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1 Introduction

These notes contain the slides of the course Unifying Parametric and Inplicit Surface Repre-
s.entations for Computer Graphics. given at SIGGRAPH 90. They begin with commentaries
and references that introduce the material to individuals who have not attended this course.

Of necessity, the subject is mathematical. using many concepts from elementary algebraic
geonetry. The concepts do have an intuitive interpretation that can guide the reader using
those concepts even though he or she may not be aware of some of the finer points. Those
intuitions are only sketched here. but can be found in much detail, for instance, in [13], in
Chapters 5,through 7.

'[he material is organized as follows: After reviewing some basic facts from mathematics,
methods for parameterizing implicit curves and surfaces are presented, concentrating on how
to deal with nionoids. Monoids allow an especially easy conceptual approach. but one can
a ppreciato some of the technical complexities when studying the method in the case of cubic
curves.

Thereafter. we discuss how to convert from parametric to implicit form. Many authors
have (iscussed these techniques. and( only a very limited perspective is developed here. A
broader (lescription of the subject is found in (13]. in Chapters 5 and 7. and also in [15],
where the problem of faithfulness is conceptualized and (liscussed. In particular, resultants
are covered in detail in the theses by Sederberg [17] and I rJhionh [9]. We do not discuss
muiltivariate resultant formulations, but refer to [91 for further reading-on the subject.

Conversion between implicit and parametric form is. in general, an expensive comnputa-
tion. It is therefore worth considering alternatives. One such approach is to view parametric
curves and surfaces as manifolds in higher-dinmensional spaces. Such a view no longer has
to distinguish between implicit and parametric representations. and the methods it develops
apply to both equally well. We will not discuss this approach here, and the reader is referred
for details to [1.1. 15].

Basic Mathematical Facts

Recall that a. plane parametric curve is defined by two functions

X = hl(s)

y = h2(8)

and that a parametric surface is defined by three functions

X= h(s.1)
y = h12(8,1)

S h:1 (8,q)
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We can think of a parametric curve as a map from a straight line with points s to a curve
in the (x, y)-plane. and of a parametric surface as a map from a plane with points (s, t) to
a surface ini (x. y, z)-space.

The functions hk. will be polynomials or ratios of polynomials in s and t. Accordingly,
we speak of intcgral or rational parametric curves and surfaces whenever the distinction is
critical. Ordinarily, the curves or surfaces are restricted in the literature to a domain; e.g.,
to the interval [0, 1] or to the square [0. 1] x [0, 1]. Here, we do not so restrict parametric
curves and surfaces.

Typically, the functions hk are presented in a particular basis; for instance, in the
Bernstein-Bezier basis, and this allows relating the coefficients of the functions hk with an
intuitive understanding of the shape of the curve they define. A suitable basis also affords
a wealth of techniques for combining patches of parametric curves or surfaces into larger
surfaces, and to modify the shape of the larger surface locally or globally, in an intuitive

manner. See. e.g.. [5, 11].
An implicit curve is defined by a single equation

f(?,Y) = 0

and an implicit surface is defined by a single equation

f(x.y,z) = 0

Thus. the curve or surface points are those that satisfy the implicit equation, so that we no
longer think of curves and surfaces as the result of a mapping. We will restrict the function
f to polynomials.

Since we restrict the hk to polynomials, or ratios of polynomials, and restrict the f
to polynomials, we are dealing with algebraic curves and surfaces. Algebraic curves and
surfaces include virtually all surfaces studied and used in geometric and solid modeling, and
in computer-aided geometric design. Algebraic geometry provides us with the following key
facts about algebraic curves; e.g., [20]:

Every plane parametric curve can be expressed as an implicit curve. Some, but
not all. implicit curves can be expressed as parametric curves.

Similarly, we can state of algebraic surfaces

Every plane parametric surface can be e.pressed as an implicit surface. Some,
but not all. implicit surfaces can be expressed as parametric surfaces.

This means, that the class of parametric algebraic curves and surfaces is smaller than the
class of implicit algebraic curves and surfaces. There is even a rigorous characterization
of what distinguishes a parameterizable algebraic curve or surface from one that is not
parameterizable. Roughly speaking, a. curve is l)arameterizable if it has many singular
points: that is, many points at which the curve intersects itself or has cusps. We will not go
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Figure 1: The Projective Line

into those details, because the characterization is very technical, and the computations that
would be needed to test whether a curve or surface is parameterizable are quite complex and
time-consuming; [3].

We will discuss special curves and surfaces that can be parameterized fairly easily. They
include the following cases.

* All conic sections and all quadratic surfaces are parameterizable.

" Cubic curves that have a singular point are parameterizable.

" Monoids are parameterizable.1

Ali parametric curves and surfaces have an implicit form, and we will discuss several
approaches for finding the implicit forms. However, it is possible that a parametric surface
(toes not contain certain points found on the corresponding implicit surface. Some of the
missing points can be recovered by considering the surface parameterization projectively, but
not all missing points can be so recovered. Except for certain special cases, the conversion
between implicit and parametric form is expensive, and one does not invoke the conversion
algorithms lightly.

Ordinarily, we deal with affine spaces in which points may be fixed using Cartesian
coordinates. On the affine line, a point has the coordinate (xl); on the affine plane, a point
has the coordinates (zI,X 2); and in affine space, a point has the coordinates (Xl,X2,X3). In
contrast, projective spaces add another coordinate :Lo, and consider a point defined by the
ratio of its coordinates. For example, the projective line has points (xo,xl), and for all A $ 0
both (xo,xi) and (Axo,Axl) are the same point. The coordinate tuple (0,0) is not allowed.

The projective line can be visualized as the pencil of lines through the origin, embedded
in the afine plane, as shown in Figure 1. Here. the projective point (s,t) corresponds to the

'Monoids are defined later.
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Figure 2: Parameterizing the Unit Circle

line
X0 = .-9A

x, = tA

To each affine line point (xl), there corresponds the projective line point (1,xi). Visually,
the affine line is viewed as the points obtained by intersecting the pencil with the line xo = 1.
The projective line has one additional point, with coordinates (0,1), corresponding to the
line xo = 0. This point is said to be at infinity.

The projective plane has the points (:Vo,: 1,x 2), (0,0,0) is not allowed. For all A 0 0,
(xo,xl,x2) and (Axo,Axl,Ax 2 ) are the same point. Again, one may embed the projective
plane into affine 3-space by considering the projective plane as the bundle of all lines, in
3-space. through the origin. The affine plane is a subset, obtained by intersecting the bundle
with the plane xo = 0. The additional points correspond to the pencil of lines through the
origin that lie in the plane xo = 0, and form the line at infinity. The coordinates of these
points are of the form (O,x 1 ,x 2 ).

Projective geometry leads to simplifying many theorems by eliminating special cases.
For our purposes, projective curve parameterization has the advantage that all points on a
parametric curve can be reached with finite parameter values without exception. This will
not necessarily be the case for projectively parameterized surfaces.

