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Abstract

We show that the asympiotic variance constant in a stochastic simulation cannot be
estimated consistently from batch means when the number of batches is held fixed as the run

length increases.
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1. Introduction

In this paper we-shaw that there does not exist a procedure to consistently estimate the
asymptotic variance constant in a stochastic simulation using batch means when the number of
batches is held fixed as the run length increases. Thus, if consistency is desired, then the

number of batches must increase as the run length increases.

To be precise, we must first specify what we mean by an estimation procedure. To be
interesting, an estimation procedure should apply to a large family of stochastic processes.
Hence, let X = {X(¢) : ¢+ 2 0} be a mcasurable mapping from a measure space (Q2,%) into
D = D[0, «), the space of right-continuous real-valued functions on the interval {0, o) with
left limits, endowed with the usual Skorohod topology and associated Borel o-field: e.g., see
Ethier and Kurtz {3]. Of course, we want the underlying space (2, ¥) to be sufficiently rich;
it suffices to let Q = D and X(z) be the projection or coordinate map. We consider the sct P
of all probability measures P on (£2,%) such that there exist finite deterministic constants

L = w(P) and ¢ = o(P) such that

[n]
n'2 [% Jom X(s) - u] = GB(t) as n > o« , M
where => denotes weak convergence in D with respect to P and B = {B{¢) : ¢t = 0} is
standard (zero-drift, unit diffusion coefficient) Brownian motion. Our goal is to estimate c?,
but we want our procedure to apply to all P € P. In other words, the procedure should apply

to all stochastic processes X in D satisfying the functional central limit theorem (FCLT) (1).

To apply the method of batch means, we specify the number m of batches and the total run
length 7. We then construct our estimates from the m non-overlapping intervals of lengih T/m;

i.e., let the i batch mean be




22.
X =217 x(yds. 1<ism @

ST T di-nyTim st
We now want a procedure for combining the m observations X(T), ..., X,(T) in such a

way that 6 is consistently estimated as T — oo. This ‘‘combining transformation’’ should
not depend on the *‘fine structure’’ of the process X. In particular, it should not depend on p
and o*. Thus, in this context we say that an estimation procedure is 2 family of measuiauiv

mappings
gr:R™ > R forT >0, 3)

such that the estimate of ©° is gr(xy,....x,) when the total run length is T and

X;(t) = x;,1 £i < m. Note that g7 can depend on T, but is independent of P.
We say that an estimation procedure is P-consistent if for each P € P
gT(X1(T), ... Xu(T)) = 6*(P) as T > oo . 4

Here = denotes weak convergence with respect to P in R, which is equivalent to convergence
in probability since 6°(P) is deterministic. Since we have a negative result, we focus on this
weak consistency. We would have ‘strong consistency if the convergence was w.p.l with

respect to P.

Here is our main result. It applies to any m.

Theorem 1. There does not exist an estimation procedure that is P-consistent.

In Section 2 we show what happens with the standard variance estimator. We sce that we
do not get consistency for o? for any fixed m, but we can get as close as we wish by lctting m

be suitably large. In Scction 3 we prove Theorem 1.

Theorem 1 has applications to sequential stopping. It shows that the sufficient conditions
in Glynn and Whitt {5] for asymptotic validity are not satisfied when the number of batches is

held fixed as the run length grows,




For a fixed run length, our analysis shows that it is desirable to pick the number of batches
as large as possible without seriously violating the assumption that the batches are independent
and identically distributed (i.i.d.) with a nommal distribution. However, the i.i.d. normal
assumption typically holds only as an approximation and then only when there are large batch
sizes. Statistical tests can be used to validate the assumption, but repeated tests of significancc
on the same data are fraught with peril, both theoretically and empirically. Hence,
Schmeiser [9] suggested using a relatively small fixed number of batches, e.g., about 20. This
avoids the complications above and gives relatively robust confidence intervals. However, we
show that this is achieved at the expense of consistency for the variance estimator.
Asymptotically valid confidence intervals are obtained anyway of course by cancellation
methnds, i.e., using the ¢ distribution. For further discussion, see Schmeiser [9], Goldsman and

Meketon [6], Sargent, Kang and Goldsman [8], Glynn and Iglehart {4] and Damerdji [2].

