEF) and those low in blur interpretation ability (BIZ) tended to acquire static RW targets more quickly but were slower in detecting and identifying dynamic FW targets. Field independent people and those high in blur interpretation ability tended to identify targets at a greater range and with better accuracy. These findings were somewhat supported in the current research. Further, field independence and blur interpretation ability have been found to be correlated (Barber, 1990).

Better eye-hand coordination (MSA) was associated with faster RW detection times.

Older soldiers detected the FW target at a closer range and were slower in detecting the RW target than the younger ones. However, the older and more experienced soldiers (AGE, TSERV) were more accurate in their RW identifications and obtained more hostile RW kills. Also those receiving more live fire practice obtained more hostile kills. Therefore, realistic engagement practice would appear to be beneficial.

Finally, ASVAB scale scores predicted performance. Farther FW detection ranges were associated with high scores on the AFQT scale (and somewhat with the EL, MM, and OF scales). Faster RW detections were also associated with these ASVAB scales (especially the MM scale).

Chaparral Experimental Effects (Summer, 1989 RADES Test)

| Scens                                                                           | Effect                                           | Var                                               |                                                  | <br>DF                                               | <br>P                                             | Means                                                                           | SDs                | NS                                                          |
|---------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|--------------------------------------------------|------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------|--------------------|-------------------------------------------------------------|
| •                                                                               | DIF<br>DIF                                       |                                                   | 4.3<br>16.4                                      | •                                                    |                                                   | • •                                                                             | 1.9,1.2<br>.37,.53 | 51,51<br>51,51                                              |
| 222322233323                                                                    | RO                                               | TARY WI                                           | NG SCEN                                          | VARIOS                                               | (Targe                                            | t = 1)                                                                          |                    |                                                             |
| Scens                                                                           | Effect                                           | Var                                               | F                                                | DF                                                   | P                                                 | Means                                                                           | SDs                | NS                                                          |
| 3 & 9<br>10 & 11<br>10 & 11<br>5,6 & 8,9<br>5,6 & 8,9<br>5,6 & 8,9<br>5,6 & 8,9 | DIF<br>DIF*<br>EXP*<br>DIF<br>DIF<br>DIF<br>EXP* | TID<br>TDET<br>TID<br>TDET<br>IDCOR<br>TID<br>TID | 3.5<br>5.1<br>4.3<br>27.6<br>23.5<br>37.7<br>8.4 | 18,1<br>22,1<br>20,1<br>44,1<br>48,1<br>41,1<br>41,1 | .08<br>.03<br>.05<br>.001<br>.001<br>.000<br>.006 | 10.2,12.5<br>8.9,13.0<br>8.7,14.1<br>4.8,9.9<br>.69,.26<br>7.5,11.4<br>8.1,10.9 | 7.2,8.0            | 20,20<br>24,24<br>22,22<br>46,46<br>50,50<br>43,43<br>42,44 |
| 5,6 & 3,9                                                                       | DIF-EXP*                                         | TID                                               | 3.6                                              | 41,1                                                 | .07                                               | 5.5 9.5<br>10.6 12.<br>E2 E2                                                    | -<br>2 D2          |                                                             |

.

Vulcan Experimental Effects (Summer, 1989 RADES Test)

| ************                            |                                     | =======<br>F1    | XED WI     | NG SCE       | ARIOS           |                    |                    |                |
|-----------------------------------------|-------------------------------------|------------------|------------|--------------|-----------------|--------------------|--------------------|----------------|
| Scens                                   | Effect                              | Var              | F          | DF           | P               | Means              | SDs                | Ns             |
| 1,2 & 3,4<br>1,2 & 3,4                  | DIF<br>DIF                          | RID<br>RFIRE     | 3.1<br>7.5 | 40,1<br>41,1 | .09<br>.04      | 2.2,2.7<br>1.6,2.1 | 1.1,1 5<br>1.4,1 5 | 42,42          |
| 1,2 & 3,4<br>1,2 & 3,4                  | DIF<br>EXP                          | IDCOR<br>IDCOR   | 2.0<br>4.5 | 41,1<br>41,1 | .001<br>.04     | .84,.53<br>.57,.8Ø | .37,.51<br>.47,.39 | 43,43<br>42,44 |
| 1,2 & 3,4<br>1,2 & 3,4                  | EXP<br>EXP                          | PKILL<br>AVEMISS | 4.1        | 32,1<br>41,1 | .05<br>.02      | .47,.75            | .50,.42            | 36,32<br>42,44 |
|                                         | R:                                  | DTARY WIN        | IG SCEN    | ARIOS        | esses<br>(Targe |                    |                    |                |
| Scens                                   | Effect                              | Var              | F          | DF           | <br>Р           | Means              | SDs                | Ns             |
| 6 & 5                                   | DIF                                 | TID              | 7.1        | 22,1         | .Ø1             | 6.2,9.1            | 4.1,5.5            | 24,24          |
| 6 & 5<br>6 & 5                          | EXP<br>DIF                          | TID<br>IDCOR     | 4.4<br>7.5 | 22,1<br>23,1 | .05<br>.01      | 9.3,6.0<br>.83,.48 | 4.7,4.3<br>.37,.51 | 24,24<br>25,25 |
| 6 & 5                                   | DIF                                 | HKILL            | 9.4        | 23,1         | .005            | .83,.48            | .37,.51            | 25,25          |
| 5 & 7                                   | EXP                                 | TID              | 11.6       | 22,1         | .003            | 8.1,4.5            | 3.6,3.2            | 24,24          |
| 6&7                                     | DIF                                 | IDCOR            | 6.0        | 22,1         | .001            | .83,.13            | .38,.34            | 24,24          |
| 9 & 1Ø                                  | EXP                                 | HIDCOR           | 3.3        | 22,1         | .Ø8             | .67,.87            | .48,.34            | 24,24          |
| 5,6 & 11,12                             | DIF                                 | TDET             | 36.7       | 46,1         | .001            | 3.3,6.0            | 2.0,3.0            | 48,48          |
| 5,6 & 11,12                             | EXP                                 | TID              | 3.0        | 45,1         | .09             | 9.1,6.5            | 6.1,6.0            | 48,46          |
| 5,6 & 11,12                             | DIF*                                | HIDCOR           | 5.7        | 47,1         | .02             | .65,.83            | .48,.37            | 49,49          |
| 5,6 & 11,12                             | DIF                                 | AVEMISS          | 4.7        | 47,1         | .03             | .49,.68            | .51,.74            | 49,49          |
| 5,6 & 11,12                             | EXP                                 | AVEMISS          | 7.8        | 47,1         | .007            | .79,.37            | .61,.57            | 48,50          |
| 5,6 & 11,12                             | DIF-EXP                             | AVEMISS          | 5.9        | 47,1         | .02             | .58 .40 r<br>      | 01<br>02           |                |
|                                         |                                     |                  |            |              |                 | E1 E3              |                    |                |
|                                         | R                                   | DTARY WIN        |            |              |                 |                    |                    |                |
| Scens                                   | Effect                              | Var              | F          | DF           | P               | Means              | SDs                | Ns             |
| 10 & 9                                  | DIF                                 | TDET             | 17.6       | 19,1         | .001            | 16.8,23.4          | 4.3,5.0            | 21,21          |
| 9,10 & 11,1                             |                                     | TDET             | 9.0        | 44,1         | .004            | 19.7,24.2          | 5.3,10.6           | 46,46          |
| 9,10 & 11,1                             |                                     | TDET             | 6.8        | 44,1         | .01             | 24.3,19.6          | 8.1,7.1            | 46,46          |
| 9,10 & 11,1.                            | 2 DIF-EX                            | P TDET           | 2.4        | 44,1         | .13             | 21.0 13.9          | 5 D1               |                |
|                                         |                                     |                  |            |              |                 | 27.7 20.7          | 2 D 2              |                |
|                                         |                                     |                  |            |              |                 | El E3              |                    |                |
| *************************************** | =================================== | = Low. ?         | = Hia      |              |                 | Low, $3 = H$       | iah)               |                |
|                                         |                                     |                  |            | s Rever      |                 |                    | • • •              |                |

Stinger Experimental Effects (Fall, 1989 RTS Test)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                    | ROI                                                                                       | CARY WINC                                                     | G SCENARIOS (Tar                                                                                                                                                                                                                                                                                                                                       | get=1)                                                                                           |                                                                                                                                                 |                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Scens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Effect                                                             | Var                                                                                       | Test                                                          | Stats                                                                                                                                                                                                                                                                                                                                                  | P                                                                                                | Means                                                                                                                                           | Ns                                                                           |
| 13 & 15<br>13 & 15<br>13 & 15<br>16 & 17<br>16 & 17<br>16 & 17<br>16 & 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DIF<br>DIF<br>DIF<br>DIF<br>DIF<br>DIF<br>DIF                      | TDET<br>TID<br>ORD<br>TID<br>TTOT<br>HIDCOR<br>HKILL                                      | M-W<br>M-W<br>Fisher<br>M-W<br>Fisher<br>Fisher               | Z=3.5<br>Z=2.9<br>Phi=.52<br>Z=2.1<br>Z=1.8<br>Phi=.57<br>Phi=.51                                                                                                                                                                                                                                                                                      | .001<br>.003<br>.06<br>.03<br>.07<br>.03<br>.06                                                  | 4.1,7.5<br>7.4,13.0<br>.40,.90<br>9.4,14.8<br>13.1,17.0<br>1.0,.50<br>.80,.40                                                                   | 11,10<br>10,10<br>10,10<br>9,10<br>8,4<br>9,10<br>9,10                       |
| $12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 16 & a & 23 \\ 12 & \& & 27 \\ 12 & \& & 27 \\ 12 & \& & 27 \\ 12 & \& & 32 \\ 12 & \& & 32 \\ 12 & \& & 32 \\ 13 & \& & 31 \\ 13 & \& & 31 \\ 20 & \& & 31 \\ 20 & \& & 31 \\ 20 & \& & 31 \\ 20 & \& & 31 \\ 20 & \& & 31 \\ 20 & \& & 31 \\ 20 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ 12 & \& & 24 \\ $ | DIF<br>DIF<br>DIF<br>DIF<br>DIF<br>DIF<br>DIF<br>DIF<br>DIF<br>DIF | TDET<br>TID<br>TTOT<br>ORD<br>HIDCOR<br>TDET<br>TID<br>ORD<br>TDET<br>TDET<br>ORD<br>TDET | Sign<br>Cochran<br>Cochran<br>Sign<br>Sign<br>Cochran<br>Sign | $ \begin{array}{c} \emptyset(-), 1\emptyset(+), \vartheta(=) \\ 1(-), \vartheta(+), 1(=) \\ \emptyset(-), 7(+), 2(=) \\ Q=6.9 \\ Q=5.9 \\ \vartheta(-), 9(+), \vartheta(=) \\ 1(-), \vartheta(+), \vartheta(=) \\ Q=5.9 \\ 1(-), 9(+), \vartheta(=) \\ 1(-), 9(+), \vartheta(=) \\ \vartheta(-), 9(+), 1(=) \\ Q=5.9 \\ 1(-), 7(+), 2(=) \end{array} $ | .002<br>.04<br>.02<br>.01<br>.03<br>.004<br>.04<br>.03<br>.02<br>.02<br>.02<br>.04<br>.03<br>.07 | 2.1,6.5<br>5.3,8.4<br>8.8,14.8<br>.10,.85<br>1.0,.40<br>2.1,6.7<br>5.3,9.9<br>.10,.75<br>2.1,3.9<br>5.3,14.8<br>4.1,13.3<br>.40,.97<br>4.2,13.3 | 10<br>10<br>9<br>13<br>13<br>9<br>9<br>9<br>10<br>10<br>10<br>10<br>10<br>10 |

DIF (1 = Low, 2 = High)

Table 16

# Vulcan Experimental Effects (Fall, 1989 RTS Test)

| Scens                        | Effect             | Var                  | Test              | Stats                            |                    | Means                           | Ns.               |
|------------------------------|--------------------|----------------------|-------------------|----------------------------------|--------------------|---------------------------------|-------------------|
| 11 & 14<br>12 & 21<br>9 & 13 | DIF<br>DIF*<br>EXP | TDET<br>TDET<br>TTOT | M-W<br>M-W<br>M-W | 2=3.1<br>Z=1.8<br>Z=2.1          | .002<br>.07<br>.03 | 5.0,10.0<br>7.9,5.8<br>10.7,4.3 | 8,8<br>8,4<br>3,4 |
| 10 & 19<br>10 & 25           | DIF<br>DIF         | TDET<br>TDET         |                   | 0(-),5(+),3(=)<br>0(-),6(+),0(=) |                    | 4.1,5.9<br>4.1,7.0              | 8<br>6            |

\* Indicates Reverse Effect

• •

•

Overall Experimental Effects of Single Versus Multiple Targets

| ============<br> | <b>433333</b> 33 |          | 333231  |               |       | ======================================= | *==========        |                |
|------------------|------------------|----------|---------|---------------|-------|-----------------------------------------|--------------------|----------------|
| <br>             |                  |          | ummer,  |               | RADES |                                         |                    | <u> </u>       |
| Targets          | Weapon           | Var      | T       | DF            | P     | Means                                   | SDs                | Ns             |
| 1 vs 2           | STNG             | TID      | 2.7     | 146.5         | .01   | 8.5,6.0                                 | 7.1,4.3            | 89,62          |
| 1 vs 3           | STNG             | TID      | 2.5     | 36.4          | .05   | 8.5,5.7                                 | 7.1,3.0            | 89,13          |
| 1 vs 2           | CHAP             | TID      | 4.3     | 241.6         | .001  | 10.6,6.9                                | 8.2,5.5            | 163,90         |
| 1 vs 3           | CHAP             | TID      | 3.0     | 12.8          | .05   | 10.6,5.8                                | 8.2,4.6            | 163,10         |
| 1 vs 2           | VULC             | TID      | 2.6     | 309           | .01   | 7.7,5.9                                 | 6.0,4.1            | 178,133        |
| 1 vs 3           | VULC             | TID      | 4.4     | 50.4          | .001  | 7.7,4.3                                 | 6.0,3.1            | 178,24         |
| 1 vs 2           | STNG             | TTOT     | 2.4     | 105           | .05   | 11.3,8.0                                | 6.2,5.2            | 60,47          |
| 1 vs 2           | CHAP             | TTOT     | 2.2     | 126           | .05   | 14.2,10.7                               | 9.4,8.1            | 79,49          |
| 1 vs 2           | CHAP             | HIDCOR   | 2.6     | 198           | .Ø1   | .78,.61                                 | .43,.49            | 111,89         |
| 2 vs 3           | CHAP             | HIDCOR   | 4.6     | 123           | .001  | .61,.19                                 | .49,.40            | 89,36          |
| 1 vs 3           | CHAP             | HIDCOR   | 7.3     | 145           | .001  | .78,.19                                 | .43,.40            | 111,36         |
| 2 vs 3           | VULC             | HIDCOR   | 3.1     | 163           | .Øl   | .73,.47                                 | .45,.50            | 124,41         |
| 1 vs 3           | VULC             | HIDCOR   | 3.4     | 156           | .001  | .75,.47                                 | .43,.50            | 117,41         |
| 2 vs 3           | CHAP             | HKILL    | 2.6     | 98.1          | .05   | .25,.08                                 | .43,.28            | 89,36          |
| 1 vs 3           | CHAP             | HKILL    | 4.4     | 103.6         | .001  | .37,.08                                 | .48,.28            | 111,36         |
| 2 vs 3           | VULC             | HKILL    | 2.2     | 163           | .05   | .54,.34                                 | .50,.48            | 124,41         |
| 1 vs 3           | VULC             | HKILL    | 3.3     | 156           | .001  | .6334                                   | .48,.48            | 117,41         |
| 2 vs 3           | VULC             | AVEMISS* | 2.6     | 140.2         | .01   | .48,.24                                 | .82,.45            | 162,47         |
| 1 vs 3           | VULC             | AVEMISS* | 2.8     | 238           | .Ø1   | .4824                                   | .54,.45            | 193,47         |
| *********        |                  |          | =====   |               |       |                                         | *********          |                |
|                  |                  |          |         |               |       |                                         |                    |                |
|                  |                  |          | (Fall   | L, 1989       |       |                                         |                    |                |
| Targets          | Weapon           | Var      | r T     | DF            | P     | Means                                   | SDs                | Ns             |
| 1 vs 2           | STNG             | TID      | <br>3.4 | 222.9         | .001  | 11.0,8.1                                | 8.3,4.8            | 136 106        |
| 1 vs 2           | SING             | TID      | 2.9     | 143.0         | .01   | 11.0,8.2                                | 8.3,4.5            | 136,47         |
| 1 vs 2           | CHAP             | TID      | 2.5     | 83            | .01   | 9.8,6.8                                 | 4.7,5.7            | 51,34          |
| 1 vs 2           | CHAP             | TID      | 3.0     | 66            | .01   | 9.8,5.8                                 | 4.7,5.0            | 51,17          |
| 1 vs 2           | VULC             | TID      | 4.3     | 134.0         | .001  | 6.7,2.9                                 | 6.4,2.9            | 94,42          |
| 1 vs 2           | VULC             | TID      | 4.0     | 96.7          | .001  | 6.7,3.2                                 | 6.4,2.9            | 94,27          |
| 1 vs 3           |                  |          | 2.4     | 148.6         | .05   | 14.5,11.8                               | 8.1,5.8            | 92,60          |
|                  | STNG             | TCTT     |         |               |       |                                         |                    |                |
| 1 vs 2<br>1 vs 2 | CHAP             | TTOT     | 2.8     | 40.7<br>102.9 | .01   | 13.5,8.4                                | 7.2,4.7<br>7.3,3.6 | 25,18<br>71,34 |
|                  | VULC             | TTOT     | 3.5     |               | .001  | 8.8,5.1                                 |                    |                |
| 1 vs 3           | STNG             | HIDCOR   | 2.5     | 158           | .05   | .70,.47                                 | .46,.51            | 128,32         |
| 2 vs 3           | STNG             | HIDCOR   | 2.2     | 110           | .05   | .69,.47                                 | .47,.51            | 80,32          |
| 1 vs 3           | STNG             | HKILL    | 4.4     | 88.1          | .001  | .66,.31                                 | .48,.47            | 130,49         |
| 2 vs 3           | STNG             | HKILL    | 3.4     | 133           | .001  | .60,.31                                 | .49,.47            | 86,49          |
| 1 vs 3           | CHAP             | HKILL    | 2.8     | 66            | .01   | .50,.15                                 | .51,.37            | 48,20          |
| 2 vs 3           | CHAP             | HKILL    | 2.3     | 47            | .05   | .45,.15                                 | .51,.37            | 29,20          |
| 1 vs 2           | VULC             | HKILL*   | 2.1     | 116           | .05   | .28,.47                                 | .45,.50            | 75,43          |
| 2 vs 3           | VULC             | HKILL    | 2.2     | 62            | .05   | .47,.19                                 | .50,.40            | 43,21          |
| 1 vs 2           | VULC             | HITS*    | 2.1     | 151           | .05   | 8.2,14.5                                | 16.3,20.7          |                |
| 2 vs 3           | VULC             | HITS     | 2.1     | 86            | .05   | 14.5,5.7                                | •                  |                |
|                  | ======           |          |         |               |       |                                         |                    | *********      |

<sup>\*</sup> Indicates Reverse Effect

а. 1

# Additional Performance Comparisons by Skill Level (1,2,3) for Medium Difficulty Scenarios

| Spring,                                                       | 1988 RADE                                                | S AIT T                                        | ests Vei                                | sus Summer                                          | <b>,</b> 1989                   | RADES T                              | ests                              |
|---------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------|-----------------------------------------|-----------------------------------------------------|---------------------------------|--------------------------------------|-----------------------------------|
| Weapon                                                        | Levels                                                   | Scen                                           | Var                                     | Means                                               | ******<br>T                     | ========<br>DF                       | P                                 |
| Stinger<br>Stinger<br>Stinger<br>Stinger<br>Stinger           | l vs 3<br>l vs 3<br>l vs 3<br>l vs 3<br>l vs 3<br>l vs 3 | Mi24<br>Su25<br>Su25<br>MiG27<br>MiG27         | TID<br>IDCOR<br>HENG<br>IDCOR<br>HENG   | 7.3,3.7<br>.79,1.0<br>.79,1.0<br>.72,1.0<br>.69,1.0 | 5.0<br>2.9<br>2.9<br>3.2<br>3.9 | 47.8<br>33.0<br>33.0<br>34.0<br>34.0 | .001<br>.01<br>.01<br>.01<br>.001 |
| Chaparral<br>Chaparral<br>Chaparral<br>Chaparral<br>Chaparral | 1 vs 2<br>1 vs 2<br>1 vs 3<br>1 vs 2<br>1 vs 3<br>1 vs 3 | MiG27<br>MiG27<br>Mi24<br>Mi24<br>Mi24<br>Mi24 | RDET*<br>RID*<br>TID*<br>HENG*<br>HENG* | 5.1,3.5<br>7.1,10.6                                 | 3.6<br>2.3<br>2.2<br>3.1<br>2.5 | 20.1<br>21.1<br>40<br>43<br>43       | .01<br>.05<br>.05<br>.01<br>.05   |
|                                                               | <br>g, 1988 F                                            | ADES AI                                        | T Tests                                 | Versus Fal                                          | 1, 198                          | 9 RTS Te                             | <br>sts                           |
| Weapon                                                        | Levels                                                   | Scen                                           | Var                                     | Means                                               | T                               | 22222222<br>DF                       | P (                               |
| Stinger<br>Stinger<br>Stinger<br>Stinger                      | 1 vs 3<br>1 vs 3<br>1 vs 3<br>1 vs 3<br>1 vs 3           | Sul7<br>MiG27<br>Sul7<br>Mi24                  | RDET*<br>HENG*<br>HENG*<br>HIDCOR       | 10.8,6.9<br>.81,.33<br>.91,.30<br>.89,1.0           | 2.8<br>3.1<br>3.8<br>2.2        | 36<br>44<br>11.1<br>36.0             | .01<br>.01<br>.01<br>.05          |

\* Indicates Reverse Effect

| Scenarios Used 1                                                                                                | for Comparisons                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Above Comparisons                                                                                               | Below Comparisons                                                                                                |
| Su25 12:00 Ingressing<br>MiG27 1:00 Ingress & Cross<br>Mi24 12:00, 2-3 Km., 45 deg.<br>CH3 1:00, 5 Km., 45 deg. | Su25 12:00 Ingressing<br>MiG27 1:30 Ingress & Cross<br>Su17 11:00, Ingress & Cross<br>Mi24 12:00, 3 Km., 45 deg. |

•

# Performance Comparisons By Weapon Type for Low to Medium Difficulty Scenarios (Summer 1989 RADES Test)

| WEAL                                 | PONS                       | 5                                                            | TYPE                                   | TARG                                             | VAR                                                               | MEANS                                                                                   | t                                                    | df                                                            | p                                                        |
|--------------------------------------|----------------------------|--------------------------------------------------------------|----------------------------------------|--------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------|
| STNG<br>STNG<br>STNG<br>STNG         | VS<br>VS<br>VS<br>VS       | CHAP<br>VULC<br>CHAP<br>VULC<br>VULC<br>CHAP                 | FW<br>FW<br>FW<br>FW<br>FW<br>FW       | l<br>l<br>l<br>ALL<br>ALL                        | RDET<br>RDET<br>RID<br>RID<br>IDCOR<br>HKILL                      | 9.4,5.4<br>9.4,6.3<br>3.8,2.9<br>3.8,2.5<br>.84,.70<br>.77,.41                          | 6.9<br>4.6<br>2.5<br>3.8<br>2.0<br>4.0               | 148<br>138<br>88.8<br>80.8<br>135.7<br>116                    | .001<br>.001<br>.05<br>.001<br>.05<br>.001               |
| STNG<br>STNG<br>VULC<br>STNG<br>STNG | VS<br>VS<br>VS<br>VS<br>VS | CHAP<br>CHAP<br>CHAP<br>CHAP<br>CHAP<br>CHAP<br>CHAP<br>CHAP | RW<br>RW<br>RW<br>RW<br>RW<br>RW<br>RW | l<br>l<br>ALL<br>ALL<br>ALL<br>ALL<br>ALL<br>ALL | TID<br>TTOT<br>HIDCOR<br>HIDCOR<br>PKILL<br>HKILL<br>FKILL<br>ORD | 8.5,10.6<br>11.3,14.2<br>.79,.58<br>.70,.58<br>.86,.56<br>.64,.26<br>.33,.07<br>.74,.85 | 2.0<br>2.2<br>4.6<br>2.9<br>5.7<br>8.2<br>4.3<br>2.6 | 250<br>134.6<br>371.1<br>539<br>239.4<br>411<br>95.5<br>262.8 | .05<br>.05<br>.001<br>.01<br>.001<br>.001<br>.001<br>.01 |

• •

# Summary of Individual Differences Correlates

|       |     |     |     | Fixed      | Wing  |       |     | 11 |    |    |  |     | Rotai            | ry W  | ing |         |      |      |      |
|-------|-----|-----|-----|------------|-------|-------|-----|----|----|----|--|-----|------------------|-------|-----|---------|------|------|------|
|       | RDE | r   | RID | RFIRE      | IDCOR | KILLS | ORD | 11 | TD | ET |  | TID | TTOT             | 10    | COR | KI      | LLS  | OF   | RD   |
| RF    |     | 1   |     |            |       |       |     |    | н  | -  |  |     | ======<br>  .M + | ===== | *** |         | z==: | *=== | 5 73 |
| NP    |     |     |     | 1          |       |       |     |    | Ľ  | -  |  |     |                  |       |     |         | *    |      |      |
| EVA   |     |     | L - | 1          | L -   |       |     | 11 | -  |    |  | H + |                  | M     |     | 1       |      |      |      |
| cs    |     | 1   |     | <u>M</u> + |       |       | i   | 11 |    |    |  |     | M -              | L     | +   |         |      |      |      |
| BIZ   |     |     |     |            |       |       |     |    | м  | +  |  |     |                  | н     | +   | н       | +    | .M   | -    |
| GEF   |     |     | L + |            |       |       |     |    |    |    |  |     |                  |       |     |         |      |      | . =  |
| MSA   |     |     |     |            |       |       |     |    | м  | -  |  |     |                  |       |     |         |      |      |      |
| AGE   | M - | -   |     |            |       |       |     |    | L  | +  |  |     |                  |       |     | <br>  M | +    |      |      |
| TSERV | M - | -   |     |            |       |       |     |    | 1  | +  |  |     |                  | L     | +   | L       | +    |      | • -  |
| LFR   |     |     |     |            |       |       |     |    |    |    |  |     |                  |       |     | L       | +    |      |      |
| AFQT  | н - |     |     |            |       |       |     | 11 | L  | -  |  |     |                  |       |     | 1       |      |      |      |
| EL    | L - | • { |     | <u>}</u>   |       | )     |     | 11 | L  | -  |  |     |                  |       |     |         |      |      |      |
| мм    | 1 - | +   |     |            |       |       |     |    | м  | -  |  |     |                  |       |     |         |      |      |      |
| OF    | L - | F [ |     | 1          |       |       |     |    | L  | -  |  |     |                  |       |     |         |      |      |      |

H = high; Direction of relationship -- (+) = positive; (-) = negative

#### CONCLUSIONS

#### Scenario Difficulty

Difficulty indices identified in past research continued to be employed successfully in defining scenario difficulty. Scenario difficulty was found to affect air defense engagement performance in the current effort. Performance criteria recommended for use have been based on three difficulty levels (e.g., low, medium, and high). The recommended scenario specifications listed in Table 21 reflect these levels of difficulty. Significant deviation from these specifications could render a scenario as higher or lower in difficulty and the performance criteria should be applied accordingly.