2 Parameterization

2.1 Plane Algebraic Curves

A Geometric View of Parameterization

The geometric idea underlying parameterizing a plane algebraic curve is illustrated by the
unit circle, x2 + y2

- 1 = 0. We pick one point on the circle, say p1 = (-1,0), and consider



all lines through this point. A line through P, has the equation y -x + t, where t is the
intercept with the y-axis. The lines are indexed by t; that is, to each value of t corresponds
a specific line through pl. Each line intersects the circle in p, and in one additional point

(O).2 The coordinates-of p(t) are obtained in three steps:

I. Substitute tx + t for y in the circle's equation. obtaining the-equation

: 2 (1 + 12) + 2t2x + t2 - 1 =0

2. Solve this equation for a. obtaining

x I X2

•vl = - - 1+ t 2

J. Observe that xt is the abscissa. of the point pl, and that x2 the abscissa of the point
P2. Clearly, x2 is a. function of t.. The corresponding ordinate .2 is obtained from the
line equation as Y2 = tX2 + I and is

2t
t+ ti2

Note that (:X2, Y2) is the familiar parameterization of the unit circle.
The method just illustrated can be thought of as the following procedure. Let f(x, y) = 0

be the curve to be parameterized.

Simple Parameterization Algorithm 1

1. Pick a point P, on the curve f, and consider all lines through Pl, indexed
by the parameter t. These lines form a pencil.

2. For each line of the pencil. compute the "other" intersection point with
f, expressing its coordinates as functions of t. These functions are the
parameterization.

This simple method works unchanged for every conic section, but not necessarily for curves
of higher algebraic degree. The reason it works for conics is a consequence of Bezout's
Theorem that states that a line intersects a conic in just two points. With one of these two
points fixed as Pl, there is just one additional point, and that point is uniquely associated
with f. If f were a cubic curve, a line would intersect f in general in three points. Fixing

2As a fine point, observe that the line r + 1 = 1) also contains the point pt = (-1, 0) and intersects the
circle only in l. Here, p1 counts as a double point, since the line is tangent to the circle. The point pi is
therefore the additional point in which this line intersects the circle, and corresponds to t = -oo. Only a
projective parameterization reaches this point from a finite parameter value.
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oiie of them on the curve, would leave two additional intersection points, P2 and p3, both
associated with the same value of t. and so the curve would not be properly parameterized
by our algorithm.

To make the method work for cubics requires choosing a special point: that is, a point
such that lines through it intersect the cubic in just one additional point. Such a special
point exists only on singular cubics. and is actually the singular point itself. Nonsingular
cubics (1o not have such a point. and cannot be so parameterized. Indeed. it can be proved
that a nonsingular cubic cannot be parameterized at all.

Modified in this way, choosing a special curve point Pi. will our simple method of param-
eterizing curves work for all those curves that possess a parametric form? Not unless other
modifications are made that we (1o not discuss. But there is an interesting class of curves
that can be so parameterized, namely the class of monoids. to be discussed later.

Parameterization of Conics

('otiic sections are parameterized by the method described before, using any curve point.
However, it may I)e inconvenient to pick an arbitrary point on the conic. The computations
simplify if the point is picked such that it is the origin, or else at infinity, in a principal
(lirection., This may require a change of coordinates.

Let the conic equation be

alix2 + 2 av2xy + a22Y 2 + 2al3x + 2a23y + a33 = 0

We first look for a point "at infinity" by computing the roots of the quadratic form

alix "2 + a22Y 2 + 2a12.xy = 0

The roots are given by

= -(112 2 11(22 = l

They are either two real roots, possibly equal. or they are conjugate complex. In the complex
case. the conic does not have points at infinity. and is an ellipse or a circle. In that case we
must find a point at finite distance, and use thereafter the method for monoids described
later. Otherwise we have a point at infinity, anid proceed as follows.

Let (it, v) be one of the two real roots. We substitute

X = XL +LY1 y = Vyl

in the conic equation. It is easy to see that t he resulting equation is of the form

yI(cXI + 4) + q(x:) = 0

'See [1), or [13J, p. 1T.
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where q(xf is a quadratic polynomial in x1 alone. This conic is parameterized by

-q(t)xl~(t) -" I .q~)=

ct +d

Because of the substitution. therefore. the original conic is parameterized by

= t+uyi(t) y(t) = Vy1(t)

There is another method for parameterizing conics. based on linear algebra. due to Jacobi
in the previous century. We sketch it briefly: see [13] p. 170 for details. The advantage of
Jacobi's algorithm is that it generalizes directly to quadratic surfaces. and that it is well
behaved numerically.

The conic equation.

alix2 + 2aI2 xy + (122Y 2 + 2a13x + 2a23y + a3 3 = 0

can be written as the bilinear form

alltj (112 at13 X

(x Y 1) a12 (a22 (123 Y 0

a 1 3 (123 (33

An iterative algorithm can be devised that applies rotations to the coefficient matrix and
diagonalizes it. After diagonaization. the resulting conic has a standard parameterization,
of the form '

x(t) = i (12 Yt) = 112 2
1 + t2  I + t 2

The numbers it, and it2 depend on the entries bkk of the diagonalized matrix; that is,
/tl = F and 112 = v12 . . By applying the inverse rotations, this standard
parameterization is mapped to a parameterization of the original conic.

Parameterization of Cubic Curves

The difficulty of parameterizing a cubic curve is to find out whether the curve has a singular
point. and if so, where it is. The singularity could be apparent and at the origin, as in the
cuspidal cubic

y -r
"3 = 0

4 More precisely, the parameterization depends on the signs of the diagonal entries. We assume here that
the first two diagonal entries have equal sign opposite to the sign of the third entry.
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that is parameterized by

X(t) t2  y(t)

The singularity could be at infinity, as in the case of

y-x 3 +x 2 -. r=0

parameterized by

X= t 3 - 123 - +t

But the cubic could also be nonsingular and have no parameterization. as in the case of

y 2 -. 1+.r=0

The following algorithu from [21 solves the parameterization problem of cubic curves. De-
spite the relative complexity, the algorithm is related to the simple parameterization proce-
(lure (liscussed in geometric terms before. We illustrate the method with an example from
[13] p. 1,1.

We are given the cubic

f = 28y3 + 26xy 2 + 7x2 y + .13/2 + 28y 2 + 16xy + 7y + 3x/2

Its degree form consists of all cubic terms. The first step is to find a real root of the
(legree form. so as to apply a. coordinate transformation to f that eliminates the ya-term.
Since the degree form is cubic, it has at least one real root. Here, (-2, 1) is a root of
28.y3 + 26xy2 + 7.i2 y + X3/2.

