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An Integrated Cognitive Architecture for Autonomous Agents

1. Introduction

In order to exist in the world, an intelligent agent must have access to large amounts of
knowledge about physical objects, plans, and motor skills, and it must also be able to acquire
and organize new knowledge from experience. Traditional research in artificial intelligence
has focused on high-level aspects of cognition, making few efforts to develop integrated
systems that interact with the physical environment. In this paper we describe ICARUS, an
integrated cognitive architecture that we have designed with these issues in mind.

Our long-term goal is an integrated intelligent agent that acts on internal drives, acquires
knowledge from experience, and uses this knowledge to achieve its goals. We will focus on
three main types of knowledge - physical object concepts, planning know!ledge, and motor
schemas - as crucial for intelligent behavior in a physical environment. In solving a problem,
the agent should recognize similar problems it has solved before. In recognizing an object,
it should use knowledge of objects it has seen in the past. In performing a motor operation,
it should take into account previous operations of a similar nature. The working hypotheses
of ICARUS are that a single long-term memory - a probabilistic concept hierarchy - can
represent knowledge in all these domains, that a single performance mechanism - heuristic
classification — underlies all these abilities, and that a single learning mechanism - concept
formation - is sufficient to acquire this knowledge from experience.

1.1 Issues for Cognitive Architectures

We have designed ICARUS to address six basic issues. Other researchers have dealt with
some of these independently, but not within the context of a single research project. These
issues include:

o Interaction with the environment: An ICARUS agent constructs a model of its environ-
ment from sensory input and interacts with this environment through effectors. Although
we are currently working with simulated worlds, we have the long-term goal of attaching
agents to physical robots. We assume that early vision and primitive motor control are
solved problems, but we model cognition at a ‘lower’, more primitive level than most Al
researchers.

e Grounded symbols: Most research in Al has assumed high-level symbolic representations
that are disconnected from sensori-motor issues. In contrast, ICARUS assumes that all
symbols are ultimately grounded in some sensori-motor description (Harnad, 1989). For
instance, the symbol THROW would be described in terms of an agent’s arm, the thrown
object, and the manner in which both change over time. For simplicity, most of our
examples in this paper will involve symbolic primitives like shape and color, but we
believe that real-valued attributes - such as size, position, and velocity - are necessary
to describe much of the complexity in the physical world.

o Learning as incremental hill climbing: Learning is essential for intelligent action in an
uncertain, complex world, and we feel that much ‘everyday’ learning in humans (e.g.,
concept formation and skill acquisition) occurs in a gradual, unconscious fashion. We do
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not believe that physical agents can afford extensive search through a space of hypothe-
ses, ner can they afford extensive reprocessing of previous instances. An ICARUS agent
starts with a weak model of the world, which it improves with experience using an incre-
mental hill-climbing strategy (Langley, Gennari, & Iba, 1987). The learning component
‘searches’ a space of long-term memory structures using simple-minded, local operators
that adjust memory in response to new experience.

e Organization and indezing of knowledge: Unlike much Al research, our work on ICARUS
emphasizes the importance of organizing knowledge in long-term memory. We believe
that intelligent action emerges not only from large amounts of domain knowledge, but
also from the ability to efficiently find the “best” knowledge for a given goal and situation.
To this end, we organize long-term memory into a hierarchy of concepts that are used
for indexing and retrieval.

® Psychological constraints: Although we do not intend ICARUS as a complete psychological
model, its characteristics are constrained by coarse-level psychological phenomena. This
bias has been useful in generating research ideas, and we feel that many properties
of the human information-processing system are useful for interacting with the world.
For example, our approach to classification and concept formation has been influenced
by studies of basic-level effects in human classification (Mervis & Rosch, 1981). This
phenomenon may prove to be not just a robust psychological invariant, but an important
constraint on indexing concepts.

o Integrated architecture: Much of ICARUS’ promise lies not in its components, but in their
symbiotic organization. Any planning system is incomplete without some mechanism for
executing its operators, and any approach to motor behavior is incomplete without some
higher-level control component. Neither can occur without some mechanism for recog-
nizing objects and states in the world. The components of ICARUS will work together,
accessing the same long-term memory structures in order to take advantage of previous
experience.

Taken together, our responses to these issues have significantly constrained our design of
ICARUS, and they have provided the basic assumptions on which we base our approach. In
the following pages, we describe the directions in which these assumptions have led.

1.2 An Overview of ICARUS

Before turning to the details of ICARUS, we should give a brief overview of the architec-
ture’s memories and processes. The system gains information about its environment through
a sensory buffer, which contains descriptions of external objects and the agent’s own internal
states. This buffer is very short-lived, but it is constantly refreshed with updated descrip-
tions of the world. ICARUS makes no claims about the nature of early vision or other senses.
Marr (1982) has argued that the human visual system produces three-dimensional descrip-
tions of objects in the environment, and we will assume that such information is available to
the agent without explaining its origin. Thus, we explicitly abstract away from problems of
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multi-sensor fusion and object delineation, while remaining concerned with the higher-level
problem of object recognition.

We make similar simplifying assumptions about motor control. ICARUS affects its en-
vironment by placing commands in a motor buffer, which causes body parts to move to
specified positions at given velocities. Translating such commands to muscle contractions or
voltage changes is an active research problem in robotics, but we will assume that this task
can be separated from the generation of motor commands. Clearly, there exist some limits
on this independence assumption. For instance, one cannot lift an object beyond a given
mass, but under reasonable load conditions and in the absence of obstacles, we will i lgnore
issues of low-level motor control.

