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PREFACE

The work reported here began in connection with the ROSIE Language Development Project, which

was funded by the Information Sciences and Technologies Office of the Defense Advanced Research

Projects Agency under the auspices of The RAND Corporation's National Defelnse Rebearch Insti-

tute, a Federally Funded Research and Development Center sponsored by the Office of the Secretary

of Defense. Since the completion of the ROSIE project, this work was continued independently

by the author. This Paper is a companion to the RAND Note "A TABLE-DRIVEN APPROACH

TO FAST CONTEXT-FREE PARSING" (N-2841-DARPA). The intention in publishing both doc-

uments is to make the parsing techniques applied in ROSIE available for use by others at RAND

and elsewhere.



SUMMARY

A variation on Tomita's algorithm for general context-free parsing is analyzed in regards to its

time complexity. It is shown to have a general time bound proportional to no+1 , where n is the

length of the input string and p is the length of the longest production in the source grammar.

A modification of this algorithm is presented for which this time hound is reduced to a factor of

n 3 . A discussion of space bounds, as well as two subclasses of context-free grammars that can be

recognized in less than O(n 3) time, is also included.
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1. INTRODUCTION

Context-free grammars (Chomsky, 1956) have been widely used in describing the syntax of

programming and natural languages. Numerous algorithms have been developed to recognize sen-

tences in languages so described. Some are general, in the sense that they can handle all or most

context-free grammars; others are more restricted and can handle only a small subclass of these

grammars (including the grammars of most programming languages). These latter algorithms, e.g.,

the LL, operator precedence, predictive, and LR parsing algorithms (Aho and Ullman, 1972) are

typically more efficient than the former because they take advantage of inherent features in the class

of grammars they recognize.

Most practical parsers analyze the syntax of their input in a single determilistic pass, without

need of backup. Each symbol is examined only once, and, at the time it is examined, there is sufficient

information available to make any necessary parsing decisions. In his famous paper, Knuth (Knuth,

1965) established a family of context-free grammars known as LR(k) grammars and provided an

effective test to determine, for a given positive integer k, whether a grammar belonged to the LR(k)

class. The connection to practical parsers mentioned above is that an LR(k) grammar describes a

language, all of whose sentences can be parsed in a single backup-free parse, if at most k symbols

of look-ahead are available. Despite the wide coverage of LR(k) grammars, there are still many

languages for which no LR(k) grammar exists. The example that sparked this work is ROSIE

(Kipps et al., 1987), a language for applications in artificial intelligence with a high-level English-

like syntax.

The general context-free parsing algorithms, e.g., Earley's algorithm (Earley, 1968; 1970), and

the Cocke-Younger-Kasami algorithm (Younger, 1967), must necessarily simulate a nondeterministic

pass over their input, using some form of search. Due to the inefficiency this causes, these algorithms

have not been widely used as practical parsers for programming languages. However, as programming

languages, like ROSIE, begin to approach natural language in readability and expressiveness, they

will also become ambiguous and non-LR(k) and, thus, inherently harder to recognize. Such grammars

require the power of a general parser. Although the best time bound for the general context-free

algorithms is 0(n 3 ),2 where n is the length of the input string, some of these algorithms run faster for

certain subclasses of context-free grammars. For instance, in his thesis (Earley, 1968), Earley shows

2 Actually, the best upper bound is Valiant's algorithm, which runs in 0(n 281 ). However, since this is

also its lower bound, Valiant's algorithm is only of theoretical interest.
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how his algorithm runs in O(n') for unambiguous grammars and in time O(n) for bounded state

grammars. Unambiguous and bounded state grammars subsume the LR(k) grammars, and they may

also subsume a large subset of interesting non-LR(k) grammars. Although Earley's algorithm is still

too inefficient to be used as a practical parser for even these grammars, their existence suggests that

a sufficiently fast algorithm for practical general context-free parsing could be developed.