2. The Standard Estimator

The standard estimation procedure is specified by

T( ) ' T 5 Ly 2

grixy, ..., x = — X, - — X 5)

1 m m(m—l) ;§1 m k§1 k (
d

foralT > 0,m 2 2 and (x,,...,x,) € R™. Let = denote equality in distribution.

Theorem 2. Under (1),

8T (X (T), ..., X (T)) = o*m2g}([B(i/m) - B((i = 1)/m)] , 1 <i<m) -3ton For [;'
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where x,z,,_l is a chi-square random variable with m ~1 degrees of freedom.

Proof. Note that vistributiony
Availability Oodes
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[T x(s)ds IOT X(s)ds

g';'(i (T)v"-iim(T)) = —"n—— f U=-1T/m _
1 moT X, [NT-usnmm VT
m [ 24 g2y2
= o 5 |B(iim) - B(i - tym) = BLL| 2 T Xm=l gy g
m-1 /3 ‘_ m m-—1

Note that 6>y _,/m—1 has mean 6> and variance 26*/(m - 1); see p. 168 of Johnson

and Kotz [7]. Moreover, as m increases,

Gn’f"' = ¢! (6)
and
2.,2
Vm | S Xm _02] = N(0, 26%) (7)
m

where N(m, 02) denotes a normally distributed random variable with mean m and variance o-.
Hence, we can get as close as we want if we choose m suitably large. Moreover, we can
obtain consistency under extra regularity conditions if m — o and T — oo so that T/m — oo}
see Goldsman and Meketon [6] and Damerdji [2]. In fact, Damerdji even proves strong

consistency for a class of stochastic processes.

3. Proof of Theorem 1

To establish the negative result, it suffices to restrict attention to probability measures P

such that X coincides with 6B where B is standard Brownian motion. Then, for any m and T,
c e m m
X1 (D), ... . Xm(D)) = ?GB(T/m), N FG[B(T) -B(T(m-1)\m)]{ . (D

so that the batch means are distributed exactly as m i.i.d. normal random variables with mecan

0 and variance o*m/T. Without loss of generality, we can remove the m/T factor by




considering the transformed functions

gr(x1s - Xm) = g7 ‘\/1x1.....'\/1xm ®
m m
Note that
— - d _
grXi(M,..., X, (7)) =gr(cN) forall T, 9)
where 6N = (6N,...,6N,,) and N is a fixed vector of i.i.d. standard (mean O, variance 1)
nomal random variables.
Now consistency requires that
g7(oN) => 6 as T = = a0

for all o 2 0, but this cannot happen for two or more different positive values of &, say 6,
and 0,. To see this, first note that the convergence in probability for 6, in (10) implics that

there is a sequence {T, : n 2 1} of deterministic positive numbers with T, — o such that
gr,(o1N) > 0, wplasn-o o ; (1

see Theorem 4.2.3 of Chung {1]. By (10), g7,(62N) => 6, as n = «. Hence, there is a

deterministic subsequence {T,, : n 2 1} of {T, : n 2 1} such that
gr;(6;N) > o, wplasn > (12)

forboth i = 1 and 2. Hence, fori = 1 and 2, g7 (x) — o; for almost all x with respect to
the law of o;N, which implies that g1 (x) — ©; for almost all x with respect to Lebesgue
mcasure on R™, since 6, N has a positive density with respect to Lebesgue measurc. However,
it is not possible to have g7 (x) simultancously converge almost everywhere with respect to
Lebesgue measure to two different limits. (The set of convergence to one limit must be

contained in the null sct of non-convergence for the other limit.)
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