The specific indices having the greatest effect on scenario difficulty were as follows (in order of importance):

- Target Visibility (decreases or increases in target aspect, range, elevation, offset, size, velocity, contrast)
- Multiple Targets (introducing multiple, simultaneous targets within engagement range increases load stress and time stress)
- Model Type (while the soldier should be familiar with all modern military aircraft, some models will be more familiar or discriminable than others and some are more often confused with their counterparts)

While there are numerous other factors influencing difficulty, it is recommended that they be controlled (i.e., held constant) when applying the criteria to evaluate and qualify soldiers. These factors include command and control (e.g., alerting and cuing), weather (e.g., clear weather, daylight conditions), fatigue level (i.e., moderate conditions of vigilance, boredom, and saturation), and terrain (e.g., sky background). The criteria are subject to drastic changes as new conditions are introduced. For example, the likelihood of detecting a target with a terrain background, at zero aspect, at 5 kilometers, on a day with poor visibility, without cuing, is extremely low.

Scenario Specifications by Difficulty Level

|                                                                                                                                                                                                                                                                 | Fixed Wing                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LOW                                                                                                                                                                                                                                                             | MEDIUM                                                                                                                                                                                                                                             | HIGH                                                                                                                                                                                                                                       |
| <pre>Single, ingressing or<br/>crossing FW (plus*)<br/>- visible at maximum<br/>range (15-20 km)<br/>- medium-high alt.<br/>- slow speed (400-<br/>500 mph)<br/>- 90 deg. aspect<br/>- Cued to +/- 15 deg.<br/>- Familiar target with<br/>unique features</pre> | <pre>Single, ingressing FW - available at 20 km (beyond visible range) - medium altitude (1000 ft.) - mach speed (500 mph) - 0 to 45 deg. aspect - Cued to +/- 15 deg Familiar target with unique features</pre>                                   | <pre>Ingressing FW (plus*) - presented simultane- ously with another FW or 1-2 RW - closer range (avail lower than 1000 ft faster than mach  (700+ mph) - Cuing exceeds +/- 30  deg. accuracy - Low familiarity or  discriminability</pre> |
|                                                                                                                                                                                                                                                                 | Rotary Wing                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                            |
| LOW                                                                                                                                                                                                                                                             | MEDIUM                                                                                                                                                                                                                                             | HIGH                                                                                                                                                                                                                                       |
| <ul> <li>Single, hovering RW<br/>(plus*)</li> <li>1-3 km range</li> <li>5+ deg. elevation</li> <li>45-90 deg. aspect</li> <li>Cued to +/- 15 deg.</li> <li>Available 30 seconds</li> <li>Familiar target with<br/>unique features</li> </ul>                    | <pre>Single, hovering or<br/>multiple, sequential RW<br/>- 1-3 km range<br/>- 3-5 deg. elevation<br/>(above mask)<br/>- 0-90 deg. aspect<br/>- Cued to +/- 15 deg.<br/>- Available 20 seconds<br/>- Familiar target with<br/>unique features</pre> | <pre>Single, hovering RW (plus*) - presented simultane- ously with 1-2 RW - 5-7 km range - 1-2 deg. elevation - 0 deg. aspect - Cuing exceeds +/- 60 deg. accuracy - Available 10 seconds - Low familiarity or discriminability</pre>      |

(variations from medium difficulty specifications)

Of course, some conditions (such as weather) cannot be controlled. Hence, the evaluator may need to take into consideration weather conditions, especially those affecting visibility (wind, clouds, haze, etc.), when evaluating soldiers. Other factors such as the search sector, the flight path of targets, the presence of multiple aircraft, and terrain variations may also inhibit soldiers in detecting and identifying aircraft at maximum visible range, thereby influencing performance outcomes. There are several factors that influence performance during the execution of a field test exercise that must be considered to ensure fair application of the standards (i.e, selection of the correct tables). Thus, the standards should be interpreted with some flexibility due to the unpredictability of the field test environment.

#### Criteria Calibration

Based on the results from this research effort, a few modifications to the preliminary criteria have been recommended. Some of the criteria appeared to be unachievable due to limitations of the weapons, the personnel, or the doctrine. For example, the probability of kill (Pk) and effective range of the Vulcan and PIVADS weapon systems limit the ability of troops to obtain hostile kills and prevent ordnance release, particularly for FW aircraft. While the Pk for the weapon may be higher, it is unrealistic to expect this weapon system to achieve maximum Pk on FW aircraft.

The criteria provided in Tables 22 and 23 reflect the best tradeoff between what is humanly achievable and what is required in terms of the threat, the tactics, and the doctrine. The medium difficulty criteria are based on the "average" scenario. Low difficulty criteria imply the scenario specifications have become less stringent, such as making the target easier to see (e.g., closer, slower, etc.) and identify (e.g., enhanced or unique features and familiarity). High difficulty criteria imply more stringent scenario specifications, such as making the target harder to see (farther, faster, less aspect, less contrast, etc.), or by making the task more difficult (multiple targets, low discriminability or familiarity, etc.).

#### Individual Differences

A number of individual differences have repeatedly emerged as reliable correlates of air defense performance. The best predictors appear to be the vision measures. Visual acuity and contrast sensitivity, resting focus, and blur interpretation predicted visual tasks such as detection and identification quite well.

.

Recommended Task Performance Criteria

| ======================================= | Fixe                  | ed Wing                | g (Ranç                 | es in l                 | Fullsca                | ale Kil                 | ometer                | =======<br>s)          |                         |
|-----------------------------------------|-----------------------|------------------------|-------------------------|-------------------------|------------------------|-------------------------|-----------------------|------------------------|-------------------------|
| Task                                    |                       | Stinger                |                         | CI                      | Chaparral    Vulcan    |                         |                       |                        |                         |
| IdSK                                    | L                     | M                      | Н                       | L                       | M                      | н                       | L                     | M                      | Н                       |
| RDET<br>RACQ<br>RID<br>RFIRE            | 11<br>8<br>7<br>5     | 9<br>6<br>5<br>3       | 7<br>4<br>3<br>1        | 11<br>  8<br>  7<br>  5 | 9<br>6<br>5<br>3       | 7<br>4<br>3<br>1        | 9<br>-<br>4<br>2      | 7<br>-<br>3<br>2       | 6<br>-<br>2<br>1        |
|                                         | =======               | Rotary                 | Wing (                  | Elapse                  | d Time                 | in Sec                  | onds)                 | :                      |                         |
| Task                                    |                       | Stingen                |                         | C                       | haparra                | al                      |                       | Vulcan                 |                         |
|                                         | L                     | M                      | Н                       | L                       | M                      | Н                       | L                     | M                      | Н                       |
| TDET<br>TACQ<br>TID<br>TFIRE<br>TTOT    | 4<br>4<br>5<br>5<br>9 | 6<br>5<br>7<br>7<br>12 | 1Ø<br>6<br>9<br>9<br>15 | 4<br>4<br>5<br>5<br>9   | 6<br>5<br>7<br>7<br>12 | 10<br>6<br>9<br>9<br>15 | 4<br>-<br>5<br>5<br>9 | 6<br>-<br>7<br>7<br>12 | 10<br>-<br>9<br>9<br>15 |

.

Recommended Summary Performance Criteria

| Fixed Wing (Percentages)           Outcome         Stinger         Chaparral         Vulcan           L         M         H         L         M         H         L         M         H           IDCOR         80         75         70         80         75         70         80         75         70           FIDCOR         80         75         70         80         75         70         80         75         70           HIDCOR         85         80         75         85         80         75         85         80         75         70           HENG         85         80         75         85         80         75         85         80         75           PKILL         80         75         65         80         75         85         80         75           PKILL         80         75         65         80         75         30         20         25         30         20         25         30         20         25         30         20         25         30         20         20         10         0         0         0         0         10                  |                                                                    |                                        |                                                   | issessa<br>Sixod W                                | 111111                                            |                                                   |                                                   |                                              |                                              |                                              |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|--|
| L         M         H         L         M         H         L         M         H           IDCOR         80         75         70         80         75         70         80         75         70           FIDCOR         80         75         70         80         75         70         80         75         70           HIDCOR         85         80         75         85         80         75         80         80         75         70           HIDCOR         85         80         75         85         80         75         85         80         75           FENG         20         25         30         20         25         30         20         25         30         20         25         30         20         25         30         20         25         30         20         25         30         20         25         30         20         25         30         20         20         25         30         20         20         25         30         20         20         10         0         0         20         20         25         30         20         10 | <br>                                                               |                                        |                                                   |                                                   |                                                   |                                                   |                                                   | <br>  V                                      | ulcan                                        |                                              |  |
| FIDCOR       80       75       70       80       75       70         HIDCOR       85       80       75       85       80       75       85       80       75         FENG       20       25       30       20       25       30       20       25       30         HENG       85       80       75       85       80       75       85       80       75         PKILL       80       75       65       80       75       65       40       30       20         PKILL       20       25       30       20       25       30       20       25       30       20       25       30       20       25       30       20       25       30       20       25       30       20       25       30       20       25       30       20       10       0RD       55       35       15       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                            | Outcome                                                            | L                                      | M                                                 | Н                                                 | L                                                 | М                                                 | Н                                                 | L                                            | M                                            | н                                            |  |
| Stinger         Chaparral         Vulcan           Outcome              L         M         H         L         M         H           IDCOR         80         75         70         80         75         70           FIDCOR         80         75         70         80         75         70           HIDCOR         85         80         75         85         80         75         70           HIDCOR         85         80         75         85         80         75         30           HENG         85         80         75         85         80         75         30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FIDCOR<br>HIDCOR<br>FENG<br>HENG<br>PKILL<br>FKILL<br>HKILL<br>ORD | 80<br>85<br>20<br>85<br>80<br>20<br>70 | 75<br>80<br>25<br>80<br>75<br>25<br>60<br>35<br>- | 70<br>75<br>30<br>75<br>65<br>30<br>50<br>15<br>- | 80<br>85<br>20<br>85<br>80<br>20<br>70<br>55<br>- | 75<br>80<br>25<br>80<br>75<br>25<br>60<br>35<br>- | 70<br>75<br>30<br>75<br>65<br>30<br>50<br>15<br>- | 80<br>85<br>20<br>85<br>40<br>20<br>30<br>-  | 75<br>80<br>25<br>80<br>30<br>25<br>20<br>-  | 70<br>75<br>30<br>75<br>20<br>30<br>10       |  |
| Outcome       L       M       H       L       M       H       L       M       H         IDCOR       80       75       70       80       75       70       80       75       70         FIDCOR       80       75       70       80       75       70       80       75       70         HIDCOR       82       75       70       80       75       70       80       75       70         HIDCOR       85       80       75       85       80       75       85       80       75       70         HENG       85       80       75       85       80       75       30       20       25       30         HENG       85       80       75       85       80       75       85       80       75                                                                                                                                                                                                                                                                                                                                                                                                                       | <br>=<br>                                                          |                                        |                                                   |                                                   |                                                   |                                                   |                                                   | Vulcan                                       |                                              |                                              |  |
| FIDCOR807570807570HIDCOR858075858075FENG202530202530HENG858075858075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Outcome                                                            |                                        |                                                   |                                                   |                                                   | -<br>                                             |                                                   |                                              |                                              | н                                            |  |
| FKILL       20       25       30       20       25       30       20       25       30         HKILL       70       60       50       70       60       50       70       60       50         ORD       55       35       15       55       35       15       55       35       15         HITS*       -       -       -       -       -       10       8       6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FIDCOR<br>HIDCOR<br>FENG<br>HENG<br>PKILL<br>FKILL<br>HKILL<br>ORD | 80<br>85<br>20<br>85<br>80<br>20<br>70 | 75<br>80<br>25<br>80<br>75<br>25<br>60            | 70<br>75<br>30<br>75<br>65<br>30<br>50            | 80<br>85<br>20<br>85<br>80<br>20<br>70            | 75<br>80<br>25<br>80<br>75<br>25<br>60            | 70<br>75<br>30<br>75<br>65<br>30<br>50            | 80<br>85<br>20<br>85<br>80<br>20<br>70<br>55 | 75<br>80<br>25<br>80<br>75<br>25<br>60<br>35 | 70<br>75<br>30<br>75<br>65<br>30<br>50<br>15 |  |

#### REFERENCES

- Barber, A. V. (1987). The Realistic Air Defense Engagement System (RADES): Three Years of Research Results Paso, TX: Science Applications International Corp.
- Barber, A. V. (1990). Visual Mechanisms and Predictors of Far Field Visual Task Performance Results (Doctoral Dissertation, New Mexico State University, 1989). <u>Dissertation Abstracts</u> International.
- Barber, A. V., Drewfs, P. R., & Johnson, D. M. (1987). Performance of Stinger Teams Using the RADES Multiple Weapon Configuration (ARI Working Paper FB 87-09). Alexandria, VA: U.S. Army Research Institute for the Behavioral and Social Sciences.
- Barber, A. V., Drewfs, P. R., & Lockhart, J. M. (1987). <u>Effective Stinger Training in RADES</u> (ARI Working Paper FB 87-02). Alexandria, VA: U.S. Army Research Institute for the Behavioral and Social Sciences.
- Daskal, S. E. (1990). Air defense against the evolving threat. Army Research, Development and Acquisition Bulletin, March-April 1990.
- Drewfs, P. R., & Barber, A. V. (1990). Short Range Air Defense (SHORAD) Engagement Performance Criteria (ARI Research Note 90-12). Alexandria, VA: U.S. Army Research Institute for the Behavioral and Social Sciences. (AD A221 020)
- Drewfs, P. R., & Barber, A. V. (1988). Short Range Air Defense (SHORAD) Engagement Performance Criteria Partial Validation Report. El Paso, TX: Science Applications International Corp.
- Drewfs, P. R., Barber, A. V., Johnson, D. M., & Frederickson, E. W. (1988). Validation of the Realistic Air Defense Engagement System (RADES) (ARI Technical Report 789). Alexandria, VA: U. S. Army Research Institute for the Behavioral and Social Sciences. (AD A198 289)
- Headquarters, Department of the Army (1986). Visual Aircraft Recognition (Field Manual 44-30). Washington, DC: Author.
- Headquarters, Department of the Army (1988). <u>Standards in</u> <u>Weapons Training</u> (Department of the Army Pamphlet 350-38). Washington, DC: Author.
- Headquarters, Department of the Army (1989). <u>Chaparral Crew</u> <u>Member Soldier's Manual and Trainer's Guide</u> (STP 44-16P14-SM-TG). Washington, DC: Author.

- Johnson, D. M., Barber, A. V., & Lockhart, J. M. (1988). <u>The</u> <u>Effect of Target Background and Aspect Angle on Performance of</u> <u>Stinger Teams in the Realistic Air Defense Engagement System</u> (RADES) (ARI Technical Report 822). Alexandria, VA: U. S. Army Research Institute for the Behavioral and Social Sciences. (AD A207 283)
- Rotchford, F. C., & Daruwalla, A. N. (1987). <u>Visual Aircraft</u> <u>Recognition: Volume I -- Summary Report</u> (TRAC-WSMR-TEA-11-87). White Sands Missile Range, NM: US Army TRADOC Analysis Command.
- U. S. Army Air Defense Artillery School (June, 1989). ADA <u>Training Device Macro/Micro Strategy</u> (Training Circular 44-50, Coordinating Draft). Ft. Bliss, TX: Author.

APPENDIX A: SUMMARY STATISTICS FOR SUMMER, 1989 RADES TESTS

.

# Identification Accuracy

| WEAPON | TYPE | TARGET | MODEL | MEAN | SD  | N  |
|--------|------|--------|-------|------|-----|----|
| STNG   | FW   |        | A7    | .43  | .51 | 14 |
| STNG   | FW   |        | MiG27 | 1.0  | ø   | 15 |
| STNG   | FW   |        | Su24  | .93  | .27 | 14 |
| STNG   | FW   |        | Su25  | 1.0  | Ø   | 14 |
| CHAP   | FW   |        | А7    | .35  | .49 | 2Ø |
| CHAP   | FW   |        | MiG27 | .89  | .32 | 27 |
| CHAP   | FW   |        | Su24  | .79  | .41 | 24 |
| CHAP   | FW   |        | Su25  | .79  | .41 | 24 |
| VULC   | FW   |        | А7    | .26  | .45 | 23 |
| VULC   | FW   |        | MiG27 | .89  | .32 | 18 |
| VULC   | FW   |        | Su24  | .90  | .30 | 21 |
| VULC   | FW   |        | Su25  | .79  | .41 | 24 |
| STNG   | RW   | 1      | АН 64 | .44  | .51 | 16 |
| STNG   | RW   | 1      | CH 3  | .44  | .51 | 16 |
| STNG   | RW   | 2      | CH 3  | .45  | .52 | 11 |
| STNG   | RW   | 1      | UHl   | .56  | .53 | 9  |
| STNG   | RW   | 2      | UHl   | .42  | .51 | 12 |
| STNG   | RW   | 1      | Mi8   | .92  | .28 | 13 |
| STNG   | RW   | 2      | Mi8   | .81  | .40 | 32 |
| STNG   | RW   | 3      | Mi8   | .68  | .48 | 25 |
| STNG   | RW   | 1      | Mi24  | .93  | .27 | 14 |
| STNG   | RW   | 2      | Mi24  | .85  | .38 | 13 |
| STNG   | RW   | 1      | Mi28  | .86  | .36 | 28 |
| STNG   | RW   | 1      | Ka?   | .64  | .51 | 13 |
| STNG   | RW   | 2      | Ka?   | .77  | .44 | 13 |
| CHAP   | RW   | 1      | AH64  | .22  | .42 | 27 |
| CHAP   | RW   | 1      | CH 3  | .30  | .47 | 23 |
| CHAP   | RW   | 2      | CH 3  | .10  | .30 | 21 |
| CHAP   | RW   | 1      | UHl   | .59  | .50 | 27 |
| CHAP   | RW   | 2      | UHl   | .50  | .52 | 12 |
| CHAP   | RW   | 3      | UHl   | .33  | .58 | 3  |
| CHAP   | RW   | 1      | Mi8   | .85  | .34 | 24 |
| CHAP   | RW   | 2      | Mi8   | .66  | .48 | 44 |
| CHAP   | RW   | 3      | Mi8   | .19  | .40 | 36 |
| CHAP   | RW   | 1      | Mi24  | .71  | .46 | 24 |
| CHAP   | RW   | 2      | Mi24  | .82  | .39 | 22 |
| CHAP   | RW   | 1      | Mi28  | .73  | .45 | 48 |
| CHAP   | RW   | 1      | Ka?   | .80  | .41 | 15 |
| CHAP   | RW   | 2      | Ka?   | . 30 | .47 | 23 |
|        |      |        |       |      |     |    |

Table A-1 (Continued)

| WEAPON | TYPE   | TARGET | MODEL | MEAN | SD  | N  |
|--------|--------|--------|-------|------|-----|----|
| VULC   | <br>R₩ | 1      | AHL   | .87  | .34 | 23 |
| VULC   | RW     | 1      | CH 3  | .14  | .35 | 29 |
| VULC   | RW .   | 2      | CH 3  | .11  | .32 | 19 |
| VULC   | RW     | 1      | UHl   | .62  | .49 | 24 |
| VULC   | RW     | 2      | UHl   | .78  | .43 | 18 |
| VULC   | RW     | 3      | UHl   | .50  | .55 | 6  |
| VULC   | RW     | 1      | Mi8   | .81  | .40 | 21 |
| VULC   | RW     | 2      | Mi8   | .84  | .37 | 38 |
| VULC   | RW     | 3      | Mi8   | .49  | .51 | 37 |
| VULC   | RW     | 1      | Mi24  | .83  | .38 | 48 |
| VULC   | RW     | 2      | Mi24  | .96  | .21 | 23 |
| VULC   | RW     | 1      | Mi28  | .52  | .51 | 27 |
| VULC   | RW     | · 2    | Mi28  | .52  | .51 | 40 |
| VULC   | RW     | 3      | Mi28  | .00  | Ø   | 3  |
| VULC   | RW     | 1      | Ka?   | .81  | .40 | 21 |
| VULC   | RW     | 2      | Ka?   | .62  | .49 | 24 |

Descriptive Statistics: Stinger FW Event Ranges

| VAR    | SCEN                    | MEAN     | SD                                      | N     |
|--------|-------------------------|----------|-----------------------------------------|-------|
| RDET   | ALL                     | 9.4      | 3.7                                     | 56    |
|        | 1                       | 6.7      | 1.6                                     | 15    |
|        | 2                       | 12.0     | 2.4                                     | 14    |
|        | 3                       | 10.8     | 4.0                                     | 13    |
|        | 4                       | 8.4      | 3.8                                     | 14    |
| RIFF   | ALL                     | 8.1      | 4.2                                     | 57    |
|        | 1                       | 6.4      | 3.0                                     | 15    |
|        | 2                       | 9.9      | 4.6                                     | 14    |
|        | 3                       | 10.5     | 3.8                                     | 14    |
|        | 4                       | 5.9      | 3.7                                     | 14    |
| RID    | ALL                     | 3.8      | 2.3                                     | 55    |
|        | 1                       | 3.4      | 2.1                                     | 15    |
|        | 2                       | 3.9      | 1.5                                     | 14    |
|        | 3                       | 4.3      | 2.4                                     | 12    |
|        | 4                       | 3.7      | 3.1                                     | 14    |
| RACQ   | ALL                     | 4.7      | 3.Ø                                     | 40    |
|        | 1                       | 3.6      | 2.3                                     | 10    |
|        | 2                       | 5.0      | 3.6                                     | 12    |
|        | 3                       | 6.3      | 2.8                                     | 8     |
|        | 4                       | 4.2      | 2.8                                     | 10    |
| RLOCK* | ALL                     | 2.9      | 1.7                                     | 51    |
|        | 1                       | 3.2      | 2.1                                     | 15    |
|        | 2                       | 3.3(1.8) | 2.0(0.3)                                | 11(3) |
|        | 3                       | 2.7      | 1.7                                     | 9     |
|        | 4                       | 2.5      | 0.8                                     | 13    |
| RFIRE* | ALL<br>1<br>2<br>3<br>4 |          | 1.5<br>2.1(Ø)<br>1.3(Ø.4)<br>1.6<br>Ø.6 |       |

either ingressing or egressing

Descriptive Statistics: Chaparral FW Event Ranges

| VAR    | SCEN | MEAN                                           | SD                              | N                          |
|--------|------|------------------------------------------------|---------------------------------|----------------------------|
| RDET   | ALL  | 5.4                                            | 3.3                             | 94                         |
|        | 1    | 5.1                                            | 2.6                             | 27                         |
|        | 2    | 6.6                                            | 4.1                             | 24                         |
|        | 3    | 5.3                                            | 3.4                             | 19                         |
|        | 4    | 4.7                                            | 2.7                             | 24                         |
| RIFF   |      | 3.8<br>4.0<br>4.6<br>3.4<br>3.5                | 2.7<br>2.1<br>3.6<br>2.5<br>2.4 | 59<br>15<br>16<br>12<br>15 |
| RID*   | ALL  | 2.9                                            | 1.7                             | 94                         |
|        | 1    | 3.4                                            | 2.1                             | 27                         |
|        | 2    | 3.3(2.4)                                       | 1.9(Ø.8)                        | 17(7)                      |
|        | 3    | 2.7(4.8)                                       | 1.7(Ø)                          | 18(1)                      |
|        | 4    | 2.3                                            | 1.0                             | 24                         |
| RACQ   | ALL  | 3.4                                            | 2.2                             | 49                         |
|        | 1    | 3.8                                            | 2.2                             | 13                         |
|        | 2    | 3.8                                            | 2.9                             | 15                         |
|        | 3    | 2.5                                            | 1.5                             | 9                          |
|        | 4    | 3.0                                            | 1.4                             | 11                         |
| RFIRE* | 1    | 3.1<br>3.5(3.9)<br>3.7(2.0)<br>2.6(4.0)<br>1.8 |                                 | 13(3)                      |

