
AFHRL-TR-90-33(i)

AIR FORCE
INSTRUCTIONAL SUPPORT SYSTEM (ISS):

UPGRADING THE VAX PROTOTYPE AND
DEVELOPMENT OF THE ZENITH-248

MICRO-BASED ISS

0

H Barbara J. Eaton

U TRAINING SYSTEMS DIVISIONUBrooks Air Force Base, Texas 78235-5601

IM

A Douglas Aircraft Company
2450 South Peoria, Suite 400

Aurora, Colorado 80014

Mei Associates, Incorporated
1050 Waltham Street

R DOTIC Lexington, Massachusetts 02173

E f0:O0TFj 1, 190f

E September 1990

U Final Technical Report for Period October 1985 - March 1990

R
C Approved for public release; distribution is unlimited.

E
S

LABORATORY

AIR FORCE SYSTEMS COMMAND
BROOKS AIR FORCE BASE, TEXAS 78235-5601



NOTICE

When Government drawings, specifications, or other data are used for any purpose
other than in connection with a definitely Government-related procurement, the
United States Government incurs no responsibility or any obligation whatsoever.
The fact that the Government may have formulated or in any way supplied the said
drawings, specifications, or other data, is not to be regarded by implication, or
otherwise in any manner construed, as licensing the holder, or any other person or
corporation; or as conveying any rights or permission to manufacture, use, or sell
any patented invention that may in any way be related thereto.

The Public Affairs Office has reviewed this report, and it is releasable to the National
Technical Information Service, where it will be available to the general public,
including foreign nationals.

This report has been reviewed and is approved for publication.

HENDRICK W. RUCK, Technical Advisor
Training Systems Division

HAROLD G. JENSEN, Colonel, USAF
Commander



Form Approived

REPORT DOCUMENTATION PAGE OMB No 0104 0188

O as_ ' S -e 1204 A lO gto n. 'A 22202-4302 ant to the 01iQe ')f Ma. n l n d- h t p o, RuO , t(, -lC 0 18 ) A hV t, 3 .ThC

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

September 1990 Final - October 1985 - March 1990

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Instructional Support System (ISS): Upgrading the VAX Prototype C - F33615-85-C-0011
and Development of the Zenith-248 Micro-Based ISS F33615-88-C-0003

PE - 62205F
6. AUTHOR(S) PR - 1121

Barbara J. Eaton TA - 10
WU - 34, 43

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMBER
Douglas Aircraft Company (DAC) Met Associates. Inc.
2450 South Peoria, Suite 400 1050 Waltham Street
Aurora, Colorado 80014 Lexington, Massachusetts 02173

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

Training Systems Division
Air Force Human Resources Laboratory AFHRL-TR-90-33(I)
Brooks Air Force Base, Texas 78235-5601

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)
1%

This report describes several efforts that led to the development of the Instructional Support
System (ISS) from prototype research and development (R&D) software toward a production computer-based
training (CBT) system that supports both computer-assisted instruction (CAI) and computer-managed
instruction (CMI). These efforts include the operational test and evaluation of the software,
rehosting the software to a validated Ada compiler, development of MicroCMI and interactive videodisc
capabilities, development of critical user and system documentation, and design and development of a
micro-based version of the software to run on IBM-compatible hardware. ISS is a Government-owned
product, written in Ada in a modular format, enabling it to run on machines ranging from micros to
mainframes, and is available through the National Technical Information Service (NTIS). . (- --,

This is the first of three volumes on the Instructional Support System (ISS). Volume I contains a
detailed description of the development efforts.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Ada Instructional Support System 120
computer-assisted instruction transportable instruction system 16. PRICE CODE
computer-managed instruction

17. SECURITY CLASSIFICATION 10. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified UL

NSN 7540-01-280-5500 Standard Form 298 (Rev 2 89)
P'Ps-bed b4 AN%, TId 119 'S
1q, '02



SUMMARY

From September 1985 through February 1987, personnel from several agencies performed
operational test and evaluation on the Instructional Support System (ISS). These agencies
include: the Air Force Human Resources Laboratory (AFHRL), Douglas Aircraft Company, Hq
Strategic Air Command's 338 Combat Crew Training Squadron (CCTS) and Communication and
Training Innovations. The contract used to fund the operational test and evaluation was Contract
F33615-85-C-001 1. As a result of the operational test and evaluation, Douglas Aircraft Co.
incorporated several enhancements into Baseline Version 1.0. In addition, they made several
advancements to the ISS software during this period. The first involved conversion of the ISS
to a validated Ada * compiler. The second resulted in the development of critical system
documentation. The third involved development of a microcomputer-managed instruction
(MicroCMI) subsystem. The fourth resulted in the addition of interactive videodisc capability.
The fifth involved development of training materials to teach ISS users to use the full
computer-managed instruction (CMI) subcomponent.

From March 1987 until April 1988, Mei Associates, Inc. rehosted the ISS computer-assisted
instruction (CAI) subsystem from the Vax to the Zenith 248 (Z-248). The Electronic Systems
Division (ESD) funded the effort under a Department of Transportation contract. Later, in 1989,
Mei Associates, Inc. rehosted the MicroCMI subsystem and interactive videodisc capability from
the Vax to the Z-248. ESD funded this effort under Contract F33615-88-C-0003. This rehosting
made both versions of the software functionally equivalent.

In the summer of 1989, Dr. J. Michael Spector attempted to rehost the Z-248 version of the
ISS, MicroISS, to the Meridian Ada Compiler. The contract used to fund this effort was Contract
F41622-89-M-5240. Although Dr. Spector's efforts were unsuccessful, his discoveries are useful
to future modifications and upgrades of the ISS.

coession lo

?IS GRA&I
DTIC TAB
Unannounced 0
justification....
Distribution/

*Ada is a trademark of the US. Government (Ada Joint Program Office).



PREFACE

As an Air Force-owned training system, the ISS contributed substantially toward the
development of three major training programs during the period covered by this report. The
Strategic Air Command's 338 Combat Crew Training Squadron (CCTS) at Dyess AFB, Texas,
is responsible for B-1 B aircrew training. The 338 CCTS trained and evaluated over 350 pilots
and navigators with the ISS. At the same time, the 338 CCTS performed operational test and
evaluation of the ISS. This provided a rich testbed for developing and enhancing the software.
The General Imagery Intelligence Training System (GIITS), which was developed by Air
Training Command's 3480 Technical Training Wing (TCHTW) at Goodfellow AFB, Texas, is
the second training program that benefited from the ISS. They used the ISS as the core
software for their training system. The GIITS will provide training to over 1200 students in
over 100 different intelligence courses at any given time. The Advanced On-the-Job Training
System (AOTS) is the third training program that profited by using ISS as the foundation for
their system. The AOTS development was directed by Air Staff and has the potential to
support on-the-job training throughout the Air Force.

A number of individuals contributed significantly to the upgrade of the prototype ISS on
the Vax and the development of the MicroISS on the Z-248. Alphabetically, they are: Mr.
Leonid Altshul (Mei Assoc, Inc.), Mr. Jeff Benjamin (Mei Assoc, Inc.), Mr. Ben Bernar (Douglas
Aircraft Co.), Capt Clay Blankenship (AFHRL/IDC), Mr. Dave Blossart (Douglas Aircraft Co.),
Mr. Patrick Brennan (Mei Assoc, Inc.), Mr. Bill Char (Douglas Aircraft Co.), Ms. Vida Chase
(Douglas Aircraft Co.), Ms. Patricia Cwynar (Communication and Training Innovations), Mr.
Richard Dieterich (Mei Assoc, Inc.), Ms. Donna DeMaria (Communication and Training
Innovations), Lt Barbara Edwards (338 CCTS/IS), Mr. Ed Fornier (Mei Assoc, Inc.), Ms. Denise
Geller (Douglas Aircraft Co.), Mr. William Hawks (AFHRL/IDC), Capt John Herman
(ESD/AVS), Lt Walter Hodge (AFHRL/IDC), Ms. Debbie Horan (Communication and Training
Innovations), Mr. Frank Lhota (Mei Assoc, Inc.), Maj Michael Matthews (338 CCTS/IS), Mr.
Ron Medo (Douglas Aircraft Co.), Dr: Peng Mei (Mei Assoc, Inc.), Mr. Andreas Moreira
(Douglas Aircraft Co.), Mr. Dave Pflasterer (Douglas Aircraft Co.), Mr. Thanh Pham (Douglas
Aircraft Co.), Ms. Diane Poston (Douglas Aircraft Co.), Mr. Bruce Pyles (Douglas Aircraft Co.),
Dr. J. Michael Spector (Spector and Assoc.) and Mr. Richard Vigue (AFHRLIDC).

Ii



TABLE OF CONTENTS

Page
I. INTRO D UCTIO N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

II. PROJECT DESCRIPTION ...................................... 1

I1. MAJOR ACCOMPLISHMENTS ................................... 2

ISS Operational Test and Evaluation ............................. 2

Conversion to a Validated Ada Ccmpiler ........................... 3
Creation of System Documentation ................................... 4
Development of a MicroCMI Capability ................................. 5
Integration of Interactive Videodisc Capability ............................ 5
Development of CMI Courseware . ..................... 7

Rehosting ISS to the Z-248 .......................... . . . .... 8
Upgrading the ISS Testbed . . .......................... 9

IV. CONCLUSIONS AND RECOMMENDATIONS ................................. 10

REFEREN C ES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

APPENDIX A: ISS FUNCTIONAL CAPABILITIES .................................. 13

APPENDIX B: VAX ISS EXECUTABLES ....................................... 18

APPENDIX C: ISS FUNCTIONAL DESCRIPTION (VAX VERSION) ....................... 28

APPENDIX D: CHANGES MADE PORTING ISS TO THE Z-248 ......................... 52

APPENDIX E: MICROISS FUNCTIONAL CAPABILITIES (Z-248 VERSION) .............. 90

APPENDIX F: MICROISS EXECUTABLES ............................... 93

APPENDIX G: UPGRADING THE ISS TESTBED (Z-248 VERSION) ...................... 98

APPENDIX H: LISTING OF ISS SOFTWARE AND DOCUMENTATION AVAILABLE
THROUGH THE NATIONAL TECHNICAL INFORMATION SERVICE (NTIS) ..... 112

iii



INSTRUCTIONAL SUPPORT SYSTEM (ISS): UPGRADING THE VAX
PROTOTYPE AND DEVELOPMENT OF THE ZENITH 248 MICRO-BASED ISS

I. INTRODUCTION

From the early 1970s until 1983, under contracts with the Air Force Human Resources
Laboratory (AFHRL), McDonnell Douglas Astronautics Company developed the prototype Advanced
Instructional System (AIS). The AIS was developed to serve as a research and development
(R&D) testbed for technical training. It demonstrated that individualized computer-assisted
instruction (CAI) and computer-managed instruction (CMI) are directly applicable to an Air Force
training environment.

Although demonstrated as feasible, the AIS was hardware-dependent and not transportable
to other computers. This factor severely limited its exploitation to the training community
(McDonnell-Douglas Astronautics Company, 1986). To correct this problem, the Technical Training
Division of the AFHRL at Lowry AFB, Colorado, awarded a contract to Douglas Aircraft Co. to
create a transportable system and expand its usage to a variety of Department of Defense (DOD)
training environments. Under Contract F33615-81-C-0021, Douglas Aircraft Co. developed and
alpha-tested the Instructional Support System (ISS) as a proof-of-concept prototype which operated
on low-cost minicomputers and microcomputers (McDonnell Douglas Astronautics Co., 1986).

The efforts covered in the present report encompassed several goals under three contracts.
The first goal was to perform operational test and evaluation on the ISS prototype and develop
it into a production system. A second goal was to convert the ISS software from the nonvalidated
Irvine Science Ada Compiler to the validated Digital Equipment Corporation (DEC) Ada Compiler.
A third goal was to create ISS system documentation to enable long-term system maintainability.
A fourth goal was to develop a MicroCMI capability for small, microcomputer-based training
applications. The fifth goal was to integrate an interactive videodisc capability into the software.
A sixth goal was to develop courses to teach users to operate the ISS CMI subcomponent. A
seventh goal was to rehost the software to the Air Force's standard microcomputer, the Z-248,
under the MS-DOS operating system. The final goal was to convert the microcomputer version
of the ISS, MicroISS, from the ALSYS Ada Compiler to the Meridian Ada Compiler. This
conversion would eliminate the need for a math cuprocessor and Tektronix terminal emulator.

The ISS can be ordered through the National Technical Information Service (NTIS) Sales
Department at (703) 487-4650. A complete listing of software and documentation available
through NTIS is provided in Appendix H.

I1. PROJECT DESCRIPTION

As the operational test and evaluation site for the ISS, the 338 Combat Crew Training
Squadron (CCTS) discovered over 300 software problems and recommended several software
enhancements. By the end of the operational test and evaluation, Douglas Aircraft Co. had
fixed over 275 of the reported problems. They had also incorporated most of the recommended
enhancements into the ISS. Mei Associates, Inc. fixed the remaining problems under a follow-on
contract. The 338 CCTS's involvement in the operational test and evaluation was significant to
the development of the ISS toward a production system.

Ada is the primary implementation language for the ISS. Conversion to a validated Ada
compiler during this project was important to the long-range success of the software. Two
major Air Force projects use the ISS as their core software. They are the Advanced On-the-job

1



Training System (AOTS) and the General Imagery Intelligence Training System (GILTS). These
two systems solidified the requirement to convert ISS to a validated compiler. Additionally,
validated Ada source code was necessary to enable use of validated Ada compilers in the future.

Douglas Aircraft Co. improved maintainability of the lSS software by creating in-depth
application software, database and data structure documentation. The documentation includes
inline comments and detailed descriptions of the ISS databases and data structures. That
documentation details the functions of the software and Data Management System at a high
level. It is available through the National Technical Information Service (NTIS). See Appendix H
for a complete listing of ISS software and documentation available through the NTIS.

An interactive videodisc capability integrates video information from a laser disc with text
and graphics created with the ISS authoring editor, CAI Authoring Support Software (CASS).
The ISS delivery program, CAI Presentation (CAIPres) Program, then presents the integrated
video/text/graphic frames. Access to video frames is random and controlled by the ISS software.

Douglas Aircraft Co. developed online and offline training materials to teach users to use
the ISS CMI subsystem. Training personnel use the CMI subsystem to develop, track and
evaluate students. Consequently, the courseware provides training for course developers,
instructors and evaluators.

Mei Associates, Inc. rehosted the ISS to the Z-248 environment to make it accessible to
Government users with access to IBM-compatible microcomputers. Because the ISS is a
Government-owned computer-based training (CBT) system, this conversion made it standard
software available on Air Force standard architecture.

Finally, Dr. J. Michael Spector attempted to make several upgrades to the MicroISS. Although
the upgrades were unsuccessful, Dr. Spector derived useful information that will aid future
enhancement efforts.

Ill. MAJOR ACCOMPLISHMENTS

The ISS evolved from a prototype toward a production system during this effort under an
operational test and evaluation with the 338 Combat Crew Training Squadron (CCTS). Douglas
Aircraft Co. converted the system to a validated Ada compiler and created critical system
documentation. This made the software more maintainable. Douglas Aircraft Co. also implemented
a minimum CMI subsystem tor sina! training environments. In addition, they added interactive
videodisc capability to the software and developed online and offline instructional materials to
train CMI subcomponent users. Mei Associates, Inc. rehosted the CAI and MicroCMI
subcomponents, including the videodisc capability, to the Air Force's standard microcomputer.
Dr. J. Michael Spector attempted to upgrade and rehost the MicroISS software to another Ada
compiler.

ISS Operational Test and Evaluation

Early in this effort, Douglas Aircraft Co. determined the optimum system configuration for
the 338 CCTS's VAX minicomputer environment. This configuration supported a load of 24 online
students and developers. Douglas Aircraft Co. and AFHRL personnel gathered sample data oil
the 338 CCTS system for a 3-day period during fully loaded training sessions. Douglas Aircraft
Co. then recommended several upgrades to the 338 CCTS system. The first recommendation
was to upgrade from the VAX 11/780 to the VAX 11/785 processor. The second recommendation
was to increase central memory from 6 megabytes to 16 megabytes. The third recommPndstir~n

2



was to add a disk controller. The fourth recommendation was to increase the performance of
the ISS terminal communications software to the Tektronix 4107 terminal. The fifth recommendation
was to move the ISS database and executables onto separate disk drives to increase disk
throughput. The sixth recommendation was to increase the system swap file from 23000 to
60000 blocks to prevent excessive central processing unit and disk activity with system and user
paging. The final recommendation involved setting the Tektronix 4107 terminals to Pass Through
Mode to increase terminal throughput. The 338 CCTS implemented all of the recommended
upgrades. Douglas Aircraft Co. continued to develop software performance improvements
throughout the project to support the desired load more efficiently.

During the operational test and evaluation, Douglas Aircraft Co. corrected over 275 software
problems. They also incorporated several enhancements into the software. The 338 CCTS
created 170 hours of online courseware on B-1B aircrew training operations during this period.
They also trained, managed and evaluated the training progress of more than 350 students.
Successfully supporting an operational environment of this magnitude with prototype software is
possibly the most significant accomplishment of this effort. Appendix A provides a listing of
the ISS functional capabilities established as a result of the operational test and evaluation.
Appendix B provides a listing of the executables that provide these capabilities. Appendix C is
a functional description of the VAX Version ISS.

Conversion to a Validated Ada Compiler

In 1982, Douglas Aircraft Co. developed the ISS on the Irvine Science Ada Compiler. There
were two significant drawbacks that hampered a long-range development effort. The first was
the inability to obtain the degree of maintenance support needed. The second was the compiler's
nonvalidation by the Ada Joint Program Office. Conversion to a validated Ada compiler was
essential to the long-range success of the ISS and two major training systems. The AOTS and
GIITS used the ISS as a baseline for their training systems. Both of these systems required
validated ISS source code for their program development efforts. In addition, validated source
code fulfilled the portability objective of the ISS and enabled the use of future microcomputer-based
validated Ada compilers. The following process converted ISS to the validated DEC Ada compiler:

1. The software was "frozen" on the nonvalidated version of the source code.

2. The nonvalidated version of the source code was moved to a new directory. Necessary
changes were made to create a validated version of the source code.

3. Constant limits for appropriate data structures were changed to bring the limits to the

correct levels.

4. Variant record declarations were deleted to eliminate invalid Ada source code.

5. Package specifications and package bodies were divided to enable proper configuration
management.

6. Compilations were performed and compilation errors removed from the new version of
the source code.

7. Identified Indexed Sequential Access Method (ISAM) files were changed to contain
compound keys. This was necessary due to the use of data packing for validated Ada source
code.

3



8. The CAI databases were converted to coincide with the validated Ada source code.

9. Test procedures were run for the following software:

a. User Editor (UserEd)
b. CAI Authoring Support Software (CASS)
c. CAI Presentation Program (CAIPres)
d. Graphics Editor (GrEdt)
e. Simulation Dialogue Editor (SID)
f. Simulation Presentation Program (SIDPres)
g. Course Structure Editor (CSE)
h. Lesson Definition Editor (LDE)
I. Test Editor (Test)
j. Curriculum Definition Editor (CDE)
k. Student Registration Program (StuReg)
I. CMI Operations
m. Test Item Evaluation (TIE)
n. Course Evaluation Summary (CES)
o. Data Extraction Program (DEP)

Douglas Aircraft Co. completed the conversion in November 1986. They also converted
hundreds of hours of B-1B and AFHRL courseware.

Creation of System Documentation

Douglas Aircraft Co. enhanced the maintainability of the ISS by developing application software,
data structure and database documentation. They developed within code or inline documentation
of the ISS application software source code as follows:

1. A document specification was written for each procedure/function that describes:

a. The overall purpose of the procedure/function,
b. The purpose of each parameter used in the procedure/function,
c. Initial conditions and settings upon entry into the procedure/function,
d. Assumptions of the procedure/function,
e. Host dependencies of the procedure/function, and
f. Potential side effects of the procedure/function.

2. Comments, entered at the beginning of each software package, specify the overall
purpose of the package. Meaningful comments, entered into all procedures/functions, clarify
algorithms and or complex obscure sequences of code.

A detailed description of each data structure identifies each field within the structure and its
purpose. The documents created are the Software Detailed Design Document (SDDD) and the
Data Base Design Document (DBDD). Together these documents describe the high-level, detailed
functioning of the software and the Data Management System. The SDDD describes application
software functionality and software global and local data. The DBDD describes the Data
Management System and data-base structure. These documents are available through the NTIS.
See Appendix H for a complete listing of ISS software and documentation available through the
NTIS.

4



Development of a MicroCMI Capability

A requirement to develop a computer-based training (CBT) system to support stand-alone,
microcomputer-based users surfaced with this effort. This need came with the emergence of
microcomputer technology in the Air Force. Douglas Aircraft Co. developed a configuration for
these users that includes the CAI subsystem and a MicroCMI subsystem. The MicroCMI subsystem
is a scaled-down version of the VAX CMI subsystem.

Douglas Aircraft Co. deleted the Adaptive Model, the ISS Management Editor and the Resource
Availability Editor from the MicroCMI subsystem. The simplified MicroCMI course management
subsystem provides registration and tracking of students on a limited basis. It contains two
functions, development (MicroCMI Instructor) and operation (MicroCMI Student). The basic
capabilities of MicroCMI Instructor are:

1. Generation of prerequisite course lists or the capability to select courses in any order.

2. Generation of lesson lists containing either linearly ordered lessons or lessons accessible
in any order.

3. The capability to resequence and reorganize lesson order within courses.

4. The capability to input both online (embedded) questions and mastery test items, The
ISS provides the latter capability through tests developed in the Test Editor and presented with
the Test Presentation Program.

The basic capabilities of MicroCMI Student include:

1. Registration of students into multiple courses. Students registered in more than one
course have the option to choose which course to begin first.

2. Generation of student rosters for individual courses. Course rosters contain the number
of lessons the students will take, student names and identification numbers. They also list
current lessons for each student.

3. Generation of student assignments.

4. Lesson override capability.

5. Certify pass capability.

6. Initiation and presentation of CAI lessons.

7. Initiation and presentatioii of mastery tests.

8. Recording and trac',:ng of student performance on a limited basis. This includes lessons
passed, student performance on individual lesson questions and lesson completion times.

Integration of Interactive Videodisc Capability

Integration of interactive videodisc capability involved interfacing the ISS authoring and
presentation programs, CASS and CAIPres, to the Sony videodisc player. The implementation

5



required software to control the player. It also required video/graphics controller card hardware.
This hardware displays the images that control and stabilize the displayed video, computer-generated
graphics and computer-generated text combinations. The Z-248 microcomputer was chosen to
control the display of the image combinations because of its use on the AOTS project. It was
also chosen due to its selection as the Air Force standard mic ocomputer.

The implementation approach involved the use of the Z-248 as a dumb terminal, via a terminal
emulation capability attached to the VAX 11/785 or VAX 8600. The Z-248 contains the installed
controller card. An RS-232 interface from the Z-248 to the videodisc player controls the videodisc
player. The CASS and CAIPres software, used with the Z-248, accomplishes the videodisc
implementation.

This approach allows future development of the Z-248 videodisc capability as a stand-alone
system. Douglas Aircraft Co. accomplished this by coding generic videodisc commands into
the CASS and CAIPres programs. The videodisc driver receives commands, such as "load disc,"
"unload disc," and "erase screen." Changing the driver command table allows easy integration
of additional players in the future.

After selecting a controller card, Douglas Aircraft Co. chose a monitor to display videodisc
images combined with computer-generated graphics/text. The implementation required a
red-green-blue/analog (RGB/analog) device, which prohibited the use of commonly used Tektronix
4105 and 4107 terminals for displaying videodisc images. Douglas Aircraft Co. conducted a
study at the beginning of the videodisc task which determined the controller card, RGB/analog
monitor and associated equipment for use with the Sony videodisc player. They selected the
Matrox VGO-AT card because it is compatible with the Z-248 and offers higher resolution than
other candidate cards. They chose the Electrohome ECM 1311 monitor because it is compatible
with the VGO-AT card and offers the highest display quality when used with the Matrox VGO-AT
card. Lastly, they chose Sony SRS 150 speakers because they offer good audio quality at low
cost. Other monitors may be used as long as they are compatible with the Matrox VGO-AT
card. The complete configuration for the interactive videodisc implementation includes:

1. Matrox VGO-AT controller card,

2. Electrohome ECM 1311 monitor,

3. Elographics E274 touch screen,

4. Elographics E271-141 touch screen controller card, and

5. Sony SRS 150 speakers or Telex 600-1 headphones for audio capability.

The interactive videodisc implementation includes the following capabilities:

1. Disc loading and unloading;

2. Single video frame display;

3. Video sequence display;

4. Screen image erase;

5. Audio sequence play;

6



6. Compvessed audio play;

7. Frame numbers display;

8. Definition of the video window and transparent video color to support overlay;

9. Video played as fast, normal, or slow;

10. Pause, step through, jump ahead, restart or continue video sequences;

11. Support of sequences that contain still frames, full motion sequences, and still frames
with compressed audio and digital information;

12. Random access of still and motion sequence frames;

13. Forward or reverse display; and

14. Playback of video images and computer-generated text and graphics.

As an aside, Douglas Aircraft Co. examined the feasibility of installing the selected controller
card into the VAX computers. They examined the feasibility of a VAX system acting as the sole
controlling computer for the videodisc implementation without using a Z-248. This configuration
would have allowed the use of an existing AFHRL interactive videodisc capability, the IEV-60
Graphics Controller. To be usable, the IEV-60 device had to support an Enhanced Graphics
Adaptor (EGA) mode. The EGA is the display mode used by the AOTS project and other Air
Force organizations slated to use the ISS interactive videodisc capability. Douglas Aircraft Co.
found the IEV-60 Graphics Controller incompatible with the EGA mode and did not pursue the
approach further.

