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Abstract

A higher-order time-domain parabolic equation (TDPE) is derived from a Padé series[7], solved
numerically, and applied to underwater acoustics problems. The higher-order TDPE solution is
accurate for problems involving very wide propagation angles and large variations in sound speed.
Its applications include propagation near the source, propagation out to very long ranges, and
propagation over a hard ocean bottom. The higher-order TDPE is valid in both shallow and deep
water. The accuracy of the model is demonstrated with benchmark calculations. The model is
applied to illustrate mode cutoff in a range-dependent ocean.

1. Introduction

The parabolic equation (PE){1] is a very _.eful model for range-dependent propagation calcu-
lations in underwater acoustics. The PE was originally accurate only for problems involving limited
bottom interaction and narrow propagation angles. However, the PE was later extended to handle
wide-angle propagation {2-4] and bottom interaction {3-5]. Benchmark comparisons showed that
the wide-angle PE is accurate for many underwater acoustics problems {6]. The accuracy of the
PE has recently been further improved. A higher-order PE based on a Padé series [7,8) produces
solutions as accurate as the outgoing coupled mode solution[9] for very wide propagation angles
and large differences in sound speed. In particular, the higher-order PE is accurate for propagation
very near the source, propagation out to very long ranges, and propagation over high-speed ocean
bottoms.

Two approaches exist for applying the parabolic approximation to pulse propagation. The PE
has been applied to solve time-domain problems in the frequency domain using Fourier synthesis.
[10,11] This is probably not an optimal approach if the solution is desired at many points in the
domain. If a sequence of snapshots of the solution were desired, for example, one would have to
perform Fourier synthesis at each point in each snapshot. The time-domain parabolic equation
(TDPE), which is the inverse Fourier transform of the PE, has been developed for range-dependent
time-domain propagation calculations.[12-16) With this approach, one automatically obtains the
solution at all points in the domain.

In this paper, a higher-order TDPE is derived, solved numerically, and applied to underwater
acoustic pulre -ropagation. In addition to allowing one to avoid Fourier synthesis, the higher-
order TDPE has all of the advantages of the higher-order PE. The numerical solution is based
on Galerkin’s method because the depth operators are relatively complicated. The higher-order
TDPE, which is accurate for propagation in both shallow and deep water, is compared with a wide-
angle TDPE designed for shallow water. The accuracy of the higher-order TDPE is demonstrated
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with benchmark comparisons. The model is used to illustrate mode cutoff in an ocean with an
upward sloping bottom.

2. Factoring the wave equation

We work in cylindrical coordinates with r heing the range from a point source and z being the
depth below the ocean surface. We assume for now that the domain is stratified and that azimuth
dependence can be neglected. We remove the spreading factor #=% from the acoustic pressure p
and begin with the farfield wave equation

8p 9% 18p3p 10%

il il 4 = ——= 2.1
or? 922 pdzdz 2’ (z1)

where 1 is time, ¢ is sound speed, and p is density. Equation (2.1) can be factored in two ways:

1 _ 1\ 8% _ 92 + l%ga
gg___l_l+?z ) 3 T a2 T PO8z9z gp (2.2)
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O The TDPE, which is the inverse Fourier transform of the PE, is obtained by approximating the

square toot in Eq. (2.2). The progressive wave equation (PWE) is derived from Eq. (2.3). The
TDPE and PWE are valid to leading-order in domains in which range dependence is a perturbation.

A numerical solution of the PWE based on the method of alternating directions and nonlinear
capability for the PWE have been developed, {14] and the PWE has been extended to handle
density variations and sediment attenuation.[15] However, the PWE can not be extended to handle
wide-angle propagation, and the TDPE is casier to initialize and is better suited to handle range-
dependent problems.[16] Thus recent development has involved the TDPE, which has been cxtended
to handle sediment dispersion and wide-angle propagation in shallow water.[16]

3. The higher-order TDPE

The 1-term Taylor series

Vi+z -1= %x + O(z?) (3.1)
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Table I: Comparison of Taylor and Padé series.

