AD-A228 643

BTIC FILE COPY

Technical Document 1834
June 1990

Performance Engineering
for Mission Critical
Embedded Computer
Systems

L&S Computer Technology, Inc.

Approved for public release; distribution is unlimited.

The views and conclusions contained in this report are
those of the contractors and shculd not be interpreted
as representing the official policies, either expressed
or Implied, of the Naval Ocean Systems Center or the
U.S. Government.

NAVAL OCEAN SYSTEMS CENTER
San Diego, California 92152-5000

J. D. FONTANA, CAPT, USN R. M. HILLYER
Commander Technical Director

ADMINISTRATIVE INFORMATION

Contract N00039-86-C-0247 was carried out by L&S Computer Technology, Inc., P.O. Box
9802, Austin, TX 78766, for the Office of Naval Technology, Arlington, VA 22217, under the
technical coordination of T. Sterrett, Computer Systems Software and Technology Branch, Code 411,
Naval Ocean Systems Center, San Diego, CA 92152-5000.

Released by Under authority of
R. A. Wasilausky, Head A. G. Justice, Head
Computer Systems Software Information Processing and
and Technology Branch Displaying Division

NOTE

Permission to print ccpyrighted material for government purposes has been granted by the
author, Dr. C. U. Smith.

FS

-~

/3

Executive | Summary

This report provides background information on performance engineering and the POD
performance modeling tool, and gives an overview of the project activities. Finally, the
project summary section reviews the results, lessons learned, and suggests future directions.
A detailed review of the project activities is in Appendix A.

Naval mission critical, embeddéa computer systems (MC-ECS) must respond to external
events within their allotted time, otherwise they fail. Faiflures may have life or death
consequences. Lifecycle performance management, or performance engineering (PE), calls
for building performance into systems beginning in the requirements definition phase, and
continuing the performance management through the design, implementation, testing, and
post-deployment phases. Experience with PE shows that it can detect and avoild project-
threatening performance failures in sufficient time to correct them and enable timely
delivery of a quality product. Furthermore, performance is orders of magnitude better with
this approach than with a “fix it later” approach in which performance considerations are
deferred to the testing phase and, when necessary, "tuning” attempts to correct performance
failures. Better performance means both people and computer resources can be used to

enhance the functionality of the system rather than to correct performance deficiencies.

Performance of MC-ECS has always been important. Developers traditionally had highly-
skilled software engineers who were experts in building efficient software. They were
successful in building high-performance systems; however, the result of this so-called "guru
approach" is an over-reliance on these same gurus to maintain the systems. (One naval
organization actually imposes travel restrictions to ensure that gurus do not travel on the
same airplanes -- just in case). To assess performance, developers traditionally built hand-
crafted simulation programs. The simulations were labor-intensive, inflexible, and often
required as much development effort as the software system itself. Recent trends seek to use
newer software development methods to improve productivity and software quality and
decrease the over-dependence on gurus. Unfortunately, few of the new software methods
address PE.!

1A prominent example is in a recent article on "Designing Large Real-time Systems with Ada."
published in Communications of the ACM [NIE87]|. The authors begin with a definition of real-time
systems which emphasizes the importance of performance. Then the article proposes a design

methodology and provides an example that completely ignore performance.

Embedded systems of the future need PE more, not less. Ada offers new capabilities for
designers, but it also dramatically increases the risk of performance failures. Performance
implications of Ada code are not obvious; the number of Ada tasks, their allocation to
distributed processors, and their relative priorities have dramatic consequences on
performance that are impossible to evaluate without performance models; and extensive
error control and other run-time features make the compiled code inherently less efficient
than the hand-crafted code in older systems. Furthermore, few of today's software engineers
have the performance intuition of their predecessors and they have not yet gained the first-
hand experience with Ada (they tend to create systems with far too many tasks and thus
rendezvous) -- so performance failures are more likely.

We cannot rely on hardware to resolve all performance problems. Size, weight, and cost
restrictions preclude adding extra hardware late in the system lifecycle to achieve
performance goals. Hardware requirements must be determined early -- models are
essential to accurate hardware sizing. Even though hardware technology is rapidly
evolving, more powerful processors result in a dramatic increase in software size and
complexity. The extra capacity is quickly consumed with more sophisticated functions and
algorithms. New VLSI technology makes custom chip design viable, but software must
exploit the new technology to realize dramatic improvements.

Previous Navy-sponsored research produced the performance modeling tool, POD. It
enables PE by enabling performance analysts to quickly construct and evaluate models of
predicted performance. It uses quick, analytic model solutions that match the solution
technique to the amount and precision of information available in the lifecycle. The simple
models identify areas that warrant the time and effort required for detailed simulation
studies. POD is the most powerful PE tool currently available and is far more cost-effective
than the hand-crafted simulation models of the past. Nevertheless, POD does not enjoy
widespread use for Naval MC-ECS development. Both PE and POD must be used if they are
to be effecttve for building MC-ECS that meet performance objectives. POD users need to
know how to model systems under development and how to use the tool. They also need to
understand PE: the necessary steps and why, when, and how to perform them. It is vital to
specifically relate these topics to MC-ECS systems so the users have a clear understanding of
the applicability of PE and POD to their unique problems,

9

To remedy this situation the Navy has taken initial steps towards technology transfer of PE
for MC-ES. Together, we have applied POD to an MC-ECS case study that evaluated a new
algorithm for computing target data in the F/A-18 software. We modeled the algorithms and
used POD to study the perforrnance of numerous alternatives, such as: applying the
algorithm to multiple targets, varying the number of integration steps, examining start-up
versus steady-state processing, and varying hardware speed. The case study had no
particular performance problems; the tool confirmed that there should be no surprises.

We also gathered historical MC-ECS specific examples of the use of PE and POD and used
them to construct a set of examples that demonstrates how to construct and evatuate models,
how to collect data, how to identify and analyze alternatives, how to present results,
validate models, and other PE steps. The examples, combined with PE course materials
adapted to MC-ECS concerns, were combined and the prototype course was presented to
selected attendees. We evaluated the results of the course to determine whether we

successfully achieved the proof of concept that we sought.

Project summary

The project had three main thrusts: (1) to apply PE and POD to an actual case study, learn
from the experience, identify PE and POD requirements for MC-ECS, and integrate the
results into the technology transfer materials: (2) to customize PE and POD technology
transfer materials to specifically address issues of concern to MC-ECS developers; (3) to
deliver the prototype technology transfer course.

1. Case study success?

The selected case study demonstrated the applicability of PE and POD to actual MC-ECS
development problems. It successfully provided materials for the technology transfer
course. We identifled tool requirements for: ease of use, new reports to support typical
analyses, and the need to apply the tool to many, actual case studies. Tool use for actual
studies ensures that it is tailored to typical problems and detects errors (in the tool) triggered
by operational data that may not be detected during regular testing.

2. Customize PE and POD to MC-ECS systems.
The materials in the prototype course demonstrated the range of possibilities and addressed
several important classes of MC-ECS applications. More actual case studies are needed to

drive the technology transfer as well as ensuring that the methods and the tools are suited to
the problems.

3. Technology transfer delivery. The class was small, the attendees were knowledgeable and
familiar with problems in developing MC-ECS. They were unfamiliar with PE and POD and
gained a great deal of knowledge from the class. We succeeded with the proof of concept of PE
and POD. The pilot course encountered several problems with the use of the tool; they were
subsequently corrected and should not affect future technology transfer efforts. Because the

first delivery was a prototype version of the course, we expected to learn such lessons from it
-- and we did.

The project led to several technology transfer discoveries that need remedies. (1)
Experienced designers, familiar with the hand-crafted simulation studies of the past,
incorrectly perceive that analytic models do not apply to their systems. (2} There is no
established process and procedure that prescribe the role of PE and modeling in system
development. (3) While experienced modelers have no difficulty, the prototype version of

POD may be too difficult for some designers to use. It should be better integrated with CASE
development tools.

Future directions

Although the technology transfer course s not yet mature, it has evolved to a point that it
provides useful information to developers of MC-ECS systems. It should be offered to more
attendees while it evolves with more case studies.

The use of PE and POD on MC-ECS should continue to evolve. More case studies are needed,
and both the tools and the PE methods need enhancements. The following needs surfaced

during the course of the project and are likely to be important to the performance analysis of
future systems:

* Better analysis tools to determine processing frequency and relative task priorities.
They should be visual tools with an easy method of specification.

¢ Extensions to models to evaluate federated systems of processors and their inherent bus
or network contention.

¢ Models that explicitly represent data structures and evaluate their effect on processing
requirements.

* Additional solution methods to evaluate: periodic jobs, Ada rendezvous impact, data
latency limits, locking, task structures and processor allocations.

¢ Improved POD usability: fine tune the reports, add graphics-based specification and
evaluation, and automate typical PE analyses. An important future consideration is to
determine the proper POD platform -- while UNIX-based systems are prevalent in the
research communities, they are not currently in widespread use among MC-ECS developers.
The adoption and widespread use of the Desk-Topll (Sun 4) as a Navy standard computer
would make UNIX a viable choice for the future.

* Integrate the performance modeling tools with CASE tools to reuse design information,
automatically generate and update models, and provide performance predictions directly to
developers.

* Integrate the PE methods into the new Navy system development methodology so the
steps become part of the standard development lifecycle -- rather than an add-on activity.

APPENDIX A
Project activities

1. Review background information: June 9 - July 12, 1988,
Studied reports documenting previous F/A-18 software modeling work. Reviewed POD User
Manual with emphasis on features that support real time systems evaluation. Prepared

simple test models.

2. Identify and collect preliminary case study information: China Lake, July 12-14, 1988.
This visit is documented in the July 1988 trip report (Appendix B). Learned about F/A-18
software evaluation problems in general, gathered background information on AYK-14
hardware and software execution environment, and preliminary information on the new
algorithm to be evaluated.

3. Research Review Briefing for NOSC Sponsors: Monterey, CA, August 9, 1988.

Presented overview of POD and its importance for Software Performance Engineering of
Navy Systems, and in particular for Mission Critical Embedded Computer Systems.
Discussed technology transfer issues and how they are addressed by this project. Proposed
two future research directions: evaluating system effectiveness, and features to enhance
POD usablility. The presentation slides are in Appendix C.

4. Refine case study daia: China Lake, August 10-11, 1988.

Met with Charles Bechtel, Ken Trieu, and Roy Crosbie. Discussed details of the case study
and the performance data required. Charles Bechtel subsequently prepared an excellent
report with processing details and performance specifications (see Appendix D). Discussed
modeling considerations and tool capabilities with Roy Crosbie.

5. Prepare preliminary outline for technology transfer: August 31, 1988.

Progress on installing POD was slow. To expedite the project, the preliminary outline was
prepared earlier than originally planned. It adopted the L&S standard Software
Performance Engineering seminar framework, and enhanced it to focus on MC-ECS system
issues, include POD laboratory exercises, and F/A-18 and other case studies.

6. Project review meeting: Santa Fe, September 1-2, 1988.

Tony Sterrctt represented NOSC and Bob Westbrook, represented China Lake. We reviewed
the case study status - all were impressed with the thoroughness of Bechtel's report. We
discussed the preliminary technology transfer outline and formulated initial answers to its
questions. We agreed that the technology transfer should evolve as experience is gained with
its presentation. We also collaborated on the POD installation to resolve problems.

7. Install POD and become familiar with its features: completed September 10, 1988.
The Macll A/UX version successfully executed the 3 simple test models, and the more

complex distributed processing model contributed by Sterrett. Commands and reporting
features were examined.

8. F/A-18 case study - model formulation, testing and documentation: October 1988.

The original processing and the adaptations for the two algorithm alternatives were
modeled, and we assessed POD capabilities and limitations for the case study. It is feasible
to use POD for this application - it can detect performance problems due to processing that
exceeds the 50 ms. threshold, and evaluate the perfornance of: the number of integration
steps, the adaptation to multiple targets, varying hardware speed, examining steady-state
versus startup processing, and other similar studies. Several minor POD problems were
detected, documented and submitted to NOSC and BGS. Although the code problems were
relatively minor, we were unfortunately unable to derive model results in sufficient time to
provide performance feedback to developers. NOSC personnel subsequently elected to create
an improved version of POD to support the technology transfer project.

9. Research Review Briefing for NOSC Sponsors: San Diego, March 1989.

Reviewed the project status, some insights into transfer of PE and POD technology for MC-
ECS, and some suggestions for future directions to enhance the transfer. The slides are in
Appendix E, and the insights and directions were reviewed in this report's summary.

10. Review POD-related technical reports and prepare case studies for technology transfer:
April 1989.

Created case study materials based on the FAA Air traffic control studies, a combat system
design, and a signal processing application.

11. Prepare final outline and technology transfer materials: July 1989.
Adapted the PE course materials, and the POD usage materials to specifically address MC-
ECS. Created case study materials and laboratory exercises. Appendix F contains the

course materials.

12. Conduct technology transfer: August 1989.

The pilot version of the technology transfer course was offered at China Lake for attendees
selected by NOSC. The feedback from the course indicated that they all gained an
understanding of the PE process, the role of models during the entire development lifecycle,
and the potential for tools such as POD to support development efforts.