Development of CMI Courseware

Douglas Aircraft Co. developed online courseware and offline user manuals to train CMI users
on how to use the CMI subsystem. The CMI subsystem contains development, management
and evaluation editors. The courseware and manuals provide training to course developers,
instructors and evaluators. Courses developed include CMI Overview (Course 1), CMI Design
(Course 2), Evaluation Design (Course 3), CMI Development (Course 4), Training Management
(Course 5), Training Evaluation (Course 6) and System Management (Course 7). A high-level
description of each course follows:

1. CMI Overview (Course 1) - This course introduces students to CAI, CMI, CBT and the
ISS system. It describes the ISS structures and hierarchies and how to use each to develop
a CMI curriculum. It also provides simple graphic representation for CMI structures, provides
an overview of training management and shows how it affects a CMI curriculum. This course
also provides students an overview of the ISS CMI curriculum and relates it to CMI tasks so
students can choose training paths that meet their needs. Lastly, it provides students a context
for later learning by presenting an overview of the three CMI phases and subcomponents. It
then introduces them to the ISS editors in each.

2. CMI Design (Course 2) - This course teaches design and problem-solving skills needed
to design CMI and determine policies for use of the ISS system.

7



3. Evaluation Design (Course 3) - This course teaches design and problem-solvinq skills
needed to develop an evaluation strategy for use with the ISS CMI subsystem.

4. CMI Development (Course 4) - This course gives students hands-on experience with the
CMI development editors. Prerequisite courses are Courses 1 and 2. Also, students must know
the purpose and characteristics of CMI and the three subcomponents of the ISS CMI subsystem.
In addition, students must be familiar with the hierarchy levels in the ISS system and the
management functions available in the ISS CMI. Students must also be familiar with the choices
required during CMI structuring, management and test design.

5. Training Management (Course 5) - This course gives students hands-on experience with
the ISS CMI implementation editors to enroll and manage students. Prerequisite courses are
Courses 1 and 2. Prerequisite knowledge is the same as that required for Course 4.

6. Training Evaluation (Course 6) - Students learn how to use the evaluation editors to
gather data specified in an evaluation design. Instruction includes a discussion of data elements
in reports and practice with report interpretation and training revision recommendations.
Prerequisite courses are Courses 1, 2 and 3. Prerequisite knowledge is the same as that
required for Course 4 plus knowledge provided by Course 3. Course 3 covers the types of
evaluation data available from the ISS evaluation editors.

7. System Management (Course 7) - This course gives students hands-on experience
controlling the ISS system with the system management editors. The students should have a
working knowledge of the computer operating system and an understanding of directories and
environments before taking this course. The students must have completed Course 1 and know
the purpose and characteristics of CMI. They must also know the three subcomponents of the
ISS CMI subsystem. In addition, they must know the hierarchy levels in the ISS system and
the management functions available in the ISS CMI subsystem.

The online courseware is provided in the form of a database to users requesting the VAX
ISS CMI subsystem. Both the courseware and offline user manuals are available through the
NTIS.

Online training courses for the CAI subsystem editors CASS and Graphics Editor (GrEdt) are
provided with requests for either version of the software. These courses, along with accompanying
offline materials, are also available through the NTIS. See Appendix H for a complete listing
of ISS software and documentation available through the NTIS.

Volume II of this technical report provides documentation to assist users in determining if
CBT, and the ISS in particular, is the correct medium for a specific training application.

Rehosting ISS to the Z-248

One of the fundamental objectives of the ISS effort was to implement the software on
microcomputers. This made the system accessible to any organization with access to an
IBM-compatible microcomputer. The Z-248 was the prime candidate for this implementation. Mei
Associates, Inc. performed the task under a Department of Transportation Contract. The Electronic
Systems Division (ESD) at Hanscom AFB, Massachusetts, funded the effort.

The rehosting effort began in early 1987. The ISS VAX Version 3.0 was the baseline software
for the rehosting effort. This version upgraded the software from the Irvine Science Ada Compiler
to the validated DEC Ada Compiler.

8



The ISS's evolution through a succession of compiler and operating system conversions
magnified the complexity of the rehosting effort. Douglas Aircraft Co. translated most of the
code from CAMIL under the Cyber NOS operating system to non-standard Ada under the VAX
VMS operating system. Next, they translated it to DEC Ada under the VAX VMS operating
system. Finally, Mei Associates, Inc. translated it to ALSYS Ada under the Zenith MS-DOS
operating system. The code still retains features of automatic translation from CAMIL to Ada,
notably repetitive code generation. In addition, the code has typing features that relate to
hardware instead of specific applications. It is also poorly modularized and does not make use
of features in Ada that make code portable.

Possibly the most significant hurdle Mei Associates, Inc. overcame in the rehosting process
was an integer size problem. Moving from the VAX to the Z-248 required moving from a 32-bit
architecture to a 16-bit architecture. In VAX Ada, the standard integer type is 32 bits. Consequently,
all the integers in the baseline software were 32 bits. The result was that many type integer
objects were too short to hold the quantities they represented. The following systematic process
resolved the long integer dilemma:

1. Identified all integer-dependent program units.

2. Edited VAX-specific pragmas in the dependent units. Pragmas are directives to the
compiler that allow programs to take advantage of a variety of implementation-dependent features
of a compiler. Examples are packing text information to save space and setting priority levels
in a multi-tasking environment.

3. Compiled units to identify the differences between VAX integer types and Z-248 integer
types. Also identified data structures whose size exceeded the ALSYS Version 3.0 limit and
compilation units whose code exceeded the MS-DOS segment size limit.

4. Modified integer sizes to resolve differences.

5. Examined remaining integer declarations to ensure they were appropriate for the values
they represented.

Following the rehosting process, Mei Associates, Inc. wrote a program to allow courseware
created on the VAX to run on the Z-248. To accomplish this task, they developed a program
to read the file definitions and convert the data to an intermediate form. Next, they ran a
program to write binary ISS data to VAX output files. Lastly, Mei Associates, Inc. transferred
the VAX output files to Zenith input files with an off-the-shelf file transfer program.

The initial rehosting, completed in April 1988, was a resounding success. A complete
description of this effort is at Appendix D.

Later, Mei Associates, Inc. rehosted the MicroCMI subsystem and interactive videodisc capability
to the Z-248. They completed this task, also funded by the ESD, in June 1989. Appendix E
provides a listing of the MicroISS functional capabilities established as a result of the rehosting
effort. Appendix F lists the executables that provide these capabilities.

Upgrading the ISS Testbed

In the Summer of 1988, Dr. J. Michael Spector examined the MicroISS source code and
recommended three upgrades. The upgrades would have made it a more widely accessible
testbed CBT delivery system. The first upgrade was to convert from the ALSYS Ada Compiler

9



to the Meridian Ada Compiler. This would have eliminated a potential licensing fee to ALSYS
for each run-time version of the ISS. The second upgrade was to eliminate the need for a
math coprocessor. This modification would have broadened the potential base of testbed
developers. The third upgrade was to eliminate the Tektronix terminal emulation, a dated capability
in the Z-248 environment.

Dr. Spector attempted to convert the ISS from the ALSYS Ada Compiler to the Meridian
AdaVantage 2.01 Ada Compiler. The conversion was impossible due to code size restrictions.
The AdaVantage 2.01 Compiler restricted programs to 10 user-defined packages and 200 statements
per compilation unit. Maximum individual data objects was 64K.

AdaVantage 2.01 did not implement a needed pragma and a specific representation attribute.
The AdaVantage 2.01 Compiler did not recognize the Pragma Controlled, which restricts the
storage reclamation for dereferenced access types. Attributes operate much like functions,
normally returning a single value when evaluated. AdaVantage 2.01 did not implement the Size
Attribute, which returns the number of bits in memory allocated to a particular object.

Dr. Spector attempted the conversion with two other compilers, the Meridian AdaVantage
Version 3.0 and AETECH's IntegrAda Version 4.01, to no avail. AdaVantage 3.0 overcame both
the size restriction and the difficulty with the Size Attribute. It also has an extended mode
version, which allowed it to accommodate the extended memory requirements of the ISS on the
Z-248. However, it did not implement the Pragma Controlled; so, it was still not possible to
convert the ISS to the Meridian Ada Compiler.

AETECH's IntegrAda Version 4.01 also proved inadequate to handle the ISS. The size
restrictions were more serious than for the Meridian Compiler. The maximum code size per
compilation unit was 32 kilobytes -- half the Meridian restriction. In addition, the maximum
allowed source code size with IntegrAda 4.01 is 144 kilobytes. At least one ISS compilation
unit exceeds this limit at 155 kilobytes. IntegrAda 4.01 allowed a maximum of 300 compilation
units and 80 WITHs per program. It did not implement two essential Pragmas, Controlled and
Interface. The ISS uses these pragmas extensively to define the interface to the assembly
language driver routine.

The second upgrade issue involved the ISS requirement for a math coprocessor. Both the
ISS code and ALSYS Ada Compiler require floating point capability. Floating point numbers are,
in general, real numbers (i.e., 3.145, 1/3, 1.45e+12, etc). Since ALSYS does not perform floating
point emulation, a math coprocessor handles arithmetic operations on floating point data types.
Both AdaVantage and IntegrAda Compilers emulate floating point operations.The requirement for
a math coprocessor still exists since conversion to these compilers was not possible. A possible
future solution is to change floating point data types to fixed point data types.

The third upgrade recommended was eliminating the need to emulate the Tektronix 4105 and
4107 terminals on the Z-248 EGA system. It is possible to eliminate the Z-248 terminal emulation
altogether on the Z-248; however, it requires rewriting the driver that provides interactive videodisc
capability. Dr. Spector decided to leave the terminal emulation software intact since it functions
very well. For a detailed description of this effort, see Appendix G of this report.

IV. CONCLUSIONS AND RECOMMENDATIONS

The ISS made significant advances under the efforts covered by this report. Contractor
personnel norrected over 275 problems and added several enhancements to the software. The
enhancements include a MicroCMI subsystem and interactive videodisc capability. The ISS
became a more stable and maintainable product through several upgrades. The first upgrade

10



involved the rehosting of the VAX software to a validated Ada compiler. The second upgrade
resulted in development of critical system documentation. The third upgrade involved development
of the ISS CMI subsystem training materials. Mei Associates, Inc. rehosted the ISS to the Z-248
to provide Air Force users a standardized, microcomputer-based training system. Finally, Dr.
Spector proposed three upgrades to the MicroISS to further standardize the software.

From its inception in the early 1970s until the present, the ISS has made notable strides in
the area of CBT. As a research and development prototype, the ISS has provided a rich
knowledge base for future CBT system developments.

However, the ISS needs numerous enhancements to advance it technologically and make it
comparable to other CBT systems. Streamlining the code would make it more efficient. It
would also eliminate duplicate code generated by automatic translations. Improving program
access would make it faster and less cumbersome. Rewriting the Graphics Editor to employ a
bit-mapping strategy would upgrade the graphics capability. Adding different fonts to the Graphics
Editor would also enhance the graphics capability. Rewriting the user interface would update
the software to incorporate pull-down windows or icons. Lastly, incorporating scheduling, word
processing and automatic documentation capabilities would improve the ISS. However, it is
neither wise nor cost-effective to incorporate these capabilities into 20-year-old software. Instead,
future CBT system developers should use the knowledge gained from the development of this
software as a foundation to develop future CBT systems. In addition, if feasible, they should
extract and use the numerous algorithms that provide the ISS's extensive functional capabilities.

The ISS's strengths, when compared to other Government and commercial CBT systems, are
its extensive branching and CMI capabilities. The ISS is highly recommended for organizations
that must develop courseware with extensive individualization strategies. The ISS is also
recommended for organizations that require scheduling, tracking, management and evaluation of
a sizable number of students.

Both versions of the software, the ISS and MicroISS, are available through the NTIS.

REFERENCES

McDonnell Douglas Astronautics Company. (1986). Instructional Support Software System.
(AFHRL-TR-85-53, AD-A166 776). Lowry AFB, CO: Training Systems Division, Air Force Human
Resources Laboratory.

Mei Associates, Inc. (1988). Computer Resource Management Technology Program - changes made porting
ISS to the Z-248.

Spector and Associates. (1989). Upgrading the ISS test bed.

11



APPENDIX A: ISS FUNCTIONAL CAPABILITIES

COURSEWARE DELIVERY
Upper- and lowercase text
Special characters
Multiple colors
Static, dynamic and interactive graphics
Student interaction via keyboard or pointing device
Initiation and presentation of CAI lessons
Initiation and presentation of interactive videodisc sequences
Initiation and presentation of simulations
Initiation and presentation of mastery tests
Review mode
Course glossaries
Student comments

COURSEWARE AUTHORING
Menu-driven user interface
Create, change, display, store and delete modules
Insert, create, copy, reorder, store and delete segments
Insert, create, copy, reorder, store and delete frames

Expository:
Information, Elaboration, Help, Title, Overview,
Objective, Resource, Documentation

Interactive:
Touch, Multiple-Choice, True/False, Matching,
Constructed Response (short answer)

Special Purpose:
Menu, Ada Programming Language, Simulation, Branch,
Adjunct Material (Videodisc)

Support for instructional strategies
Factual
Drill and practice
Tutorial
Simulation
Individualized tutorial

Problem solving
Text development
Individualization (branching)

Unconditionally
On number of frames presented/not presented
On number of questions answered correctly/incorrectly
On evaluation of author-supplied variable

System-defined
User-defined

Overlay
Partial screen erase/windowing
Feedback and prompt creation
Access, modify and display graphics created in the Graphics Editor
Access simulations created in the Simulation Editor

13



Glossary development
Videodisc sequence development

GRAPHICS DEVELOPMENT
Create, change, display, copy, store and delete graphics
Keyboard, pointing device and bit pad/data pad user interface
High-fidelity 2D graphics
Static and dynamic
Graphics primitives, selectable from menu
Line drawings or filled objects, both regular and irregular-shaped
Line color
Colored fills
Symbol library development
Scale, rotate and repositioning
Scaled text
List existing graphics/symbol libraries

For a specific user
For all users
Starting with a specified name
Before or after a specified creation date

SIMULATION DEVELOPMENT
Menu-driven user interface
Create, change, display, copy, store and delete simulations
Create, change, display, insert, copy, store and delete actions
Create, display and delete objects (text or graphic)
List actions/objects
Branching logic (conditional/unconditional)
Access, modify and display graphics created in the Graphics Editor
Overlay
Partial screen erase/windowing
Feedback and prompt creation
Expository actions
Interactive actions

Touch, Multiple-Choice, True/False, Matching, Constructed
Response (short answer)

Create and insert complex author-defined equations
Random number generation

TEST DEVELOPMENT
Menu-driven user interface
Create, change, copy. display, store and delete mastery test questions
Block, lesson, group and mission tests
Online/offline
Item randomization
Criterion -referenced

Percentage
Number of subscales (objectives) passed

Five Question types
Multiple-choice, Touch, Matching, True/False, Constructed
Response (short answer)

14



Alternative weighing
Definable scoring rules

Pass/fail by total test score
Pass/fail by objective
Critical items and objectives

TEST PRESENTATION
Presentation of mastery test questions
Review test items prior to scoring
Score test items and report results
Provide recap, detailing answer selected and correct answer

TRAINING INTERFACE
Select/continue an assignment
Take a test
Receive messages
Review training records

TRAINEE ASSIGNMENT
Registration
Course rosters
Absence/disenrollment
Certify pass
Assignment override
Automatic assignment processing
Resource allocation
Progress management

Estimated target completion date/computation of target date
using actual rate of progress (regression equation)

Logon-to-logoff or shift open/close
Record and track student performance

COURSE MANAGEMENT
Curricu!urn structure and course version
Description of each lesson, supporting modules and tests
Definition of learning centers/shifts
Definition of training resources managed by the system

CURRICULUM INTERFACE
Manage and control curriculum
Prerequisite relationships

COURSE STRUCTURING
Course structure and management information down to lesson and test ID level
Definition of shift hours
Definition of learning centers
Definition of training resources
Specification of course management level (master course or system)

LESSON DEFINITION
Lesson characteristics

15



Module numbers of supporting lessons
Test numbers used to evaluate mastery

TRAINING MANAGEMENT REPORTS
Course (Current Assignment, Detailed Performance, Resources for Current

Assignment, Graduate Performance History, Time Management)
Individual (Lesson Completion Summary, Detailed Performance)
User-defined

DATA COLLECTION AND ANALYSIS
Response analysis
Decision path analysis
Student comments
Statistical

Mean and standard deviation by item
Mean and standard deviation by objective
Correlation of item with objective
Correlation of item with test
Item analysis

MICRO COMPUTER-MANAGED INSTRUCTION (CMI)
Prerequisite course lists or courses selectable in any order
Lesson lists containing either lineraly ordered lessons or

lessons selectable in any order
Reordering lessons within courses
Embedded and mastery test items
Registering of students into multiple courses
Student rosters

Specification of number of lessons that must be taken in a course
Student names and IDs
Students' current lesson

Student assignment generation
Lesson overriae
Certify pass
Recording and tracking of student performance on a limited basis

Lessons passed
Performance on individual lesson questions
Lesson completion times

HARD COPY PRINT
Graphics database

Graphic names
Graphic descriptions
Number of times graphic accessed in authoring and simulation editors

Courseware database
Lesson names
Text (all or specified segments)
Feedback and prompts
Graphic names
Branching logic
Number of attempts for question frames

16



Question stem and alternatives, including correct answer
Glossary database

Words specified for a course
Word definitions

Simulation database
Simulation names
Text (all or specified actions)
Feedback and prompts
Objects

Text and graphic names
Rotation, scaling and x,y positioning coordinates

Branching logic
Number of attempts for question frames
Events

ADDITIONAL CAPABILITIES
Deferred message
Instructor monitoring
Dual screen
System security (user access levels)
Offline test scoring for block, group, lesson and mission tests
Homework completion outside of trainee's shift
Student record keeping (archiving)

17



APPENDIX B: VAX ISS EXECUTABLES

Executable Source Description

ACAIREP CAIREP CAI Data Analysis Report - Prints a Response Analysis
Report, Decision Point Analysis Report, or a Student Comment
Report on any or all segments of a CAI course. Executed
as a batch job.

ACASS CASS CAI Authoring Support System (CASS) Editor - Allows users
to create, change, delete, or copy lessons.

ADACRF EDTPAC Cross Reference File Editor - Process data of Cross Reference
(CRF) records produced by the Curriculum Definition Editor
(CDE) and the Course Structure Editor (CSE). Allows
displaying, updating, creating, or deleting CRF records.

ADAHRK EDTPAC Hierarchy File Editor - Processes the hierarchy (HRK)
records established by the Curriculum Definition Editor (CDE)
and the Course Structure Editor (CSE). The HRK records
are used by the Adaptive Model (AM) to determine student
assignment information. Allows displaying, updating, creating,
or deleting HRK records.

ADALC EDTPAC Learning Center Editor - User can edit a learning center
record or list learning center records.

ADAPERM EDTPAC Student Permanent File Editor - Allows displaying, updating,
creating, deleting, or listing student data records in the
database student permanent file VPERM.

ADAROS EDTPAC Roster File Editor - Allows displaying, updating, creating,
deleting, or listing the roster records created by the
Curriculum Definition Editor (CDE) in either the WROS or
VROS database files.

ADATEST TESTED Test Development Editor - Allows users to create, change,
delete, or copy tests.

ADAUTL UTILITY Student Absence and Disenrollment Program - User can
report a student absent or present, change a student's
absence reason and disenroll a student from a current
course or all courses. Activated from FORMS.

ADEP DAPPAC Student Data Extraction Program (DEP) - The user interface
to RUNDER Used for inputing variables to generate reports
for evaluation.

AGLOSS CASS Glossary Editor - Allows user to display, add, change, or
delete glossary entries.

18



AM AMPAC Adaptive Model - Processes a student's current assignment
and determines the most appropriate assignment for the
student to take next.

AMCAI CASS CAI Presentation Program - Displays the lessons authoreu
by using ACASS.

AMSID SID Simulation Presentation - Presents simulations creat."x by
using ASID.

ASID SID Simulation Authoring - Editor for creating or changing
simulations.

ASTL STLPAC Student Logon - Allows student to select or continue
assignments, review training records, and read mail
messages.

BGMONITOR BGMON Background Monitor - Performs various requests for ISS
including: print requests, run program requests, suspend
and resume requests, and status requests.

BGQSTATUS BGMON Background Monitor Queue Status - Shows background
monitor processes. Also, allows suspending, killing, resuming,
or changing background processes.

BLCCHK DCP Block Completion Check - Reads the database Block
Completion File (VBLC), checks a flag to verify that the
record was written to tape, and then deletes and rewrites
the record with the flag set to false.

BLCVRSONE DCP Background program initiated by FIXVRS to set all the course
version fields in the CSE and BLC record keys to 1.

BLKELPS CSEPAC Emergency Student Timing Update - Adjusts upward or
downward the current block elapsed time of a student after
a system crash.

BOOTDBD UTIL Boot Database - Creates the database file ISSFILES and
makes ISSFILES and TDEFILE entries to it.

BP GREDIT Bit Pad - Test program for the Tektronix bitpad.

BUTIL UTIL Program to display the contents of the cache memory for
buffered 10.

CAIREPREQ CAIREP CAI Data Ana,'ysis Report Request Program - Used to select
the type of report and the options, and to execute ACAIREP
as a batch job.

CAISIZES TESTED Displays sizes of CAI database records and keys.

19



CAR CES Batch processing portion of Course Evaluation Summary
(CSE). User input and initiation provided by RUNCAR.

CDMAIN CDEPAC Curriculum Definition Editor (CDE) - Used to display, create,
edit, copy or delete a curriculum.

CMIREPORT FRMPAC Submits reports to the background. Activated from the Forms
Editor.

CMISIZES OTHPAC Displays sizes of CMI database records and keys.

CREATEDB UTIL Create Database - Creates the database files from definitions
read from a file definition file (.FDF).

CREATEFDF UTIL Create FDF - Creates the file definition file (.FDF) from the
file attributes read from the database file ISSFILES.

CRMAIN CRSPAC Course Description Program - Used for setting up general
course data and documentation and Student Progress
Management (SPM) data. Activated from the Course Structure
Editor (CSE).

CRMAPFILE UTIL Create Map File - Creates the disk mapping file for any
shared memory section.

CRSMAIN EDTPAC Course File Editor - Allows displaying, updating, creating,
or deleting course and/or management record information
in either the WCRS or VCRS database files.

CSMAIN CSEPAC Course Structure Editor (CSE) - Used to display, create,
edit, copy or delete courses, blocks or groups.

DCP1 DCP Data Collection Program. Collects data while running in the
background. Activated from RUNDCP

DISPUSER ZZLOGON Display Users - Used to display users currently logged onto
ISS. Accessed by Pad-4 key from LOGON.

FIXFILE OTHPAC Update, view, or delete CMI database record keys of CMI
files.

FIXLOCK UTIL Fix Lock - Reads the lock table, checks for and displays
hung locks, and allows the user to unlock them. System
aborts can cause hung locks.

FIXVRS DCP Fix Versions - Stans up the background process BLCVRSONE
to change all course versions in the Course Structure (CSE)
and Block Completion (BLC) records to 1.

FOMAIN FRMPAC ISS Administrative Management Editor (Forms Editor) - Used
for CMI student operations such as requesting reports and
performing administration management functions including
absences, disenrollments, assignment overrides, and student
completion updates.

20



FPATCH UTIL File Patch - Patch or examine database files or shared
memory.

FPOUND UTIL File Pound - A database utility that exercises create, open,
write, read, delete and close on the database.

FRECOVER UTIL File Recovery - Used to recover lost data blocks in a database
file uncovered by the FUTIL Data Base Validation feature.

FUTIL UTIL File Utilities - Utilities for managing the ISS database files
such as analyzing, creating, deleting, and validating.

GLIST CAIUTIL Glossary List - Background program initiated by TESTREQOC
to print a listing of glossary words and their definitions.