Descriptive Statistics: Vulcan FW Event Ranges

| VAR    | SCEN                    | MEAN                             | SD                                           | N                          |
|--------|-------------------------|----------------------------------|----------------------------------------------|----------------------------|
| RDET   |                         |                                  | 4.1<br>3.2<br>4.2<br>4.4<br>3.4              | 84<br>18<br>24<br>19<br>21 |
| RID    | ALL<br>1<br>2<br>3<br>4 | 1.9<br>2.5                       | 1.4<br>0.9<br>1.2<br>1.6<br>1.5              | 82<br>17<br>23<br>19<br>21 |
| RFIRE* | ALL<br>1<br>2<br>3<br>4 | 1.9(2.0)<br>1.2(2.1)<br>2.0(2.2) | 1.4(1.1) 1.4(0.9) 1.1(1.0) 1.2(0.9) 1.8(1.4) | 18(16)<br>23(15)<br>21(16) |

versus MRADES.

| Descriptive S | tatistics: | Stinger | RW | Event | Times |
|---------------|------------|---------|----|-------|-------|
|               |            |         |    |       |       |

| VAR  | SCEN                                                                                                                   | TARGET                                                                                                     | MEAN                                                                                                                                          | SD                                                                                                                                                  | N                                                                                                                 |
|------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| TDET | ALL<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>ALL<br>3<br>4<br>7<br>10<br>11<br>12<br>ALL<br>11<br>12              | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2      | 8.2<br>5.2<br>5.6<br>11.4<br>7.5<br>5.8<br>5.1<br>10.8<br>5.4<br>39.5<br>60.7<br>53.6<br>29.1<br>32.5<br>30.7<br>30.5<br>41.7<br>41.8<br>41.6 | 6.6<br>3.4<br>5.1<br>6.5<br>6.9<br>2.0<br>9.1<br>6.5<br>4.3<br>15.5<br>7.4<br>7.1<br>7.6<br>4.2<br>13.9<br>8.3<br>7.1<br>6.2<br>8.0                 | 103<br>13<br>13<br>8<br>13<br>15<br>14<br>14<br>14<br>13<br>71<br>12<br>12<br>13<br>8<br>13<br>13<br>15<br>6<br>9 |
| TIFF | ALL<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>ALL<br>3<br>4<br>7<br>10<br>11<br>12<br>ALL<br>11<br>12<br>ALL<br>11 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 5.0<br>3.2<br>3.7<br>5.2<br>5.7<br>4.2<br>4.4<br>4.9<br>8.4<br>4.5<br>7.5<br>4.6<br>2.6<br>1.6<br>4.6<br>4.8<br>4.8<br>1.6<br>6.9             | $ \begin{array}{c} 6.4\\ 3.4\\ 4.8\\ 4.4\\ 8.1\\ 4.7\\ 5.4\\ 7.7\\ 9.7\\ 5.1\\ 6.1\\ 5.1\\ 4.0\\ 1.8\\ 6.6\\ 4.1\\ 8.1\\ 1.5\\ 10.0\\ \end{array} $ | 73<br>10<br>10<br>6<br>9<br>11<br>8<br>8<br>11<br>56<br>11<br>10<br>8<br>7<br>9<br>11<br>13<br>5<br>8             |

Table A-5 (Continued)

. .

| VAR  | SCEN                                                                                                                   | TARGET                                                                                                     | MEAN                                                                                                                                | SD                                                                                                                                    | N                                                                                                   |  |
|------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--|
| TID  | ALL<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>ALL<br>3<br>4<br>7<br>10<br>11<br>12<br>ALL<br>11<br>12<br>ALL<br>11 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2           | 8.5<br>5.8<br>3.7<br>8.4<br>11.2<br>17.3<br>7.6<br>9.5<br>5.8<br>6.0<br>8.9<br>5.0<br>3.5<br>8.6<br>6.3<br>4.6<br>5.7<br>6.3<br>5.1 | $7.1 \\ 4.0 \\ 1.4 \\ 6.1 \\ 6.1 \\ 8.7 \\ 2.4 \\ 11.5 \\ 3.2 \\ 4.3 \\ 5.7 \\ 2.6 \\ 1.8 \\ 4.9 \\ 4.2 \\ 3.6 \\ 3.0 \\ 2.1 \\ 3.6 $ | 89<br>13<br>5<br>11<br>12<br>13<br>10<br>12<br>62<br>10<br>11<br>12<br>8<br>12<br>9<br>13<br>6<br>7 |  |
| TACQ | ALL<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>ALL<br>3<br>4<br>7<br>10<br>11<br>12                                 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 6.6<br>7.2<br>3.6<br>2.0<br>6.4<br>8.4<br>7.1<br>13.0<br>5.5<br>6.8<br>4.0<br>5.5<br>5.7<br>3.0<br>7.3<br>13.0                      | 5.3<br>5.1<br>1.7<br>0<br>6.8<br>7.6<br>4.9<br>0<br>3.5<br>6.6<br>2.6<br>4.1<br>2.1<br>0<br>5.8<br>13.9                               | 35<br>5<br>1<br>7<br>5<br>9<br>1<br>2<br>17<br>3<br>4<br>3<br>1<br>3<br>3                           |  |

Table A-5 (Continued)

| VAR   | SCEN                                                                                                      | TARGET                                                                                                     | MEAN                                                                                                                       | SD                                                                                                                     | N                                                                                                  |  |
|-------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--|
| TLOCK | ALL<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>ALL<br>3<br>4<br>7<br>11<br>12<br>12                    | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>3                     | 5.7<br>7.8<br>5.0<br>4.0<br>6.8<br>6.8<br>4.7<br>4.0<br>3.0<br>9.0<br>13.3<br>5.0<br>7.5<br>12.7<br>4.5<br>5.0             | 3.4<br>6.9<br>1.5<br>Ø<br>3.Ø<br>3.8<br>1.0<br>Ø<br>8.8<br>10.7<br>1.0<br>2.1<br>15.9<br>2.1<br>1.7                    | 31<br>5<br>6<br>1<br>4<br>4<br>8<br>2<br>1<br>13<br>3<br>2<br>3<br>2<br>3                          |  |
| THAND | ALL<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>ALL<br>3<br>4<br>7<br>10<br>11<br>12<br>ALL<br>11<br>12 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 5.3<br>5.3<br>6.1<br>3.0<br>5.7<br>5.5<br>6.4<br>3.2<br>3.9<br>4.9<br>6.3<br>3.6<br>5.0<br>7.4<br>3.6<br>6.3<br>5.0<br>7.7 | 3.8<br>4.4<br>0<br>3.3<br>4.1<br>4.8<br>1.6<br>2.3<br>3.8<br>4.4<br>2.1<br>4.7<br>0<br>4.9<br>2.2<br>5.2<br>2.8<br>6.8 | 60<br>9<br>13<br>1<br>6<br>4<br>11<br>5<br>11<br>44<br>7<br>11<br>9<br>1<br>7<br>9<br>12<br>6<br>6 |  |

Table A-5 (Continued)

| VAR   | SCEN                                                                                                                   | TARGET                                                                                                | MEAN                                                                                                                                       | SD                                                                                                                              | N                                                                                                  |
|-------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| TFIRE | ALL<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>ALL<br>3<br>4<br>7<br>11<br>12<br>12                                 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>3                | 9.3<br>8.0<br>8.5<br>5.0<br>8.5<br>8.3<br>10.0<br>19.5<br>5.0<br>5.8<br>8.5<br>6.5<br>8.3<br>6.5<br>10.3                                   | 5.6<br>2.6<br>4.2<br>Ø.7<br>4.0<br>4.8<br>16.3<br>Ø<br>4.3<br>6.4<br>Ø.7<br>5.0<br>2.5<br>2.1<br>9.1                            | 27<br>5<br>6<br>1<br>2<br>3<br>7<br>2<br>1<br>16<br>2<br>3<br>3<br>3<br>3<br>2<br>3                |
| TTOT  | ALL<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>ALL<br>3<br>4<br>7<br>10<br>11<br>12<br>ALL<br>11<br>12<br>ALL<br>11 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 11.3<br>9.8<br>9.6<br>7.5<br>14.2<br>17.3<br>14.0<br>9.3<br>9.9<br>8.6<br>12.9<br>7.6<br>8.3<br>13.0<br>11.6<br>4.6<br>10.5<br>12.2<br>9.0 | 6.2<br>8.0<br>4.6<br>4.9<br>3.4<br>4.9<br>5.0<br>9.8<br>4.2<br>5.2<br>6.5<br>3.1<br>5.6<br>0<br>4.6<br>3.1<br>5.8<br>3.8<br>7.2 | 60<br>9<br>12<br>2<br>6<br>4<br>11<br>7<br>9<br>47<br>7<br>11<br>9<br>1<br>8<br>11<br>11<br>5<br>6 |

.

| Descriptive Statistics: Chaparral RW Event Times | Descriptive | Statistics: | Chaparral | RW Event Times |
|--------------------------------------------------|-------------|-------------|-----------|----------------|
|--------------------------------------------------|-------------|-------------|-----------|----------------|

| V A R | SCEN                                                                                                                   | TARGET                                                                                                                         | MEAN                                                                                                                                                                                                                                  | SD                                                                                                                                    | N                                                                                                                                     |  |
|-------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--|
| TDET  | ALL<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>ALL<br>3<br>4<br>7<br>10<br>11<br>12<br>ALL<br>11<br>12<br>ALL<br>11 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                | $     8.2 \\     3.9 \\     5.7 \\     10.4 \\     10.4 \\     9.5 \\     9.0 \\     13.0 \\     4.0 \\     39.5 \\     59.3 \\     52.0 \\     32.2 \\     25.4 \\     34.0 \\     34.1 \\     43.2 \\     40.1 \\     50.0 \\     $ | 6.4<br>2.8<br>3.0<br>5.4<br>5.4<br>7.9<br>7.3<br>8.0<br>1.0<br>14.2<br>7.5<br>8.5<br>6.6<br>7.0<br>12.1<br>12.5<br>10.0<br>9.5<br>8.1 | 181<br>23<br>23<br>20<br>22<br>23<br>23<br>24<br>23<br>96<br>10<br>21<br>21<br>21<br>21<br>21<br>21<br>8<br>22<br>14<br>16<br>11<br>5 |  |
| TIFF  | ALL<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>ALL<br>3<br>4<br>7<br>10<br>11<br>12<br>ALL<br>11<br>12              | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>3<br>3<br>3<br>3 | $ \begin{array}{c} 6.7\\ 6.3\\ 4.3\\ 8.3\\ 8.8\\ 4.7\\ 6.3\\ 7.1\\ 8.8\\ 7.7\\ 14.7\\ 7.7\\ 4.2\\ 5.6\\ 12.0\\ 7.8\\ 9.2\\ 12.3\\ 6.0\\ \end{array} $                                                                                 | 6.7<br>5.1<br>3.8<br>5.4<br>7.7<br>3.5<br>8.8<br>5.3<br>10.4<br>6.8<br>11.7<br>4.4<br>3.8<br>3.0<br>8.6<br>8.6<br>8.6<br>8.5<br>3.6   | 112<br>14<br>16<br>13<br>12<br>15<br>15<br>15<br>11<br>16<br>51<br>3<br>14<br>11<br>5<br>6<br>12<br>6<br>3<br>3                       |  |

Table A-6 (Continued)

| VAR  | SCEN                                                                                                      | TARGET                                                                                                                         | MEAN                                                                                                                                                                                                                                                                                                    | SD                                                                                                             | N                                                                                                           |
|------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| TID  | ALL<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>ALL<br>3<br>4<br>7<br>10<br>11<br>12<br>ALL<br>11<br>12 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>3<br>3<br>3<br>3 | $     \begin{array}{r}       10.6 \\       6.7 \\       8.3 \\       13.8 \\       10.1 \\       12.6 \\       10.0 \\       12.9 \\       11.2 \\       6.9 \\       7.3 \\       8.4 \\       3.9 \\       7.1 \\       8.9 \\       5.7 \\       5.8 \\       4.0 \\       10.0 \\     \end{array} $ | 8.2 5.1 3.9 7.2 3.1 4.1 7.0 $10.7$ $14.9$ 5.5 5.5 6.4 2.9 1.4 7.3 3.5 4.6 3.6 4.6                              | 163<br>20<br>23<br>19<br>18<br>19<br>22<br>19<br>23<br>90<br>8<br>21<br>19<br>8<br>20<br>14<br>10<br>7<br>3 |
| TACQ | ALL<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>ALL<br>3<br>4<br>7<br>10<br>11<br>12                    | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                               | 8.7<br>5.1<br>10.1<br>9.0<br>10.7<br>5.6<br>4.4<br>8.5<br>15.8<br>11.9<br>14.7<br>11.0<br>9.0<br>5.0<br>16.0<br>15.0                                                                                                                                                                                    | 7.9<br>4.6<br>6.4<br>6.0<br>9.0<br>4.2<br>3.4<br>7.2<br>13.9<br>7.6<br>11.7<br>5.8<br>6.7<br>3.0<br>9.0<br>8.4 | 61<br>8<br>9<br>7<br>7<br>9<br>7<br>6<br>8<br>29<br>3<br>8<br>5<br>3<br>8<br>5<br>3<br>7                    |

| Table A | -6 (Cor                                                                                      | tinued)                                                                                          |                                                                                                                                 |                                                                                                                                                    |                                                                                                   |
|---------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| VAR     | SCEN                                                                                         | TARGET                                                                                           | MEAN                                                                                                                            | SD                                                                                                                                                 | N                                                                                                 |
| THAND   | ALL<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>ALL<br>3<br>4<br>7<br>10<br>11<br>12<br>11 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>3      | 8.2<br>8.2<br>4.6<br>2.7<br>9.0<br>5.1<br>9.8<br>14.8<br>9.8<br>6.2<br>1.0<br>8.8<br>5.7<br>1.0<br>7.5<br>6.1<br>5.3            | $\begin{array}{c} 8.1 \\ 6.3 \\ 5.6 \\ 2.3 \\ 2.5 \\ 2.5 \\ 9.7 \\ 9.4 \\ 11.6 \\ 6.2 \\ 1.4 \\ 10.3 \\ 4.9 \\ 0 \\ 5.7 \\ 5.8 \\ 0.6 \end{array}$ | 60<br>9<br>3<br>6<br>7<br>8<br>5<br>13<br>37<br>2<br>6<br>12<br>1<br>6<br>12<br>1<br>6<br>10<br>3 |
| TFIRE   | ALL<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>ALL<br>3<br>4<br>7<br>10<br>11<br>12       | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 8.6<br>3.0<br>8.8<br>4.0<br>12.0<br>10.2<br>12.0<br>8.3<br>7.0<br>6.9<br>9.0<br>5.0<br>6.8<br>3.5<br>7.7<br>14.0                | 7.5<br>1.4<br>7.7<br>4.2<br>10.5<br>6.1<br>11.8<br>4.0<br>6.2<br>5.7<br>0<br>1.4<br>5.3<br>4.9<br>9.9<br>0                                         | 33<br>4<br>5<br>2<br>3<br>5<br>6<br>3<br>5<br>13<br>1<br>2<br>4<br>2<br>3<br>1                    |
| TTOT    | ALL<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>ALL<br>3<br>4<br>7<br>10<br>11<br>12<br>11 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 14.2<br>11.5<br>10.8<br>9.5<br>19.3<br>16.3<br>18.1<br>14.3<br>15.0<br>10.7<br>5.0<br>11.6<br>9.0<br>7.0<br>16.4<br>11.4<br>7.5 | 9.4<br>6.4<br>8.0<br>4.5<br>3.9<br>4.9<br>12.3<br>8.0<br>13.8<br>8.1<br>4.3<br>8.2<br>5.9<br>2.8<br>13.5<br>4.9<br>3.7                             | 79<br>14<br>11<br>6<br>6<br>8<br>11<br>8<br>15<br>49<br>5<br>10<br>14<br>2<br>8<br>10<br>4        |

.

| VAR  | SCEN | TARGET | MEAN | SD   | N   |  |
|------|------|--------|------|------|-----|--|
| TDET | ALL  | 1      | 6.5  | 5.2  | 188 |  |
|      | 5    | 1      | 3.9  | 2.5  | 24  |  |
|      | 6    | ī      | 2.8  | 1.0  | 24  |  |
|      | 7    | 1      | 6.1  | 2.6  | 21  |  |
|      | 8    | ī      | 12.8 | 8.3  | 24  |  |
|      | 9    | 1      | 9.Ø  | 6.5  | 23  |  |
|      | 10   | 1      | 5.6  | 3.1  | 24  |  |
|      | 11   | 1      | 7.8  | 2.8  | 24  |  |
|      | 12   | 1      | 4.2  | 2.1  | 24  |  |
|      | ALL  | 2      | 33.4 | 17.8 | 145 |  |
|      | 3    |        | 64.6 | 6.6  | 18  |  |
|      | 4    | 2      | 53.6 | 7.1  | 21  |  |
|      | 8    | 2      | 31.3 | 4.1  | 23  |  |
|      | 9    | 2      | 23.4 | 5.8  | 16  |  |
|      | 1ø   | 2      | 16.8 | 4.3  | 21  |  |
|      | 11   | 2      | 25.4 | 9.2  | 23  |  |
|      | 12   | 2      | 23.0 | 11.8 | 23  |  |
|      | ALL  | 3      | 33.3 | 11.2 | 26  |  |
|      | 11   | 3      | 35.9 | 9.5  | 12  |  |
|      | 12   | 3      | 31.0 | 12.4 | 14  |  |
|      |      |        |      |      |     |  |
| TID  | ALL  | 1      | 7.7  | 6.Ø  | 178 |  |
|      | 5    | 1      | 9.1  | 5.6  | 23  |  |
|      | 6    | 1      | 6.2  | 4.1  | 24  |  |
|      | 7    | 1      | 6.2  | 3.8  | 21  |  |
|      | 8    | 1      | 11.6 | 6.7  | 19  |  |
|      | 9    | 1      | 6.5  | 4.6  | 23  |  |
|      | 10   | 1      | 6.5  | 6.3  | 22  |  |
|      | 11   | 1      | 10.0 | 9.2  | 23  |  |
|      | 12   | 1      | 6.Ø  | 4.1  | 23  |  |
|      | ALL  | 2      | 5.9  | 5.9  | 133 |  |
|      | 3    | 2      | 7.3  | 6.2  | 16  |  |
|      | 4    | 2      | 6.6  | 3.7  | 19  |  |
|      | 8    | 2      | 3.8  | 3.7  | 2Ø  |  |
|      | 9    | 2      | 5.4  | 3.2  | 16  |  |
|      | 10   | 2      | 8.0  | 8.1  | 21  |  |
|      | 11   | 2      | 5.1  | 6.5  | 2Ø  |  |
|      | 12   | 2      | 5.4  | 6.8  | 21  |  |
|      | ALL  | 3      | 4.3  | 3.1  | 24  |  |
|      | 11   | 3      | 4.4  | 2.7  | 11  |  |
|      | 12   | 3      | 4.2  | 3.4  | 13  |  |

Descriptive Statistics: Vulcan RW Event Times

Table A-7 (Continued)

| V A R | SCEN                                                                                                           | TARGET                                                                                                          | MEAN                                                                                                                                                          | SD                                                                                                                                | N                                                                                                                         |
|-------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| THAND | ALL<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>ALL<br>3<br>4<br>8<br>9<br>10<br>11<br>12<br>ALL<br>11<br>12 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 3.7<br>3.8<br>3.7<br>4.8<br>Ø.3<br>4.1<br>4.0<br>3.2<br>3.3<br>5.5<br>4.6<br>8.3<br>5.5<br>3.5<br>8.1<br>3.5<br>3.5<br>8.1<br>3.5<br>3.0<br>4.5<br>5.5<br>1.5 | 3.5<br>3.3<br>2.8<br>5.0<br>0.6<br>3.2<br>4.2<br>2.0<br>4.4<br>4.9<br>4.4<br>4.9<br>5.2<br>2.8<br>5.0<br>2.5<br>3.7<br>3.7<br>2.1 | $ \begin{array}{c} 81\\ 10\\ 19\\ 10\\ 3\\ 14\\ 2\\ 9\\ 14\\ 68\\ 11\\ 7\\ 14\\ 10\\ 14\\ 6\\ 6\\ 8\\ 6\\ 2 \end{array} $ |
| TFIRE | ALL<br>5<br>6<br>7<br>9<br>11<br>12<br>ALL<br>3<br>4<br>8<br>9<br>11<br>12<br>11                               | 1<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>3                     | 9.0<br>11.3<br>6.9<br>7.3<br>12.0<br>4.0<br>9.3<br>8.6<br>8.5<br>13.4<br>8.9<br>6.7<br>1.0<br>5.8<br>9.0                                                      | 5.5<br>5.6<br>3.5<br>3.8<br>5.7<br>5.7<br>7.2<br>5.7<br>4.0<br>8.4<br>5.3<br>3.2<br>0<br>1.9<br>1.7                               | 4Ø<br>7<br>9<br>7<br>2<br>8<br>24<br>4<br>5<br>7<br>3<br>1<br>4<br>3                                                      |

### Table A-7 (Continued)

| V AR | SCEN | TARGET | MEAN | SD   | N   |  |
|------|------|--------|------|------|-----|--|
| TTOT | ALL  | 1      | 8.4  | 5.3  | 107 |  |
|      | 5    | 1      | 9.8  | 6.3  | 15  |  |
|      | 6    | 1      | 8.3  | 3.7  | 2Ø  |  |
|      | 7    | 1      | 7.7  | 4.8  | 15  |  |
|      | 8    | 1      | 11.8 | 11.3 | 4   |  |
|      | 9    | 1      | 9.3  | 5.9  | 19  |  |
|      | 1Ø   | 1      | 7.7  | 2.5  | 3   |  |
|      | 11   | 1      | 6.Ø  | 3.2  | 13  |  |
|      | 12   | 1      | 8.3  | 5.9  | 18  |  |
|      | ALL  | 2      | 7.8  | 6.7  | 92  |  |
|      | 3    | 2      | 8.8  | 4.2  | 14  |  |
|      | 4    | 2      | 9.5  | 9.3  | 10  |  |
|      | 8    | 2      | 6.3  | 5.6  | 19  |  |
|      | 9    | 2      | 7.7  | 2.7  | 11  |  |
|      | 10   | 2      | 12.4 | 9.6  | 16  |  |
|      | 11   | 2      | 4.4  | 5.5  | 11  |  |
|      | 12   | 2      | 4.4  | 2.6  | 11  |  |
|      | ALL  | 3      | 6.5  | 3.7  | 10  |  |
|      | 11   | 3      | 8.5  | 3.1  | 6   |  |
|      | 12   | 3      | 3.5  | 2.1  | 4   |  |

ł,

Descriptive Statistics: Stinger FW Summary Performance

| VAR    | SCEN               | MEAN                     | SD                     | N                    |
|--------|--------------------|--------------------------|------------------------|----------------------|
| IDCOR  | ALL                | .84                      | .37                    | 57                   |
| FIDCOR | 3                  | .43                      | .51                    | 14                   |
| HIDCOR | ALL<br>1<br>2<br>4 | .98<br>1.0<br>1.0<br>.93 | .15<br>Ø<br>Ø<br>.27   | 15<br>14             |
| FENG   | 3                  | .50                      | .52                    | 14                   |
| HENG   | ALL<br>1<br>2<br>4 | .93<br>1.Ø<br>1.Ø<br>.79 | Ø                      | 43<br>15<br>14<br>14 |
| PKILL  | ALL                | .65                      | .48                    | 57                   |
| FKILL  | 3                  | . 29                     | .47                    | 14                   |
| HKILL  | ALL<br>1<br>2<br>4 | .77<br>.67<br>1.Ø<br>.64 | .43<br>.49<br>Ø<br>.5Ø |                      |
| ORD    | ALL<br>1<br>2<br>4 | .98<br>.93<br>1.0<br>1.0 | .15<br>.26<br>Ø<br>Ø   | 15<br>14             |
| TRACK  | ALL                | .90                      | .22                    | 39                   |
.