APPENDIX B
July 1988 Trip Report

11

Trip Report
China Lake
July 12-14, 1988
Connie U. Smith

Meetings with:
Sponsor: Dr. Robert McWilliams
Consultant: Dr. Roy Crosbie

Tuesday, July 12

1. Introduction to Naval Weapons Center and the Alrcraft Weapons Integration Dept.,
Embedded Computing Technology Office (Code 31C) by Jay Crawford.

2. Software Perforrmance Engineering briefing by Connie Smith.

3. Overview of "Computing Problems in Tactical Aircraft” Project conducted summer, 1987 by
Dr. Robert McWilllams, Dr. Roy Crosbie, and Linda Roush. Discussion of characteristics of
F-18 software and typical performance concerns.

4. Discussion of applicability of operational analysis and Software Performance Engineering
techniques to embedded computer systems with Dr. Ed Kutchma. Discussed typical
performance concerns and candidate case studies.

5. Discussion of F-18 Software Development Branch activities and typical performance
concerns with Mike Spencer, Dr. Ken Trieu, Charles Bechtel, and Dick Nuckles.

6. Identifled candidate list of case studies (attached).

Wednesday, July 1

1. Reviewed F-18 documentation with Dr. Roy Crosbie. Most of the day was devoted to this
information gathering task. Extracted background information on the AYK14 and the
software from documents. Searched (unsuccessfully) for data on the Bus Architecture and
details of how the Mission Control computers and software use the bus to send and receive
data with other attached devices.

2. Discussion of future Ada plans and possible future SPE / Ada performance concerns with
Dr. Lee Lucas.

3. Discussion with Dale Christenson on the extent of the use of software design methods and
CASE tools at China Lake. Discussed current analysis and design activities. No recent or
current high-level design activities suitable for a technology transfer case study were
identified. Most of this type of work is done by McDonnell Douglas. Most Navy activities
focus on modifications and extensions to exdsting software.

4. Demonstration and briefing on Simulation Lab activities by John Hessler. Investigated the
pctential of using the simulation software design as a case study. It is a very interesting
application, but there are currently no performance issues and it is not representative of
the majority of the work at NWC. ’

Thursday, July 14

1. Continued the documentation search and retrieval.

2. Met with Charles Bectel to discuss the "passive ranging algorithm"” case study. Clarified
some F-18 and AYK14 operational issues. Discussed the data necessary for the case study.
Developed a list of items needed. They will gather information and send it within 2 wcgks.

3. Met with Linda Roush to {further discuss "Computing Problems in Tactical Aircraft.” Some
of the mission control functions have been off-loaded to the SMS (stores management)
computer. Details are unfortunately not included in the Mission Computer Operational
Flight Program Design Specification document. It will be difficult to precisely predict end
to end responses without the characteristics of this addttional work. It may be possible to
obtain measurement data; otherwise, we will use a "microanalysis” performance goal: to
complete each frame's processing within 50ms. She also suggested investigating the status
of the Canadian efforts to create PSL/PSA structure charts and reports of the F-18 software.

4. Reviewed the demo of a subset of the F-18 software design in the Statemate CASE tool (under
consideration by McDonnell Douglas). It provides useful high level design information. In
the future it should be straightforward to evaluate performance using much of its design
information. It is unclear when the complete system documentation might be available,
but it is unlikely that it will help with this project.

Conclusions

The NWC personnel were extremely helpful. Ilearned a great deal about the F-18 software and
the performance-related problems that are important to their software developers. We dis-
cussed the rols of analytic models to support their trade-off studies. Coordination with Dr.
Crosbie's project should leverage this modeling effort.

For technology transfer, the most appropriate case study should focus on typical Navy
concerns such as estimating the fmpact of adding new functions to existing OFP's. The passive
ranging algorithm {s representative of these typical problems. Three alternative algorithms
are under consideration, and the developers wish to know the performance impact of each
alternative. It i{s an actual problem they now face and they are interested in the results.
Ideally, we want an adaptive modeling study. We can first concentrate on the CPU time of each
algorithm. To {llustrate more complex studies, we can examine the performance impact of
dividing the processing between frames. If possible, we can also analyze the effect of bus
contention. This depends on data availability and the ability of POD to accurately represent
the scheduling and contention. POD should give reasonable approximations.

We are tentatively pursuing option number 3 on the attached case study options list: the passive
ranging algorithm. The technology transfer can suggest ways that SPE and POD can be used to
study all of the problems. So in addition to getting actual performnance data for one, all will be
worked into the technology transfer materials.

13

Case Study Options

1. Compare growth of software {from the 83X, 85X, and 87X releases, running on the
AN/AYK-14 Model XN-5.

2. Evaluate exchange of algorithm for ballistic trajectory.
3. Evaluate addition of passive ranging algorithm.
4. Evaluate relative difference between XN-5 and XN-6 using same software.

5. Determine extent of night attack retrofit possible on F/A-18A/B using the XN5. (This proved
to be inappropriate - night attack will use XN6).

6. Compare performance of single executive XN-6 with dual executive XN-6 { ‘v same software.
(There is currently insufficient data for this study, but it would be an excellent case study to
pursue later. A baseline model with concurrent processing would be beneficial for future
algorithm trade-off studies.)

7. Evaluate 85X longest path problem (This is based on the timing problem studied in the
"Computing Problems....." project.)

8. Simulation software for the "hardware in the loop simulation lab."

APPENDIX C
August 1988 Briefing

15

Software Performance Engineering Applications

(' Y
SOFTWARE
PERFORMANCE
ENGINEERING
APPLICATIONS
o s

Connie U. Smith, Ph.D.
L & S Computer Technology, Inc.
(505) 988-3811

PERFQRMANCE IS VITAL TO
MISSION CRITICAL EMBEDDED COMPUTER SYSTEMS

o With minutes to respond to potential threats, every
fraction of a second counts

+ Systems must respond to external events within
their allotted time, otherwise they fall -~ some
failures have life or death consequences

—{J—

Connie U. Smith - August 9, 1988

17

Software Performance Engineering‘AppIications

PERFORMANCE BALAN

Resource
Requiraments

Workioad

L Sew Sottware

SOFTWARE PERFORMANCE ENGINEERING

“Systematlic planning for and evaluation of
software performance throughout its life cycle.”

GOALS:

« Enhance - responsiveness

- usability
i - staff productivity

« Preserve - maintainability
- understandability
- timely completion

« Control - computer capacity requirements

© Build performance into systems rather than try to add it later

Connie U. Smith - August 9, 1988

18

Software Performance Engineering Applications

METHODOLOGY OVERVIEW

an each development stage DO \
BEGIN

REPEAT

Develop design concept
Model it

Evaluate model solution
UNTIL predicted behavior is satisfactory

Proceed with design syntheslis

KEND /

SPE METHODOLOGY

SYNIMESIS

L 4

Performance Walkthroughs
Data Gathering Strategles

Compensation for Uncertainties

Data Presentation & Tracking

Modael Verification & Validation

General Principles for
Performance-oriented Design

Connie U. Smith - August 9, 1988

APPENDIX D
Case Study Report

21

F/A-18 Algorithm Analysis

This data is intended to answer at least some of the questions
posed by Dr. C Smith at our last meeting.

Estimating the word count for each algorithm could be very
difficult so I decided to simplify it a bit. I planned to
count "high-level" instructions and then use an expansion
factor (high-~level to assembly) to determine the total number
of assembly language instructions. .

Determining a valid expansion factor is the hard part: some
high-level instructions can be represented as single assembly
instruction, but most require two or more instructions.
Eventually I came up with the following method:

Assignment Load (e.g. LD), Store (e.g. SD)

Add/Subtract Load, Add (e.g. AD), Rescale (e.g. LALD), Store
Multiply Load, Multiply (e.g. MDR), Rescale, Store
Divide Load, Rescale, Divide (e.g. D), Store

Note that the example instructions are for double precision

(32-bit) integer arithmetic. The divide is not double precision:

Most programmers will sacrifice some precision and utilize a
single precision divide (it's 4x as fast). The AYK~14 XN-5 has
no floating point unit (i.e. fixed point arithmetic is used
throughout).

23

(1)

24

To "validate" the expansion factor I used data from a previous
project. This implemented an algorithm which was first modelled
in Fortran. The Fortran statements were classified and counted:

. High-Level Est Asm
Assignment 59 118
Add/Subtract 57 228
Multiply 28 112
Divide 9 36
Total 153 494 ==> 3.22 Est Expansion

The project actually used 422 assembly language instructions
(sorry — no break down into catagories) which results in an
2.76 expansion factor. Because the project concentrated on
optimizing memory usage, I think that 2.75 is a little low
for the average project. I believe the original assumption (1)
will work.

The expansion factor mentioned from high-level statements to
assembly level statements does not account for instructions
which require two machine words. These words don't degrade
execution speed (any more than the rates listed below) but they
do take up more memory. In general, there is a 20%-50% increase
from instruction count to memory requirements (e.g. 10
instructions may take 12 to 15 machine words).

Estimated execution performance for the assembly language
statements is listed below (in microseconds):

INSTR DESCRIPTION XN-5 XN-6

LD Load Double 2.49 0.95

SD Store Double 2.68 2.10

AD Add Double 2.73 1.19

LALD Left shift Dbl 1.89 1.11

MD Multiply Double 8.27 4.07

D Divide 9.87 4.38 (note single precision)
L Load Single 2.24 0.80

S Store Single 1.86 1.15

A Add Single 2.24 0.94

LALS Left Shift Sngl 1.47 0.9%0 .
M Multiply Single 5.40 2.19

The Algorithms -

Both algorithms will require an interface to the current
program. This interface (setting data up etc.) has been
estimated to require 1000 assembly words. No mix of statements
has been given so I had to guess. My guess is the result

of looking at an algorithm intended to function similarly

to the two candidate algorithms. I counted the mix of
high-level statements; this should be used to determine

the overall makeup of this interface. I would assume that

all of these instructions run during each pass,

HOL $total
Assignment 37 37%
Add/Subtract 20 20% (2)

Software Performance Engineering Applications

MODELING REQUIREMENTS

GOAL: \1
o Low overhead .
Initially
» Distinguish between "“good"
¢ Accommodate: and 'r'1bgad" ¢ g

Incomplete definitions
Imprecise performance specs | [ater
Incremental development

» Increase precision
Changes during development

» Provide implementation
\ decision support

J

NVENTIONAL PERFORMANCE MODEL

Connie U. Smith - August 9, 1988

Software Performance Engineering Applications

SYSTEM MODEL

Workload Intensity
Device visits

Device service rates ; '
[>—0

—O—]
by
L.

e

Response times
Throughput
Utilizations
Residence times
Queue lengths

" SPE MODELING
=) =
acnemeon

AN

15

RBoalj]
54

Yysom
Model
gy 0
— ‘

Connie U. Smith - August 9, 1988

Software Performance Engineering Applications

SPE EVOLUTION

Concepts
\ Methods
Tools Models

Use

Technology Transfer

KEYS TO TECHNOLOGY TRANSFER E

1. Transfer agent

Technology Users

Resolve problems

2. Clear benefit

3. Compatible with existing methods, experiences,
needs

4. Easy to understand,
easy to try,
measurable resulits

5. Expert participation

Connie U. Smith - August 9, 1988

Software Performance Engineering Applications

DISCOVERIE

C o > e Corotiom >

Key problems:

percelved applicabllity of analytical models
lack of method

ease of use

You cannot address these Independently

13

COORDINATED DEVELOPMENT

1. Tool must match the problem
2. Ease of use Is vital to acceptance & use

3. Mission critical embedded computer system
effectiveness is vital:

Build the right system
and

Build the system right

Connie U. Smith - August 9, 1988

Software Performance Engineering Applications

FUTURE RESEARCH ISSUES

1. Application-driven approach
methods + tools + applications
Orlent to software engineers & their typical concerns
Define the method & specify POD's role
2. Topics:
Ease of use - examples

Extend performance models to address system
effectiveness

Identify typical design & evaluation problems

Streamline model building and
model verification & validation

Integrate with CASE environments
Create adaptive modeling capablility

15

IMPROVE USABILITY

Sample model specification:

CONFIGURATION. SPECIFICATION

DEVICE CPUX TYPE = CPU
RATE = 1 &MIPS

END

_—

MODULE .SPECIFICATION

MODULE FRAME-20HZ
EST CPUX USAGE = 20
CALL TIME CODE READ
CALL GET 20 HZ INPUTS
ESTBUSUSAGE = 5

—

“ What is possible........