In the second step, we use the root (uv) to perform the substitution

X = X! + IyI y = Py1

Note that this substitution is exactly as in the conic parameterization. In our example, we
obtain

,i: - 1)y + 4(x'2 + 4.xe + 1)yi + (x + 3x 1 )/2 = 0

The transformed curve equation has the form

hI(xj)yI + h'2(xl)yl + h3(xj) = 0

where h, is a linear polynomial, h2 a. quadratic polynomial, and h3 a cubic polynomial. In
step 3, we multiply with ht to bring the equation into the form

[hz(xj )y + 12( 1) 2 + h4(xI) = 0



where h4 - hjh 3 - h2/4. Note that h1 has degree 4. So. we have

.- 1)y + 4(xi - +)(4 ± 4:r + )yt + (.r -:,.' + 34- 3x,)/2 = o
which can be rewritten as

[2(x 1 - t).i + (4 + 4x, + 1)12 - + 4x, + 1)2 + (. -. + 34 - 3x1)/2 = 0

In Step 4. we substitute y2 for the quadratic form (ht(xj )YI + h2(xl))2. In the example,
Y2 = 2(x - I)yi + (A + 4xl + 1), whence

2= ( + T.1:3 + ::1.1 + 19a., + 2)/2

The righthand side of this equation is a polynornial of degree up to 4. It can be proved
that the original cubic is nonsingular if and only if the righthand side is of degree :3 or 4 and
has no multiple roots. Note that a nonsingular cubic cannot be parameterized. Otherwise,
the Inultiple root \ can be used to transbrm the equation into a quadratic equation. by the
substitutionY

Y3 -
-A

In Step 5. therefore. we investigate the roots of the righthand side. If a double root is present,
we make this substitution. In the example. the righthand side has the double root x, = -1,
so we set y3 = y2/(;l + 1) and obtain

2y2 .:2 + 15xl + 2

If Step 5 succeeds, the substitution transforms the equation into a quadratic one, and
this quadratic equation is parameterized in Step 6 using the methods discussed before.
Thereafter. the various substitutions are inverted, transforming the conic parameterization
to a parameterization of the original cubic. [n our example. the conic is parameterized by

t2 -2 Y(t + 15t + 2.v1(1) = .j3 (t) =

2t + 15 V4(2t + 15)

Since Y3 = Y21(Xl + 1), we thus obtain

(t 2 + 1't +2)(12 + 2t + 13)
Y2 = - 2(2t + 15)2

Now Y2 = 2(xl - l)yi + x2 + 4a:1 + 1, from which we obtain

(V/+ I)t4 + (8v4+ 17)t3 + (60v/2+ 45)t.2 + (44v/+ 199)t + (109v2+ 26)
= - 2(4t3 + 222 - 128t - 510)

Note that we can cancel (t - I + 3V2), whence

(,7+ 1)t3 + (6v2+ 12)t2 + (30%f2+ 21)t + (1lV1"+ 40)
Y1 = v4(4t - ( 12 \/2 - 26)t - (904V+ 30))

From this parameterization, we finally obtain the parameterization of the original cubic f.
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Parameterizing Monoids

A curve f of degree n with a point of multiplicity n - I is a monoid. Every conic section is
a monoid. and every singular cubic curve is a monoid. An analogous definition for monoidal
surfaces is discussed later.

Monoids are especially easy to parameterize. provided we know where the (n - 1)-fold
point is and have brought it to the origin. [17]: or else if the point is at infinity, in a principal
direction. We explain the parameterization method assuming the singularity is at the origin.
Examples of monoids in this form include the circle

.2 + -22x = 0

through the origin, the cuspidal cubic.

X 3  .12 "0

and the alpha curve.
.r + .11 2 y2 = 0

both with the singularity at the origin.
When the (n - 1)-fold point is at the origin, the implicit monoid equation is

hn(x. y) - h,,-t(x, y) = 0

where h, has only terms of degree n. and h,_ I has only terms of degree n- 1. This is readily
verified in the three examples.

I. is easy to see that the parameterization of the monoid is given by

t) h, 0. ty(Ist) = t

i,,q, t ) h,, (s, t)

This is a projective parameterization that is changed to the normal parametric form by
either setting s = I or setting t = 1.

The inonoid parameterization is derived by considering a pencil of lines through the
origin. Every line can be expressed parametrically as

x(A) = sA y(A) = tA

and is determined by a unique ratio s : t. With s = 1, we obtain the usual form

y=tx

Now each line intersects the monoid in one additional point, and this point is therefore
uniquely associated with the ratio s : t of the line.
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In the example of the alpha curve. :r3 + .r2  2 = 0. we have

h3(x.y) = r3

h2(X,y) = -

Its (projective) parameterization is therefore

2 2 2 2

Xv(st) = . 3 y(s.t) = 3

With s = I we obtain the usual parameterization

x(t) = /2-I y(t) = /3-t2

Because the parameterization is so easy to find. inonoids have also been called dual forms
in the CAGD literature: e.g., (17].

2.2 Algebraic Surfaces

The parameterization of implicit algebraic surfaces is much more complicated than curve
parameterization. For one, a characterization of when an implicit surface has a parametric
form is technically quite complicated, and is not readily explained in geometric terms. There
is no known general algorithm for determining whether a given implicit surface can be
parameterized. and if so, how. Fortunately. mionoidal surfaces can be parameterized in a
very simple manner with a clear geometric intuition, and these surfaces include all quadrics.

Monoidal Surfaces

An algebraic surface f(x,y,z) = 0 of degree n that has an (i - I)-fold point is a monoidal
surface. Monoidal surfaces include all quadrics. cubic surfaces with a double point, and
Steiner surfaces, [17].

Bezout's theorem states that a line intersects a surface of degree n in exactly n points,
assuming we admit complex intersections and intersections at infinity, and account for in-
tersection multiplicity. It follows that a monoid could be parameterized by an extension of
the simple parameterization algorithm described before:

Simple Parameterization Algorithm 2

1. Let pi be a point on the nionoidal surface of multiplicity n - 1. and consider
all lines through Pt. Each line is determined by a pair (s, t) of slopes in two
principal directions, or. alternatively, by a unique ratio r : s : t of direction
cosines.
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2. Determine (x(s, t), y(s, t), z(s. t)), the additional intersection point of each
line with the monoidal s!irface. as function of s and t, thereby deriving a
parameterization.

Algebraically, things are extremely simple when the singular point is at the origin, for
then tihe implicit equation has the form

h?(x.y,z) - h,,-(x,y,z) = 0

where h,, has only terms of degree n. and h,, - has only terms of degree n - 1. The
parameterization is then

.h(rrs.t) rt
(r,s.t) = 1 t)

h,_ rst)
y(r,q. t) = .

hn(r.s,t)

z(r~s. t) = ht rst
h/1r'st)

This is a projective parameterization that is changed to the normal parametric form by
setting one of the parameters r. s, or t to 1.