4-term 1-term  2-term  3-term
z Taylor Padé Padé Padé 14z

0.25 1.11801 1.11765 1.11803 1.11803 1.11803
0.50 1.22412 1.22222 1.22472 1.22474 1.22474
0.75 131870 1.31579 1.32274 1.32287 1.3228y
1.00 1.39844 1.40000 1.41379 1.41420 1.41421
1.25 145639 147619 149904 149996 1.50000
1.50 1.48193 1.54545 1.57931 1.58105 1.58114
1.75 1.46078 1.60870 1.65523 1.65812 1.65831
2.00 137500 1.72000 1.79584 1.80221 1.80278
2.50 0.91943 1.76923 1.86124 1.86994 1.87083
2.75 0.49545 1.81481 1.92376 1.93519 1.93649
3.00 -0.10156 1.85714 1.98361 1.99817 2.00000

has been used to derive the narrow-angle TDPE and the narrow-angle PWE, which are accurate
for propagation angles up to about 15 degrees. The 1-term Padé series

2% 4 o(z?) (3:2)

has been used to derive a wide-angle TDPE for shallow water, which we refer to as TDPE, and
which is accurate for propagation angles up to about 40 degrees. To obtain a higher-order TDPE
that is accurate for the very wide propagation angles that occur near the source and over a hard
ocean bottom, an approximation for the square root function that is very accurate for z = 1 is
required. Since the Taylor series converges only for | x |< 1, many terms are required for z 2 1.

The following generalization of Eq. (3.2) is not restricted to | z [< 1

I agaz
Vite -1 =) ﬁ%; + Oz, (3.3)

i=1

where n is the number of terms in the Padé series and

2 . JW
: 3.4
G = a1 (3.4)
bjn = cos? 21:11. (3.5)

l
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Figure 1: Time series at » = 500m and z = 200m for a Gaussian pulse in a2 waveguide with
perfectly reflecting boundaries. The dashed curves are the image solution. The solid curves are the
(a) TDPE;, (b) TDPE, and (¢} TDPE3; solutions.
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Since the Padé series is valid outside the radius of convergence of the Taylor series, relatively few
terms are needed for z = 1. We illustrate this in Table I. The 4-term Taylor series is better than
the 1-term Padé series for < 1, but the 1-term Padé series is better for z > 1. The 2-term Padd
series and the 4-term Taylor series are both correct to O(z®) for small z. Yet the 2-term Padé scries
is substantially better than the 4-term Taylor series. The 3-term Padé series is fairly accurate well
beyond the radius of convergence of the Taylor series near z = 3.

The effects of attenuation and dispersion are less important than refraction and diffraction
for most problems. Thus we do not derive corrections for the attenuation/dispersion operator in
TDPE,. For now, we assume that ¢ is real (no attenuation) and independent of w (no dispersion)
in the analysis. From Egs. (2.2) and (3.3), we obtain the following higher-order TDPE

o2 C(8* _18p0
op " N i %in gt + Bin (5;7 723533 ap (3.46)
op - _ Ba . 2.0

ar o S, g (& -122)]
= Yim Bz iw\9:2 " PI:0z
where
a 1 1
®im cjon (? 02) o
ﬂ]n = Zlin %)
Co

1 1 1 30
Yimn = _(_‘_(2) + bjm (23 - Ez) (3:9)
60 = by (3.100

We define u(r, z,t) = p(r,2,t + r/co) and rearrange Eq. (3.6) to obtain

du _ i) 8
j=1 "

6. Yindin (32 19 5) (3.11)
zn: " Yin w p8z0z du
= 9 9? 16p8\ ot
=1 L 6 v _erag
Yin 5 O (822 p0z3z2

We refer to Eq. (3.11) as TPDE,,. In the derivation of TDPE,, it was assumed that
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( 1 1 ) 8%y <<
c? 2/ o

which js valid in shallow water. Since this assumption was not made to derive TDPE,, we deduce
that TDPE, is the generalization of the wide-angle PE to deep water.