GRAFEDIT GREDIT Graphics Editor - Allows the user to create, modify, list,
copy or delete graphics.

GRLIST GREDIT Graphics List - Displays a list of graphics and allows the
user to select graphics to be deleted.

GRUPDCOM GREDIT Update Graphics Commands - Used for changing graphics
editor menus and the commands associated with them.

GRVERIFY GREDIT Graphics Verify - Used to verify GRLIST deleted the selected
graphics.

HELPED HLP Help Editor - :SS utility to create and edit help screens for
other ISS programs. Uses the database file MHELP

HELPGEN MSG Generates the Help records for the HELP function. Reads
an ASCII file MAILHELRDAT and writes the records to the
database file MAIL to be used by the ISS MAIL message
utility.

IMON MONTOR Instructor Monitoring - An author or instructor can monitor
a student working within ISS.

INITPGM ZZLOGON Initialize PGMNAME - Creates the database file PGMNAME
if it does not exist from information in AUSRPGM.

INITSHMEM UTIL Initialize Shared Memory - Initializes the shared memory file
SHMEM.DAT by writing null blocks.

INITTERM UTIL Initialize Terminal - Initializes a particular ISS terminal/process
entry. The user will be reprompted for terminal type the
next time he/she runs a program.

ISSBGBOOT UTIL Background Boot - Starts the background monitor and the
adaptive model (AM).

21



ISSUSERS UTIL ISS Users - Displays the current users/processes of ISS.

LDMAIN LDEPAC Lesson Definition Editor - Allows user to display, edit, copy,
create and list lessons.

LGCOMMAND ZZLOGON Logon Commands - Allows user to update the system banner,
start/stop program activity, start/stop background processor,
and other ISS system operations. Accesspd by Pad-3 key
from LOGON.

LISTLOG ZZLOGON List Log - Displays the ISS log file. Accessed by Pad-5 key

from LOGON.

LOGON ZZLOGON ISS Logon - Controls entry into ISS.

MAIL MSG ISS Mail Utility - Used to send messages to other ISS users
and to read messages from other users.

MGCAI CASS CAI Data Mover (Get) - Reads a system file created by
MPCAI containing lessons and writes the contents to the
database CAI files ACAICAI, ACAIOBJ, ACAIBRN, ACAIVAR,
ACAIEXP, ACAIALT, and ACAITXT. Use TMGCAI if the transfer
file was made from a pre-version 4 database and you wish
to move the lesson, "nto a version 4.x database. Otherwise
use this progqr,. if ,nsure which to use, try MGCAI first.

MGGRMENU GREDIT Gidphics Menus Mover (Get) - Reads a text file created by
MPGRMENU containing graphic editor menus and writes the
cor+.,*, to thr. database graphics menu file GRMENUS.

MGMAIN MGTPAC Management Control - Management of courses for the Course
Structure Editor (CSE). Sets up management levels for the
management functions student, learning center, classroom
hours, and resources. Activated from CSE.

MGSID SID SID Data Mover (Get) - Reads a system file created by
MPSID containing simulations and writes the contents to
the database simulation files ASIMSIM, ASIMOBJ, ASIMVAR,
ASIMTXT, ASIMALT, ASIMEV, ASIMEXP, and ASIMSTR.

MGTEST TESTED Test Data Mover (Get) - Reads a system file created by
MPTEST and writes the contents to the database test files
VTKF, WTKF, WITM, PXWITM, WITMPTR, and WITMALT. Use
TMGTEST if the transfer file was made from a pre-version
4 database and you wish to move the tests into a version
4.x database. Otherwise, use program MGTEST. If unsure
which to use, try MGTEST first.

MICROMGR MCMI MicroCMI Management Editor - Used to create a course,
define its structure, and enroll students in it.

22



MOVGRAF GREDIT Move Graphics - Moves graphics from the CYBER (CAMIL)
to the VAX database. (This is an old program and should
probably be deleted.)

MPCAI CASS CAI Data Mover (Put) - Creates a system file containing
lesson contents from the database CAI files ACAICAI,
ACAIOBJ, ACAIBRN, ACAIVAR, ACAIEXP, ACAIALT, and
ACAITXT

MPGRMENU GREDIT Graphics Menus Mover (Put) - Creates a text file containing
graphics editor menus from the database graphics menu
file GRMENUS.

MPMAIL MSG Mail Mover (Put) - Used to update the database file MAIL
when the size changes.

MPSID SID SID Data Mover (Put) - Creates a system file containing
simulations from the database simulation files ASIMSIM,
ASIMOBJ, ASIMVAR, ASIMTXT, ASIMALT, ASIMEV, ASIMEXP,
and ASIMSTR.

MPTEST TESTED Test Data Mover (Put) - Creates a system file containing
test information from the database test files VTKF, W'TKF,
WITM, PXWITM, WITMPTR, and WITMALT.

MVGGRAF GREDIT Graphics Data Mover (Get) - Reads a system file created
by MVPGRAF containing graphics and writes them to the
database graphics file ADAGRAPH.

MVPGRAF GREDIT Graphics Data Mover (Put) - Creates a system file containing
graphics from the database graphics file ADAGRAPH.

NEWIMP OTHPAC Curriculum and Course Implementation - Implements a
curriculum, course, or system course by copying from the
work to the production database files. Activated from Course
Structure Editor (CSE) and Curriculum Definition Editor (CDE).

NEWIMR EDTPAC Instructor-Managed Resources Editor - Processes resources
defined as instructor-managed by the Course Structure Editor
(CSE).

NEWPTMGR CAIUTIL Print Manager - Used for running listing of CAI, SID, and
graphics material. Includes procedures SIDREQC and
TESTREQC.

NEWVAL OTHPAC Curriculum and Course Validation - Validates a curriculum,
course, or system course by attempting to read all record
types to determine if they exist. Activated from the
Curriculum Definition Editor (CDE) and the Course Structure
Editor (CSE).

23



PRFDAT CASS Student Test Response Report - Puts out a performance
report based on students' responses for a given course.

RESAV EDTPAC Resource Availability Editor - Processes resources defined
as system-managed resources by the Course Structure Editor
(CSE).

RNGT REGTEST Student Registration - Allows user to perform registration
functions such as initial registration, display or correcting
registration data, and listing courses in a curriculum.

RUNATA3 ATAPAC Automated Task Analysis - Main program for the Automated
Task Analysis Author Aiding System (ATA3). Allows subject-
matter experts to perform breakdown or decomposition of
a task.

RUNCAR CES Course Evaluation Summary (CES) - The user input portion
of CES. Actual processing is done by CAR. CES generates
reports to evaluate student performance within a course.

RUNDCP DCP Data Collection Program (DCP) - The user interface to DCP
which collects and creates data to be used for generating
curriculum, course and student evaluations.

RUNDEP DAPPAC Data Extraction Program (DEP) - The batch job processing
portion of DEP The user input and initiation are provided
by ADER

RUNSRK DCP Student Record Keeping (SRK) - Examines tape index files
to locate student records and can retrieve student records
from tape.

RUNTAR TIE Test Item Evaluation (TIE) - User interface to TIE which
reports student performance for online and offline tests.

SCANTRON SCAN Optical Mark Reader - Reads and processes the SCANTRON
forms.

SCEDITOR GREDIT Stroked Character Editor - Allows the user to edit a stroked
character set.

SCRMOVER UTIL Script Mover Utility - Converts script definition files (.SDL)
into script files (.SCR) or decodes script files (.SCR) into
script definition files (.SDL).

SDPEDT SDPPAC Student Data Profile (SDP) Editor - Allows displaying,
changing, creating, copying, or deleting student data profile
records containing student/course status information located
in the database file VSDP

24



SDPMCR SDPPAC Student Data Profile Module Completion Record Editor -
Allows displaying, changing, creating, copying, or deleting
Module Completion Records (MCR), Course Structure
Records (CSE), and Block Completion Records (BLC) located
in the database files VSDP, VCSE, and VBLC.

SDPOMR SDPPAC Student Data Profile (SDP) Optical Mark Reader (OMR)
Editor - Allows creating and editing OMR student data profile
records located in the database file OSDP

SEQUENCER MCMI MicroCMI Lesson Sequencer - Used by the student to get
his/her lesson assignments from the course(s) he/she is
registered in, and to manage his/her progress throughout
the course.

SETCASSREF CASS Set CASS References - Sets the CASS reference count for
all graphics in every lesson to the number of times they
are referenced. Used after ZEROALLCASSREF.

SETSIDREF SID Set SID References - Set the SID reference count for all
graphics in every lesson to the number of times they are
referenced. Used after ZEROALLSIDREF

SIDPRTC CAIUTIL Simulation Print - Prints simulation data in the background.
Initiated from SIDREOC where the necessary options have
been set.

SIDREP SID SID Reports - Processes and prints a SID report in the
background.

SIDSIZES SID Displays SID record sizes.

SIREPREQ SID SID Reports Requests - Used to submit requests to SIDREP
to print SID reports.

STARTAM EXE Start Adaptive Model - The command file that is executed
as a batch job to run the adaptive model program AM in
the background.

STARTBG EXE Start Background Monitor - The command file that is executed
as a batch job to run the background monitor BGMONITOR
in the background.

STARTUPBG BGMON Startup Background Monitor - Executes STARTBG.COM as
a batch job.

STOPBG BGMON Stop Background Monitor Sends a message to the
background monitor BGMONITOR telling it to quit.

TAPE2DISK DCP Program to retrieve student data from tape and write it
back to the database disk files.

25



TAR TIE Test Item Evaluation (TIE) - The batch processing portion
of TIE. User input and initiation are provided by RUNTAR.

TDEFBLD UTIL Terminal Definition Build - Reads the .TDL, .DDL, and NAM
files and stores the device definitions in the terminal definition
file (TDEFILE).

TESTPRES TESTED Test Presentation - Presents a test to its author or to a
student. Statistics are also taken if requested by the author
within ADATEST.

TESTPRT TESTED Test Print - Generates a report detailing the test information
for a selected test.

TESTPRTC CAIUTIL Background program to print requested CAI modules.
Initiated from TESTREOC where the necessary options have
been set.

TGTMAIN CSEPAC Student Progress Management Target Editor - The user may
redefine the student's course speed, days to completion,
course days total, or days credited.

TMGCAI CASS CAI Data Mover (Get) - Reads a system file created by
MPCAI containing lessons and writes the contents to the
CAI database files ACAICAI, ACAIOBJ, ACAIBRN, ACAIVAR,
ACAIEXP, ACAIALT, and ACAITXT. Use TMGCAI if the transfer
file was made from a pre-version 4 database and you wish
to move the lessons into a version 4.x database. Otherwise
use program MGCAI. If unsure which to use, try MGCAI first.

TMGTEST TESTED Test Data Mover (Get) - Reads a system file created by
MPTEST and writes the contents to the database test files
VTKF, WTKF, WITM, PXWITM, WITMPTR, and WITMALT. Use
TMGTEST if the transfer file was made from a pre-version
4 database and you wish to move the tests into a version
4.x database. Otherwise, use program MGTEST. If unsure
which to use, try MGTEST first.

TREEBEARD BGMON Creates a listing file of an Ada program along with an index
to the procedures.

VDFEDT DAPPAC Variable Definition Editor - Used to create variables to be
used for storing data during CMI operation. These data are
then used for data analysis reporting through the Data
Extraction Program (DEP).

ZALLCSSSDRF SID Zero All CASS and SID References - Zeros out the CASS
and SID reference counts for every graphic in the database.

ZEROALLCASSREF CASS Zero All CASS References - Zeros out the CASS references
to all graphics.

26



ZEROALLSIDREF SID Zero All SID References -Zercs out the SIC references to
all graphics.

ZEROCASSREF CASS Zero CASS References - Zeros out the CASS references
for a given graphic.

ZEROSIDREF SID Zero SID References - Zeros out the SID references for a
given graphic.

ZZUSRED ZZLOGON User Editor - Used to define user access to ISS and establish
permissions for those users.

27



APPENDIX C: ISS FUNCTIONAL DESCRIPTION (VAX VERSION)

28



12 FEBRUARY 1988

Last revised: 7 FEBRUARY 1990

FUNCTIONAL DESCRIPTION

FOR THE

INSTRUCTIONAL SUPPORT SYSTEM

Prepared Under Contract

F33615-85-C-0011

FOR

AIR FORCE HUMAN RESOURCES LABORATORY

BROOKS AIR FORCE BASE, TEXAS

BY

DOUGLAS AIRCRAFT COMPANY

29



1.0 SCOPE

This functional description describes an operational Computer
Managed Instruction (CMI)/Computer Assisted Instruction (CAI)
system called the Instructional Support System (ISS). The
description includes those CMI and CAI functions identified as
necessary in order to support appropriate training environments
within the DOD. To determine what functional capabilities the
ISS should contain, a portion of the effort has been to determine
the requirements of various key DOD training environments. Trips
have been made to key DOD installations in order to determine
training requirements and to determine the DOD instructional
environments that can be supported by the ISS. Additionally,
existing Computer Based Instructional (CBI) systems have been
analyzed to identify potential enhancements to the ISS. Appendix
B contains a discussion of potential ISS enhancements. The ISS
is transportable from one computer system to another, uses cost
effective mini and micro computers, and is comprised of modular
software to allow individual execution of the modular components.

A transportable ISS has been produced by (1) generating source
code in Ada, a standard DOD High Order Language (HOL); and (2)
developing a set of generalized interfaces indirectly linking the
ISS application programs to the operating systems of the host
machines and the terminal set supported by the ISS. Ada is the
appropriate language in which to implement transportable ISS
software, given its mission as a standard HOL that is available
on many machines. The generalized interfaces have been produced
by isolating the terminal and operating system dependencies into
relatively few procedures within the interface code. In
auiomplishiig this, the tools of the host operating system are
used to the extent practicable but the interfaces are not
designed for a particular machine.

In order to make the ISS an economically feasible system, low
cost mini and micro computers have been utilized. It is assumed
that the systemc chosen for ISS implementation shall have
acceptable support for terminal communication and data base
input/output and shall be capable of exercising individual
modular components of the application software. For terminal
communications, the host operating system shall provide
sufficient data manipulation capabilities so that ISS
communications software can provide screen input/output, screen
positioning, graphics display, color control, display
synchronization, function key processing, and terminal mode
control. For data base input/output, the host system shall
provide sufficient functions for sequential, direct access, and
indexed sequential files including creating, deletion,
positioning, clearing, reading, writing, and sharing of files.

It is possible to transport data among the systems supporting the
ISS via communication lines, disk, or tape. Real time
distributed processing is not supported in the current version of

30



the system, however. The design allows for implementation of
real time distribution of processes and data bases in the future.

In order to facilitate improvement, maintenance, and efficient
execution of ISS software, the functional components of the ISS
are modularized. Modules are available for the following
components: Graphics, Materials Development, CAI Presentation,
Simulation Development/Presentation, CMI, Testing, and Data
Analysis. Where appropriate, a help function can be made
available on a module basis to assist in the use of the module.
Execution of each ISS modular component is supported so that
individual portions of the system can be separately invoked and
successfully executed.

Appendix A describes the process utilized in the development of
this Functional Description.

31



2.0 APPLICABLE DOCUMENTS

The following documents form a part of this specification to the
extent that they have been useful and available for reference
during the development of the ISS.

SSI017FI00 AIS System Specification

DPI017FO5 AIS Computer Hardware Prime
Item Specification

DC1017F024 AIS Computer Mainframe Critical
Item Specification

DC1017F026 AIS Terminals Component Critical
Item Specification

DD1017F023 Application Program Component
Critical Item Specification

DDI017FOO4 AIS Software Subsystem Prime
Item Specification

DD1017FO10 Information Management Critical
Item Specification

DD1017FO21 Programming System Critical
Item Specification

DDJOI7FO22 Time Sharing Operating Systems
Critical Item Specification

DP1OI7FO14 Adaptive Models Component
Critical Item Specification

MIL-STD-483 Configuration Management
(USAF) Practices for systems, Equipment,

Munitions, and Computer Programs

AFHRL-TR-85-53 Instructional Support System
Technical Report, March 1986

Software Detailed 12 February 1988
Design Document

Data Base Design 12 February 1988
Document

Computer Program Product Specification for the Instructional
Support System 12 February 1988

ISS Reference Manuals, February 1988

32



2.1 Documents and information attained and used in the survey of
DOD installations are as follows:

Graphics Simulation for Technical training, a panel
presentation 1982 ADCIS Conference Van Courses, B.C.,
June 1982

Aviation Training Support System (ATSS) Functional
Description (FD) for Naval Aviation Activities. REG 31408-
98-76, 17 May 82, Naval Weapons Center, China Lake, CA.

Bunderson, C. Victor. Computer Support for Army Training.
Final Report, 20 December 1977

Micheli, Gene S., Morris, Charles C., & Swope, William M.
Computer Based Instruction Systems -- 1985 to 1995 TAEG
Report No. 89, August 1980

Van Matre, Nick & Johnson, Kirk. Upgraded Navy Computer-
Managed Instruction: Analysis of requirements for, and
Preliminary Instructional System Specifications. NPRDC
Special Report 81-26, September 1981.

System Specification for the Maintenance Information
Authoring System (MIAS) N-712-354, 3 May 1982, Task 2790.

Computer-Managed Instruction in the Navy: I. Research
Background and Status, NPRDC SR 80-33, September 1980.

Computer-Managed Instruction in the Navy: III. Automated
Performance Testing in the Radioman "A" School, NPRDC
TR-81-7, March 1981.

Computer-Managed Instruction in the Navy: IV. The Effects
of Test Item Format on Learning and Knowledge Retention,
NPRDC TR 81-8, March 1981.

Computer-Managed Instruction in the Navy: V. The Effects
of Charter Feedback on Rate of Progress Through a CMI
Course, NPRDC TR81-26, November 1981.

Computer-Based Education and Training Functions: A Summary,
NPRDC TN 82-17, May 1982.

SNAP Outline (single page).

Low-Cost Microcomputer Training Systems,
status report, 9/82.

33



3.0 FUNCTIONAL CAPkBILITIES

This section describes the functional capabilities of the ISS.

3.1 Computer-Assisted Instruction (CAI)

Lesson materials are entered into, stored in, retrieved, and
delivered by the computer system. When assigned by the system
and requested by the trainees, they are displayed at an
interactive terminal. Interactions are principally via a
terminal keyboard and, if appropriate, via a touch panel, light
pen, etc. (hereafter referred to as a pointing device).

3.1.1 CAI Applications. The CAI provided by this system
supports the following instructional strategies:

- Factual - Linear presentation of material to convey
information for later recall or recognition;

- Drill and Practice - Instruction characterized by
systematic repetition of concepts, examples and
problems;

- Tutorial - High level of interaction between presented
materials and learning responses;

- Simulation - Presentation of a set of relationships or

sequence of events of a real world device or situation;

- Individualized Tutorial Instruction;

- Concept and Principle Learning; and

- Problem Solving

3.1.2 Courseware Delivery. The ISS is capable of delivering a
wide variety of courseware. This courseware is made available to
all trainee and authoring terminals. Provisions are made for:

- Display of text in upper and lower case;

- Display of a variety of special characters;

- Display of multiple colors;

- Static, dynamic and interactive graphics;

- Student interaction via keyboard or pointing device; and

- Interactive Videodisc .

3.1.3 Hard Copy. Provision is made for producing hard copy
versions of CAI materials.

34



As described in Section 3.3, a wide variety of CMI summary
reports re available. Users are given the option of displaying
reports online or obtaining hard copy printouts.

3.1.4 Graphics Preparation. The ISS is capable of interfacing
with a keyboard, pointing device or bit pad/data pad.

3.1.5 Dual Screen Capabilities. The ISS allows presentation of
a lesson on two terminals, if desired.

3.1.6 Interactive Videodisc Capabilities. The CAI subsystem
supports a variety of instructional strategies and interaction
capabilities, including videodisc. The videodisc capability
integrates video information retrieved from a laser disc with
text and graphics created with the Authoring program (CASS). The
integrated video/text/graphic frames are presented with the
Presentation program (CAIPres).

3.1.7 Instructional Performance. The ISS is a totally
integrated instructional delivery and management system. The
instructional development capabilities are discussed in Section
3.1.8 and management requirements are presented in Section 3.2.

3.1.7.1 ISS Training Interface. Provision is made for trainees
to interact with the ISS through three components: The Trainee
Log-on, CAI Presentation and Online Test component.

3.1.7.1.1 Trainee Log-On Component. The Trainee Log-on
component provides the basic point of entry to the ISS. Upon
providing identification data, the system presents the trainee
with various options, including the ability to:

- Select or continue an assignment;

- Take a test;

- Receive messages;

- Review training records; or

- Log-off.

Trainee selection is through an interface component which
provides an explanation of available options.

The capability to receive messages allows the trainee to receive
messages from the instructor.

The option of reviewing training records allows the trainee
access to data regarding a complete summary of detailed
performance reports.

35



3.1.7.1.2 CAI Presentation Component. When a trainee selects a
CAI module through the Trainee Log-on component, storage of the
current assignment I.D. and transfer of control to the CAI
Presentation component is provided. The Presentation component
then selects and presents the module selected. The CAI
Presentation component is capable of displaying and processing
all developed material. Emphasis is provided by upper and lower
case and colored text. The capability is provided for
presentation of high fidelity 2-D graphics. These graphics are
line drawings or filled with color. The capability is provided
for filling both regular and irregular shapes. Graphic displays
are either static or dynamic. Trainee responses to these
displays are made via keyboard or pointing device.

3.1.7.1.3 On-Line Testing Component. When a student completes a
CAI module with a corresponding online test or selects the
testing option from the Trainee Log-on component, he is routed
directly to the Online Test component.

The question types supported by the Online Test component are
identical to those supported within CAI modules: touch,
multiple-choice, true/false, matching, and constructed-response.
The same graphics and color capabilities available within a CAI
module are also available in online tests.

3.1.8 The CAI Authoring Subsystem. The ISS contains an
authoring subsystem with the following characteristics:

- A menu-driven interface component provides CAI
authoring capabilities, negating the need to code
instructional content and logic in a computer
language;

- A minimum requirement for author training;

- A capability to jump to the Simulation component
and return to the original jump point upon
completion of the simulation;

- A capability to develop CAI materials where text and
computer graphics are integrated with video frames
from a laser disc.

The ISS is structured so that the components of a CAI
module--text, graphics, instructional strategy, and data
collection rules--are represented as textual and graphical data
rather than as program code.

The capability to manipulate graphics and create prompting and
guidance for the authoring process is provided.

With regard to structure, the authoring support provides
flexibility in instructional strategy selection. The Authoring

36



component provides support for three subsystem components:

- A CAI Authoring component;

- A Simulation component; and

- A Graphics Generation component.

3.1.8.1 CAI Authoring Component. This is the primary tool for
developing CAI modules. The Authoring component allows an author
to create, revise, display and delete a module. A means is
provided to allow an author to change or delete only those
modules he/she has created. Organization within a module is
based on segments, with presentation by frames of information
from within each segment. Prompts are supplied to remind the
author of all possible actions whether at the segment or frame
level. The Authoring 3omponent also offers highly qualified
users the option of using an "expert mode." This mode features
menu suppression, where feasible. At the segment level the
author is given the capability of:

- Entering a segment reference number to access the
frame list for that segment;

- Deleting segments;

- Inserting new segments;

- Copying segments;

- Reordering the sequence of segment presentation; or

- Backing out without taking any action.

Within a segment, a frame list is available to the author. This
list defines the type of frames which comprise a given segment
and provides an overview of individualization logic and/or any
special conditions on specific frames. The author is provided
options to:

- Access any frame;

- Insert new frames;

- Copy frames;

- Delete or reorder frames;

- Define frame individualization logic (branching); and

- Direct the CAI Presentation program to take
specific action.

37



These options are supplied to the author through online menu
selection and prompting. The following instructional frames are
provided:

- Information frames;

- Question frames; and

- Special Purpose frames.

An author has the capability to copy frames from any module to which
the author has access. Various types of information frames are
provided. These are similar in that they present text and/or
graphic information and require no trainee response other than an
indication that the trainee is ready to proceed. All information
frames contain up to four pages (screen displays). A distinction
is made between two types of frames which make additional
information available to the learner. These are the elaboration
frames, which are accessed through author-defined
individualization logic and the help frames, which are accessed
at the trainee's option.

The system supports five types of question frames intended to
evaluate trainee knowledge:

- Touch;

- Multiple choice;

- True/False;

- Matching; and

- Constructed Response.

Detailed templates are provided for these question frames. In
addition, author prompting is provided.

Response processing is designed to allow considerable latitude in
student response to ccnstructed response questions. The system
allows the author to specify key words, spelling tolerance,
synonyms and order of input. Provisions are made for the author
to try out constructed response test items without having to back
out of the authoring mode.