A basic characteristic that seems to be shared by the best known of the general context-free

algorithms is that they are top-down parsers. Recently, however, Tomita (Tomita, 1985a;b) intro-

duced an algorithm (intended for natural language applications) that takes advantage of an extended

LR parse table. This would appear to be the first general context-free algorithm that is a bottom-up

parser. The obvious benefit of this approach is that it eliminates the need to expand alternatives of

a nonterminal at parse time (i.e., what Earley calls the predictor operation). For Earley's algorithm,

eliminating the predictor operation would not change its upper-bound time complexity, but it would

save a factor of n2 , which in itself could be significant to a practical parser. Unfortunately, upon

examination Tomita's algorithm is found to have a general time complexity of 0(n"+'), where n is

as before and ,0 is the length of the longest production in the source grammar. Thus, this algorithm

achieves O(n3 ) for grammars in Chomsky normal form (Chomsky, 1959) but has potential for being

worse in unrestricted grammars.

In this paper, I present a modification of Tomita's algorithm that allows it to run in time

proportional to n' for grammars with any length productions. First, in Section 2, the terminology

used in this paper is defined. A variantion on Tomita's algorithm is described informally as a

recognizer in Section 3, and formally defined and analyzed in Section 4. Section 5 describes and

analyzes the modification to this algorithm that allows it to run in time O(n3 ). Section 6 examines

the cost in terms of space required by the modified algorithm. Finally, Section 7 describes two

subclasses of context-free grammars for which the algorithm runs in O(nr 2 ) and O(n), respectively.
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2. TERMINOLOGY

A language is a set of strings over a finite set of symbols. These symbols are called terminals

and are represented by lowercase letters, e.g., a, b, c. A context-free grammar is used as a formal

device for specifying which strings are in a language; hereafter, grammar is used to mean context-free

grammar. A grammar uses another set of symbols called nonterminals, which define the syntactic

classes of the language; nonterminals are represented by capital letters, e.g., A, B, C. Together the

terminals and nonterminals of a language make up its vocabulary. Strings of vocabulary symbols are

represented by Greek letters, e.g., a, 13, -y. The empty string is c. jo is the number of symbols in a.

A grammar consists of a finite set of rewrite rules or productions of the form

A - a

where the 'A' component is called the left-hand side of the production, and the 'a' component is

called its right-hand side. The nonterminal that stands for "sentence" is called the root (R) of the

grammar. Productions with the same nonterminal on their left-hand side are called alternatives of

that nonterminal. Productions of the form

A - E

are called null productions.

The rest of the definitions are given with respect to a particular source grammar G. We write
a /3

if-,5 ,,.. r=u ti--.t . yA and 3_ -,-1r6 and t. - ;i is a production. We write

(f3 is derived from a) if 3ao, al, am (m > 0) such that

a a 0 * al =:> ... => am= /3.

The sequence ao,. .,am is called a derivation (of fi from a).

A sentential form is a string a such that the root R *' a. A sentence is a sentential form

consisting entirely of terminal symbols. The language defined by a grammar L(G) is the set of its

sentences. Any sentential form may be represented in at least one way as a derivation tree, reflecting

the steps made in deriving it (though not the order of the steps). The degree of ambiguity of a

sentence is the number of its distinct derivation trees. A sentence is unambiguous if it has degree 1

of ambiguity. A grammar is unambiguous if each of its sentences is unambiguous.

A recognizer is an algorithm that takes as its input a string and either accepts or rejects it,

depending on whether the string is a sentence of the language defined by the grammar. A parser is

a recognizer that outputs the set of all legal derivation trees of a string upon acceptance.
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3. TOMITA'S ALGORITHM

The following is an informal description of a variation on Tomita's algorithm as a recognizer.

I assume familiarity with standard LR parsing, the exact definition and operation of which can be

found in Aho and Ullman, 1972. The changes introduced to Tomita's algorithm do not alt,,r it

significantly, but they do make it easier to describe and analyze. The algorithm described below is

based on an implementation of Tomita's algorithm as a practical parser (Kipps, 1988) distributed

with the ROSIE language.

Tomita views his algorithm as a variation on standard LR parsing. The algorithm takes a

shift-reduce approach, using an extended LR parse table to guide its actions. The changes the

algorithm makes to the parse table are to allow it to contain multiple actions per entry, i.e., at most

one shift action or accept action and any number of reduce actions. Thus, the parse table can no

longer be used for strictly deterministic parsing; some search must be done. The algorithm emulates

a nondeterministic parse with pseudo-parallelism. It scans an input string xi-. x,, from left to

right, following all paths in a breath-first manner and merging like subpaths when possible to avoid

redundant computations.

