
OTIC FILE COPY

Technical Document 1834
June 1990

Performance Engineering
for Mission Critical

C0 Embedded Computer
Systems

L&S Computer Technology, Inc.

Approved for public release; distribution Is unlimited.

The views and conclusions contained in this report are
those of the contractors and shculd not be interpreted
as representing the official policies, either expressed
or Implied, of the Naval Ocean Systems Center or the
U.S. Government.

*0 1l 9 (0;U ,



NAVAL OCEAN SYSTEMS CENTER
San Diego, California 92152-5000

J. D. FONTANA, CAPT, USN R. M. HILLYER
Commander Technical Director

ADMINISTRATIVE INFORMATION

Contract N00039-86-C-0247 was carried out by L&S Computer Technology, Inc., P.O. Box
9802, Austin, TX 78766, for the Office of Naval Technology, Arlington, VA 22217, under the
technical coordination of T. Sterrett, Computer Systems Software and Technology Branch, Code 411,
Naval Ocean Systems Center, San Diego, CA 92152-5000.

Released by Under authority of
R. A. Wasilausky, Head A. G. Justice, Head
Computer Systems Software Information Processing and
and Technology Branch Displaying Division

NOTE

Permission to print copyrighted material for government purposes has been granted by the
author, Dr. C. U. Smith.

FS



Executive Summary

/

This report provides background information on performance engineering and the POD

performance modeling tool, and gives an overview of the project activities. Finally, the

project summary section reviews the results, lessons learned, and suggests future directions.

A detailed rev-ew of the project activities is in Appendix A.

Naval mission critical, embedded computer systems (MC-ECS) must respond to external

events within their allotted time, otherwise they fail. Failures may have life or death

consequences. Lifecycle performance management, or performance engineering (PE), calls

for building performance into systems beginning in the requirements definition phase, and

continuing the performance management through the design, implementation. testing. and

post-deployment phases. Experience with PE shows that it can detect and avoid project-

threatening performance failures in sufficient time to correct them and enable timely

delivery of a quality product. Furthermore, performance is orders of magnitude better with

this approach than with a "fix it later" approach in which performance considerations are

deferred to the testing phase and, when necessary, "tuning" attempts to correct performance

failures. Better performance means both people and computer resources can be used to 7
enhance the functionality of the system rather than to correct performance deficiencies. (1

Performance of MC-ECS has always been important. Developers traditionally had highly-

skilled software engineers who were experts in building efficient software. They were

successful in building high-performance systems: however, the result of this so-called "guru

approach" is an over-reliance on these same gurus to maintain the systems. (One naval

organization actually imposes travel restrictions to ensure that gurus do not travel on the

same airplanes -- just in case). To assess performance, developers traditionally built hand-

crafted simulation programs. The simulations were labor-intensive, inflexible, and often

required as much development effort as the software system itself. Recent trends seek to use

newer software development methods to improve productivity and software quality and

decrease the over-dependence on gurus. Unfortunately, few of the new software methods

address PE.1

1A prominent example is in a recent article on "Designing Large Real-time Systems with Ada."
published in Communicatlons of the ACM [NIE871. The authors begin with a definition of real-time
systems which emphasizes the importance of performance. Then the article proposes a design
methodology and provides an example that completely ignore performance.



2

Embedded systems of the future need PE more, not less. Ada offers new capabilities for

designers, but it also dramatically increases the risk of performance failures. Performance

implications of Ada code are not obvious; the number of Ada tasks, their allocation to

distributed processors, and their relative priorities have dramatic consequences on

performance that are impossible to evaluate without performance models; and extensive

error control and other run-time features make the compiled code inherently less efficient

than the hand-crafted code in older systems. Furthermore, few of today's software engineers

have the performance Intuition of their predecessors and they have not yet gained the first-

hand experience with Ada (they tend to create systems with far too many tasks and thus

rendezvous) -- so performance failures are more likely.

We cannot rely on hardware to resolve all performance problems. Size, weight, and cost

restrictions preclude adding extra hardware late in the system lifecycle to achieve

performance goals. Hardware requirements must be determined early -- models are

essential to accurate hardware sizing. Even though hardware technology is rapidly

evolving, more powerful processors result in a dramatic increase in software size and

complexity. The extra capacity is quickly consumed with more sophisticated functions and

algorithms. New VLSI technology makes custom chip design viable, but software must

exploit the new technology to realize dramatic improvements.

Previous Navy-sponsored research produced the performance modeling tool, POD. It

enables PE by enabling performance analysts to quickly construct and evaluate models of

predicted performance. It uses quick, analytic model solutions that match the solution

technique to the amount and precision of information available in the lifecycle. The simple

models identify areas that warrant the time and effort required for detailed simulation

studies. POD is the most powerful PE tool currently available and is far more cost-effective

than the hand-crafted simulation models of the past. Nevertheless, POD does not enjoy

widespread use for Naval MC-ECS development. Both PE and POD must be used if they are

to be effective for building MC-ECS that meet performance objectives. POD users need to

know how to model systems under development and how to use the tool. They also need to

understand PE: the necessary steps and why, when. and how to perform them. It is vital to

specifically relate these topics to MC-ECS systems so the users have a clear understanding of

the applicability of PE and POD to their unique problems.



3

To remedy this situation the Navy has taken initial steps towards technology transfer of PE

for MC-ES. Together. we have applied POD to an MC-ECS case study that evaluated a new

algorithm for computing target data in the F/A-18 software. We modeled the algorithms and

used POD to study the performance of numerous alternatives, such as: applying the

algorithm to multiple targets, varying the number of integration steps, examining start-up

versus steady-state processing, and varying hardware speed. The case study had no

particular performance problems; the tool confirmed that there should be no surprises.

We also gathered historical MC-ECS specific examples of the use of PE and POD and used

them to construct a set of examples that demonstrates how to construct and evaluate models,

how to collect data, how to identify and analyze alternatives, how to present results,

validate models, and other PE steps. The examples, combined with PE course materials

adapted to MC-ECS concerns, were combined and the prototype course was presented to

selected attendees. We evaluated the results of the course to determine whether we

successfully achieved the proof of concept that we sought.

Project summary

The project had three main thrusts: (1) to apply PE and POD to an actual case study, learn

from the experience, identify PE and POD requirements for MC-ECS, and integrate the

results into the technology transfer materials; (2) to customize PE and POD technology

transfer materials to specifically address issues of concern to MC-ECS developers; (3) to ,

deliver the prototype technology transfer course.

1. Case study success?

The selected case study demonstrated the applicability of PE and POD to actual MC-ECS
development problems. It successfully provided materials for the technology transfer

course. We identified tool requirements for: ease of use, new reports to support typical

analyses, and the need to apply the tool to many, actual case studies. Tool use for actual

studies ensures that it is tailored to typical problems and detects errors (in the tool) triggered

by operational data that may not be detected during regular testing.

I -I- I



4

2. Customize PE and POD to MC-ECS systems.

The materials in the prototype course demonstrated the range of possibilities and addressed

several important classes of MC-ECS applications. More actual case studies are needed to

drive the technology transfer as well as ensuring that the methods and the tools are suited to

the problems.

3. Technology transfer delivery. The class was small, the attendees were knowledgeable and

familiar with problems in developing MC-ECS. They were unfamiliar with PE and POD and

gained a great deal of knowledge from the class. We succeeded with the proof of concept of PE

and POD. The pilot course encountered several problems with the use of the tool: they were

subsequently corrected and should not affect future technology transfer efforts. Because the

first delivery was a prototype version of the course, we expected to learn such lessons from it

-- and we did.

The project led to several technology transfer discoveries that need remedies. (1)

Experienced designers, familiar with the hand-crafted simulation studies of the past,

incorrectly perceive that analytic models do not apply to their systems. (2) There is no

established process and procedure that prescribe the role of PE and modeling in system

development. (3) While experienced modelers have no difficulty, the prototype version of

POD may be too difficult for some designers to use. It should be better integrated with CASE

development tools.

Future directions

Although the technology transfer course is not yet mature, it has evolved to a point that it

provides useful information to developers of MC-ECS systems. It should be offered to more

attendees while it evolves with more case studies.

The use of PE and POD on MC-ECS should continue to evolve. More case studies are needed,

and both the tools and the PE methods need enhancements. The following needs surfaced

during the course of the project and are likely to be important to the performance analysis of

future systems:



5

* Better analysis tools to determine processing frequency and relative task priorities.

They should be visual tools with an easy method of specification.

* Extensions to models to evaluate federated systems of processors and their inherent bus

or network contention.

* Models that explicitly represent data structures and evaluate their effect on processing

requirements.

* Additional solution methods to evaluate: periodic Jobs, Ada rendezvous impact. data

latency limits, locking, task structures and processor allocations.

* Improved POD usability: fine tune the reports, add graphics-based specification and

evaluation, and automate typical PE analyses. An important future consideration is to

determine the proper POD platform -- while UNIX-based systems are prevalent in the

research communities, they are not currently in widespread use among MC-ECS developers.

The adoption and widespread use of the Desk-Topll (Sun 4) as a Navy standard computer

would make UNIX a viable choice for the future.

o Integrate the performance modeling tools with CASE tools to reuse design information,

automatically generate and update models, and provide performance predictions directly to

developers.

* Integrate the PE methods into the new Navy system development methodology so the

steps become part of the standard development lifecycle -- rather than an add-on activity.



6

APPENDIX A

Project activities

1. Review background information: June 9- July 12, 1988.

Studied reports documenting previous F/A- 18 software modeling work. Reviewed POD User

Manual with emphasis on features that support real time csystems evaluation. Prepared

simple test models.

2. Identify and collect preliminary case study information: China Lake, July 12-14. 1988.

This visit is documented in the July 1988 trip report (Appendix B). Learned about F/A-18

software evaluation problems in general, gathered background information on AYK- 14

hardware and software execution environment, and preliminary information on the new

algorithm to be evaluated.

3. Research Review Briefing for NOSC Sponsors: Monterey, CA, August 9, 1988.

Presented overview of POD and its importance for Software Performance Engineering of

Navy Systems, and in particular for Mission Critical Embedded Computer Systems.

Discussed technology transfer issues and how they are addressed by this project. Proposed

two future research directions: evaluating system effectiveness, and features to enhance

POD usability. The presentation slides are in Appendix C.

4. Refine case study daia China Lake, August 10-11, 1988.

Met with Charles Bechtel, Ken Trieu, and Roy Crosbie. Discussed details of the case study

and the performance data required. Charles Bechtel subsequently prepared an excellent

report with processing details and performance specifications (see Appendix D). Discussed

modeling considerations and tool capabilities with Roy Crosbie.

I.

5. Prepare preliminary outline for technology transfer. August 31, 1988.

Progress on installing POD was slow. To expedite the project, the preliminary outline was

prepared earlier than originally planned. It adopted the L&S standard Software

Performance Engineering seminar framework, and enhanced it to focus on MC-ECS system

issues, include POD laboratory exercises, and F/A- 18 and other case studies.



6. Project review meeting: Santa Fe, September 1-2, 1988.

Tony Sterrntt represented NOSC and Bob Westbrook, represented China Lake. We reviewed

the case study status - all were impressed with the thoroughness of Bechtel's report. We

discussed the preliminary technology transfer outline and formulated initial answers to its

questions. We agreed that the technology transfer should evolve as experience is gained with

its presentation. We also collaborated on the POD installation to resolve problems.

7. Install POD and become familiar with its features: completed September 10, 1988.

The MaclI A/UX version successfully executed the 3 simple test models, and the more

complex distributed processing model contributed by Sterrett. Commands and reporting

features were examined.

8. F/A-18 case study - model formulation, testing and documentation: October 1988.

The original processing and the adaptations for the two algorithm alternatives were

modeled, and we assessed POD capabilities and limitations for the case study. It is feasible

to use POD for this application - it can detect performance problems due to processing that

exceeds the 50 ms. threshold, and evaluate the performance of: the number of integration

steps, the adaptation to multiple targets, varying hardware speed, examining steady-state

versus startup processing, and other similar studies. Several minor POD problems were

detected, documented and submitted to NOSC and BGS. Although the code problems were

relatively minor, we were unfortunately unable to derive model results in sufficient time to

provide performance feedback to developers. NOSC personnel subsequently elected to create

an improved version of POD to support the technology transfer project.

9. Research Review Briefing for NOSC Sponsors: San Diego, March 1989.

Reviewed the project status, some insights into transfer of PE and POD technology for MC-

ECS, and some suggestions for future directions to enhance the transfer. The slides are in

Appendix E, and the insights and directions were reviewed in this report's summary.

10. Review POD-related technical reports and prepare case studies for technology transfer:.

April 1989.

Created case study materials based on the FAA Air traffic control studies, a combat system

design, and a signal processing application.



8

11. Prepare final outline and technology transfer materials: July 1989.

Adapted the PE course materials, and the POD usage materials to specifically address MC-

ECS. Created case study materials and laboratory exercises. Appendix F contains the

course materials.