There are five special purpose frame types:

- Menu frames - allow trainee control of instructional
events. The menu consists of a series of alternatives
which allow the trainees to select lessons, segments,
frames, tests, etc.

- Ada Programming Language frames - allow authors access

38



to programs written in Ada.

Simulation frames - allow access to simulation sequences
developed via the Simulation component
(see paragraph 3.1.8.2).

Branch - a frame containing only branching logic that
facilitates branching between segments.

Adjunct Material - a frame containing a single videodisc
action.

The Authoring component supports an easy-to-use overlay, partial
screen erase, and windowing capability which allows the author to
develop a flowing sequence of instruction in which text, graphics
and video sequences can be added to and removed from the student
display as a function of timing or student input. Authoring
support is provided in the form of templates and prompts such
that relatively complex sequences of instruction can be composed
on a terminal.

Graphics are author-selectable from a library. The author is
provided a set of prompts which allow changing the physical
characteristics of the graphic such as the size, position,
rotational angle, and outline color. Modifications made via the
Authoring component do not affect the original drawing.

Videodisc processing includes the following actions:

- Display randomly selected individual video frames or a
sequence of video frames from a laser disc with or
without audio.

- Display text and high-resolution graphics overlay
on video.

- Define video windows.

The CAI Authoring component permits individualization. The
author is given the capability of specifying that a branch be
taken, a counter set or incremented or a variable defined or
altered:

- Unconditionally;

- Based on a specified trainee response;

- If a specified number of frames have or have not
been presented;

- If at least a specified number of author-defined
frames have been answered correctly/incorrectly; and

39



On the basis of the evaluation of an author-supplied
equation.

The ISS is also capable of supplementing the Authoring component
by providing hard copy prints ranging from summary information to
listings of frame content and logic. Additionally, a CAI
monitoring function is provided. This function permits the
concurrent display of CAI material on a slave instructor terminal
and a master student terminal.

3.1.8.2 Simulation Component. The ISS allows an author without
programming experience to use the Simulation component to create
simple instructional simulations by the selection of overlay,
partial screen erase, and branching. ISS allows the author to
create complex simulations by building a detailed model of the
process being simulated, including both static and dynamic
graphics. This capability includes the creation, display and
manipulation of text and graphics as well as the insertion of
complex author-defined equations. During development, the author
is able to review and modify any part of a scenario being defined
without backing out of the simulation. The resulting simulation
is presentable by the CAI Presentation program.

3.1.8.3 Graphics Generation Component. This component supports
the generation, storage, copying, and revision of drawings
employed in CAI modules, simulation scenarios, and tests. The
component employs a menu-driven dialogue approach that
continually supports the user with prompting information as to
what options are available at all times during graphic
development. The user is able to select from a menu, a variety
of graphic primitives (e.g., lines, circles, arcs, ellipses,
boxes, and points). Line color is specifiable before or after
the geometric input. A graphic can be modified any time duriny
or after development. The system supports the capability of
filling areas that are fully bounded by lines with solid colors
or patterns. In addition, the user is able to scale, rotate, or
reposition a complete or partially complete drawing. The system
provides the capability to input graphic information through a
keyboard or pointing device. These two modes are continuously
available and the user is able to switch back and forth between
them at will.

The creation of a symbol library is supported, which allows the
user to define a collection of drawing elements that can be
recalled and used as integral parts of another graphic. The
symbol library allows quick and easy revision of graphic elements
for use in other graphic drawings.

The Graphics component also provides placement of alphanumeric
information within graphics. The user is able to enter text in
any position and store it as required. The author is also able
to scale text, color it and arrange it at any angle/slant.

40



3.2 CMI Functions

The ISS provides a flexible and comprehensive training management
system. No knowledge -f computer programming is required to
establish, monitor or revise the management of the training
curriculum. The CMI system manages trainees through a
curriculum, generates assignments, scores tests and records
completed assignments and the results of each. The management
system provides data collection and analysis capabilities for
evaluating the effectiveness of instruction and tests. A means
is also provided for insuring the security of all data and
programs. Additionally, the user has the option of having the
CMI system manage learning centers, instructional resources and
rate of student progress.

Two separate CMI subsystems are available depending on the
training needs of a particular training installation. The
"full-blown" CMI subsystem provides a variety of capabilities
including curriculum management, course management, resource
management, student tracking, and status reporting. The MicroCMI
subsystem is a streamlined CMI system for use on microcomputers
in training environments where small student loads are prevalent.
It provides the capability to specify linear or random lesson
orders within courses, generation of student rosters and
assignments, and limited recording and tracking of student
performance.

3.2.1 Trainee Assignment. Provision is made for tracking a
trainee's progress through a curriculum. The trainee is
automatically routed through courses while tracking the trainee's
performance. An online capability is provided to allow
instructional personnel to review trainee status. Assignments
provide the following capabilities:

- A means of determining which instructional segment the

trainee should begin next;

- A means of allocating instructional resources; and

- A method for constructing an ordered list of
possible assignments by balancing individualization
and resource requirement concerns.

3.2.2 Progress Management. A means is provided to monitor the
progress of trainees through a course. A target completion date
can be estimated or computed using the actual rate of progress.

3.2.2.1 Trainee Tracking and Status Reports. Trainees are
tracked through a course by updating their records with the
results of each ISS interaction. The results of this detailed
tracking are available in a variety of individual or class
reports. The same data is recorded whether the assignment was an
online CAI module or offline work.

41



The progress management function allows instructors ready access
to the student's complete training record.

3.2.3 ISS Management Data Base. The design of the CMI function
allows personnel to define the characteristics of their courses.
Software changes are required only when the basic operational
philosophy of the system is altered. Modifications to the
management data base are accomplished through a menu-driven
interface by specifying:

- The structure of each curriculum and course version;

- A description of each lesson, its supporting modules
and tests;

- The definition of each learning center managed by
the system; and

- Definitions and descriptions of all training resources
managed by the system.

3.2.4 ISS Curriculum Interface. In order to manage and control

a curriculum, four basic functions are provided:

- Curriculum Definition;

- Course Structuring;

- Lesson Definition; and

- Test Definition.

This management is provided through menu-driven editors complete
with appropriate prompts. Data integrity, change control and
access to old data controlled in curriculum management is
provided.

3.2.4.1 Curriculum Definition. This function defines curriculum
management information, including the courses within the
curriculum and the prerequisite relationships among courses.

3.2.4.2 Course Structuring. This function is designed to define
course structure and management information down to the level of
lesson and test identification. Management applicable to the
complete course, such as the number of hours in the normal
working day, learning centers, and training resources are
definable.

A capability is also provided to allow definition of the
characteristics of the learning center or centers in which the
courses are taught and the instructional resources managed by the
ISS. It is possible to specify learning center characteristics

42



such as the center's hours of operation, and the inventory of
instructional resources of each type availa'le in each center.
Definition of the instructional resources to be managed includes
the following resource types:

- Fixed facilities (The student goes to the facility to work
on the assigned module.);

- Portable equipment and materials (The student draws the
items from a library and returns them when the assignment
is completed.); and,

- Consumable materials (The trainee draws the items from
supply and does not return them.).

The calendar days on which the course is scheduled to be taught
is definable.

3.2.4.3 Lesson Definition. This function is used to specify the
characteristics of a lesson. This will include the number(s) of
the module(s) supporting the lesson and the number(s) of the test
by which lesson mastery is to be evaluated.

3.2.4.4 Test Definition. This function is designed to develop
the test itself, not just specify its characteristics. It is
used for criterion-referenced tests. The same types of questions
are supported as are available for CAI: touch, multiple choice,
true/false, matching, and constructed response. Items are
arranged in subscales that normally correspond to objectives.
Scoring rules are definable and may include pass/fail by total
test score, pass/fail by objective, and critical (must pass)
items and subscales.

The ISS includes the capability for online testing. This
capability allows the author to enter test items and answer keys.
This component also formats the questions for the author and
allows the author to decide whether or not to randomize the
presentation order of the test items and the alternatives within
test items.

For offline testing, an optical mark reader can be used to record
results in ISS so they may be included with online test results.

3.2.5 Resource Allocation Capabilities. This function allows
identification and scheduling of various training resources such
as:

- Simulators;

- Part task trainers; and

- Actual equipment trainers.

43



Automatic scheduling of potentially scarce training resources is
provided to avoid "bottlenecks" in the flow of personnel through
a course. Provision is made to allow for the maintenance of an
accurate equipment inventory. A capability is provided to allow
personnel to review and change the training equipment inventory.

3.3 Instructional Management Functions and Reports

3.3.1 Instructor Interface. The ISS provides a number of
capabilities designed to manage and report on instruction. A
security system is provided to limit instructor access to only
those data and trainee records for which they are directly
responsible.

Instructors are provided access to the following functions for

use in managing instruction:

- Registration;

- Resource control;

- Assignment (e.g., lesson assignment, course selection);

- Testing; and

- Status (e.g., absence/presence, shift open/closed,
instructional progress).

3.3.2 Training Management Reports. The CMI function is capable
of monitoring and evaluating the effectiveness of the entire
training program. A capability is provided for generating
standard reports in areas such as:

- Course;

- Training;

- Test; and

- Lesson performance.

Additionally, the capability to generate user-defined reports is
provided.

3.4 Offline Test Scoring Capabilities. An offline test scoring
capability exists for block, group, and lesson tests. The
offline tests are completed by trainees and the corresponding
test forms are input to the ISS scoring software by instructors
via an optical mark reader (OMR). The OMR reads the forms and
sends the results to the Adaptive Model for processing. The
Adaptive Model receives either a certified pass or an assignment
override instruction.

44



3.5 Homework. Homework can be completed outside a trainee's
shift if a course is designated as a homework course. If
homework is not authorized for a course then a trainee can only
log on during the open shift hours.

3.6. Student Record Keeping. A capability exists for offline
(tape) storage of student records for graduated students. Online
storage can be efficiently utilized for active students by using
this capability. Student records for graduated students can be
easily retrieved for necessary reports.

3.7 MicroCMI. A simplified CAI course management system, called
MicroCMI, exists within ISS. The development portion of
MicroCMI, which provides course structuring, includes
capabilities for:

(a) Generation of prerequisite course lists or courses
selectable in any order,

(b) Generation of lesson lists containing either linearly
ordered lessons or lessons that can be taken in
any order,

(c) Capability to (re)sequence and (re)organize lesson
orders within courses,

(d) Capability to input both online lesson questions
(embedded) and mastery test items. The latter provides
the capability to develop tests in the Test Editor and
present them using the Test Presentation program.

The operation portion of MicroCMI, which provides student flow,
includes capabilities for:

(a) Registration of students in multiple courses. If
registered in more than one course and the courses are
not in a prerequisite order, the student can choose
which course to get into,

(b) Generation of student rosters for individual courses
containing

(1) The number of lessons the student will take
in a course,

(2) Student names and identifications, and
(3) The student's current lesson,

(c) Generation of student assignments,

(d) Lesson Override capability,

(e) Certify Pass capability,

45



(f) Initiation and presentation of CAI lessons,

(g) Initiation and presentation of mastery tests,

(h) Recording and tracking of student performance on a
limited basis, including lessons passed, performance
on individual lesson questions, and lesson completion
times.

3.8 Access Control. Access control within the ISS is provided
at several levels, ranging from unlimited access to restricted
access. This control is implemented within a log-on procedure
and designates the capabilities a user is allowed. A trainee is
able to view his own records and is able to access only tests,
courseware, etc., assigned to him by the ISS. In addition,
layers of protection are provided in each access group.

3.9. Capability to Send and Receive Messages. All registered
ISS students have the capability to receive messages from their
instructor. All instructors, courseware developers, curriculum
developers, and other non-trainee type of personnel have the
capability to send and receive messages to/from other users. TIe
function provided is a deferred message capability. As a user
enters the system, notification is given of any messages existing
for that user.

46



4.0 GENERAL HARDWARE CAPABILITIES

Computer systems are provided to support the instructional,
administrative, and management functions specified in Section
3.0. The systems include the processor, memory, communication
interfaces, and peripheral devices needed to provide support for
authoring and student presentation areas of the ISS, and provide
the CMI processing power and record storage.

The systems provide acceptable support for terminal communication
and data base input/output. For terminal communications, the
host operating system provides sufficient data manipulation
capabilities so that ISS communications software can provide
input/outnut, screen positioning, graphics display, color
control, display synchronization, function key proessiny, and
terminal mode control. For data base input/output, the host
system provides sufficient file functions for sequential, direct
access, and indexed sequential files including creation,
deletion, positioning, clearing, reading, writing, and sharing of
files. With the large memory and execution capacities of a
virtual machine, concurrent execution of the modular components
is supported. The computer has less central memory than the
programs require; therefore the programs and data are paged from
disk when necessary, making the address space larger than the
memory available.

47



5.0 MicroISS

MicroISS is the microcomputer version of ISS. MicroISS has been
transported from the minicomputer to microcomputer environment
and maintains all the functional capabilities addressed in CAI
and MicroCMI, sections 3.1 and 3.7 respectively. MicroISS exists
in two versions, standalone and networked. The only distinction
between the two is that workstations within the networked version
share a common database that resides on the server. Standalone
versions utilize a database that resides on the users system.

48



APPENDIX A

FUNCTIONAL DESCRIPTION DEVELOPMENT PROCE'S

I. DOD installations/projects visited

McDonnell Douglas personnel visited the thr-- sites

recommended in the Statement of Work. In.se sites were:

- Navy CMI System, Memphis, Tennessee;

- Navy Versatile Training System (VTS),
China Lake, California;

- Army Instructional Management System (AIMS),
Fort Sill, Oklahoma

In addition, data was received from the Denver Research
Institute (DRI) on the following sites/systems:

- Army Research Institute

-- AMTESS
-- TASK
-- FAULT
- - PEAM
-- ACTS
-- SDMS
-- AREIS
-- Computerized Tutor

- NPRDC

-- AIM
-- EEMT
-- CBESS
-- low cost Microcomputer training systems

Functions identified by this effort were incorporated
wherever possible into the functional capabilities
described in Section 3.0.

II. Methodology

Information was gathered using a structured interview
technique. In the interest of standardization, both DRI and
McDonnell Douglas used an identical interview schedule. The
schedule is quite extensive as it was necessary to acquire
information about hardware and software requirements in
addition to instructional concerns. Wherever possible,
interviews were obtained from developer/operators as well as
users. However, as many of these systems surveyed were not

49



operational, the obtained information reflects a
developer/operator bias.

50



APPENDIX B

POTENTIAL ISS ENHANCEMENTS

Design of the ISS does not preclude or prevent the following

potential enhancements:

I. CAI Applications

Intelligent CAI - Artificial intelligence techniques offer a
way to model the student-tutor learning environment. The
tutor is a subject matter expert, can determine what the
student knows about the subject matter area, and can develop
a learning strategy suitable for the student's needs. The
ISS does not prevent the capability for an intelligent CAI
system which consists of an expert module, student module,
and a tutor module. The expert module would use its
information base to generate and solve problems. The
student module would model the level of understanding of a
student, and the tutor module would devise tutorial
strategies for an individual student.

II. Aids to Instructional System Design and Development

Software modules could be developed which support the
conduct of task analysis, curriculum design, media
selection, instructional materials development and
instructional system evaluation.

III. Support for Counseling and Guidance

A potential enhancement would be the ability to provide
computer generated reports to support trainee guidance and
counseling by instructor and course managers.

IV. Interface Capability

The capability to directly pass data to and from external
training devices (not computers) would be of value in
supporting certain large-scale training activities. The
major value would be in the elimination of a paper chain
between devices such as simulators and part-task trainers
and the ISS. A direct interface between ISS and other
training devices would also ease problems in scheduling
scarce resources.

V. Real Time Terminal-to-Terminal Interaction

Gaming would be supported in this mode of operation. For
example, two students could interactively play a chess game.

51



APPENDIX D: CHANGES MADE PORTING 155 TO THE Z-248

52



APPENDIX D:

Computer Resource
Management Technology

of Trnspai Program - Changes MadeResearch and

, f Porting ISS to the Z-248Administflavi

August 1988

Prepared by:
Mei Associates, Inc.
1050 Waltham Street
Lexington, MA 02173

Sponsored by: Prepared for:
U.S. Air Force U.S. Department of Transportation
AFHRL/IDC Transportation Systems Center
Tech. Development Branch Kendall Square
Brooks AFB, TX 78235-5000 Cambridge, MA 02142

53



1. INTRODUCTION

The purpose of this report is to document the changes made to ISS
to bring it into the PC/DOS environment, and in the process, to
explain what needs to be done to port the ISS PC version to other
machines. The report is organized into four sections:

o The System Environment. This documents the host O/S
services ISS requires outside of the code, including
command (batch) files and environment strings.

o The Virtual Machine Layer. The Virtual Machine Layer
(VML) is the portion of the ISS code where all machine
dependencies are to be located. The Z-248 design of this
section of code is sketched.

o Implicit Implementation Dependencies. During the
rehosting effort, many subtle VAX-specific assumptions
were discovered in the ISS code. These dependencies are
described, as well as what portable alternatives replaced
them.

o Recommendations for Future Changes. With some re-design,
ISS can be made even more portable than the current Z-248
version. Some proposals for such an effort are made in
this section.

This document assumes some familiarity with both Ada and the VAX
version of ISS.

The Ada language is well known for its support of portable
programming. Ada provides many facilities for specifying a
solution in machine-independent terms. Generally, an Ada program
need not incorporate machine-specific details unless the
underlying algorithm requires it. Furthermore, machine-specific
details can be separated out and centralized, so that only a
small well-defined section of code needs to be modified to port
the program to another machine.

It is often assumed that any program written in Ada is
automatically portable. This is not the case. Ada programs can
include machine-specific constructs which are not portable. Such
constructs may be required for certain applications. A program
could also include machine-specific details even if they really
were not necessary; for example, a program might use the literal
"2147483647" to represent the last INTEGER value, when the
machine-independent (and clearer) form "INTEGER'LAST" could have
been used instead.

ISS is written in Ada, but it often fails to make use of Ada
features that promote portability. Given that much of the ISS
code was generated by automatic translation from another
language, this is not surprising. The rehosting of ISS to the
Z-248 was, therefore, unusually difficult for an Ada program.

54



The results of the porting efforts, however, were more than
satisfactory. Our goal from the start was not just to modify the
code so that it would run on the Z-248, but to eliminate or at
least centralize as many of the machine dependencies as possible
within the time constraints. The resulting PC version of ISS is
not as portable as it could be; nevertheless, it can now be
rehosted to the VAX or to other machines with reasonable ease.
Moreover, groundwork has been laid to make ISS even more
portable.

1.1 THE SYSTEM ENVIRONMENT

On the VAX, ISS requires more of the system environment than just
data files and executable images. ISS also uses a logical name
table, symbols, and command files. The PC version required that
DOS equivalents be found for these VAX/VMS facilities.

1.1.1 Logical Names

The VAX version of ISS uses logical names to identify certain
environment-specific details. The directories ISS uses are
specified by logicals; e.g., the logical name DBDDIR identifies
the directory of database files, and EXEDIR identifies the
directory with the ISS executable images. We used the obvious
DOS equivalent for logical names -- environment variables.

The DOS default size for the environment space is only 160 bytes,
which is too small to accommodate all the environment strings ISS
needs. Fortunately, it is possible to create much larger
environment spaces using the SHELL command in DOS Versions 3.0
and later. The Installation Guide for the Z-248 version ISS
explains how to increase the environment space.

1.1.2 Symbols

On the VAX, ISS uses symbols to simplify the commands a user must
enter. ISS itself is defined as a symbol; its translation is a
call to a command file that runs EXEDIR:LOGON. Roughly the same
effect is obtained in DOS using batch files located in a
directory specified in the PATH variable. For the Z-248 system,
the EXEDIR directory is included in the path; so the batch files
corresponding to ISS symbols have been placed in this directory.

1.1.3 Command Files

The VAX version of ISS uses VMS command files for common tasks.
A command file is a text file of VMS commands. VMS command files
can be fairly sophisticated; they can use rudimentary control
structures, do simple text file I/O, and call one another. ISS
uses command files to set up the system (that is, to define or
redefine the symbols and logical names ISS uses), to run
processes (including background processes), and to do system
generation.

55



Theoretically, The DOS equivalent of VMS command files are batch
files. Unfortunately, VMS command files do not always translate
easily into DOS batch files, for the DOS batch file facility is
considerably less powerful than the corresponding VMS facility.
Until DOS 3.3, there was no mechanism by which batch file A could
call batch file B without either abandoning the execution of A or
creating a separate environment for B. Because of the
differences between command and batch files, it was often easier
to develop a batch file that met our DOS needs than to adapt the
corresponding VMS command file.

The VAX command files can support several different ISS
environments. This hardly seemed necessary on the Z-248; so
support for multiple Z-248 environments has not been developed.
Instead, we developed the batch file BOOTISS.BAT, which assigns
the appropriate values to all of the logicals (i.e., environment
variables) that the ISS software refers to, and adds the EXEDIR
directory to the path. This batch file has roughly the same
functionality as the ENVDEFS.COM file on the VAX.

There was one tricky part about implementing BOOTISS; the
environment string SYSBOOTTIME needs to be set to the machine's
boot time, written in the form

" YYYY MM DD HH MM SS "

On the VAX, the file ENVDEFS.COM file accomplishes this task by
calling another command file, MGRDIR:GETBOOTIM.COM. GETBOOTIM
gets the boot time in string format from a system call, edits the
time string into the desired format, and assigns it to
SYSBOOTTIME.

Performing the same task under DOS poses several problems. The
batch file facility does not support even the most rudimentary
string processing operations. Instead of implementing GETBOOTIM
as a batch file, it was implemented as an Ada procedure. There
is no DOS equivalent of the system call that returns the boot
time; so the Z-248 version of GETBOOTIM uses the current time
(obtained from CALENDAR.CLOCK) as the boot time. Finally, a DOS
program cannot update the environment; so our version of
GETBOOTIM outputs a batch file SETBOOTI.BAT that assigns the
"boot time" to SYSBOOTTIME. The last action of BOOTISS.BAT is to
call SETBOOTI.BAT.

As inelegant as the Z-248 batch files are, they do demonstrate
that ISS can be supported on any system with even the most
minimal command file support.

56



2. THE VIRTUAL MACEINE LIYER

The Virtual Machine Layer (VML) portion of ISS is the interface
between the Ada code and system facilities. Much of the VML code
on the VAX is written in languages (mostly in VAX Fortran, with a
little Assembly code). Some of the Fortran code is used to
access the Fortran math library. The Ada portion of the VML
layer are packages that declare interfaces to the non-Ada
subprograms. Most Ada VML packages have names that begin with VM
(e.g., VMCONFIG, VMRTS). In the development environment, the
directory SE: (EXTLIB] contains the non-Ada source files for the
VML, as well as the library EXTLIB of VML object code. Every ISS
module is bound with the EXTLIB library.

The VML, by its very nature, is the least portable portion of the
system. The visible part of the Ada VML packages required little
modification for rehosting, but the non-Ada portion of the VML
was so VAX/VMS specific that it had to be redeveloped for the DOS
environment.

The Z-248 VML subprograms are written in Ada and Assembler.
Although none of the VAX VML subprograms were written in Ada, Ada
turned out to be an excellent language for developing the VML.
Access to DOS facilities was obtained with two Ada packages, DOS
and DOSE, that are provided with the Alsys AT compiler. Writing
the Z-248 VML in Ada had these advantages:

o The Ada code is guaranteed to be compatible with the
Alsys Ada runtime.

o The Ada portion of the VML can be debugged with an Ada

source line debugger.

o The VML code written in Ada is easier to maintain.

o Some VML subprograms can be written using portable Ada
code.

The Z-248 does not offer equivalents to all of the VAX/VMS system
services used in the VAX version of the VML; so some services had
to be simulated or avoided.

2.1 CONFIGURATION CONSTANTS

The package VMCONFIG declares constants that establish certain
characteristics of the machine or the version of ISS. To
configure ISS for another machine or version, one would modify
the constants in VMCONFIG to reflect the new context.

The concept behind VMCONFIG is laudable in that it centralizes
machine dependencies. The implementation of VMCONFIG, however,
was not well done. The following anomalies were discovered in
the porting effort.

57



" Many of the constants in VMCONFIG are not used anywhere
else in current versions of ISS.

" Some of the constants (such as MAXINT) should not be
used, since they duplicate results that can be obtained
more readily by using attributes or the SYSTEM package.

" One of the objects, the string VERSION, was implemented
as a variable (rather than a constant). VERSION is
assigned a static value (e.g., "3.0") during the
elaboration of VMCONFIG; the body of VMCONFIG serves no
other purpose other than to assign VERSION alvalue, which
is not changed.

For the Z-248 version of ISS, the body was eliminated and VERSION
is declared as a constant. Unused or ill-advised constants were
commented out, leaving only five constants. These five constants
were assigned appropriate values for the AT. Some constants
specific to the Z-248 version are declared here.