1¢

Connie U. Smith - August 9, 1988

Software Performance Engineering Applications

MODEL SYSTEM EFFECTIVENESS

+ Streamline MC-ECS use:
Include user activities in the models
Comprehensive system models
Evaluate time to accomplish key activities

Example: F-18 screen displays

17

COORDINATE TOOLS, METHODS, APPLICATIONS

+ Automate definition & evaluation of typical concerns
Example - algorithm choices

+ Streamline modael building and model verification & validation
Example - Match code - models - measurements

+ Integrate with CASE environments
Example - Reuse design specifications for models

+ Create adaptive model capabllity

Example - Multiple solution methods with unifled model
representation

- B
18

Connie U. Smith - August 9, 1988

30

Software Performance Engineering Applications

SUMMARY

« Performance of Mission Critical Embedded Computer
Systems is vital

« POD offers “State of the Practice” Software Performance

Engineering capabilities - it needs more “State of the Art”
capabitities

« Coordinated evolution of tools + methods + applications
is vital to technology transfer

« System effectiveness must be addressed in future
MC-ECS evaluations

19

Connie U. Smith - August 9, 1988

Software Performance Engineering Applications

RDINATED DEVELOPMENT

1. Tool must match the problem
2. Ease of use Is vital to acceptance & use
3. Mission critical embedded computer system
effactiveness is vital:
Bulld the right system

and

Build the system right

13

PROPOSAL

+ Continue case-study-driven applied research
Select another MC-ECS case study
Apply SPE and POD
Document applicability
Identify and resolve limitations in methods / tools
Transfer technology

+ Anticipated enhancements

The following were typlcal F18 software performance
questions and concerns. They are likely to occur In
similar systems,

14

Connie U. Smith - March 23, 1989

Software Performance Engineering Applications

DETERMINE PROCESSING FREQUENCY

20Hz 7Hz

Becomes 10 Hz

20 Hz 20 Hz
5 Hz 10 Hz

NEED: Easier specifications
Visual results

16

EVALUATE NTENTION
AND PROCESSOR INTERFERENCE

+ Poll devices at beginning of cycle
+ Channel 3 dedicated to handoff protocol between processors

+ Data requirements and algorithms are interrelated

NEED: Case study execution details to construct modeis
Possible POD extensions

L —

Connie U. Smith - March 23, 1989

33

Software Performance Engineering Applications

EXPLICIT DATA REPRESENTATION

Current POD specilfications: processing requireiments

363 assign_s

196 add-sub_s
304 mults

118 div_s 272

Launch zone

assign_s

147 add-sub_s
88 div_s

+ Data structure alternatives affect # instructions executed
+ Need to know data accesses to determine I/O requirements

NEED: Define data representation and analysis requriements

Tool enhancements
L

S
17

INTEGRATE ADDITIONAL PERFORMAN VER

+ Perlodic job contention
¢ Adarendevous
Synchronization of concurrent processes
+ Data latency
Must respond to critical data values within window
Data that is only valid for brief window
+ Augment graph analysis and queueing theory with petri nets:

Tokens
Places
Enabled transitions
Transitions
Transition firing

NEED: Case study detalis
Prototype petrl net interface to POD model definitions

Connie U. Smith - March 23, 1989

34

Software Performance Engineering Applications

IMPROQVE POD USABILITY

¢ Fine tune reports
« Graphics feedback

+ Automate typlcal analysis problems

19

INTEGRATE WITH SOFTWARE ENGINEERIN
ENVIRONMENT

+ Leverage models with design information

+ Automatically update models
+ Provide performance predictions to designers

NEED: Target software engineering enviroment
Common language (database)
Integration plan

Connie U. Smith - March 23, 1989

35

Software Performance Engineering Applications

SUMMARY

+ Project review
F18 software models
Technology transfer discoverles
Approach

+ Proposal
Applied research
Technology-transfer goals

Future directlons suggested by F18 study
Likely to find other areas

SPE + POD technology resolves vital problems

Performance of MC_ECS Is vhal
Hasten transfer by adapting the technology to typical (hard) problems

L
S

21

Connie U. Smith - March 23, 1989

APPENDIX F

Technology Transfer Course Materials

37

APPENDIX G

Related Papers

39

——— . it == A S ¥

1394 [NR N

TRANSACTIONS (N SOF IWARE ENGINEERING. YOL.

14, NO 10, QCTOHER 1o

Applying Synthesis Principles to Create Responsive
Software Systems

CONNIE U. SMITH, SENIOR MEMBER

Abstract—Performance engineering literature shows that it is im-
portant to build performance into systems beginning in carly devel-
opment stages when requirements and designs are formulated. This is
accomplished, without adverse effects on implementation time or soft-
ware maintainability, using the software performance engineering
methodology, thus combining performance design and assessment.
There is extensive literature about software performance prediction;
this paper focuses on performance design. First, the general principles
for formulating software requirements and designs that meet response
time goals are reviewed. The principles are related to the system per-
formance parameters that they improve, and thus their application may
not be obvious to those whose speciality is system architecture and de-
sign. The purpose of this paper is to address the designer’s perspective
and illustrate how these principles apply to typical design problems.
The examples illustrate requirements and design of: communication,
user interfaces, information storage, retrieval and update, information
hiding, and data availability. Strategies for effective use of the prin-
ciples are described.

Index Terms—Design principles, software design optimization, soft-
ware development method, software performance engineering, soft-
ware performance models, soltware performance principles, soltware
responsiveness.

[. INTRODUCTION

NGINEERING new software systems is a process of
—iterative refinement. As illustrated in Fig. 1, each re-
finement step involves understanding the problem, creat-
ing the proposed solution, describing or representing it,
and assessing its viability. The assessment includes eval-
uating its correctness, its feasibility, and its preferability
(when there are alternatives). Many factors affect prefer-
ability, such as maintainability, responsiveness, reliabil-
ity, usability, etc. This discussion focuses on only one,
the responsiveness of the software; that is, the response
time or throughput as seen by the users.' The understand-
ing, creation, representation, and assessment steps are re-
peated until the proposed product of the refinement
‘‘passes’’ the assessment.
Responsiveness should be designed into the software,
at the requirements and design levels of abstraction, when
the number of alternatives is greatest and global optimi-

Manuscript received Apnl 30, 1986; revised April 8, 1987.

The author is with the Performance Engineering Services Division, L&S
Computer Technology, Inc., P.O. Box 9802, Mail Stop 120, Austin, TX
78766.

IEEE Log Number §823080.

'For high performance systems, responsiveness can be a correctness re-
quirement. If two alternatives both achieve the correciness goal (e.g., a
response is produced within the specified time), the quantitative difference

between the expected response times can be used to assess their prefera-
bility.

, ICEE

Uncerstand

Represent Assess

& r Correcx?‘] LFeaSw:!e?] LPre’erabiaj

Fig. I. Engineering design process.

zations are easily made. Then the leverage is greater: per-
formance can be as much as one or two orders of magni-
tude better than for software that is first constructed then
“‘tuned’’ to improve performance [4], [30]. Furthermore,
since improvements are made at a high level, prior to cod-
ing, responsiveness can be achieved without sacrificing
understandability or maintainability. With software tools
to support the assessment, responsiveness can be achieved
with little or no additional development time and cost.

The representation and assessment steps have been ad-
dressed elsewhere (references are cited later in this sec-
tion). Thi- paper addresses how to create systems likely
to have acceptable performance, and how to revise them
if assessment indicates that performance objectives will
not be met. Some synthesis principles are described, and
their application to software requirements and design cre-
ation is illustrated with many examples. The principles do
not replace performance models (described in previous
publications), but supplement them for engineering sys-
tems that meet responsiveness goals.

The remainder of this section reviews related work and
contrasts it with this paper. Section II describes the prin-
ciples and Section III illustrates applying them to com-
munication issues; user interfaces; data organization for
long term information storage, retrieval, and update; in-
formation hiding; and data availability (when data is cre-
ated, sorted, retrieved, or converted). Section IV presents
a strategy for using the principles, and Section V offers
some conclusions. An Appendix summarizes the perfor-
mance model basis for the pnncnples, and the rationale
for the set of principles.

Several software engineering methodologies advocate a

0098-5589/88/1000-1394301.00 © 1988 IEEE

41

SMITH: RESPONMVE SOFFWAKE SYSTEAMS

software design process sinlar to that in Fig. 1 [1}, |2].
{23}, [37]. Booth [6]. Sanguinctu [24], [25}, Smith and
Browne [28]. {29]. and others [10], [19], [33], [38] pre-
sent performance prediction models applicable during
early developmental stages. A software performance en-
gineering methodology prescribes how performance as-
sessment is integrated with traditional software engineer-
ing methodologies [30]. An extensive bibliography of
performance engineering work is in [33]. The perfor-
mance modeling and assessment are necessary for con-
structing responsive systems, but they are not sufficient.
The synthesis principles are also needed to guide the cre-
ation step.

These svnthesis principles apply to large systems of
programs in early life cycle stages, when one is concerned
with formulating requirements and design specifications
that will lead to systems with acceptable responsiveness.
Bentley {3}, Ferrari 8], [9], and Knuth [11]-[13] and oth-
ers [18], [37] have addressed program efficiency: creating
efficient programs and *‘tuning’’ programs to improve ef-
ficiency. While many of the fundamental performance
concepts are similar, large system design is different.

Lampson presents an excellent collection of hiits for
computer system design that address effectivenc,s, effi-
ciency, and correctness [15]. His efficie” , . .ats are the
type of folklore that has until recent’ - *_ a only infor-
mally shared. The principles presentcd .uier formalize and
extend the efficiency hints. Kop ..z presented principles
for constructing real-time pre_.css control systems [14];
some address performance. An earlier version of the gen-
eral principles is in [34] and the performance analysis of
three independent principles is in [35]. To experienced
performance analysts, those hints and synthesis principles
are not revolutionury new prescriptions. They are, how-
ever, a generalization and abstraction of the ‘‘expert
knowledge’’ that performance specialists use in building
or tuning systems. They are also an effective way of com-
municating this knowledge to software architects and de-
signers. This paper, therefore, explains the ‘‘expert
knowled e’’ with an updated version of the principles,
and illustrates applying them to software system require-
ments and design. Note that they supplement performance
assessment rather than replace it.

Creating software requirements is included in this dis-
cu-sion even though the requirements are often prescribed
anc thus ‘‘set in concrete.’’ In practice, however, the re-
q' trements may be negotiable, particularly when there are
~ood performance reasons for doing so (and they can be
presenied quantitatively). Therefore, the examples pre-
sented in the following sections illustrate requirements as
well as design alternatives.

II. SYNTHESIS PRINCIPLES

These principles have been developed through practical
experience with large software systems. On one particular
project, severe performance problems were detected dur-
ing the system integration phase. A thorough performance
‘‘tuning’’ study was conducted that resulted in numerous

42

proposals for improvements, Many were deemed infeas-
ible because of the magnitude of the change at the late
development stage. Others were implemented as pro-
posed. Euach of the proposed improvements was cataloged
and classified by the type of change. The classifications
were related to a performance model such as that in the
Appendix, and the generalized set of principles was for-
mulated on the basis of the relationship between the
changes and the impact on the parameters of the perfor-
mance models.

The principles apply to software systems, large or
small, executing on a spectrum of computer systems: mi-
crocomputers, large mainframe computers, distributed
systems, and MIMD compulers.2 They are most effective
for very large software systems with high processing de-
mands.

The following sections present the six general princi-
ples for the synthesis of responsive software systems: fix-
ing, locality design, processing versus frequency tradeoff,
shared resources, parallel processing, and centering. Each
principle is defined and explained using simple examples.
A hypothetical automated teller machine (ATM) example
illustrates many of the principles. Examples are provided
for both system requirements and design tradeoffs. Two
of the principles, processing versus frequency tradeoff and
centering, are described in detail in [35], so their descrip-
tion here is abbreviated. An earlier version of the fixing
point principle was also previously defined; however, due
to its revised statemnent and its importance in Section III,
it is described in more detail.

A. Fixing Point Principle

Fixing is the mapping of an action or function desired
to the instructions that accomplish the action. It is also
the mapping of information required to the data used to
produce it. The fixing ‘*point’’ is a point in time. The
latest fixing point is during execution immediately before
the action or information is required. Fixing could be done
at several earlier points: earlier in the execution, at pro-
gram initiation time, at compilation time, or extemnal to
the software system.

Fixing Point Principle: For responsiveness, fix-
ing should be done at the earliest feasible point in
time such that retaining the fixing information is
cost-effective.

It is cost-effective to retain the fixing information when
the cost of retaining it is less than the cost of fixing mul-
tiplied by the probability that refixing is unnecessary. Jobs
or transactions will be more responsive when customized
interfaces are designed with early fixing for common pre-
dictable actions and information, and when baselined ver-
sions of information are changed infrequently and are
fixed early. For flexibility, special interfaces can be pro-

?When the processors have conventional von Neuman architectures. This
excludes pipelined processors, systolic arrays, and other special purpose
architectures. Such computer systems may have additional performance-
determining factors not addressed here.

e

T

O

¥

ey

Ve

X
ol

-

e

IEEE TRANSACTIONS ON SOFTWARE ENCINEERING,

vided and uscd only when needed for uncommon actions,
for information infrequently accessed, and for refixing to
more rccent versions as required.