An example non-LR grammar is shown in Figure 3.1,

(1) S - NP VP
(2) S - S PP
(3) NP - *n
(4) NP - *det *n
(5) NP - NP PP
(6) PP - *prep NP
(7) VP - *v NP

Fig. 3.1-Example of Non-LR Grammar

and its parse table in Figure 3.2. In building the parser table the grammar is augmented by a 0th

production

D 0 - R-i

where R is the root of the grammar and where the symbol '-' is a special terminal that denotes

end-of-sentence and appears only as the last symbol of an input string. Entries 'sh s' in the action

table (the left part of the table) indicate the action 'shift to State s.' Entries 're p' indicate the

action 'reduce constituents on the stack according to Production p.' The entry 'acc' indicates the

action 'accept,' and blank spaces represent 'error.' Entries 's' in the goto table (the right part of

the Lable) indicate the action -after a reduce action, shift to State s.' In Figure 3.2, there are two
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multi-action entries in States 3 and 11 under the column labeled '*prep.'

State *det *n *v *prep -Np PP VP S
0 sh5 shT 9 1
1 sh2 acc 8
2 shS sh7 3
3 re6 re6,sh2 re6 4
4 re5 reS reS
5 sh6
6 re4 re4 re4
7 re3 re3 re3
8 re2 re2
9 shlO sh2 4 12
10 sh5 sh7 11
11 re7,sh2 re7 4
12 rel rel

Fig. 3.2-LR Parse Table with Multiple Entries

The algorithm operates by maintaining a number of processes in parallel. Each process has a

stack and behaves basically the same as in standard LR parsing. Each stack element is labeled with

a parse state and points to its parent, i.e., the previous element on a process's stack. We call the

top-of-stack the current state of a process.

Each process does not actually maintain its own separate stack. Rather, these "multiple" stacks

are represented using a single directed acyclic (but reentrant) graph called a graph-structured stack.

Each stack element is a vertex of the graph. Each leaf of the graph acts as a distinct top-of-stack

to a process, while the root of the graph acts as a common bottom-of-stack. The edge between a

vertex and its parent is directed toward the parent. Because of the reentrant nature of the graph, a

vertex may have more than one parent.

The leaves of the graph grow in stages; each stage U corresponds to the ith symbol xi from

the input string. After xi is scanned, the leaves in stage Ui are in a one-to-one correspondence with

the algorithm's active processes, where each process references a distinct leaf and treats that leaf as

its current state. Upon scanning xj+l, an active process can either (1) add another leaf to U,, or

(2) add a new leaf to U,+l. Only processes that added leaves to U+l will be active when xi+ 2 is

scanned.

In general, a process behaves in the following manner On xi, each active process (corresponding

to the leaves in U-l) looks up and executes the entries in the action table for xi given its current

state. When a process encounters multiple actions, it splits into several processes (one for each

action), each sharing a common top-of-stack. When a process encounters an error entry, the process

is discarded (i.e., its top-of-stack vertex sprouts no leaves into U by way of that process). Al!

processes are synchronized, scanning the same symbol at the same time. Thus, after a process shifts
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on xi into Ui, it waits until there is no other processes that can act on x, before scanning xi+l.

The Shift Action. A process (with top-of-stack vertex v) shifts onl x, from its current state s to

some successor state s' by

(1) creating a new leaf v' in Ui labeled s';

(2) placing an edge from v' to its top-of-stack v (directed towards v); and

(3) making v' its new top-of-stack vertex (in this way changing its current state).

Any s,,ccessive process shifting to the same state s' in U is merged with the existing process to form

a single process whose top-of-stack vertex has multiple parents, i.e., by placing an additional edge

from the top-of-stack vertex of the existing process in U, to the top-of-stack vertex of the shifting

process. The merge is done because, individually, thez. processes would behave in exactly the same

manner until a reduce action removed the vertices labeled s' from their stacks. Thus, merging avoids

redundant computation. Merging also insures that each leaf in aity Ui will be labeled with a distinct

parse state, which puts a finite upper-bound on the possible number of active processes and, thus,

the size of the graph-structured stack.

The Reduce Action. A process executes a reduce action on a production p by following the chain

of parent links down from its top-of-stack vertex v to the ancestor vertex from which the process

began scannin6 or p earlier, essentially "popping" intervening vertices off its stack. Since merging

means a vertex can hiave multiple parents, the reduce operation can lead back to multiple ancestors.