12. Conduct technology transfer. August 1989.

The pilot version of the technology transfer course was offered at China Lake for attendees

selected by NOSC. The feedback from the course indicated that they all gained an

understanding of the PE process, the role of models during the entire development lifecycle,

and the potential for tools such as POD to support development efforts.



APPENDIX B

July 1988 Trip Report



11

Trip Report
China Lake

July 12-14, 1988
Connie U. Smith

Meetings with:
Sponsor: Dr. Robert McWilliams
Consultant: Dr. Roy Crosbie

Tuesday. July 12

1. Introduction to Naval Weapons Center and the Aircraft Weapons Integration Dept.,
Embedded Computing Technology Office (Code 3 1C) by Jay Crawford.

2. Software Performance Engineering briefing by Connie Smith.

3. Overview of "Computing Problems in Tactical Aircraft" Project conducted summer. 1987 by
Dr. Robert McWilliams, Dr. Roy Crosbie, and Linda Roush. Discussion of characteristics of
F- 18 software and typical performance concerns.

4. Discussion of applicability of operational analysis and Software Performance Engineering
techniques to embedded computer systems with Dr. Ed Kutchma. Discussed typical
performance concerns and candidate case studies.

5. Discussion of F-18 Software Development Branch activities and typical performance
concerns with Mike Spencer, Dr. Ken Trieu, Charles Bechtel, and Dick Nuckles.

6. Identified candidate list of case studies (attached).

Wednesday, July 13

1. Reviewed F- 18 documentation with Dr. Roy Crosbie. Most of the day was devoted to this
information gathering task. Extracted background information on the AYK14 and the
software from documents. Searched (unsuccessfully) for data on the Bus Architecture and
details of how the Mission Control computers and software use the bus to send and receive
data with other attached devices.

2. Discussion of future Ada plans and possible future SPE / Ada performance concerns with
Dr. Lee Lucas.

3. Discussion with Dale Christenson on the extent of the use of software design methods and
CASE tools at China Lake. Discussed current analysis and design activities. No recent or
current high-level design activities suitable for a technology transfer case study were
identified. Most of this type of work is done by McDonnell Douglas. Most Navy activities
focus on modifications and extensions to existing software.

4. Demonstration and briefing on Simulation Lab activities by John Hessler. Investigated the
pctential of using the simulation software design as a case study. It is a very interesting
application, but there are currently no performance Issues and It is not representative of
the majority of the work at NWC.



12

Thursday. July 14

1. Continued the documentation search and retrieval.

2. Met with Charles Bectel to discuss the "passive ranging algorithm" case study. Clarified
some F-18 and AYK14 operational issues. Discussed the data necessary for the case study.
Developed a list of items needed. They will gather information and send it within 2 weeks.

3. Met with Linda Roush to further discuss "Computing Problems in Tactical Aircraft." Some
of the mission control functions have been off-loaded to the SMS (stores management)
computer. Details are unfortunately not included in the Mission Computcr Operational
Flight Program Design Specification document. It will be difficult to precisely predict end
to end responses without the characteristics of this additional work. It may be possible to
obtain measurement data: otherwise, we will use a "microanalysis" performance goal: to
complete each frame's processing within 50ms. She also suggested investigating the status
of the Canadian efforts to create PSL/PSA structure charts and reports of the F- 18 software.

4. Reviewed the demo of a subset of the F-18 software design in the Statemate CASE tool (under
consideration by McDonnell Douglas). It provides useful high level design information. In
the future It slbould be straightforward to evaluate performance using much of its design
information. It is unclear when the complete system documentation might be available.
but it is unlikely that it will help with this project.

Conclusions

The NWC personnel were extremely helpful. I learned a great deal about the F-18 software and
the performance-related problems that are important to their software developers. We dis-
cussed the role of analytic models to support their trade-off studies. Coordination with Dr.
Crosbie's project should leverage this modeling effort.

For technology transfer, the most appropriate case study should focus on typical Navy
concerns such as estimating the Impact of adding new functions to existing OFP's. The passive
ranging algorithm is representative of these typical problems. Three alternative algorithms
are under consideration, and the developers wish to know the performance impact of each
alternative. It is an actual problem they now face and they are interested in the results.
Ideally, we want an adaptive modeling study. We can first concentrate on the CPU time of each
algorithm. To illustrate more complex studies, we can examine the performance impact of
dividing the processing between frames. If possible, we can also analyze the effect of bus
contention. This depends on data availability and the ability of POD to accurately represent
the scheduling and contention. POD should give reasonable approximations.

We are tentatively pursuing option number 3 on the attached case study options list: the passive
ranging algorithm. The technology transfer can suggest ways that SPE and POD can be used to
study all of the problems. So in addition to getting actual performance data for one, all will be
work d into the technology transfer materials.



13

Case Study Options

1. Compare growth of software from the 83X. 85X, and 87X releases, running on the

AN/AYK-14 Model XN-5.

2. Evaluate exchange of algorithm for ballistic trajectory.

3. Evaluate addition of passive ranging algorithm.

4. Evaluate relative difference between XN-5 and XN-6 using same software.

5. Determine extent of night attack retrofit possible on F/A-18A/B using the XN5. (This proved
to be inappropriate - night attack will use XN6).

6. Compare performance of single executive XN-6 with dual executive XN-6 f ,r same software.
(There is currently insufficient data for this study, but it would be an excellent case study to
pursue later. A baseline model with concurrent processing would be beneficial for future
algorithm trade-off studies.)

7. Evaluate 85X longest path problem (This is based on the timing problem studied in the

"Computing Problems ..... project.)

8. Simulation software for the "hardware in the loop simulation lab."



15

APPENDIX C

August 1988 Briefing



17

Software Performance Engineering Applications

SOFTWARE

PERFORMANCE

ENGINEERING

APPLICATIONS

Connie U. Smith, Ph.D.
L & S Computer Technology, Inc.

(505) 988-3811

PERFORMANCE IS VITAL TO
MISSION CRITICAL EMBEDDED COMPUTER SYSTEMS

* With minutes to respond to potential threats, every
fraction of a second counts

* Systems must respond to external events within
their allotted time, otherwise they fail - some
failures have life or death consequences

S 2

Connie U. Smith - August 9, 1988



18

Software Performance Engineering Applications

PERFORMANCE BALANCE

SOFTWARE PERFORMANCE ENG INEERING

"Systematic planning for and evaluation ofsoftware performance throughout its life cycle."

GOALS:
SEnhance St responsiveness

- usability
Sstaff productivity

" Preserve maintainability
understandability
timely completion

" Control computer capacity requirements

oBuild performance Into systems rather than try to add it later

Connie U. Smith - August 9, 1988



19

Software Performance Engineering Applications

METHODOLOGY OVERVIEW

fFFOR each development stage DO
BEGIN

REPEAT
Develop design concept
Model it
Evaluate model solution

UNTIL predicted behavior Is satisfactory

Proceed with design synthesis

END

SPE METHODOLOGY

DEFINEGOALS

I Performance Walkthroughs

DATA * Data Gathering Strategies
N ELI

MODEL Compensation for Uncertainties

REPOT Data Presentation & Tracking

C o n n i e t h PAf ao n t 9d ion1Lt°n I'd I -- n'

Connie U. Smith - August 9, 1988



21

APPENDIX D

Case Study Report



23

F/A-18 Algorithm Analysis

This data is intended to answer at least some of the questions
posed by Dr. C Smith at our last meeting.

Estimating the word count for each algorithm could be very
difficult so I decided to simplify it a bit. I planned to
count "high-level" instructions and then use an expansion
factor (high-level to assembly) to determine the total number
of assembly language instructions.

Determining a valid expansion factor is the hard part: some
high-level instructions can be represented as single assembly
instruction, but most require two or more instructions.
Eventually I came up with the following method:

Assignment Load (e.g. LD), Store (e.g. SD)
Add/Subtract Load, Add (e.g. AD), Rescale (e.g. LALD), Store (1)
Multiply Load, Multiply (e.g. MDR), Rescale, Store
Divide Load, Rescale, Divide (e.g. D), Store

Note that the example instructions are for double precision
(32-bit) integer arithmetic. The divide is not double precision:
Most programmers will sacrifice some precision and utilize a
single precision divide (it's 4x as fast). The AYK-14 XN-5 has
no floating point unit (i.e. fixed point arithmetic is used
throughout).



24
To "validate" the expansion factor I used data from a previousproject. This implemented an algorithm which was first modelled
in Fortran. The Fortran statements were classified and counted:

High-Level Est Asm
Assignment 59 118
Add/Subtract 57 228
Multiply 28 112
Divide 9 36
Total 153 494 ==> 3.22 Est Expansion

The project actually used 422 assembly language instructions
(sorry - no break down into catagories) which results in an
2.76 expansion factor. Because the project concentrated on
optimizing memory usage, I think that 2.75 is a little low
for the average project. I believe the original assumption (1)
will work.

The expansion factor mentioned from high-level statements to
assembly level statements does not account for instructions
which require two machine words. These words don't degrade
execution speed (any more than the rates listed below) but they
do take up more memory. In general, there is a 20%-50% increase
from instruction count to memory requirements (e.g. 10
instructions may take 12 to 15 machine words).
Estimated execution performance for the assembly language
statements is listed below (in microseconds):

INSTR DESCRIPTION XN-5 XN-6

LD Load Double 2.49 0.95
SD Store Double 2.68 2.10
AD Add Double 2.73 1.19
LALD Left Shift Dbl 1.89 1.11
MD Multiply Double 8.27 4.07
D Divide 9.87 4.38 (note single precision)

L Load Single 2.24 0.80
S Store Single 1.86 1.15
A Add Single 2.24 0.94
LALS Left Shift Sngl 1.47 0.90
M Multiply Single 5.40 2.19

The Algorithms -

Both algorithms will require an interface to the current
program. This interface (setting data up etc.) has beenestimated to require 1000 assembly words. No mix of statements
has been given so I had-to guess. My guess is the result
of looking at an algorithm intended to function similarly
to the two candidate algorithms. I counted the mix of
high-level statements; this should be used to determine
the overall makeup of this interface. I would assume that
all of these instructions run during each pass.

HOL %total
Assignment 37 37%
Add/Subtract 20 20% (2)



25

Software Performance Engineering Applications

MODELING REQUIREMENTS

GOAL:
* Low overhead Iitially

Distinguish between "good"

Accommodate: and "bad"

Incomplete definitions
Imprecise performance specs Later

Incremental development >- Increase precision
Changes during development ,-Provide Implementation

decision support

L
S

(CONVENTIONAL PERFORMANCE MODELS

Connie U. Smith - August 9, 1988



26

Software Performance Engineering Applications

SYSTEM MODEL
Workload Intensity
Device visits
Device service rates

Connie~Rspns UtSitimAgst9s18



27

Software Performance Engineering Applications

SPE EVOLUTION

Concepts

\ Methods

Tools Models

Use

Technology Transfer

S

KEYS TO TECHNOLOGY TRANSFER SUCCESS

1. Transfer agent

STechnology Ues

Resolve problems

2. Clear benefit
3. Compatible with existing methods, experiences,

needs
4. Easy to understand,

easy to try,
measurable results

5. Expert participation

Connie U. Smith - August 9, 1988



28

Software Performance Engineering Applications

DISCOVERIES

Key problems:
perceived appIleca billty of analytical models

lack of method

ease of use

You cannot address these IndependentlyL

COORDINATED DEVELOPMENT

1. Tool must match the problem

2. Ease of use Is vital to acceptance & use

3. Mission critical embedded computer system
effectiveness Is vital:

Build the right system

and

Build the system right

C-
24

Connie U. Smith - August 9, 1988



29

Software Performance Engineering Applications

FUTURE RESEARCH ISSUES

1. Application-driven approach
methods + tools + applications
Orient to software engineers & their typical concerns
Define the method & specify POD's role

2. Topics:
Ease of use - examples
Extend performance models to address system
effectiveness
Identify typical design & evaluation problems
Streamline model building and
model verification & validation
Integrate with CASE environments
Create adaptive modeling capability

IMPROVE USABILITY

Sample model specification:

CONFIGURATION.SPECIFICATION

DEVICE CPUX TYPE - CPU
RATE - 1 &MIPS

END

MODULE SPECIFICATION
MODULE FRAME-20HZ

EST CPUX USAGE - 20
CALL TIME CODE READ
CALL GET 20 HZ INPUTS

EST SUS USAGE - 5

What Is possible ........