An example of fixing requirements is choosing the in-
terface for DBMS information selection. Runtime fixing
is done when general ad hoc queries against the infor-
mation are allowed, and the query is parsed and satisfied
at runtime. Alternatively, the information can be fixed
earlier, at compile time, with managed queries: predefin-
ing the information that is to be quickly accessible and
building a menu with only those items. The data is-still
selected at run time, but the code to retrieve it is fixed at
compile time.

Note that binding is a subset of fixing. An example of
fixing that is not binding is determining when data in files
or internal tables should be sorted. Files or tables kept in
the desired order, with all additions preserving the order,
are fixed early. Late fixing applies to ordering them when
needed. (Some experts would consider this an example of
‘*extended binding.”” Unfortunately, many subcon-
sciously view binding in a limited context, so the term
fixing is used to encourage broader interpretation.)

B. Locality Design Principle

Locality refers to the closeness of the mapping of log-
ical tasks and resources to physical resources. According
to Webster, close means ‘‘being near in time, space, ef-
Sect (that is, purpose or intent), or degree (that is, inten-
sity or extent).”’

The dictionary specification for close mapping then
leads to four types of locality design for performance en-
gineering. They are illustrated in the following example.
Consider the logical task to sort a list of integers. Tem-
poral locality of the mapping of this logical task to the
physical resources is better if the integers are all mapped
at the same time to the physical processor that sorts rather
than one at a time (with a large interval of time between
each). Similarly, spatial locality is better if the task is in
a location that is near the physical resource, such as in
memory that is directly accessible by (local to) the pro-
cessor on which it will execute, rather than located on a
disk drive attached to a different machine. The task could
be mapped to different types of physical processors; con-
sider the choice of mapping to a general purpose CPU or
mapping to a special purpose chip designed specifically
to sort lists of integers. Effecrual locality is better for the
special purpose processor since its purpose matches the
task more closely than the general purpose CPU. Degree
locality refers to the extent of the task, as in the length of
the list of integers as compared to the size of the proces-
sors (e.g., speed, memory, size, etc.).

The locality design principle can thus be stated as fol-
lows:

Locality Design Principle: Systems should be de-
signed to have a close mapping of logical tasks and
resources to physical resources.

Spatial locality is in menu networks that cluster related
activities into a single menu and change menus when user

VO 13, NO 100 OCTORER TR

activity changes. For temporal locality, those activitics |

that are requested most frequently should be in the first
menu scen by the user; infrequent activities should be scen
much later. (Since they are clustered into the same menu,
they also have good spatial locality; temporal loculity re-
fers to when they appear in the scquence of menus.) Ef-
fectual locality is found in most ATM’s: they use a spe-
cial purpose automated teller machine that has a user
interface customized to the ATM application, rather than
a general purpose terminal console. Degree locality
matches the size of the ATM application to the machine.

A microprocessor is sufficient, a supercomputer is not
needed.

C. Processing Versus Frequency Tradeoff Principle

This principle addresses the amount of work done for
each processing request, and its impact on the number of
requests made. The ‘‘tradeoff’’ concems the cases when
more work per request reduces the number of requests
made, and vice versa. The principle is as follows:

Processing Versus Frequency Tradeoff Princi-
ple: Minimize the processing times frequency prod-
uct.

A requirement tradeoff for the ATM example is deter-
mining whether multiple transactions per ATM session are
to be allowed. The prompt for continuing a session re-
quires some additional processing time, but the total num-
ber of sessions may be less than when a separate session
is required for each transaction.

Another example is in displaying results of a database
query when multiple data items are selected. Either all
results can be displayed with a GETALL, or the first item
can be displayed with a GETFIRST and each additional
one with a GETNEXT. If users frequently wish to display
all results, then the GETALL command may be desired
for convenience. The principle can then be applied to the
design. A design with a direct GETALL has a high band-
width interface to the database; a design with an inter-
mediate level of abstraction intercepts the user’s GET-
ALL request, issues multiple calls to the database (the
GETFIRST and multiple GETNEXT's), accumulates the
results, and transmits all back to the user at once.

There is not always a tradeoff in the two factors. For
example, for file I/O one can retrieve one byte of infor-
mation at the same relative cost as 20 bytes of informa-
tion, because the processing time is dominated by the
1/0O operation. Therefore, if most of the time the addi-

“tional information is eventually required, there will bc es-

sentially no change in processing time and the number of
requests will be reduced. Thus there is no processing time
penalty for reducing the number of requests.

D. Shared Resource Principle

Computer system resources are limited and must be
shared. To share, either multiple processes can use the
resource at the same time, or they can take turns, each
process using the resource one at a time (multiplexing).
The management of shared resources affects the software

43

SATH: RESPONSIVE SOFTWARE SYSTEMS

in two ways: the additional processing overhecad for
scheduling the resource, and the possible additional time
for waiting to gain access to the resource. The general
principle is as follows:

Shared Resource Principle: Resources should be
shared when possible. When exclusive access is
needed, the sum of the holding time and the sched-
uling time should be minimized.

By sharing resources (rather than taking turns), the
overhead for scheduling is minimized and there is mini-
mal wait to gain access (there may be a wait if another
process already has exclusive access even though the re-
questor is willing to share).

Decreasing the sum of the holding time and the sched-
uling time of multiplexed resources decreases the average
wait time to gain access to the resource.® There are four
ways to minimize the holding time:

1) Minimize the processing time (using the other prin-
ciples).

2) Hold only while needed.

3) Request smaller resource units.

4) Fragment the resource requests.

The first decreases the holding time by doing less work
while the resource is held. The second says that a multi-
plexed resource should be requested just before it is used
and released immediately afterwards. The third, request-
ing smaller resource units, means that less of the resource
is held. The fourth, fragmenting requests, means parti-
tioning one request that requires a long holding time into
shorter requests, each of which requires a shorter holding
time.

Minimizing the holding time of a multiplexed resource
may increase scheduling time. The scheduling of service
requests requires more processing for smaller resource
units; and fragmenting requests into multiple shorter re-
quests introduces more requests for scheduling service.
There will be a net improvement only when the additional
processing is less than the expected wait time using the
larger units or longer requests.

E. Parallel Processing Principle

Processing time can sometimes be reduced by partition-
ing a process into multiple concurrent processes. The con-
currency can either be real concurrency where the pro-
cesses execute at the same time on different processors,
or it can be apparent concurrency where the processes are
multiplexed on a single processor. For real concurrency,
the processing time is reduced by an amount proportional
to the number of processors. Apparent concurrency is
more complicated. Although some of the processing may
be overlapped (e.g., the CPU, memory, or files), addi-
tional wait time may be introduced. Additional overhead
processing may also be required to manage the commu-
nication and coordination between concurrent processes.

The shared resource principle is a synergistic principle; it improves the
avenage waiting time for all processes, rather than improving a process’s
own responsiveness. See the Appendix for further information.

44
The principle is as follows:

Parallel Processing Principle: Parallel process-
ing should be exploited (only) when the processing
speedup offsets the comrrunication overhead and the
resource contention delays.

In general, the benefits derived through apparent con-
currency are not significant compared to those achievable
using the other principles. It has the further disadvantage
of adding complexity to the software system. Real con-
currency will be effective if the processing time reduction
is much greater than the additional overhead for commu-
nication and coordination of the concurrent processes. The
performance improvement must also be weighed against
the cost of the additional processing power and the cost
of more complex software, to determine whether it will
be effective.

F. Centering Principle

The. five previous principles provide guidance for the
synthesis of software requirements and designs. Their ap-
plication improves the performance of the part of the sys-
tem to which they are applied. This principle is different
in that it addresses leveraging the application of the prin-
ciples by focusing attention on those portions of a large
software system that have the greatest impact on its re-
sponsiveness.

The principle is as follows:

Centering Principle: ldentify the dominant work-
load functions and minimize their processing.

That is, create special execution paths for the dominant
workload functions that are customized and trimmed to
include only processing that must be done while the user
waits. The principles in Sections II-A-II-E are applied to
the special paths to minimize their processing. Separate
transactions should be constructed for the workload func-
tions that are requested less frequently.

Most automated teller machines apply the centering
principle to system requirements by including a ‘‘quick
withdrawal’’ transaction that reduces processing by elim-
inating prompts and processing for account type, amount,
and additional transactions; and (on some ATM’s) by
omitting the new account balance from the receipt. They
also apply it to the system design by customizing the ac-
cess methods for the small percentage of customers who
are likely to use ATM's.

The centering principle applies to all systems, but what
one centers on may depend on the performance goal or
the type of system. Thus far, the discussion has implicitly
addressed application software systems that support on-
line interactive users where the performance goal is re-
sponsiveness to users. When system throughput (number
of responses per unit time) is a performance goal, or gen-
eral purpose software systems do not have a dominant
workload, centering is on those components with the larg-
est cumulative space-time product across the specified
usage scenarios. Note that most general purpose systems
(c.g., database systems, operating systems, or other com-

.

Ve

-
¥

Sy
-

&

IFEE TRANSACHONS ON SOFTWARE ENGINUERING, VOL

mercial products) have dominant workloads. The devel-
opers may not know what they are, but they can be iden-
tified and it is important to do so. If one instead focuses
only on the components with a large cumulative space-
time product, ‘mprovements can be made by reducing
their time, but other opportunities to shorten path lengths
by eliminating general processing steps not applicable to
the dominant workload may not be found.

Early in the life cycle, centering focuses on the func-
tions frequently requested by users. Later, during imple-
mentation, the centering principle also addresses software
components with large resource demands, the ‘‘major
consumers,’” even though they may not be executed fre-
quently. Beccuse the major consumers hold resources,
they may cause excessive delays to the dominant func-
tions. While they can be identified earlier, they are typi-
cally less important than the dominant functions. They are
addressed later, but do not drive the design earlier as do
the frequent functions.

There is an additional difference in the early and late
life cycle centering considerations: the effect of the im-
provements. Early life cycle centering focuses on the
functions frequently requested by the users. We assume
that reducing the processing time for these requests does
not affect the number of times they are requested. Later
in the life cycle we also address the major consumers of
resources. When their processing time is reduced, the
components that fall in the set of major consumers of re-
sources may change. Thus, reducing the resource require-
ments of the major consumers could be an endless pro-
cess, since there will always be major consumers of each
resource. [t is not endless because we focus on achieving
the performance goal, not on minimizing resource usage.

G. Summary

In this section, the principles for synthesis of respon-
sive software systems were introduced and illustrated with
simple examples. Most of them involve tradeoffs. A
quantitative analysis of the performance effect of the fix-
ing point, processing versus frequency tradeoff, and cen-
tering principles is in [35]. While they can be evaluated
with :imple back-of-the-envelope calculations, the others
require more sophisticated performance models. Since the
performance engineering methodology in [30] incorpo-
rates the modeling activity into the software design pro-
cess, it is easy to use the models to quantify the tradeoffs.
Many performance analysts have the necessary modeling
skills, and numerous support tools are available.

III. APPLYING THE PRINCIPLES

Since there is a close correspondence between the pe--
formance principles and the computer performance fac-
tors that they affect (see Appendix), they are likely to be
intuitive to an experienced performance specialist, but less
familiar to one who specializes in software system design.
This section illustrates applying the performance princi-
ples to software system requirements and design. It illus-
trates that performance-oriented design does not praclude
the use of good software engineering practices.

45

14, NO 1) OC TOLE R TUNN

A Communication in Software Systems

External communication is the sending and receiving of
information between processes. The processes may be ex-
ccuting on the same processor or on different processors
(c.g., multiprocessors, distributed systems, or MIMD
machines). External communication also includes *'svs-
tem calls’’ for operating system services, such as a cull to
an /O service routine. Internal communication is the
sending and receiving of information within a process:
passing parameters in procedure calls is a common form.

The overhead for communication is often ignored dur-
ing the design and implementation of software systems.
This is because it is a transparent operation (the actual
communication is usually handled by the operating sys-
temn), the communication is not part of the *‘real work' —
it is merely a support activity, and the bandwidth of ex-
ternal communication lines is known to be fast. Therefore
the time to transmit messages is perceived to be insignif-
icant. Nevertheless, the overhead is subsrantial and must
be considered during the design of software systems.

The parallel processing principle directly addresses ex-
ternal communication. It specifies that processes should
execute in parallel only when the communication over-
head (and resource competition) are offset by the speedup
in processing. Models are usually needed to quantify the
effect on performance metrics of greater and lesser de-
grees of parallelism [32]. The other principles address re-
ducing the communication overhead (which may make
parallel processing viable). They are discussed in the re-
mainder of this section. '

First, consider using the fixing point principle to deter-
mine communication requirements. For external com-
munication between pracessors, the sending and receiv-
ing processors must be fixed. A dedicated communication
line connecting the two processors is the earliest fixing.
The latest fixing is a shared communication line with pro-
cessors examining each message to determine if it is
theirs.

Consider applying the fixing point principle to com-
munication design. For external communication the send-
ing and receiving processes must be fixed. With late fix-
ing, messages go to a central ‘*mailbox’'* and receiving
processes periodically check to see if any waiting mes-
sages are theirs. Early fixing sends messages directly to
the receiving process as, for example, with remote pro-
cedure calls or system calls. Intermediate fixing sends
messages to the private mailbox of the receiving process.
For fixing the location of messages in a private mailbox
to the receiving process, late fixing requires the receiver
to call a system routine to get the message (from a loca-
tion hidden to the receiver). Earlier fixing allows the re-
ceiver to read the message directly.