When this happens, the process is again split into separate processes (one for each ancestor). The

ancestors will correspond to the set of vertices at a distance p from v, where p equals the number of

symbols in the right-hand side of the pth production. Once reduced to all ancestor, a process shifts

to the state s' indicated in the goto table for Dp (the nonterminal on the left-hand side of the pth

production) given the ancestor's state. A process shifts on a nonterminal much as it does a terminal,

with the exception that the new leaf is added to Ui-I rather than Ui. (A process can only enter Ui

by shifting on xi.)

The algorithm begins with a single initial process whose top-of-stack vertex is the root of the

graph-structured stack. It then follows the general procedure outlined above for each symbol in the

input string, continuing until there are either no leaves added to U, (i.e., no more active processes),

which denotes rejection, or a process executes the accept action on scanning the n + 1st input symbol

'-I,' which denotes acceptance.
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4. ANALYSIS OF TOMITA'S ALGORITHM

In this section, I present a formal definition of the variation on Tomita's algorithm described

in Section 3, as a recognizer for an input string x, ... x,, and then analyze the tim- complexity of

the algorithm according to this definition. This definition is understood to be with respect to an

e:,tended LR parse table (with start state So) constructed from a source grammar G.

Notation. Number the productions of G arbitrarily 1,..., d, where each production is of the

form
Dp - Cpl 1"".Cpf (I < p:5 d)

and where p is the number of symbols on the right-hand side of the pth production.

Definition. The entries of the extended LR parse table are accessed with the functions ACTIONS

and GOTO.

" ACTIONS(s,x) returns a set of actions from the action table along the row of State s under the

column labeled 'x.' This set will contain no more than one of a shift action 'sh s" or an accept

action 'acc;' it may contain any number of reduce actions 're p.'

" GOTO(s,Dp) returns a state 's" from the goto table along the row of State s under the column

labeled with nonterminal Dp.

Definition. Each vertex of the graph-structured stack is a triple (i, s, 1), where i is an integer

corresponding to ith input symbol scanned (i.e., the time at which the vertex was created as a leaf),

s is a parse state (corresponding to a row of the parse table), and I is a set of parent vertices. The

processes described in the last section are represented implicitly by the vertices in successive U,'s.

The root of the graph-structured stack, and hence the initial process, is the vertex (0, So, {}).
The Recognizer. The recognizer is a function of one argument REC(xi ... x"). It calls upon

the functions SHIFT(v,s) and REDUCE(v,p). SHIFT(v,s) either (1) adds a new leaf to U labeled

with parse state s whose parent is vertex v or (2) merges vertex v with the parents of an existing

leaf; REDUCE(v,p) executes a reduce action from vertex v using production p. REDUCE calls upon

the function ANCESTORS(v,p), which returns the set of all ancestor vertices a distance of p from

vertex v. These function are defined in Figure 4.1.

The definitions in Figure 4.1 vary somewhat from the formal definition given in (Tomita,

1985a). 3 As a brief explanation, in REC, [1] adds the end-of-sentence symbol '-V, to the end of

3 The changes introduced to Tomita's algorithm do not alter it significantly, but they do make it easier to
describe. In particular, Tomita's functions REDUCE and REDUCE-E have been collapsed into a single func-
tion.
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the input string; [2] initializes the root of the graph-structured stack; [3] iterates through the sym-

bols of the input string. On each symbol xi, [4] processes the vertices (denoting the active processes)

REC(x • . x,)
[1) Let Xn+ :=-

Let Ui be empty (0 < i < n)
[2) Let Uo := {(O,So,{})}
[3) For i from 1 to n+ 1

Let P be empty
[4) For each v = (i-1,s,1) E Ui- 1 ,

Let P := P U {v}
[5) If 'sh s" E ACTIONS(s,xi), SHIFT(v,s')
[6] For each 're p' E ACTIONS(s,xi), REDUCE(v,p)
[7] If 'acc' E ACTIONS(s,xi), accept
[8) If Ui is empty, reject

SHIFT(v,s)
[9] If -3(i,s, I) E Ui,

let Ui U U {(i,s,{v})}
else

let I = u {v

REDUCE(v ,p)
[10] For each v' = (j',s',11') E ANCESTORS(v,/i),

Let s" := GOTO(s',Dp)
[ill If - 30 = (i -1, s", 1") E Ui-_1,

let Ui-i := Ui-1 UJ {(i-ls",{v'})}
else

[123 If v' 1",
(13] if 3(j,', ,12') E 1",

let I" : " U {v'