As an example, consider the sphere with radius I and center (1,0,0)

x2 + y + z2 2 = 0

It is parameterized by

2r
2

1.2 + s2 + P2

2rs :

1.2 + s2 + t"2

2rt
z(r,s,t) = 2t

r.2 + 'q2 + P

Setting r = I, we obtain

4.s,t) = 2
I + s2 + t2

YOR, 02sy(s,t) = 2
I + s' + P

t) 2tz(s,t) = 2
I + s2 + t2

3



Quadric Surfaces

Quadrics call be parameterized as monoidal surfaces. Any point on tile quadric suffices. The
algebraic method discussed for conic sections can be generalized [1]: First. we find a point
on the quadric at infinity, next. we change coordinates to move this point into a special
position. and then we pick up a standard parameterization that is structurally like the one
given before. for monoidal surfaces whose singularity is at the origin. The inverse coordinate
transformation, finally. maps the standard parameterization to a parameterization of the
original quadric surface.

.Jacobi's algorithm can also be used for quadric surfaces. Here, the coefficients of the
(Itadric surface

(I4 ." + 2a12Xy + 2alaxz + 2a14.V + (122Y 2 + 2a23yz + 2a24y + a 3 z2 + 2a.34z + a44 = 0

are written as the symmetric matrix

all 112 a 1.3 a 1.1 '

a1,2 11,22 12o3  a1924

a 13 a123 a133 (13,

aj 4 (124 a34 a44

and this matrix is diagonalized using the usual rotations. From the diagonal form. a standard
parameterization is determined that is mapped back to a parameterization of the original
quadric by the inverse rotations. The standard paraneterization depends on the signs of the
diagonal entries and on the rank of the matrix. For details see [13), p. 180.

3 Implicitizing Rational Curves and Surfaces

Existence of the Implicit Equation

Given a parametric curve with rational coordinate functions (hi(s),h 2(s)), its implicit equa-
tion should be a polynomial f(x,y) = 0 such that f(hl(s),h 2 (s)) -0 . Moreover, the degree
of f should be as small as possible. To understand the existence of the implicit equation, it
is useful to learn about transcendental field extensions.

Let K be a subfield of a larger field E.' Consider a set S of elements in E that are not in
K. The extension field K' = K(S) generated by S is the smallest subfield of E containing
S and K. If every element of S is the root of a polynomial f(x) with coefficients in K, then
K' is an algebraic extension. Otherwise, K' is a transcendental extension. For example, let
K be the field of rational numbers. E the field of real numbers, and let S contain only the

'A field is a set with addition, subtraction, multiplication, and division. For the properties that must be
satisfied see [19].
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number 7r. Then the extension field K(ir) is a. transcendental extension. On the other hand,
with S = {v'_} we obtain the algebraic extension field K(v2-), since v,2 is a root of X2 - 2.
See also [13]. Chapter 7.

Consider a transcendental extension of K by a finite set of elements of E, say S =

{.v..2...r}. It is then known that every element in the extension field can be expressed
as a rational polynomial expression in the xi. This permits us to consider purely symbolic
extensions of K in which the elements of S are symbols. The resulting extension field is the
rational function field of K, and is denoted K(xi . . ,

The cardinality of S is called the transcendency degree of the extension, and a theorem
from algebra asserts that the transcendency degree is unique. This implies that if U1, ... , Ur+1
are arbitrary elements in the extension field. then they must satisfy a polynomial equation
f(1 . ... , ur+1) = 0 where the coefficients of f are in K.

W'e explain why the implicit equation of a rational curve exists, following (9]. Consider
the rational function field C(s) of the complex numbers C of the transcendental element s.
Because the curve is given by

X = hi(s)

y = h2($)

we should think of x and y as elements of C(s). But the transcendency degree of C(s) is 1,
so .: and y must satisfy a polynomial equation f(x,y) = 0. The simplest such equation is
the implicit equation of the rational curve.

The same argument shows the existence of an implicit equation for a rational surface:
Let

x = h1(,st)

y =112($,t)

h= h(s,t)

l)e the parametric surface. Then x. y, and : are elements of the field C(s, t), of transcendency
degree 2. So. they must satisfy a )olynomial equation f(x,y,z) = 0.

Implicit Forms Vs. Base Points

We usually think of a parametric curve as a mapping from the line to a plane curve, and
of a parametric surface as a mapl)ing from the plane to a surface in 3-space. Suppose we
have started with a parametric surface, found its implicit equation, and compare the point
sets defined by each. Then it turns out that every point on the parametric surface also lies
on the implicit surface, but not necessarily vice-versa. Consider as example the parametric
surface

15



The implicit equation of the surface is

V -z = 0

Since
(st)4 - (.st 2 )2(.s2 ) 0

every point of the parametric surface is also on the implicit surface. Now the points

(0. u.0)

are on the implicit surface. But when i # 0. those points are not on the parametric surface,
because z = 0 forces s = 0, an(l therefore also y = 0. It follows that the parametric surface
could be a. proper subset of the implicit surface.

In general. it is known that the implicit surface may contain finitely many isolated points
and curves that are "missing" in the parametric form of the surface. Some of these points
can be recovered by changing the parameterization to a projective one. We did this for the
it nit circle, in order to reach the point (-1.0), and for the unit sphere. to reach (-1, 0,0).
But not all points can be so recovered. and. in particular, miot the points missing in the
example just shown.

Consider the rational surface

________ '2(Zq,1) h3___9,0

ho(s,t)' ho(s.t)" ho(s.t

The polynomials hk define four curves on the (s,t)-plane. A base point is a common in-
tersection (so,to) of the four curves. Such parameter values (so,to) do not define a surface
point. Chionh [9] discusses the relationship between base points and "missing points" on
the parametric surface.

Sylvester's Resultant

Sylvester's resultant is a simple method for eliminating a variable from two algebraic equa-
tions. and it can be used to find the implicit equation of a parametric curve or surface. Given
two polynomials

f(x) = a,,x" + a._,xn- +...+ ao

g(x) = bmx"' + b,,,-.r''-i  + '". + bo

16



it can be shown that f and g have a common root iff the (n + n) x (m + n) determinant

an an-1" aO 0 ... 0

0 an " a, ao ... 0

0 ... 0 an an -I ""." aoR= .

bn bi " bo 0 . 0

0 bm . ... b 0 0
So ° b1  10 ..

0 ... 0 bn bin-1  ... bo

is zero: see (19], section 130. The determinant is the Sylvester resultant. Here, the ak and
bk are assumed to be numbers.

The Sylvester resultant can be used for two multivariate equations: that is, under the
assumption that the ak an(l bk are polynomials in the remaining variables. In this case,
the Sylvester resultant R is a polynomial in these remaining variables. The solutions of the
equation R = 0 either extend to a common solution of the original equations f = 0, g = 0, or
are a solution of the system an = 0. b.. = 0. or else are a common solution of the coefficient
polynomials of f or of g.

