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INTRODUCTION

.1 Fractals. objects of noninteger imensionality embedded into usual (three dimen-

sional) space, possess many nontrivial mathematical properties. -4. There exists a

series of physical systems whose geometry can be adequately described as fracta13-5 t

We shall restrict ourselves to the study of one of such physical reaiizations of fractas.

nameiy fractal clusters^l (simply called below as fractals). More specifically, we shall

consider theoretically the seiective photomodification of fractals induced rowerful

iaser radiation. Experimentally, this phenomenon has recently been observed&. "in silver

clusters in colloidal solutions and gels.

The effect of selective photomodification observed in Ref. [61 consists in burning

out the spectral hole in the absorption contour of a fractal at the frequency close to

that of the exciting laser radiation. The spectral hole exists at times on the order of
months or longer and, thus, can be considered as persistent. The primary hole is highly

dichroic: it is observed only in the polarization of the probe light coinciding with that of

the exciting radiation and is practically absent for the normal polarizations. In solutions

this dichroism relaxes with the rotational diffusion times of the clusters, and in gels it

does not significantly change for months. The experimental data", indicate that the
photomodification has a threshold in the intensity of the laser radiation. Below we shall

exploit the last feature to develop the theory of the photomodification which shoul/

explain its selectivity and give further predictions to stimulate experimental study.

THEORY AND NUMERICAL SIMULATION OF SPECTRAL HOLE

BURNING IN FRACTALS

The fractal is modelled as the set of N polarizable particles, called monomers,

located at the points ri, i = 1 ...... The total size of the fractal R, is assumed to

be much less that the incident light wavelength A. Therefore the electric field E0 ) of

the light wave can be considered to be the same at the sites of all the monomers. The

external plus local electric field (i.e.. the integral field of all the other monomers) induce

on the itk monomer a transition dipole moment di oscillating with the light frequency,

which obeys the well-known system of equations

d.= Xo E'0 ' - )(o 6,*,' - 3n("))n(')J Ir - 3dj,a
~~12

where the Greek subscripts stand for tensor components (summation over repeated in-

dices is implied), and the Latin indices stand for ordinal numbers of monomers; Xo

is the dipolar polarizability of an individual (isolated) monomer: r,., = r. - ry: and

nl -
)  r r ..,

The properties of the monomer enter the system (1) only via the poiansability

x0. Taking this into account. we shall consider as the spectral variabie not the light



frequency w. but the quantity X - Reco. As the characteristic of the dissipation in the

monomer, we shall use the parameter 6 = Imxo'. To make the connection to experiment.

let us specify the relation between X and w in a model which is realistic, in particular.

for clusters obtained by aggregation in colloidal solutions. This model considers the

monomer as a macrosc..opic sphere with radius Rm,, consisting of the material with a

complex dielectric permittivity - - z ". The polarizability of such a sphere is given

by the well-known expression O = R - )( - 1 . For the metallic sphere, the

permittivity is well described by the Drude formula E =o - ;"- where

0 =const is the contribution of the interband transitions (e.g., for silver Co Z 5), Wp is

the electron plasma frequency, and 7 is the electron collision frequency. For most metals,

in particular, for the noble metals, -y < wp and, consequently, !" < E'. In this case. from

(7) and (25), one can see that X(w) turns to zero at the point of the surface piasmon

resonance, w = w,, where E' = -2. From (26) it follows that u, _ w,(e0 - 2) - ' / ' . In

the vicinity of the surface plasmon resonance, X and 6 are simply expressed in terms of

the detuning from the resonance Q - w - w, and the transition dipole moment of the2 -n )3 2 . -/ 1d 2

resonance d12K = 3R? hwp/[2(o - 2)3/2, namely X = hf/Id12K 6 = hy/2Idz2 "

The theory is based on the above mentioned assumption of the threshold character

of the photomodification. In addition it is assumed that the photomodification is local.

i.e. only those monomers are modified for which the amplitude of the local field E, exceeds

the threshold magnitude Elh. The latter depends on the composition of the monomer and

the embedding medium, and also on the specific mechanism of the photomodification.

Note that the local field is simply expressed through the solution of Eq. (1), Ei =

dj/xO. For the sake of definiteness, we also suppose that the modified monomers do not

contribute to the optical absorption. This assumption is suggested by the estimates [6]

that the modification mechanism, apparently, consists of melting and evaporation of the

monomer material.