Connie U. Smith - August 9, 1988



30

Software Performance Engineering Applications

MODEL SYSTEM EFFECTIVENESS

* Streamline MC-ECS use:
Include user activities In the models
Comprehensive system models
Evaluate time to accomplish key activities

Example: F-18 screen displays

L
S

COORDINATE TOOLS. METHODS, APPLICATIONS

" Automate definition & evaluation of typical concerns
Example - algorithm choices

" Streamline model building and model verification & validation
Example - Match code - models - measurements

" Integrate with CASE environments
Example - Reuse design specifications for models

# Create adaptive model capability
Example - Multiple solution methods with unified model
representation

Connie U. Smith - August 9, 1988



31

Software Performance Engineering Applications

SUMMARY

• Performance of Mission Critical Embedded Computer
Systems is vital

• POD offers "State of the Practice" Software Performance
Engineering capabilities - It needs more "State of the Art"
capabilities

• Coordinated evolution of tools + methods + applications
Is vital to technology transfer

% System effectiveness must be addressed in future
MC-ECS evaluations

Connie U. Smith - August 9, 1988



32

Software Performance Engineering Applications

COORDINATED DEVELOPMENT

1. Tool must match the problem

2. Ease of use Is vital to acceptance & use

3. Mission critical embedded computer system
effectiveness Is vital:

Build the right system

and

Build the system right

PROPOSAL

" Continue case-study-driven applied research

Select another MC-ECS case study
Apply SPE and POD
Document applicability
Identify and resolve limitations In methods I tools

Transfer technology

" Anticipated enhancements
The following were typical F18 software performance

questions and concerns. They are likely to occur In
similar systems.

LOS

Connie U. Smith - March 23, 1989



33

Software Performance Engineering Applications

DETERMINE PROCESSING FREQUENCY

20 Hz ? Hz

[] Becomes 10 Hz

20 Hz 20 Hz
5 Hz 10 Hz

NEED: Easier specifications
Visual results

L

EVALUATE BUS CONTENTION
AND PROCESSOR INTERFERENCE

* Poll devices at beginning of cycle

* Channel 3 dedicated to handoff protocol between processors

* Data requirements and algorithms are Interrelated

NEED: Case study execution details to construct models
Possible POD extensions

Connie U. Smith - March 23, 1989



34

Software Performance Engineering Applications

EXPLICIT DATA REPRESENTATION

Current POD specifications: processing requirements

363 assign-s
196 add-sub-s

Launch zone 304 multS
118 div s 272 assign_s

147 add-sub_sJMissile calcs 228 mult-s

t88 divs

Logic 640 assign_s

" Data structure alternatives affect # instructions executed
" Need to know data accesses to determine i/O requirements

NEED: Define data representation and analysis requrlements
Tool enhancements

INTEGRATE ADDITIONAL PERFORMANCE SOLVERS

• Periodic Job contention
" Ada rendevous

Synchronization of concurrent processes
" Data latency

Must respond to critical data values within window
Data that Is only valid for brief window

" Augment graph analysis and queueing theory with petri nets:
Tokens

Places
Enabled transitions

Transitions

Y Transition Bring

NEED: Case study details

Prototype petr n t Interface to POD model definitions

Connie U. Smith - March 23, 1989



35

Software Performance Engineering Applications

IMPROVE POD U!SABILITY

* Fine tune reports

• Graphics feedback

* Automate typical analysis problems

INTEGRATE WITH SOFTWARE ENGINEERING
ENVIRONMENTS

" Leverage models with design Information
" Automatically update models
" Provide performance predictions to designers

NEED: Target software engineering enviroment
Common language (database)
Integration plan

S

Connie U. Smith - March 23, 1989



36

Software Performance Engineering Applications

SUMMARY

* Project review
F18 software models
Technology transfer discoveries
Approach

* Proposal
Applied research
Technology-transfer goals
Future directions suggested by F18 study
Likely to fInd other areas

~Performance of MVC ECS Is vital

SIRE + POD technology reso'lves vital problems
Hasten transfer by adapting the technology to typical (hard) problemsj

21

Connie U. Smith - March 23, 1989



37

APPENDIX F

Technology Transfer Course Materials



39

APPENDIX G

Related Papers



139-4 t1l I R\NS'CTI( NS ()% SolIt \%ARE -\GIN FRING. "A. 1. NO 10. ()C I 0I1i R

41

Applying Synthesis Principles' to Create Responsive

Software Systems
CONNIE U. SMITH, SENIOR MEMBER, I-EE

Abstract- Performance engineering literature sho,,s that it is im-

portant to build performance into s.stems beginning in early devel- Un ersiand

opment stages s% hen requirements and designs are formulated. This is

accomplished, siithout adverse effects on implementation time or soft-

%%are maintainability, using the softtare performance engineering create

methodology, thus combining performance design and asse,;sment. 5L

There is extensive literature about soft'iare performance prediction;

this paper focuses on performance design. First, the general principles esesents

for formulating softasare requirements and designs that meet response
time goals are re~ies~ed. The principles are related to the s' stemi per- cce? Feas t'e? P~elefabze?
formance parameters that they improie, and thus their application may

not be obious to those ,,hose speciality is s)stem architecture and de-

sign. The purpose of this paper is to address the designer's perspective

and illustrate how these principles apply to t.pical design problems.

The examples illustrate requirements and design of: communication, Fig. 1. Engineering design process.

user interfaces, information storage, retrieval and update, information

hiding, and data availability. Strategies for effective use of the prin-

ciples are described. zations are easily made. Then the leverage is greater: per-
Index Terms-Design principles, softAare design optimization, soft- formance can be as much as one or two orders of magni-

%are development method, softssare performance engineering, soft- tude better than for software that is first constructed then
"are performance models, softsare performance principles, softs are "tuned" to improve performance [4], [30]. Furthermore,
responsiN eness, since improvements are made at a high level, prior to cod-

I. INTRODUCTION ing, responsiveness can be achieved without sacrificing

nunderstandability or maintainability. With software tools
NGINEERING new software systems is a process of to support the assessment, responsiveness can be achieved

... iterative refinement. As illustrated in Fig. 1, each re- with little or no additional development time and cost.
finement step involves understanding the problem, creat- The representation and assessment steps have been ad-
ing the proposed solution, describing or representing it, dressed elsewhere (references are cited later in this sec-
and assessing its viability. The assessment includes eval- tion). Th. paper addresses how to create systems likely
uating its correctness, its feasibility, and its preferability to have acceptable performance, and how to revise them
(when there are alternatives). Many factors affect prefer- if assessment indicates that performance objectives will
ability, such as maintainability, responsiveness, reliabil- not be met. Some synthesis principles are described, and
ity, usability, etc. This discussion focuses on only one, their application to software requirements and design cre-
the responsiveness of the software; that is, the response ation is illustrated with many examples. The principles do
time or throughput as seen by the users. t The understand- not replace performance models (described in previous
tng, creation, representation, and assessment steps are re- publications), but supplement them for engineering sys-
peated until the proposed product of the refinement ters that meet responsiveness goals.
'passes'' the assessment. tm htme epnieesgas
Rspsieeassesshou e dThe remainder of this section reviews related work and
atesrequireens and designed iof stwhren contrasts it with this paper. Section II describes the prin-

at the requirements and design levels of abstraction, when ciples and Section III illustrates applying them to corn-
the number of alternatives is greatest and global optimi- munication issues; user interfaces; data organization for

Manuscript received April 30. 1986; revised April 8, 1987. long term information storage, retrieval, and update; in-
The author is with the Performance Engineering Services Division, L&S formation hiding; and data availability (when data is cre-

Comput-r Technology. Inc.. P.O. Box 9802, Mail Stop 120, Austin, TX ated, sorted, retrieved, or convened). Section IV presents
78766.

IEEE Log Number 8823080. a strategy for using the principles, and Section V offers
'For high performance systems, responsiveness can be a correctness re- some conclusions. An Appendix summarizes the perfor-

quirement. If t-vo alternatives both achieve the correctness goal (e.g., a mance model basis for the principles, and tle rationale
response is produced within the specified time), the quantitative difference
between the expected response times can be used to assess their prefera- for the set of principles.
bility. Several software engineering methodologies advocate a

0098-5589/88/1000-1394$01.00 © 1988 IEEE



S\1' i. RF'WO'\II- "OF I W\kF S -I I \1S 42

software design process similar to that in Fig. I [1I, 12), proposals for inprovements. Many I crc deemed itfeas-

1231, [371. Booth [6], Sangu ineti 1241, [25], Smith and ible bccause of the magnitude of the change at the late
Browne [281, [291, and others [101, [191, [331, [381 pre- development stage. Others were implemented as pro-
sent performance prediction models applicable during posed. Each of tle proposed improvements was cataloged
early developmental stages. A software performance en- and classified by the type of change. The classifications
gineering methodology prescribes how performance as- were related to a performance model such as that in the
sessment is integrated with traditional software engineer- Appendix, and the generalized set of principles was for-
ing methodologies [30]. An extensive bibliography of mulated on the basis of the relationship between the
perfonnance engineering work is in [33]. The perfor- changes and the impact on the parameters of the perfor-
mance modeling and assessment are necessary for con- mance models.
structing responsive systems, but they are not sufficient. The principles apply to software systems, large or
The synthesis principles are also needed to guide the cre- small, executing on a spectrum of computer systems: mei-
ation step. crocomputers, large mainframe computers, distributed

These synthesis principles apply to large systenms of systems, and MIMD computers. They are most effective
programs in early life cycle stages, when one is concerned for very large software systems with high processing de-
with formulating requirements and design specifications mands.
that will lead to svstemns with acceptable responsiveness. The following sections present the six general princi-
Bentley [31, Ferrari [8], [9], and Knuth [11]-[13] and oth- ples for the synthesis of responsive software systems: fix-
ers [18], [37] have addressed program efficiency: creating ing, locality design, processing versus frequency tradeoff,
efficient programs and "tuning" programs to improve ef- shared resources, parallel processing, and centering. Each
ficiency. While many of the fundamental performance principle is defined and explained using simple examples.
concepts are similar, large system design is different. A hypothetical automated teller machine (ATM) example

Lampson presents an excellent collection of Vai's for illustrates many of the principles. Examples are provided
computer system design that address effective-,..,s, effi- for both system requirements and design tradeoffs. Two
ciency, and correctness [15]. His efficie, , ,,ts are the of the principles, processing versus frequency tradeoff and
type of folklore that has until recentl . *i only infor- centering, are described in detail in [35], so their descrip-
mally shared. The principles presentcd ater formalize and tion here is abbreviated. An earlier version of the fixing
extend the efficiency hints. Kop - z presented principles point principle was also previously defined; however, due
for constructing real-time pr'.,ss control systems t141; to its revised statement and its importance in Section 1ll,
some address performance. An earlier version of the gen- it is described in more detail.
eral principles is in [34] and the performance analysis of
three independent principles is in [35]. To experienced A. Fixing Point Principle

performance analysts, those hints and synthesis principles Fixing is the mapping of an action or function desired
are not revolutionry new prescriptions. They are, how- to the instructions that accomplish the action. It is also
ever, a generalization and abstraction of the "expert the mapping of information required to the data used to
knowledge" that performance specialists use in building produce it. The fixing "point" is a point in time. The
or tuning systems. They are also an effective way of com- latest fixing point is during execution immediately before
municating this knowledge to software architects and de- the action or information is required. Fixing could be done
signers. This paper, therefore, explains the "expert at several earlier points: earlier in the execution, at pro-
knowled.e" with an updated version of the principles, gram initiation time, at compilation time, or external to
and illu ;trates applying them to software system require- the software system.
ments and design. Note that they supplement performance Fixing Point Principle: For responsiveness, fix-
assessment rather than replace it.Crseserat sota rreemen it. iing should be done at the earliest feasible point in

Creating software requirements i included in this time such that retaining the fixing information is
cu. ion even though the requirements are often prescribed cost-effective.
an(' thus "set in concrete." In practice, however, the re-
q, irements may be negotiable, particularly when there are It is cost-effective to retain the fixing information when
-ood performance reasons for doing so (and they can be the cost of retaining it is less than the cost of fixing mul-
presented quantitatively). Therefore, the examples pre- tiplied by the probability that refixing is unnecessary. Jobs
sented in the following sections illustrate requirements as or transactions will be more responsive when customized
well as design alternatives, interfaces are designed with early fixing for common pre-

dictable actions and information, and when baselined ver-
II. SYNTHESIS PRINCIPLES sions of information are changed infrequently and are

These principles have been developed through practical fixed early. For flexibility, special interfaces can be pro-
experience with large software systems. On one particularproject, severe performance problems were detected dur- 2When the processors have conventional von Neuman architectures. This

excludes pipelined processors, systolic arrays, and other special purpose
ing the system integration phase. A thorough performance architectures. Such computer systems may have additional performance-

"tuning" study was conducted that resulted in numerous determining factors not addressed here.