The Sylvester resultant can be used for implicitizing parametric curves and surfaces,
subject to certain limitations. Briefly, the rational curve

ho(R)' ho(s).,

is considered as the intersection of two surfaces in 3-space given by

.rho(s)-hi(s) = 0

yho(s) - h2(s) = 0

Elimination of s using the Sylvester resultant delivers the implicit equation, or a multiple of
the implicit equation due to the possibility that the lead coefficients vanish.

Parametric surfaces could be implicitized similarly, forming the equations

xho(s,t) - hI(s,t) = 0

yho(st)-h.2(s,t) = 0

zho(s,t)-h 3(st) = 0

and eliminating first s, say, and then t. Alternatively, a number of other resultant formula-
tions have been proposed for eliminating both variables at once. See (9] for details.

17



Grobner Bases

For integral rational curves and surfaces. Gr6bner bases algorithms provide an alternative for
implicitizing parametrics without the introduction of extraneous factors. These algorithms
are very sophisticated and are very general: see [6. 7. 13. 15, 16]. Certain specializations
exist that improve their performance significantly.

We sketch some of the ideas that go into Gr6bner bases algorithms. For a more detailed
explanation and many examples and applications see [13], Chapter 7. Consider the set
K( vj..... v,.] of all multivariate polynomials in ::j ..... x and with coefficients in the field
K.. For our purposes. we consider the field of complex numbers. An ideal f is a subset of
polynomials in K[xi,...v4] that is closed under addition and subtraction, and also under
multiplication with other polynomials that are not necessarily in 1. A basic theorem asserts
that we can find a finite set f, ..... f, of polynomials in I such that every other polynomial
g of I can be written as an algebraic combination of the .fk; that is.

S= fttf + 1t2 fh + "+ "f, ttk E K[xl......]

There are many ideal bases, not necessarily of the same car(linality. A Gr6bner basis is an
ideal basis with special properties that permit answering basic questions about the ideal
using simple algorithms. Every ideal has a Gr~bner basis. and this basis depends on certain
orderings of terms. For example, in the eliminalion ordering') we first arrange the variables
in a fixed sequence. say

XI -< X2 "'-Xr

and declare that a term u comes earlier in the ordering than another term v provided that
i, contains a, variable that is later in the variable sequence than every variable occurring
in it. So. with x -< y -< z, the term u = .r'1y2 would precede the term v = xyz. If the
highest occurring variables in the two terms are the same. then the degree of that variable
determines the order, and ties are broken by recursively considering subterms derived by
deleting the highest variable from both terms. Thus .x10y" -< xy3 and x' y- 2 < X .y 2 z2.

Given a set of algebraic equations, the Gr6bner basis of the ideal generated by the occur-
ring polynomials. with respect to the elimination ordering, defines an equivalent system that
is in triangular form and can be solved much more easily. The basis will contain the implicit
form of a parametric curve or surface, provided the surface is integrally parameterized.

The term ordering influences the time required to construct a Gr6bner basis. The elimi-
nation ordering just discussed produces a basis best-suited to many CAGD applications, but
requires more time than basis construction with respect to certain other orderings. Basis
conversion algorithms exist that allow first computing a Grbbner basis F with respect to
any ordering, and then post-processing F to reveal some of the information explicit in the
basis F' with respect to the elimination ordering. Combined, the two steps often are much
more efficient than the outright construction of the basis F. The approach is especially

also called lexicographic ordering
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appropriate for implicitizing parametric curves and surfaces. For details see [13], Section

Experience with Elimination Algorithms

Many resultant formulations have not been implemented so that no experimental data can
be cited in support of their possible practicality. We have experimented with implicitization
of curves and surfaces using

1. Sylvester's resultant,

2. Gr6bner bases with the elimination order, and

3. Basis conversion.

Three surface implicitization problems were solved, using integral parametric surfaces of
degree two, three, and bicubic. The parametric quadric is

: = :312 + .s'2 +. st - 2 q- 5 t + 4

= _- s t + 8 t + 7

z = 94t+12,-l5t+34

The parametric cubic is

X= _ 3 + 3 st + sq + s

8 :s2 -3t + 1

13 2 ,t-58t + t - s'q

Trhe bicubic surface is

= 3(t- l)2+(q - 1): +3s

y = 3(s- l)2+t3+ : t

Z = -3(s - 5q + 5)t3 _ :(, 3 + (iS2 - 9s + I)t2

+t(6q3 + 932 - 18, +3) - 3s(s - 1)

The running times are shown in the table. All computations were done on a Symbolics
3650 Lisp machine with 16MB main memory and 120 MB virtual memory. Note that the
hardware speed of the machine is less than one MIP. Methods I and 2 are the standard
implementations of resultants and Gr6bner bases offered by Macsyma 414.62. Method 3
was writton at Purdue. An entry x indicates that the computation could not be completed
due to insuificient virtual memory. The table shows clearly that Method 3 improves effi-
ciency significantly, but overall the times are much slower than one would require for routine

applications. Future work is required to improve the situation.
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Problem. Method I Method 2 Method 3

quadratic 21 22 6

cubic 105  o :315

bicubic x o tO"5

Table 1: Inplicitization Times in Seconds
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5 The Slides

I. Basic Facts

L.A. Definitions Recalled

I.B. Theorems on Conversion

I.C. Projective Parameterizations

Plane Parametric Curve

X = hi(s) y = h2($)

Parametric Surface

X = h1(a,t) y = h2 (S,) 0 Z = h3(s,t)

The hk are polynomials or ratios of polynomials.
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Implicit Curve
f(x,y) =0

Implicit Surface
f(ryz) = 0

Typically f is a polynomial in the power base.

Nota Bene

9 Parametrics are often restricted to a domain,
but not here.

* Many properties of parametrics depend on the
basis in which the hk have been expressed, and
are valid within a given domain only. We as-
sume a basis in which the hk are uniquely writ-
ten.

Basic Theorems

* Every plane parametric curve has an implicit
form.

e Every parametric surface has an implicit form.

* Not every implicit plane curve has a parametric
form.

* Not every implicit surface has a parametric
form.
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so...

The class of parametric curves and surfaces is smaller
than the class of implicit curves and surfaces.

but...
An exact characterization of parameterizability is
not simple.

Some Parameterizable Implicits

* All lines and all conic sections

e All planes and all quadratic surfaces

e Singular cubic curves

* All monoids

Methods for Implicitizing Parametrics

e Variable elimination via resultants.

* Elimination ideals via Gr6bner bases.

All methods are expensive except in certain special
cases,
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Example

The circle x2 + y2 _ 1 = 0 is a conic section and can
be parameterized. The parametric form is

i t 2  2tX(t) =YWt =
1 + t2  1 + t2

Parameter/Curve Point Correspondence

x

Other parameterizations of the circle can be obtained
with a fractional linear transformation of t; e.g.,

3s - 1
s+1

yields

-4s2+4s 3s2 +2s - 1
x(s) = 5- 2s + y(s) =52 - 2s + I
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Parameter/Curve Point CorrespondenceY.