The fixing point principle can also determine how pro-
cedures or sections of code within 2 program receive mes-
sages. The latest fixing is a central driver routine exam-

“This refers 1o a generic mailbox: some unspeci td location (such as

primary memory, disk, etc.) serves as a holdin, area (or messages that have
been sent but not yet examined by the receiver.

SNTH: RESPONSIVE SOFTWARE SYSTINS

ining each message and invoking the appropriate routine.
Earlicr fixing is sctting a “switch™ that routes subsequent
messages directly to the routine expecting a series of input
messages. The ““switeh,”” of course, must be closed when
the routine completes the message series. An example is
in text editors: a user enters an *‘input mode’” and sub-
sequent input 1s automatically added rather than checked
to see ii it is a conunand.

Locality design also applies to communication. Tem-
poral locality is best when there is a minimal time lag
between when a message is sent, and when the receiver
gets the information. So temporal locality is better for
communication via a remote procedure call than via a
mailbox when the receiver must keep checking for mes-
sage arrivals.

Spatial locality applices to the nearness of the commu-
nicating processes. The locality is better when they are on
the same processor than when they are on geographically
separated processors. One can also view spatial locality
as the access time to the message. With this interpreta-
tion, messages in shared memory have better spatial lo-
cality than messages in a mailbox that resides on a disk.

Effectual locality applies to the mapping between the
logical communication mechanism chosen and its physi-
cal environmental support. For example, some computer
architectures support rapid context switching. On these
systems, communication via procedure calls has better ef-
fectual locality than communication via message passing.
Some operating systems are message-based, so the effec-
tual locality of message passing on them is better than for
other mechanisms.

Degree locality is a close mapping between the amount
of information sent, the amount that is essential to the
receiving process, and the bandwidth of the communica-
w.on channel. In a packet switching networ!, for example,
degree locality is best if the amount of information trans-
mitted (and needed) is equal to the packet size.

Processing versus frequency tradeoff also applies to
communication. Communication time is often a large part
of the total time, so it should be included in the processing
time when evaluating the frequency times processing
tradeoff. Communication requires overhead processing.
The principle also suggests combining messages into
fewer, longer messages rather than transmitting many
shorter ones to reduce the frequency that overhead pro-
cessing is needed.’

The previous examples illustrate the independent as-
pects of the communication problem: reducing commu-
nication overhead to improve one’s own performance. The
shared resource principle addresses the synergistic as-
pects of communication. When communication channels
are shared, the potential wait-time (to gain access) and the
scheduling time (the communication overhead) determine
the best holding time (the message size and the transmis-

*This example is not quite so simple. The communication overhead is
reduced with this strategy; however, the contention for communication lines
must be considered as well as the effective bandwidth of the communication
channel to determine the net effect on response time. That is, the shared
resource principle must also be considered.

46
sion frequency). A performance model will likely be re-
quired to solve for holding time, especially if u large

amount of external communication is inherent in the soft-
ware system being developed.

Centering implics that the communication overhead for
the dominant workload functions should be minimized,
Thus, the fixing point, locality design, and frequency
times processing tradcoff principles should be applied to
the dominant workload functions to minimize their com-
munication overhead. For large software systems with
strict performance goals, the other principles should also
be applied to workload elements that are major consumers
of communication resources, because they affect the re-
sponsiveness of the overall system.

B. User Interface Design

The structure and strategy for acquiring information and
for viewing it is the user interface of a system. Thus, for
an interactive computer system, it includes the screzn lay-
outs and the interaction scenarios. For batch systems it
includes the report formats and the input media formats.
Batch systers are not specifically addressed here, but the
general principles apply to them as well.

The user interface design affects both the amount of data
transferred and the number of interactions between the
computer system and the user’s terminal (or device). The
time required for the interactions can dominate the total
time required to process the user’s transactions; careful
design of the interface can substantially reduce this time.

First consider applying the fixing point principle. A user
interface with menu selection screens and data entry
panels employs earlier fixing than one with free format
commands and keywords that must be interpreted at run-
time. Earlier fixing uses function keys on a terminal, or
buttons on a device such as an ATM, to select frequent
activities. Buttons on a mouse or a puck can be fixed early
either to frequent commands or to picture elements that
are frequently used. In the graphics example in Fig. 2,
one mousc button is dedicated to the frequent function
‘‘change the current picture element to the next in se-
quence.’’ In this example, one of the elements is typically
used more than 90 percent of the time, so it automatically
becomes the current picture element every time a place-
ment is made. Thus 90 percent of the time only the inner
loop in Fig. 2(b) is executed.

Another application of fixing is the design of the menu
hierarchy or network. In a hypothetical menu hierarchy,
a user who wishes to create a new picture first sees the
main menu, selects ‘‘edit model,’’ then sees the corre-
sponding Level 2 menu, selects “‘add,’’ then sees a third
level menu and selects the first picture element o be
added. An alternative, in Fig. 3, places the most frequent
actions from the leaves of the previous menu tree (such
as the picture elements to be added) in dedicated areas on
the screen. Because they are selected directly with a
pointing device, such as a mouse, fixing instructions to
actions is earlier. On devices with more limited screen
area, small icons can represent the most f-~quent actions,
while actions desired less frequently car: be grouped to-

47

TEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOU. 13, NO 0, OCTORER sy
Oraw_{opology: DOraw_topology;
REPEAT REPEAT
Point_to_pic_element; Point_to_pic_element;
Point_to_location; REPEAT)
UNTIL tinished; Point_to_location;
. UNTIL new_element;
. UNTIL tinished;
() (b)
Fig. 2. Fixing frequent actions and picture elements. (a) Late fixing: pic-
ture element selected for each placement. (b) Earlier fixing: current pic-
wre element fixed.
GCUE
Topology Detinaion
Add
D ° O |
<o> Al (o

e

Delete Undo
Expand

include List

Parms

1 2

3 4

Last Resuiis

Compute Resuhs

Expon Model

Impon Results

Cancel

Fig. 3. Menu locality.

gether and selected via pop-up menus since later fixing is
acceptable. For systems without a pointing device, the
choices shown on the screen can be selected with function
keys.)

A related example is fixing the coordinates returned
when the mouse button is pushed to the desired menu
function or picture element. For example, any pair of co-
ordinates within the ‘‘Add’’ box boundary in Fig. 3 should
be fixed to the instructions that do the addition. Late fix-
ing checks the coordinates of the cursor location against
the coordinates of the box boundaries after the button is
pushed. Earlier fixing uses a *‘gravity’’ feature. Centers
of gravity are predefined and when the mouse is moved
the cursor virtually *‘jumps’” from the current center of
gravity to the nearest one in the direction of the cursor
movement (it may or may not actually “‘jump’’ on the
screen). Gravity is often used with a grid on the screen to
snap the cursor to grid intersection points. With gravity,

the coordinates of the center of gravity are returned when
the button is pushed making the comparison of coordi-
nates (to fix the action to the instructions) much faster.
Note that earlier fixing will not always be cost-effective
because of the cost of retaining the information. For early
fixing, it applies when one must frequently fix a region
on the screen to an action (or to an object in a picture),
and when the cost of retaining the fixing information is
low, as when the cursor tracking and gravity calculation
can be processed in parallel on the graphics device pro-
cessor rather than on a central processor.

The fixing point principle also provides guidance for
the placement of information on the screen and the length
of time it should be retained. Information that is stable
should be placed in a location where later retransmission
can be avoided. Other types of reference information that
are occasionally needed, and then only for a short period
of time, should be placed in an area on the screen such

SNILFH: RESPONSIVE SOFTWARLE SYSTEMS

that it docs not displace more stable information (that
would later need to be redisplayed and thus retransmit-
ted). On an intelligent display device, a pop-up window
can be used and the displaced information maintained in
a device buffer so that it can be redisplayed without re-
transmission.®

For screen organization, temporal and spatial locality
design are interrelated: data that is needed within a short
period of time should be closely located on the screen,
and data not needed at the same time should not be mixed
When the amount of data to be viewed is much greater
than the screen capacity, and it is likely that all the data
is needed, locality is better if all the data can be trans-
mitted to the interactive device, and all the viewing ma-
nipulation commands (paging through data, locating spe-
cific information, printing hardcopies, etc.) can be
processed on it without intervention from the central pro-
cessor. This applies when most data is needed. If it is
more likely that only a small amount is needed, the soft-
ware should be structured so that only the needed infor-
mation is transferred. Later, more could be separately re-
quested. The information display is thus structured
hic rarchically based on frequency of use. ‘

Effectual locality addresses the match between display
device capabilities and the software requirements and de-
sign. Several capabilities already mentioned are sup-
ported by bit-mapped graphics devices (so that only
changed data need be retransmitted) and device intelli-
gence (for buffering data and manipulating it without in-
tervention from the central processor). Windowing capa-
bilities also offer opportunities for viewing and
manipulating information concurrently. High resolution
screens offer opportunities for matching the size of the
information displayed to its value at that stage in the pro-
cessing. For example, if information is being used only
as a frame of reference, it need not be as large as the
primary information being viewed or manipulated. Color
displays offer opportunities for providing perceptual feed-
back to the user that may aid in problem solving. Thus,
effectual locality design calls for using device intelli-
gence, high resolution, color, and windowing when they
can decrease the number of interactions with the user.

Degree locality is the nearness of the amount of data
needed and the amount displayed or entered. Degree lo-
cality is better if default values are used and only non-
default data need be specified. The graphics example in
Fig. 3 illustrates. The default picture in the figure is cre-
ated with one menu selection. It is frequently created then
modified with a few screen interactions, thus reducing the
total processing to create a new picture.

$Note that this example (and some later) and the communication issues
in the previous section are similar. This is because we are viewing screen
layouts and interaction scenarios as requirements and design issues, while
the 1/0"s to and from the interactive devices are really communication with
the device. Nevertheless, the purpose is 10 present software development
issues and how the principles aid in the synthesis process. The principles
apply to user interface issues irrespective of whether one views them as a
communication or a user interface problem. It is because of the common-

ality in the applications that the set of six principles is a better formulation
of the synthesis concepts.

f

48

The processing versus frequency tradeoff principle also
applics to the user interface. An example of decreasing
processing is a hierarchical **help’’ command: a response
that presents only the information the user is most likely
to need reduces processing. There may be an increase in
frequency; occasionally the user needs more information,
so the longer version of the help is also requested. De-
creasing the number of inputs by increasing processing is
illustrated with an ‘‘Include™ command (to incorporate a
predefined model). One can either remind the user of the

- names that can be included, or assume that she or he re-

members the name. The appropriate choice depends on
the application. Automatically displaying the list may re-
duce the number of user inputs (due to errors and (o sep-
arately selecting the ‘‘List”” command and the *‘In-
clude’).

An application of the shared resource principle is de-
signing screens such that information derived from shared
files is segregated from information that requires exclu-
sive file access. It is appropriate when the shared infor-
mation alone is useful, especially when there is a long
defay to get the nonshared data. The amount of data re-
quiring exclusive access is an information storage issue
and is discussed in the next section. The shared resource
principle also applies to concurrent interfaces via multiple
windows on a screen. [t determines the best screen orga-
nization to maximize sharing of the limited screen area.

The parallel processing principle also applies. Several
examples have been mentioned that call for asynchronous
processing on the interactive device (e.g., paging through
large amounts of data). Allowing multiple processes to
communicate with a single interactive device is another
example that may become more important in the future.

As usual, the centering principle focuses attention on
the frequent screens and interactions. It is important to
minimize the number of interactions for them.

C. Information Storage, Retrieval, and Update

There are three primary considerations for information
storage, retrieval, and update:

* The structure of the information: its aggregation into
files, records, and data items, and the relationship be-
tween aggregates such as ordering, hierarchy, etc.

* The information content: its representation and for-
mat

® The location of the data: the physical location of the
files, records within files, and the data items within the
records

Thus, the data organization decisions are what the
structure and contents should be, and where they should
be located.

The fixing point principle applies to when and how often
the decisions are made. In database management systems,
fixing information requested to the actual data format and
location at runtime is more expensive than fixing at com-
pile time. Data items accessed by the dominant workload
functions should be fixed at compile time. Therefore, the
database should be structured so that those items are sta-

N o 7 s T A AT Vi o W A AT AR L)

IEE TRANSACHONS ON SOEFTWARE ENGINETRING, NOLL j4, NOO L OCTORER 10X

ble and not affected by other datubase changes. Then
compile time fixing is viable, since information structure
for the dominant workload functions changes infre-
quently.