[14] if v" E P,
let Vd := (i- 1,s", {v'})
for each 're p' E ACTIDNS(s",xi),
REDUCE(Vd,p)

else
do nothing (ambiguous)

ANCESTORS(v = (j,s,l),c)
[15) If c=0,

return({v})
else

return(UPEI ANCESTORS(v', c - 1))

Fig. 4.1-Tomita's Algorithm

of successive Ui- 's, adding each vertex to P to signify that it has been processed; [5), [6] and [7]

respectively execute the shift, reduce and accept actions from the action table given the state s of a

vertex; and [8] checks that at least one vertex was added to Ui, insuring that at least one process is

still active after processing x, and before scanning xi+,.
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In SHIFT, [9] adds a vertex to U, labeled s (i.e., shifts a process to state s in U,). If a vertex

labeled s does not already exist, one is created with a single parent v; otherwise, t, is added to the

parents of the existing vertex, thus merging processes.

In REDUCE, [10] iterates through the ancestor vertices a distance of p from v, setting s" to

the state indicated in the goto table on Dp given the state of the ancestor. Each ancestor vertex is

shifted into U,.- 1 on s"; [11] adds a vertex labeled s" to U,- I if no such vertex already exists. If such

a vertex does exist, [12] checks that a shift from the current ancestor v' has not already been made.

(If it has, then some segment of the input string has been recognized as an instance of the same

nonterminal Dp in two different ways, and the current derivation can be discarded as ambiguous;

otherwise, v' is merged with the parents of the existing vertex.) Before merging, [13] checks that v'

is not a "dummy" vertex, created by [141 from an earlier call to REDUCE; [14) checks if the vertex

v" has already been processed. If so, then it missed any possible reductions through v', so a dummy

vertex vd is created as a variant on v" with a single parent v'. For all such reduce actions, REDUCE

is called using Vd in place of v". Because of reduce actions on null productions, it is possible for

ANCESTORS to return a dummy vertex as the ancestor of itself; so, going back to [13], if a variant

of v' already exists in the parents of v", then v' is a dummy vertex and can be discarded; otherwise,

it is a real vertex and can be added to the parents of v".

Finally, in ANCESTORS, [15] recursively descends the chain of parents of vertex v, returning

the set of vertices a distance of c from v.

The changes introduced in Figure 4.1 do not alter Tomita's algorithm significantly, but they do

make it easier to develop some ideas about its efficiency. Here we wish to find the upper bounds on

time as a function of n (the length of the input string). Since there are existing general context-free

parsing algorithms that are 0(n 3 ) with respect to time, it is of interest to analyze Tomita's algorithm

and see how it compares.

The General Case. Tomita's algorithm is an O(n6+1 ) recognizer in general, where P3 is the

greatest p in G. The reasons for this are:

(a) Since each vertex in U, must be labeled with a distinct parse state, the number of vertices in

any U, is bounded by the number of parse states;

(b) The number of parents I of a vertex v = (i, s, 1) in U is proportional to i (a- i). This is because

a process could have started scanning for a production p in each Uj (j < i) and, thus, a process

could reduce on p in U, and split into to - i processes (one for each ancestor in a distinct Uj).

Each process could shift on Dp to the same state in Ui and, thus, that vertex could have - i

parents;

(c) For each xi+,, SHIFT will be called a bounded number of times, i.e., at most once for each
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vertex in Uj; SHIFT executes in a bounded number of steps.

(d) For each xj+1 and production p, REDUCE(v,p) will be called a bounded number of times in

REC, and REDUCE(vd,p) (the recursive call to REDUCE) will be called no more than -,- i

times. The reason for the former is the same as in (c), while the latter is due to the conditions

on the recursive call, which maintain that it can be called no more than once for each parent

of a vertex in U,, of which there are at most - i;

(e) REDUCE(v,p), because at most - i vertices can be returned by ANCESTORS, executes in ,- i

steps plus the steps needed to execute ANCESTORS.