2.2 THE ADDR PACKAGE

The ISS package ADDR declares operations on the type ADDRESS,
declared in the pre-defined package SYSTEM. The ADDR operations
fall into these categories:

" The functions TOINTEGER and TOADDRESS, for
INTEGER/ADDRESS conversions.

" Address arithmetic functions, in the form of overloading
the "+" and "-" operators; the declared operations are:

function "+" (LEFT : in ADDRESS;
RIGHT : in INTEGER) return ADDRESS;

function "+" (LEFT : in INTEGER;
RIGHT : in ADDRESS) return ADDRESS;

function "-" (LEFT : in ADDRESS;
RIGHT : in INTEGER) return ADDRESS;

function "-" (LEFT : in ADDRESS;
RIGHT : in ADDRESS) return INTEGER;

" ADDRESS comparison operations; that is, versions of "<",
"<=", ">=", and ">" for the type ADDRESS.

Developing a Z-248 version of this package was particularly
difficult, due to the nature of the 80286 addressing scheme. The
80286 form of addressing uses two unsigned 16-bit integers: the
segment and the offset. Moreover, the interpretation of the
segment portion depends on the mode in which the program is
running. Many of the ADDR operations do not always have
reasonable interpretations in the 80286 segmented memory modei.
The following problems were readily apparent:

58



* The INTEGER type on the Z-248 is only 16 bits long; it is
therefore too short to hold ADDRESS values, or to hold
the displacement between two arbitrary addresses.

" If we have two ADDRESS values from distinct segments,
there is no simple, reliable way to order them, or to
subtract them.

" An integer can only be added to or subtracted from an
ADDRESS value reliably if the result is an address in the
same segment. If the address offset plus or minus the
integer cannot be represented as an offset (a 16-bit
unsigned integer), then there is no mode-independent
method to add or subtract the address and integer.

Under no circumstances should the ADDR package return incorrect
ADDRESS values. The potential damage caused by this package
could be enormous. We therefore added an exception to ADDR
called ADDRESSERROR, which is raised by an ADDR operation when
it cannot return a meaningful ADDRESS result.

The use of the ADDR package was examined, and it was found that
the address arithmetic operations were often unnecessary. For
example, address subtraction was often used to find the offset of
a record component from the beginning of the record. This offset
can be found using the standard 'POSITION attribute. An
expression such as

STR'ADDRESS + (N - 1)

would be used to find the address of the Nth component of the
string STR, when the simpler, portable and more dependable
expression

STR (N)'ADDRESS

could be used instead. Many unnecessary uses of the ADDR package
were eliminated.

On the Z-248, the type INTEGER is not appropriate for ADDRESS
conversions or arithmetic. It is rather poor style to use the
pre-defined INTEGER type here, since its range is implementation
dependent; a user-defined type or subtype should be used instead.
We therefore added the subtype BYTECOUNT, which is used in place
of INTEGER in all the ADDR conversion/arithmetic operations. On
the Z-248, BYTECOUNT is declared as

subtype BYTECOUNT is LONGINTEGER;

On the VAX, it would be declared as a subtype of INTEGER. To
port this package to another machine, a reasonable choice for
BYTE COUNT must be made, but at least the decision process has
been centralized to this one declaration.

59



In addition to changes required for rehosting ADDR, other
additions were made to ADDR. The subtype BIT COUNT, used to
represent the size of arbitrary objects in bits, was added, as
well as the in-lined functions IN BYTES and IN BITS which perform
the somewhat machine-dependent conversions between size
measurements in bits and in bytes.

2.3 LOW-LEVEL MEMORY OPERATIONS

The VML offers six low-level memory subprograms that operate on
objects specified by starting address and size. The subprograms
are distinguished by having names that end with "MEM."

MOVIEMM Given a source address, a target address, and the
number of bits to move, this procedure will copy
bits from the source address to the target
address.

NZWMM This function allocates a block of memory of a
given size, and returns the address of this block.
The value returned by NEWMEM is of type ADDRESS;
in most applications, the return value of NEWMEM
is converted to an appropriate access value,
usually by MOVEMEM.

FRBZMKM Given the address of an access or address value,
FREEMEM will deallocate the storage that the
access/address value references, and sets the
reference to null. If the access/address value is
null to begin with, FREEMEM has no effect.

FILLMEM This procedure is used to fill in a section of
memory with a given fill character. The default
fill character is ASCII.NUL. FILLMEM is often
used to zero out every component in a composite
object as an initialization.

COMPAREMEM The COMPAREMEM function compares two equal-sized
sections of memory. The parameters are two
addresses and a common size. If the sections are
not equal, the function returns the index of the
first byte where these sections differ. If the
sections are equal, 0 is returned.

SEARCH_MEM Searches for the occurrence of one string inside
the other, where both strings are specified as
address - length pairs.

The experienced Ada programmer may be puzzled by these
operations, since standard Ada operations can produce the same
effects without resorting to low-level memory manipulations. In-
line documentation indicates that at least some of these
operations were used because ISS was first translated to a subset
of Ada that did not have features such as UNCHECKED DEALLOCATION
that could take the place of memory subprograms.

60



These subprograms are completely flexible in that they can be
used on virtually any object, independent of its type. They are
also completely unprotected; if the parameter specifying the size
exceeds the size of the object specified with the address
parameter, some section of memory can get overwritten. The
size parameters are typically specified with the 'SIZE attribute
to avoid this problem.

It should be noted that the low-level memory facility implicitly
assumes that an access value consists solely of an address. This
assumption is true for most Ada implementations, including the
VAX and Z-248. An Ada implementation is not, however, required
to represent access values this way, and without this assumption,
some of these low-level memory operations simply will not work.

Curiously, in the VAX version of the VML, the low-level memory
operations are declared in two separate packages: VMRTS and UT.
In both packages, the memory subprograms were interfaced to
exactly the same Fortran code. This duplicity was eliminated in
the Z-248 version by dropping the UT package and implementing the
VMRTS package. Looking back, it would have been more efficient
to drop these operations from VMRTS and implement UT, for two
reasons. More units depended on UT than on VMRTS; so, fewer
context clauses would require modification. Moreover, the UT
package could help decompose VMRTS, which is currently a rather
large package of very loosely related entities.

The low-level memory operations were not difficult to implement
in Ada. The general implementation strategy was to convert the
address parameters to string access values. The required
operations can then be easily and efficiently performed using the
Ada array manipulation facilities. This approach was simple, and
with the possible exceptions of NEWMEM and FREEMEM, very
portable.

2.4 MATH FUNCTIONS

The package VMRTS (acronym for Virtual Machine Run Time Services)
declares interfaced functions used to implement the MATH package.
The MATH functions can be broken down into these categories:

o Functions that perform bit-level operations on integers,

such as "and", "or", and circular shifts.

o Transcendental functions such as EXP, LOG, SIN, and COS.

o A random number generator.

The Z-248 implementation of the math functions was relatively
straightforward. The bit-level operations were implemented using
either the UNSIGNED package or assembly code. The transcendental
functions were written in Assembler so that we could take
advantage of the 80287 instruction set. The random number
generator was written in Ada.

61



All of these functions should be easy to implement on other

machines.

2.5 PROGRAM MANAGEMENT

An ISS session involves the execution of one or more ISS
programs. The VMRTS package declares program management routines
used by the PC package to coordinate the execution of the
programs in an ISS session and maintain communication between the
programs. The program management subprograms are:

GET PGH NAME Returns the primary file name of the currently
executing program.

PGM_EXISTS Determines whether a program with a given name
exists.

RUNPG4 Terminates the current program and either starts
the execution of another program or exits to the
host O/S, depending on its parameter.

The program management subprograms were implemented on the Z-248
in Ada using the DOS package. The coding of GET PGM NAME and
PGM EXISTS made obvious uses of DOS services, but devising a
Z-248 version of RUNPGM turned out to be a challenge. There is a
DOS function that terminates the program that invokes it, but
this DOS function does not start the execution of another
program. There is also a DOS function that will dynamically load
and execute a program, but this function does not terminate the
program that invokes it.

RUNPGM was implemented on the Z-248 by writing an auxiliary
program called CONTROL, which serves as a shell for ISS sessions.
CONTROL dynamically loads and executes the various ISS programs.
The CONTROL program communicates with other ISS processes via the
file PROGRAM.NAM, a text tile in the MGRDIR directory that
defines the next ISS program to be executed. This is the basic
algorithm of CONTROL.

loop

Try to open PROGRAM.NAM;
exit when (PROGRAM.NAM does not exist);

Read the name and options of a program from the
PROGRAM.NAM file;

Delete the PROGRAM.NAM file;

Load and execute the program whose name was read in;

end loop;

62



An ISS session is started by creating a PROGRAM.NAM file with the
desired program name, and executing CONTROL. The batch file
ISS.BAT creates a PROGRAM.NAM file for the execution of LOGON,
then calls CONTROL.

The procedure RUNPGM can transfer control to another program by
creating the appropriate PROGRAM.NAM file. To indicate that
control should return to the host operating system, no
PROGRAM.NAM file is created. In either case, a DOS procedure is
called to terminate the current program, which presumably is
being executed by the CONTROL procedure. The CONTROL procedure
will then take the action indicated by the PROGRAM.NAM file (or
its absence).

2.6 TIME MANAGEMENT

VMRTS has the following time management subprograms:

GET DATETIM Returns tne current date and time in the form of
year, month, day, julian, hour, minute, and
second.

GET TIMERS Returns the elapsed time and the CPU time for the
current user; both are measured in centi-seconds
from the time the user logged in.

WAIT Delays the program for the number of centi-seconds
indicated by its parameter.

The Z-248 version of GET DATETIME was written in standard, fully
portable Ada, using the CALENDAR package. The WAIT procedure
could be implemented using the Ada delay statement, but instead
this procedure was removed from the Z-248 version, and the few
calls that were made to WAIT were replaced with delay statements.
The only unusual time procedure was GET TIMERS, because DOS does
not maintain the information that this procedure should return.

To implement GET TIMERS, CONTROL was modified so that its first
action is to write the current time (obtained from the CALENDAR
function CLOCK) to a file named LOGTIME.DAT, in the MGRDIR
directory. The time stored in this file is assumed to be the
user's logon time for the rest of the session. The elapsed time
returned by GET TIMERS is calculated by subtracting the current
time from the "logon time" stored by CONTROL.

GET TIMERS can return a reasonable value for the elapsed time on
the Z-248. There is no way to return a reasonable value for the
CPU time, however, so the Z-248 GET TIMERS always sets the CPU
time equal to the elapsed time.

One of the main uses of GETTIMERS is in the LOGON procedure.
The timer information is used to calculate the CPU utilization by
the previous process, which is displayed at the top of the LOGON
main page menu. Usually, the Z-248 LOGON will indicate 100% CPU
utilization, which is a consequence of the fact that elapsed time

63



equals CPU time. Because of round-off errors, however, LOGON

will sometimes indicate CPU utilization in excess of 100%.

2.7 MULTIPROCESS SUPPORT

The VMRTS package provides support for managing the current
executing processes, in the form of these subprograms:

GET PID Returns the Process ID number for the
currently executing process.

GET TID Returns the Terminal ID number for the
current terminal.

GETTT NAME Returns the type of the current terminal.

PRIMITIVE LOCK Obtains a lock for a given resource for the
current process. If another process has
locked the resource, this procedure will wait
until the resource becomes unlocked.

PRIMITIVEUNLOCK Unlocks a resource previously locked with
PRIMITIVELOCK, making it available to other
processes.

In the absence of networking, none of these subprograms have any
relevance, since there is only one process and one terminal. The
current Z-248 versions of these programs are trivial. GET PID,
GET TID, and GET TTNAME return constants, and the primitive
locking subprograms do nothing.

When ISS is rehosted to a networked PC environment, these
subprograms will require non-trivial bodies.

2.8 LOGICAL NAME TRANSLATION

The VMRTS procedure TRANLOG is used to translate logical names.
For example, TRANLOG is called to translate the logical DBDDIR to
find the directory that contains the database.

The Z-248 equivalent of logical names are environment strings.
The DOS package provides a function for translating environment
strings, which is used to implement TRANLOG. Presumably, a
similar solution can be used on any machine whose host O/S has
some form of the environment string facility.

2.9 EXIT HANDLING SUPPORT

The EXH package furnishes an exit handling facility, by which a
package can declare an action (in the form of a local procedure)
that is to be performed when the current program completes
execution. Two VMRTS procedures support the EXH package, CALL
and TRAPMACHINEEXCEPTIONS.

64



The CALL procedure has two parameters: an address and an
integer. The address should be that of an Ada procedure with a
single parameter of mode "in" and type integer. The CALL
procedure calls the procedure at the address, passing the integer
parameter to this procedure. The CALL procedure was implemented
in Assembler. The AlSys Ada compiler was used to determine the
Ada procedure calling conventions.

There was one minor complication with the implementation of CALL.
The CALL procedure can only work with procedures that can be
called by a "far" call; that is, a call from a different program
segment. On the VAX, every procedure whose address is passed to
CALL is local to the body of a package; such a procedure would
only have "near" calls in normal Ada usage, since it would not be
visible outside the package. Hence, an Ada implementation need
not implement these procedures as far-callable programs.

The VAX version of ISS uses an implementation-dependent pragma,
EXPORT PROCEDURE, to make sure that the procedures whose
addresses are passed to the CALL procedure are far-callable. The
EXPORT PROCEDURE pragma is not supported on the Z-248, but the
desired effect of insuring that these procedures were far-
callable was obtained by declaring them in their package
specifications. This approach is both portable and more
straightforward than the EXPORTPROCEDURE approach.

It is hard to determine what TRAPMACHINEEXCEPTIONS is supposed to
do. Currently, it is not functional on the VAX; so a null body
was written for it on the AT. Its original purpose was probably
to overcome some deficiency in the non-standard version of Ada
that ISS was first translated to.

2.10 COMPOUND KEY CONVERSION

The ISS database (DM) management subsystem indexes records
according to their keys. A key is a section at the beginning of
a database record, consisting of one or more fields. There are
two types of fields: string and integer. When two keys are
compared, the leftmost field is considered most significant,
followed by the second field from the left, and so on. The
records in a database file are ordered by their keys.

It would be very convenient if two keys could be compared by
simply comparing their bytes from left to right. On some
machines, however, it is not that simple. On the VAX and on the
Z-248, integer types are stored with their least significant byte
appearing first. For example, the integer 258 (16#0102#) would
be stored as

02 01

The integer 3 (16#0003#) would be stored as

03 00



A left-to-right comparison of the bytes that make up the integers
258 and 3 would therefore order 258 before 3.

The package VMCONFIG has a constant PACKSLEFT TO RIGHT that
indicates whether the host machine stores the most significant
byte of an integer as the left-most byte. If PACKS LEFT TO RIGHT
is FALSE (as it is on the VAX and Z-248), keys can still be
compared easily if they first go through a conversion process, by
which each integer field is reversed. For example, if a key
consists of the single integer 258 (16#0102#), stored as

02 01

then the converted version of the key would contain

01 02

The VMRTS procedure CONVERTCOMPOUNDKEY performs this conversion,
given the address of a key and a description of its fields. The
UNCONVERTCOMPOUNDKEY procedure reverses the process. These
procedures were coded in Z-248 assembler. If bit-level packing
were available on the Z-248, they could also be coded in Ada.

It should be noted that on machines that store the most
significant byte of an integer on the left, these procedures are
not called. The key conversion procedures can therefore be given
null bodies on such machines.

2.11 LOW-LEVEL FILE I/0 SUPPORT

The package VMIO declares two types of low-level I/O operations:
file I/O and unit I/O. The file I/O subprograms in VMIO all
begin with the letter F, for example FOPEN, FCLOSE, and FREAD.

The VMIO package assigns each open file a file descriptor in the
form of an integer. The file descriptor is used to identify the
file in the other operations. A location in the file is
specified by a byte address, which is one more than the offset of
the byte from the beginning of the file.

One change that had to be made in the specification of VMIO for
the Z-248 is that the type INTEGER was used for byte addresses.
On the Z-248, the LONG INTEGER format is generally required to
represent byte counts in files. To avoid this sort of
portability problem, the subtype BYTEADDRESS was added to VMIO.

subtype BYTEADDRESS is LONGINTEGER;

When VMIO is rehosted, BYTE ADDRESS should be defined as an
integer type or subtype that can represent arbitrary byte
addresses in files.

66



The implementation of the VMIO file operations was done in Ada,
using the DOS package. The implementation was simplified by the
fact that DOS, like VMIO, assigns integers (file handles) to open
files, and uses these integers to identify open files in file
operations.

2.12 LOW-LEVEL UNIT I/0 SUPPORT

The VMIO unit I/O operations all have names beginning with
"UNIT ": UNIT INIT, UNIT READ, and UNIT WRITE. These operations
are at the heart of the ISS user interface. The terminal
communications package (TC) uses these operations to carry out
keyboard and screen I/O.

The Z-248 version supports two terminals: a Tektronix 4105
connected to the Z-248 COM1 port, and the Z-248 itself, using an
EGA monitor. The Z-248 support includes the emulation of the
4105, so that courseware developed on the 4105 could be used on
the Z-248. The Tektronix 4105 was chosen because the 4105 was
the most commonly used terminal for ISS on the VAX at the time.
The environment variable ISSSTDOUT indicates which terminal is to
be used.

Both terminals require installable drivers. The EGA driver was
the more complex of the two, because of the code to emulate the
4105. Both drivers were written in Assembler. To run ISS, the
driver for the desired terminal must be installed via the DEVICE
command in the CONFIG.SYS file, and ISSSTDOUT must be set to the
correct value.

The VMIO unit I/O subprograms themselves were written in Ada,
using the DOS package. These subprograms interface with the
appropriate driver, as determined by ISSSTDOUT.

2.13 BACKGROUND PROCESSING

The package VMBG supplies background processing services. On the
VAX, VMBG can be used to start executing either a command file or
a program in the background. VMBG also has subprograms which can
suspend, resume, or stop a background process, and check whether
a background process is still active.

There are two VAX ISS programs that are run as background
processes. These programs process requests from other ISS
processes, and have no interactive I/O. An ISS background
program communicates with the requesting program through a
section of shared memory.

BGEONITOR Processes requests for background services, and
submit print jobs.

AM Manages full CMI resources; AM is used for student
registration, student logon, and course and test
presentation when management is done through full
CMI.

67



The AM and BGMONITOR processes can be started and controlled
using the LGCOMMAND procedure. The LGCOMMAND can be invoked from
the LOGON main page menu by pressing Pad 3.

The whole background processing facility is a major hurdle for
the 80286-based machines. Without network support, there can be
no real background processing, except for printing files.

Our approach was to implement the one VMBG program, PRINTFILE,
that actually could be performed on the Z-248. Other VMBG
operations were simply avoided. BGMONITOR and AM were not
rehosted, and all BGMONITOR and AM commands were exorcised from
the rehosted version of LGCOMMAND.

The full CMI system requires background processing; hence it
cannot be ported to the Z-248 at this point in time. There is
another course management system called MicroCMI which does not
require background processing. The MicroCMI system was therefore
rehosted to supply instructional management for the Z-248.

The VMBG package will no longer be a problem on either LAN's, or
on 80386-based machines. When ISS is brought into these
environments, the other VMBG functions can be implemented.

68



3. IIWLICIT IMPZNNTATION DZPIDWICINS

Ideally, all machine dependencies should be consolidated in the
Virtual Machine Layer, so that the entire system could be
rehosted by simply revising the VML. The VAX version of ISS is
far removed from this ideal. Many VAX-specific assumptions were
discovered in the non-VML portion of ISS during the Z-248 rehost.

To merely replace all VAX-specific code with Z-248 specific code
would not be acceptable for a production system. The machine
dependencies found in the non-VML code were therefore replaced
with machine-independent alternatives whenever possible. If a
host dependency could not be removed without substantial
rewriting, then we tried to centralize the dependency as much as
possible, preferably by moving it to the VML.

Not all host dependencies in the current Z-248-based version of
ISS are confined to the VML. The changes required to rehost the
ISS code outside the VML, however, are minimal; the changes are
mostly confined to a handful of package specifications in the SE
and APPLIB layers. The vast majority of ISS units can now be
ported without modification.

3.1 INTEGER SIZE CONFLICTS

Throughout ISS, all integer quantities are of the pre-defined
type INTEGER. The type INTEGER is host dependent, and typically
denotes the most common signed integer format for the given
machine. Various pre-defined entities use the type INTEGER; for
example, objects of the type STRING are indexed by INTEGER
values.

On the VAX, the INTEGER type is 32 bits long, and can represent
any value in the range

- (2 ** 31) .. 2 ** 31 - 1
or

- 2 147_483 648 .. 2 147 483 647

This range is large enough to represent any integer quantity
encountered in ISS.

On 80286-based machines such as the Z-248, INTEGER is implemented
using only 16 bits; its range is

- (2 ** 15) .. 2 ** 15 - 1
or

- 32_768 .. 32_767

Some ISS integer quantities cannot be represented by the Z-248
INTEGER type; for example, social security numbers can range from
0 to 999 999 999. There is 32-bit pre-defined integer type,
LONG INTEGER , available on the Z-248. The problem is that where
one integer type was used on the VAX version, more than one
integer type is required on the Z-248. Contrary to what the ISS

69



in-line documentation indicates, no real preparation was done for
the possibility of moving ISS to a 16-bit machine.

This problem was by far the worst portability problem encountered
in ISS. The majority of ISS compilation units required at least
some modification to resolve problems related to integer types.

o Some objects that were declared as INTEGER had to be re-
declared to have a larger integer type;

o ISS integer utilities such as TH.IN ST and CAGEN.ACPTINT
had to be overloaded to accommodate more than one integer
type;

o Explicit type conversions were required in integer
expressions that mixed integer types.

It should be noted that there is a standard Ada solution to this
problem. The Ada programmer can define his or her own numeric
types in terms of requirements of the application. To illustrate
this, consider the following type definition (used to represent
social security numbers):

type SOCSECNUM is range 0 .. 999_999_999;

The type SOC SEC NUM will be derived from a pre-defined integer
type that can represent the numbers in the given range. On the
Z-248, SOC SEC NUM would be derived from the type LONG INTEGER,
si ce that is the only Z-248 pre-defined integer type that can
rep.resent all numbers in the range 0 to 999999999. On the VAX,
SC; SEC NUM would be derived from the INTEGER type, for the same
rea3on.

The virtue of user-defined types such as SOC SEC NUM is their
portability. The range of values is defined in terms of the
requirements of the application, rather than in terms of the
nu"aeric formats of a particular machine. The user-defined type
definitions can therefore usually be ported to another machine
wi'thout modification.

Us'-r-defined types is one of the many Ada portability features
th.t, lamentably, were not incorporated into ISS. The VAX
version of ISS has no user-defined numeric types. If ISS
de,-lared integer types such as SOC SEC NUM for every integer
quantity that might exceed the 16-bit format, the integer size
conflicts would not have occurred.

Eventually, ISS should be re-written to employ user-defined
integer types. For the first rehosting effort, however, integer
type declarations were not incorporated into the Z-248 version of
ISS, because it was not feasible to make all the changes this
would entail within the given time limits. Instead, we chose an
alternate strategy to the integer size problem that was
relatively quick to implement, and is nearly as portable as the
common Ada approach.

70



Our overall strategy was to define application-specific subtypes

of the pre-defined types. For example, we can define

subtype SOCSECNUM is LONGINTEGER range 0 .. 999_999_999;

and use this subtype to declare all objects that represent social
security numbers. Examples of this can be found in the VML code;
e.g. the subtype BYTECOUNT in the package ADDR.

Application-specific subtypes of the pre-defined subtypes are not
as portable as user-defined types, in that the subtype
declarations themselves may require revision when rehosted. The
objects declared using these subtypes, however, will not require
modification; so at least we have reduced the number of changes
required.

The advantage of application-specific subtypes is that only the
two types INTEGER and LONGINTEGER are used to represent almost
all of the integers in ISS; therefore, we need only to come up
with two versions of the integer utilities such as TH.IN ST and
CAGEN.ACPTINT. In addition, these subtypes can be turned into
portable user-defined types when we have more time to improve the
software.

The implementation of this strategy was time-consuming. The Ada
compiler was tremendously helpful in this effort, for the type
mismatches caught by the compiler often indicated an object
declaration that needed to be changed. But even with the help
of the compiler, lengthy analysis was often necessary to
determine the range of values a given object could represent.
The number of units requiring modification was also rather large.

Here are the steps taken to implement this strategy.

3.1.1 Modify the Package A

The package A defines useful subtypes for ISS. All but a handful
of the ISS units depend on A. The package A declares INT as a
shorter name for INTEGER. It also declares these 31 subtypes of
INT:

subtype IIB is INT range 0 .. 2 ** 1 - 1;
subtype 12B is INT range 0 .. 2 ** 2 - 1;
subtype 13B is INT range 0 .. 2 ** 3 - 1;

subtype 131B is INT range 0 .. 2 ** 31 - 1;

In general, an INTEGER in the subtype InB can be represented
using only n unsigned bits. These subtypes are used in component
declarations to insure that when composite types are packed, the
bare minimum number of bits will be used to represent each
component. The author grants that this method of declaring
components is a poor coding convention. Nonetheless, the A
package turned out to be quite helpful in terms of fixing integer
type problems.