8%u 19pdu

— - 2L 3.12
822 pdz8z|’ (3.12)

4. Numerical solution

The alternating directions solution of TDPE,, requires numerical solutions for each of the
following n + 1 equations

du in | Ou _ (4.1)
ar 1 Vin ot
. Bu + a? 19p @ \ Ou
Tin 5ot I\ 922 p8z8z) ar (
1.2)

4 Xjnbin) [ 8° 19p 8\ du
- (85 - plin) (& - 3524) %

Since Eq. (4.1) is similar to the refraction term of TPDE,, and Eq. (4.2) is similar to the diffraction
term of TDPE,, the numerical solution developed in Ref. 16 can be modified slightly to obtain the
numerical solution of Eq. (3.11). Without the rearrangement of Eq. (3.6), it would be necessary
to solve n equations similar to Eq. (4.2) as well as n third-order equations that are much more
complicated than Eq. (4.1).

Asin Ref. 16, the source function f(2) is assumed to have compact support, and a time window
1y <t < 1y that contains the signal at all times is chosen. The boundary condition u = 0 is imposed
at the pressure release surface, deep within the sediment at z = zps from which no energy returns
to the water column due to attenuation, and after the signal has passed the obsever at { = t5. The
boundary conditions u = du/8¢ = 0 are imposed before the signal is detected at ¢ = ¢;. Equation
{4.1) is a first-order hyperbolic equation that can be solved with the Lax-Wendroff scheme[17].

Galerkin’s method is used to discretize depth dependence in Eq. (4.2). The resulting equation
is then solved with Crank-Nicolson integration in r using centered differences in t while sweeping

from t = t; to t = t;. We define the depth grid points z; = iAz. The basis functions ¥;(z) vanish
for | z — z; |> Az, increase linearly from 0 to 1 over z;_; < z < z;, and decrease from 1 to 0 over
2 < z < zjp1. We define u;(r,t) = u(r, z,t) as well as ©; = 0(z;) and ®; = 9(z;) for arbitrary
functions © and ®. The basis functions provide the approximations
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u(r,z,t) = z u,-(r,t)\Il‘-(z)

&(z)

1%

Z ®,%,(z)

R

0(z) Z 0;%:(2).

The depth operator Q, is discretized with Galerkin’s method, as follows:

~ JYiQ.Pdz
Qz¢.2=z¢ = f_\Il.-d-z .

207

(1.3)

(4.4)

{(1.6)

Substituting Eqs. (4.3), (4.4), and (4.5) into Eq. (4.6), we obtain the following approximations for

the depth operators:

Qu Iz:z, =

0.1 + 0, S

- i i . @
Ox 1+ (13? +0+1 u + G|+11;' s Uip

00— I o~ i u —_ i u; + i U
622 = (AZ)2 =1 (AZ) ! (AZ) i
J0 9 ~ ¢,‘_ + 2‘1’,‘ 0,‘_ - 0;
QT U ,z—z. = ( 1 ( ) ()2 1 ) Ui-1

$:_1(0i — Oi_1) + 20:i(20; - 0i_1 —0iy1) + ®i41(0; — Oi41) 0

6(Az)?

(Pir1 + 29) (Oi1 —O4)
6(az)? it

5. Examples

(-1.9)

To demonstrate the ability of TDPE, to handle very-widc-angle propagation, we consider
a waveguide of thickness 300m with pressure-release top and bottom boundaries in which ¢ =
1500m/s. The Gaussian source f(t) = exp [~(vt)?] is placed at z = 25m, where v = 150s~!. The
image solution, which is exact, is used to initialize the field at r = 200m, and we take ¢y = 1500m/s.
The TDPE;, TDPE,, and TDPEj; solutions are compared with the image solution in Figure 1.