The parameterization does not "reach" the point
(-1,0) unless it is changed to a projective param-
eterization, by homogenizing the functions hk.

s2 - t2  2stX = t2  Y 2 -+ t2

On surfaces, not all "missing points" may be so re-
covered.

Parameter/Curve Point Correspondence
),

1i,-
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Missing Points Example

The parametric surface
x -"s8t y St 2  Z-- 2

has the implicit form

e4 -y1z= 0

This surface contains the line x = z =0 that is not
reached by the parametric form.

Nonparameterizability Example

The cubic y2 _ X3 + x = 0 cannot be parameterized
unless square root functions are used.

Projective Coordinates

The affine point (x1 ,x 2) corresponds to the projec-
tive point (Axo, Ax1, Ax2), where xo = 1 and A is not
zero.

This sets up a correspondence between lines in 3-
space and points in the Cartesian plane.

Points with xO = 0 are permitted, but not the point
(0,0,0). Such points are called points at infinity.

27



Projective - Affine Correspondence

', 1 - /

X$l

Having projective coordinates simplifies many theo-

rems by eliminating special cases.

The affine implicit curve f(x, y) = 0 corresponds to
the projective implicit curve F(w, x, y) = 0, where

and n is the degree of f.

The projective line has points (As,A t), where A 0 0,
and s and t not both zero.

A projective curve parameterization is one in which
the coordinate functions are homogeneous in s and
in t.
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Projective - Affine Correspondence
X0

Example

The unit circle is parameterized by

w(st) = 2 + t2

x(s,t) = a-t 2

y(s,t) = 2st

When s and t are integer, we obtain the rational
points of the unit circle.

A projective surface parameterization is a map from
the projective plane to the surface.

There may be sotue points that are not reached by a
projective surface parameterization; they are called
base points.

Valuations are a method for reaching all surface
points.
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End of Part I

II. Parameterizing Implicit Algebraics

II.A. Curves:

Geometric Idea

Conics, Cubics

Monoids

113B. Surfaces:

Monoids, Quadrics

IL.A Curve Parameterization

30



How to Parameterize A Circle

Line equations are y =t(x + 1)

Substitution into circle yields

X'(1+ t') +2t'x + t'- 1 0

Solutions are -1 and

Resulting Parameterization is

() 1 _-t

1 +t2

2t
M 1 + t2 '
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Algorithm

1. Fix a point p on the conic. Consider the pencil
of lines through p. Formulate the line equa-
tions.

2. Substitute for y in the conic equation, solve for
x(t).

3. Use the fine equations to determine y(t).

Hyperbola Example

Implicit equation: xy - 1 ='0

Lines are: y = (X + 1)t - 1

Substitution yields: x(x + 1)t - x - 1 = 0

Interesting root: X(t) = 11t

Parameterization: x(t) = 11t

y(t) = t
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How to Find a Point on a Conic

Intersect with a line - requires solving a quadratic
equation.

Easiest with line at infinity, but that may yield. com-
plex points.

Otherwise, find extrema by intersecting with a par-
tial.

Algebraic Method for Conics

allx 2 + 2a12xy + a22y2 + 2a13x + 2a 23y + a33 = 0

1. Find the roots of degree form

alx 2 + 2a12xy + a22y 2

They are

x = -a1 2 ± Val, -l2

Y = all

2. If (u,v) is a real root, then substitute

x = X1 +Uyl

y = vyl

The effect is to cancel the y" term.

3. Set x(t) = t. Compute y(t) for transformed
conic.

4. Backtransform.
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Example

Given: x2  y2 + 2x +y +4

Degree form: x2  y2

Root: (-1,1)

Substitution: x = XI -yj

Y =Y

Result: x + 2x1 I 4- yl(2x, + 1) = 0

Parameterization: x, = t

Yj = (t 2 + 2t + 4)/(2t + 1)
2 -t -4

Backtransformation: x(t) =
2t + I

(t) + 2t + 4
2t+ 1

Jacobi's Method

1. Write the conic -as the bilinear form

all a12 a13  X

(x y 1)(a 2 a22 a23  Y 0

a 13 a 23 a 33  1

2. Diagonalize by applying rotations B = RART

3. Backtransform a standard parameterization of
the diagonal form.
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Cancel p in the submatrix

with
cos(a) sin(a)

-sin(a) cos(a) )
where

tan(2a) = 2p
m-n

But observe...

Suppose R has canceled a12 with matrix R. Then a

subsequent rotation R', canceling a13 say, may rein-
troduce a nonzero a1 2 .

It can be proved that a12 + a13 + a 3 is reduced with
every rotation.

Let (A, 0 0
0 A2 0

0 0 A3

be the final diagonal form.
If some of the Ak are zero, then the original conic is
degenerate.
If all Ak have the same sign, the original conic is
imaginary.
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Otherwise, assume without loss of generality that
A,1 > 0. If A2 is also positive, then the parameteriza-
tion is

1 - t

X(t) = it,1+_t21 +t 2

2t
y(t) = 2 1 + t2

where

Il = VPIA3 -2 =VA/

If A2 is negative, then the parameterization is

1 +t 2
x(t) = 11_t

2t
yl) L21_t2

Again

Example of Jacobi's Method

Parabola y2 - 2x = 0

P3 0 1 0
-1 0 0
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Rotation angle ir/4 gives matrix

Ia O0 - a )

P= 0 1 0

a 0 a

where a = v2/2.

Then

RPRT= 0 1

0 0 -1

with parameterization

XI = S2 -2

y, = 2st
ZI = S2 + t2

but
(xi yi zl)R = (x y z)

so the parabola is parameterized by

a, = V/ 22

y = 2st
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In affine coordinates, and with t = 1. therefore,

x- 2X "- S

yiy=vf.s

The more familiar form

Y• S
x = s2/2

is obtained with t = '4

Cubic Curves

Only singular cubics are parameterizable. For exam-
ple, X + X2 - y2 =0
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Line equations: y = tx

Substitution: x3 + x2(1 - t2) 0

Roots: x = 0

X(t) = t2 - I

Therefore: y(t) = t3 - t

Problems with Cubic Curves

An algebraic algorithm for parameterizing cubics has
to

1. determine if there is a singularity,

2. and if so, find it.

Algebraic Method for Cubic Curves

1. Eliminate y3 term.

2. Transform cubic to the form

y2 = h4(x)

where h4 is degree 4.

3. If h4 has a double root, then cubic can be pa-
rameterized.
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1. How to Eliminate the y3-term

a) Find a real root of the degree form, say (u, v).

b) Substitute

X1 = - vyi

YI= Ity1

2. Transformation to y2 = h4(x)

Cubic has form h1(x)y 2 + h2 (x)y + h3 (X) = 0

a) Multiply with h1 (x):

hl22 + h h2y + h h3 = 0

(hiy + Lh2) 2 -h + hh 3 = 0

b) Substitute

Y2 = hly + -h 2

3. Parameterizing y2 = h4(x) = (x - A)2g(X)

a) Substitute y3 = y/(x - A).

b) Parameterize the conic y2 = g(x).

c) Backtransform the parameterization.
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A Worked Example

28y3+26xy -+x 2y x3/2+28y 2+16xy+7y+3x/2 = 0

Degree form is

28y3 + 26xy2 + 7x2 y + x3 /2

and has the real root (-2,1).