71



The Z-248 version of A declares subtypes I16B through 131B to be
subtypes of LONG INTEGER instead of INTEGER. This change assigns
the correct types to almost all record and array components. It
also provides a pool of portable (but uninformative) subtype
names for large unsigned quantities.

The subtype S32B was added to the package A. The purpose of this
subtype is to rename the 32-bit signed integer type available on
the host machine.

3.1.2 Add Application-Specific Subtypes

Subtypes were introduced to represent quantities too large for
the 16-bit format. For example, the package PC declares

subtype SOCSECNUM is A.131B range 0 .. 999_999_999;

which is then used to declare social security numbers throughout
the system.

3.1.3 Replace Constants with Named Numbers

A named number is a special kind of numeric constant whose type
is universal, rather than a named type. An integer named number
can therefore be implicitly converted to any integer type. The
VAX version of ISS uses no named numbers, but the vast majority
of the integer constants can be redefined as named numbers. To
illustrate, the constant BLACK from the package TC was declared
as follows on the VAX.

BLACK : constant INT 1;

Using this declaration, BLACK has the type INT. Consequently,
BLACK would require explicit conversion to be used in an
expression requiring another integer type. For the Z-248
version, BLACK was redefined as a named number, as shown below:

BLACK : constant := 1;

By defining BLACK as a named number, BLACK can now be implicitly
converted to any integer type. (Note: It is considered good Ada
style to use named numbers in place of constants whenever
possible.)

3.1.4 Create Generic Versions of Integer Utilities

To create overloaded versions of integer utilities, generic
versions were written. The overloaded versions were created by
replacing the original declarations with generic instantiations
for the pre-defined types used on the host machine. (For the
Z-248, the types are INTEGER and LONG INTEGER.) For example, the
VAX version of TH declared this integer utility:

72



function IN ST (SOURCE : in INT;
FORMAT : in INT := 0) return STRING;

The Z-248 required a version of IN ST where SOURCE was type
INTEGER, and where SOURCE was type-LONG INTEGER. The package
NUM CONVERSIONS was created with generic versions of the string-
integer conversion functions (including INST). Here is the
specification of NUMCONVERSIONS:

generic

type NUM is range <>;

package NUMCONVERSIONS is

function INST (SOURCE : in NUM;
FORMAT : in INT := 0) return STRING;

end NUM CONVERSIONS;

The declaration of IN ST in the specification was replaced with
two i.:stantiations of-NUM CONVERSIONS, one for the INTEGER and
one for the LONG INTEGER type. This provides the overloaded
versions of IN SY for the INTEGER and LONG INTEGER types. The
outline of the Z-248 version of TH is given below:

with NUMCONVERSIONS;

package TH is

package INT CONVERSIONS is
new NUMCONVERSIONS (NUM => INTEGER);

package LONG INTEGER CONVERSIONS is
new NUMCONVERSIONS (NUM => LONGINTEGER);

function INST (SOURCE : in INT;
FORMAT : in INT := 0) return STRING

renames INT CONVERSIONS.INST;

function INST (SOURCE : in LONGINTEGER;
FORMAT : in INT := 0) return STRING

renames LONGINTEGERCONVERSIONS.IN ST;

end TH;

73



Note: When this version of TH is ported to another machine, the
instantiations of NUM CONVERSIONS may have to be revised to
reflect the pre-defined integer types used on the new host for
ISS.

3.1.5 Insert Needed Type Conversion

Even with the overloaded versions of the integer operations,
numerous explicit conversions are still required. For example,
the procedure CAGEN.JULIDAT has the statement:

JULIANDATE := JULYEAR * 1_0C0 + JULDAY;

where JULIAN DATE is declared as A.I17B (a subtype of
LONG INTEGER) and JUL YEAR, JUL DAY are both declared integer.
The expression on the right is of type INTEGER, whereas the
variable on the left is of type LONGINTEGER.
This type conflict is remedied by converting JULYEAR, JUL-DAY to

the subtype A.I17B, as shown below.

JULIANDATE := A.I17B (JULYEAR) * 1_000 + A.I17B (JULDAY);

The types no longer conflict, since all calculations are now done
in the A.I17B format.

Note: Every integer type conversion in ISS is a conversion to an
application-specific subtype or a subtype defined in A. This was
done to assure that all type conversions are portable.

3.1.6 Use Non-Integer Data Types When More Appropriate

ISS sometimes uses the type INTEGER to represent objects that can
be expressed more naturally -- and portably -- using other data
types. A prime example of this can be found in the package PC.
The PC package defines eighteen events; many of its subprograms
operate either on a single event, or on a set of events. The VAX
version of PC represents each event as an INTEGER constant that
is a distinct power of 2, for example:

Fl : constant INT := 2 ** 0;

F2 : constant INT := 2 ** 1;

CONDITIOND : constant INT := 2 ** 18;

A set of events is represented as the integer sum of the events.
The members of the set can be derived from this sum by examining
its binary notation.

The problems caused by the VAX representation of sets of events
could have been solved using the other techniques discussed in
this section, but the use of an integer type to represent sets of
events seemed so unnatural and inconvenient that a different
implementation was chosen instead. The Z-248 version of PC

74



represents an event as an enumeration type; a set of events is
represented as a BOOLEAN array.

type EVENTNAME is
(Fl,
F2,

CONDITIOND);

type EVENTSET is array (EVENTNAME) of BOOLEAN;

This representation is more natural and portable. The in-line
documentation for the VAX version of PC recommends this change of
representation for yet another reason: The number of events
would not be needlessly bound by the word size.

The EVENT SET type is the only type implemented so far as a
replacement for a non-intuitive use of an integer type. There
are other instances where this should be done, the most prominent
being the representation of display attributes defined in the TC
package.

3.1.7 Qualify Expressions That Have Become Ambicuous

When overloaded versions of integer utilities were created, some
expressions that were not previously ambiguous became ambiguous.
One such case is in MPCAI, where the statement

PUTINT (1);

became ambiguous once PUTINT was overloaded for the types INTEGER
and LONGINTEGER; the statement can be interpreted as a call to
either version.

This was not a serious problem because it did not occur often.
When this situation arose, the ambiguity could be removed by
qualification, as illustrated below.

PUTINT (A.INT' (1));

3.2 PROGRAM UNIT SIZE

The size of each program segment in a Z-248 is limited to 64K.
Some of the largest compilation units in ISS, such as AMCAI,
could not be compiled because the size of the resulting code
exceeded the limit for a single program segment.

The compilation units that exceeded the 64K limit were procedures
that represent main programs. The bulk of these large procedures
mostly consist of a plethora of local subprograms. The procedure
AMCAI is typical; in VAX Version 3.0, the declarative part of
AMCAI makes up over 4,100 of the 4,317 source lines.

75



Keep in mind that writing a single subprogram that is thousands
of lines long is definitely not standard Ada practice. The
recommended style is to use subprograms which are only a few
pages long -- preferably one page. Units as long as AMCAI are
difficult to understand, debug, and maintain; in addition, they
require longer recompilations on the machines where they can be
compiled.

The only solution to the program unit size problem is to
decompose the large units into several units. Given that large
units encumber program maintenance, this decomposition will be
beneficial even on machines such as the VAX where larger program
units are permitted.

The units that exceeded the 64K limit had all of their local
subprograms, and many of their local declarations, divided
among two newly created packages. Whenever possible,
declarations were moved to the body of the new packages, so that
the advantages of information hiding could be accrued.

The process of decomposing a large unit into packages was
somewhat time-consuming. To determine where a certain entity
should be declared, one must determine the other entities which
depend on the given entity. In the future, however, the
decomposition of large units can be done much faster by
exploiting the cross-referencing tool from the AlSys Ada toolkit.

3.3 INITIALIZATION AND FILLMEM

The procedure FILLMEM is frequently used to initialize composite
objects in ISS. The call

FILLMEM (CAI'ADDRESS, CAI'SIZE);

will fill the section of memory occupied by the object CAI with
zeros. The desired effect is to set every scalar subcomponent to
0 or 0.0 or ASCII.NUL, which presumably is an acceptable initial
value.

On the VAX, the effect of running FREEMEM can quite often be
obtained automatically. Our debugging experience indicates that
when fresh memory space is allocated on the VAX, it usually
consists of zero bytes. Because of this, the failure to properly
initial objects that should be initialized has gone undetected on
the VAX.

On the Z-248, the bytes in uninitialized memory usually have the
value 16#01#; so the failure to initialize objects cropped up
immediately. One such problem occurred in the porting of the DM
package. The local subprogram OPEN ISSFILES reads the object
ISSFILESFB, in spite of the fact that not all of the component of
ISSFILESFB were initialized. The uninitialized components happen
to have the correct values on the VAX, but not on the Z-248,
where this procedure failed when it was first tested.

76



The way to avoid these problems is, of course, to initialize the
uninitialized objects. The initializations added to the Z-248
version took one of two forms:

* Objects created by allocators were initialized by using a
qualified expression in the allocator itself. Thus,
statements such as

FILEID := new ASLFILEBLOCK;

were replaced with

FILEID := new ASL FILEBLOCK'
(FILE NAME => "ISSFILES",
FILETYPE => ISAMFILE,

in which every subcomponent is initialized with a
suitable value.

* Other objects were initialized by the assignment of an
expression (usually an aggregate).

No additional initializations were performed using FILLMEM, for
reasons that will be discussed shortly.

More difficulties arose from objects initialized with FILLMEM
than from uninitialized objects. The trouble with FILLMEM
initializations is that the bit pattern representation of every
subcomponent is set to zero, regardless of whether this results
in a desired or even a legal value for the variable. Two
categories of major problems were caused by FILLMEM when used on
the Z-248.

When FILLMEM is applied to an access value, the result is not the
null value (as it is on the VAX). Instead, one obtains an
address in segment 0, which no Ada program should be using. When
FILLMEM was used on access values, the programs caused a general
protection violation that would hang the system.

The AlSys Ada compiler generates implementation-dependent
components in variant record types to store information useful in
memory management, such as the current size of the record. The
Ada language standard permits the addition of such components
(see LRM 13.4, Paragraph 6). The FILLMEM procedure overwrites
these components with zeros. This caused the Z-248 runtime to
crash.

Besides these major problems, FILLMEM caused some minor problems
in that the zero values it creates were sometimes unsuitable.
All of these problems were solved by eliminating the call to
FILLMEM and replacing them with standard Ada code, in the form of
the assignment of an aggregate. The replacement is portable and
more reliable than the corresponding FILLMEM call.

77



As the previous discussion indicates, the FILLMEM procedure is a
poorly conceived programming construct that should be eliminated
from some future version of ISS. Further arguments against the
continued use of FILLMEM are presented in Section 4 of this
document.

3.4 PACKED DATA TYPES

A composite data type can usually be represented in several
different ways. Unless instructed otherwise, the criteria used
to determine the representation of a data type is the ease of
access of its components. The standard pragma PACK is used to
specify that minimizing the size should be the major criteria for
determining the representation of the type, even if this slows
down the reading or updating of its subcomponents.

In VAX Ada, the PACK pragma is implemented as fully as possible.
In a VAX packed type, each discreet subcomponent is represented
by the bare minimum number of bits required to represent all its
possible values.

The AlSys AT compiler does not implement the PACK pragma. In
fact, the first version of the compiler (Version 1.3) did not
even support more than one iepresentation of a data type. The
version of the AT compiler that we are currently using, Version
3.2, does allow representation clauses, but still uses one or
more bytes to represent each slibcomponent.

For the most part, the lack of packing does not affect the code,
since in & high level language, representation details are
abstracted out. The low-level memory operations, however,
sometimes assume the bit-level packing done on the VAX. Consider
the following code:

type BITMAP is array (INT range <>) of BC'jLEAN;
pragma PACK (BITMAP) ;

A, B, C : BITMAP l .. 1024);

FILLMEM (A'ADDRESS, N);
MOVEMEM (C'ADDRESC, B'ADDRESS, 1024);

The size parameter in the calls to FILLMEM and MOVEMEM assume
that each component in a BITMAP object is represented by a single
bit. This assumption is not true on the Z-248,' so these calls
will not perform the desired function.

The simplest portable alternative to representation-dependent
statements like these is to use atandard, high-level
alternatives. For example, the callq to FILLMEM and MOVEMEM
presented above can be replaced by the following:

18



A (1 .. N) := (others => FALSE); -- Replaces FILLMEM
B := C; -- Replaces MOVEMEM

Note that the high-level alternatives to the low-level memory
operations are not only more portable, but also more readable
than the code they replace. The high-level operations may also
be more efficient, since they do not require a procedure call.

The package A defines two subtypas that depend on the level of
packing, UNSIGNEDBYTE and UNSIGNEDBYTEARRAY, declared as
follows:

subtype UNSIGNED BYTE is INT range 0 .. 255;
pragma PACK (UNSIGNED BYTE);

type UNSIGNED BYTE ARRAY is (INT range <>) of UNSIGNEDBYTE;
pragma PACK (UNSIGNEDBYTE ARRAY);

When we were using Version 1.3 of the AlSys compiler, these types
posed a problem, since a single byte representation of the
INTEGER type was not supported. The problem was solved by
investigating how UNSIGNED BYTE ARRAY was used. There are two
general areas of the ISS code that use UNSIGNEDBYTEARRAY.

* In the Data Management (DM) subsystem, UNSIGNED BYTE ARRAY
is used to store arbitrary data types and keys. For this
purpose, the only properties required of UNSIGNEDBYTE is
that it take up exactly one byte, that it can represent
any byte, and that it have the appropriate ordering. The
DM subsystem does not require that UNSIGNEDBYTE be a
subtype of INT.

* In the Terminal control subsystem, the UNSIGNED BYTEARRAY
type is used to represent tab stops and command memory
types. In the TC subsystem, it is very important that
the components of these arrays be subtypes of INT, since
they are used in many INT expressions. However, it is
not necessary to have the components of these arrays take
up one byte.

This investigation made obvious a solution. Array types were
added to the TC package for the representation of tab stops and
command memory types. The components of these newly added array
types were of type INT. In the package A, the UNSIGNED BYTE type
was implemented using the AlSys provided package UNSIGNED.
UNSIGNED BYTE is not declared as a subtype of INT, but this is
irrelevant to the DM subsystem, which is now the only place where
UNSIGNEDBYTE is used.

The declaration of A.UNSIGNED BYTE was revised again when Version
3.2 of the compiler became available. This version supports
representation clauses, permitting this more portable
declaration:

79



type UNSIGNED BYTE is range 0 .. 2 ** SYSTEM.STORAGE UNIT - 1;

for UNSIGNED BYTE'SIZE use SYSTEM.STOAGE UNIT;

3.5 MEMORY ALLOCATION AND FREEMEM

The VAX version of ISS uses the VML procedure FREEMEM for all
deallocation operations. The standard Ada deallocation facility,
UNCHECKED DEALLOCATION, is not used in the VAX version of ISS.

The Z-248 versiou of FREEMEM will successfully free space
allocated by NEWMEM. Space created by standard Ada allocators
was not always t-ompletely deallocated by FREEMEM, however, due
to the way the Z-24e iuntime manages memory. Some Z-248 objects
are preceded by a descriptor for management purposes. For
example, the statement

S := new STRING (1 .. 10);

might not only allocate 10 characters, but also a descriptor
located before S.all'ADDRESS for the string. If we now execute
the statement

FREEMEM (S'ADDRESS);

the space taken up by the 10 characters in S.all will definitely
be reclaimed. The corresponding descriptor, however, might not
be reclaimed.

This problem was uncovered only recently. It was discovered that
when AMCAI was presenting a particularly long lesson, it would
raise STORAGE ERROR and terminate. Our analysis showed that the
reason for this was not because the storage demands of AMCAI
actually exceeded what the Z-248 could supply. It was then
determined that the problem was caused by leftover descriptors
fragmenting the available memory.

The STORAGE ERROR problem was alleviated by replacing nearly all
calls to the FREEMEM procedure with calls to instantiations of
UNCHECKED DEALLOCATION. Since UNCHECKED DEALLOCATION is provided
by the implementation, it will deallocate any associated
descriptor along with the object. At the same time, most of the
calls to NEWMEM were replaced with Ada allocators.

The-- are t-ic major categories of objects in ISS where NEWMEM and
FREzMEM could not be readily replaced with standard Ada
constructs. The storage management for these objects is still
performed by NEWMEM and FREEMEM in ISS.

o In the DM subsystem, objects of the type DMTYPES.BLOCK
might have, as its last component, a very large array.
In many cases, the end of the array is not needed.
NEWMEM is used to allocate just enough space for the part
of the array component that is actually required; if Ada
allocator was used, space for the whole array would be
allocated.

80



* In the TC subsystem, NEWMEM is used to generate space for
the packing and unpacking of device descriptors.

In the revised version of ISS, FREEMEM is used exclusively to
free space created by NEWMEM. When this change was made, the
STORAGEERROR problems ceased to occur.

In all future versions of ISS, the use of FREEMEM should be
restricted to areas created by NEWMEM. Besides the problem
encountered on the Z-248, there is another portability problem
that can be caused by not adhering to this restriction. An Ada
implementation may create separate storage areas for each access
type. In such an implementation, the indiscriminate mixing of
the VML and standard Ada memory management functions would quite
likely confound the runtime system.

3.6 CODE DUPLICATION AND DEAD CODE

ISS is riddled with multiple copies of types and subprograms.
There are at least four packages that have a copy of the
procedure DRAWCIRCLE. Types declarations from the GRTYPES
package appear again in some of the units in the GRLIB directory.
Text handling facilities are repeated (under a different name) in
the package CAGEN, and the package TX contains only a subset of
the TH entities with different names.

This duplication creates an added burden for any type of
maintenance work, for all corrections must be done in duplicate
or triplicate. During the rehosting effort, some of this
duplication was eliminated. The CAGEN function 12S performs the
same function as TH.IN ST; in the Z-248 version, 12S renames
TH.INST, and the body of 12S was eliminated.

A related problem is dead code; that is, entities which are
declared but not used in a meaningful way in the current version
of the software. We discovered and eliminated a considerable
amount of dead code during our investigation of the ISS code.

81



4. RZCOMIENDATIONS FOR FUTURE CHMANGS

The rehosting effort has produced a version of ISS that runs on
the Z-248 and is substantially more portable than previous
versions. The capabilities exist, however, to produce an even
more portable version of ISS. ISS can be reworked so that all
host dependencies are confined to the VML layer. This section
presents a strategy for obtaining this level of portability.

This strategy should not, of course, be carried out before a
truly stable version of ISS is produced, which can then serve as
the basis for all future versions. The succeeding discussion
assumes such a version of ISS, so that the capability to "roll
back" to previous version need not be supported.

4.1 IMPLEMENT USER-DEFINED NUMERIC TYPES

The non-VML portion of ISS can be made completely independent of
the pre-defined numeric formats by the careful use of user-
defined types, as discussed in Section 3.1. Uur work on the Z-
248 has set the groundwork for such a change -- many of the
application-specific subtypes can be turned into user-defined
types. This change may require some additional explicit type
conversions over those performed in the Z-248 version, but not
many.

In moving from the current Z-248 version to the user-defined
types model, the most difficult issue may well be what to do with
the integer utilities such as TH.IN ST and CAGEN.ACPTINT. As
noted before, generic versions of these units have been
developed. When additional integer types are added, additional
instantiations of these utilities may be required. We need to
determine what additional instantiations are required and where
these instantiations should be performed.

Along with this effort, it may be desirable to phase out the use
of the subtypes such as A.IlB, A.12B, and A.13B. Subtype names
should reflect the objects being represented, not the space they
will consume. If these subtypes were replaced with something
more application-specific, the code would be easier to read, and
it would be much easier to make changes.

4.2 A CRITIQUE OF LOW-LEVEL MEMORY OPERATIONS

A great number of the portability problems discussed in Section 3
involved calls to the low-level memory operations defined in the
packages VMRTS and UT. Because of differences between the Z-248
and the VAX, many of the low-level memory operations had to be
eliminated in the Z-248 version. There could still be machine-
dependent calls to these operations that have gone undiscovered
due to similarities between the Z-248 and the VAX.

The portability problems caused by these operations are due to
their very nature. One of the reasons why programs written in
Ada (or any other high-order language) can be portable is that

82



solutions are formulated in terms that are abstract enough to be
independent of a particular machine's implementation. The low-
level memory operations destroy this level of abstraction by
introducing implementation details into the source code.

What is troublesome is that none of these operations performs a
service that cannot be done with standard high level constructs.
Simple, portable Ada alternatives exist for over 95% of the calls
to low-level memory operations. With some more extensive
changes, all calls to these operations can be eliminated.

In a program that is to be maintained on several machines, there
are two generally accepted criteria for the inclusion of non-
portable code:

o The non-portable code should perform some service that
either cannot be done, or cannot be done as efficiently,
with portable code.

o The non-portable code should be restricted to a few
units, so that only a small, well defined portion of the
software needs to be changed to rehost the system.

As the succeeding discussion will demonstrate, the low-level
memory operations fail to meet either of these criteria, much
less both of them. Their continued use cannot be justified.

4.3 ELIMINATE NEWMEM AND FREEM

As stated in Section 3.5, FREEMEM should only be used in
conjunction with NEWMEM. If NEWMEM is discarded, then FREEMEM
must be discarded as well. The question, then, is whether an
access object should ever be created with NEWMEM, instead of an
Ada allocator.

For the straightforward creation of objects, the Ada allocator is
always preferable to using NEWMEM. The object created by an Ada
allocator will fit certain requirements for the representation of
the type, in particular:

o The object will conform to any alignment need.

o In the absence of explicit initializations, any
applicable default expressions will be used to initialize
subcomponents.

o Implementation dependent components (if any) will be
given meaningful values.

There can be no assurance that objects created by NEWMEM will
meet these requirements.

The only conceivable justification for NEWMEM would be for
performing special functions, such as allocating only part of the
space required for an object. An example of this can be found in

83



the procedure DMBLKMGR.NEWBLOCK. NEWBLOCK is used to create

values of type DMTYPES.BLOCKPTR, as declared below.

MAXRECORDSIZE : constant := 20_000; -- bytes

type BLOCK (BLKKIND : BLOCK-TYPE) is
record

case BLK KIND is

when INDEXBLOCK =>

IDATA: UNSIGNED BYTE ARRAY (1 .. MAX RECORD SIZE);
when DATA BLOCK 7>

DDATA: UNSIGNED BYTE ARRAY (1 .. MAX RECORD SIZE);
end case;

end record;
pragma PACK (BLOCK);

type BLOCKPTR is access BLOCK;

As these declarations indicate, a BLOCK object can end with a
rather large array component. Assume that a block
BLK KIND => INDEX BLOCK is needed, but only the first
1 000 components of the IDATA component will be used.
It would be inefficient to allocate an entire BLOCK object, for
19 000 bytes of that object will not be used. The procedure
NEWBLOCK uses NEWMEM to allocate space only up to the last array
component used (in this case up to IDATA (1_000)).
Given the declaration of DMTYPES.BLOCK PTR, an Ada allocator

cannot achieve the same effect as NEWBLOCK. The allocator

new BLOCK (INDEXBLOCK)

will create space for all 20_000 components of IDATA.

This is not to say, however, that the same functionality cannot
be obtained using high-level constructs. The very existence of
the NEWBLOCK procedure points out a flaw in the definition of the
type BLOCK. The components IDATA and DDATA are declared as
arrays of fixed length. In usage, IDATA and DDATA are treated as
variable length arrays. If IDATA and DDATA are to be used as
variable length arrays, why not declare them that way? Consider
the following replacement for the previous declarations:

84



subtype R CORDLENGTH is INT range 0 .. 20_000; -- bytes

type BLOCK (BLK KIND : BLOCK TYPE;
LENG-TH : RECORDLENGTH) is

record

case BLK KIND is

when INDEXBLOCK =>

IDATA: UNSIGNEDBYTE ARRAY (1 LENGTH);
when DATA BLOCK =>

DDATA: UNSIGNED BYTE ARRAY (1 .. LENGTH);
end case;

end record;
pragma PACK (BLOCK);

type BLOCKPTR is access BLOCK;

With these declarations, we could use allocators such as the
following to create BLOCK objects with just enough array space:

new BLOCK (INDEXBLOCK, LENGTH -> 1_000);

In short, even the special allocations that NEWMEM performs can
be done using Ada allocators. Ada allocators do not have the
portability problems that NEWMEM does. Code using allocators is
simpler and cleaner than code using NEWMEM. There is no good
reason, therefore, to use NEWMEM in place of allocators.