43
IEEE I RANSACTIONS ON SOFr WARI- ENCINI:IHrING. \(L 41. No( 10. ( 'I (I k P, .

vided and used only \ hen needed for uncommon actions, activity changes. For temporal locality, those activities
for inf6rmation infrequently accessed, and for refixing to that are requested most frequently should be in the first
more recent versions as required. menu seen by the user; infrequent activities should be seen

An example of fixing requirements is choosing the in- much later. (Since they are clustered into the same menu,
terface for DBMS information selection. Runtime fixing they also have good spatial locality; temporal locality re-
is done when general ad hoc queries against the infor- fers to when they appear in the sequence of menus.) Ef-
mation are allowed, and the query is parsed and satisfied fectual locality is found in most ATM's: they use a spe-
at runtime. Alternatively, the information can be fixed cial purpose automated teller machine that has a user
earlier, at compile time, with managed queries: predefin- interface customized to the ATM application, rather than
ing the infonnation that is to be quickly accessible and a general purpose terminal console. Degree locality
building a menu with only those items. The data is'still matches the size of the ATM application to the machine.
selected at run time, but the code to retrieve it is fixed at A microprocessor is sufficient, a supercomputer is not
compile time. needed.

Note that binding is a subset of fixing. An example of
fixing that is not binding is determining when data in files C. Processing Versus Frequency Tradeoff Principle

or internal tables should be sorted. Files or tables kept in This principle addresses the amount of work done for
the desired order, with all additions preserving the order, each processing request, and its impact on the number of
are fixed early. Late fixing applies to ordering them when requests made. The "tradeoff" concerns the cases when
needed. (Some experts would consider this an example of more work per request reduces the number of requests
"extended binding." Unfortunately, many subcon- made, and vice versa. The principle is as follows:
sciously view binding in a limited context, so the term Processing Versus Frequency Tradeoff Princi-
fixing is used to encourage broader interpretation.) pie: Minimize the processing times frequency prod-

B. Locality Design Principle uct.

Locality refers to the closeness of the mapping of log- A requirement tradeoff for the ATM example is deter-
ical tasks and resources to physical resources. According mining whether multiple transactions per ATM session are
to Webster, close means "being near in time, space, ef- to be allowed. The prompt for continuing a session re-
fect (that is, purpose or intent), or degree (that is, inten- quires some additional processing time, but the total num-
sity or extent)." ber of sessions may be less than when a separate session

The dictionary specification for close mapping then is required for each transaction.
leads to four types of locality design for performance en- Another example is in displaying results of a database
gineering. They are illustrated in the following example. query when multiple data items are selected. Either all
Consider the logical task to sort a list of integers. Tein- results can be displayed with a GETALL, or the first item
poral locality of the mapping of this logical task to the can be displayed with a GETFIRST and each additional
physical resources is better if the integers are all mapped one with a GETNEXT. If users frequently wish to display
at the same time to the physical processor that sorts rather all results, then the GETALL command may be desired
than one at a time (with a large interval of time between for convenience. The principle can then be applied to the
each). Similarly, spatial locality is better if the task is in design. A design with a direct GETALL has a high band-
a location that is near the physical resource, such as in width interface to the database; a design with an inter-
memory that is directly accessible by (local to) the pro- mediate level of abstraction intercepts the user's GET-
cessor on which it will execute, rather than located on a ALL request, issues multiple calls to the database (the
disk drive attached to a different machine. The task could GETFIRST and multiple GETNEXT's), accumulates the
be mapped to different types of physical processors; con- results, and trahsmits all back to the user at once.
sider the choice of mapping to a general purpose CPU or There is not always a tradeoff in the two factors. For
mapping to a special purpose chip designed specifically example, for file I/O one can retrieve one byte of infor-
to sort lists of integers. Effectual locality is better for the mation at the same relative cost as 20 bytes of informa-
special purpose processor since its purpose matches the tion, because the processing time is dominated by the
task more closely than the general purpose CPU. Degree I/O operation. Therefore, if most of the time the addi-
locality refers to the extent of the task, as in the length of tional information is eventually required, there will bc es-
the list of integers as compared to the size of the proces- sentially no change in processing time and the number of
sors (e.g., speed, memory, size, etc.). requests will be reduced. Thus there is no processing time

The locality design principle can thus be stated as fol- penalty for reducing the number of requests.
lows: D. Shared Resource Principle .

Locality Design Principle: Systems should be de- Compuer syste roce
signed to have a close mapping of logical tasks and Computer system resources are limited and must be
rsgne to he al ose mappingoshared. To share, either multiple processes can use the

resource at the same time, or they can take turns, each

Spatial locality is in menu networks that cluster related process using the resource one at a time (multiplexing).
activities into a single menu and change menus when user The management of shared resources affects the software



s.MI rll: ilSI',SIVli S01 WARE S NI [+MS 44

in two ways: tile additional processing ov.erhcad for The principle is as follows:
scheduling the resource, and the possiblc additional time Parallel Processing Principle. Parallel proccss-
for waiting to gain access to the resource. The generalprinciple is as followvs: ing should be exploited (only) when the processing

speedup offsets the comm-unication overhead and the
Shared Resource Principle: Resources should be resource contention delays.

shared when possible. When exclusive access is
needed, the sum of the holding time and the sched- In general, the benefits derived through apparent con-
uling time should be minimized, currency are not significant compared to those achievableusing the other principles. It has the further disadvantage
By sharing resources (rather than taking turns), the of adding complexity to the software system. Real con-

overhead for scheduling is minimized and there is mini- currency will be effective if the processing time reduction
mal wait to gain access (there may be a wait if another is much greater than the additional overhead for commu-
process already has exclusive access even though the re- nication and coordination of the concurrent processes. The
questor is willing to share). performance improvement must also be weighed against

Decreasing the sum of the holding time and the sched- the cost of the additional processing power and the cost
uling time of multiplexed resources decreases the average of more complex software, to determine whether it will
wait time to gain access to the resource.3 There are four be effective.
ways to minimize the holding time: F

1) Minimize the processing time (using the other prin- . Centering Principle
ciples). The. five previous principles provide guidance for the

2) Hold only while needed. synthesis of software requirements and designs. Their ap-
3) Request smaller resource units. plication improves the performance of the part of the sys-
4) Fragment the resource requests. tem to which they are applied. This principle is different
The first decreases the holding time by doing less work in that it addresses leveraging the application of the prin-

while the resource is held. The second says that a multi- ciples by focusing attention on those portions of a large
plexed resource should be requested just before it is used software system that have the greatest impact on its re-
and released immediately afterwards. The third, request- sponsiveness.
ing smaller resource units, means that less of the resource The principle is as follows:
is held. The fourth, fragmenting requests, means parti- Centering Principle: Identify the dominant work-
tioning one request that requires a long holding time into
shorter requests, each of which requires a shorter holding
time. That is, create special execution paths for the dominant

Minimizing the holding time of a multiplexed resource workload functions that are customized and trimmed to
may increase scheduling time. The scheduling of service include only processing that must be done while the user
requests requires more processing for smaller resource waits. The principles in Sections II-A-II-E are applied to
units; and fragmenting requests into multiple shorter re- the special paths to minimize their processing. Separate
quests introduces more requests for scheduling service. transactions should be constructed for the workload func-
There will be a net improvement only when the additional tions that are requested less frequently.
processing is less than the expected wait time using the Most automated teller machines apply the centering
larger units or longer requests. principle to system requirements by including a "quick

withdrawal" transaction that reduces processing by elim-
E. Parallel Processing Principle inating prompts and processing for account type, amount,

Processing time can sometimes be reduced by partition- and additional transactions; and (on some ATM's) by
ing a process into multiple concurrent processes. The con- omitting the new account balance from the receipt. They
currency can either be real concurrency where the pro- also apply it to the system design by customizing the ac-
cesses execute at the same time on different processors, cess methods for the small percentage of customers who
or it can be apparent concurrency where the processes are are likely to use ATM's.
multiplexed on a single processor. For real concurrency, The centering principle applies to all systems, but what
the processing time is reduced by an amount proportional one centers on may depend on the performance goal or
to the number of processors. Apparent concurrency is the type of system. Thus far, the discussion has implicitly
more complicated. Although some of the processing may addressed application software systems that support on-
be overlapped (e.g., the CPU, memory, or files), addi- line interactive users where the performance goal is re-
tional wait time may be introduced. Additional overhead sponsiveness to users. When system throughput (number
processing may also be required to manage the commu- of responses per unit time) is a performance goal, or gen-
nication and coordination between concurrent processes. eral purpose software systems do not have a dominant

workload, centering is on those components with the larg-
est cumulative space-time product across the specified

'The shared resource principle is a synergistic principle; it improves the

average waiting time for all processes. rather than improving a process's usage scenarios. Note that most general purpose systems
own responsiveness. See the Appendix for further information. (e.g., database systems, operating systems, or other corn-



45
IIFE IRANS.\CI IONS IN ,F[I \\\R I: [NG RI I I NG \)I. IJ.NI Id I )(I 0Ih R I 9\S

mercial products) have donlant workloads. The devel- A. Colmtniilljcation ill Software SY1 tem.ls
opers may not know what they are, but they can be iden- External communication is the sending and rccci\'i of
tified and it is important to do so. If one instead focuses information between processes. The processes may be ex-
only on the components with a large cumulative space- ecuting on the same processor or on different processors
time product, :mprovements can be made by reducing (e.g., multiprocessors, distributed systems, or \I[\ID
their time, but other opportunities to shorten path lengths machines). External communication also includes "svs-
by eliminating general processing steps not applicable to tern calls" for operating system services, such as a call to
the dominant workload may not be found. an I/O service routine. Internal communication is the

Early in the life cycle, centering focuses on the func- sending and receiving of infonnation within a process:
tions frequently requested by users. Later, during imple- passing parameters in procedure calls is a common form.
mentation, the centering principle also addresses software The overhead for communication is often ignored dur-
components with large resource demands, the "major ing the design and implementation of software systems.
consumers,' even though they may not be executed fre- This is because it is a transparent operation (the actual
quently. Bec'use the major consumers hold resources, communication is usually handled by the operating sys-
they may cause excessive delays to the dominant func- tern), the communication is not part of the "real work"-
tions. While they can be identified earlier, they are typi- it is merely a support activity, and the bandwidth of ex-
cally less important than the dominant functions. They are ternal communication lines is known to be fast. Therefore
addressed later, but do not drive the design earlier as do the time to transmit messages is perceived to be insignif-
the frequent functions. icant. Nevertheless, the overhead is substantial and must

There is an additional difference in the early and late be considered during the design of software systems.
life cycle centering considerations: the effect of the im- The parallel processing principle directly addresses ex-
provements. Early life cycle centering focuses on the ternal communication. It specifies that processes should
functions frequently requested by the users. We assume execute in parallel only when the communication over-
that reducing the processing time for these requests does head (and resource competition) are offset by the speedup
not affect the number of times they are requested. Later in processing. Models are usually needed to quantify the
in the life cycle we also address the major consumers of effect on performance metrics of greater and lesser de-
resources. When their processing time is reduced, the grees of parallelism [32]. The other principles address re-
components that fall in the set of major consumers of re- ducing the communication overhead (which may make
sources may change. Thus, reducing the resource require- parallel processing viable). They are discussed in the re-

ments of the major consumers could be an endless pro- mainder of this section.
cess, since there will always be major consumers of each First, consider using the fixing point principle to deter-
resource. It is not endless because we focus on achieving mine communication requirements. For external corn-
the performance goal, not on minimizing resource usage. munication between processors, the sending and receiv-

G. Sunmmary ing processors must be fixed. A dedicated communication
line connecting the two processors is the earliest fixing.

In this section, the principles for synthesis of respon- The latest fixing is a shared communication line with pro-
sive software systems were introduced and illustrated with cessors examining each message to determine if it is
simple examples. Most of them involve tradeoffs. A theirs.
quantitative analysis of the performance effect of the fix- Consider applying the fixing point principle to com-
ing point, processing versus frequency tradeoff, and cen- munication design. For external communication the send-
tering principles is in [35]. While they can be evaluated ing and receiving processes must be fixed. With late fix-
with imple back-of-the-envelope calculations, the others ing, messages go to a central "mailbox ' 4 and receiving
require more sophisticated performance models. Since the processes periodically check to see if any waiting mes-
performance engineering methodology in [301 incorpo- sages are theirs. Early fixing sendsmessages directly to
rates the modeling activity into the software design pro- the receiving process as, for example, with remote pro-
cess, it is easy to use the models to quantify the tradeoffs. cedure calls or system calls. Intermediate fixing sends
Many performance analysts have the necessary modeling messages to the private mailbox of the receiving process.
skills, and numerous support tools are available. For fixing the location of messages in a private mailbox

111. APPLYING THE PRtNCIPLES to the receiving process, late fixing requires the receiver
to call a system routine to get the message (from a loca-

Since there is a close correspondence between the pc"- tion hidden to the receiver). Earlier fixing allows the re-
formance principles and the computer performance fac- ceiver to read the message directly.
tors that they affect (see Appendix), they are likely to be The fixing point principle can also determine how pro-
intuitive to an experienced performance specialist, but less cedures or sections of code within a program receive mes-
familiar to one who specializes in software system design. sages. The latest fixing is a central driver routine exam-
This section illustrates applying the performance princi-
ples to software system requirements and design. It illus- 'This refers to a generic mailbox: some unspeci tj location (such as
trates that performance-oriented design does not pr.clude primary memory, disk, etc.) serves as a holdin, area ior messages that have
the use of good software engineering practices. been sent but not yet examined by the receiver.