Substitute
x = x - 2y,

y= yi

Yields

4(x 1 -y+4(x2 +4x, + 1)yl +(X + 3x,)/2= 0

Multiply with (xi - 1) and regroup, obtaining

(2(xi - 1)yl + (x2 + 4x, + 1))2

- (x + 4x, + 1)2 + (xI -x +3x2 - 3x,)/2

Substitute

Y2 = 2(xi - 1)yi + (x' + 4xi + 1)

Result is
y = (X + 1x +33x + 19Xi+2)/2
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Here, -1 is double root of righthand side. Substitute

Y2

X, +I

Result is
2y2 =x2 + 15x, +2

which is parameterized by

t2-2 _.3 t2 lt+
x1  - - Y3

2t+15 V2(2t+ 15)

Backtransformation yields

(t2 + 15t + 2)(t 2 + 2t + 13)
Y2 /- V(2t+ 15)2

and Yi =

_ (V2+1)t 4 +(8V-+17)t 3 +(60VI+45)t 2 +(44VI2+199)t+(109\/2V+26)
V1(03 +220 -128t-51 0 )

Yi simplifies to

(V2+1)t 3 +(6\V+12)t 2 +(30\V+21)i+(l 1\52+40)
, /f2(4t2- (12,,/- 26) t- (902+30))

because of the common factor (t - I + 3v'2).
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Generalizations

Conceptually, we parameterize using a pencil of lines,

(y - a) = t(x - b)

through the curve point p = (a, b).

Cubics mandate that p is a special curve point. Will
the method work in general, when p is suitably cho-
sen?

No. but there is a class of algebraic curves that may
be treated in this way. These are monoids.

Monoid Definition

A nionoid is an algebraic curve of degree n that has
a point of multiplicity n - 1.

* All conics are monoids.

* All singular cubics are monoids.

If the special point is known, monoids are easy to
parameterize.

Implicit Equation of Monoids

If the (ni. - 1)-fold point is at the origin, the implicit
equation of the monoid is of the form

h,(x,y) - h,.-_(x,y) = 0

where h,, has terms only of degree n, and hn- 1 has
terms only of degree n - 1
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Examples

Circle: X2 + y2 - (2x) =0

Hyperbola: xy - (x +y) = 0

Parabola: Y x

Alpha curve: X3 (y2 _:V2) =0

Cusp: -3 yW) = 0

Parameterizing a Monoid

Monoid equation h,,(x,y) -h -~x = 0

Parameterization x(t) = n (,)

hn (1,t0

= hn(1,t)

So easy, that monoids are also called dual forms.

Example

The circle through origin

(X + Y2) - 2x =0

has the parameterization

X (t) 2

1 +t 2
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II.B. Surface Parameterization

The general problem is algorithmically unsolved.
The pencil-of-lines approach generalizes to a bundle-
of-lines approach, where the bundle centered at p =
(a, b, c) consists of all lines, through p, indexed by s
and t:

y-b = s(x-a)

z-c = t(x-a)

Jacobi's algorithm also generalizes to quadrics.

Bundle-of-Lines Idea

Pick a (special) point, on the surface, as center of
line bundle.

Determine the additional intersection as function of
s and t.
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Example

The unit sphere has the equation

x2 + y2 + z2 -1= o

Choosing p = (-1,0,0), we substitute y = s(x + 1)
and z = t(x + 1), obtaining

x2(1 +s 2 + t2) +2x(s 2 + t2) -(1 -s 2 t2) =0

Resulting Parameterization

1 - s2 - t
x(St) = t,

1+ S2 + t2

2s9y,t) = 2+

2tz(s,t) =
1 + S2 + 2

Monoids

The bundle-of-lines method works for any surface on
which there is a point such that (almost) every line
intersects the surface in one additional point. Such
surfaces are monoids.

A monoid is an algebraic surface of degree n with an
(n - 1)-fold point on it.
Monoids include all quadrics, cubics with a double
point, and Steiner surfaces.
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Implicit Equation of Monoids

If the (n - 1)-fold point is at the origin, the implicit
equation of the monoid is of the form

h.(x,y,z) - h._j(x, y,z) = 0

where h,, has terms only of degree n, and h,,_ 1 has
terms only of degree n - 1

Parameterizing a Monoid

Monoid hn(X, y, z) - hn-i (x, y, z) = 0

Parameterization x(s,t) = hI._1(1,s,t)
hn(1,s,t)

hn_ .(1,s,t)
h.(1,st)
h_ (1, S, 0)

hn(1,s, t)

Example

( + y' + z 2) - 2x= 0

has the parameterization

2
x (3,t) 

-

1+ 82 + t2

2syCs,t) = + 2 tY(S1 + S2 + tl

z(s,t) 2t
+ s2 + t

2
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End of Part II

Part III

III.A. Existence of an Implicit Form

III.B. Sylvester's Resultant

III.C. Gr6bner Bases Methods

III.D. Some Experiments

Why should there be an implicit form?

Indeed, given rational functions h,(s) and h2(s), why
is there a polynomial q(x,y) such that

q(hi,h 2) =0 ?
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Fields

A field is a set of "numbers" which we can add,
subtract, multiply and divide. Examples: Complex
numbers, real numbers, rational numbers.

If a field K is a subset of another field E, then E is
an extension field of K.

Extension by Adjoining an Element

Let K C E, and s E E- K. We construct the exten-
sion field K(s) by adding to K all elements required
to make K U {s} a field.

The extension is either algebraic or transcendental.

Transcendental Field Extensions

K(s) is transcendental if there is no polynomial p(x)
with coefficients in K such that s is a root.

For instance, R(ir) is a transcendental extension.

Of course, we can extend K with several transcen-
dentals. e.g., K(st,s2, ... ,Sm).
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The general element in the transcendental extension
K(sl,...,sm) has the form

P(si, ... ,Sm)

q(s,...,sm)

where p and q are polynomials with coefficients in K.

Algebraic Dependence

Let K' be a transcendental extension of K, obtained
by adjoining finitely many Sk.

The elements ul, ...,u,. in K' - K are algebraically
dependent if there is a polynomial q(xl, ...,x,) with
coefficients in K such that the Uk are a root of q.

Otherwise the uk are algebraically independent.

Transcendency Degree

The transcendency degree of K' is a number d such
that any d + 1 elements in K' - K are algebraically
dependent.