Each of the solutions is very accurate for the first arrivals, which propagate at small angles.
However, the agreement improves with n for the later arrivals, which propagate at larger angles.
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Figure 2: Contour plots of a Gaussian pulse in a refracting ocean.
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Loss (dB re Im)

Loss (dB re 1m)

Loss (dB re 1m)

Figure 3: Transmission loss at z = 390m for a 50Hz source in a refracting ocean. The dashed curves
are the wide-angle PE solution. The solid curves are the (a) narrow-angle PE, (b) TDPE,, and (c)
TDPE; solutions.
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Figure 4: Contour plots of a Hanning weighted sinusoidal pulse in a range-dependent ocean.
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In past studies of the TDPE, a stability condition for the numerical solution of the refraction
operator has been discussed. However, the numerical solution of the diffraction operator appeared
to be unconditionally stable based on numerical results. While performing the calculations for the
previous example, however, we discovercd a new stability condition involving the grid spacings Az
and At. In a homogeneous medium, the numerical solution of the diffraction operator is unstable
for Az = ¢pAt and n > 1. The solution appears to be stable for all n if Az > AcgAt, where
numerical experiments give A = 1.4,

To demonstrate the ability of TDPE, to handle large variations in sound speed, we consider
an ocean of depth 400m in which ¢ increases linearly from 1500m/s at z = 0 to 1600 m/s at z
= 400 m (this is not intended to represent a realistic sound-speed profile). In the sediment, ¢ =
1700m/s, p = 1.5g/em?, and the attenunation is 8 = 0.5dB/A. The Gaussian source function with
v = 150s7! is placed at z = 50m, and we take ¢g = 1500m/s. The homogeneous half-space field
{18] is used as an initial condition at r = 100m. The plane-wave loss operator of Ref. 16 is used
to model attenuation. However, we have found that greater accuracy is obtained by using ¢ rather
than cp in the loss operator. Sediment dispersion is neglected.

A sequence of contomr plots of p computed with TDPE; appears in Figure 2. Solid contours
correspond to p > 0; dashed contours correspond to p < 0. The solid line marks the ocean bottom.
The response to f is convolved as in Ref. 16 to obtain the response to a 50Hz time-harmonic source.
Transmission loss for the 1 DPE;, TDPE,. wide-angle PE, and narrow-angle PE solutions appears
in Figure 3. The narrow-angle PE solution has large phase errors. The TDPE; solution is better,
but it too has a large error due to the strong refraction. The excellent agreement of the TDPE; and
wide-angle PE solutions demonstrates the ability of TDPE; to accurately handle pulse propagation
in deep water and shows that the plane-wave loss operator is accurate for this problem.

The phenomenon of mode cutoff in a range-dependent crean has been illustrated for time-

harmonic signals.[19] To illustrate energy cutoff in the time domain, we apply TDPE; in a range-
dependent ocean in which the depth d is defined by

100m for r < 5km
d(r\ = (1 ~ iﬁ)—;'—:;—") 100m for 5km < r < 10km (5.1)
50m for r > 10km.

We take ¢ = 1500m/s in the water and ¢ = 1600m/s, p = L.5g/em®, and 8 = 0.5dB/A in the
sediment. The source function is the Hanning weighted sinusoid {20]

(1— ms%wt) sinwt 0<t<T
) = (5.2)

0 otherwise

wherew = 10075~ and T = 87 /w. Since this source function has a fairly narrow frequency content,
it is effective for illustrating normal mode behavior. The source is placed at z = 25m, and we apply
the half-space field at r = 100m.
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Snapshots of the TDPE; solution appear in Figure 4. The first three modes are clearly visible
at r = 5km. The vertical dependence of the field matches the first mode for the first arrivals as
only one extremum appears. A maximum and a minimum occur near ¢t = 150ms due to arrivals
of the second mode. The third mode, which has three extrema, is apparent for ¢ > 200ms. Cutoff
occurs for two of the modes as d decreases. The third mode is no longer evident at r = 9km. The
second mode disappears by r = 11km.

6. Conclusion

A higher-order TDPE has been derived and solved numerically. Since the model is based on
a Padé series that is very accurate and is not restricted to the unit circle in the complex plane.
it is accurate for problems involving very wide-angle propagation as well as large sound-speed
variations. Since the higher-order TDPE splits into terms similar to the refraction and diffraction
terms of TDPE;,, it can be solved with similar methods. Although the coefficients of the terms in
the higher-order TDPE are relatively complicated, they are easily handled with Galerkin’s method.
The higher-order TDPE solution is comparable in accuracy to outgoing coupled normal mode
solutions. In particular, the model is valid in deep water.
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