The numerical study has been carried out in the following way. Three types of

fractals are generated and used in the simulation: random walks (the fractal dimension

D = 2), self-avoiding random walks (D ;z 1.7) and Witten-Sander clusters (D - 2.5),

where the number of clusters of each type is 1000, with mean number of the monomers

in the cluster as NV = 50. The results obtained for all the three fractal types are quite

similar, so that we shall give all the numerical illustrations only for the random-walk

fractals.

For each individual fractal, the basic system of equations (1) is solved numerically

and the factor Gi of enhancement of the local field for the ith monomer is found, Gi =

jEj12 / (E(')) 2. The above-discussed condition of modification is taken in the form

Gi 2! - (G , . (2)

Those monomers for which this condition is met are excluded from the fractal. After

that. the system (1) is solved once again for the modified fractals (with the excluded

monomers). The optical absorption A per one monomer is determined from the formula

A = ImX,,, where X:. = (d-) /E( 0 ) , and the polarization of the exciting wave is, for the

sake of definiteness, directed along the z-axis. Note that the absorption cross-section a,,

per one monomer is related to A by a,, = 4rA/3. It can be shown that the number A.N

of the modified (excluded) monomers is expressed as AN = f_ AA(X)dX, where AA

is the change of absorption upon the photomodification.

In Ref. [7 we have found the estimate G of the mean of Gi over the ensemble of

fractals in the scaling region (6 < 'Xi < Ro 3 ) as
G =- ~G Q(R3 IX I)do 1 (3)



wnere R 0 is the characteristic separation between the nearest monomers in the fractad.

0.4 is the optical spectral dimension. and 0 = RU) -) is the quality factor of the

resonance in the monomer. For many monomer materials, including the noble metals.

the Q-factor is large: e.g.. for silver. 0 3 - 30 depending on the defect concentration

in the metal determined by the preparation method. Thus. the factor G is iarge. which

means that fluctuations of the local field are much grater than the exciting field E".

This fact. in the Light of Eq. (2), ailows us to predict that the photomodification takes

place at high values of Gte, - G. In the other words. the charaecteristic light intensity

of photomodification of fractais is much smaller (by the factor - G - 1 < 1) than the

threshold intensity of the isolated monomer modification. This is a consequence of large

fluctuations of local fields in the nontrivial fractals and. also. of the high Q-factor of the

monomer resonance (cf. Eqs. (2) and (3)).

In Fig. 1 we present an example of the dependence of the rel-tive number of modified

(removed) monomers IN/N on the threshold parameter Gth, with the value X* of the

X-parameter for the modifying radiation as X* = 3.0. One can see that. in accord

with the above arguments, the photomodification starts at large values of Gth, which

correspond to small exciting field intensity E ( 0)2 .

Fig. 1. The relative amount of the

0.5 modified monomers as the function
of the threshold parameter Gth (2)
calculated for Q = 3.

0
-3 0 logth 3

An example of the calculated fractal absorption contour is shown in Fig. 2. One

can see that this contour is a broad peak centered at the zero X, corresponding to

the frequencies near the surface-plasmon resonance. The differential spectrum of the

photoburning, i.e.. the difference between the fractal absorption before and after the

modification. is shown in Fig. 3 for the two polarizations of the probing field and X" =
-1. It follows from this figure that for the parallel polarization the spectral hole is burned

out. centered at the frequency of the exciting radiation (X z X0). For the perpendicular

polarization, the spectral hole at X - X" practically disappears, while it emerged at

the "mirror" frequency at X - -X',2. This can be understood in the framework of

the binary approximation developed in Ref. 8. Thus. in fact. the spectral hole is highly

dichroic. As the numerical results show, in accord with the theoretical estimates and

Figs. 1 and 2. the width of the hole burned (in the X-variable) is on order of Q- 1 .
while the total width of the fractal contour is on order of unity independently of the

Q.parameter. Thus. the total number of holes. which can be burned out in each of the

two polarizations, can be estimated as approximately 2Q.
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Fig. 2. Absorption spectrum of the Fig. 3. Difference in the absorption

ciusters calculated for Q = 3 spectrum caused by the photomodifi-
cation calculated for Q = 3. X* = -1.
with the polarization parallel (curve 1)
and perpendicular (curve 2) to that of
the modifying radiation

CONCLUDING DISCUSSION

The theory presented above describes a qualitative picture of the polarization-
selective persistent spectral-holes photoburning in fractals, which has been experimen-
tally observed [6]. The estimate obtained on the basis of the numerical results shows that
it is possible to burn out in a given spatial region of a fractal media the number of - 2Q
frequency- and polarization-resolvable spectral holes. This number may be on order of
10 for the realistic value of Q = 1 - 10. Thus, the fractal cluster media are promising
materials for high-density optical recording of information.
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