(f) ANCESTORS(v,3) executes in -- i steps in the worst case. This is because, while at most - i

processes could have started scanning for p, the number of paths by which any single process

could reach v in U, is dependent upon the number of ways the intervening input symbols can

be partitioned among the p vocabulary symbols in the right-hand side of production p. For a

process that started from U3 (j < i), the number of paths to v in U( in the recognition of p can

be proportional to
0 0 0E E ... E 1.

ml=j M 2 =rnrl mP.I=mP- 2

Summing from j = 0,., i gives the closed form -, iP. ANCESTORS(vd = (i, s{v'}),P) executes

in - i - steps because there is that many ways -, i ancestor vertices could reach v', and only

one way v' could reach v;

(g) The worst case time bound is dominated by the time spent in ANCESTORS, which can be

added to the time spent in REDUCE. Since REDUCE(v,p), with a bound - if, is called only a

bounded number of times, and REDUCE(vd,p), with a time bound of - if - 1 , is called at most

- i times, the worst case time to process any xi is - i0, for each i = 0, , n + 1 and longest

production p;

(h) Summing from i = 0,., n + 1 gives REC a general time bound - i6+ 1 .

This bound indicates that Tomita's algorithm belongs to complexity class 0(n 3) only if applied

to grammars in Chomsky normal form (CNF) 3 or some other equally restricted notation. Although

any context-free grammar can be automatically converted to CNF (Hopcraft and Ullman, 1979),

extracting useful information from the derivation trees produced by such grammars would be time

consuming at best (if possible at all).

3 In CNF, productions can have one of two forms, A --* BC or A - a; thus, the length of the longest
production is at most 2.



- 11 -

5. MODIFYING THE ALGORITHM FOR N3 TIME

In this section, I explain how to turn this algorithm into an n 3 recognizer for context-free

grammars in any unrestricted form. ANCESTORS is the only function which forces us to use if

steps. It is interesting to note, however, that ANCESTORS can take this many steps even though

it returns at most - i ancestor vertices, and even though there are at most - i intervening vertices

and edges between a vertex in Ui and its ancestors. This points out the fact that ANCESTORS

follows the same subpaths more than once. The efficiency of ANCESTORS can be greatly improved

if this redundancy is eliminated.

The modification described here turns ANCESTORS into a table look-up function. That is,

assume that there is a two-dimensional "ancestors" table. One dimension is indexed on the vertices

in the graph-structured stack, and the other is indexed on integers c = 1 to P, where fi equals

the greatest P. Each entry (v,c) is the set of ancestor vertices a distance of c from vertex v.

Then, ANCESTORS(v, c) returns the (at most) - n ancestor at (v, c) in -1 steps. Of course, the

table must be filled dynamically during the recognition process, and so we must calculate the time

expended in this task.

In Figure 5.1, ANCESTORS is defined as a table look-up function that dynamically generates

table entries the first time they are requested. In this definition, the "ancestor" table is represented

by changing the parent field I of a vertex v = (i, s, i) from a set of parent vertices to .an ancestor

field a. For a vertex v = (i, s, a), a consists of a set of tuples (c, I), such that 1, is the set of ancestor

vertices a distance of c from v. Thus, the portion of entries for each vertex in the ancestor table is

associated with the vertex itself.4

Figure 5.1 illustrates the necessary modifications made to the definitions of Figure 4.1. (No

changes are made to REC.) In SHIFT, [1] adds a vertex to U. labeled s. If such a vertex does not

already exist, one is created whose ancestor field records that v is the ancestor vertex at a distance

of 1; otherwise, v is added those ancestors.

In REDUCE, [2] iterates through the ancestors V' a distance of P from v, finding the appropriate

state s" to shift to from the goto table; [3] adds a vertex labeled s" to U,.-1 (if no such vertex already

exists) whose ancestors field is initialized to point back to V'. if such a vertex does exist, [4] checks

for an ambiguity. if there is no ambiguity, then v' is merged with the other ancestors a distance of 1

4 While this definition may at first seem obtuse, it was adopted to suggest an implementation that
could take advantage of the LISP garbage collector to dynamically recover table entries when a process is
terminated.
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from v". [5] first checks that v' is not a dummy vertex (as described in Section 4) created by [6] in

an earlier call to REDUCE; [6] checks if v" has already been processed. If so, it applies REDUCE to

SHIFT(v,s)
[1] If - 3(i, s, a) E Ui ,

let Ui U U {(i, s, {(1, {v})})}
else

let 11 : U {v} I l, ) E a

REDUCE(v,p)

[2] For each v' = (j',s',ai') E ANCESTORS(v,p),
Let s" := GOTO s,D.)