4.4 FILLMM AND INITIALIZATION

Some of the problems caused by FILLMEM on the Z-248 were
discussed in Section 3.3. In spite of these problems, one might
be tempted to support the continued use of FILLMEM on the basis
that it is a "convenient" method of initializing a composite
object. If the variable CAI were initialized by an aggregate,
then an 3xpression would be needed for each component of CAI.
This would require that the programmer find out what the
components of CAI are, and what their possible values could be.
Using FILLMEM, all of an object like CAI can be initialized using
the statement

FILLMEM (CAI'ADDRESS, CAI'SIZE);

It can be argued that when FIT LMEM is used, we are not required
to consider the components of CAI.

This argument is easily seen to be fallacious when one considers
the rationale for initializations. The danger of an uninitial-
ized variable is that a misleading value may be read from it that
is unsuitable for the application. An initialization can avoid
this danger by providing the variable with a value that is
meaningful in the context of the application. The initialization

85



may not serve this purpose, however, if the initial value is
chosen arbitrarily. An arbitrarily chosen initial value could be
just as meaningless, in the context of the use of the variable,
as a misleading value read from an uninitialized variable.

This is precisely the problem with FILLMEM. It zeros out
everything, regardless of whether this is an appropriate or even
legal value for the components. In ISS, there are many
components for which FILLMEM will generate inappropriate values.

* The text handling package TH uses ASCII.DEL as a
terminating character; most STRING components, therefore,
should be initialized with ASCII.DEL, not ASCII.NUL.

* Most of the FLT values in the graphic subsystem represent
scale factors or ratios; these should be initialized as
1.0, not 0.0.

" Some components, such as DMTYPES.IND HIER TYPE.LEVEL,
have range constraints that exclude 0. These components
should obviously not be set to 0.

" As noted in Section 3.3, FILLMEM should not initialize
access values or implementation-dependent components.

With all these problems, how did the ISS programmers get the
FILLMEM initializations to work at all? The answer is that a lot
of additional code has been added to correct the deficiencies of
the FILLMEM calls. In ISS, a call to FILLMEM is frequently
succeeded by a sequence of assignments to components of the
object just initialized by FILLMEM, to give them reasonable
values. We found one example where three-fourths of the
components of a record had to be re-initialized after the FILLMEM
initialization. Cases like this demonstrate rather conclusively
that FILLMEM cannot relieve the programmer of the responsibility
of providing a correct initial value for variable components.

Problems can occur if FILLMEM gives an improper value to a
component, and the component is not re-initialized immediately.
Such problems have been corrected by adding additional code to
correctly interpret FILLMEM values; e.g. the test

(SCR.ASPECTRATIO = 0.0) or (SCR.ASPECTRATIO = 1.0)

is used in case SCR was initialized with FILLMEM, and code such
as this

if (IBLK.LEVEL = 0) then
IBLK.LEVEL 1;

end if;

is used to bring an index into range.

86



There was another problem with FILLMEM that was corrected by ISS
Version 3.0. If FILLMEM is applied to a variant record, all
record variants will be zeroed out, since they are stored as
record components. This undesirable result cannot be corrected
easily by assignment. The problem w~s alleviated by Version 3.0,
but not by the removal of FILLMEM. Instead, almost all variant
record types were removed from ISS. This was a poor design
decision. Record variants clarify the structure of a record
type, and allow a much more efficient use of space.

There are two high-level alternatives to FILLMEM. An aggregate
can be used to assign initial values, although admittedly some
ISS types would require long aggregates. Another initialization
technique would not require lengthy aggregates: Default
expressions can be declared for record components. For example

type CAI KEY TYPE is
record -

COURSE NO : A.I10B : 0;
COURSEVERSION : A.15B := 0;

end record;

Component default expressions can be used to specify sensible
default values for all objects of a type that are not explicitly
initialized. This technique is rarely used in ISS.

In summary, the supposed convenience of FILLMEM is illusory. The
use of FILLMEM has resulted in programs that are needlessly
complicated, unreliable, and unportable. Portable alternatives
to FILLMEM exist that perform its function more reliably, without
any portability problems. For these reasons, FILLMEM should be
phased out of ISS.

4.5 MO MEM AND ITS ALTERNATIVES

MOVEMEM has not caused as many problems as FILLMEM and FREEMEM.
Nonetheless, it has introduced portability problems, and it can
be replaced by high-level operations.

ISS generally uses MOVEMEM to perform one of two jobs:

" To assign one array slice to another, or

" To perform an unchecked conversion between two different
data types.

Both of these jobs have obvious standard Ada replacements that
are clearer, easier to use, and pose less portability problems.
Array slices can be assigned by simply using a slice assignment
statement. Unchecked conversions can be done using
instantiations of UNCHECKEDCONVERSION.

87



MOVEMEM is another example of where the ISS programmers have done
things the hard way. There is no good reason for its continued
use.

4.6 THE COMPAREMEM AND SEARCH MEM INTERFACE

The COMPAREMEM and SEARCH MEM functions have caused the fewest
problems of the low-level memory operations. This can attributed
to the restricted usage of these functions in ISS. COMPAREMEM is
always used to compare arrays of type UNSIGNED BYTE ARRAY, and
SEARCH MEM is always used to find either a CHARACTER or a STRING
within a STRING.

The use of these functions suggests that they should not be
implemented as low-level memory operations. A cleaner interface
is provided by these proposed specifications:

function COMPAREMEM (LEFT, RIGHT : in UNSIGNEDBYTEARRAY)
return NATURAL;

function SEARCHMEM (BASE : in STRING;
MATCH : in STRING := (1 => ASCII.DEL))

return NATURAL;

These interfaces have several advantages over the current
interfaces for these functions. Passing objects is easier and
more natural than passing address-length pairs. None of the
problems inherent to low-level operations can occur if the above
interface is used.

Another advantage of the proposed interface is that it makes it
very simple to write Ada subprogram bodies for these functions.
This is not to say that these functions should necessarily be
implemented in Ada; on a particular machine, there may be
efficient assembly implementations that should be used. For this
reason, these functions should remain part of the VML. The
proposed specifications, however, can easily be interfaced with
efficient code written in another language.

4.7 USE MORE PRE-DEFINED UNITS

As previously noted, ISS was originally written in another
1znguage (CAMIL), then automatically translated to a non-standard
variant of Ada, then translated to Ada. Given this history, it
is not surprising that ISS does not take full advantage of the
pre-defined units available to the Ada programmer. Now that ISS
is to be maintained in full standard Ada, the standard pre-
defined units can be used to simplify the ISS code, and the
effort required to rehost ISS.

* The VMIO subprograms FGETS and FPUTS supply a limited
text I/O facility; their usage can be replaced with
TEXT 10 operations.

88



* A variety of formats for time stamps are used in ISS.
There is an obvious advantage to using one format; the
type TIME defined in the CALENDAR package could be used
as a standard.

" The package FIO supports direct file I/O; instantiations
of DIRECT 10 can be used in place of FIO.

By using the pre-defined units, we can reduce the size of the ISS
code, and give the code a look that would be more familiar to Ada
programmers.

89



APPENDIX E: MICROISS FUNCTIONAL CAPABILITIES (Z-248 VERSION)

COURSEWARE DELIVERY
Upper- and lowercase text
Special characters
Multiple colors
Static, dynamic and interactive graphics
Student interaction via keyboard or pointing device
Initiation and presentation of CAI lessons
Initiation and presentation of interactive videodisc sequences
Initiation and presentatinn of simulations
Initiation and presetitatior of mastery tests
Review mode
Course glossaries
Student comments

COURSEWARE AUTHORING
Menu-driven user interface
Create, change, display, store and delete modules
Insert, create, copy, reorder, store and delete segments
Insert, create, copy, reorder, store and delete frames

Expository:
Information, Elaboration, Help, Title, Overview,
Objective, Resource, Documentation

Interactive:
Touch, Multiple-Choice, True/False, Matching,
Constructed Response (short answer)

Special Purpose:
Menu, Ada Programming Language, Simulation, Branch,
Adjunct Material Videodisc)

Support for instructional strategies
Factual
Drill and practice
Tutorial
Simulation
Individualized tutorial
Problem soving

Text development
Individualization (branching)

Unconditionally
On number of frames presented/not presented
On number of questions answered correctly/incorrectly
On evaluation of author-supplied variable

System-defined
User-defined

Overlay
Partial screen erase/windowing
Feedback and prompt creation
Access, modify and display graphics created in the Graphics Editor
Access simulations created in the Simulation Editor

90



Glossary development
Videodisc sequence development

GRAPHICS DEVELOPMENT
Create, change, display, copy, store and delete graphics
Keyboard, pointing device and bit pad/data pad user interface
High-fidelity 2D graphics
Static and dynamic
Graphics primitives, selectable from menu
Line drawings or filled objects, both regular and irregular-shaped
Line color
Colored fills
Symbol library development
Scale, rotate and repositioning
Scaled text
List existing graphics/symbol libraries

For a specific user
For all users
Starting with a specified name
Before or after a specified creation date

SIMULATION DEVELOPMENT
Menu-driven user interface
Create, change, display, copy, store and delete simulations
Create, change, display, insert, copy, store and delete actions
Create, display and delete objects (text or graphic)
List actions/objects
Branching logic (conditional/unconditional)
Access, modify and display graphics created in the Graphics Editor
Overlay
Partial screen erase/windowing
Feedback and prompt creation
Expository actions
Interactive actions

Touch, Multiple-Choice, True/False, Matching, Constructed
Response (short answer)

Create and insert complex author-defined equations
Random number generation

TEST DEVELOPMENT
Menu-driven user interface
Create, change, copy, display, store and delete mastery test questions
Block, lesson, group and mission tests
Online/offline
Item randomization
Criterion-referenced

Percentage
Number of subscales (objectives) passed

Five Question types
Multiple-choice, Touch, Matching, True/False, Constructed
Response (short answer)

91



Alternative weighing
Definable scoring rules

Pass/fail by total test score
Pass/fail by objective
Critical items and objectives

TEST PRESENTATION
Presentation of mastery test questions
Review test items prior to scoring
Score test items and report results
Provide recap, detailing answer selected and correct answer

MICRO COMPUTER-MANAGED INSTRUCTION (CMI)
Prerequisite course lists or courses selectable in any order
Lesson lists containing either lineraly ordered lessons or

lessons selectable in any order
Reordering lessons within courses
Embedded and mastery test items
Registering of students into multiple courses
Student rosters

Specification of number of lessons that must be taken in a course
Student names and IDs
Students' current lesson

Student assignment generation
Lesson override
Certify pass
Recording and tracking of student performance on a limited basis

Lessons passed
Performance on individual lesson questions
Lesson completion times

ADDITIONAL CAPABILITIES
Dual screen
System security (user access levels)

92



APPENDIX F: MICROISS EXECUTABLES

Executable Source Description
ACASS CASS CAI Authoring Support System (CASS) Editor-Allows users

to create, change, delete, or copy lessons.

ADATEST TESTED Test Development Editor - Allows users to create, change,
delete, or copy tests.

AGLOSS CASS Glossary Editor - Allows user to display, add, change, or
delete glossary entries.

AMCAI CASS CAI Presentation Program - Displays the lessons authored
by using ACASS.

AMSID SID Simulation Presentation - Presents simulations created by
using ASID.

ASID SID Simulation Authoring - Editor for creating or changing
simulations.

CONTROL SE Program Control - If the file MGRDIR:PROGRAM.NAM exists,
this program 1) executes MGRDIR:LOADPGM.BAT to set up
the virtual disk if necessary, 2) executes the program, and
3) executes MGRDIR:UNLDPGM.BAT to remove the EXT file
from the virtual disk. It will continue to loop until
MGRDIR:PROGRAM.NAM does not exist.

CREATEDB UTIL Create Database - Creates the database files from definitions
read from a file definition file (.FDF).

CREATEFD UTIL Create FDF - Creates the file definition file (.FDF) from the
file attributes read from the database file ISSFILES.

CVDISK (Alsys) Contiguous VDISK - Insures that the heap file on the VDISK
is contiguous. Execute after HEAP

DISPUSER ZZLOGON Display Users - Used to display users currently logged onto
ISS. Accessed by Pad-4 key from LOGON.

DRVCOM DRIVERS Communications Driver - An installable device driver which
will drive ISS on the COM1 port. This should be installed
(by adding a DEVICE=record in the CONFIG.SYS file) if
the user wants to use a Tektronix 4105 terminal or videodisc.

EGADRV DRIVERS EGA Driver - An installable device driver which drives ISS
on the Z248 EGA screen. It is installed by including a
DEVICE=record in the CONFIG.DAT file.

FIXLOCK UTIL Fix Lock - Reads the lock table, checks for and displays
hung locks, and allows the user to unlock them.

93



FRECOVER UTIL File Recovery - Used to recover lost data blocks in a
database file.

FUTIL UTIL File Utilities - Utilities for managing the ISS database files.

GETBOOTI SE Get Boot Time - Captures the time ISS was booted and
builds the ENVDIR:SETBOOTI.BAT file which is then executed
to record the boot time in the environment string
SYSBOOTTIME.

GRAFEDIT GREDIT Graphics Editor - Allows the user to create, modify, list,
copy or delete graphics.

GRLIST GREDIT Graphics List - Displays a list of graphics and allows the
user to select graphics to be deleted.

GRUPDCOM GREDIT Update Graphics Commands - Used for changing graphics
editor menus and the commands associated with them.

GRVERIFY GREDIT Graphics Verify - Used to verify GRLIST deleted the selected
graphics.

HEAP (Alsys) Creates the memory storage heap file ADA HEAPDTA using
all available space remaining on the VDISK. Execute after
copying the .EXT file to the VDISK.

INITPGM ZZLOGON Initialize PGMNAME - Creates the database file PGMNAME
if it does not exist from information in AUSRPGM.

INITSHME UTIL Initialize Shared Memory - Initializes the shared memory file
SHMEM.DAT by writing null blocks.

INITTERM UTIL Initialize Terminal - Initializes a particular ISS terminal/process
entry. The user will be reprompted for terminal type the
next time he/she runs a program.

ISSUSERS UTIL ISS Users - Displays the current users/processes of ISS.

LGCOMMAN ZZLOGON Logon Commands - Allows user to update the system banner,
start/stop program activity, start/stop background processor,
and other ISS system operations. Accessed by Pad-3 key
from LOGON.

LISTLOG ZZLOGON List Log - Displays the ISS log file. Accessed by Pad-5 key
from LOGON.

LOGON ZZLOGON ISS Logon - Controls entry into ISS.

94



MGCAI CASS CAI Data Mover (Get) - Reads a system file created by
MPCAI containing lessons and writes the contents to the
database CAI files ACAICAI, ACAIOBJ, ACAIBRN, ACAIVAR,
ACAIEXP, ACAIALT, and ACAITXT. Use TMGCAI if the transfer
file was made from a pre-version 4 database and you wish
to move the lessons into a version 4.x database. Otherwise
use this program. If unsure which to use, try MGCAI first.

MGCRS MCMI MicroCMI Course Mover (Get) - Reads a system file created
by MPCRS containing MicroCMI course data records and
writes the contents to the database MicroCMI course data
file MCMICRS.

MGGRMENU GREDIT Graphics Menus Mover (Get) - Reads a text file created by
MPGRMENU containing graphic editor menus and writes the
contents to the database graphics menu file GRMENUS.

MGSID SID SID Data Mover (Get) - Reads a system file created by
MPSID containing simulations and writes the contents to
the database simulation files ASIMSIM, ASIMOBJ, ASIMVAR,
ASIMTXT, ASIMALT, ASIMEV, ASIMEXP, and ASIMSTR.

MGSTU MCMI MicroCMI Student Mover (Get) - Reads a system file created
by MPSTU and writes the contents to the database MicroCMI
student files MCMISTU and MCMISDP.

MGTEST TESTED Test Data Mover (Get) - Reads a system file created by
MPTEST and writes the contents to the database test files
VTKF, WTKF, WITM, PXWITM, WITMPTR, and WITMALT. Use
TMGTEST if the transfer file was made from a pre-version
4 database and you wish to move the tests into a version
4.x database. Otherwise, use program MGTEST. If unsure
which to use, try MGTEST first.

MICROMGR MCMI MicroCMI Management Editor - Used to create a course,
define its structure, and enroll students in it.

MPCAI CASS CAI Data Mover (Put) - Creates a system file containing
lesson contents from the database CAI files ACAICAI,
ACAIOBJ, ACAIBRN, ACAIVAR, ACAIEXP, ACAIALT, and
ACAITXT.

MPCRS MCMI MicroCMI Course Mover (Put) - Creates a system file
containing course data records from the MicroCMI course
data file MCMICRS.

MPGRMENU GREDIT Graphics Menus Mover (Put) - Creates a text file containing
graphics editor menus from the database graphics menu
file GRMENUS.

95



MPSID SID SID Data Mover (Put) - Creates a system file containing
simulations from the database simulation files ASIMSIM,
ASIMOBJ, ASIMVAR, ASIMTXT, ASIMALT, ASIMEV, ASIMEXP,
and ASIMSTR.

MPSTU MCMI MicroCMI Student Mover (Put) - Creates a system file
containing student records from the database MicroCMI
student files MCMISTU and MCMISDP.

MPTEST TESTED Test Data Mover (Put) - Creates a system file containing
test information from the database test files VTKF, WTKF,
WITM, PXWITM, WITMPTR, and WITMALT.

MVGGRAF GREDIT Graphics Data Mover (Get) - Reads a system file created
by MVPGRAF containing graphics and writes them to the
database graphics file ADAGRAPH.

MVPGRAF GREDIT Graphics Data Mover (Put) - Creates a system file containing
graphics from the database graphics file ADAGRAPH.

PRFDAT CASS Student Test Response Report - Puts out a performance
report based on students' responses for a given course.

SCEDITOR GREDIT Stroked Character Editor - Allows the user to edit a stroked
character set.

SCRMOVER UTIL Script Mover Utility - Converts script definition files (.SDL
into script files (.SCR) or decodes script files (.SCR) into
script definition files (.SDL).

SEQUENCE MCMI MicroCMI Lesson Sequencer - Used by the student to get
his/her lesson assignments from the course(s) he/she is
registered in, and to manage his/her progress throughout
the course.

SETCASSR CASS Set CASS References - Sets the CASS reference count for
all graphics in every lesson to the number of times they
are referenced. Used after ZEROALLC.

SETSIDRE SID Set SID References - Sets the SID reference c,,unt for all
graphics in every lesson to the number of .raes they are
referenced. Used after ZEROALLS.

SETLOGT SE Set Log Time - Captures the time of the beginning of an
ISS session and records it in the file MGRDIR:LOGTIME.DAT
to be used by other processes in the session.

SIDREP SID SID Reports - Runs in the lickground and processes and
prints out SID reports.

SIREPREQ SID SID Reports Requests - Used to submit requests to SIDREP
to print SID reports.

96



TDEFBLD UTIL Terminal Definition Build - Reads the .TDL, .DDL, and .NAM
files and stores the device definitions in the terminal definition
file (TDEFILE).

TESTPRES TESTED Test Presuntation - Presents a test to its author or to a
student. Statistics are also taken if requested by the author
within ADATEST.

TESTPRT TESTED Test Print - Generates a report detailing the test information
for a selected test.

TMGCAI CASS CAI Data Mover (Get) - Reads a system file created by
MPCAI containing lessons and writes the contents to the
CAI database files ACAICAI, ACAIOBJ, ACAIBRN,
ACAIVAR, ACAIEXP, ACAIALT, and ACAITXT. Use TMGCAI if
the transfer file was made from a pre-version 4 database
and you wish to move the lessons into a version 4.x
database. Otherwise use program MGCAI. If unsure which
to use, try MGCAI first.

TMGTEST TESTED Test Data Mover (Get) - Reads a system file created by
MPTEST and writes the contents to the database test files
VTKF, WTKF, WITM, PXWITM, WITMPTR, and WITMALT. Use
TMGTEST if the transfer file was made from a pre-version
4 database and you wish to move the tests into a version
4.x database. Otherwise, use program MGTEST. If unsure
which to use, try MGTEST first.

VDISK (DOS) Virtual DISK - A DOS installable device driver used to create
the virtual disk that is required for the .EXT and
ADA HEARDTA files. It is installed by including a
DEVICE=VDISK.SYS record in the CONFIG.SYS file.

ZALLCSSS SID Zero All CASS and SID References - Zeros out the CASS
and SID reference counts for every graphic in the database.

ZEROALLC CASS Zero All CASS References - Zeros out the CASS references
to all graphics.

ZEROALLS SID Zero All SID References - Zeros out the SID references to
all graphics.

ZEROCASS CASS Zero CASS References - Zeros out the CASS references
for a given graphic.

ZEROSIDR SID Zero SID References - Zeros out the SID references for a
given graphic.

ZZUSRED ZZLOGON User Editor - Used to define user access to ISS and establish
permissions for those users.

97



APPENDIX G: UPGRADING THE ISS TESTBED (Z-248 VERSION)

98



ABSTRACT

This is a report of the results of the three proposed upgrades to the Instructional Support
System (ISS). The purpose of the three proposed upgrades was to make ISS a more widely
accessible testbed computer-based instructional delivery system, especially for the advanced
instructional design systems now being developed by AFHRL/IDC. The three proposed upgrades
were: 1) convert to the Meridian compiler to eliminate a potential licensing fee for each run-time
version of ISS, 2) eliminate the need for a math co-processor in an attempt to broaden the
potential base of testbed developers, and 3) eliminate the Tektronix terminal emulation as it was
not needed in the Z-248 environment.

Deliverables were to consist of program modifications or reports and analyses of obstacles.
While some modifications were made to ISS Version 2.2 as part of this effort, those modifications
did not result in a completely modified working version of ISS. Therefore, the deliverables
associated with this contract are in the form of this final report. The conversion to Version 2.01
of the Meridian compiler was not possible. Since the conversion to an alternate compiler was
the basic effort, two other compileis were tried: Meridian AdaVantage Version 3.0 (released
during the period of this effort) and AETECH's IntegrAda Version 4.0.1. This report represents
an in-depth analysis of each of these Ada compilers and the obstacles involved in re-hosting
ISS. The need for a math co-processor can be eliminated using any compiler; this report will
indicate how this can be accomplished and why doing so is not desirable. It was decided that
the emulation of the Tektronix terminal should be retained, given the inability to convert to
another compiler, the current lack of interest in ISS as a testbed delivery system, and the need
to provide support for IVD.

While these results might seem somewhat negative, the information about the other compilers
and the specific nature of the ISS code is important enough to justify recommending that this
report be made an appendix to the existing ISS documentation.

99



1.0 Introduction

The unsolicited proposal upon which this work is based was originally submitted to AFHRL
on September 26, 1988. However, due to funding delays, the original timeframe for the work
was adjusted to begin on May 4, 1989, with the deliverables due within 6 months of contract
funding.

During the period of the delay of this project, several operating assumptions changed. First,
as the Advanced Instructional Design Advisor project had progressed in AFHRL/IDC, it was
becoming questionable as to whether ISS would be used as a testbed delivery system. The
primary obstacle to doing so was the cost of software interfaces to ISS. A secondary concern
was that using ISS to test next-generation computer-based authoring concepts and environments
would bias the outcome of those tests in a negative manner.

Second, it was determined that AFHRI/IDC would no longer be the support agency for ISS.
This meant that it was very unlikely that new ISS users would emerge. As a consequence,
there was no longer a problem with run-time licensing.

Third, a new version of the Z-248 version of ISS was released. This new version was not
evaluated for the three potential upgrades. However, a cursory review of ISS Version 4.29
indicates that the issues are basically the same.

Last, a new version of the Meridian AdaVantage compiler was released. Because the con-
version to Meridian AdaVantage 2.0 was not possible, converting to Meridian AdaVantage 3.0
was explored. As this conversion also met obstacles and another vendor's compiler was validated
in the delay period, yet a third conversion was attempted to AETECH's IntegrAda 4.0.1. This
conversion also proved impossible.

2.0 Converting ISS to the Meridian AdaVantage Compiler

The initial conversion attempt was made using Meridian's AdaVantage Version 2.0 compiler.
Several obstacles were immediately encountered. In reviewing the compiler documentation, it
became obvious that this version could not accommodate ISS due to two source code size
restrictions: (a) Programs were restricted to 10 user-defined packages, and (b) compilation
units were restricted to 200 statements and individual data objects were restricted to 64 kilobytes.
ISS contained many more than 10 packages and many compilation units were quite large.
Meridian did have a developer's version of AdaVantage that was not restricted; so, re-compilation
was attempted anyway to discover any other problem areas.