A second example addresses the creation and fixing of
temporary infcmation. Consider creating a matrix that
shows the fraction of transactions in each ATM region
made by customers residing in each of the other regions.
Each account address must be fixed to an ATM region.
The earliest fixing is to include the ATM region in every
account record. Alternatively, a mapping file couid cor-
relate account addresses to ATM regions. Assume that a
mapping file is used because the interval between uses for
the mapping information does not justify retaining it with
the account information. The analysis programn processing
for each ATM transaction is to access the account infor-
mation to get its geographic location, then access the
mapping data to get the corresponding region. The latest
fixing point stores mapping data in an external file that
must be accessed for cach transaction. Earlier fixing
‘*preprocesses’’ the mapping data in the first phase of the
program to create a data structure in virtual memory for
fixing the transaction region. Temporary fixing also maps
complex database structures into simpler files for more
eflicient processing.

Spatial locality applies to the location of data in a dis-
tributed database. The data should be closest to the loca-
tion where it is most likely to be needed. If distributed
data resides in a remote location, late fixing gets data from
the remote location when it is referenced, whereas earlier
fixing recognizes earlier (e.g., at run initiation time, or
even the beginning of the day) that remote data is needed,
and transports it before execution.

Locality design also applies: data items used together
(temporal locality) should be clustered together (have
good spatial locality). Often external files have an abstract
or logical structure; that is, related information is clus-
tered together, but the relationship is based on logical
content rather than temporal references. One example is
the hypothetical personnel database structure in Fig. 4.
The abstract relationship appears to be reasonable: per-
sonal data, job history, payment history, time log data,
and payroll data are conceptually distinct and are clus-
tered accordingly. The locality is better than if it were all
stored in one record. For printing checks, though, muiti-
ple clusters must be accessed (personal data, time log data,
and payroll data). There are few scenarios that access only
one cluster with this structure.

Effectual locality design addresses the closeness of the
mapping of the logical to the physical database design. It
also applies to the design of internal data structures. For
example, a binary search into an ordered data structure is
usually best for random retrievals from a large table.
However, if the table does nct fit entirely in real memory,
the binary search probe 1to the table may result in page
faults making the average access time per probe greater.
Thus, effectual locality addresses the total time to locate
and retrieve the desired data item: the number of probes

49

fegznai Daa

Payment
' siory

Fedamhoding §
~hoting § 5 ha
rent perod . Soree 2educions

v
®
~x

n2 -y

Fig. 4. Databasc structure with little temporal loculity.

into the table and the time per probe (the instructions to
make the probe plus page fault processing).

Degree locality matches the size of the data structures
and the storage medium. While small amounts of data are
often manipulated by programs, storage devices process
large amounts more efficiently. Buffering, blocking, and
using direct access storage devices with cache memories
improve the closeness of the mapping.

The parallel processing principle applies primarily to
distributed computing systems. A proper distributed data
organization reduces the overhead for communication and
synchronization of processes executing on separate pro-
cessors, thus making parallel processing viable. An im-
proper organization increascs this overhead to the point
where parallel processing is no longer effective.

Centering calls for selecting a data organization that
minimizes the physical I/O operations for frequent re-
quests (dominant workload functions). For external files
and databases there many be conflicting workloads; ran-
dom access may dominate during the day, but sequential
access may dominate for overnight workloads. When the
conflicting workloads run concurrently, models must be
used to determine the best overall organization.

D. Information Hiding

Information hiding is the concept of hiding implemen-
tation details {20], [21]. It applies both to hiding data or-
ganizations and to the implementation of operations on
the data. Parnas recommends applying information hiding
to ‘‘design systems for change.”” With his method, as-
pects of systems that are likely to change become “‘se-
crets’’ that are hidden from the rest of the system. Aspects
of systems that are unlikely to change are operations or
‘‘interfaces’” known by the rest of the system. By hiding
the secrets, the effect of changes to them is localized. Ab-
stract data types (ADT’s) and object oriented program-
ming are methods of implementing information hiding (5],
[17].

Information hiding has the advantage that software is
less dependent on the format, location, and current oper-
ations than might otherwise be the case. A disadvantage
is that, without careful implementation, it can be ineffi-
cient: the overhead of procedure calls for the interfaces
may be excessive; the granularity of the data items may
be too small; or the locality may be suboptimal. If these
inefficiencies adversely affect the dominant workload

SMITH: RESPONSIVE SOEFBWARE SYSHEMS

functions, the responsivencss of the system may be un-
acceptable. The incthiciencics are not inherent defects of
information hiding, but may exist if a straightforward im-
plementation is used.

It is vital to consider the performance of key interfaces.
A fundamental assumption is that they are unlikely to
change; they may be used throughout the rest of the sys-
tem, so changes to them can propagate extensively. The
internal data representation is easier to change later; thus,
it is not a key consideration, but it is just as easy to do it
right the first time.

Sections 1II-C and III-E address internal data represen-
tation issues; the remainder of this section addresses the
interfaces. The important issues are identifying the inter-
faces that are key to responsiveness, early fixing of data
to the interfaces, properly retaining the fixing informa-
tion, and appropriately decomposing information.

The centering principle identifies the interfaces most
frequently requested. Using the other principles, their ef-
ficiency is then optimized. This may lead to identifying
new interfaces that are needed. For example, an ‘‘ac-
count’” may hide the name, address, social security num-
ber, and balance, and have an interface for each (e.g.,
‘‘get name,’’ ‘‘get address,’” etc.). If a customer wishes
to open another account, and the software is to use the
information from the first account, three procedure calls
are made to the interfaces. This function is not likely to
be a2 dominant workload function; however, if it were fre-
quent, an additional operation for *‘get all account infor-
mation’’ or even '’create new account’’ should be pro-
vided. Other special interfaces may be needed to get
combinations of data items that are frequently needed to-
gether.

The fixing point principle specifies when the informa-
tion is fixed, and how long it is retained. Consider the
example in Fig. 5(a). Each interface performs an 1/O to
retrieve the desired data element. This is fine for random
requests for data elements. But, if dominant workload
functions are likely to request multiple data items for the
same account,’ earlier fixing reads all data items when the
first is requested. Each interface then checks to see of the
desired data item is in memory, or if an I/O is needed, as
in Fig. 5(b).

The cost of retaining the fixing information is important
when multiple processes call the interfaces. In the exam-
ple, information for multiple accounts must be retained.
One implementation is to retain data items for each user;
each interface then checks to see if the desired data item
is among those in memory, or if an I/O is needed, as in
Fig. 5(c). Later fixing uses the same interface as in Fig.
5(a), but modifies the 1/O routine as in Fig. 5(d). It first
checks to see if the desired data is in one of its buffers in
memory before it starts the physical I/O operation.

The fixing point principle also applies to fixing code to
the interface desired. If every interface requires a proce-

"And if the account data elements are stored together—if not, the local-
ity principle applies, as described later.

50

get name .. Account Data Files
R e & o

Ggel address ey

. S L) ‘/
(a)
Account
get name e, Data Files
-
- Data File
gel
) Fust access (aca?)
e ge! then get info; ___ |
get address recct e - 16 | o fetuinTeC

(b)

Account

get nama seccrt,
b *
-t

. Eil
ot
< N\%| Manager

get Y Fust acoess (user, aca”) vo
ge! address teccir feC _mv:-:o: p—

g———————— .

©

Account

get Name i.cets

et * E E'!

i % Manager YO routina
First acoess (ac™) 1o

qet " record
get address tecets rec \ ":::"9"::" + in butter? 22|
it et
.

(d

Fig. 5. Fixing abstract data type information. (a) Late fixing of data items:
each operation performs an /0. (b) Earlier fixing of data items: each
operation calls the data file manager. It may buffer multiple records for
efficiency. (c) Data items are fixed and explicitly retained for each user,
(d) Later fixing: information is not explicitly retained for each user, but
may still be present in 1/O buffers.

dure call, the overhead may be excessive. However, it
may be possible to fix earlier, at compile time, by using
a preprocessor that inserts the code in-line.

Locality design also applies. There are two mappings
to be considered: mapping the information (the logical re-
source) to the physical processor as before; and mapping
the information to the external (user) domain through the
interfaces. Effectual locality calls for both mappings to be
close. Thus, there should be an abstract data type or ob-
ject for each significant element in the user’s environ-
ment. Ideally the mapping to the physical resources i$ also
close, such as mapping account data items needed to-
gether to the same physical record.

Fig. 6(a) shows a hypothetical database scenario for re-
trieving logical records that are composed from multiple

. »fﬁ'f‘,-z’rbg'ﬁ'p o .

e
o
7

LN

51

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 10, OCTOBER Jusy

Fing 3 pons where anituoe » STTI N
WHILE nore
BEGN
Gat nert logneal record.
{COMAINNG 2MPOM COIR. 3TRuse, runwy enGth)

N0

Mapping
tile

Physcal records a: P,»ﬂ coce

Logical Record
Get-next

e Agceve Message

Parse request

Determing phys.cal 10 /
logical mapping

Determine ghysical
record addresses

Read catafie 1

ML\’
Read data file 2
Transiale physical o
logical
Build response. message
Send message

Physcal records’ awpdn cole
: may enyt.
‘_Fxnd . Dala
; file 2 :

(b)

Getrext| Logcal Record
Receive message

Mapping
tile

Parse request

N

1t butter emps Lec.cal Biock Hanger
Ger 1 ogcal vock Py

Determing phys-10g. mapp.rg

Build response message Determine phys. adcresses

. for bl
Send message or biock
Read all data tie 1 recs. for Dlaia
1he Dlock @t file 1

. Read all data 2 tile recs. for
Find . the block
e

- . Phys rec akyesses T

phys. 10 log.
\ Data

. file 2

©
Fig. 6. Locality design for abstract data types. (a) Hypothetical scenario.

(b) Logical records are composed for each access. (¢) With nested logical
block handler.

@ 0

physical records. Fig. 6(b) shows a design: for every
‘‘get-next’’ request the physical to logical mapping is de-
termined, the physical records are read, and the transla-
tion from physical to logical performed. Fig. 6(c) shows
a hierarchical abstract data type with a logical block han-
dler nested within the logical recorl abstract data type.
The logical block handler determines the mapping once,
reads all the physical records necessary to compose the
block, then performs the translation once. The mapping
information is only read and processed once per block
rather than once per record. In the worst case, the number
of physical data file [/O’s is the same as in the previous
case, but it may be possible to reduce the number of phys-
ical I/Q’s (depending on the data organization) by reading
in larger physical blocks of data. The performance is even
better if the mapping is established once when logical data
processing begins. This example focuses on the mapping

overhead, but other types of DBMS overhead may also be
reduced (e.g., binding physical record addresscs, error
checking, buffer management, etc.).

Note that this is a special interface for sequentially re-
trieving logical records. Random retrievals would use a
different strategy. If sequential retrievals are used by the
dominant workload functions, it is important to include
this customized interface; it substantially reduces pro-
cessing time. If not originally included, it would be dif-
ficult to later add a high-performance, sequential retrieval
interface.

The temporal and spatial locality between the user do-
main and the ADT is improved in this example by adding
the *‘get logical block’’ interface to the logical record data
type, as shown with the dashed line. It additionally saves
on DBMS overhead for message passing and request pars-
ing since it is only needed once per block instead of once
per record.

The processing versus frequency tradeoff principle ap-
plies to the interfaces to be called and the amount of pro-
cessing for each. The example in Fig. 6 can also be viewed
as a processing versus frequency tradeoff. The logical
block handler does more processing per call, but it is
called less frequently.

The shared resources principle applies when objects can
be accessed by multiple users. The holding time is mini-
mized by applying the principles to both the data repre-
sentation and to the interfaces as in this section. The ‘*hold
while needed’” can be enforced through the interfaces. The
fragmentation of requests can be similarly controlled by
either combining requests into one interface, or frag-
menting each into a separate interface. Locks can be a
‘“‘secret,”’ so the granularity of the locks can be varied
from the entire database to an account as appropriate,
without propagating the change throughout the system. .
. If the abstract data types may be mapped to different
processors, the parallel processing principle applies. The
locality design principle provides guidance for mapping
them to physical processors. For example, ADT’s should
not be divided between processors unless the effectual lo-
cality is improved by mapping an interface to a processor
designed specifically to handle that operation. ADT’s are
well suited to parallel processing since the interfaces are
explicit and the processing is encapsulated. Thus it is easy
to model the communication overhead and the processing
time to evaluate the cost-effectiveness of various parallel
processing strategies.

This section illustrates applying the principles to the
synthesis of abstract data types and objects. Interested
readers should also refer to related work by Booth and
Wiecek on performance abstract data types [7]. They ad-
vocate extending the abstract data type definition to in-

clude performance specifications that.facilitate the perfor-
mance assessment.

E. Data Availability

Data availability addresses when data is available, that
is, when it is created, stored, retrieved, or converted.

SN RESPONSIVE SOFTWARE NYS TN

"Choices are upon demand (oo when it s needed), or
anticipatory (i.c.. before it is needed). Data avinlability
concepts are similar to the dwta organization and abstract
data type interface concepts discussed in the previous two
sections; they decomposed the data issues into organiza-
tion and access strategy. This section integrates the two,
using the principles, to ensure that irems used most fre-
quenily have minimal access delays.