S \I II I I[ KI-S I"}NI\ 1; SO F IN \H ~F SN , 11 ms 46

ining each message and invoking the appropriate routine. sion frequency). A pcrformancc modcl will likely be re-
Earlier fixing is setting a "switch" that routes subsequent quired to solve for holding time, especially if a large
messages directly to the routine expecting a series of input amount of external communication is inherent in the soft-
messages. The "switch," of course, must be closed when ware system being developed.
the routine completes the message series. An example is Centering implies that the communication overhead for
in text editors: a user enters an "input mode" and sub- the dominant workload functions should be minimized.
sequent input is automatically added rather than checked Thus, the fixing point, locality design, and frequency
to see It' it is a command. times processing tradeoff principles should be applied to

Locality design also applies to communication. Ten- the dominant workload functions to minimize their com-
poral locality is best when there is a minimal time lag munication overhead. For large software systems with
between when a message is sent, and when the receiver strict performance goals, the other principles should also
gets the information. So temporal locality is better for be applied to workload elements that are major consumers
communication via a remote procedure call than via a of communication resources, because they affect the re-
mailbox \%hen the receiver must keep checking for mes- sponsiveness of the overall system.
sage arrivals.

Spatial locality applies to the nearness of the commu- B. User Interface Design
nicating processes. The locality is better when they are on The structure and strategy for acquiring information and
the same processor than when they are on geographically for viewing it is the user interface of a system. Thus, for
separated processors. One can also view spatial locality an interactive computer system, it includes the scre.en lay-
as the access time to the message. With this interpreta- outs and the interaction scenarios. For batch systems it
tion, messages in shared memory have better spatial lo- includes the report formats and the input media formats.
cality than messages in a mailbox that resides on a disk. Batch systems are not specifically addressed here, but the

Effectual locality applies to the mapping between the general principles apply to them as well.
logical communication mechanism chosen and its physi- The user interface design affects both the amount of data
cal environmental support. For example, some computer transferred and the number of interactions between the
architectures support rapid context switching. On these computer system and the user's terminal (or device). The
systems, communication via procedure calls has better ef- time required for the interactions can dominate the total
fectual locality than communication via message passing. time required to process the user's transactions; careful
Some operating systems are message-based, so the effec- design of the interface can substantially reduce this time.
tual locality of message passing on them is better than for First consider applying the fixing point principle. A user
other mechanisms. interface with menu selection screens and data entry

Degree locality is a close mapping between the amount panels employs earlier fixing than one with free format
of information sent, the amount that is essential to the commands and keywords that must be interpreted at run-
receiving process, and the bandwidth of the communica- time. Earlier fixing uses function keys on a terminal, or
,:on channel. In a packet switching networl-, for example, buttons on a device such as an ATM, to select frequent
degree locality is best if the amount of information trans- activities. Buttons on a mouse or a puck can be fixed early
mitted (and needed) is equal to the packet size. either to frequent commands or to picture elements that

Processing versus frequency tradeoff also applies to are frequently used. In the graphics example in Fig. 2,
communication. Communication time is often a large part one mouse button is dedicated to the frequent function
of the total time, so it should be included in the processing "change the current picture element to the next in se-
time when evaluating the frequency times processing quence." In this example, one of the elements is typically
tradeoff. Communication requires overhead processing. used more than 90 percent of the time, so it automatically
The principle also suggests combining messages into becomes the current picture element every time a place-
fewer, longer messages rather than transmitting many ment is made. Thus 90 percent of the time only the inner
shorter ones to reduce the frequency that overhead pro- loop in Fig. 2(b) is executed.
cessing is needed. 5  Another application of fixing is the design of the menu

The previous examples illustrate the independent as- hierarchy or network. In a hypothetical menu hierarchy,
pects of the communication problem: reducing commu- a user who wishes to create a new picture first sees the
nication overhead to improve one's own performance. The main menu, selects "edit model," then sees the corre-
shared resource principle addresses the synergistic as- sponding Level 2 menu, selects "add," then sees a third
pects of communication. When communication channels level menu and selects the first picture element to be
are shared, the potential wait-time (to gain access) and the added. An alternative, in Fig. 3, places the most frequent
scheduling time (the communication overhead) determine actions from the leaves of the previous menu tree (such
the best holding time (the message size and the transmis- as the picture elements to be added) in dedicated areas on

the screen. Because they are selected directly with a
'This example is not quite so simple. The communication overhead is pointing device, such as a mouse, fixing instructions to

reduced with this strategy; however, the contention forcommunication lines actions is earlier. On devices with more limited screen
must be considered as well as the effective bandwidth of'the communication
channel to determine the net effect on response time. That is, the shared area, small icons can represent the most f-"quent actions,
resource principle must also be considered, while actions desired less frequently cat. be grouped to-



47
ILI "F IRANSAC IONS ON S(FT \AR IV LNGINIFIRING. \OL. II. NO OC 1I1I R uPIS

Drawjopology: Draw-lopology;

REPEAT REPEAT
Pointto-pic-element; Point lo_picelement;
Pointto location; REPEAT

UNTIL finished; Point_to location;
UNTIL new_element;

UNTIL finished;

(a) (b)

Fig. 2. Fixing frequent actions and picture elements. (a) Late fixing: pic-
ture element selected for each placement. (b) Earlier fixing: current pic-
ture element fixed.

GCuE

TopoiOgy Oelinoon

Cenral Server
Add

<0>
Inlue F-Td7

o--

Last Resu;Is

Expon Model
Imlon Results

H----IFC el

Fig. 3. Menu locality.

gether and selected via pop-up menus since later fixing is the coordinates of the center of gravity are returned when
acceptable. For systems without a pointing device, the the button is pushed making the comparison of coordi-
choices shown on the screen can be selected with function nates (to fix the action to the instructions) much faster.
keys. Note that earlier fixing will not always be cost-effective

A related example is fixing the coordinates returned because of the cost of retaining the information. For early
when the mouse button is pushed to the desired menu fixing, it applies when one must frequently fix a region
function or picture element. For example, any pair of co- on the screen to an action (or to an object in a picture),
ordinates within the "Add" box boundary in Fig. 3 should and when the cost of retaining the fixing information is
be fixed to the instructions that do the addition. Late fix- low, as when the cursor tracking and gravity calculation
ing checks the coordinates of the cursor location against can be processed in parallel on the graphics device pro-
the coordinates of the box boundaries after the button is cessor rather than on a central'processor.
pushed. Earlier fixing uses a "gravity" feature. Centers The fixing point principle also provides guidance for
of gravity are predefined and when the mouse is moved the placement of information on the screen and the length
the cursor virtually "jumps" from the current center of of time it should be retained. Information ilat is stable
gravity to the nearest one in the direction of the cursor should be placed in a location where later retransmission
movement (it may or may not actually "jump" on the can be avoided. Other types of reference information that
screen). Gravity is often used with a grid on the screen to are occasionally needed, and then only for a short period
snap the cursor to grid intersection points. With gravity, of time, should be placed in an area on the screen such



SM1II: Ht-St0NSiT (,(1IWA.RI- S\ SIS 48

that it does not displace more stable information (that The processing versus frequcncy tradcoff principle also
would later need to be rcdisplaycd and thus retransmit- applies to the user interface. An example of decreasing
ted). On an intelligent display device, a pop-up window processing is a hierarchical "help" command: a responsc
can be used and the displaced information maintained in that presents only the information the user is most likely
a device buffer so that it can be redisplayed without re- to need reduces processing. There may be an increase in
transmission. 6  frequency; occasionally the user needs more infornation,

For screen organization, temporal and spatial locality so the longer version of the help is also requested. De-
design are interrelated: data that is needed within a short creasing the number of inputs by increasing processing is
period of time should be closely located on the screen, illustrated with an "Include" command (to incorporate a
and data not needed at the same time should not be mixed predefined model). One can either remind the user of the
When the amount of data to be viewed is much greater names that can be included, or assume that she or fie re-
than the screen capacity, and it is likely that all the data members the name. The appropriate choice depends on
is needed, locality is better if all the data can be trans- the application. Automatically displaying the list may re-
mitted to the interactive device, and all the viewing ma- duce the number of user inputs (due to errors and to sep-
nipulation commands (paging through data, locating spe- arately selecting the "List" command and the "In-
cific information, printing hardcopies, etc.) can be clude").
processed on it without intervention from the central pro- An application of the shared resource principle is de-
cessor. This applies when most data is needed. If it is signing screens such that infornation derived from shared
more likely that only a small amount is needed, the soft- files is segregated from information that requires exclu-
ware should be structured so that only the needed infor- sive file access. It is appropriate when the shared infor-
mation is transferred. Later, more could be separately re- mation alone is useful, especially when there is a long
quested. The information display is thus structured delay to get the nonshared data. The amount of data re-
hit -archically based on frequency of use. quiring exclusive access is an information storage issue

Effectual locality addresses the match between display and is discussed in the next section. The shared resource
device capabilities and the software requirements and de- principle also applies to concurrent interfaces via multiple
sign. Several capabilities already mentioned are sup- windows on a screen. It determines the best screen orga-
ported by bit-mapped graphics devices (so that only nization to maximize sharing of the limited screen area.
changed data need be retransmitted) and device intelli- The parallel processing principle also applies. Several
gence (for buffering data and manipulating it without in- examples have been mentioned that call for asynchronous
tervention from the central processor). Windowing capa- processing on the interactive device (e.g., paging through
bilities also offer opportunities for viewing and large amounts of data). Allowing multiple processes to
manipulating information concurrently. High resolution communicate with a single interactive device is another
screens offer opportunities for matching the size of the example that may become more important in the future.
information displayed to its value at that stage in the pro- As usual, the centering principle focuses attention on
cessing. For example, if information is being used only the frequent screens and interactions. It is important to
as a frame of reference, it need not be as large as the minimize the number of interactions for them.
primary information being viewed or manipulated. Color
displays offer opportunities for providing perceptual feed- C. hIformation Storage, Retrieval, and Update
back to the user that may aid in problem solving. Thus, There are three primary considerations for information
effectual locality design calls for using device intelli- storage, retrieval, and update:
gence, high resolution, color, and windowing when they 0 The structure of the information: its aggregation into
can decrease the number of interactions with the user. files, records, ani data items, and the relationship be-

Degree locality is the nearness of the amount of data tween aggregates such as ordering, hierarchy, etc.
needed and the amount displayed or entered. Degree lo- e The information content: its representation and for-
cality is better if default values are used and only non- mat
default data need be specified. The graphics example in * The location of the data: the physical location of the
Fig. 3 illustrates. The default picture in the figure is cre- files, records within files, and the data items within the
ated with one menu selection. It is frequently created then records
modified with a few screen interactions, thus reducing the Thus, the data organization decisions are what the
total processing to create a new picture. structure and contents should be, and where they should

6Note that this example (and some later) and the communication issues be located.
in the previous section are similar. This is because we are viewing screen The fixing point principle applies to when and how often
layouts and interaction scenarios as requirements and design issues, while the decisions are made. In database management systems,
the I/O's to and from the interactive devices are really communication with
the device. Nevertheless, the purpose is to present software development fixing information requested to the actual data format and
issues and how the principles aid in the synthesis process. The principles location at runtime is more expensive than fixing at corn-
apply to user interface issues irrespective of whether one views them as a pile time. Data items accessed by the dominant workload
communication or a user interface problem. It is because of the common-
ality in the applications that the set of six principles is a better formulation functions should be fixed at compile time. Therefore, the
of the synthesis concepts. database should be structured so that those items are sta-



11 1 -I IR.\ '.%C 1 1' ( A S" f , M d'- . I~ l '. l I. IN I I K ING . \0. 1. 1. I C I( I . I I I-',X

ble and not allcctcd by other datab,,e changes. Then.,--r,. . .49

compile lime fixing is viable, since information structure
for thc dominant workload functions changes infre-
qucntly.

A second example addresses the creation and fixing of
temporary irfc-nation. Consider creating a matrix that L'4Io C.J K."""

shows the fraction of transactions in each ATM region .. .
made by customers residing in each of the other regions. o:", Es .