Descriptive Statistics: Chaparral FW Summary Performance

| VAR         SCEN         MEAN         SD         N           IDCOR         ALL         .73         .45         95           FIDCOR         3         .35         .49         20           HIDCOR         ALL         .83         .38         75           1         .89         .32         27           2         .79         .41         .24           4         .79         .41         .24           FENG         3         .45         .51         .20           HENG         ALL         .56         .50         75           1         .63         .49         .27           2         .67         .48         .24           PKILL         ALL         .78         .42         49           FKILL         3         .35         .49         20           HKILL         ALL         .78         .42         49           FKILL         3         .35         .49         20           HKILL         ALL         .78         .42         49           FKILL         ALL         .41         .50         .75           1         .44 |        |        |            |            |          |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|------------|------------|----------|--|
| FIDCOR       3       .35       .49       20         HIDCOR       ALL       .83       .38       75         1       .89       .32       27         2       .79       .41       24         4       .79       .41       24         FENG       3       .45       .51       20         HENG       ALL       .56       .50       75         1       .63       .49       27         2       .67       .48       24         4       .38       .49       24         PKILL       ALL       .78       .42       49         FKILL       3       .35       .49       20         HKILL       ALL       .78       .42       49         FKILL       3       .35       .49       20         HKILL       ALL       .41       .50       75         1       .44       .51       27         2       .50       .51       24         4       .29       .47       24         ORD       ALL       .92       .27       .75         1       .81       .40                                                                                                            | VAR    | SCEN   | MEAN       | SD         | N        |  |
| HIDCOR       ALL       .83       .38       75         1       .89       .32       27         2       .79       .41       .24         4       .79       .41       .24         FENG       3       .45       .51       .20         HENG       ALL       .56       .50       .75         1       .63       .49       .27         2       .67       .48       .24         4       .38       .49       .24         PKILL       ALL       .78       .42       .49         FKILL       3       .35       .49       .20         HKILL       ALL       .78       .42       .49         FKILL       3       .35       .49       .20         HKILL       ALL       .78       .42       .49         GRD       ALL       .92       .27       .50         1       .44       .51       .27         2       .50       .51       .24         QRD       ALL       .92       .27       .75         1       .81       .40       .27         2       .95                                                                                                       | IDCOR  | ALL    | .73        | .45        | 95       |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FIDCOR | 3      | .35        | .49        | 20       |  |
| HENG       ALL       .56       .50       75         1       .63       .49       27         2       .67       .48       24         4       .38       .49       24         PKILL       ALL       .78       .42       49         FKILL       3       .35       .49       20         HKILL       ALL       .41       .50       75         1       .44       .51       27         2       .50       .51       24         4       .29       .47       24         ORD       ALL       .92       .27       75         1       .81       .40       27         2       .95       .20       24                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HIDCOR | 1<br>2 | .89<br>.79 | .32<br>.41 | 27<br>24 |  |
| 1       .63       .49       27         .2       .67       .48       24         4       .38       .49       24         PKILL       ALL       .78       .42       49         FKILL       3       .35       .49       20         HKILL       ALL       .41       .50       75         1       .44       .51       27         2       .50       .51       24         4       .29       .47       24         ORD       ALL       .92       .27       75         1       .81       .40       27         2       .95       .20       24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FENG   | 3      | .45        | .51        | 2Ø       |  |
| FKILL       3       .35       .49       20         HKILL       ALL       .41       .50       75         1       .44       .51       27         2       .50       .51       24         4       .29       .47       24         ORD       ALL       .92       .27       75         1       .81       .40       27         2       .95       .20       24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HENG   | 1      | .63<br>.67 | .49<br>.48 | 27<br>24 |  |
| HKILL       ALL       .41       .50       75         1       .44       .51       27         2       .50       .51       24         4       .29       .47       24         ORD       ALL       .92       .27       75         1       .81       .40       27         2       .95       .20       24         4       1.0       0       24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PKILL  | ALL    | .78        | .42        | 49       |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FKILL  | 3      | .35        | .49        | 2Ø       |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HKILL  | 1<br>2 | .44<br>.50 | .51        | 27<br>24 |  |
| TRACK ALL .86 .26 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ORD    | 1<br>2 | .81<br>.95 | .40<br>.20 | 27<br>24 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TRACK  | ALL    | .86        | .26        | 31       |  |

# Descriptive Statistics: Vulcan FW Summary Performance

| VAR     | SCEN                    | MEAN                            | SD                              | N                         |
|---------|-------------------------|---------------------------------|---------------------------------|---------------------------|
| IDCOR   | ALL                     | .70                             | .46                             | 86                        |
| FIDCOR  | 3                       | .26                             | .45                             | 23                        |
| HIDCOR  | ALL<br>1<br>2<br>4      | .86<br>.89<br>.79<br>.90        | .35<br>.32<br>.41<br>.30        | 63<br>18<br>24<br>21      |
| FENG    | 3                       | .78                             | .42                             | 23                        |
| HENG    | ALL<br>1<br>2<br>4      | .78<br>.89<br>.67<br>.81        | .42<br>.32<br>.48<br>.40        | 63<br>18<br>24<br>21      |
| PKILL*  | ALL                     | .60(.04)                        | .49(.26)                        | 67                        |
| FKILL   | 3                       | .39                             | .50                             | 23                        |
| HKILL   | ALL<br>1<br>2<br>4      | .49<br>.61<br>.46<br>.43        | .50<br>.50<br>.51<br>.51        | 63<br>18<br>24<br>21      |
| ORD     | ALL                     | 1.0                             | Ø                               | 63                        |
| AVEMISS | ALL                     | 2.2                             | 3.7                             | 86                        |
| HITS    | ALL<br>1<br>2<br>3<br>4 | 1.2<br>Ø.4<br>2.2<br>Ø.9<br>1.3 | 4.1<br>1.3<br>6.5<br>3.6<br>1.2 | 86<br>18<br>24<br>20<br>3 |
| BURSTS  | ALL                     | 1.6                             | 1.7                             | 86                        |

Descriptive Statistics: Stinger RW Summary Performance

| YAR    | SCEN                                                         | TARGET                                       | MEAN                                                                             | SD                                                                               | N                                                                     |
|--------|--------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| IDCOR  | ALL<br>ALL<br>ALL<br>ALL<br>ALL                              | ALL<br>1<br>2<br>3                           | .68<br>.70<br>.70<br>.64                                                         | .47<br>.46<br>.46<br>.49                                                         | 226<br>109<br>31<br>28                                                |
| FIDCOR | ALL<br>ALL<br>ALL<br>ALL<br>7<br>3<br>9<br>13<br>11          | ALL<br>1<br>2<br>3<br>                       | .43<br>.47<br>.43<br>.50<br>.36<br>.36<br>.44<br>.57<br>.43                      | .50<br>.50<br>.51<br>.71<br>.50<br>.50<br>.51<br>.51<br>.51                      | 72<br>41<br>23<br>2<br>14<br>14<br>16<br>14<br>14                     |
| HIDCOR | ALL<br>ALL<br>ALL<br>3<br>4<br>5<br>5<br>7<br>10<br>11<br>12 | ALL<br>1<br>2<br>3<br><br><br><br>ALL<br>ALL | .79<br>.34<br>.81<br>.65<br>.79<br>.93<br>.79<br>.93<br>.79<br>.36<br>.54<br>.79 | .41<br>.37<br>.40<br>.49<br>.43<br>.27<br>.43<br>.27<br>.43<br>.36<br>.49<br>.42 | 154<br>68<br>58<br>26<br>14<br>14<br>14<br>14<br>14<br>14<br>23<br>42 |
| FENG   | ALL<br>ALL<br>ALL<br>7<br>3<br>9<br>12<br>11                 | ALL<br>1<br>2<br>3<br>                       | .38<br>.39<br>.43<br>.29<br>.50<br>.31<br>.21<br>.57                             | .49<br>.49<br>.51<br>.47<br>.52<br>.48<br>.43<br>.51                             | 72<br>41<br>23<br>2<br>14<br>14<br>16<br>14                           |
| HENG   | ALL<br>ALL<br>ALL<br>3<br>4<br>5<br>6<br>7<br>10<br>11<br>12 | > 11<br>1<br>2<br>3<br><br><br>ALL<br>ALL    | .73<br>.75<br>.76<br>.65<br>.57<br>.36<br>.71<br>.93<br>.79<br>.71<br>.61<br>.75 | .44<br>.44<br>.43<br>.51<br>.36<br>.47<br>.27<br>.43<br>.47<br>.50<br>.43        | 154<br>68<br>58<br>26<br>14<br>14<br>14<br>14<br>14<br>28<br>42       |

Table A-11 (Continued)

•

| VAR   | SCEN                                                         | TARGET                                   | MEAN                                                                             | SD                                                                               | N                                                                                                                                       |
|-------|--------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| PKILL | ALL<br>ALL<br>ALL<br>ALL                                     | ALL<br>1<br>2<br>3                       | .86<br>.91<br>.83<br>.76                                                         | .35<br>.29<br>.38<br>.44                                                         | 138<br>67<br>54<br>17                                                                                                                   |
| FKILL | ALL<br>ALL<br>ALL<br>7<br>8<br>9<br>10<br>11                 | ALL<br>1<br>2<br>3<br><br>               | .33<br>.37<br>.35<br>Ø<br>.29<br>.43<br>.31<br>.21<br>.43                        | .47<br>.49<br>.49<br>.47<br>.51<br>.48<br>.43<br>.51                             | 72<br>41<br>23<br>2<br>14<br>14<br>16<br>14<br>14                                                                                       |
| HKILL | ALL<br>ALL<br>ALL<br>3<br>4<br>5<br>6<br>7<br>10<br>11<br>12 | ALL<br>1<br>2<br>3<br><br><br>ALL<br>ALL | .64<br>.68<br>.64<br>.50<br>.29<br>.86<br>.50<br>.93<br>.71<br>.64<br>.54<br>.67 | .48<br>.47<br>.48<br>.51<br>.47<br>.36<br>.52<br>.27<br>.47<br>.50<br>.51<br>.48 | $     154 \\     68 \\     58 \\     26 \\     14 \\     14 \\     14 \\     14 \\     14 \\     14 \\     14 \\     28 \\     42     $ |
| ORD   | ALL<br>ALL<br>ALL<br>3<br>4<br>5<br>6<br>7<br>10<br>11<br>12 | ALL<br>1<br>2<br>3<br><br><br>ALL<br>ALL | .74<br>.54<br>.84<br>1.0<br>1.0<br>1.0<br>.71<br>.21<br>.36<br>.86<br>.82<br>.79 | .44<br>.50<br>.37<br>0<br>0<br>.47<br>.43<br>.50<br>.36<br>.39<br>.42            | 152<br>68<br>58<br>26<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>28<br>42                                                       |
| TRACK | ALL                                                          | ALL                                      | .98                                                                              | .11                                                                              | 87                                                                                                                                      |

Descriptive Statistics: Chaparral RW Summary Performance

| VAR    | SCEN                                                                | TARGET                                       | MEAN                                                                             | <br>3D                                                                           | K                                                                                  |
|--------|---------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| IDCOR  | ALL<br>ALL<br>ALL<br>ALL<br>ALL                                     | ALL<br>1<br>2<br>3                           | .49<br>.61<br>.51<br>.21                                                         | .50<br>.49<br>.50<br>.41                                                         | 379<br>188<br>122<br>39                                                            |
| FIDCOR | ALL<br>ALL<br>ALL<br>7<br>3<br>9<br>12<br>11                        | ALL<br>1<br>2<br>3<br>                       | .32<br>.38<br>.24<br>.33<br>.52<br>.32<br>.22<br>.38<br>.46                      | .47<br>.49<br>.44<br>.58<br>.51<br>.48<br>.42<br>.28<br>.51                      | 122<br>77<br>33<br>23<br>22<br>27<br>24<br>24                                      |
| HIDCOR | ALL<br>ALL<br>ALL<br>3<br>4<br>5<br>6<br>7<br>10<br>11<br>12        | ALL<br>1<br>2<br>3<br><br><br><br>ALL<br>ALL | .58<br>.78<br>.61<br>.19<br>.25<br>.71<br>.67<br>.71<br>.78<br>.97<br>.50<br>.43 | .50<br>.43<br>.49<br>.40<br>.44<br>.46<br>.48<br>.46<br>.42<br>.34<br>.51<br>.53 | 259<br>111<br>89<br>36<br>20<br>24<br>24<br>24<br>24<br>23<br>24<br>43<br>72       |
| FENG   | ALL<br>ALL<br>ALL<br>ALL<br>7<br>3<br>9<br>10<br>11                 | ALL<br>1<br>2<br>3<br>                       | .25<br>.30<br>.21<br>.33<br>.33<br>.27<br>.33<br>.29<br>.29                      | .43<br>.46<br>.42<br>0<br>.47<br>.46<br>.47<br>.28<br>.46                        | 123<br>77<br>33<br>3<br>23<br>22<br>27<br>24<br>24                                 |
| HENG   | ALI<br>ALI<br>ALI<br>ALI<br>3<br>4<br>5<br>6<br>7<br>10<br>11<br>12 | ALL<br>1<br>2<br>3<br><br><br>ALL<br>ALL     | .43<br>.53<br>.48<br>.17<br>.35<br>.46<br>.53<br>.46<br>.51<br>.50<br>.29<br>.39 | .50<br>.50<br>.38<br>.49<br>.51<br>.50<br>.51<br>.50<br>.51<br>.46<br>.49        | 259<br>111<br>39<br>36<br>20<br>24<br>24<br>24<br>24<br>24<br>23<br>24<br>48<br>72 |

Table A-12 (Continued)

| VAR   | SCEN                                                         | TARGET                                   | MEAN                                                                             | SD                                                                               | N                                                                            |
|-------|--------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| PKILL | ALL<br>ALL<br>ALL<br>ALL<br>ALL                              | ALL<br>1<br>2<br>3                       | .56<br>.59<br>.50<br>.50                                                         | .50<br>.49<br>.51<br>.55                                                         | 135<br>79<br>48<br>6                                                         |
| FKILL | ALL<br>ALL<br>ALL<br>ALL<br>7<br>8<br>9<br>10<br>11          | ALL<br>1<br>2<br>3<br><br>               | .07<br>.08<br>.06<br>.0<br>.17<br>.0<br>.0<br>.17                                | .25<br>.27<br>.24<br>Ø<br>.39<br>Ø<br>Ø<br>.38                                   | 120<br>77<br>33<br>3<br>23<br>22<br>27<br>24<br>24                           |
| HKILL | ALL<br>ALL<br>ALL<br>3<br>4<br>5<br>6<br>7<br>10<br>11<br>12 | ALL<br>1<br>2<br>3<br><br><br>ALL<br>ALL | .26<br>.37<br>.25<br>.08<br>.20<br>.29<br>.42<br>.29<br>.39<br>.25<br>.15<br>.25 | .44<br>.48<br>.43<br>.28<br>.41<br>.46<br>.51<br>.46<br>.50<br>.44<br>.36<br>.44 | 259<br>111<br>89<br>36<br>20<br>24<br>24<br>24<br>24<br>23<br>24<br>48<br>72 |
| ORD   | ALL<br>ALL<br>ALL<br>3<br>4<br>5<br>6<br>7<br>10<br>11<br>12 |                                          | .85<br>.72<br>.93<br>1.0<br>1.0<br>.96<br>.58<br>.71<br>.74<br>.83<br>1.0<br>.86 | .35<br>.45<br>.25<br>Ø<br>.20<br>.50<br>.46<br>.45<br>.38<br>Ø<br>.35            | 259<br>111<br>89<br>36<br>20<br>24<br>24<br>24<br>24<br>23<br>24<br>48<br>72 |
| TRACK | ALL                                                          | ALL                                      | .92                                                                              | .18                                                                              | 64                                                                           |

. .

| Descriptive Statistics:                | Vulcan | RW | Summary | Performance |
|----------------------------------------|--------|----|---------|-------------|
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |        |    |         |             |

| VAR    | SCEN                                                                          | TARGET                                       | MEAN                                                                                    | SD                                                                                      | N                                                                                               |
|--------|-------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| IDCOR  | ALL<br>ALL<br>ALL<br>ALL                                                      | ALL<br>1<br>2<br>3                           | .63<br>.66<br>.65<br>.47                                                                | .48<br>.48<br>.48<br>.50                                                                | 402<br>193<br>162<br>47                                                                         |
| FIDCOR | ALL<br>ALL<br>ALL<br>7<br>3<br>9<br>10<br>11                                  | ALL<br>1<br>2<br>3<br><br>                   | .48<br>.51<br>.42<br>.50<br>.12<br>.62<br>.12<br>.33<br>.71                             | .50<br>.50<br>.55<br>.34<br>.49<br>.34<br>.34<br>.38<br>.46                             | 120<br>76<br>38<br>6<br>24<br>24<br>24<br>24<br>24<br>24<br>24                                  |
| HIDCOR | ALL<br>ALL<br>ALL<br>3<br>4<br>5<br>6<br>8<br>9<br>10<br>11<br>12             | ALL<br>1<br>2<br>3<br><br><br><br>ALL<br>ALL | .70<br>.75<br>.73<br>.47<br>.75<br>.58<br>.48<br>.93<br>.92<br>.79<br>.93<br>.62<br>.65 | .46<br>.43<br>.45<br>.50<br>.44<br>.51<br>.51<br>.38<br>.29<br>.41<br>.38<br>.49<br>.48 | 282<br>117<br>124<br>41<br>20<br>21<br>25<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24 |
| FENG   | ALL<br>ALL<br>ALL<br>7<br>3<br>9<br>10<br>11                                  | ALL<br>1<br>2<br>3<br><br>                   | .38<br>.34<br>.50<br>.17<br>.67<br>.38<br>.54<br>.17<br>.46                             | .49<br>.48<br>.51<br>.41<br>.48<br>.29<br>.51<br>.38<br>.51                             | 120<br>75<br>38<br>5<br>24<br>24<br>24<br>24<br>24<br>24                                        |
| HENG   | ALL<br>ALL<br>ALL<br>ALL<br>3<br>4<br>5<br>5<br>5<br>3<br>9<br>10<br>11<br>12 | ALL<br>                                      | .71<br>.73<br>.77<br>.49<br>.80<br>.67<br>.60<br>.33<br>1.0<br>.79<br>.71<br>.52<br>.71 | .45<br>.45<br>.42<br>.51<br>.41<br>.48<br>.50<br>.38<br>0<br>.41<br>.46<br>.50<br>.46   | 282<br>117<br>124<br>41<br>20<br>21<br>25<br>24<br>24<br>24<br>24<br>24<br>24<br>48<br>72       |

Table A-13 (Continued)

•

| VAR     | SCEN                                                              | TARGET                                       | MEAN                                                                                    | SD                                                                                            | N                                                                                         |
|---------|-------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| PKILL*  | ALL<br>ALL<br>ALL<br>ALL                                          | ALL<br>1<br>2<br>3                           | .73(.22)<br>.84(.21)<br>.63(.24)<br>.67(.15)                                            | .46(.41)<br>.37(.41)<br>.48(.43)<br>.48(.36)                                                  | 247(402)<br>111(193)<br>115(162)<br>21(47)                                                |
| FKILL   | ALL<br>ALL<br>ALL<br>7<br>8<br>9<br>10<br>11                      | ALL<br>1<br>2<br>3<br><br>                   | .21<br>.25<br>.16<br>Ø<br>.54<br>Ø<br>.38<br>.13<br>Ø                                   | .41<br>.44<br>.37<br>0<br>.51<br>0<br>.49<br>.34<br>0                                         | 120<br>76<br>38<br>6<br>24<br>24<br>24<br>24<br>24<br>24<br>24                            |
| HKILL   | ALL<br>ALL<br>ALL<br>3<br>4<br>5<br>6<br>8<br>9<br>10<br>11<br>12 | ALL<br>1<br>2<br>3<br><br><br><br>ALL<br>ALL | .55<br>.63<br>.54<br>.34<br>.65<br>.62<br>.48<br>.93<br>1.0<br>.50<br>0<br>.35<br>.61   | .50<br>.48<br>.50<br>.48<br>.49<br>.50<br>.51<br>.38<br>0<br>.51<br>.0<br>.48<br>.49          | 282<br>117<br>124<br>41<br>20<br>21<br>25<br>24<br>24<br>24<br>24<br>24<br>24<br>48<br>72 |
| ORD     | ALL<br>ALL<br>ALL<br>3<br>4<br>5<br>6<br>8<br>9<br>10<br>11<br>12 | ALL<br>1<br>2<br>3<br><br><br><br>ALL<br>ALL | .60<br>.42<br>.66<br>.95<br>.90<br>.48<br>.52<br>.17<br>.34<br>.79<br>1.0<br>.75<br>.63 | .49<br>.50<br>.48<br>.22<br>.31<br>.51<br>.51<br>.51<br>.38<br>.20<br>.41<br>.0<br>.44<br>.49 | 282<br>117<br>124<br>41<br>20<br>21<br>25<br>24<br>24<br>24<br>24<br>24<br>24<br>48<br>72 |
| AVEMISS | ALL<br>ALL<br>ALL<br>ALL<br>ALL                                   | ALL<br>1<br>2<br>3                           | .45<br>.48<br>.48<br>.24                                                                | .66<br>.54<br>.82<br>.45                                                                      | 402<br>193<br>162<br>47                                                                   |

\* Represents Pk from MRADES output versus BT-53 Laser (BT-53 considered more accurate) Note: HKILL & FKILL based on MRADES calculations Table A-13 (Continued)

| VAR    | SCEN                            | TARGET             | MEAN                     | SD                           | Ŋ                       |
|--------|---------------------------------|--------------------|--------------------------|------------------------------|-------------------------|
| HITS   | ALL<br>ALL<br>ALL<br>ALL<br>ALL | ALL<br>1<br>2<br>3 | 7.6<br>7.2<br>8.8<br>5.3 | 16.0<br>15.2<br>17.3<br>14.3 | 402<br>193<br>162<br>47 |
| BURSTS | ALL<br>ALL<br>ALL<br>ALL        | ALL<br>1<br>2<br>3 | 1.2<br>1.3<br>1.3<br>0.7 | 1.3<br>1.3<br>1.4<br>1.2     | 4Ø3<br>193<br>163<br>47 |

APPENDIX B: SUMMARY STATISTICS FOR FALL, 1989 RTS TESTS

,

# Identification Accuracy

| WEAPON                                                                       | TYPE                                                                            | TARGET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MODEL                                                                                                                                       | MEAN                                                                                                              | SD                                                                                                              | N                                                                                         |
|------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| STNG<br>STNG<br>STNG<br>STNG<br>STNG<br>CHAP<br>CHAP<br>CHAP<br>CHAP<br>CHAP | FW<br>FW<br>FW<br>FW<br>FW<br>FW<br>FW<br>FW<br>FW<br>FW                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A7<br>A1Ø<br>F16<br>MiG27<br>SU17<br>SU25<br>A7<br>A1Ø<br>F16<br>MiG27<br>SU17<br>SU25                                                      | .37<br>.90<br>.72<br>.97<br>1.0<br>.82<br>.67<br>1.0<br>.43<br>.35<br>.67<br>1.0                                  | .52<br>.32<br>.46<br>.17<br>.40<br>.58<br>.0<br>.53<br>.38<br>.58<br>.0                                         | 8<br>10<br>18<br>36<br>9<br>11<br>3<br>7<br>13<br>3<br>3                                  |
| STNG<br>STNG<br>STNG<br>STNG<br>STNG<br>STNG<br>STNG<br>STNG                 | RW<br>RW<br>RW<br>RW<br>RW<br>RW<br>RW<br>RW<br>RW<br>RW<br>RW<br>RW<br>RW<br>R | 1<br>1<br>2<br>3<br>2<br>3<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>2<br>3<br>1<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>2<br>3<br>2<br>3<br>1<br>2<br>3<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>1<br>2<br>3<br>3<br>1<br>2<br>3<br>3<br>1<br>2<br>3<br>3<br>1<br>2<br>3<br>3<br>1<br>2<br>3<br>3<br>3<br>1<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | AH1<br>AH64<br>AH64<br>CH3<br>CH3<br>UH1<br>UH1<br>Mi8<br>Mi8<br>Mi8<br>Mi8<br>Mi24<br>Mi24<br>Mi24<br>Mi24<br>Mi28<br>Mi28<br>Mi28<br>Mi28 | .43<br>Ø<br>.67<br>.33<br>.20<br>.40<br>.75<br>.86<br>.88<br>1.0<br>.75<br>.63<br>.59<br>.83<br>.55<br>.58<br>.32 | .53<br>Ø<br>.50<br>.58<br>.45<br>.55<br>.45<br>.38<br>.33<br>Ø<br>.50<br>.49<br>.50<br>.41<br>.50<br>.50<br>.48 | 7<br>1<br>9<br>3<br>5<br>5<br>12<br>7<br>50<br>20<br>4<br>38<br>22<br>6<br>;0<br>38<br>22 |

| WEAPON | TYPE | TARGET | MODEL         | MEAN | SD  | N  |
|--------|------|--------|---------------|------|-----|----|
| CHAP   | RW   | 1      | AHl           | .50  | .71 | 2  |
| CHAP   | RW   | 2      | АН64          | .43  | .53 | 7  |
| CHAP   | RW   | 2      | CH 3          | 1.0  | Ø   | 1  |
| CHAP   | RW   | 3      | CH 3          | Ø    | Ø   | 1  |
| CHAP   | RW   | 2      | UHl           | .50  | .58 | 4  |
| CHAP   | RW   | 3      | CHI           | .50  | .71 | 2  |
| CHAP   | RW   | 1      | 11 <b>1</b> 8 | .69  | .48 | 16 |
| CHAP   | RW   | 2      | Mi8           | 1.0  | 0   | 6  |
| CHAP   | RW   | 3      | Mi8           | 1.0  | Ø   | 2  |
| CHAP   | RW   | 1      | Mi24          | .53  | .51 | 17 |
| CHAP   | RW   | 2      | Mi24          | 1.0  | Ø   | 4  |
| CHAP   | RW   | 3      | Mi24          | .33  | .58 | 3  |
| CHAP   | RW   | 1      | Mi28          | .73  | .46 | 15 |
| CHAP   | RW   | 2      | Mi28          | .67  | .49 | 12 |
| CHAP   | RW   | 3      | Mi28          | .44  | .53 | 9  |
| VULC   | RW   | 1      | AH1           | .25  | .46 | 8  |
| VULC   | RW   | 3      | AH1           | 1.0  | Ø   | 6  |
| VULC   | RW   | 2      | АН64          | .60  | .55 | 5  |
| VULC   | RW   | 1      | CH 3          | .69  | .48 | 16 |
| VULC   | RW   | 1      | UHl           | 1.0  | Ø   | 1  |
| VULC   | RW   | 2      | UHl           | 1.0  | Ø   | 4  |
| VULC   | RW   | 3      | UHl           | 1.0  | Ø   | 9  |
| VULC   | RW   | 1      | Mi8           | .92  | .28 | 13 |
| VULC   | RW   | 2      | Mi8           | .81  | .40 | 27 |
| VULC   | RW   | 3      | Mi8           | 1.0  | Ø   | 2  |
| VULC   | RW   | 1      | Mi24          | .95  | .23 | 38 |
| VULC   | RW   | 2      | Mi24          | 1.0  | Ø   | 8  |
| VULC   | RW   | 3      | Mi24          | 1.0  | Ø   | 4  |
| VULC   | RW   | 1      | Mi28          | .55  | .51 | 2Ø |
| VULC   | R₩   | 2      | Mi28          | 1.0  | Ø   | 8  |
| VULC   | RW   | 3      | Mi28          | .71  | .49 | 7  |