The centering principle is key to identitying and focus-
ing on the data items that are used most frequently. Early
fixing is the primary technigue for achieving minimal ac-
cess delay. With carly fixing the data access is anticipa-
tory. An example is the logical block handler in Fig. 6(¢).
It anticipates that many logical records will be requested.
and composes (fixes) an entire block from the physical
records before they are requested. The carlier example
concerns fixing the mapping information once per block
rather than once per record. Here the concern is reducing
the average time to access cach logical record. [n the log-
ical block handler the same strategy accomplishes both,
but that is not always true (an cxample of a contlict is
given at the end of this section).

Data availability address both w/ien intormation is fixed
and how long itis retained. The expected interval between
rcquests to data items indicates the best strategy for re-
taining fixing information. For example. data items that
have long periods of inactivity interspersed with occa-
stonal periods of high activity (e.g.. 50 requests in a 5-
minute interval, twice per duy) should be retained 1 a
location that has minimal access delay during the periods
of high activity.

Another example is in computer-aided design (CAD)
systems. There are two common strategies for organizing
data used for CAD:

e To inregrare the database and the analysis programs

by having the programs read data directly from the data- '

base as it is needed, and to insert results directly into the
database.

* To interface the database and analysis programs by
first extracting the data, feeding all into the analysis pro-
gram, and later taking all results and inserting them into
the database in bulk.

The later is typical, since most of the analysis programs
were written before the databases‘were created. Many
CAD experts advocate the former, due to its flexibility
and the overhead involved for the data extraction (prepro-
cessor) and insertion (postprocessor).

Locality design determines the best of the two strate-
gies for responsiveness. Effectual locality is best if the
mapping of the data organization is close to the needs of
the analysis program. The physical data organization
within the database may not correspond closely. Even if
it does.. it does not have the best temporal and spatial lo-
cality since the analysis program must interface through
the data management routines. If the database is used by
many other CAD tools and designers, there is likely much
more data than any single program needs, so the degree
locality may not be close. Thus, data availability is best

52

for the interface strategy. Furthermore, the perfornumcee
of the analysis progran can be optimized by using data
structures that have a close mapping to the solution al-
gorithms. Future analysis programs oifer apportunities for
improving the locality of integration since both databvase
organization and algorithms can be better matehed.

Sharcd resources also impact the access defay. Tt iy
minimized 1t processes share the resource. IF exclusive
access is needed, there is a conflict: the delay for cach
access is lower it the data is locked once und held unuil
the data is no longer needed. because the code for locking
and unlocking is executed fewer times. This strategy.
though, may increase the time that competing jobs must
wait to obtain access to the item. Performance models are
necessary to resolve the conflict.

V. Stratigy FOR EFFecrivi OPriMizatioN

The general principles are necessary for developing
systems with good performance characteristics. that is.
tor “*doing it right the first time.™" but they are not suth-
cient. There are tour factors that determine their eftec-
tiveness: the principles must be:

i) applicd to appropriate software components

2) necessary

3) lead to global improvement

4) cost-etfective.

Each of these is explained in the following paragraphs.

The principles must be applied to the components that
are critical to performance. ldentitying them at design
time can be diflicult; and intuition can be misleading.
Some designers mistake the components that are most dif-
ficult to design and implement for the critical compo-
nents; whereas. the critical components are generally
those most frequently executed.

For example, network security management is diflicult
to design because many complex situations must be han-
dled. Sccurity may require a fair amount of exccution
time; however, other network software components, such
as the communication protocol routines, are generally
more frequent. Security management may be cntical to
performance, modeling determines its impact.

The second effectiveness factor is applying the optimi-
zation efforts to software components only when neces-
sary. Usually, it is unnecessary to overachieve a pertfor-
mance goal; therefore, if the performance goal can be
easily attained, it is not effective to devote valuable de-
velopment time to extensive performance enhancements.
Similarly, it is not effective to expend much effort optim-
izing components of the software system that have lttle
impact on overall performance. _

Another aspect of necessary optimizations is distin-
guishing software requirements that are necessary from
those that are both unnecessary and adversely atfect re-
sponsiveness. Sometimes these ‘‘antificial'’ requirements
are introduced at design time with the intent to improve
performance. An example is (an extra) requirement for a
component that produces a list of items: that the list be in
sorted order. The order requirement may be artificial, the

%’; d
e >
4. g
R
R
23 B
¥ EE
!‘»f /—'
3

LT

o

v

v" “";h‘.‘

TEE 1 ERASSMOBIONS ON SOp PWARE FNGINFERING. NOE 110 N e 00 TURER 1o

intent being to reduce subsequent scarch time. Perfor-
mance models show whether the sort improves overall re-
sponsiveness. A straightforward approach (eliminating the
sort) may not degrade responsiveness, and will vesult in
less code to maintain.

The third ctfectiveness tactor says that optimization
techniques should result in global improvements to the
software pertormance. This 1s most tmportant in detatled
design and coding stages. when many people are involved
in development. Optimizations made in one part of the
software system must be consistent with those mude in
other arcas. Performance models quantify the overall et-
fects.

The last of the four factors is that the pertormance im-
provement must be cost-¢ffective. The time to implement
the optimizations must be weighed against expected sav-
ings. [t may be extremely difficult to achieve a specified
performance goal for a large sottware system. Achieving
the goal may be possible only at great costs in personnel
time and in clapsed time to implement the system. [t is
important to estimate the cost ot achieving the perfor-
mance goal and insure that it is justified. [t is often pos-
sible to negotiate for more reasonable performance goals
before expending excessive etforts to achicve unrealistic
ones.

V. Suantary axp ConcCLusioNs

Six principles for the synthesis of responsive software
systems were presented, and applications to software sys-
tem requircments and design synthesis were illustrated.

Section Il presented several examples that could be
viewed as applications of more than one of the principles.
The principles correspond directly to the system perfor-
mance parameter that they attect (see Appendix for fur-
ther discussion). The different views usually arise because
one design improvement favorably affects multiple sys-
tem performance paramecters. Since the goal is to create
responsive systems, it does not matter which of the views
leads the designer to the desired product. Since more than
one principle may apply. the probability increases that a
responsive system can be created. There would be a prob-
lem 1t they were contradictory, but they are not because
the principles explicitly address the tradeolfs, and models
identify the best alternative.

Consider the relationship between the principles and the
responsiveness and maintainability of the software sys-
tem. When improvements are made early in the life cycle,
they only affect the requirements or the design, thus no
changes to code are required. Performance tuning projects
conducted late may require time for numerous changes to
program code, additional time for retesting, and the re-
sulting code becomes more difficult to maintain. The per-
formance is improved, but not as much as possible be-
cause many important improvements that can easily be
incorporated early in the life cycle are infeasible later.
Note that with the performance engincering methodology
one can identify such improvements and evaluate their ef-
fect early in the life cycle. before code is produced (31].

[tis also iteresting to note the correlation between the
respunse time of the systen and 1S 1esponsiveness 1o uscrs
i the more general sense. Forexample. the specntl ATM
function for “quick withdrawals™ mentioned in Section
H-F notonly produces a better average response tine. but
also provides a more “friendly ™ interface for the numy
custemers who use it. Similarly. the recommendations in
Section HI-B improve both the responsiveness and the us-
ability of the system. Thus, the principles can be applied
to improve performance of systems without adversely at-
fecting software usubility, readability. maintamabrhity. or
other quality factors. They arz compatible with good soft-
Ware engineering practices.

APPENDIX
Basis FOR THE PRINCIPLES

The computer system on which the software executes
can be viewed as an abstract model as in Fig. 7. Fig. 7()
shows several types of jobs (A, B, C, - - -) arriving for
service. possibly waiting in a qucue for their turn for ser-
vice, then leaving upon completion. Fig. 7(b) shows an
expanded model that identifies computer system resources
that each of the jobs may use while being served. It is
well known that the performance of such a system de-
pends on the following parameters ot tie model [16], 126]:

¢ the arrival rate of each type of job

* the computer system resource requirements of each
type of job

¢ the contention delays that result from the interaction
with other jobs in the system A

¢ the scheduling policies used to determine which
waiting job next obtains the needed computer system re-
source.

The six principles improve performance by favorably
affecting the corresponding system performance parame-
ter. Tue table below summarizes the correspondence:

System Performunce Paramicter Peirformance Principle Tape

Type of jobs Centering Independent

Resource requirements Fixing Point Independent
Locality Design Independent
Processing vs. Independent
Frequency Tradeofl

Job Interactions Locality Design Synergistic

Shared Resources
Paratlel Processing

Syncrgistic
Synergistic
Scheduling

Centering focuses on the jobs that are key to the re-
sponsiveness of the system. The fixing point principle
concentrates on when and how often processing occurs.
Locality design pertains to effective use of resources. Pro-
cessing versus frequency tradeoff affects the number of
requests for resources and the amount requested. Shared
resources influence the number of jobs avaitable to use a
resource in a time interval. The extent of parallelism and
the competition for resources among the parallel tasks is
affected by the parallel processing principle. The sched-
uling of jobs is not addressed because it is generally a

53

SAHEEH RESPONSIVE SOFEW ARE SYSTEMS

(4)

54

(]

N/
"/

D Types of obs

Rescurce requirements

| seb interacnons

Fig. 7. Computer system model. (a) Abstract system model. (b) Expanded model.

service provided by the computer system, and not fre-
quently a decision that must be made in the carly devel-
opment stages of new software systems. If scheduling is
addressed, it is usually only after implementation when
job priorities are manipulated.

There are two types ot principles shown in the table,
independent and synergistic. Independent principles im-
prove the responsiveness of the **job’’ to which they are
applied by improving its own performance parameters
(e.g., reducing its resource requirements). Thus the im-
provement is independent of the characteristics of other
types of jobs. The synergistic principles, on the other
hand, improve the overall responsiveness through coop-
eration: they can reduce the average time waiting for re-
sources if the competing jobs abide by the recommended
principle. The locality design principle is both indepen-
dent and synergistic, because it can improve a job's own
responsiveness as well as benefit competing jobs.

Most of the principles require a tradeoff decision. The
performance of the various alternatives may not be ob-
vious, particularly for the synergistic principles, since it
is affected by many interrelated factors. A previous paper
provided quantitative improvement formulas for the in-
dependent principles {35]. Performance models similar to
Fig. 7 can aid in the decision making for the synergistic
principles (28], [29], {36]. Because of the interaction,
though, the definition of some of the principles may seem
ambiguous. In practice, the performance engineering
models (similar to that in Fig. 7) resolve the ambiguities.

REFERENCES

[1] M. Alford, "'SREM at the age of eight: The distnbuted computing
design system,”” Computer, vol. 18, no. 4, Apr. 1985.

{2] T. E. Bell, D. X. Bixler, and M. E. Dyer, "*An exicndable approach
10 computer-aided software requirements engincering,’” /EEE Trans.
Software Eng., vol. SE-3, no. |, pp. 49-59, Jan. 1977.

(3] J. L. Bentley, Writing Efficient Progrums. Englewood ClifTs, NJ:
Prentice-Hall, 1982.

{4] —. ""Programming pearls,”" Commun. ACM, vol. 27, no. 11, pp.
1087-1092, Nov. 1984,

[5] G. Booch, **Object-oriented design.’" in Software Engineering with
Ada. Menlo Park, CA: Benjamin/Cummings, 1983.

{6} T. L. Booth, *"Use of computation structure models to measure com-
putation performance.”’ in Proc. Conf. Simulation Measurement and
Modeling of Computer Sysiems, Boulder, CO, Aug. 1979, pp. 183-
188.

[7] T. L. Boothand C. A. Wiecek, "'Performance abstract data types and
a tool in software performance analysis and design,”” /EEE Trans.
Software Eng.. vol. SE-6, no. 2, pp. 138-151, Mar. 1980.

[8) D. Ferrari, Computer Systems Performance Evaluation. Englewood
Cliffs, NJ: Prentice-Hall, 1978.

[9] D. Ferrari. G. Serazzi, and A. Z~igner, Measurement and Tuning of
Computer Systems. Englewood Cliffs, NJ: Prentice-Hall, 1983.
{10] R. M. Graham, G. J. Clancy, and D. B. DeVaney, **A software de-
sign and evaluation system,”” Commun. ACM. vol. 16, no. 2, pp.

110-116, Feb. 1973,

{11} D. E. Knuth, The Art of Computer Programming, Vol |: Fundamenial
Algorithms. Reading, MA: Addison-Wesley, 1968.

{12} —. "*An empirical study of FORTRAN programs, * Sofiware Prac-
tice and Experience, vol. 1, no. Z, pp. 105-133, Apr. 1971.

(13) ——, The Art of Computer Programming, Vol. 3: Sorting and Search-
ing. Reading, MA: Addison-Wesley, 1973.

{14] H. Kopetz, *Design principles for fault tolerant real time systems,"*
in Proc. Hawaii Int. Conf. System Sciences, vol. 19, pp. 53-62. Jan.
1986.