[3] If - 3v" = (i - 1, s", a1") E (i-1,
let U,.- 1 := U,x u {(i-1,s",{(1,{v'})}

else
[4] If V, z(,x E a,",

[5) if 3 (j',s',a2 ) E 1,
let 11 := 11 U {v'}

[6) if v" E P,
let Vd (i-l,s",a 2" = 1

for each 're p' E ACTIONS(s", xi),
REDUCE (d ,p)

[7) for each (c,t12 ) E a 2" Ic > 2,
if 3(c,l,) E al"

let I, 1  , U ic2
else

let a,'" a," U {U(c, 2 )}
else

do nothing (ambiguous)

ANCESTORS(v = (j,s,a),c)
[8) If c = 0,

return({v})
else
If 3(c, ) E a,

return(Ic)
else

[9) let c: UV'Ehjl(1,11)Ea ANCESTORS(v',c- 1)

let a a U {(CIc)}
return (I,)

Fig. 5.1-Modified Algorithm5

Vd (a dummy v") for each reduce action on xi. After the application of REDUCE, [7] updates the

ancestor table stored in v" to record entries made in the ancestor field a2" of the dummy vertex.

In ANCESTORS, [8] looks up in a (the portion of the ancestor table stored with v) those vertices

at a distance of c; if an entry exists, those vertices are returned, but if not [9] calls ANCESTORS

5 The definition of REC from Figure 4.1 is unchanged.
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recursively to generated those vertices and, before returning the generated vertices, records them in

the ancestor field of v.

The question now becomes how much time is spent filling the ancestor table. For

ANCESTORS(v,p), this is bounded in the worst case by - i2 steps, and for ANCESTORS(vd,,p), it

is bounded by - i steps. This is because, in general, ANCESTORS(v = (i, s, a),c) will take - i steps

to execute the first time it is called (one for each recursive call to ANCESTORS(v',c - 1) (v' E I1 and

(1, 11) E a)), plus the steps in the recursive call, and - steps thereafter. When ANCESTORS(v,p3)

is executed, there are - i such "virgin" vertices between v (in U1 ) and its ancestors, and so this

call can execute _ i2 steps in the worst case. ANCESTORS(vdji) is called only after the call to

ANCESTORS(v,P) has been made, and so - i of the vertices between v' and the ancestor vertices

have beep processed; hence, the call to ANCESTORS(v',3 - 1) could take - i steps for each of a

bounded number of intervening vertices.

Given this, the upper bound on the number of steps that can be executed by the total calls on

REDUCE for a given xi is - i2 . Summing from i = 0,. • -, n + 1 gives -- n3 steps as the worst case

upper bound on the execution time of the modified algorithm.
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6. SPACE BOUNDS

While it might be suggested that the modifications introduced in the last section make an

unfavorable trade off between time and space, analysis actually shows that space efficiency is impaired

by at most a constant factor.

The space complexity of Tomita's algorithm as it appears in Section 4 is proportional to n 2 in

the worst case (ignoring the read-only space requirements for the parse table). This is because the

space requirements of the algorithm are bounded by the requirements of the graph-structured stack.

There are a bounded number of vertices in each Uj of the graph-structured stack, and each vertex

can have at most -,, i parents. Summing again from i = 0, • , n + 1 gives us -, n 2 as the worst case

space requirement for the graph-structured stack.

With the modification given in Section 5, we have increased the space requirements of the

graph-structured stack by at most a constant factor of n2 . This is because the i.-Jifica iun replaces

the - i parents of a vertex in Ui with at most - Pi entries in the ancestors field. So, for a vertex

v = (i,s,a) E Ui, the ancestors field a will be a subset of tuples (c,/ ) such that 1 < c < 0 and

li, = i. Summing from i = 0,..., n + 1, gives us - fn
2 or -, n 2 still as a worst case upper bound

on space.
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7. LESS THAN N3 TIME

As mentioned earlier in the introduction, several of the better known general context-free algo-

rithms have been shown to run in less than 0(n 3 ) time for certain subclasses of grammars. Therefore,

it is of interest to ask if Tomita's algorithm, as well as the modified version presented here, can also

recognize some subclasses of context-free grammars in less than 0(n 3 ) time. In this section, I in-

formally describe two such subclasses that can be recognized in 0(n 2 ) and 0(n) time, respectively.