Descriptive Statistics: Stinger FW Event Ranges

| VAR  | SCEN   | MEAN        | SD         | N       |
|------|--------|-------------|------------|---------|
| RDET | ALL    | 9.5         | 3.8        | 73      |
|      | 1<br>2 | 11.2<br>6.9 | 3.3<br>3.4 | 18<br>9 |
|      | 3      | 10.8        | 3.8        | 11      |
|      | 4      | 7.3         | 2.6        | 8       |
|      | 5      | 6.9         | 2.5        | 9       |
|      | 6      | 13.0        | 3.5        | 10      |
|      | 7      | 7.2         | 1.5        | 8       |
| RIFF | ALL    | 8.5         | 5.2        | 73      |
|      | 1      | 10.1        | 4.2        | 18      |
|      | 2      | 8.1         | 4.1        | 9       |
|      | 3      | 11.0        | 3.8        | 11      |
|      | 4      | 4.4         | 6.4        | 8       |
|      | 5      | 6.8         | 3.0        | 9       |
|      | 6<br>7 | 11.3<br>4.Ø | 3.3<br>7.3 | 1Ø<br>8 |

| VAR    | SCEN                                   | MEAN                                                                                         | SD                                                                                       | N                                                               |
|--------|----------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| RID*   | ALL<br>1<br>2<br>3<br>4<br>5<br>6<br>7 | 3.8(3.4)<br>3.8(3.3)<br>2.5(2.3)<br>4.8(5.3)<br>3.8(4.3)<br>3.3(2.5)<br>5.5(2.5)<br>2.9(2.7) | 2.0(1.4)<br>2.2(Ø.9)<br>0.8(0)<br>2.3(3.0)<br>1.6(1.6)<br>0.9(0.4)<br>2.5(0.2)<br>0.9(0) | 55(18)<br>10(8)<br>8(1)<br>9(2)<br>6(2)<br>7(2)<br>8(2)<br>7(1) |
| RACQ*  | ALL<br>1<br>2<br>3<br>4<br>5<br>6<br>7 | 6.3(2.7)<br>7.4(2.0)<br>5.1<br>7.5<br>3.6(2.6)<br>4.1<br>9.0<br>3.3(3.8)                     | 3.0(0.8)<br>2.6(0)<br>3.4<br>2.4<br>0.8(0.1)<br>1.3<br>3.1<br>0.9(0)                     | 47(4)<br>14(1)<br>7<br>3(2)<br>6<br>6<br>4(1)                   |
| RLOCK* | ALL<br>1<br>2<br>3<br>4<br>5<br>6<br>7 | $4.1(3.8) \\ 5.9(3.6) \\ 2.7(2.7) \\ 4.1 \\ 5.1(4.9) \\ 3.0(2.8) \\ 6.6 \\ 3.0(5.1)$         | 2.0(2.1)<br>3.2(0.8)<br>0.8(0.6)<br>1.7<br>1.2(0.6)<br>0.9(1.1)<br>0.5<br>0.9(4.1)       | 32(18)<br>4(3)<br>4(5)<br>9<br>2(3)<br>6(3)<br>3<br>4(4)        |
| RFIRE* | ALL<br>1<br>2<br>3<br>4<br>5<br>6<br>7 | 4.0(3.6)<br>6.3(3.7)<br>2.6(2.9)<br>4.2(2.3)<br>4.8(5.4)<br>2.8<br>5.2(2.8)<br>2.6(5.1)      | 1.8(2.1)<br>3.2(1.1)<br>0.8(0.8)<br>1.2(0.5)<br>1.0(0.4)<br>0.7<br>1.1(1.1)<br>1.0(4.1)  | 22(27)<br>3(4)<br>3(6)<br>6(3)<br>2(3)<br>3<br>2(6)<br>3(5)     |
|        |                                        | rcraft range<br>egressing                                                                    | es which we                                                                              | re either                                                       |

.

٠

Descriptive Statistics: Chaparral FW Event Ranges

| VAR    | SCEN                                   | MEAN                                                                | SD                                                              | N                                            |
|--------|----------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------|
| RDET   | ALL<br>1<br>2<br>3<br>4<br>5<br>6<br>7 | 8.3<br>9.2<br>6.6<br>8.0<br>10.1<br>3.5<br>10.2<br>8.9              | 3.0<br>3.3<br>2.5<br>2.9<br>0.4<br>0.9<br>0.8<br>3.7            | 27<br>7<br>4<br>3<br>4<br>3<br>3<br>3<br>3   |
| RIFF   | ALL<br>1<br>2<br>3<br>4<br>5<br>6<br>7 | 5.2<br>6.8<br>1.2<br>6.7<br>6.0<br>2.5<br>8.6<br>4.5                | 4.0<br>3.1<br>7.2<br>1.9<br>2.1<br>1.2<br>1.6<br>1.5            | 26<br>7<br>3<br>4<br>3<br>3<br>3<br>3<br>3   |
| RID*   | ALL<br>1<br>2<br>3<br>4<br>5<br>6<br>7 | 4.4(1.9)<br>4.7<br>4.7(1.4)<br>2.5<br>6.0<br>1.8(2.3)<br>4.9<br>4.7 | 2.4(0.6)<br>3.2<br>2.0(0)<br>0.4<br>2.2<br>0.4(0)<br>2.2<br>1.0 | 23(2)<br>7<br>3(1)<br>3<br>2(1)<br>3<br>2    |
| RACQ   | ALL<br>1<br>2<br>3<br>4<br>5<br>7      | 2.9<br>2.2<br>2.4<br>3.2<br>4.6<br>2.4<br>3.3                       | 0.8<br>0.5<br>0.7<br>0.5<br>0<br>0.5<br>0                       | 11<br>2<br>2<br>3<br>1<br>2<br>1             |
| RFIRE* | ALL<br>1<br>2<br>3<br>4<br>5<br>7      | 3.7(2.1)<br>5.0<br>3.5(1.4)<br>2.2(1.8)<br>5.4<br>1.7(3.1)<br>3.0   | 2.2(0.9)<br>2.9<br>1.1(0)<br>0.3(0)<br>4.2<br>0(0)<br>0.8       | 15(3)<br>4<br>3(1)<br>2(1)<br>2<br>1(1)<br>3 |
|        |                                        | ircraft rang<br>c egressing                                         | es which wer                                                    | re either                                    |

| VAR  | SCEN | TARGET | MEAN | SD         | N   |
|------|------|--------|------|------------|-----|
| TDET | ALL  | 1      | 6.3  | 5.6        | 140 |
|      | 12   | 1      | 2.1  | 1.8        | 20  |
|      | 13   | 1      | 4.1  | 1.0        | 11  |
|      | 15   | 1      | 7.5  | 2.3        | 10  |
|      | 16   | 1      | 8.5  | 3.2        | 10  |
|      | 17   | 1      | 6.6  | 3.4        | 10  |
|      | 18   | 1      | 8.5  | 2.7        | 10  |
|      | 20   | 1      | 4.2  | 1.0        | 10  |
|      | 23   | 1      | 7.0  | 4.2        | 10  |
|      | 24   | 1      | 6.5  | 1.8        | 10  |
|      | 27   | 1      | 6.7  | 2.7        | 9   |
|      | 28   | 1      | 7.5  | 2.2        | 10  |
|      | 31   | 1      | 13.3 | 16.7       | 10  |
|      | 32   | 1      | 3.9  | 1.0        | 10  |
|      | ALL  | 2      | 22.4 | 13.5       | 113 |
|      | 4    | 2      | 10.4 | 8.0        | 8   |
|      | 5    | 2      | 8.3  | 3.6        | 9   |
|      | 6    | 2      | 7.0  | 3.3        | 1ø  |
|      | 7    | 2      | 25.9 | 20.2       | 8   |
|      | 18   | 2      | 11.4 | 5.2        | 10  |
|      | 20   | 2      | 30.6 | 9.8        | 10  |
|      | 23   | 2      | 32.3 | 10.4       | 10  |
|      | 23   | 2      | 30.0 | 5.3        | 10  |
|      | 24   | 2      | 28.9 | 6.3        | 8   |
|      | 27   | 2      | 26.8 | 7.7        | 10  |
|      |      | 2      | 27.0 | 19.2       | 10  |
|      | 31   |        | 28.9 | 8.1        | 10  |
|      | 32   | 2<br>3 |      | 16.3       | 56  |
|      | ALL  |        | 35.1 |            | 10  |
|      | 6    | 3      | 24.6 | 9.3<br>9.6 | 5   |
|      | 7    | 3      | 36.2 | 9.6<br>5.9 | 5   |
|      | 18   | 3      | 7.9  | -          |     |
|      | 27   | 3      | 38.4 | 7.9        | 7   |
|      | 28   | 3      | 43.6 | 8.3        | 10  |
|      | 31   | 3      | 37.9 | 8.8        | 8   |
|      | 32   | 3      | 52.8 | 14.6       | 9   |

Descriptive Statistics: Stinger RW Event Times

•

| VAR  | SCEN | TARGET | MEAN | SD   | N   |
|------|------|--------|------|------|-----|
| TIFF | ALL  | 1      | 3.9  | 5.8  | 113 |
|      | 12   | 1      | 8.8  | 6.3  | 14  |
|      | 13   | 1      | 2.4  | 5.6  | 7   |
|      | 15   | 1      | 1.3  | 1.2  | 8   |
|      | 16   | 1      | 2.0  | 1.4  | 7   |
|      | 17   | 1      | 3.8  | 6.7  | 8   |
|      | 18   | 1      | 2.3  | 1.3  | 7   |
|      | 20   | 1      | 4.1  | 6.1  | 9   |
|      | 23   | 1      | 5.3  | 8.8  | 10  |
|      | 24   | 1      | 2.0  | 2.3  | 10  |
|      | 27   | 1      | 6.4  | 8.5  | 9   |
|      | 28   | 1      | 3.3  | 4.3  | 7   |
|      | 31   | 1      | 5.0  | 6.9  | 8   |
|      | 32   | 1      | 0.6  | 1.0  | 9   |
|      | ALL  | 2      | 5.9  | 6.4  | 98  |
|      | 4    | 2      | 11.9 | 7.0  | 8   |
|      | 5    | 2      | 1.5  | 1.9  | 8   |
|      | 6    | 2      | 8.0  | 8.8  | 10  |
|      | 7    | 2      | 8.4  | 6.3  | 8   |
|      | 18   | 2      | 5.3  | 4.5  | 8   |
|      | 2Ø   | 2      | 5.9  | 5.5  | 7   |
|      | 23   | 2      | 3.0  | 4.2  | 8   |
|      | 24   | 2      | 3.8  | 7.7  | 9   |
|      | 27   | 2      | 2.2  | 2.3  | 6   |
|      | 28   | 2      | 6.0  | 6.5  | 9   |
|      | 31   | 2      | 5.4  | 5.8  | 8   |
|      | 32   | 2      | 8.1  | 7.0  | 9   |
|      | ALL  | 3      | 5.6  | 6.6  | 54  |
|      | 6    | 3      | 4.7  | 5.5  | 10  |
|      | 7    | 3      | 11.8 | 10.2 | 5   |
|      | 18   | 3      | 4.9  | 6.5  | 7   |
|      | 27   | 3      | 10.1 | 7.1  | 7   |
|      | 28   | 3      | 2.7  | 4.4  | 9   |
|      | 31   | 3      | 5.6  | 7.0  | 8   |
|      | 32   | 3      | 2.5  | 2.9  | 8   |

й. 1. - 1

| VAR | SCEN | TARGET | MEAN | SD   | N      |
|-----|------|--------|------|------|--------|
| TID | ALL  | 1      | 11.0 | 8.3  | 136    |
|     | 12   | 1      | 5.3  | 2.8  | 20     |
|     | 13   | 1      | 7.4  | 3.3  | 10     |
|     | 15   | 1      | 13.0 | 4.0  | 10     |
|     | 16   | 1      | 9.4  | 4.9  | 9      |
|     | 17   | 1      | 14.8 | 5.0  | 10     |
|     | 18   | 1      | 10.6 | 3.4  | 9      |
|     | 2Ø   | 1      | 10.4 | 4.9  | 10     |
|     | 23   | 1      | 11.8 | 6.3  | 10     |
|     | 24   | 1      | 8.4  | 4.0  | 10     |
|     | 27   | 1      | 9.9  | 5.5  | 9      |
|     | 28   | 1      | 14.4 | 14.9 | 9      |
|     | 31   | 1      | 19.1 | 18.6 | 10     |
|     | 32   | 1      | 14.8 | 7.7  | 10     |
|     | ALL  | 2      | 8.1  | 4.8  | 106    |
|     | 4    | 2      | 5.6  | 2.4  | 8      |
|     | 5    | 2      | 6.9  | 2.6  | 9      |
|     | 6    | 2      | 7.3  | 7.7  | 10     |
|     | 7    | 2      | 7.3  | 3.0  | 7      |
|     | 18   | 2      | 7.0  | 4.2  | 9      |
|     | 20   | 2      | 9.7  | 3.6  | 10     |
|     | 23   | 2      | 8.5  | 5.9  | 8      |
|     | 24   | 2      | 11.5 | 5.4  | 8      |
|     | 27   | 2      | 7.0  | 5.5  | 8      |
|     | 28   | 2      | 8.2  | 4.3  | 10     |
|     | 31   | 2      | 7.6  | 3.0  | 9      |
|     | 32   | 2      | 10.3 | 6.0  | 10     |
|     | ALL  | 3      | 8.2  | 4.5  | 47     |
|     | 5    | 3      | 6.1  | 3.3  | 9      |
|     | 7    | 3      | 10.4 | 6.7  | 5      |
|     | 18   | 3      | 6.6  | 2.4  | 7      |
|     | 27   | 3      | 10.7 | 6.2  | 6      |
|     | 28   | 3      | 7.1  | 4.9  | -<br>9 |
|     | 31   | 3      | 9.4  | 3.7  | 7      |
|     | 32   | 3      | 9.5  | 1.7  | 4      |

| VAR  | SCEN | TARGET | MEAN | SD   | N  |
|------|------|--------|------|------|----|
| TACQ | ALL  | 1      | 6.6  | 6.5  | 9Ø |
|      | 12   | 1      | 4.3  | 2.3  | 8  |
|      | 13   | 1      | 7.3  | 5.5  | 7  |
|      | 15   | 1      | 5.9  | 5.1  | 10 |
|      | 16   | 1      | 5.3  | 2.1  | 8  |
|      | 17   | 1      | 6.2  | 3.4  | 6  |
|      | 18   | 1      | 7.3  | 4.5  | 9  |
|      | 2Ø   | 1      | 5.2  | 2.7  | 6  |
|      | 23   | 1      | 3.4  | 2.1  | 5  |
|      | 24   | 1      | 8.6  | 4.5  | 5  |
|      | 27   | 1      | 9.5  | 7.2  | 6  |
|      | 28   | 1      | 6.0  | 4.9  | 6  |
|      | 31   | 1      | 12.5 | 19.9 | 6  |
|      | 32   | 1      | 5.8  | 4.3  | 8  |
|      | ALL  | 2      | 5.1  | 3.6  | 5Ø |
|      | 4    | 2      | 2.6  | 1.3  | 5  |
|      | 5    | 2      | 6.5  | 2.1  | 2  |
|      | 6    | 2      | 6.3  | 4.6  | 4  |
|      | 7    | 2      | 4.5  | 1.7  | 4  |
|      | 18   | 2      | 8.8  | 6.0  | 5  |
|      | 2Ø   | 2      | 4.8  | 3.9  | 6  |
|      | 23   | 2      | 3.0  | 2.2  | 4  |
|      | 24   | 2      | 6.8  | 2.5  | 4  |
|      | 28   | 2      | 5.0  | 2.0  | 3  |
|      | 31   | 2      | 5.6  | 4.1  | 7  |
|      | 32   | 2      | 3.7  | 2.8  | 6  |
|      | ALL  | 3      | 4.9  | 2.4  | 22 |
|      | 6    | 3      | 4.7  | 2.9  | 3  |
|      | 7    | 3      | 8.0  | 2.8  | 2  |
|      | 18   | 3      | 4.0  | Ø    | 1  |
|      | 27   | 3      | 3.5  | 1.9  | 4  |
|      | 28   | 3      | 6.0  | 4.4  | 3  |
|      | 31   | 3      | 4.0  | 1.4  | 4  |
|      | 32   | 3      | 5.2  | 1.1  | 5  |

| VAR   | SCEN   | TARGET | MEAN       | SD       | N  |
|-------|--------|--------|------------|----------|----|
| THAND | ALL    | 1      | 5.2        | 5.3      | 90 |
|       | 12     | 1      | 4.2        | 3.3      | 18 |
|       | 13     | 1      | 7.4        | 6.6      | 7  |
|       | 15     | 1      | 5.0        | 3.8      | 5  |
|       | 16     | 1      | 3.0        | 2.8      | 8  |
|       | 17     | 1      | 2.0        | 0.8      | 4  |
|       | 18     | 1      | 1.8        | 1.3      | 4  |
|       | 20     | 1      | 6.2        | 6.1      | 5  |
|       | 23     | 1      | 8.3        | 4.0      | 4  |
|       | 24     | ī      | 6.4        | 4.7      | 10 |
|       | 27     | 1      | 9.8        | 11.0     | 8  |
|       | 28     | 1      | 3.3        | 3.9      | 6  |
|       | 31     | 1      | 6.0        | 4.6      | 5  |
|       | 32     | 1      | 2.8        | 2.1      | 6  |
|       | ALL    | 2      | 4.8        | 4.1      | 58 |
|       | 4      | 2      | 4.0        | 2.9      | 7  |
|       | 5      | 2      | 3.2        | 3.9      | 6  |
|       | 6      | 2      | 8.3        | 6.5      | 9  |
|       | 7      | 2      | 3.3        | 1.3      | 4  |
|       | 18     | 2      | 2.3        | 2.5      | 6  |
|       | 20     | 2      | 6.5        | 3.5      | 2  |
|       | 23     | 2      | 5.6        | 3.6      | 5  |
|       | 24     | 2      | 5.0        | 1.0      | 3  |
|       | 27     | 2      | 2.0        | 0        | 1  |
|       | 28     | 2      | 4.0        | 4.2      | 6  |
|       | 31     | 2      | 5.8        | 4.0      | 5  |
|       | 32     | 2      | 4.8        | 2.5      | 4  |
|       | ALL    | 3      | 5.6        | 4.6      | 19 |
|       | 6      | 3      | 4.0        | 2.1      | 6  |
|       | 6<br>7 | 3      | 6.5        | 3.5      | 2  |
|       | 18     | 3<br>3 |            | 3.J<br>Ø | 1  |
|       | 27     | 3      | 2.0<br>3.0 | 3        | 1  |
|       |        | 3      |            |          | 4  |
|       | 28     |        | 7.8        | 8.3      | 4  |
|       | 31     | 3      | 5.0        | 1.7      | 2  |
|       | 32     | 3      | 9.0        | 7.1      | 2  |

3-11

\_ \_ \_ \_ \_

| VAR   | SCEN | TARGET | MEAN | SD   | N                |
|-------|------|--------|------|------|------------------|
| TLOCK | ALL  | 1      | 8.0  | 6.8  | 67               |
|       | 12   | 1      | 6.2  | 3.2  | 9                |
|       | 13   | 1      | 7.0  | 5.3  | 3                |
|       | 15   | 1      | 8.3  | 3.3  | 6                |
|       | 16   | 1      | 5.9  | 3.9  | 7                |
|       | 17   | 1      | 10.2 | 7.7  | 5                |
|       | 18   | 1      | 6.0  | 2.6  | 5                |
|       | 2Ø   | 1      | 7.3  | 2.2  | 4                |
|       | 23   | 1      | 14.0 | 9.9  | 2                |
|       | 24   | 1      | 7.0  | 4.2  | 5                |
|       | 27   | 1      | 11.2 | 10.8 | 6                |
|       | 28   | 1      | 6.5  | 4.4  | 4                |
|       | 31   | 1      | 14.0 | 17.0 | 5                |
|       | 32   | 1      | 5.5  | 3.5  | 6                |
|       | ALL  | 2      | 5.3  | 2.8  | 30               |
|       | 4    | 2      | 5.0  | 2.0  | 5                |
|       | 5    | 2      | 3.5  | 0.7  | 2                |
|       | 6    |        | 3.0  | Ø    | 3                |
|       | 7    | 2<br>2 | 5.0  | 1.4  | 3<br>2<br>3<br>2 |
|       | 18   | 2      | 3.3  | 0.6  | 3                |
|       | 20   | 2      | 5.5  | 0.7  | 2                |
|       | 23   | 2      | 9.0  | 4.2  | 2                |
|       | 24   | 2      | 3.0  | Ø    | 1                |
|       | 28   | 2      | 8.3  | 5.8  | 3                |
|       | 31   | 2      | 4.3  | 1.5  | 3                |
|       | 32   | 2      | 7.0  | 1.8  | 4                |
|       | ALL  | 3      | 7.0  | 4.8  | 10               |
|       | 6    | 3      | 3.0  | 1.4  | 2                |
|       | 7    | 3      | 5.0  | 0    | 1                |
|       | 18   | 3      | 6.0  | õ    | 1                |
|       | 27   | 3      | 10.0 | 8.5  | 2                |
|       | 23   | 3      | 8.0  | 3    | 1                |
|       | 31   | 3      | 4.0  | ø    | 1                |
|       | 32   | 3      | 10.5 | 6.4  | 2                |

.

| VAR   | SCEN | TARGET | MEAN | SD   | N                               |
|-------|------|--------|------|------|---------------------------------|
| TFIRE | ALL  | 1      | 9.2  | 5.0  | 60                              |
|       | 12   | 1      | 8.8  | 3.5  | 9                               |
|       | 13   | 1      | 8.8  | 4.3  | 4                               |
|       | 15   | 1      | 9.2  | 2.2  | 5                               |
|       | 16   | 1      | 8.0  | 3.6  | 7                               |
|       | 17   | 1      | 8.0  | 1.7  | 3                               |
|       | 18   | 1      | 7.3  | 1.9  | 4                               |
|       | 20   | 1      | 8.7  | 1.5  | 3<br>2                          |
|       | 23   | 1      | 17.5 | 10.6 | 2                               |
|       | 24   | 1      | 9.2  | 4.4  | 5                               |
|       | 27   | 1      | 13.4 | 12.0 | 5                               |
|       | 28   | 1      | 9.0  | 4.8  | 4                               |
|       | 31   | 1      | 9.0  | 4.6  | 3                               |
|       | 32   | 1      | 7.8  | 2.9  | 6                               |
|       | ALL  | 2      | 7.6  | 2.5  | 28                              |
|       | 4    | 2      | 7.4  | 3.0  | 5<br>2                          |
|       | 5    | 2      | 5.0  | Ø    | 2                               |
|       | 6    | 2      | 5.3  | 1.2  | 3                               |
|       | 7    | 2      | 7.5  | Ø.7  | 2                               |
|       | 18   | 2      | 6.0  | 1.0  | 3                               |
|       | 20   | 2      | 9.0  | Ø    | 2                               |
|       | 23   | 2      | 11.5 | 3.5  | 2                               |
|       | 28   | 2      | 8.0  | 1.4  | 2                               |
|       | 31   | 2      | 7.0  | 1.0  | 3<br>2<br>2<br>2<br>2<br>3<br>4 |
|       | 32   | 2      | 10.0 | 2.4  |                                 |
|       | ALL  | 3      | 8.2  | 4.1  | 9                               |
|       | 6    | 3      | 5.0  | 1.4  | 2                               |
|       | 7    | 3      | 8.0  | 0    | 1                               |
|       | 18   | 3      | 8.0  | Ø    | 1                               |
|       | 27   | 3      | 6.0  | Ø    | 1                               |
|       | 28   | 3      | 10.0 | Ø    | 1                               |
|       | 31   | 3      | 6.0  | Ø    | 1                               |
|       | 32   | 3      | 13.0 | 7.1  | 2                               |

•

| VAR  | SCEN | TARGET | MEAN | SD   | N                     |
|------|------|--------|------|------|-----------------------|
| TTOT | ALL  | 1      | 14.5 | 8.1  | 92                    |
|      | 12   | 1      | 8.8  | 4.2  | 19                    |
|      | 13   | 1      | 14.7 | 6.3  | 7                     |
|      | 15   | 1      | 17.8 | 4.4  | 5                     |
|      | 16   | 1      | 13.3 | 3.6  | 8                     |
|      | 17   | 1      | 17.0 | 3.2  | 4                     |
|      | 18   | 1      | 12.0 | 2.4  | 4                     |
|      | 2Ø   | 1      | 15.0 | 6.1  | 5                     |
|      | 23   | 1      | 18.0 | 5.4  | 4                     |
|      | 24   | 1      | 14.8 | 4.9  | 10                    |
|      | 27   | 1      | 19.1 | 15.3 | 8                     |
|      | 28   | 1      | 19.6 | 16.7 | 7                     |
|      | 31   | 1      | 15.6 | 5.1  | 5                     |
|      | 32   | 1      | 14.5 | 5.6  | n                     |
|      | ALL  | 2      | 11.8 | 5.8  | 60                    |
|      | 4    | 2      | 8.3  | 3.7  | 3                     |
|      | 5    | 2      | 10.8 | 3.5  | 6                     |
|      | 6    | 2      | 15.8 | 11.2 | 9                     |
|      | 7    | 2      | 10.0 | 2.2  | 4                     |
|      | 18   | 2      | 8.6  | 3.6  | 7                     |
|      | 20   | 2      | 16.0 | 7.1  | 2                     |
|      | 23   | 2      | 12.0 | 5.1  | 5                     |
|      | 24   | 2      | 14.0 | 3.0  | 3                     |
|      | 27   | 2      | 12.0 | 0    | ĩ                     |
|      | 28   | 2      | 12.5 | 3.7  | 6                     |
|      | 31   | 2      | 12.0 | 5.0  | 5<br>3<br>1<br>6<br>5 |
|      | 32   | 2      | 12.8 | 1.5  | 4                     |
| 1    | ALL  | 3      | 11.9 | 5.0  | 21                    |
| ļ    | 6    | 3      | 10.4 | 2.3  | 7                     |
|      | 7    | 3      | 11.7 | 6.8  | 3                     |
|      | 18   | 3      | 12.0 | 0.0  | 1                     |
|      | 27   | 3      | 9.0  | ø    | 1                     |
|      | 28   | 3      | 12.0 | 6.6  | 4                     |
|      | 31   | 3      | 12.0 | 5.2  | 4                     |
|      | 32   | 3      | 18.5 | 9.2  | 2                     |
| I    | 32   | 3      | TOPD | 7.4  | 2                     |

• • • • •

.