[15] B. W. Lampson, “'Hints for computcr system design,'* 1EEE Scft-
ware, pp. 11-28. Feb. 1984,

;'\,,\#.', L

Y4

%

1io]

17}

18]

[19]

120]

(21

124]

{25]

126]

127

128]

129]

{30

131

1321

[TNNE

gD, Livowska,) Zaboran, G SO Groham, and K C o Seaerh,

Quaniitative Svxiom Porconance. Englevood Chittso N Prontice-
Hall, 1984,
oA Bdeny o The ove of abstract data @ o~ 1o simphily program

madifications, " in Proc. Cenfo D Absiraci o,
Structiore (ACM SIGPLAN Nonces), val, 11, 1976,

M. MeNad and W Traey, PLA program etliciency.
rices, vol. 13, ne 6. pp. 46-60. Junc 1980,

L.J. *fekly and S S You, &

Dpmnicion and
SIGPLAN No-

Software design representation using

abstrict process networks. " JEEE Trans. Software Eng . vol. SE-6,
no. S.pp. $20-434, Sept. 980,

D. L. Purnas, ""On the ritena to be used in decompesing systems
into modules,”” Conpnar ACM, Dee. 1972

D. L. Parnas, P. C. Clements. and Do AL Wenss, ™
ability with informatien hiding.”" in Proc.
Programming, Sept. 1983, pp. 240-247.
J. L. Pcterson and A Silberschatz, Operating Syvsiern Conceprs.
Reading, MA: Addison-Wesley. 1983, pp. 91-129.

W. E. Riddle. J. C. Wileden, J. H. Sayler. AL R. Scgal. and AL M.
Stavely. ""Behavior modeling during software design.”™ in Proc. 3rd
It Cenf. Sofivare Engincering, 1\EEE Cutalog No. 78CH13177C.
May 1978.

J. W. Sanguinetti, “"A formul technique tor anulyzing the perfor-
mance of complex systems.”” in Proc. Computer Performunce Eval-
uarion Users Group 14, Boston, MA_ Oct. 1978, pp €7-82.

*A technique for integrating simulation and system design,™" in
Proc. Conf. Simulation Measurement and Modeling of Compuicr Sys-
tems, Boulder, CO., Aug. 1979, pp. 163-172.

C. H Sauver and K. M. Chandy. Compurer Svatems Pe lfmmmut’
Modeling. Englewood Clitfs, NJ: Prentice-Halt, 1981,

H. A. Sholland T. L. Booth, ""Software performance modeling using
computation structures,”” [EEE Trans. Softwure Eng.. vol. |, no. 4,
Dec. 1975.

C. U. Smithand J. C. Browne, "*Aspects of software design analysis:
Concurrency and blocking.”" in Proc. Performance S0. Toronto, Ont.
Canada, May 1980, pp. 245-254.

C. U. Smith, ""The prediction and evaluation of the performance of
software trom cxtended design specifications,”” Ph.D. dissenation,
Univ. Texas at Austin, University Microfilms Pub. KRAS1-00963,
1980.

—. “"Software p. :srmance engincering,” in Proc. Computer Mea-
surement Group Int. Conf. X1, New Orlcans, LA Dec. 1981, pp.
5-14.

C. U. Smith and J. C. Browne, "'Performance engineering of soft-
ware systems: A case study, in Proc. AFIPS Nar. Compurer Conf.,
Houston, TX, June 1982, pp. 217-224.

C. U. Smithand D. D. Locndorf, **Performance analysis of software
foran MIMD computer,”" in Proc. Conf. Measurement and Modeling
of Computer Systems, Seatile, WA, Aug. 1982, pp. 151-162.

Enhuancing reus-
Workshop Rewsabiliny in

TRAN

SO TWART, EAGINEFERING, v0l T NO - g o TORE D e

P33 C U Sk, pedommance engiaccting A abhography
e e Software Performancy Eugmecrorgy, Compider
ment Growpr Frans sol 39, PP 636X, Sopt. JOUNS,

= = U Syatheas prosciples for high pertonance sottwaie. " Proc

Heivast It Conf. Svaeom Scrence. volo 190 pp. 17-27, Jan. 1956,
—_ lndgpu\._,'cm vencid prmuplu for consructing lk\{\(‘n\l e

Spedin!

Mevvhee:

software systems, T ACM Trans. Comput 3,“' Svobdona gL pp.
3L Fon 1986,

136] — Fu ormance Exginceriag of Seftware Syviems. Reading, N
Addsen-Wesley, 1o appear, 1959

1371 D Van Tassel, Pruumm Snle, Design, Erficicnov. Debweging. and
Testing. Englewond Clils, NJ: Prentice-Hall. 1978,

[33] 1. W Wonchester und G Estrin, " Methodology for compater hased

Proc.

systes,

NCC.val, 51, pp. 369-379. 1932,

Connic U. Smith (§779-M'80-5M'87) recened
the B.A . Jegree from the Unnversity of Colorado,
Beulder. and the M A and Ph D. degrees in com-
puterscicnce fromthe University of Texas at Aus-
un.

She is currently a principal consultant with the
Performunce Engincering Services Division, L&S
Computer Technology, Inc. Of her 19 years™ cx-
pericnce in industry, government, academia, and
consulting, 11 have been in the practice. rescarch,
and development of software performance predic-
tion techniques. They were developed experimentally and applied to nu-
merous large systems under devclopment. Based on this experience. she
propused the " Sofiware Performance Engincering " (SPE) methodology in
1981 that sy stematicaily assesses performance throughout software devel-
opment. The synthesis principles are proposed to further advance SPE to a
method for prevenring problems us well as detecring them carly. She has
published numerous pupers and anticles on the subject and is currently pre-
paring a book. Several state of the urt graphical tools to support SPE have
been developed under her ditectien. Her other research interests are per-
formance modeling, software/hardware codesign, software cngincering,
design methods. graphical user interfuce design, and operating systems.

Dr. Smith is a member of the Association for Computing Machinery and
the Computer Measurement Group (CMG). In 1986 she received the A A.
Michelson award for outstanding contributions to computer metrics for her
work in Software Performance Engincering. She is a past ACM Naticnal
Lecturer. Vice Chair of ACM Sigmetrics (1983-1987). and a dircctor of
CMG (1982-1986). She is the General Chair for the 1988 Sigmetrics Con-
ference in Sasta Fe, NM, and has sened on many other conference and
program committens.

55

1 Hz Loop

(Enter }

A1

A2

Yes

1st Time?

No

A3
EKF

A.4

A5

Top Level - Algorithm #1

56

EKF
Subroutine
Algorithm #1

(Enter >

E.1
E.2
> 1
=1
E.3
E.4
< NINT -
INSTEP
= NINT
E.5

(Return))

57

Block B.3 is where
the 20Hz interface
will reside.

B.1

B.2

B.3

B.4

B.5

B.6

B.7

(Return)

A/A Processing Flowchart

-~

LN

NOTE: There is no
looping structure which
| thought was in TWS.

58

APPENDIX E
March 1989 Briefing

59

Software Performance Engineering Applications

4 N
SOFTWARE
PERFORMANCE
ENGINEERING
APPLICATIONS
. J

Connie U. Smith, Ph.D.
L & S Computer Technology, Inc.
(505) 988-3811

OVERVIEW

+ Project review
+ Technology transfer discoveries

+ Proposad future directions

Connie U. Smith - March 23, 1989 - Page 1

61

Software Performance Engineering Applications

BACKGROUND

+ Software Performance Engineering (SPE):
Build performance into systems

« POD: A Navy tool for predicting performance

+ Technology transfer project:
Apply POD & SPE to MC-ECS ~ F18 Software
<+ Demonstrate results

+ Use results to promote technology transfer

MODELING REQUIREMENTS

L head GOAL: \
+ Low overhea Initially
» Distinguish between "good"
¢ Accommodate: and "bad”

Incomplete definitions
Imprecise parformance specs | [ater
Incremental development » Increasse precision

Changes during development » Provide implementation -
\ decision support Y,

Connie U. Smith - March 23, 1989 - Page 2

Software Performance Engineering Applications

CASE STUDIES CONSIDERED

+ Compare growth of software for 83X, 85X, and 87X releases on
the AN/AYK-14 model XN-5

« Evaluate exchange of algorithm for ballistic trajectory

+ Addition of "new feature" algorithm for computing target data

+ Evaluate hardware upgrade: XN-5to XN-6

+ Concurrent processing: single vs. dual executive on XN-6

Others Identified, but insufficlent data for near-term case study

Selected algorithm addition because representative, of interest to
designers, and sufficient data available

SOFTWARE MODELS
20 Hz task 860 assign_s
Setup
317 assign_s
It 172 add-sub_s
266 muit s
103 div_s
37 assign_s
3 20 add-sub_s
| e | a1 muns
12 div_s 340 assign_s
184 add-sub_s
285 mult_s
363 assign_s 110 dv_s
196 add-sub_s
aunchzone | 304 muit_s
118 dwv_s 272 assign_s
147 add-sub_s
Missile calcs. 228 mult s
88 div_s
assign_s
L

Connie U. Smith - March 23, 1989 - Page 3

64

Software Performance Engineering Applications

NEW SOFTWARE

New 1 Hz task Algorithm 1
15 assign_s ;
1 mult_s »
5 div_s

I " # integration steps

19

b
| Ag.1or2 39

0

14 assign_s

Algorithm 2 56
370 assign_s saennd 14
200 add-sub_s 0
310 mult_s
= 17
25
e 2 Ls
7
RESULTS
Original 20 Hz 35.3 ms.
Algorithm 1:
New 20 Hz36.1 ms.
New 1 Hz 3 ms.
Alg. 1 3.7 ms.
Total 40.1 ms.
Algorithm 2:
New 20 Hz36.1 ms.
New 1 Hz .3 ms.
Alg. 1 8.0 ms.

Connie U. Smith - March 23, 1989 - Page 4

Software Performance Engineering Applications

APPLICABILITY OF POD & SPE

+ Found many software evaluations that could benefit from
the technology

+ Case study had no particular performance problems; the
tool confirmed that there should be no surprises

+ POD enables the rapid evaluation of many tradeoftfs
Applying the algorithm to muitiple targets
Varying the number of integration steps
Examining startup processing as well as steady state
Varying the hardware speed

TECHNOLOGY TRANSFER D! VERIE

o Usabllity limitations:

NOSC approach is vital to technology transfer:
Develop prototype into demonstration version

Make tool mora appealing with visual interface
+ Theory limitatic : Perlodic arrivals in queueing theory?

— 10—~
jom=e{ Servicetime, S
j—————{ Residence time, R

Standard queueing models compute average congestion: R= (N+1)$S
if periodic arrivals do not collide: R=S
Determining if collisions occur Is nontrivial

if your only tool Is 8 hammer, every problem looks like a nail
Effective technology transfer - Augment tools and SPE methods

Connie U. Smith - March 23, 1989 - Page 5

65

Software Performance Engineering Applications

KEYS TO TECHNOLOGY TRANSFER E

1. Transfer agent

Technology Agent Users

Resolve problems

2. Clear benefit

3. Compatible with existing methods, experiences,
heeds

4. Easy to understand,
easy to try,
measurable results

5. Expert participation

DISCOVERIES

\ /

Key problems:

percelved applicabillty of analytical models
lack of method

ease of use

You cannot address these independently

Connie U. Smith - March 23, 1989 - Page 6

66

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 07040188

and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188). Washington. DC 20503

Public reporting burden for this collection of information Is estimated 10 avetage 1 hour per response. including the time for reviewing instructions. searching existing aata sources. gathering ana
malintaining the data needed. and compieting and reviewing the n of information. Send comments regarding this burden estimaie of any other aspect of this collection of tnformation including
suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports. 1215 Jefferson Davis Highway. Sulte 1204 Arlington. VA 22202-43C2

1 AGENCY USE ONLY ({Leave biank) 2 AEPORT DATE
June 1990

3 REPORT TYPE AND DATES COVERED
Final

4 TITLE AND SUBTITLE

PERFORMANCE ENGINEERING FOR MISSION CRITICAL EMBEDDED
COMPUTER SYSTEMS

6 AUTHOR(S)

5 FUNDING NUMBERS

C: N00039-86-C-0247

7 FERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

L&S Computer Technology, Inc.
P.0. Box 9802, Dept. 120
Austin, TX 78766

8 PERFORMING ORGANIZATION
REPORT NUMBER

9 SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10 SPONSORING/MONITORING
AGENCY REPORT NUMBER

Office of Naval Technology Naval Ocean Systems Center
Arlington, VA 22217 San Diego, CA 92152-5000 NOSCTD 1834
11 SUPPLEMENTARY NOTES

t2a DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b DISTRIBUTION CODE

13 ABSTRACT Maxmum 200 words)

This document provides background information on performance engineering and the POD performance modeling
tool, and gives an overview of the project activities. Finally, the project summary section reviews the results, lessons
learned, and suggests future directions. A detailed review of the project activities is in Appendix A.

14 SUBJECT TERMS 15 NUMBER OF PAGES
62
mission critical, embedded computer system (MC-ECS) 16 PRICE CODE
17_SECURITY CLASSIFICATION 18 SECURITY CLASSIFICATION 19 SECURITY CLASSIFICATION 20 UMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAME AS REPORT

NSN 7540-01-280-5500

Standard torm 298