Each account address must be fixed to an ATM region. C-- .-.
The earliest fixing is to include the ATM region in every Eo: .
account record. Alternatively, a mapping file could cor- Fig. 4. Database structure %,ith little tcmpor~A locality.

relate account addresses to ATM regions. Assume that a
mapping file is used because the interval between uses for into the table and the time per probe (the instructions to
the mapping infornation does notjustify retaining it with make the probe plus page fault processing).
the account information. The analysis program processing Degree locality matches the size of the data structures
for each ATM transaction is to access the account infor- and the storage medium. While small amounts of data are
mation to get its geographic location, then access the often manipulated by programs, storage devices process
mapping data to get the corresponding region. The latest large amounts more efficiently. Buffering, blocking, and
fixing point stores mapping data in an external file that using direct access storage devices with cache memories
must be accessed for each transaction. Earlier fixing improve the closeness of the mapping.
"preprocesses" the mapping data in the first phase of the The parallel processing principle applies primarily toprogram to create a data structure in virtual memory for distributed computing systems. A proper distributed data

fixing the transaction region. Temporary fixing also maps organization reduces the overhead for communication and
complex database structures into simpler files for more synchronization of processes executing on separate pro-
efficient processing., cessors, thus making parallel processing viable. An im-

Spatial locality applies to the location of data in a dis- proper organization increases this overhead to the point
tribated database. The data should be closest to the loca- where parallel processing is no longer effective.
tion where it is most likely to be needed. If distributed Centering calls for selecting a data organization that

* data resides in a remote location, late fixing gets data from minimizes the physical 110 operations for frequent re-
the remote location when it is referenced, whereas earlier quests (dominant workload functions). For external files
fixing recognizes earlier (e.g., at run initiation time, or and databases there many be conflicting workloads; ran-
even the beginning of the day) that remote data is needed, dom access may dominate during the day, but sequential
and transports it before execution. access may dominate for overnight workloads. When the

Locality design also applies: data items used together conflicting workloads run concurrently, models must be
(temporal locality) should be clustered together (have used to determine the best overall organization.
good spatial locality). Often external files have an abstract
or logical structure; that is, related information is clus- D. Information Hiding
tered together, but the relationship is based on logical Information hiding is the concept of hiding implemen-
content rather than temporal references. One example is tation details [201, [2 11. It applies both to hiding data or-
the hypothetical personnel database structure in Fig. 4. ganizations and to the implementation of operations on
The abstract relationship appears to be reasonable: per- the data. Parnas recommends applying information hiding
sonal data, job history, payment history, time log data, to "design systems for change." With his method, as-
and payroll data are conceptually distinct and are clus- pects of systems that are likely to change become "se-
tered accordingly. The locality is better than if it were all crets" that are hidden from the rest of the system. Aspects
stored in one record. For printing checks, though, multi- of systems that are unlikely to change are operations or
pIe clusters must be accessed (personal data, time log data, "interfaces" known by the rest of the system. By hiding
and payroll data). There are few scenarios that access only the secrets, the effect of changes to them is localized. Ab-
one cluster with this structure. stract data types (ADT's) and object oriented program-

Effectual locality design addresses the closeness of the ming are methods of implementing information hiding [5],
mapping of the logical to the physical database design. It [171.
also applies to the design of internal data structures. For Information hiding has the advantage that software is
example, a binary search into an ordered data structure is less dependent on the format, location, and current oper-
usually best for random retrievals from a large table. ations than might otherwise be the case. A disadvantage
However, if the table does nct fit entirely in real memory, is that, without careful implementation, it can be ineffi-
the binary search probe ito the table may result in page cient: the overhead of procedure calls for the interfaces
faults making the average access time per probe greater. may be excessive; the granularity of the data items may
Thus, effectual locality addresses the total time to locate be too small; or the locality may be suboptimal. If these
and retrieve the desired data item: the number of probes inefficiencies adversely affect the dominant workload

Ammm i , -.



S\I|T11: RESIPONS11V1 St}F | \vRI" SV !LX?,S 50

functions, the responsiveness of the system may be un- 90 ra ...... A Datars

acceptable. The inelficiencies are not inherent defects of ., o
information hiding, but may exist if a straightforward im-
plementation is used. get address

It is vital to consider the performance of key interfaces.
A fundamental assumption is that they are unlikely to
change; they may be used throughout the rest of the sys- (a)
tern, so changes to them can propagate extensively. The
internal data representation is easier to change later; thus, get name Data Files
it is not a key consideration, but it is just as easy to do it -- File

right the first time.
Sections III-C and III-E address internal data represen-

tation issues; the remainder of this section addresses the gt adres .. ,
interfaces. The important issues are identifying the inter-
faces that are key to responsiveness, early fixing of data
to the interfaces, properly retaining the fixing inforna-
tion, and appropriately decomposing information. (b)

The centering principle identifies the interfaces most
frequently requested. Using the other principles, their ef- Account

ficiency is then optimized. This may lead to identifying get na"e

new interfaces that are needed. For example, an "ac- Manae
count" may hide the name, address, social security num- / , t, r.... I ito *

ber, and balance, and have an interface for each (e.g., get e."' -n'-o"
"get name,'' "get address," etc.). If a customer wishes
to open another account, and the software is to use the
information from the first account, three procedure calls
are made to the interfaces. This function is not likely to (c)
be a dominant workload function; however, if it were fre-
quent, an additional operation for "get all account infor- A

mation" or even "create new account" should be pro- gename ......
vided. Other special interfaces may be needed to get ' " 1,, routine
combinations of data items that are frequently needed to-
gether. gegedes ." 'C t tf 4-. (.M, recttord

The fixing point principle specifies when the informa-
tion is fixed, and how long it is retained. Consider the
example in Fig. 5(a). Each interface performs an I/O to
retrieve the desired data element. This is fine for random (d)
requests for data elements But, if dominant workload Fig. 5. Fixing abstract data type information. (a) Late fixing of data items:
functions are likely to request multiple data items for the each operation performs an I/O. (b) Earlier fixing of data items: each
same account, 7 earlier fixing reads all data items when the operation calls the data file manager. It may buffer multiple records for

efficiency. (c) Data items are fixed and explicitly retained for each user.first is requested. Each interface then checks to see of the (d) Later fixing: information is not explicitly retained for each user, but
desired data item is in memory, or if an I/O is needed, as may still be present in I/O buffers.
in Fig. 5(b).

The cost of retaining the fixing information is important dure call, the overhead may be excessive. However, it
when multiple processes call the interfaces. In the exam- may be possible to fix earlier, at compile time, by using
pie, information for multiple accounts must be retained, a preprocessor that inserts the code in-line.
One implementation is to retain data items for each user; Locality design also applies. There are two mappings
each interface then checks to see if the desired data item to be considered: mapping the information (the logical re-
is among those in memory, or if an I/O is needed, as in source) to the physical processor as before; and mapping
Fig. 5(c). Later fixing uses the same interface as in Fig. the information to the external (user) domain through the
5(a), but modifies-the I/O routine as in Fig. 5(d). It first interfaces. Effectual locality calls for both mappings to be
checks to see if the desired data is in one of its buffers in close. Thus, there should be an abstract data type or ob-
memory before it starts the physical I/O operation. ject for each significant element in the user's environ-

The fixing point principle also applies to fixing code to ment. Ideally the mapping to the physical resources it also
the interface desired. If every interface requires a proce- close, such as mapping account data items needed to-

gether to the same physical record.
'And if the account data elements are stored together-if not. the local- Fig. 6(a) shows a hypothetical database scenario for re-

ity principle applies, as described later. trieving logical records that are composed from multiple



51
IFE- r.ANSACrIONS ON SOFI WARE ENGINEERING. VOL., 11. NO. It. OC1 011R ir.0

,V'.E .... . overhead, but other types of DBMS overhead may also be
fiG aIc m . reduced (e.g., binding physical record addresses, error,.O,, checking, buffer management, etc.).

Note that this is a special interface for sequentially re-
trieving logical records. Random retrievals would use a

. .. .different strategy. If sequential retrievals are used by the
dominant workload functions, it is important to include

Get-n LoicaRecod this customized interface; it substantially reduces pro-Re' e cx, m ssae. .,, Rece-vo me ssage cessing time. If not originally included, it would be dif-Parse ree~st
Pseuest. .ficult to later add a high-performance, sequential retrieval
l r tcal m .pg interface.

e:e:"hr yscal P" ',. ' -. The temporal and spatial locality between the user do-
record addresses main and the ADT is improved in this example by adding
Read dMa We I the "get logical block" interface to the logical record data
Read data Ve 2

Tro<si<e pysico\ type, as shown with the dashed line. It additionally saves

suid response, message on DBMS overhead for message passing and request pars-

Send message P ca e ... r . o-... . ing since it is only needed once per block instead of once
S.ert per record.SThe processing versus frequency tradeoff principle ap-

F.d plies to the interfaces to be called and the amount of pro-

cessing for each. The example in Fig. 6 can also be viewed
as a processing versus frequency tradeoff. The logical

(b) block handler does more processing per call, but it is
called less frequently.

Recee message The shared resources principle applies when objects can
Parse ....uest be accessed by multiple users. The holding time is mini-

It rte emply LocCalocHa-er inized by applying the principles to both the data repre-
sentation and to the interfaces as in this section. The "hold

:A, response message D::::;:s dresses, while needed" can be enforced through the interfaces. The
Seto te ioc°fr block fragmentation of requests can be similarly controlled by

Read alt data ,e recs. or a either combining requests into one interface, or frag-
the btock I R menting each into a separate interface. Locks can be a

Read ait data 2 tie recs, for

FPthe block secret," so the granularity of the locks can be varied
Pyl reC ... -S Translate phys. 1o. from the entire database to an account as appropriate,

Data without propagating the change throughout the system.
._ _ _ _ _ _ If the abstract data types may be mapped to different

(c) processors, the parallel processing principle applies. The
Fig. 6. Locality design for abstract data types. (a) Hypothetical scenario, locality design principle provides guidance for mapping

(b) Logical records are composed for each access. (c) With nested logical them to physical processors. For example, ADT's should
block handler. not be divided between processors unless the effectual lo-

cality is improved by mapping an interface to a processor
physical records. Fig. 6(b) shows a design: for every designed specifically to handle that operation. ADT's are
"get-next" request the physical to logical mapping is de- well suited to parallel processing since the interfaces are
termined, the physical records are read, and the transla- explicit and the processing is encapsulated. Thus it is easy
tion from physical to logical performed. Fig. 6(c) shows to model the communication overhead and the processing
a hierarchical abstract data type with a logical block han- time to evaluate the cost-effectiveness of various parallel
dler nested within the logical record abstract data type. processing strategies.
The logical block handler determines the mapping once, This section illustrates applying the principles to the
reads all the physical records necessary to compose the synthesis of abstract data types and objects. Interested
block, then performs the translation once. The mapping readers should also refer to related work by Booth and
information is only read and processed once per block Wiecek on performance abstract data types 17]. They ad-
rather than once per record. In the worst case, the number vocate extending the abstract data type definition to in-
of physical data file I/O's is the same as in the previous elude performance specifications that-facilitate the perfor-
case, but it may be possible to reduce the number of phys- mance assessment.
ical I/O's (depending on the data organization) by reading
in larger physical blocks of data. The performance is even E. Data Availability
better if the mapping is established once when logical data Data availability addresses when data is available, that
processing begins. This example focuses on the mapping is, when it is created, stored, retrieved, or converted.



s.\11L NI 'I'(hl l " I( W \KI. N.)Nill\1,l 52

Choices are upon dcnMInd (i.. . Mhen it is needCd), or for the intcrl.cc strtegy, uilhciimore. the pettormamce
anticipatory (i.e.. before it is needed). Data availability of [he an:lys is prograin cIl he 0pti i/cd by u,,inC dtaa
concepts are similar to the data oranization and abstract sr .'r,- that have a close mappin to the Sall -ion A-
data type interface concepts discussed in the previons two corithns. Futire analysis programs fler opporlunitics tor

sections- they decomposed tile data issues into organiza- impro, ing the locality of i ntegration since both databa'e

tion and access st rategv. This section integrates tile tw o. organization and algorithilis can be better matched.

using tIle principles, to ensture that irems used ,o.st fie- Shared re,,ources also impact the access dclay. It is

quend y have minimal acce.xs delays. minimized it processes share the resource. If e xclusivc

The centering principle is key to identifying and focus- access is needed, there is a conflict: the delay for each

ing on the data items that are used most frequently. Early access is lowvcr if the data is locked once and held until

fixing is the primary technique for achieving minimal ac- the data is no longer needed. because the code for locking

cess delay. With early fixing the data access is anticipa- and unlocking is executed fewer times. This tratcy.
tory. An example is the logical block handler in Fig. 6(c). though, may increase the time that competing Jobs llust

It anticipates that many logical records will be requested. wait to obtain access to the item. Performance models are

and composes (fixes) an entire block from the physical necessary to resolve the conflict.
records before they are requested. The earlier example
concerns lixin, tile mapping information once per block IV. SIRAIIGY FOR EtFECIt-i OPtIi/,\1t()N

rather than once per record. Here the concern is reducing The general principles are necessary for developing
the average time to access each logical record. In the log- systems w ith good performance characteristics, that is.
ical block handler the same strategy accomplishes both, for "'doing it right tie lirst time." but they are not suthi-

but that is not always true (an example of a conflict is cient. There are four factors that determine their eftec-
given at the end of this section). tiveness: the principles must be:

Data availability address both when information is fixed I) applied to appropriate solftvare components
and how Iong it is retained. Tile expected interval betwveen 2) necessary
requests to data items indicates tile best strategy for re- 3) lead to global improvement
taining fixing information, For example. data items that 4) cost-effective.
have long periods of inactivity interspersed with occa- Each of these is explained in the following paragraphs.
sonal periods of high activity (e.g., 50 requests in a 5- The principles must be applied to the components that
minute interval, twice per day) should be retained in a are critical to performance. Identifying them at de.ign
location that has minimal access delay during the periods time can be difficult: and intuition can be misleading.
of high activity. Some designers mistake the components that are most dif-

Another example is in computer-aided design (CAD) ficult to design and implement for the critical compo-
systems. There are two common strategies fororganizing nents; whereas, the critical components are generally
data used for CAD: those most frequently executed.

e To iniegrate the database and the analysis programs For example, nctwork security management is dilicult
by having the programs read data directly from the data- to design because many complex situations must be han-
base as it is needed, and to insert results directly into the died. Security may require a fair amount of execution
database. time; however, other network software components, such

* To itretface the database and analysis programs by as the communication protocol routines, are generally
first extracting the data, feeding all into the analysis pro- more frequent. Security management may be critical to
gram, and later taking all results and inserting them into performance, modeling determines its impact.
the database in bulk. The second effectiveness factor is applying the optimi-

The later is typical, since most of the analysis programs zation efforts to software components only when neces-
were written before the databases 'were created. Many sary. Usually, it is unnecessary to overachieve a perfor-
CAD experts advocate the former, due to its flexibility mance goal; therefore, if the performance goal can be
and the overhead involved for the data extraction (prepro- easily attained, it is not effective to devote valuable de-
cessor) and insertion (postprocessor). velopment time to extensive performance enhancements.