The arguments for their existence parallel those given by Earley in his thesis (Earley, 1968), where

they are formally specified.

Time 0(n 2 ) Grammars. ANCESTORS is the only function that forces us to use - io steps

in Tomita's algorithm and -iP steps in the modified algorithm. We determined that this could

happen when a ancestor vertex v' from Uj (j < i) reached the reducing vertex v in U by more than

a single path, i.e., the symbols xj ... xi were derived from a nonterminal Dp in more than one way,

indicating that grammar G is ambiguous. If G were unambiguous, then there would be at most one

path from a given v' to v. This means that the bounded calls to ANCESTORS(v,f) can take at

most - i steps, and that ANCESTORS(vd,P) can take at most a bounded number of steps. The first

observation is due to the fact that there are ,- i ancestor vertices that can be reached in only one

way. Similarly, the second is due to the fact that if ANCESTORS(vd,f) took - i steps, returning

- i ancestors, and was called - i times, then some ancestor vertices must have shifted into U in

more than one way, which would be a contradiction, meaning grammar G must be ambiguous.

So, if the grammar is unambiguous, then the total time spent in REDUCE for any xi is , i

and the worst case time bound for the Tomita's algorithm is 0(n 2 ). A similar result is true for the

modified algorithm.

Time 0(n) Grammars. In his thesis, Earley points out that "... for some grammars the number

of states in a state set can grow indefinitely with the length of the string being recognized. For some

others there is a fixed bound on the size of any state set. We call the latter grammars bounded state

grammars." While Earley's "states" have a different meaning than states in Tomita's algorithm,

a similar phenomena occurs, i.e., for the bounded state grammars there is a fixed bound on the

number of parents any vertex can have.

In Tomita's algorithm, bounded state grammars can be recognized in time 0(n) for the following

reason. No vertex can have more than a bounded number of ancestors (if otherwise, then - i vertices

could be added to the parents of some vertex in UI, proving by contradiction that the grammar is not

bounded state). This then means that the ANCESTORS function can execute in a bounded number
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of steps. Likewise, REDUCE can only be called a bounded number of times. Summing over the xi

gives us an upper bound - n. Again, a similar result is true for the modified algorithm. Interestingly

enough, Earley states that almost all LR(k) grammars are bounded state, as well, which suggests

that Tomita's algorithm, given k-symbol look ahead, should perform with little loss of efficiency as

compared to a standard LR(k) algorithm when the grammar is "close" to LR(k). Earley also points

out that not all bounded state grammars are unambiguous; thus, there are non-LR(k) grammars for

which Tomita's algorithm can perform with LR(k) efficiency.
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8. CONCLUSION

The results in this paper support in part Tomita's claim of efficiency for his algorithm. With

the modification introduced here, Tomita's algorithm is shown to be in the same complexity class

as existing general context-free algorithms. These results also give support to his claim that his

algorithm should run with near LR(k) efficiency for near LR(k) grammars.

Because the algorithm is a bottom-up parser that takes advantage of the multi-action LR parse

table, it avoids the extraneous computation associated with the goal expansion found in other general

algorithms. This could eliminate a factor of n2 steps, which in practical applications could result in

significant gains in performance. The variation on Tomita's algorithm described in Section 4 and

the modified algorithm have been implemented in LISP; the former implementation is distributed

with the ROSIE programming language.

Although the modified algorithm is theoretically more efficient, the difference in practical terms

is less clear. Typical sentences in a typical grammar (even a grammar as ambiguous as ROSIE's) will

probably never realize the O(nO+') time bound. The variation on Tomita's algorithm distributed

with ROSIE was implemented before the development of the modified algorithm. Minimal empirical

results show that this implementation runs on the order of n log n for sentences ranging in length

from one to several thousand symbols. It is unlikely that a similar implementation of the modified

algorithm would perform substantially better. Thus, rather than accepting the modified algorithm

as an "improved" algorithm for practical purposes, it should instead be treated as merely a proof that

Tomita's algorithm can belong to the 0(n3 ) class, illustrating its place in regards to the best-known

general context-free algorithms.
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