Theorem

The transcendency degree of K' is unique.
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Existence of Implicit Form

Given the rational functions

x = hi(s)

y = h2 (s)

then x and y are elements in R(s), the transcendental
extension of R by s. But R(s) has transcendency
degree 1, so x and y are algebraically dependent; i.e.,

q(x,y) = 0

The minimum degree q is the implicit form.

Similarly, given the parametric functions

x = h1(s,t) y = h2(s,t) z = h3(s,t)

then x, y, and z are in R(s,t), of transcendency de-
gree 2, so they are algebraically dependent; i.e.,

q(x,y,z) = 0

Nota bene...

The implicit form may contain points not found on
the parametric form.
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Example

The parametric surface

X = St y St 2  z8 2

has the implicit form

X4 _ y2z = 0

This surface contains the line x -z = 0 that is
not on the parametric surface, except for the point
(0,0,0).

IH.B. Sylvester's Resultant

Variable Elimination

Given two polynomials

f (x) = ax' + an-Ix n-I  + "' + ao

g(x) = bnx m + bm...x m- l + ... + bo

we want a criterion for a common solution.

Form the determinant R
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an an-I ao 0 ... 0

0 an ... a, ao ... 0

0 0 an an-i ... ao
R=

bm bm-...1  bo 0 ... 0

0 bm ... b, bo ... 0

o 0 bm bm-.. bo

The determinant R is the Sylvester resultant.

Theorem

R = 0 iff the two polynomials have a common root.

The Sylvester resultant "eliminates" the variable x.

The resultant can be used for multivariate polyno-
mials, but then it introduces extraneous factors:

Theorem

R - 0 iff there is a common solution of the two
equations, or of the two lead coefficients, or of all
coefficients of one or the other polynomial.
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Example

X -St Y - SO z -S 2

Step 1: Eliminate s

-t X 0

0 _t X =Zt2 -X 2

-1 0 z

-2Y 0

o _t2 Y =t 1- Y,

-1 0 z

So, we now have two polynomials

Zt2 _-V

Zt4 _-

54



Step 2: Eliminate t

z 0 -v 2  0 0 0

0 z 0 -x2 0 0

0 0 - 0 -x 0 2 (y2 - X

0 0 0 z 0 -x 2

z 0 0 0 -y 2  0

0 Z 0 0 0 y2

So, we obtain

z2 (y2z - = 0

as implicit form.

Here, z2 (y2z x4) is an extraneous factor.

III.C. Griibner Bases

Computations in Ideals
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Intuition

Given a system of linear equations, manipulations
such as LU-decomposition derive an equivalent linear
system that is easier to solve.

Likewise, given a system of nonlinear equations, a
Gr6bner basis is an equivalent system of nonlinear
equations that is easier to solve.

Technically

Gr6bner bases deal with polynomial ideals. Ideals
come up as follows.

What is a Unique Surface Representation?

f(x,y,z) =0?

5f(Xy,z) = 0?
g(x,y,z)f(x,y,z) = 0?
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The unique representation is an ideal...

Also true for curves, surface intersections, and so on.

Ideals

An ideal I is a set of polynomials such that

1. If p and q are in I, then so is p - q.

2. If p E I, and q is any polynomial, then pq is
also in I.

Ideal Bases

A ideals are finitely generated; that is, there are
polynomials

flf2, ... ,fm

in I such that every other polynomial in I can be
written

q = ulfi + 112f 2 +"" Umf,,

where the ui are polynomials.
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A Gr5bner basis is an ideal basis with special prop-
erties.

In particular, a GB with respect to the "elimination
ordering" allows solving a system of nonlinear equa-
tions in an especially simple manner.

Example 1

We are given the nonlinear system

: x2 + y2 -1

f2: y 2 +Z 2 -1

f3: z2 + x2-1

These polynomials generate an ideal I with a GB

g1 : x2 - 2
2_

g2 : y2 2

g3 : z 2 -2

So, x = V/12, y = V9212, z = V-2 /2.
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Example 2

Given

z 2 + 2yz + 2xz- +y 2 + 2xy-- 2 -1 = 0
2 - 2 yz-2xz+y 2 +2xy+x 2 -  = 0

z2 -2yz -+2xz -+y 2 -2xy+x 2 - I = 0

z2 +2yz-2xz+y 2 -2xy+x 2 -1 = 0

z2 +y 2 -x -1 = 0

GB is
X2+x= 0

xy= 0

y 3_y = 0

Xz = 0

yz = 0

z2 +y 2 -x-1 = 0

x = -1:
Substitution gives y = 0, which in turn gives z = 0

x = 0:

y3 _y = 0, so y = 0, -1,+1. Each (x,y) pair extends
to one or more solutions in z.

Final set is

1-i,0,0), (0, 1,0), (0,-1,0), (0,0, 1), (0,0,-1)
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Implicitization with Gr6bner Bases

Gr6bner bases can be used to construct the implicit
form of integrally parameterized curves and surfaces.

The method does not introduce extraneous factors.

Example

Given
x -St y -st 2  z - s 2

the Gr~bner basis wrt the elimination ordering is

x 4 _ y2z,

tX - y,tyz - x 3,t 2z - X2 ,

sy - X ,SX- tzst - x,s 2 
-Z

The Gr6bner basis discloses the implicit form, plus
inversion formulae that show that the surface is faith-
fully parameterized.
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Gr6bner bases are always wrt a particular term or-
dering.

For some orderings, basis computations can be much
faster, but the resulting basis does not reveal as much
information explicitly.

Given some Gr6bner basis, there are conversion al-
gorithns that reconstruct the missing information.

Such conversion algorithms are extremely important
for efficiency.

III.D. Some Experiments

How expensive is implicitization?
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Comparison of three implicitization algorithms:

1. Sylvester's resultant,

2. Gr6bner bases with the elimination order, and

3. Basis conversion.

Implicitization for a parametric quadric, a paramet-
ric cubic, and a bicubic.

All computations on a Symbolics 3650 under Genera
7.2, Macsyma 414.62, with 16MB main memory and
120MB swap space.

The parametric quadric is

x = 3t 2 +4s 2 +st-2s-t+4

y = 6s2 -st+8t+7

z = 9st+12s-15t+34
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The parametric cubic is

X = -t 3 +3st+s 3 +s

y = ts2 -3t+1

z = 2t3 -5Sst+t-s 3

The bicubic surface is

x = 3t(t-1)2 +(s-1)3 +3s

y = 3s(s-1)2 +t 3 +3t

S= -3s(s2 - 5s+5)t33(s3+6s2 -9s+1)t 2

+t(6S 3 + 9s2 - 18s + 3) - 3s(s - 1)

Implicitization Times in Sec.

Problem Method 1 Method 2 Method 3

quadratic 21 22 6

cubic 10 Co 315

bicubic 0o 0o 10
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Conclusions

We need both faster machines and faster algorithms.

Basis conversion improvement seems to suggest a
route of specialization, and of paring down the in-
formation that is computed.

End of Part III
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