.

# Descriptive Statistics: Chaparral RW Event Times

| VAR  | SCEN | TARGET | MEAN | SD   | N  |
|------|------|--------|------|------|----|
| TDET | ALL  | 1      | 6.3  | 4.3  | 52 |
|      | 12   | 1      | 2.6  | 1.5  | 8  |
|      | 13   | 1      | 3.0  | 1.6  | 4  |
|      | 15   | 1      | 12.3 | 6.1  | 3  |
|      | 16   | 1      | 6.5  | 2.9  | 4  |
|      | 17   | 1      | 6.0  | 2.2  | 4  |
|      | 18   | 1      | 11.8 | 6.2  | 4  |
|      | 20   | 1      | 3.0  | 0.8  | 4  |
|      | 23   | 1      | 6.7  | 1.2  | 3  |
|      | 24   | 1      | 6.0  | 2.8  | 2  |
|      | 27   | 1      | 9.3  | 5.1  | 4  |
|      | 28   | 1      | 8.5  | 2.1  | 4  |
|      | 31   | 1      | 8.5  | 3.7  | 4  |
|      | 32   | 1      | 3.3  | 0.5  | 4  |
|      | ALL  | 2      | 26.5 | 13.5 | 42 |
|      | 4    | 2      | 9.3  | 5.7  | 4  |
|      | 5    | 2      | 7.7  | 4.0  | 3  |
|      | 6    | 2      | 19.3 | 20.0 | 3  |
|      | 7    | 2      | 15.5 | 5.4  | 4  |
|      | 18   | 2      | 23.3 | 11.4 | 4  |
|      | 2Ø   | 2      | 36.0 | 7.4  | 4  |
|      | 23   | 2      | 42.3 | 9.6  | 3  |
|      | 24   | 2      | 34.0 | Ø    | 1  |
|      | 27   | 2      | 33.3 | 7.0  | 4  |
|      | 28   | 2      | 37.8 | 12.3 | 4  |
| 1    | 31   | 2      | 31.8 | 5.6  | 4  |
|      | 32   | 2      | 30.5 | 3.7  | 4  |
|      | ALL  | 3      | 41.9 | 16.6 | 18 |
|      | 6    | 3      | 33.7 | 17.6 | 3  |
|      | 7    | 3      | 31.0 | 2.8  | 2  |
|      | 18   | 3      | 20.0 | 7.1  | 2  |
|      | 27   | 3      | 45.0 | 15.7 | 3  |
| 1    | 28   | 3      | 42.5 | 3.6  | 2  |
| •    | 31   | 3      | 48.0 | 11.3 | 2  |
|      | 32   | 3      | 59.0 | 15.3 | 4  |
|      |      |        |      |      |    |

| Table B-5 | (Continued | I) |
|-----------|------------|----|
|-----------|------------|----|

| VAR  | SCEN | TARGET | MEAN | SD  | N           |
|------|------|--------|------|-----|-------------|
| TIFF | ALL  | 1      | 4.7  | 3.1 | 40          |
|      | 12   | 1      | 4.3  | 2.9 | 3           |
|      | 13   | 1      | 1.0  | 1.4 | 2           |
|      | 15   | 1      | 2.0  | Ø   | 2<br>2      |
|      | 16   | 1      | 4.3  | 2.1 | 4           |
|      | 17   | 1      | 7.0  | 4.2 | 2           |
|      | 18   | 1      | 5.3  | 5.2 | 4           |
|      | 2Ø   | 1      | 5.0  | 1.7 | 3           |
|      | 23   | 1      | 7.0  | 4.4 | 3           |
|      | 24   | 1      | 8.0  | 4.2 | 3<br>2      |
|      | 27   | 1      | 4.3  | 1.7 | 4           |
|      | 28   | 1      | 5.0  | 2.9 | 4           |
|      | 31   | 1      | 4.3  | 3.5 | 3           |
|      | 32   | 1      | 3.5  | 3.0 | 4           |
|      | ALL  | 2      | 6.5  | 8.9 | 21          |
|      | 4    | 2      | 3.0  | 0   |             |
|      | 5    | 2      | 5.0  | 5.7 | 2           |
|      | 6    | 2      | Ø    | Ø   | 2<br>2<br>2 |
|      | 7    | 2      | 37.0 | Ø   | 1           |
|      | 18   | 2      | 4.0  | Ø   | 1           |
|      | 20   | 2      | 10.0 | 5.7 | 2<br>2      |
|      | 23   | 2      | 4.5  | 3.5 | 2           |
|      | 24   | 2      | 18.0 | Ø   | 1           |
|      | 27   | 2      | 3.0  | Ø   | 1           |
|      | 28   | 2      | 4.5  | 8.3 | 4           |
|      | 31   | 2      | 3.5  | 4.9 | 2           |
|      | 32   | 2      | 5.0  | Ø   | 1           |
|      | ALL  | 3      | 5.3  | 4.9 | 8           |
|      | 7    | 3      | 0.5  | 0.7 | 2           |
|      | 18   | 3      | 5.5  | 3.5 | 2           |
|      | 28   | 3      | 8.0  | Ø   | 1           |
|      | 31   | 3      | 2.0  | Ø   | 1           |
|      | 32   | 3      | 10.0 | 7.1 | 2           |

| VAR | SCEN   | TARGET | MEAN | SD   | N      |
|-----|--------|--------|------|------|--------|
| TID | ALL    | 1      | 9.8  | 4.7  | 51     |
|     | 12     | 1      | 5.5  | 3.0  | 8      |
|     | 13     | 1      | 6.8  | 3.9  | 4      |
|     | 15     | 1      | 8.7  | 1.6  | 3      |
|     | 16     | 1      | 13.0 | 6.1  | 4      |
|     | 17     | 1      | 10.8 | 5.0  | 4      |
|     | 18     | 1      | 12.3 | 2.9  | 3      |
|     | 20     | 1      | 7.5  | 2.4  | 4      |
|     | 23     | 1      | 15.7 | 7.1  | 3      |
|     | 24     | 1      | 10.5 | 6.4  | 2      |
|     | 27     | 1      | 8.5  | 4.4  | 4      |
|     | 28     | ī      | 14.0 | 2.8  | 4      |
|     | 31     | ĩ      | 11.5 | 3.3  | 4      |
|     | 32     | i      | 9.3  | 4.5  | 4      |
|     | ALL    | 2      | 6.8  | 5.7  | 34     |
|     | 4      | 2      | 4.0  | 2.0  | 3      |
|     | 5      | 2      | 9.3  | 7.8  | 3      |
|     | 6      | 2      | 3.0  | 1.7  | 3      |
|     | 0<br>7 | 2      |      | 10.3 | 4      |
|     |        | 2      | 7.8  | 5.7  | 2      |
|     | 18     | 2      | 8.0  |      | 2<br>4 |
|     | 20     | 2      | 6.5  | 5.7  |        |
|     | 23     | 2      | 7.0  | Ø    | 1      |
|     | 24     | 2      | 11.0 | Ø    | 1      |
|     | 27     | 2      | 5.3  | 5.8  | 3      |
|     | 28     | 2      | 9.0  | 9.6  | 3      |
|     | 31     | 2      | 8.3  | 5.0  | 4      |
|     | 32     | 2      | 5.3  | 3.1  | 3      |
|     | ALL    | 3      | 5.8  | 5.0  | 17     |
|     | 6      | 3      | 6.3  | 5.0  | 3<br>2 |
|     | 7      | 3      | 6.0  | 1.4  | 2      |
|     | 18     | 3      | 8.5  | 7.8  | 2      |
|     | 27     | 3      | 1.7  | 1.2  | 3      |
|     | 28     | 3      | 9.5  | 12.0 | 2      |
|     | 31     | 3      | 4.5  | 2.1  | 2      |
|     | 32     | 3      | 6.0  | 4.4  | 3      |

B-17

| Table B-5 | (Continu | ed) |
|-----------|----------|-----|
|-----------|----------|-----|

· · •

| VAR  | SCEN | TARGET | MEAN | SD   | N      |
|------|------|--------|------|------|--------|
| TACQ | ALL  | 1      | 5.1  | 3.3  | 22     |
|      | 12   | 1      | 3.5  | 3.5  | 2      |
|      | 13   | 1      | 2.0  | Ø    | 1      |
|      | 15   | 1      | 2.5  | Ø.7  | 2      |
|      | 16   | 1      | 4.5  | 3.5  | 2      |
|      | 17   | 1      | 13.0 | Ø    | 1      |
|      | 18   | 1      | 5.0  | Ø    | 1      |
|      | 2Ø   | 1      | 5.0  | 1.7  | 3<br>1 |
|      | 23   | 1      | 10.0 | Ø    |        |
|      | 27   | 1      | 8.0  | Ø    | 1      |
|      | 28   | 1      | 6.3  | 2.4  | 4      |
|      | 31   | 1      | 1.0  | Ø    | 1      |
|      | 32   | 1      | 4.0  | 3.5  | 3      |
|      | ALL  | 2      | 9.7  | 11.9 | 9      |
|      | 4    | 2      | 3.0  | Ø    | 2      |
|      | 5    | 2      | 5.0  | 5.7  | 2      |
|      | 6    | 2      | 1.0  | Ø    | 1      |
|      | 7    | 2      | 37.0 | Ø    | 1      |
|      | 18   | 2      | 4.0  | Ø    | 1      |
|      | 28   | 2      | 14.5 | 7.8  | 2      |
|      | ALL  | 3      | 28.0 | 28.3 | 2      |
|      | 18   | 3<br>3 | 8.0  | Ø    | 1      |
|      | 32   | 3      | 48.0 | Ø    | 1      |

| Table B-5 | (Continued) |
|-----------|-------------|
|-----------|-------------|

۰. La

| VAR   | SCEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TARGET                                                                                      | MEAN                                                                                                                                                                                               | SD                                                                                                                                                                                                          | N                                                                                                                                                                                                                                                                                               |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| THAND | ALL<br>12<br>13<br>15<br>16<br>17<br>18<br>20<br>24<br>27<br>28<br>31<br>32<br>ALL<br>4<br>5<br>6<br>7<br>18<br>20<br>27<br>28<br>31<br>32<br>ALL<br>18<br>20<br>27<br>28<br>31<br>32<br>ALL<br>4<br>5<br>6<br>7<br>18<br>20<br>24<br>31<br>32<br>ALL<br>4<br>5<br>6<br>7<br>18<br>20<br>24<br>31<br>32<br>ALL<br>4<br>5<br>6<br>7<br>18<br>20<br>24<br>27<br>28<br>31<br>32<br>ALL<br>4<br>5<br>6<br>7<br>18<br>20<br>24<br>27<br>28<br>31<br>32<br>ALL<br>4<br>5<br>6<br>7<br>18<br>20<br>24<br>27<br>28<br>31<br>32<br>ALL<br>4<br>5<br>6<br>7<br>18<br>20<br>27<br>28<br>31<br>32<br>ALL<br>4<br>5<br>6<br>7<br>18<br>20<br>27<br>28<br>31<br>32<br>ALL<br>4<br>5<br>6<br>7<br>28<br>31<br>32<br>27<br>28<br>31<br>32<br>27<br>28<br>31<br>32<br>27<br>28<br>31<br>32<br>27<br>28<br>31<br>32<br>27<br>28<br>31<br>32<br>27<br>28<br>31<br>32<br>31<br>32<br>31<br>32<br>32<br>31<br>32<br>31<br>32<br>31<br>32<br>31<br>32<br>31<br>32<br>31<br>32<br>31<br>32<br>31<br>32<br>31<br>32<br>31<br>32<br>31<br>32<br>31<br>32<br>31<br>32<br>31<br>32<br>31<br>32<br>31<br>32<br>31<br>32<br>31<br>32<br>31<br>32<br>31<br>32<br>31<br>32<br>31<br>32<br>31<br>32 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                          | 5.6 $3.2$ $4.5$ $6.0$ $3.0$ $13.0$ $3.0$ $12.0$ $11.0$ $4.3$ $7.0$ $2.0$ $3.5$ $3.3$ $2.3$ $1.0$ $2.0$ $5.0$ $5.0$ $8.0$ $3.0$ $2.0$ $7.8$ $5.0$ $8.0$ $3.0$ $2.0$ $7.8$ $5.0$ $10.0$ $1.0$ $15.0$ | 5.2<br>1.8<br>3.5<br>0<br>4.2<br>0<br>15.6<br>0<br>3.5<br>0<br>0<br>7<br>2.7<br>1.5<br>0<br>1.4<br>5.7<br>0.7<br>0<br>0<br>3.6<br>0<br>3.6<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 23<br>5<br>2<br>1<br>2<br>1<br>2<br>2<br>3<br>1<br>2<br>2<br>3<br>1<br>1<br>2<br>2<br>2<br>1<br>1<br>2<br>2<br>2<br>1<br>1<br>1<br>2<br>2<br>2<br>1<br>1<br>1<br>2<br>2<br>2<br>1<br>1<br>1<br>2<br>2<br>2<br>1<br>1<br>1<br>2<br>2<br>2<br>1<br>1<br>1<br>2<br>2<br>3<br>1<br>1<br>2<br>1<br>2 |
| TFIRE | ALL<br>12<br>13<br>15<br>16<br>17<br>18<br>20<br>28<br>32<br>ALL<br>4<br>5<br>6<br>18<br>28<br>18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>3 | 9.4<br>7.5<br>9.0<br>13.0<br>12.0<br>7.0<br>7.0<br>6.0<br>17.0<br>10.0<br>3.0<br>3.0<br>3.0<br>3.0<br>1.0<br>1.0                                                                                   | 4.2<br>1.3<br>3.6<br>0<br>9.9<br>0<br>0<br>0<br>0<br>2.1<br>2.8<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                     | 15<br>4<br>3<br>1<br>2<br>1<br>1<br>1<br>1<br>6<br>2<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                              |

| Table B-5 | (Continued) |
|-----------|-------------|
|-----------|-------------|

· •• •

| VAR         | SCEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TARGET                                                             | MEAN                                                                                                                                                                                                                                                                                                                                                            | SD                                                                                        | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VAR<br>TTOT | ALL<br>12<br>13<br>15<br>16<br>17<br>18<br>20<br>24<br>27<br>28<br>31<br>32<br>ALL<br>4<br>5<br>6<br>7<br>18<br>20<br>27<br>28<br>31<br>32<br>ALL<br>18<br>20<br>27<br>28<br>31<br>32<br>ALL<br>18<br>20<br>27<br>28<br>31<br>32<br>27<br>28<br>31<br>32<br>27<br>28<br>31<br>32<br>27<br>28<br>31<br>32<br>27<br>28<br>31<br>32<br>27<br>28<br>31<br>32<br>27<br>28<br>31<br>32<br>27<br>28<br>31<br>32<br>27<br>28<br>31<br>32<br>27<br>28<br>31<br>32<br>27<br>28<br>31<br>32<br>27<br>28<br>31<br>32<br>27<br>28<br>31<br>32<br>27<br>28<br>31<br>32<br>27<br>28<br>31<br>32<br>27<br>28<br>31<br>32<br>27<br>28<br>31<br>32<br>27<br>28<br>31<br>32<br>27<br>28<br>31<br>32<br>27<br>28<br>31<br>32<br>27<br>28<br>31<br>32<br>27<br>28<br>31<br>32<br>27<br>28<br>31<br>32<br>27<br>28<br>31<br>32<br>27<br>28<br>31<br>32<br>27<br>28<br>31<br>32<br>27<br>28<br>31<br>32<br>27<br>28<br>31<br>32<br>27<br>28<br>31<br>32<br>27<br>28<br>31<br>32<br>27<br>28<br>31<br>32<br>27<br>28<br>31<br>32<br>27<br>28<br>31<br>32<br>27<br>28<br>31<br>32<br>27<br>28<br>31<br>32<br>27<br>28<br>31<br>32<br>27<br>28<br>31<br>32<br>27<br>28<br>31<br>32<br>27<br>28<br>31<br>32<br>27<br>28<br>31<br>32<br>27<br>28<br>31<br>32<br>27<br>28<br>31<br>32<br>27<br>28<br>31<br>32<br>27<br>28<br>31<br>27<br>28<br>28<br>27<br>28<br>27<br>28<br>27<br>28<br>27<br>28<br>27<br>28<br>27<br>28<br>27<br>28<br>27<br>28<br>27<br>28<br>27<br>28<br>27<br>28<br>27<br>28<br>27<br>28<br>27<br>28<br>27<br>28<br>27<br>28<br>27<br>28<br>27<br>28<br>27<br>28<br>27<br>28<br>27<br>28<br>27<br>28<br>27<br>28<br>27<br>28<br>27<br>28<br>27<br>28<br>27<br>28<br>28<br>27<br>28<br>28<br>28<br>27<br>28<br>28<br>28<br>27<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | $   \begin{array}{c}     13.5 \\     9.0 \\     8.3 \\     16.0 \\     16.5 \\     14.5 \\     12.0 \\     21.0 \\     21.5 \\     11.0 \\     25.0 \\     14.0 \\     10.0 \\     8.4 \\     6.3 \\     4.0 \\     4.5 \\     8.5 \\     10.5 \\     13.0 \\     11.0 \\     10.0 \\     9.7 \\     8.0 \\     12.5 \\     19.0 \\     11.0 \\   \end{array} $ | 7.2 2.3 6.4 0 13.4 7.8 0 12.7 6.4 6.1 0 0 2.8 4.7 2.1 0 3.5 7.8 6.4 0 8.5 0 5.8 0 6.6 0 0 | 25<br>5<br>3<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>3<br>1<br>1<br>2<br>2<br>3<br>1<br>1<br>2<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>1<br>2<br>2<br>1<br>1<br>2<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>2<br>1<br>2<br>1<br>2<br>2<br>1<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>2<br>1<br>2<br>2<br>2<br>2<br>1<br>2<br>2<br>2<br>2<br>1<br>2<br>2<br>2<br>2<br>1<br>2<br>2<br>2<br>2<br>2<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |
|             | 31<br>32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3<br>3                                                             | 4.0<br>16.0                                                                                                                                                                                                                                                                                                                                                     | 0<br>0                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

5 🛥

•

| VAR  | SCEN | TARGET | MEAN | SD   | N  |
|------|------|--------|------|------|----|
| TDET | ALL  | 1      | 6.5  | 2.8  | 95 |
|      | 9    | 1      | 4.1  | 1.2  | 8  |
|      | 10   | 1      | 4.1  | 0.6  | 8  |
|      | 11   | 1      | 5.0  | 2.7  | 8  |
|      | 12   | 1      | 7.9  | 1.6  | 8  |
|      | 13   | 1      | 5.6  | 2.8  | 8  |
|      | 14   | 1      | 10.0 | 2.1  | 8  |
|      | 18   | 1      | 10.6 | 1.5  | 8  |
|      | 19   | 1      | 5.9  | 2.6  | 8  |
|      | 21   | 1      | 5.8  | 1.7  | 4  |
|      | 22   | ī      | 5.8  | 1.0  | 6  |
|      | 25   | 1      | 7.0  | 1.5  | 6  |
|      | 26   | 1      | 5.8  | 1.5  | 6  |
|      | 29   | 1      | 6.5  | 3.3  | 6  |
|      | 30   | 1      | 6.0  | 3.6  | 4  |
|      | ALL  | 2      | 23.0 | 9.4  | 52 |
|      | 6    | 2      | 11.0 | Ø    | 1  |
|      | 18   | 2      | 11.4 | 6.0  | 7  |
|      | 19   | 2      | 23.0 | 2.9  | 4  |
|      | 21   | 2      | 25.7 | 8.0  | 7  |
|      | 22   | 2      | 22.4 | 6.1  | 5  |
|      | 25   | 2      | 33.0 | 7.1  | 5  |
|      | 26   | 2      | 23.5 | 8.2  | 8  |
|      | 29   | 2      | 25.7 | 9.6  | 7  |
|      | 30   | 2      | 25.4 | 12.1 | 8  |
|      | ALL  | 3      | 37.0 | 14.4 | 28 |
|      | 6    | 3      | 26.0 | Ø    | 1  |
|      | 18   | 3      | 13.3 | 5.3  | 4  |
|      | 25   | 3      | 49.2 | 11.3 | 6  |
|      | 26   | 3      | 42.2 | 12.6 | 5  |
|      | 29   | 3      | 40.0 | 9.0  | 6  |
|      | 30   | 3      | 35.0 | 8.2  | 6  |

Descriptive Statistics: Vulcan RW Event Times

۰.