Locality design determines the best of the two strate- Similarly, it is not effective to expend much effort optim-
gies for responsiveness. Effectual locality is best if the izing components of the software system that have little
mapping of the data organization is close to the needs of impact on overall performance.
the analysis program. The physical data organization Another aspect of necessary optimizations is distin-
within the database may not correspond closely. Even if guishing software requirements that are necessary from
it does,. it does not have the best temporal and spatial lo- those that are both unnecessary and adversely affect re-
cality since the analysis program must interface through sponsiveness. Sometimes these "artificial*' requirements
the data management routines. If the database is used by are introduced at design time with the intent to improve
many other CAD tools and designers, there is likely much performance. An example is (an extra) requirement for a
more data than any single program needs, so the degree component that produces a list of items: that the list be in
locality may not be close. Thus, data availability is best sorted order. The order requirement may be artificial, the



53
IIII. ~ ~ ~ ~ ~ ~ \\ I I:'- \ II

' '  
\61M I,~ K\,\ i l" I R \G; \(,I I1"1 ) ( I .! R I"

intent being to rcducc subsequent search tilie. Pcjfor- It is 'llso IincleSilC to iote the colrclatio bctsvccin the

nlance models show s hether the s oi inpros\c , ovcratl Ie- cspcloe tie o tle Ss ste1n an1d its rcsponsivcllss to u.c1i,
sponsivenes. A stralghtforard approach (clininating the in tile mere general sense. For example. the ,pecial ATM
sort) may not degrade responsi\ene,,s, and will rsult Ii funct ion for "quick wthdrawals" mcnionCd it Section
less code to Maintain. I I-F not only produces a better averae response tine . bit

Tile third effectiveness factor says that optilliLat ion also pros ides a rmlore "friendly" interface for the many
techniques should result in global ip/rovemetts to the customers who use it. Simtilarly, the rccoin ile ndat ions in

softw are performance. This is most important in detailed Section III-B imitprove both the responsiveness and the us-
design and coding stages, when many people are involved ability of the system. Thus, the principles can be applied
in development. Optimizations made in one part of the to improve performance of svstems s,,ithout adversely at-
software ssstem must be consistent with those mide in fecting software usability, readability, maintainability or
other areas. Performance models qumantify the overall et- other quality factors. They are compatible with good soft-
fects. ware engineering practices.

The last of the four factors is that the performance im-
provement Must be comt-ctffective. The tinie to implement APPENDIX
tme optimizations nut be \%eished against expected say- BAsis trO rilE PRiNCIPLES

ings. It may be extremely difficult to achieve a specified The computer system on slhich the bott\,are executes
performance goal for a large software system. Achieving can be viessed as an abstract model as in Fig. 7. Fig. 7(a)
the goal may be possible only at great costs in personnel shows several tpes of jobs (,I, B, C, ) arriving for
tiule and in elapsed time to imiplenlent the system. It is service, possibly waiting in a queue for their turn for ser-
iiportant to estimate the cost of achie v ing the perfor- vice, then leaving upon completion. Fig. 7(b) slos, s an
iance goal and insure that it is justified. It is often pos- expanded model that identilies computer system resources
sible to negotiate for more reasonable performance goals that each of the jobs may use while being served. It is
before expending excessive elloris to achieve unrealistic well known that the performance of such a system de-
ones. pends ol tile following parameters of tc model 1161, [261:

* the arrival rate of each type of job
V. SUMMARY ANt) CONCt.jSI.uNS * the computer system resource requirements of each

Six principles for the synthesis of responsive software type of job
systeills were presented, and applications to software sys- * the contention delays that result from the interaction
tern requirements and design synthesis were illustrated, with other jobs in the system

Section III preaented several examples that could be a the scheduling policies used to determine which
viewed as applications of more than one of the principles. waiting job next obtains the needed computer system re-
The principles correspond directly to tile system perfor- source.
iance parameter that they affect (see Appendix for fur- The six principles improve performance by favorably

ther discussion). The different views usually arise because affecting the corresponding system performance parame-

one design improvement favorably affects multiple sys- ter. T:te table below summarizes the correspondence:
tern performance parameters. Since the goal is to create
responsive systemns, it does not matter which of the views SP11*,11 P(.'frltlmi.e Pa,.i.ter Petforncut e Print ip1 Tipe

leads the designer to the desired product. Since more than T)pc ,f Jobs Centering independent

one principle may apply, the probability increases that a RcsourLe requireencnis Fixing Point Independent
responsive system can be created. There would be a prob- Locality Dcicn Independent

Procssi6nu vs. Independent
leti if they were contradictory, but they are not because Frequency Tradeoff

the principles explicitly address the tradeoffs, and models Job Inmrctions Locality Design S~nergisiic

identify the best alternative. Shared Resources S) ncrgistic

Consider the relationship between the principles and the Parallel Processing S)ncrgi..tic
responsiveness and maintainability of the software sys- Scheduling

tern. When improvements are made early in the life cycle,
they only affect the requirements or the design, thus no Centering focuses on the jobs that are key to the re-
changes to code are required. Perfornance tuning projects sponsiveness of the system. The fixing point principle
conducted late may require time for numerous changes to concentrates on when and how often processing occurs.
program code, additional time for retesting, and the re- Locality design pertains to effective use of resources. Pro-
suiting code becomes more difficult to maintain. The per- cessing versus frequency tradeoff affects the number of
fornance is improved, but not as much as possible be- requests for resources and the amount requested. Shared
cause many important improvements that can easily be resources influence the number of jobs available to use a
incorporated early in the life cycle are infeasible later, resource in a time interval. The extent of parallelism and
Note that with the performance engineering methodology the competition for resources among the parallel tasks is
one can identify such improvements and evaluate their ef- affected by the parallel processing principle. The sched-
feet early in the life cycle, before code is produced t31]. uling of jobs is not addressed because it is generally a



NM 1 I IIII W rPONSD.1: st)r I \t E.N s i S \i t s 54

TpeS A

C

D Types of jobs

Resource requirernents

- Jcb -nleracl ',es

Fig. 7. Computer ssiem n model. (a) Abstract sy 'icn model. (b) Expanded model.

service provided by the computer system, and not fre- REFERENCES
quently a decision that must be made in the early devel-
opment stages of new software systems. If scheduling is Ill NI. Alford. "SREM at the age of eight: The distributed computing

design system." Computer. vol. 18. no. 4, Apr. 1985.addressed, it is usually only after implementation when 121 T. E. Bell. D. X. Bixler. and M. E. Dyer, "An extendable approach
job priorities are manipulated. to computer-aided software requirements engineering." IEEE Traus.

There are two types of principles shown in the table, Sofoare Eng., %ol. SE-3, no. I. pp. 49-59, Jan. 1977.
and synergistic. Independent principles 13. L. Bentley, Writing Effluent Programs. Englew~ood ClifT1". NJ:independent aPrentice-Hall, 1982.

prove the responsiveness of the "job" to which they are [41 -. 'Programming pearls," Commun. ACM. vol. 27, no. II, pp.
applied by improving its own performance parameters [ 1087-1092, Nov. 1984.

051 G. Booch. "'Object-oriented design." in Software Engineering oi/i(e.g., reducing its resource requirements). Thus the im- 4,da. Menlo Park, CA: BenjaminiCummings, 1983.
provement is independent of the characteristics of other 161 T. L. Booth, 'Use of computation structure models to measure corn-
types of jobs. The synergistic principles, on the other putation performance." in Proc. Conf. Simulation Measurement and

Modeling of Computer Systems. Boulder. CO, Aug. 1979. pp. 183-hand, improve the overall responsiveness through coop- 188.
eration: they can reduce the average time waiting for re- 171 T. L. Booth and C. A. Wiecek, "Performance abstract data types and
sources if the competing jobs abide by the recommended a tool in software performance analysis and design," IEEE Trans.

Software Eng.. vol. SE-6. no. 2. pp. 138-151, Mar. 1980.principle. The locality design principle is both indepen- 181 D. Ferrari. Computer Systems Performance Etaluation. Englewood
dent and synergistic, because it can improve a job's own Cliffs, NJ: Prentice-Hall. 1978.
responsiveness as well as benefit competing jobs. (91 D. Ferrari. G. Serazzi. and A. Zigner. Measurement and Tuning of

Computer Systems. Englewood Cliffs, NJ: Prentice-Hall, 1983.Most of the principles require a tradeoff decision. The 11O R. M. Graham. G. J. Clancy. and D. B. DeVaney, "A software de-
performance of the various alternatives may not be ob- sign and evaluation system," Commun. .ACM, vol. 16. no. 2, pp.
vious, particularly for the synergistic principles, since it 110-116, Feb. 1973.
is affected by many interrelated factors. A previous paper 111 D. E. Knuth. The Art of Computer Programming. Vol f: FundamentalAlgorithms. Reading, MA: Addison-Wesley. 1968.provided quantitative improvement formulas for the in- 121 -, "An empirical study of FORTRAN programs, ' Software Prac-
dependent principles [35]. Performance models similar to ice and Erperience, vol. I. no. 2, pp. 105-133, Apr. 1971.

-- 1131 -, he Art of Computer Programtming, Vol. 3: Sortintg and Searchi-Fig. 7 can aid in the decision making for the synergistic ing. Reading, MA: Addison-Wesley, 1973.
principles (28], [291, 1361. Because of the interaction, 1141 H. Kopetz. "Design principles for fault tolerant real time systems,"
though, the definition of some of the principles may seem in Proc. Hawaii Int. Conf. Sistem Sciences, vol. 19, pp. 53-62, Jan.

1986.ambiguous. In practice, the performance engineering 1151 B. W. Lampson, "Hints for computer system design." IEEE Soft'

models (similar to that in Fig. 7) resolve the ambiguities. iare. pp. 11-28. Feb. 1984.



55

:(,I E. D). J,/'4 54 /.lor44jan. S . t G .i.iri. w,4,l K C 0 1] C ' . 4 it: ih T,(' o44il4.4cc C!!4C" 4C4cfll! A\ ! 4,lop44..l45 ."

Q _)www~itim S%~ I ' ,' yi :o En--le 11444d Mlis.N. l'r~iiit- -41*- Sc'frirt Pefollmol* 114 U") 4l44~ U 414

14,11l. l9"(4. 44 li Gr, "', r ..... 5 41 . pp 63 (68. NCIt. 19S5.
1 ?1 1'. A. 1~;.I2 1e lic e of1 il

t iract daa to ,!q0 1 p'' t 
4 rmi 134 -1 Sslilhcsis pi,-4,:plcs for liiilt pcitlori'iloi4I -'Mtt'sHc. 13l /P44

- lt4441j lj1- ,I. in P.',c. Ci.44j. £3.-, .-thbttrmt .I 11U.4 t.old H-,, hiw. (,,.44f S\ .14 it Si ~t 41. '). 19. p 17- 7. Em14. I') 6,
Stitu, ,re (.tCit SIGPLt.N.\44ces). sal. 11. 1976. 1351 - ' Indcpendent Ce~Ipriticiles for .4ii~4S44 c'p4.4Ps.c

11,4 M. Mc Neil iid \V. Trcy PL. I programcilticiency.- SIGPL-lV 'o. 544t14 Irc Isicstems- .4C-.% ri444ts. 6mljiwS1 .4! 541 4. no .~ i p. i-
tjccXs. 5(I. 1. 5,io 6. p1p. 46-60. Jtune 1980 31. F. 1 9V,.