Two additional obstacles were encountered, both involving the fact that certain PRAGMAs
and ATTRIBUTEs were not implemented in the Meridian compiler. PRAGMAs are basically
directives to the compiler that can be embedded in Ada source code units. They allow
programmers to take advantage of various implementation-dependent features of a compiler, such
as packing text information to save space and setting priority levels in a multi-tasking environment.
PRAGMAs are part of the standard Ada programming environment. To be validated, compilers
must at least recognize the PRAGMA statement, regardless of whether the PRAGMA happens to
be implemented. Although extensive use of PRAGMAs is regarded by some academic computer
scientists as violating the generality and portability intended to be part of Ada programs, this
complaint is valid only in the situation where vendors are required to recognize the PRAGMAs
but not implement them. As requirements for Ada compilers become more strict and all
PRAGMAs must be Implemented, this criticism will vanish. However, it is exactly appropriate
with regard to ISS and the several compilers tested. Only the Alsys compiler, which was used
to develop ISS on the Zenith Z-248, implemented all of the PRAGMAs in the ISS code. The

100



particular PRAGMA that was not recognized by Meridian AdaVantage 2.0 was CONTROLLED.
This PRAGMA Is used to restrict the storage reclamation for de-referenced access types.

Also, Meridian AdaVantage 2.0 had not implemented certain representation ATTRIBUTEs, which
were used in the Alsys version of ISS. ATTRIBUTEs, like PRAGMAs, are part of the pre-defined
and/or implementation-defined Ada language environment. ATTRIBUTEs can be used in the midst
of executable Ada code and operate much like a function, generally returning a single value
when evaluated. For example, the programmer may want to know whether a particular Ada
implementation rounds or truncates when performing an arithmetic operation in order to select
a particular path In the code; in this case, the ATTRIBUTE name MACHINE ROUNDS can be
referenced and will return a value of TRUE or FALSE, as appropriate. The particular ATTRIBUTE
used by ISS that was not implemented in AdaVantage 2.0 was the SIZE attribute, which returns
the number of bits in memory allocated to a particular object.

In addition to these problems, the Alsys compiler had added some entities to the pre-defined
package SYSTEM which were not recognized by other compilers. Specifically, the identifier
name SYSTEM.NULLADDRESS is recognized by Alsys but not other Ada compilers. A certain
portion of package SYSTEM must be exactly as specified in ANSI-MIL-STD-1815-A; other
system-dependent declarations are allowed. Apparently, NULLADDRESS falls into this latter
category. Again, the purists would argue against such variation in the so-called standard Ada
language environment, but the fact is that this variation is in comformity with existing AJPO
(Ada Joint Program Office) requirements. The existence of such variations has allowed non-portable
Ada systems to be developed. ISS is one such example. References to both SYSTEM,
NULLADDRESS and the SIZE ATTRIBUTE can be found in ISS\SE\A.ADS, which is included in
Appendix A. (See page 105.)

In an attempt to make the conversion to another Ada compiler, this contractor acquired a
new release of AdaVantage (Version 3.0), which did in fact overcome some of the size restrictions
as well as the difficulty with ATTRIBUTE SIZE. In addition, AdaVantage 3.0 has an extended
mode version which allows it to accommodate the extended memory requirements of ISS on
the Z-248. Using the extended mode version, up to 16-megabyte MS-DOS programs can be
accommodated. This is more than sufficient to accommodate ISS. The extended mode version
comes with an extended mode kernel to relieve developers of writing their own non-standard
extended operating system kernels. Compilation units and individual data objects (such as
arrays) are still restricted to 64 kilobytes; so, some additional modularization of the ISS source
code would have been required, had conversion been possible. It should be noted that this
kind of modularization is highly desirable anyway, and it should have been part of the original
ISS code.

Meridian AdaVantage 3.0 also has several other standard features which are relevant to ISS
conversion. Specifically, there are provisions for interfaces to C and Assembly Language routines.
ISS contains several Assembly Language driver routines; so, an interface to Assembly Language
routines is necessary and is available in Meridian AdaVantage Version 3.0. This compiler no
longer requires the use of a math co-processor. If the system contains a math co-processor,
it will be utilized for floating point operations; if no math co-processor is found, then floating
point operations are emulated in the software, transparent to the programmer. Had conversion
been possible, this feature would have resolved the second upgrade issue.

Conversion to Meridian AdaVantage 3.0 was not possible, however. Again PRAGMA
CONTROLLED was not implemented. Rewriting ISS without reference to this PRAGMA is probably
desirable In the interest of portability, but it requires a re-thinking of all ISS storage management
routines and references to this PRAGMA. Such an effort was beyond the scope of this contract.

101



Because the conversion to an alternate compiler without restrictive run-time licensing
requirements was fundamental to this project, a third compiler that was released during the
period of this contract was acquired and evaluated. AETECH's IntegrAda Version 4.0.1, validated
under ACVC 1.10 as was AdaVantage, also proved unable to handle ISS wit',out substantial
revision of the existing ISS code. For this compiler, the maximum code size per compilation
unit was 32 kilobytes (half the Meridian restriction). The maximum source code size allowed
with IntegrAda is 144 kilobytes. ISS contains at least one compilation unit that is much larger
than this limit; ISS\SE\APPLIB\CAILIB\CASS\MCMI\MGR_SEGM.ADB is about 155 kilobytes in
size. In addition, a maximum of 300 compilation units and 80 WITHs were allowed per program
-- these restrictions would require further modularization of ISS. There were 318 compilation
units in Version 2.2 of ISS, one containing 11 WITHs.

Another restriction was that IntegrAda had not implemented the INTERFACE PRAGMA, which
is used extensively to define the interface to the Assembly Language driver routines in ISS.
IntegrAda has its own Ada Assembler, so that this difficulty could probably be overcome. Also,
IntegrAda had not implemented the CONTROLLED PRAGMA; so, the same basic problem existed
with regard to this compiler that was found to exist with AdaVantage. Another potential problem
was that IntegrAda performed no form of automatic storage reclamation or garbage collection.
The non-standard reference to NULL ADDRESS in package SYSTEM was also foreign to IntegrAda.
It should be added, however, that IntegrAda, like AdaVantage, does floating point emulation in
the absence of a math co-processor.

An aside about the comparative worth of these two compilers is perhaps appropriate at this
point. It is well known that the Alsys compiler for MS-DOS machines is highly regarded. These
two compilers are now offering serious competition, which eventually might reduce the cost and
restrictive licensing requirements of the Alsys compiler. IntegrAda includes an integrated package
of Ada development tools in addition to the compiler. IntegrAda is a serious attempt to provide
an APSE (Ada Programming Standard Environment). While this effort is to be commended, it
should be noted that the documentation supplied with IntegrAda needs improvement. This,
coupled with the more significant size restrictions, make this compiler less desirable for ISS than
AdaVantage. Meridian's AdaVantage Version 3.0 also provides a full range of development tools,
plus the extended mode features. Among the development tools is a complete text handling
package, which would eliminate the need for the package\ISS\SE\TH.ADS. AdaVantage is simple
to install. It comes with excellent documentation, and in this reviewer's opinion, it comes the
closest to competing with the recognized leader in PC Ada compilers, Alsys, Inc. The primary
area in which IntegrAda might have a clear advantage is that it provides a complete MOUSE
driver package. Because ISS has recently had a MOUSE driver capability added, this is of no
benefit in the current ISS environment.

3.0 Eliminating the Need for a Math Co-Processor in ISS

The second upgrade issue involved the ISS requirement for a math co-processor. It should
be noted that both the ISS code and the Alsys Ada compiler require floating point capability.
Floating point numbers are in general the real numbers, such as 3.141592865, 1/3, 1.555e+ 12,
etc. Alsys does not perform floating point emulation; thus, a math co-processor is required to
handle arithmetic operations on data types of pre-defined type FLOAT and of any user-defined
types involving subsets of FLOAT or specified floating point types using the DIGITS declaration.
Had conversion to either AdaVantage or IntcgrAda been possible, the requirement for a math
co-processor would have vanished, since both systems emulate floating point operations in the
absence of a math co-processor.

The only way to eliminate the need for a math co-processor, short of re-hosting ISS on a
compiler that performs floating point emulation, is to modify all references to floating point types

102



to fixed point types. Ada is one of the very few languages that allows the p.ogrammer to
define fixed point types, which are those real numbers with a restricted and defined interval
between model (machine-representable) numbers. ISS contains a package specification
named\ISS\SE\A.ADS wherein ISS's floating point type FLT is defined. This package is included
in this report as Appendix A. (See page 105.) ISS defines FLT as DIGITS 9--that is, floating
point numbers with 9-digit accuracy. To change this definition of FLT to a fixed point type, the
following line could be substituted: TYPE FLT IS DELTA 0.001 RANGE -1.0e6 .. + 1.0e6. This
indicates that only 3-digit accuracy to the right of the decimal point is required and the range
of numbers allowed falls within a 16-bit representation scheme, which is required for systems
without a math co-processor or floating point emulation scheme. This approach was in fact
tried with AdaVantage 2.0 and worked well in systems without math co-processors.

Should there still be an interest in eliminating the math co-processor requirement, then the
above solution can be implemented. There has been no evaluation of the entire ISS system to
determine whether or not it makes sense to restrict real numbers to 3-digit accuracy within the
indicated range. With regard to grade management, this restriction i; certainly acceptable.
However, math co-processors have become even more affordable (about $300), and all current
users already have math co-processrs. Because no new users are expected, it no longer
makes sense to perform this modification. Should AFHRL/IDC decide to use ISS as a testbed
delivery system, it already possesses the correct hardware to perform Alsys floating point
operations.

As a final note with regard to fixed point types, the lack of a user-defined fixed point type
in package\ISS\SE\A.ADS to parallel the floating point definition of FLT probably represents a
serious planning flaw. A review of this package reveals several user-defined integer types in
addition to the user-defined floating point type; future ISS versions might well use fixed point
types.

4.0 Eliminating the Tektronix Terminal Emulation in ISS

The third proposed upgrade involved eliminating the need to emulate the Tektronix 4105 and
4107 terminals on Z-248 EGA systems. The ISS source code associated with terminal emulation
is primarily in the form of Assembly Language drivers named\ISS\SE\EGADRV.ASM and
\ISS\SE\DRVCOM.ASM. When the executable version of ISS is installed, it is possible to select
EGADRV.SYS if the system contains an EGA terminal or DRVCOM.SYS if the system contains
either a Tektronix terminal or an IVD terminal.

It is theoretically possible to eliminate the terminal emulation altogether in the Z-248 system.
However, doing so would then introduce a new requirement to re-write the driver for an IVD
terminal. Although it is not likely that AFHRL/IDC will have need of Tektronix terminal emulation
in a testbed delivery system, it is highly likely that IVD capability would be required in a testbed
delivery system, as IVD capability is a hallmark of state-of-the-science authoring systems. Because
most of the terminal emulation software has been written at the Assembly Language level and
is working well, and because there is still a potential need to support IVD, it is not recommended
that any of this software be changed.

5.0 Conclusions

None of the three proposed upgrades was implemented. The second can be implemented
at any time per the directions provided in section 3.0. Conversion to the Meridian AdaVantage
Version 3.0 compiler is possible if it could be determined how ISS is using the Alsys compiler
identifier SYSTEM.NULL ADDRESS and how critical storage management is being handled in
ISS. Making these determinations would require interviewing the appropriate Mei Associates

103



software engineers, an effort that was well beyond the budget and scope of this project. If the
conversion to another compiler is ever performed, it is recommended that Meridian's AdaVantage
Version 3.0 be given first consideration; the second upgrade would occur automatically at that
time. Eliminating the terminal emulation software is completely unwise, because doing so would
require a substantial Assembly Language effort to provide some support of IVD, which is now
supplied by way of the Tektronix emulation software.

104



Appendix A: ISS\SE\A.ADS

with SYSTEM;
use SYSTEM;

package A is

subtype INT is INTEGER;
type FLT is digits 9; --fjl

-- The following is the suggested FIXED POINT DEFINITION:

-- type FXT is delta 0.001 range -l.0e6 +l.0e6; -- jms 9/5/89

subtype ADDRESS is SYSTEM.ADDRESS;

subtype IIB is A.INT range 0 (2 ** 1) - 1;
subtype 12B is A.INT range 0 .. (2 ** 2) - 1;
subtype 13B is A.INT range 0 .. (2 ** 3) - 1;
subtype 14B is A.INT range 0 .. (2 ** 4) - 1;
subtype 15B is A.INT range 0 (2 ** 5) - 1;
subtype 16B is A.INT range 0 (2 ** 6) - 1;
subtype 17B is A.INT range 0 (2 ** 7) - 1;
subtype I8B is A.INT range 0 (2 ** 8) - 1;
subtype 19B is A.INT range 0 (2 ** 9) - 1;
subtype I1OB is A.INT range 0 .. (2 ** 10) - 1;
subtype I1IB is A.INT range 0 .. (2 ** 11) - 1;
subtype I12B is A.INT range 0 .. (2 ** 12) - 1;
subtype I13B is A.INT range 0 (2 ** 13) - 1;
subtype I14B is A.INT range 0 (2 ** 14) - 1;
subtype I15B is A.INT range 0 (2 ** 15) - 1;
subtype I16B is LONG INTEGER range 0 (2 ** 16) - 1; -- fjl
subtype I17B is LONGINTEGER range 0 (2 ** 17) - 1; -- fjl
subtype I18B is LONG INTEGER range 0 (2 ** 18) - 1; -- fjl
subtype I19B is LONGINTEGER range 0 .. (2 ** 19) - 1; -- fjl
subtype 120B is LONG INTEGER range 0 .. (2 ** 20) - 1; -- fjl
subtype 121B is LONG INTEGER range 0 (2 ** 21) - 1; -- fjl
subtype 122B is LONG INTEGER range 0 .. (2 ** 22) - 1; -- fjl
subtype 123B is LONGINTEGER range 0 .. (2 ** 23) - 1; -- fjl
subtype 124B is LONG INTEGER range 0 (2 ** 24) - 1; -- fjl
subtype 125B is LONG -INTEGER range 0 .. (2 ** 25) - 1; -- fjl
subtype 126B is LONG INTEGER range 0 (2 ** 26) - 1; -- fjl
subtype 127B is LONG INTEGER range 0 (2 ** 27) - 1; -- fjl
subtype 128B is LONG INTEGER range 0 (2 ** 28) - 1; -- fjl
subtype 129B is LONG INTEGER range 0 (2 ** 29) - 1; -- fjl
subtype 130B is LONGINTEGER range 0 .. (2 ** 30) - 1; -- fjl
subtype 131B is LONGINTEGER range 0 (2 ** 31) - 1; --fjl

subtype S32B is LONGINTEGER; --fjl

-- fjl subtype UNSIGNED-BYTE is INT range 0 (2 ** 8) - 1;

105



type UNSIGNEDBYTE is range 0 .. (2 ** STORAGEUNIT) - 1;
for UNSIGNEDBYTE'SIZE use STORAGEUNIT;

type UNSIGNEDBYTEARRAY is array (INT range <>) of
UNSIGNED BYTE;

pragma PACK (UNSIGNEDBYTEARRAY);

subtype WORD is INT range - (2 ** 15) .. (2 ** 15) - 1;

type WORD ARRAY is array (INT range <>) of WORD;
pragma PACK (WORDARRAY);

-- fjl ADDRESS ZERO : CONSTANT ADDRESS := SYSTEM.ADDRESS ZERO;
ADDRESSZERO SYSTEM.ADDRESS renames SYSTEM.NULLADDRESS;--fjl

PRESENT constant BOOLEAN := FALSE;
OMITTED constant BOOLEAN TRUE;

end A;

106



Appendix B: General Purpose Search Routine

What follows is a general purpose search routine to search the
entire set of source code files that comprise ISS Version 2.2 for
specified input words (all of the compilers mentioned in this
report with the exception of AdaVantage 2.0 have utilities to
perform this function):

with text io; use text io;
procedure project is

-- Author : Michael Spector
-- Date : May 30, 1989

-- This Ada program searches the ISS files in the external file
-- ISS.DIR for the source code lines that contain the
-- specified input and then prints those lines to an external
-- file named PROJECT.DAT.

subtype filel is string(l..80);
subtype file2 is string(l..14);
subtype file3 is string(l..10);

nl : filel; -- Ada files used from external file
n2 : file2 := "b:\project.dat"; -- output file
n3 : file3 := "b:\iss.dir"; -- ISS file names
last : natural; -- length of line
line : string (1..100); -- line being searched
fl, f2, f3 : file type; -- files used internally
found : boolean; -- true or false
total files, -- total files processed
lines found, -- in each file
totallines, -- line number
total lines-found : integer; -- in all files
keyword : string (1..100); -- item to search for
length : positive; -- length of key word
blanksl00 : string (i..i00) := (others => ' '); -- 100 blanks
blanks8o : string (1..80) := (others => ' '); -- 80 blanks

package my_int io is new intege:_io (natural);
use myint_io;

This function searches for the KEYWORD.

function search (line : in string;
last : in natural) return boolean is

107



result : boolean := false;

match : boolean;

begin

for i in 1 .. last loop

exit when result = true;
if line (i) = keyword (1) then

match := true;
for letter in 2..length loop

exit when match = false;
if line (i+letter-l) /= keyword (letter) then

match := false;
end if;

end loop;
result := match;

end if;

end loop;

return result;
end search;

begin ------- MAIN PROGRAM-------

get external file iss.dir for
ISS files to be searched

open (f3, infile, n3);
create (f2, outfile, n2);
total files := 0;
total lines found := 0;

new line (5);
put (" Enter the word that you wish to search for in ISS: ");
getline (keyword, length);
put (key_word(l..length)); put (" "); put (length);
new line (2);
put line (" Search beginning -- output goes to PROJECT.DAT ");
newline (2);

put_line (f2, -"---------------------------------------

----------- '

putline(f2, "
putline(f2, "
put(f2, "--- Searching for lines of code with specified input ");
put_line (f2, keyword(l..length));
putline (f2, )

108



putline (f2, "
putline (f2, "--------------------------------------------------

-------------------- ')

while not end of file(f3) loop

begin

n1 := blanks8O;
getline (f3,nl,last);
if (nl(l..last)) = n1 then

putline(nl);
end if;
total files := total files + 1;
put (total files); -
putline (" files processed");
open (fl, infile, n1);

headings for each file printed in
external file PROJECT.DAT

put_line(f2," ,);
put line(f2, ");

put (f2, "searching file -
putline (f2, nl(l..last));
putline (f2, " ");
total lines 0;
lines-found := 0;

process each line of the file and print only the
lines containing the specified input in the
output file named PROJECT.DAT.

while not end of file (fl) loop

line := blanksloo;
get line (fl,line,last);
total lines := total lines + 1;
if search (line,lastY then

put line (f2,line(l..last));
lines found := lines-found + 1;

end if;
line := blanks!00;

end loop; -- file fl loop
close (fl) ;
totallinesfound := totallinesfound + linesfound;

if lines-found = 0 then
putline (f2, " -- None found -- ");

end if;

109



-- put_line (f2, "

-- put (f2, " There are");
-- put (f2, total-lines);
-- put_line (f2, " lines in this file.");

-- exception handler for simple problems with input file

exception
when others =>

close (fl);
put line (" PROBLEM WITH INPUT FILE ");

end;

end loop; -- file f3 loop

-- putline (f2, " ");
-- put (f2, "There were");
-- put (f2, total files);
-- putline (f2, " files processed.");
-- putline (f2, ");
-- put (f2, "There were");
-- put (f2, total linesfound);
-- put line (f2," lines of code found containing the specified
input");
-- putline (f2, "in all the files processed.");

close (f2);
close (f3);

-- more elaborate exception handler for debugging purposes

exception

when name-error I use-error =>
if is_open (fi) then
close (fl);

end if;
if isopen (f2) then

close (f2);
end if;
put line ("** error copying " & nl & " to " & n2);

when mode-error =>
putline ( " mode error ");
put line (line);

when status-error =>
put line ( " status error ");
putline (line);

110



when device error =>
put-line-( "device error ");
put_line (line);

when end error =>
put_line ( "end error ");
put line (line);

when data error =>
put_line ( "data error "
putline (line);

when layout_error =>
putline ( " layout error ");
putline (line);

end project;

111



APPENDIX H: LISTING OF ISS SOFTWARE AND DOCUMENTATION AVAILABLE
THROUGH THE NATIONAL TECHNICAL INFORMATION SERVICE (NTIS)

The following ISS software and documentation are available through

the NTIS Sales D-;partment at (703) 487-4650.

DOCUMENT TITLE NTIS ORDER NUMBER

COMPLETE SOFTWARE AND DOCUMENTATION:

1. ISS Vax Version (Contains 3 tapes PB90-501529
and 47 documents)

2. MicroISS Zenith 248 Version PB90-501537
(Contains 30 diskettes and 17
documents)

SYSTEM DOCUMENTATION:

1. ISS Vax Installation Package PB90-177338
(Vax Only)

2. MicroISS Installation PB90-177155
Package (Zenith 248 Only)

3. Functional Description Package PB90-177197
(Both Vax and Zenith 248)

4. Computer Program Product Specifi- PB90-177320
cation (Vax Only)

5. Data Base Design Document (Vax Only) PB90-177361

6. Software Detailed Design Document PB90-177627
(Vax Only)

7. Terminal Emulator Installation and PB90-177205
Use Instructions (Both Vax and
Zenith 248) (For use with video
disc capability)

CAI REFERENCE MANUALS:

1. CAI Authoring Support System (CASS) PB90-177247
(Both Vax and Zenith 248)

2. Glossary Editor (GlosEdt) (Both Vax PB90-177239
and Zenith 248)

3. Graphics Editor (GrEdt) (Both Vax and PB90-177270

112



Zenith 248)

4. Simulation Dialogue Editor (SID) (Both PB90-177304
Vax and Zenith 248)

5. Video Disc (Both Vax and Zenith 248) PB90-177312
(Operates as a CASS capability)

CAI USER'S MANUALS:

1. MicroISS User's Manual for the CAI PB90-177163
Authoring Support System (CASS)
(Zenith 248 Only)

2. MicroISS Beginner's Manual (Zenith In Development
248 Only)

CAI TRAINING MANUALS:

1. CAI Authoring Support System (CASS) PB90-177189
Training Manual and Appendices (Both
Vax and Zenith 248)*

2. Graphics Editor (GrEdt) Training PB90-177171
Projects (Both Vax and Zenith 248)*

* Accompanies online training databases
provided with the software

MICROCMI AND CMI REFERENCE MANUALS:

1. MicroCMI (Instructor) (Both Vax and PB90-177262
Zenith 248)

2. MicroCMI (Student) (Both Vax and PB90-177254
Zenith 248)

3. Test Editor (TestEd) (Both Vax and PB90-177288
Zenith 248)

4. User Editor (UserEd) (Both Vax and PB90-177296
Zenith 248)

5. CAI Reports (CAIRep) (Vax Only) PB90-177510

6. Curriculum Definition Editor (CDE) PB90-177544
(Vax Only)

7. Course Evaluation Summary (CES) PB90-177528
(Vax Only)

8. Course Structure Editor (CSE) PB90-177536
(Vax Only)

113



9. Data Extraction Program (DEP) PB90-177551
(Vax Only)

10. ISS Administrative Management PB90-177569
Editor (FORMS) (Vax Only)

11. Instructor-Managed Resources PB90-177577
Editor (IMR) (Vax Only)

12. Instructor Monitor (InstMON) PB90-181496
(Vax Only)

13. Lesson Definition Editor (LDE) PB90-177619
(Vax Only)

14. Resource Availability Editor PB90-177601
(ResAvail) (Vax Only)

15. Student Logon Editor (StuLog) PB90-177593
(Vax Only)

16. Student Registration Editor PB90-177585
(StuReg) (Vax Only)

17. Test Item Evaluation (TIE) PB90-177502
(Vax Only)

MICROCMI AND CMI USER'S MANUALS:

1. Test Editor (TestEd) (Both Vax and PB90-177221
Zenith 248)

2. User Editor (UserEd) (Both Vax and PB90-177213
Zenith 248)

3. Course File Editor (Vax Only) PB90-177486

4. Course Structure Editor (CSE) PB90-177478
(Vax Only)

5. Curriculum Definition Editor (CDE) PB90-177460
(Vax Only)

6. ISS Administrative Management Editor PB90-177494

(FORMS) (Vax Only)

7. ISS Message Utility (MAIL) (Vax Only) PB90-177411

8. Hierarchy File Editor (Vax Only) PB90-177452

9. Instructor Monitoring (InstMON) PB90-177445
(Vax Only)

114



10. Learning Center Editor (Vax Only) PB90-177437

11. Lesson Definition Editor (LDE) PB90-177429
(Vax Only)

12. Permanent File Editor (Perm) PB90-177379
(Vax Only)

13. Student Data Profile Editor (SDP) PB90-177395
(Vax Only)

14. Student Logon (StuLog) (Vax Only) PB90-177387

15. Student Registration (StuReg) PB90-177403
(Vax Only)

16. Variable Definition File Editor (VDF) PB90-177346
(Vax Only)

17. ISS CMI Error Messages (Vax Only) PB90-177353

• U. S. GOVERNMENT PRINTING OFFICE, 1990--761-051/20114

115