.

| VAR | SCEN | TARGET                          | MEAN | SD           | N           |
|-----|------|---------------------------------|------|--------------|-------------|
| TID | ALL  | 1                               | 6.7  | 6.4          | 94          |
|     | 9    | 1                               | 9.4  | 6.0          | 8           |
|     | 10   | 1                               | 5.0  | 4.8          | 8           |
|     | 11   | 1                               | 6.9  | 4.2          | 8           |
|     | 12   | 1                               | 4.0  | 2.0          | 8           |
|     | 13   | 1                               | 4.3  | 2.6          | 8           |
|     | 14   | 1                               | 14.8 | 13.4         | 8           |
|     | 18   | 1                               | 9.9  | 7.2          | 8           |
|     | 19   | 1                               | 5.6  | 4.0          | 8           |
|     | 21   | 1                               | 4.5  | 3.9          | 4           |
|     | 22   | 1                               | 4.7  | 4.2          | 6           |
|     | 25   | 1                               | 5.5  | 1.3          | 4           |
|     | 26   | 1                               | 6.8  | 7.6          | 6           |
|     | 29   | 1                               | 5.3  | 4.8          | 6           |
|     | 30   | 1                               | 3.0  | 2.4          | 4           |
|     | ALL  | 2                               | 2.9  | 2.9          | 42          |
|     | 6    | 2                               | 1.0  | Ø            | 1           |
|     | 18   | 2                               | 1.8  | 1.3          | 5           |
|     | 19   | 2                               | 4.0  | 4.8          | 4           |
|     | 21   | 2                               | 4.3  | 2.8          |             |
|     | 22   | 2                               | 1.0  | Ø            | 6<br>2<br>5 |
|     | 25   | 2                               | 3.8  | 3.8          | 5           |
|     | 26   | 2                               | 1.9  | 1.6          | 7           |
|     | 29   | 2                               | 3.0  | 3.9          | 5           |
|     | 30   | 2                               | 2.7  | 3.0          | 7           |
|     | ALL  | 2<br>2<br>3<br>3<br>3<br>3<br>3 | 3.2  | 2.9          | 27          |
|     | 6    | 3                               | 1.0  | 2.9          | 1           |
|     | 18   | ĩ                               | 4.0  | 1.4          | 4           |
|     | 25   | 3                               | 3.8  | 3.8          | 6           |
|     | 26   | 3                               | 3.8  | 2.8          | 5           |
|     | 29   | 3                               | 1.0  | 2.8<br>Ø     | 6           |
|     | 30   | 3                               | 4.2  | 4.1          | 5           |
|     | שכ   | 5                               | 4.4  | <b>*</b> • ↓ | J           |

| VAR   | SCEN                                                           | TARGET                                                                       | MEAN                                                             | SD                                                     | N                          |
|-------|----------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------|----------------------------|
| THAND | ALL                                                            | 1                                                                            | 3.8                                                              | 4.4                                                    | 62                         |
|       | 9                                                              | 1                                                                            | 4.0                                                              | 2.0                                                    | 3                          |
|       | 10                                                             | 1                                                                            | 5.0                                                              | 6.4                                                    | 7                          |
|       | 11                                                             | 1                                                                            | 1.5                                                              | Ø.7                                                    | 2                          |
|       | 12                                                             | 1                                                                            | 3.3                                                              | 2.7                                                    | 6                          |
|       | 13                                                             | 1                                                                            | 3.7                                                              | 2.5                                                    | 3                          |
|       | 14                                                             | 1                                                                            | 2.0                                                              | Ø                                                      | 1                          |
|       | 18                                                             | 1                                                                            | 5.8                                                              | 7.4                                                    | 6                          |
|       | 19                                                             | 1                                                                            | 2.5                                                              | 1.6                                                    | б                          |
|       | 21                                                             | 1                                                                            | 3.7                                                              | 2.3                                                    | 3                          |
|       | 22                                                             | 1                                                                            | 3.0                                                              | 1.4                                                    | 5                          |
|       | 25                                                             | 1                                                                            | 2.8                                                              | 1.5                                                    | 5                          |
|       | 26                                                             | 1                                                                            | 3.7                                                              | 5.6                                                    | 6                          |
|       | 29                                                             | 1                                                                            | 6.0                                                              | 8.7                                                    | 5                          |
|       | 3Ø                                                             | 1                                                                            | 2.0                                                              | 1.4                                                    | 4                          |
|       | ALL                                                            | 2                                                                            | 3.0                                                              | 3.2                                                    | 34                         |
|       | 6                                                              | 2                                                                            | 2.0                                                              | Ø                                                      | 1                          |
|       | 18                                                             | 2                                                                            | 4.3                                                              | 2.3                                                    | 3                          |
|       | 21                                                             | 2                                                                            | 1.9                                                              | 0.9                                                    | 7                          |
|       | 22                                                             | 2                                                                            | 3.4                                                              | 1.9                                                    | 5                          |
|       | 25                                                             | 2                                                                            | 2.0                                                              | 2.8                                                    | 2                          |
|       | 26                                                             | 2                                                                            | 5.0                                                              | 7.9                                                    | 5                          |
|       | 29                                                             | 2                                                                            | 2.7                                                              | 1.4                                                    | 6                          |
|       | 30                                                             | 2                                                                            | 2.2                                                              | 1.1                                                    | 5                          |
|       | ALL                                                            | 3                                                                            | 5.7                                                              | 5.7                                                    | 10                         |
|       | 6                                                              | 3                                                                            | 1.0                                                              | 0                                                      | 10                         |
|       | 29                                                             | 3                                                                            | 5.6                                                              | 5.9                                                    | 5                          |
|       | 30                                                             | 3                                                                            | 7.0                                                              | 6.5                                                    | 4                          |
| TFIRE | ALL                                                            | <br>l                                                                        | 1.5                                                              | 2.1                                                    |                            |
|       | 9                                                              | 1                                                                            | 1.0                                                              | 0                                                      | 1                          |
|       | 10                                                             | 1                                                                            | 1.0                                                              | 1.4                                                    | 2                          |
|       | 11                                                             | 1                                                                            | 7.0                                                              | 0                                                      | 1                          |
|       | 12                                                             | 1                                                                            | Ø                                                                | ð                                                      | 1                          |
|       | 14                                                             | —                                                                            | ø                                                                | ø                                                      |                            |
|       | =                                                              | *                                                                            |                                                                  |                                                        | 2                          |
|       | 18                                                             | 1                                                                            | a                                                                | a                                                      |                            |
|       | 18<br>19                                                       | 1<br>1<br>1                                                                  | 0<br>3 0                                                         | 0                                                      | 2                          |
|       | 19                                                             | 1<br>1<br>1                                                                  | 3.0                                                              | 2.8                                                    | 2                          |
|       | 19<br>21                                                       | 1<br>1                                                                       | 3.0<br>1.0                                                       | 2.8<br>Ø                                               | 2<br>2<br>1                |
|       | 19<br>21<br>25                                                 | 1<br>1                                                                       | 3.0<br>1.0<br>1.0                                                | 2.8<br>Ø<br>Ø                                          | 2<br>2<br>1<br>1           |
|       | 19<br>21<br>25<br>26                                           | 1<br>1<br>1<br>1                                                             | 3.0<br>1.0<br>1.0<br>0.5                                         | 2.8<br>Ø<br>Ø.7                                        | 2<br>1<br>1<br>2           |
|       | 19<br>21<br>25<br>26<br>30                                     | 1<br>1<br>1<br>1                                                             | 3.0<br>1.0<br>1.0<br>0.5<br>2.0                                  | 2.8<br>0<br>0.7<br>0                                   | 1<br>2<br>1<br>1<br>2<br>1 |
|       | 19<br>21<br>25<br>26<br>30<br>All                              | 1<br>1<br>1<br>1                                                             | 3.0<br>1.0<br>1.0<br>0.5<br>2.0<br>1.5                           | 2.8<br>Ø<br>Ø.7<br>Ø<br>1.7                            | 8                          |
|       | 19<br>21<br>25<br>26<br>30<br>ALL<br>6                         | 1<br>1<br>1<br>1                                                             | 3.0<br>1.0<br>1.0<br>0.5<br>2.0<br>1.5<br>0                      | 2.8<br>Ø<br>Ø.7<br>Ø<br>1.7<br>Ø                       | 8                          |
|       | 19<br>21<br>25<br>26<br>30<br>ALL<br>6<br>18                   | 1<br>1<br>1<br>1                                                             | 3.0<br>1.0<br>1.0<br>0.5<br>2.0<br>1.5<br>0<br>1.0               | 2.8<br>Ø<br>Ø.7<br>Ø<br>1.7<br>Ø<br>Ø                  | 8<br>1<br>1                |
|       | 19<br>21<br>25<br>26<br>30<br>ALL<br>6<br>18<br>21             | 1<br>1<br>1<br>1                                                             | 3.0<br>1.0<br>1.0<br>0.5<br>2.0<br>1.5<br>0<br>1.0<br>1.0        | 2.8<br>Ø<br>Ø.7<br>Ø<br>1.7<br>Ø<br>Ø<br>Ø             | 8<br>1<br>1                |
|       | 19<br>21<br>25<br>26<br>30<br>ALL<br>6<br>18<br>21<br>26       | 1<br>1<br>1<br>1                                                             | 3.0<br>1.0<br>1.0<br>0.5<br>2.0<br>1.5<br>0<br>1.0<br>1.0<br>0   | 2.8<br>0<br>0.7<br>0<br>1.7<br>0<br>0<br>0<br>0        | 8<br>1<br>1<br>2<br>1      |
|       | 19<br>21<br>25<br>26<br>30<br>ALL<br>6<br>18<br>21<br>26<br>29 | 1<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 3.0<br>1.0<br>1.0<br>0.5<br>2.0<br>1.5<br>0<br>1.0<br>1.0<br>3.0 | 2.8<br>0<br>0.7<br>0<br>1.7<br>0<br>0<br>0<br>0<br>2.8 | 8<br>1<br>2<br>1<br>2      |
|       | 19<br>21<br>25<br>26<br>30<br>ALL<br>6<br>18<br>21<br>26       | 1<br>1<br>1<br>1                                                             | 3.0<br>1.0<br>1.0<br>0.5<br>2.0<br>1.5<br>0<br>1.0<br>1.0<br>0   | 2.8<br>0<br>0.7<br>0<br>1.7<br>0<br>0<br>0<br>0        | 8<br>1<br>1<br>2<br>1      |

| ۲ |  |  |
|---|--|--|
|   |  |  |

•

| VAR  | SCEN | TARGET | MEAN | SD   | N           |
|------|------|--------|------|------|-------------|
| TTOT | ALL  | 1      | 8.8  | 7.3  | 71          |
|      | 9    | 1      | 7.8  | 4.9  | 4           |
|      | 10   | 1      | 10.3 | 6.9  | 7           |
|      | 11   | 1      | 8.0  | 5.7  | 2           |
|      | 12   | 1      | 6.0  | 4.0  | 2<br>7      |
|      | 13   | 1      | 6.0  | 3.6  | 3           |
|      | 14   | 1      | 24.3 | 17.8 | 3<br>3<br>7 |
|      | 18   | 1      | 12.0 | 9.7  | 7           |
|      | 19   | 1      | 7.3  | 3.4  | 8           |
|      | 21   | 1      | 6.5  | 6.5  | 4           |
|      | 22   | 1      | 6.2  | 2.6  | 5           |
|      | 25   | 1      | 5.3  | 3.4  | 6           |
|      | 26   | 1      | 10.5 | 7.6  | 6           |
|      | 29   | 1      | 12.0 | 8.5  | 5           |
|      | 30   | 1      | 5.0  | 1.6  | 4           |
|      | ALL  | 2      | 5.1  | 3.6  | 34          |
|      | 6    | 2      | 3.0  | Ø    | 1           |
|      | 18   | 2      | 4.3  | 2.5  | 4           |
|      | 21   | 2      | 5.6  | 2.7  | 7           |
|      | 22   | 2      | 3.8  | 1.6  | 5           |
|      | 25   | 2      | 7.5  | 3.5  | 5<br>2      |
|      | 26   | 2      | 8.3  | 7.9  | 4           |
|      | 29   | 2      | 5.0  | 3.5  | 6           |
|      | 3Ø   | 2      | 3.6  | 2.1  | 5           |
|      | ALL  | 3      | 7.0  | 6.0  | 10          |
|      | 6    | 3      | 2.0  | Ø    | 1           |
|      | 29   | 3      | 6.6  | 5.9  | 5           |
|      | 30   | 3      | 8.8  | 6.8  | 4           |

٠,

Descriptive Statistics: Stinger FW Summary Performance

| VAR    | SCEN                    | MEAN                            | SD                              | N                        |
|--------|-------------------------|---------------------------------|---------------------------------|--------------------------|
| IDCOR  | ALL                     | .82                             | . 39                            | 73                       |
| FIDCOR | ALL<br>1<br>4<br>6      | .72<br>.37                      |                                 | 36<br>18<br>8<br>1Ø      |
| HIDCOR | 3                       | .95<br>1.0<br>.82<br>1.0<br>1.0 | .23<br>Ø<br>.40<br>Ø            | 37<br>9<br>11<br>9<br>8  |
| FENG   | 1                       | .18<br>.18<br>.22<br>.20        | .37                             | 19                       |
| HENG   | ALL<br>2<br>3<br>5<br>7 | .55<br>.30                      | .50                             | 9                        |
| PKILL  | ALL                     | .86                             | .35                             | 22                       |
| FKILL  | ALL<br>1<br>4<br>6      | .16<br>.11<br>.22<br>.20        |                                 | 19                       |
| HKILL  | ALL<br>2<br>3<br>5<br>7 | .34<br>.22<br>.55<br>.30<br>.25 | .48<br>.44<br>.52<br>.48<br>.46 | 38<br>9<br>11<br>1Ø<br>8 |
| ORD    | ALL<br>2<br>3<br>5<br>7 | .34<br>.44<br>.27<br>.40<br>.25 | .48<br>.53<br>.47<br>.52<br>.46 | 38<br>9<br>11<br>10<br>8 |

۰,

Descriptive Statistics: Chaparral FW Summary Performance

| VAR    | SCEN                    | MEAN                            | SD                     | N                      |
|--------|-------------------------|---------------------------------|------------------------|------------------------|
| IDCOR  | ALL                     | .76                             | .44                    | 25                     |
| FIDCOR | ALL                     | .62                             | .51                    | 13                     |
|        | 1                       | .43                             | .53                    | 7                      |
|        | 4                       | .67                             | .58                    | 3                      |
|        | 6                       | 1.0                             | Ø                      | 3                      |
| HIDCOR | ALL                     | .92                             | .29                    | 12                     |
|        | 2                       | 1.0                             | Ø                      | 4                      |
|        | 3                       | 1.0                             | 0                      | 3                      |
|        | 5                       | .67                             | .58                    | 3                      |
|        | 7                       | 1.0                             | Ø                      | 2                      |
| FENG   | ALL                     | .43                             | .51                    | 14                     |
|        | 1                       | .57                             | .53                    | 7                      |
|        | 4                       | .50                             | .58                    | 4                      |
|        | 6                       | Ø                               | Ø                      | 3                      |
| HENG   | ALL                     | .64                             | .50                    | 14                     |
|        | 2                       | .75                             | .50                    | 4                      |
|        | 3                       | .67                             | .58                    | 3                      |
|        | 5                       | .33                             | .58                    | 3                      |
|        | 7                       | .75                             | .50                    | 4                      |
| PKILL  | ALL                     | .87                             | .35                    | 15                     |
| FKILL  | ALL                     | .29                             | .47                    | 14                     |
|        | 1                       | .43                             | .53                    | 7                      |
|        | 4                       | .25                             | .50                    | 4                      |
|        | 6                       | Ø                               | 0                      | 3                      |
| HKILL  | ALL                     | .64                             | .50                    | 14                     |
|        | 2                       | .75                             | .50                    | 4                      |
|        | 3                       | .67                             | .58                    | 3                      |
|        | 5                       | .33                             | .58                    | 3                      |
|        | 7                       | .75                             | .58                    | 4                      |
| ORD    | ALL<br>2<br>3<br>5<br>7 | .71<br>.50<br>1.0<br>1.0<br>.50 | .47<br>.58<br>Ø<br>.58 | 14<br>4<br>3<br>3<br>4 |

۰.

.

# Descriptive Statistics: Stinger RW Summary Performance

| VAR    | SCEN                                                                                                                            | TARGET                                                     | MEAN                                                                                                                                                                                                                             | SD                                                                                                                                                               | N                                                                                                                                               |
|--------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| IDCOR  | ALL<br>ALL<br>ALL<br>ALL                                                                                                        | ALL<br>1<br>2<br>3                                         | .65<br>.68<br>.67<br>.51                                                                                                                                                                                                         | .48<br>.47<br>.47<br>.51                                                                                                                                         | 289<br>136<br>106<br>47                                                                                                                         |
| FIDCOR | ALL<br>ALL<br>ALL<br>7<br>18<br>20<br>27<br>28                                                                                  | ALL<br>1<br>2<br>3<br><br>ALL<br>                          | .57<br>.37<br>.62<br>.60<br>.40<br>.69<br>.70<br>.62<br>.30                                                                                                                                                                      | .50<br>.52<br>.50<br>.51<br>.55<br>.48<br>.48<br>.52<br>.48                                                                                                      | 49<br>8<br>26<br>15<br>5<br>16<br>10<br>8<br>10                                                                                                 |
| HIDCOR | ALL<br>ALL<br>ALL<br>4<br>5<br>6<br>7<br>12<br>13<br>15<br>16<br>17<br>13<br>20<br>23<br>24<br>23<br>24<br>27<br>28<br>31<br>32 | ALL<br>1<br>2<br>3<br><br>ALL<br><br><br>ALL<br>ALL<br>ALL | $ \begin{array}{r}  .67 \\  .70 \\  .69 \\  .47 \\  1.0 \\  .67 \\  .79 \\  .57 \\  .95 \\  .60 \\  .50 \\  1.0 \\  .50 \\  1.0 \\  .50 \\  1.2 \\  .50 \\  .50 \\  .56 \\  .78 \\  .47 \\  .50 \\  .54 \\  .62 \\ \end{array} $ | .47<br>.46<br>.47<br>.51<br>.0<br>.50<br>.42<br>.53<br>.22<br>.53<br>.0<br>.53<br>.0<br>.53<br>.0<br>.53<br>.51<br>.43<br>.52<br>.51<br>.43<br>.52<br>.51<br>.49 | 240<br>128<br>80<br>32<br>8<br>9<br>19<br>7<br>20<br>10<br>10<br>10<br>9<br>10<br>10<br>9<br>10<br>18<br>18<br>18<br>18<br>15<br>18<br>26<br>24 |
| FENG   | ALL<br>ALL<br>ALL<br>7<br>18<br>20<br>27<br>28                                                                                  | ALL<br>1<br>2<br>3<br><br>ALL<br>                          | .35<br>.44<br>.33<br>.33<br>.50<br>.20<br>.20<br>.33<br>.70                                                                                                                                                                      | . 18<br>.53<br>.48<br>.48<br>.53<br>.41<br>.42<br>.50<br>.48                                                                                                     | 57<br>9<br>27<br>21<br>8<br>20<br>10<br>9<br>10                                                                                                 |
| VAR   | SCEN                                                                                                                            | TARGET                                                     | MEAN                                                                                                                                            | SD                                                                                                                                                            | N                                                                                                                                |
|-------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| HENG  | ALL<br>ALL<br>ALL<br>4<br>5<br>6<br>7<br>12<br>13<br>15<br>16<br>17<br>18<br>20<br>23<br>24<br>23<br>24<br>27<br>28<br>31<br>32 | ALL<br>1<br>2<br>3<br><br>ALL<br><br><br>ALL<br>ALL<br>ALL | .58<br>.67<br>.60<br>.31<br>.89<br>.60<br>.80<br>.50<br>.95<br>.64<br>.50<br>.80<br>.40<br>.90<br>.50<br>.45<br>.65<br>.39<br>.50<br>.43<br>.40 | .49<br>.47<br>.49<br>.47<br>.33<br>.52<br>.41<br>.53<br>.22<br>.50<br>.53<br>.42<br>.52<br>.32<br>.53<br>.51<br>.50<br>.50<br>.51<br>.50<br>.50<br>.50<br>.50 | 266<br>131<br>86<br>49<br>9<br>10<br>20<br>8<br>20<br>11<br>10<br>10<br>10<br>10<br>10<br>20<br>20<br>18<br>20<br>30<br>30<br>30 |
| PKILL | ALL<br>ALL<br>ALL<br>ALL<br>ALL                                                                                                 | ALL<br>1<br>2<br>3                                         | .99<br>.99<br>1.0<br>1.0                                                                                                                        | .08<br>.10<br>0                                                                                                                                               | 175<br>92<br>61<br>22                                                                                                            |
| FKILL | ALL<br>ALL<br>ALL<br>7<br>18<br>20<br>27<br>28                                                                                  | ALL<br>1<br>2<br>3<br><br>ALL<br>                          | .35<br>.44<br>.33<br>.33<br>.50<br>.20<br>.20<br>.33<br>.70                                                                                     | .48<br>.53<br>.48<br>.48<br>.53<br>.41<br>.42<br>.50<br>.48                                                                                                   | 57<br>9<br>27<br>21<br>8<br>20<br>10<br>9<br>10                                                                                  |

\_\_\_\_\_

Table B-9 (Continued)

۲.

.

.

. .

Table B-9 (Continued)

| VAR   | SCEN | TARGET | MEAN | SD  | N   |
|-------|------|--------|------|-----|-----|
| HKILL | ALL  | ALL    | .58  | .49 | 265 |
|       | ALL  | 1      | .66  | .48 | 130 |
|       | ALL  | 2      | .60  | .49 | 86  |
|       | ALL  | 3      | .31  | .47 | 49  |
|       | 4    |        | .89  | .33 | 9   |
|       | 5    |        | .60  | .52 | 10  |
|       | 6    | ALL    | .80  | .41 | 2Ø  |
|       | 7    |        | .50  | .53 | 8   |
|       | 12   |        | .90  | .31 | 2Ø  |
|       | 13   |        | .60  | .52 | 10  |
|       | 15   |        | .50  | .53 | 10  |
|       | 16   |        | .80  | .42 | 10  |
|       | 17   |        | .40  | .52 | 1ø  |
|       | 18   |        | .90  | .32 | 10  |
|       | 20   |        | .50  | .52 | 10  |
|       | 23   | ALL    | .45  | .51 | 20  |
|       |      |        |      | .50 | 20  |
|       | 24   | ALL    | .65  |     | 18  |
|       | 27   | ALL    | .39  | .50 |     |
|       | 28   | ALL    | .50  | .51 | 20  |
|       | 31   | ALL    | .43  | .50 | 30  |
|       | 32   | ALL    | .40  | .50 | 30  |
| ORD   | ALL  | ALL    | .74  | .44 | 265 |
|       | ALL  | 1      | .68  | .47 | 130 |
|       | ALL  | 2      | .71  | .46 | 86  |
|       | ALL  | 3      | .96  | .20 | 49  |
|       | 4    |        | .11  | .33 | 9   |
|       | 5    |        | .40  | .52 | 10  |
|       | 6    | ALL    | .70  | .47 | 20  |
|       | 7    |        | 1.0  | Ø   | 8   |
|       | 12   |        | .10  | .31 | 20  |
|       | 13   |        | .40  | .52 | 10  |
|       | 15   |        | .90  | .32 | 10  |
|       | 16   |        | 1.0  |     | 10  |
|       | 17   |        | 1.0  | ø   | 10  |
|       | 18   |        | .20  | .42 | 10  |
|       | 20   |        | .70  | .48 | 10  |
|       | 23   | ALL    | 1.0  | .48 | 20  |
|       | 23   |        | .85  | .37 | 20  |
|       |      | ALL    |      | .37 | 18  |
|       | 27   | ALL    | .89  |     | 20  |
|       | 28   | ALL    | .85  | .37 |     |
|       | 31   | ALL    | .97  | .18 | 30  |
|       | 32   | ALL    | .87  | .35 | 3Ø  |

1

4 G

Table B-10

н., **н** 

Descriptive Statistics: Chaparral RW Summary Performance

| VAR   SCEN   TARGET   MEAN   SD   N     IDCOR   ALL   ALL   1   .63   .48   101     ALL   1   .64   .48   50     ALL   2   .71   .46   .34     ALL   3   .47   .51   17     FIDCOR   ALL   ALL   .47   .51   17     ALL   3   .33   .58   .50   .71   .2     ALL   3   .33   .58   .4   .20    .50   .58   .4     20    .50   .58   .4   .20    .50   .71   .2     HIDCOR   ALL   ALL   .67   .47   .84   .8     ALL   1   .65   .48   .8        HIDCOR   ALL   ALL <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th></td<>        |        |         |        |      |        |        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|--------|------|--------|--------|
| ALL   1   .64   .48   50     ALL   2   .71   .46   .34     ALL   3   .47   .51   17     FIDCOR   ALL   ALL   .47   .51   17     ALL   1   .50   .71   .2     ALL   2   .50   .52   12     ALL   3   .33   .58   .3     7    .25   .50   .4     18   ALL   .50   .58   .4     20    .67   .58   .3     28    .50   .71   .2     HIDCOR   ALL   ALL   .67   .47   .84     ALL   1   .65   .48   .48     ALL   1   .65   .48   .48     ALL   1   .67   .52   .14     4    1.0   .2   .2     ALL   .67<                                                | VAR    |         | PARGET | MEAN | SD<br> | N      |
| ALL   2   .71   .46   34     ALL   3   .47   .51   17     FIDCOR   ALL   ALL   .47   .51   17     ALL   1   .50   .71   2     ALL   2   .50   .52   12     ALL   3   .33   .58   3     7    .50   .58   4     20    .50   .58   4     20    .50   .58   4     20    .50   .58   4     27    .50   .58   4     27    .50   .71   2     HIDCOR   ALL   ALL   .67   .47   84     ALL   2   .82   .39   22     ALL   3   .50   .52   14     4    1.67   .58   3     6   ALL <t< td=""><td>IDCOR</td><td></td><td></td><td></td><td></td><td></td></t<> | IDCOR  |         |        |      |        |        |
| ALL   3   .47   .51   17     FIDCOR   ALL   ALL   .47   .51   17     ALL   1   .50   .71   2     ALL   2   .50   .52   12     ALL   3   .33   .58   3     7    .25   .50   4     18   ALL   .50   .58   4     20    .50   .58   4     27    .67   .58   3     28    .50   .71   2     HIDCOR   ALL   ALL   .67   .47   84     ALL   1   .65   .48   48     ALL   3   .50   .52   14     4    1.0   0   3     5    .67   .58   3     6   ALL   3   .50   .52   14     4 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>4</td></t<>      |        |         |        |      |        | 4      |
| FIDCOR   ALL   ALL   17   17     ALL   1   .50   .71   2     ALL   2   .50   .52   12     ALL   3   .33   .58   3     7    .25   .50   4     18   ALL   .50   .58   4     20    .50   .58   4     20    .50   .71   2     HIDCOR   ALL   ALL   .67   .47   84     ALL   1   .65   .48   48     ALL   2   .82   .39   .22     HIDCOR   ALL   ALL   .67   .52   14     4    1.0   0   3   .5     5    .67   .58   3   .6     12    .75   .46   8   .3     16    .75   .50   4                                                                        |        |         |        |      |        |        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | ALL<br> | 3<br>  | .4/  | .51    | 1/<br> |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FIDCOR |         |        |      |        |        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |         |        |      |        |        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |         |        |      |        |        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |         | 3      |      |        |        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |         |        |      |        |        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |         |        |      |        |        |
| 28    .50   .71   2     HIDCOR   ALL   ALL   .67   .47   84     ALL   1   .65   .48   48     ALL   2   .82   .39   .22     ALL   3   .50   .52   14     4    1.0   0   3     5    .67   .58   3     6   ALL   .67   .52   6     7    0   0   2     12    .67   .58   3     16    .75   .50   4     17    .75   .50   4     18    1.0   0   2     20    .75   .50   4     23   ALL   .25   .50   4     24   ALL   1.0   .48   10     7   ALL   .57   .53                                                                                            |        |         |        |      |        |        |
| HIDCOR ALL ALL 1 67 .47 84   ALL 1 .65 .48 48   ALL 2 .82 .39 22   ALL 3 .50 .52 14   4  1.0 0 3   5  .67 .58 3   6 ALL .67 .52 6   7  0 0 2   12  .67 .58 3   16  .75 .50 4   15  .67 .58 3   16  .75 .50 4   17  .75 .50 4   18  .75 .50 4   23 ALL .25 .50 4   24 ALL 1.0 0 3   27 ALL .57 .53 7   31 ALL .20 .48 10                                                                                                                                                                                                                            |        |         |        |      |        |        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |         |        | . JU | • / ↓  |        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HIDCOR | ALL     |        |      |        |        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | ALL     |        |      |        |        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |         |        |      |        |        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |         | 3      |      |        |        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |         |        |      |        | 3      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |         |        |      |        | 3      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |         | ALL    |      |        | 6      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1      |         |        |      |        |        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |         |        |      |        |        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | }      |         |        |      |        |        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1      |         |        |      |        |        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |         |        |      |        |        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |         |        |      |        |        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |         |        |      |        |        |
| 24 ALL 1.0 0 3   27 ALL .57 .53 7   28 ALL .57 .53 7   31 ALL .60 .52 10   32 ALL .70 .48 10   FENG   ALL ALL .35 .49 23   ALL 1 .20 .45 .5   ALL 1 .20 .45 .5   ALL 2 .38 .51 13   ALL 3 .33 .52 6   7  .50 .58 4   18 ALL .29 .49 7   20  .25 .50 4   27  .50 .58 4                                                                                                                                                                                                                                                                              |        |         | ALL    |      |        |        |
| 28 ALL .57 .53 7   31 ALL .60 .52 10   32 ALL .70 .48 10   FENG   ALL 1 .20 .45 5   ALL 1 .20 .45 5   ALL 2 .38 .51 13   ALL 3 .33 .52 6   7  .50 .58 4   18 ALL .29 .49 7   20  .25 .50 4   27  .50 .58 4                                                                                                                                                                                                                                                                                                                                         |        | 24      |        |      |        | 3      |
| 31 ALL .60 .52 10   32 ALL .70 .48 10   FENG ALL ALL .35 .49 23   ALL 1 .20 .45 .5   ALL 2 .38 .51 13   ALL 3 .33 .52 6   7  .50 .58 4   18 ALL .29 .49 .7   20  .25 .50 4   27  .50 .58 4                                                                                                                                                                                                                                                                                                                                                         | 1      |         |        |      |        |        |
| 32 ALL .70 .48 10   FENG ALL ALL .35 .49 23   ALL 1 .20 .45 5   ALL 2 .38 .51 13   ALL 3 .33 .52 6   7  .50 .58 4   18 ALL .29 .49 7   20  .25 .50 4   27  .50 .58 4                                                                                                                                                                                                                                                                                                                                                                               |        |         | ALL    |      |        |        |
| FENG   ALL   ALL   .35   .49   23     ALL   1   .20   .45   5     ALL   2   .38   .51   13     ALL   3   .33   .52   6     7    .50   .58   4     18   ALL   .29   .49   7     20    .25   .50   4     27    .50   .58   4                                                                                                                                                                                                                                                                                                                         |        |         |        |      |        |        |
| ALL 1 .20 .45 5   ALL 2 .38 .51 13   ALL 3 .33 .52 6   7  .50 .58 4   18 ALL .29 .49 7   20  .25 .50 4   27  .50 .58 4                                                                                                                                                                                                                                                                                                                                                                                                                             |        | 32      | ALL    | .70  | .48    | 10     |
| ALL 1 .20 .45 5   ALL 2 .38 .51 13   ALL 3 .33 .52 6   7  .50 .58 4   18 ALL .29 .49 7   20  .25 .50 4   27  .50 .58 4                                                                                                                                                                                                                                                                                                                                                                                                                             | FENG   | ALL     | ALL    | .35  | .49    | 23     |
| ALL 2 .38 .51 13   ALL 3 .33 .52 6   7  .50 .58 4   18 ALL .29 .49 7   20  .25 .50 4   27  .50 .58 4                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |         | 1      |      |        | 5      |
| ALL 3 .33 .52 6   7  .50 .58 4   18 ALL .29 .49 7   20  .25 .50 4   27  .50 .58 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |         | 2      |      |        | 13     |
| 18 ALL .29 .49 7   20  .25 .50 4   27  .50 .58 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | ALL     | 3      | .33  | .52    | 6      |
| 20  .25 .50 4   27  .50 .58 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |         |        |      |        |        |
| 2750 .58 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |         | ALL    |      |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |         |        |      |        |        |
| 2825 .50 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |         |        |      |        |        |
| I I I I I I I I I I I I I I I I I I I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1      | 28      |        | . 25 | .50    | 4      |