1l91 L. J. 'jklN -ind S S. Yau. -Softwsare design recprer-eniamion using 36 - 4 I, ,4ror44am me S..44c, ot m 4\
5

i3444' 4. Rcad..'g. VA.:
abstrict pro :,-s net%%orks.'' LEEE Tri Sf144 or4 Etii, . wil. SE-6. Adld.. 4 fl-W .i., lo .ppe:.ir. I 9sq
no. i. pp. 420-431,. Sept. ")SO. 1371 D VJ! Tisscl P4 Q'44i So e~, Dcsc,, :'h 4  v. wd lii'4.44

1201 D L. P.4rns. -On the -r.cria to be uised in iiCcomit4g'it -ytemis £-t Eneless 444 . Clils. NJ: Prentice-Hall. I 978.
into modules.' Comi440 40f CA. Dec. 1972. IS] \V W \' hesier .ind G. E..trin. 'Nicthsodulogv for c41.11p;:cr 4'Cd

(211 0. L. Parnas. P. C. Clemoents. and D. M. Weiss. ' Enhancine reus- ~ 'C. Pru.4 ACC, 5Col. 51. pp. 3,69- 3'9. 1142.
abilitv ss Lb informtion i I hidint,. in Proc. 1144 ks.4hop Rcu4 444144 / in

-Prograwm4in4i4, Sept. 1983. pp. 240-247.
12. L. Peterson an4d A. Silberschatz. O/4eraz4tmg S,,Ilil Cum4cpt/4s.

Readini, MIA: Addkion-WVesley. 1983. pp. 91-129.
1231 WV. E. Riddle. J. C. Wileden. J. Hi. Sa',er. A. R. Sceal. and A. MI.

Staely. ' Behas or mohdeling during soft\sare design,1. in Pro4-. 3,1d Cotinic U. Smiti (S'79-MlS0-SNIV871 rceis ed
fill, Crvf. Sofii 4 are Enine'ltering. IEEE Catalog No. 7 SCHl131 77C. the B. A. Jdeeree Iroin thc Urns ersity of Clrado.
May 1978. Bouilder. atnd the MI A- and Ph D. degrces in comlt-

1241 J. W. Sanguinetti. '"A formial technique lor anal~zinig the perfor- ,, puttr science trli tlte lUiii crsity of Texas at iXUS-
ntance of complex sy stettis. -in Proc. Compute4 Ir Pcifom44it(C Eiii' til.
mitj(44 Users Group 14. Boston. MA. Oct. 1978. pp 67-82. 1 ' She is cuirrently a principal con,,ultant ssith thle

1251 - "A technique for integrating simulation and s 'tctt dcsitn.'' in Performance Enuincerin.g Sets ices Di\ ision. L&S
Proc. Coilf. Sionidlii., .Mtaiur-44rel aindI .iodelmo 4f. 04114u14r Srys- % n Co~mtputer Tchnology. inc. Of her 19 scars' cx-
tents. Boulder, CO. Au.. 1979. pp. 163- 172. perieltee in industry. governwtent. acadlemtia. and

1261 C. H Sauer and K. M. Chandy. Compuicr Sivcois Pifi'ommme c -~ onsultine I I hase been in the practice. research.
Modingt'. Enzlew ood Cliffs. Nj: P-rntice-Hall. 1981. and dcecl-opnrent of software performantce predie-

1271 H. A. Shall and T. L. Booth. "Softssare performance ttodcling using tian techniques. Thcy \%ere dcxeliped experimentally and applied to nu-
cottputtation structutes,.- IEEE Trits. Si, ttire Ent, \ l. I., no. 4, tter-otS large systemts undcr dcxclopittent. Based on thlis experience. she
Dec. 1975. proposed thec 'Sofisare Pcrformance Engzinccring" (S PE) ticihodolosny in

128] C. U. Smith and J. C. Brass tie. -Aspects of softss are dcsign anal) sis.: I1981 thlat ss steitaticaily assses perforittance throughout SaLlwarc devel'
Concurrency and blockitt.' in Proc. Perforiionce 80. Toronto, Ont. opment. The sy nthesis principles, are proposed to further ad% ance SPE to a
Canada. May 1980, pp. 245-254. niethod for pri-ivirm problemts as ssell as 4/ctvl'410g thetm early. Site has

1291 C. U. Smith. ''The prediction and ev-aluation of the performance of published nunmerous pitpers and articles oil the subject and is currently pre-
software frotm extended design specifications." Ph.D. dissertation, paring a book. Seseral st:,teof the art graphical tools to support SPE hase
Univ. Texas at Austin, Unisersity Microfilmss Pub. KRiK81-0096a7. UCeen deseOZITed under hcr Iircs.iirn. Vier otl'er research interests are per-
1980. fonrrtance ntodeling, siCtss are/hardss arc eodesign. soaftsare cngincering .

1301 - , "'Softsware p, . rnianee engineering.'' in Prom'. Comi~puter .% fel- desi methods. graphical user interlace design, and operating 5) sitis.
!iureliicil Grouip hit. Coaif. XIII, New Oleans. LA Dee. 1981. pp. Dr. Sitith is ainibero(f the issociation for Comnputing Machinery and
5-14. the Cotnputer Measurement Group (CMG). In 1986 she received thc A. A.

131) C. U. Sttith and .1. C. Brass ne, "Perfortmance engineering of soft- Michelson assard for outstanding contributions to computer metrics far her
\%are systems: A case study, in Proc. AFIPS Vcit. Comtit1 uer Coil. w.ork in Softssare Performtance Enginee ring. She is a past ACM National
Houston, TX. June 1982. pp. 2 17-224. Lecturer. Vice Chair of ACM Sigitetri cs ( 1983- 1987 ). and a director of

1321 C. U. Stmith and D. D. Locndorf. "'Perfortance analysis of software CNIG ( 1982- 1986). She is the General Cha;r for the 1988 Sigoretrics Con-
for an MIMD computer,"' in Proc. Contf. Meauremenit attd .%odijolin fcrtce in Sa:;tas Fe. ;NM. and has ,mc~d on many other conference and
of Comtputer Saiseois, Seattle, WA, Aug. 1982. pp. 15 1-162. program conmnittc4!s.



56

A.21

1 Hz Loop#N

Top Level - Algorithm #1



57

E. 1

E.2

E.3

E.4

EKF
Subroutine Rtr
Algorithm #1



58

C: Er

B.1

B.2

Block B.3 is where
the 20Hz interface B.3
will reside.

NOTE: There is no
looping structure which
I thought was in TWS.B.4

B.5

B.6

B.7

AA Ren oh

A/A Processing Flowchart



59

APPENDIX E

March 1989 Briefing



61

Software Performance Engineering Applications

SOFTWARE

PERFORMANCE

ENGINEERING

APPLICATIONS

Connie U. Smith, Ph.D.
L & S Computer Technology, Inc.

(505) 988-3811

OVERVIEW

" Project review

" Technology transfer discoveries

* Proposed future directions

or

Connie U. Smith - March 23, 1989 - Page 1



62

Software Performance Engineering Applications

BACKGROUND

" Software Performance Engineering (SPE):

Build performance Into systems

" POD: A Navy tool for predicting performance

" Technology transfer project:

Apply POD & SPE to MC-ECS - F18 Software

•:. Demonstrate results

+ Use results to promote technology transfer

MODELING REQUIREMENTS

GOAL:

* Low overhead niALy
Initially

Ao Distinguish between "good"
Accommodate: and "bad"
Incomplete definitions
Imprecise performance specs Later
Incremental development • Increase precision
Changes during development • Provide Implementation

decision support

Connie U. Smith - March 23, 1989 - Page 2



63

Software Performance Engineering Applications

CASE STUDIES CONSIDERED
* Compare growth of software for 83X, 85X, and 87X releases on

the AN/AYK-14 model XN-5

" Evaluate exchange of algorithm for ballistic trajectory

* Addition of "new feature" algorithm for computing target data

* Evaluate hardware upgrade: XN.S to XN-6

" Concurrent processing: single vs. dual executive on XN-6

Others identified, but Insufficient data for near-term case study

Selected algorithm addition because representative, of interest to
designers, and sufficient data available

L
S

r SOFTWARE MODELS

20 Hz task 860 assign_sIzI
317 assign-S
172 add-sub_s

Matix J 266 mulls
103 div s

Future aW 0add-sukbs

I 31 mu"r
12 div.s 340 assign_s

184 add-sub_s
Missile ca . 285 mult sI 110 divs

363 assign-s
196 add-sub_s

aunct zone 304 multi

118 div-s 272 assign_s
147 add-subs

Missile calcs 228 mult_a
88 div-s

Logic 640 assignas
L
S

Connie U. Smith - March 23, 1989 - Page 3



64

Software Performance Engineering Applications

Ne 1HztakNEW SOFTWARE Algorithm 1

15 assign s 3
17 add-subS EA

544

Rmt 110
"".78 19

E2 3
A~g. or 239

0

Orasignal 20 Hz 353 ma

AlAlgorthh 1:2
N7 w 200 Hz36.1- ma

To0mta 20.]ma

Algorithm 2:
Now 20 Hz36.1Ms

Coni U. SHz .ac3, 199s.ag



65

Software Performance Engineering Applications

APPLICABILITY OF POD & SPE

* Found many software evaluations that could benefit from
the technology

" Case study had no particular performance problems; the
tool confirmed that there should be no surprises

" POD enables the rapid evaluation of many tradeoffs
Applying the algorithm to multiple targets
Varying the number of Integration steps
Examining startup processing as well as steady state
Varying the hardware speed

TECHNOLOGY TRANSFER DISCOVERIES

* Usability limitations:
NOSC approach Is vitalto technology transfer:

Develop prototype Into demonstration version
Make tool morn appealing with visual Interface

* Theory limitatir . Periodic arrivals in queueing theory?

l-"4 Service time, S
i- | Residence time, R

Standard queueing models compute average congestion: R= (N+1) S
If periodic arrivals do not collide: R = S
Determining If collisions occur Is nontrivial

S

Connie U. Smith - March 23, 1989 - Page 5



66

Software Performance Engineering Applications

KEYS TO TECHNOLOGY TRANSFER SUCCESS

1. Transfer agent

Tec'hnology Agent
Resolve problems

2. Clear benefit
3. Compatible with existing methods, experiences,

needs
4. Easy to understand,

easy to try,
measurable results

5. Expert participation

DISCOVERIES

Key problems:
percelvedappllcability of analytical models
lack of method

ease of use

You cannot addross these Indepndently

IC

Connie U. Smith - March 23, 1989 - Page 6



Public reporting burden for his collection of information is estimated to average 1 hour per respons including the time tor reviewing instructilons. searching existing data sources, gathering ano
maintaining the dala needed. and completing and reviewing the collection of Information Send comments regarding this burden estimate or any other aspect of this collecton of Inforrmation rnCuding
suggestionstfor reducing this burden. to Washington Headquarters Services. Directorate for Information Operations and Reports. 121 5Jefferson Davis Highway.Sute t2064,Arlngton. VA 22202 43C2
and to the Office of Management and Budget, Paperwork Reduction Project (07D4-0188), Washington. DC 20503

1 AGENCY USE ONLY (Loame biiamV 21RE PORT DATE 3 REPORT TYPE AND DATES COVERED

June 1990 Final
4 TITLE AND SUBTIT.E 5 FUNDING NUMBERS

PERFORMANCE ENGINEERING FOR MISSION CRITICAL EMBEDDED C: N00039-86-C-0247
COMPUTER SYSTEMS

6 AUrrHOR(S)

7 PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8 PERFORMING ORGANIZATION

L&S Computer Technology, Inc.REOTNM R

P.O. Box 9802, Dept. 120
Austin, TX 78766

9 SPONSORING/1MONITORiNG AGENCY NAME(S) AND AODRESS(ES) 10 SPONSORING/MxONrTORiNG
AGENCY REPORT NUMBER

Office of Naval Technology Naval Ocean Systems Center
Arlington, VA 22217 San Diego, CA 92152-5000 NOSC TD 1834

1 SUPPLEMENTARY NOTES

12& DISTRiBUTION/AVALABLITY STATEMENT 12b, DISTRIBUTtON COOE

Approved for public release; distribution is unlimited.

13 ABSTRACT (Mawnton 200 wt1s)

This document provides background information on performance engineering and the POD performance modeling
tool, and gives an overview of the project activities. Finally, the project summary section reviews the results, lessons
learned, and suggests future directions. A detailed review of the project activities is in Appendix A.

14 SUBJECT TERMS 15 NUMBER OF PAGES

62
mission critical, embedded computer system (MC-ECS) 18 PRICE CODE

17 SECUR(TY CLASSIFICATION 18 SECURITY CLASSIFICATION 19 SECURITY CLASSIFICATION 20 UIMITATION OF ABSTPRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAME AS REPORT

NSN 788001-280.680 Standard torn, 298