Table B-10 (Continued)

•,

| VAR   | SCEN | TARGET | MEAN        | SD  | N  |
|-------|------|--------|-------------|-----|----|
| HENG  | ALL  | ALL    | .41         | .49 | 97 |
|       | ALL  | 1      | .50         | .51 | 48 |
|       | ALL  | 2      | .45         | .51 | 29 |
|       | ALL  | 3      | .15         | .37 | 2Ø |
|       | 4    |        | .75         | .50 | 4  |
|       | 5    |        | .33         | .58 | 3  |
|       | 6    | ALL    | .33         | .52 | 6  |
|       | 7    |        | I           | Ø   | 4  |
|       | 12   |        | .63         | .52 | 8  |
|       | 13   |        | .75         | .50 | 4  |
|       | 15   |        | .33         | .58 | 3  |
|       | 16   |        | .50         | .58 | 4  |
|       | 17   |        | .50         | .58 | 4  |
|       | 18   |        | .50         | .58 | 4  |
|       | 2Ø   |        | <b>.</b> 5Ø | .58 | 4  |
|       | 23   | ALL    | Ø           | Ø   | 6  |
|       | 24   | ALL    | .50         | .58 | 4  |
|       | 27   | ALL    | .50         | .53 | 8  |
|       | 28   | ALL    | .25         | .46 | 8  |
|       | 31   | ALL    | .45         | .52 | 11 |
|       | 32   | ALL    | .33         | .49 | 12 |
| PKILL | ALL  | ALL    | 1.0         | 0   | 48 |
| FKILL | ALL  | ALL    | .35         | .49 | 23 |
|       | ALL  | 1      | .25         | .50 | 4  |
|       | ALL  | 2      | .38         | .51 | 13 |
|       | ALL  | 3      | .33         | .52 | 6  |
|       | 7    |        | .50         | .58 | 4  |
|       | 18   | ALL    | . 29        | .49 | 7  |
|       | 20   |        | .25         | .50 | 4  |
|       | 27   |        | .50         | .58 | 4  |
|       | 28   |        | .25         | .50 | 4  |

Table B-10 (Continued)

| VAR   | SCEN     | TARGET | MEAN | SD        | N  |
|-------|----------|--------|------|-----------|----|
| HKILL | ALL      | ALL    | .41  | .49       | 97 |
|       | ALL      | 1      | .50  | .51       | 48 |
|       | ALL      | 2      | .45  | .51       | 29 |
|       | ALL      | 3      | .15  | .37       | 20 |
|       | 4        |        | .75  | .50       | 4  |
|       | 5        |        | .33  | .58       | 3  |
|       | 6        | ALL    | .33  | .52       | 6  |
|       | 7        |        | Ø    | Ø         | 4  |
|       | 12       |        | .63  | .52       | 8  |
|       | 13       |        | .75  | .50       | 4  |
|       | 15       |        | .33  | .58       | 3  |
|       | 16       |        | .50  | .58       | 4  |
|       | 17       |        | .50  | .58       | 4  |
|       | 18       |        | .50  | .58       | 4  |
|       | 20       |        | .50  | .58       | 4  |
|       | 23       | ALL    | .50  | • 50      | 6  |
|       | 24       | ALL    | .50  | .58       | 4  |
|       | 27       |        | .50  |           | 8  |
|       |          | ALL    |      | .53       | 8  |
|       | 28       | ALL    | . 25 | .46       |    |
|       | 31       | ALL    | .45  | .52       | 11 |
|       | 32       | ALL    | .33  | .49       | 12 |
| ORD   | ALL      | ALL    | .79  | .49       | 97 |
|       | ALL      | ו      | .67  | .48       | 48 |
|       | ALL      | 2      | .83  | .38       | 29 |
|       | ALL      | 3      | 1.0  | Ø         | 20 |
|       | 4        |        | .25  | .50       | 4  |
|       | 5        |        | .67  | .58       | 3  |
|       | 6        | ALL    | .83  | .41       | 6  |
|       | 7        |        | 1.0  | Ø         | 4  |
|       | 12       |        | .38  | .52       | 8  |
|       | 13       |        | .25  | .50       | 4  |
|       | 15       |        | 1.0  |           | 3  |
|       | 16       |        | .75  | . 50      | 4  |
|       | 17       |        | 1.0  | . 30      | 4  |
| }     | 18       |        | 1.0  | ø         | 4  |
|       | 20       |        | .75  | .50       | 4  |
| 1     | 23       | ALL    | 1.0  | . 50<br>Ø | 6  |
|       | 23       | ALL    | .75  | .50       | 4  |
|       | 24       |        | .63  | .50       | 8  |
|       | 28       | ALL    |      |           | 8  |
|       | 28<br>31 | ALL    | 1.0  | Ø         |    |
|       |          | ALL    | 1.0  | 0         | 11 |
| 1     | 32       | ALL    | .83  | . 39      | 12 |

| т | а | b | 1 | е | B | 1 | 1 |
|---|---|---|---|---|---|---|---|
| - | - | ~ | - | ~ |   | - | _ |

к. м

Descriptive Statistics: Vulcan RW Summary Performance

| VAR    | SCEN                                                                                          | TARGET                                                              | MEAN                                                                                                                             | SD                                                                                                        | N                                                                                                                     |
|--------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| IDCOR  | ALL<br>ALL<br>ALL<br>ALL<br>ALL                                                               | ALL<br>1<br>2<br>3                                                  | .82<br>.76<br>.87<br>.93                                                                                                         | .39<br>.43<br>.34<br>.26                                                                                  | 176<br>96<br>52<br>28                                                                                                 |
| FIDCOR | ALL<br>ALL<br>ALL<br>11<br>14<br>18<br>19<br>25<br>26                                         | ALL<br>1<br>2<br>3<br><br>ALL<br><br>ALL                            | .73<br>.56<br>.78<br>1.0<br>.62<br>.75<br>.50<br>1.0<br>.82<br>1.0                                                               | .45<br>.51<br>.44<br>0<br>.52<br>.46<br>.52<br>0<br>.40<br>0                                              | 49<br>25<br>9<br>15<br>8<br>8<br>12<br>5<br>11<br>5                                                                   |
| HIDCOR | ALL<br>ALL<br>ALL<br>6<br>9<br>10<br>12<br>13<br>18<br>19<br>21<br>22<br>25<br>26<br>29<br>30 | ALL<br>1<br>2<br>3<br>ALL<br><br><br>ALL<br>ALL<br>ALL<br>ALL<br>AL | .85<br>.83<br>.88<br>.85<br>.1<br>.62<br>1.0<br>.37<br>.37<br>.71<br>1.0<br>1.0<br>.91<br>1.0<br>.91<br>1.0<br>.93<br>.89<br>.78 | .36<br>.38<br>.32<br>.38<br>0<br>.52<br>0<br>.35<br>.52<br>.49<br>0<br>0<br>.30<br>0<br>.27<br>.32<br>.43 | 127<br>71<br>43<br>13<br>2<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>7<br>7<br>7<br>11<br>11<br>11<br>6<br>14<br>19<br>18 |
| FENG   | ALL<br>ALL<br>ALL<br>ALL<br>11<br>14<br>18<br>19<br>25<br>26                                  | ALL<br>1<br>2<br>3<br><br>ALL<br><br>ALL                            | .35<br>.60<br>.22<br>0<br>.38<br>.50<br>.58<br>.20<br>.18<br>0                                                                   | .48<br>.50<br>.44<br>0<br>.52<br>.53<br>.51<br>.45<br>.40<br>0                                            | 49<br>25<br>9<br>15<br>8<br>8<br>12<br>5<br>11<br>5                                                                   |

| Table B-1 | l (Continued) |
|-----------|---------------|
|-----------|---------------|

×

|       |                                                                                               |                                                                        | ~~~~~~~                                                                                                         |                                                                                                             |                                                                                             |
|-------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| VAR   | SCEN                                                                                          | TARGET                                                                 | MEAN                                                                                                            | SD                                                                                                          | N                                                                                           |
| HENG  | ALL<br>ALL<br>ALL<br>6<br>9<br>10<br>12<br>13<br>18<br>19<br>21<br>22<br>25<br>26<br>29<br>30 | ALL<br>1<br>2<br>3<br>ALL<br><br>ALL<br>ALL<br>ALL<br>ALL<br>ALL<br>AL | .80<br>.84<br>.86<br>.52<br>1<br>.50<br>1.0<br>.88<br>.38<br>.71<br>1<br>.85<br>.77<br>1.0<br>.86<br>.95<br>.64 | .40<br>.37<br>.35<br>.51<br>0<br>.53<br>0<br>.35<br>.52<br>.49<br>0<br>.38<br>.44<br>0<br>.36<br>.23<br>.49 | 139<br>75<br>43<br>21<br>2<br>8<br>8<br>8<br>8<br>7<br>7<br>13<br>13<br>6<br>14<br>19<br>22 |
| PKILL | ALL<br>ALL<br>ALL<br>ALL                                                                      | ALL<br>1<br>2<br>3                                                     | .37<br>.30<br>.51<br>.36                                                                                        | .49<br>.46<br>.51<br>.50                                                                                    | 124<br>74<br>39<br>11                                                                       |
| FKILL | ALL<br>ALL<br>ALL<br>11<br>14<br>18<br>19<br>25<br>26                                         | ALL<br>1<br>2<br>3<br><br>ALL<br>ALL                                   | .02<br>.04<br>0<br>.03<br>.03<br>.13<br>0<br>0<br>.03<br>.03<br>.03                                             | .14<br>.20<br>Ø<br>0<br>.35<br>Ø<br>Ø<br>0<br>Ø<br>3                                                        | 49<br>25<br>9<br>15<br>8<br>8<br>12<br>5<br>11<br>5                                         |

Table B-11 (Continued)

6

| VAR    | SCEN                                                                                          | TARGET                                                                 | MEAN                                                                                                               | SD                                                                                                                        | N                                                                                                                |
|--------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| HKILL  | ALL<br>ALL<br>ALL<br>6<br>9<br>10<br>12<br>13<br>18<br>19<br>21<br>22<br>25<br>26<br>29<br>30 | ALL<br>1<br>2<br>3<br>ALL<br><br>ALL<br>ALL<br>ALL<br>ALL<br>ALL<br>AL | .32<br>.28<br>.47<br>.19<br>0<br>.25<br>.13<br>.50<br>0<br>.43<br>0<br>.23<br>.69<br>.50<br>.43<br>.50<br>.18      | .47<br>.45<br>.50<br>.40<br>0<br>.46<br>.35<br>.53<br>0<br>.53<br>0<br>.53<br>0<br>.44<br>.48<br>.55<br>.51<br>.51<br>.39 | 139<br>75<br>43<br>21<br>2<br>8<br>8<br>8<br>8<br>8<br>7<br>7<br>7<br>13<br>13<br>13<br>6<br>14<br>19<br>22      |
| ORD    | ALL<br>ALL<br>ALL<br>6<br>9<br>10<br>12<br>13<br>18<br>19<br>21<br>22<br>25<br>26<br>29<br>30 | ALL<br>1<br>2<br>3<br>ALL<br><br><br>ALL<br>ALL<br>ALL<br>ALL<br>A     | .80<br>.73<br>.81<br>1.00<br>1<br>.75<br>.88<br>.59<br>1.0<br>.71<br>1.0<br>.92<br>.62<br>.67<br>.64<br>.84<br>.91 | .40<br>.45<br>.39<br>0<br>.46<br>.35<br>.53<br>0<br>.49<br>0<br>.28<br>.51<br>.52<br>.50<br>.37<br>.29                    | 139<br>75<br>43<br>21<br>2<br>8<br>8<br>8<br>8<br>8<br>8<br>7<br>7<br>7<br>13<br>13<br>13<br>6<br>14<br>19<br>22 |
| HITS   | ALL<br>ALL<br>ALL<br>ALL<br>ALL                                                               | ALL<br>1<br>2<br>3                                                     | 9.3<br>8.0<br>14.5<br>5.7                                                                                          | 17.9<br>16.3<br>20.7<br>16.8                                                                                              | 189<br>101<br>52<br>36                                                                                           |
| BURSTS | ALL<br>ALL<br>ALL<br>ALL<br>ALL                                                               | ALL<br>1<br>2<br>3                                                     | 1.6<br>1.7<br>1.8<br>1.1                                                                                           | 1.5<br>1.4<br>1.6<br>1.4                                                                                                  | 189<br>101<br>52<br>36                                                                                           |

## APPENDIX C: INDIVIDUAL DIFFERENCES STATISTICS

Table C-1

•

## Descriptive Statistics on Individual Differences

| VAR       | MEAN         | SD            | MIN         | MAX        | N          |
|-----------|--------------|---------------|-------------|------------|------------|
| FVA       | 16.62        | 5.09          | 10          | 40         | 136        |
| CS1       | 5.61         | .66           | 3<br>5<br>2 | 7          | 136        |
| CS2       | 6.60         | .59           | 5           | 8          | 136        |
| CS3       | 6.43         | 1.11          |             | 8          | 136        |
| CS4       | 6.02         | 1.44          | Ø           | 8          | 136        |
| CS5       | 5.54         | 1.72          | Ø           | 8          | 136        |
| CSL       | 6.10         | .52           | 4           | 7.5        | 136        |
| CSH       | 5.78         | 1.50          | Ø           | 8          | 136        |
| DF        | 1.01         | .54           | Ø           | 3          | 136        |
| CF        | 1.15<br>1.Ø8 | .49           | Ø<br>Ø      | 4          | 136        |
| RF        | 9.43         | .45<br>2.12   | 3           | 3          | 136        |
| NP<br>FP  | -1.63        | .88           | -4          | 11<br>Ø    | 136        |
| FR        | 11.07        | 2.04          | 5           | 15         | 136        |
| BIL       | 3.99         | 2.20          | Ø           | 10         | 136<br>136 |
| BI2       | 3.18         | 2.11          | Ø           | 11         | 136        |
| BIP       | 4.29         | 1.87          | ø           | 9          | 136        |
| BIW       | 6.27         | 2.28          | 1           | 11         | 136        |
| BIZ       | 6.24         | 2.38          | 1           | 11         | 136        |
| BIA       | 3.58         | 1.85          | ø           | 10.5       | 136        |
| BIB       | 5.60         | 1.87          | 1.3         | 9.7        | 136        |
| GEF       | 23.62        | 23.68         | Ø           | 91         | 136        |
| sv        | 33.87        | 24.94         | Ø           | 98         | 136        |
| VP        | 28.32        | 26.31         | 1           | 92         | 136        |
| MSA       | 154.15       | 73.02         | 2           | 299        | 136        |
| TSA       | 101.69       | 22.54         | 53          | 163        | 136        |
| GAMB      | 72.66        | 21.62         | Ø           | 121        | 136        |
| AGE       | 25.78        | 8.01          | 17          | 50         | 135        |
| RANK      | 3.69         | 1.92          | 1           | 7          | 136        |
| TSERV     | 66.12        | 69.41         | Ø           | 304        | 135        |
| TMOS      | 17.87        | 29.57         | Ø           | 204        | 135        |
| TRANK     | 21.88        | 28.26         | Ø           | 120        | 135        |
| TAT       | 8.76         | 16.56         | Ø           | 100        | 136        |
| LFR       | 1.37         | 4.7Ø<br>28.75 | Ø           | 32         | 136        |
| DET<br>ID | 10.56        | 28.75         | Ø<br>Ø      | 18Ø<br>18Ø | 136<br>136 |
| HND       | 5.72         | 23.13         | Ø           | 180        | 136        |
| CMD       | 7.01         | 25.17         | ø           | 180        | 136        |
| AFQT      | 54.73        | 20.48         | 9           | 95         | 96         |
| EL        | 104.59       | 13.73         | 73          | 132        | 96         |
| MM        | 108.50       | 12.31         | 83          | 136        | 96         |
| OF        | 108.70       | 10.60         | 84          | 134        | 96         |
|           |              |               |             |            |            |

Table C-2

Principal Components of Individual Differences

| 1                                      | 2                                  | 3            | 4                    | 5             | 6                       |
|----------------------------------------|------------------------------------|--------------|----------------------|---------------|-------------------------|
| EXPER                                  | FOCUS                              | IMAGE INT    | PERCEPT              | MOTOR         | PERSONAL                |
| RANK (.77)<br>TSERV(.94)<br>TRANK(.80) | FVA (79)<br>CSL (.67)<br>CSM (.87) |              | VP (.57)<br>SV (.66) | TSA (.75)     | BI1 (.53)<br>GAMB (.75) |
| $  R^2 = .19$                          | $  R^2 = .34$                      | $ R^2 = .48$ | $R^2 = .56$          | $  R^2 = .62$ | $  R^2 = .67  $         |

| 1                                             | 2                                | 3               |
|-----------------------------------------------|----------------------------------|-----------------|
| ACTIVE FOCUS                                  | IMAGE INTE                       | RP PASSIVE FOC  |
| RF (61)<br>FVA (84)<br>CSL (.73)<br>CSH (.90) | BIZ (.84<br>3I1 (.74<br>BI2 (.83 | ) NP (.78)      |
| $  R^2 = .29$                                 | $R^2 = .53$                      | $  R^2 = .66  $ |

## Table C-3

~ /

Representative Sampling of Correlations Between Predictors and Performance

| TYPE     | TARG       | WEAP         | JOB               | PVAR       | DVAR                 | CORR       | N          | P                |
|----------|------------|--------------|-------------------|------------|----------------------|------------|------------|------------------|
| FW       | lst        | VULC         | SL                | FVA        | HIDCOR               | 63         | 24         |                  |
| PW       | lst        | VULC         | SL                | CSM        | RFIRE                | .51        | 16         | • •              |
| FW       | lst        | CHAP         | SG                | CSM        | RFIRE                | .42        | 16         | •                |
| FW       | lst        | VULC         | SL                | GEP        | RID                  | .48        | 23         | **               |
| FW       | lst        | VULC         | SG                | AGE        | RDET                 | 49         | 23         | **               |
| PW       | lst        | VULC         | SL                | TSERV      | RDET                 | 52         | 23         | **               |
| FW       | lst        | MIXED        | SL                | AFQT       | RDET                 | . 33       | 38         | •                |
| FW       | lst        | MIXED        | SG                | AFOT       | RDET                 | .52        | 38         | ****             |
| FW       | lst        | MIXED        | SG                | OF         | RDET                 | .42        | 38         | ***              |
| RW<br>RW | lst<br>lst | VULC<br>VULC | SG<br>SG          | RF<br>RP   | TDET<br>TDET         | 47<br>75   | 13<br>7    |                  |
| RW       | 2nd        | CHAP         | SL                | RP         | TDET                 | 45         | 14         | •                |
| RW       | lst        | MIXED        | SG                | RF         | TTOT                 | .59        | 18         | ***              |
| RW       | lst        | VULC         | SG                | NP         | TDET                 | 75         | 7          | **               |
| RW       | lst        | VULC         | SL                | PVA        | TID                  | .60        | 24         | ****             |
| RW       | lst        | CHAP         | SL                | PVA        | TID                  | .60        | 8          | •                |
| RW       | lst        | VULC         | SL                | PVA        | BIDCOR               | 41         | 24         | <u> </u>         |
| RW       | 3rd        | СНАР         | SL                | CSM        | HIDCOR               | .89        | 6          | ***              |
| RW       | lst        | MIXED        | SL                | CSE        | TTOT                 | 52         | 18         | **               |
| RW<br>RW | lst<br>2nd | VULC<br>CHAP | SG<br>SG          | BIZ<br>BIZ | TDET                 | .51<br>.50 | 2Ø<br>13   | **               |
|          |            |              |                   |            | TDET                 |            |            |                  |
| RW<br>RW | lst<br>lst | VULC<br>VULC | SL<br>SL          | BIZ<br>BIZ | FIDCOR               | .37        | 24<br>12   | ••               |
| RW       | 2nd        | CHAP         | SL                | BIZ        | BIDCOR               | .67        | 7          | +                |
| RW       | lst        | CHAP         | SG                | BIZ        | HRILL                | .59        | 23         | ••••             |
| RW<br>RW | lst<br>lst | VULC         | SG<br>SG          | BIZ<br>BIZ | HKILL<br>HITS        | .53<br>.69 | 24<br>9    | **               |
| RW       | lst        | СНАР         | SG                | BIZ        | ORD                  | 66         | 23         | 1 ***            |
| RW       | lst        | СНАР         | SL                | MSA        | TDET                 | 42         | 21         | <br>1 •          |
| RW       | lat        | CEAP         | SG                | MSA        | TDET                 | 60         | 8          |                  |
| RW<br>RW | 3rd<br>1st | VULC         | SG<br>SG          | MSA<br>MSA | TDET<br>TDET         | 54<br>36   | 24         | •                |
| RW       | lst        | MIXED        | SL                | AGE        | TDET                 | .60        | 22         | ***              |
| RW       | 3rd        | VULC         | SG                | AGE        | HKILL                | .50        | 23         | ii<br>  **       |
| RW       | lst        | CHAP         | SL                | AGE        | HRILL                | .73        | 8          | **               |
| RW       | 2nd        | VULC         | SL                | TSERV      | HIDCOR               | .47        | 11         | •                |
| RW       | 3rd        | VULC         | SL                | TSERV      | HKILL                | .51        | 23         | **               |
| RW       | 3rd        | VULC         | SG                | LFR        | HKILL                | .74        | 9          |                  |
| RW       | lst        | VULC         | SG                | LFR        | HITS                 | .53        | 19         |                  |
| RW       | lst        | MIXED        |                   |            | TDET                 | 37         | 50         |                  |
|          | on corrs   | ** *         | p < .0            |            | arman co<br>ases < 1 |            | = p<br>= p | < .10<br>< .05   |
|          | /          | *** =        | p <u>₹</u> .Ø(    | 85         |                      | ***        | - p -      | 2.01             |
|          |            |              | p <u>&lt;</u> .00 |            |                      |            | • p        | <u>&lt;</u> .005 |