The main repository of ICARUS’ knowledge is long-term memory,! which consists of
nodes organized into an ‘is-a’ hierarchy. Each node can be viewed as a ‘symbol’ or ‘chunk’
that is ultimately grounded in a sensori-motor description. We will generally refer to these
nodes as concepts, regardless <f their purpose. Long-term memory is effectively infinite in
size, retaining all items stored in it indefinitely, though ‘forgetting’ can occur by losing access
to an item. ICARUS distinguishes between simple and composite concepts. The former are
described directly in terms of sensory-level features like length, width, texture, and hue,
whereas the latter are composed of simple concepts or lower-level composites. ICARUS does
not rely on a small, predetermined set of ‘primitive’ symbolic concepts; the system can
acquire an indefinite number of concepts from experience. In the following sections, we
describe the representation and organization of concepts in more detail.

Figure 1 presents a graphic representation of ICARUS’ main processes and memories,
with memories shown as circles and processing modules as rectangles. The architecture
has no single “top-level” module, but instead has several cooperating processes that act in
parallel. Information from the environment enters the sensory buffer, where the process of
object recognition decides on the categories of observed objects and stores them in long-
term memory, based on earlier experience with similar objects. The LABYRINTH system
implements this process and its associated learning mechanism, as we describe in Section 3.

The planning process operates solely on long-term memory, noting unsolved problems
(goals to transform one state into another), generating plans to solve them, and storing
traces of this process in memory. Section 4 describes DEDALUS, a system that instantiates
our approach to plan generation. At the lowest level, plans specify operators that should
be applied, and a third ICARUS component generates motor programs from descriptions of
these operators in long-term memory. These motor commands alter the motor buffer, which
directly affects the environment. The MAANDER system implements the process of motor
control, as we describe in Section 5. This component can also recognize and store instances
of motor schemas.?

1 One can view short-term memory as the active portion of long-term memory, but we delay discussion
of such issues until Section 6.2.

2 We assume that perceptual traces are parsed into appropriate temporal chunks before being given to
the recognition process. We do not yet have a theory of this segmentation process.

- -y
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DRIVES ¢

SENSORY OBJECT LONG-TERM PLANNING
BUFFER RECOGNITION MEMORY (D£DALUS)
(LABYRINTH)

MOTOR
BUFFER

MOTOR CONTROL
(MEANDER)

ENVIRONMENT

Figure 1. Memories and processes of the ICARUS architecture.

Given a top-level problem or goal, ICARUS’ planning module can generate subproblems
that help achieve that goal. However, the system needs some means to generate its top-level
goals, and this is the function of internal drives. These are structures in long-term memory
that match against key situations, such as noticeable hunger or extreme fatigue. When a
drive is activated, it adds a new goal to memory, where (if it is sufficiently active) it attracts
the attention of the planning module. In some cases, this means interrupting processing
of the current problem. Although we believe drives should play a major role in controlling
ICARUS’ behavior, they constitute the least specified aspect of the architecture, and we will
mention them only in passing. :

Figure 1 obscures a central feature of ICARUS, notably that a single mechanism underlies .
the diverse processes of object recognition, planning, and motor control. This mechanism
provides the higher-level components with access to long-term memory, modifying this mem-
ory in the act of retrieval. Thus, this process tightly integrates learning with performance,
leading to incremental changes in the long-term store. We discuss this mechanism in the
following section, delaying discussion of the components that use it until later.

2. Classification and Concept Formation
The basic operation in ICARUS involves retrieving relevant knowledge through a process
of heuristic classification (Clancey, 1985). This task can be stated as:
e Given: An unclassified instance that may be only partially described;
o Find: The category in which that instance should be placed.

Having retrieved a category, one can also use the stored description of that class to make
predictions about unobserved aspects of the instance. For example, a doctor may diagnose
a disease on the basis of a few symptoms, and then prescribe medicine that should cure
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the disease or slow its progression. Many other aspects of human behavior can be viewed
in these terms, and our work with ICARUS assumes that heuristic classification is the basic
process underlying all cognition.

This approach to intelligence implies that one has access to a large knowledge base, and
this knowledge must be acquired and organized in some fashion. Our work on ICARUS further
assumes that this occurs through an incremental process of concept formation, which involves
clustering a sequence of observed instances into categu.ies, forming intensional descriptions
for each category, and creating a hierarchical organization for the categories. Concept for-
mation differs from the task of learning from ezamples (e.g., Quinlan, 1986) in that learning
is unsupervised. Thus, it can be viewed as a form of conceptual clustering (e.g., Michalski &
Stepp, 1983), but it differs from most work on this topic in that learning must be incremen-
tal. Examples of concept formation systems include Feigenbaum’s (1963) EpAM, Kolodner’s
(1980, 1983) CYRuS, Lebowitz’s (1980, 1987) UNIMEM, and Fisher’s (1987a, 1987b) CoB-
WEB. Although our approach has much in common with all of these systems, it borrows
most heavily from Fisher’s work.

As we detail in Sections 3, 4, and 5, ICARUS applies the same basic processes of clas-
sification and concept formation to the retrieval and acquisition of object concepts, plan
knowledge, and motor schemas. However, before turning to these aspects of cognition, we
must first describe the basic processes, which we have implemented in a system called CLAS-
SIT (Gennari, Langley, & Fisher, 1989). Below we summarize the nature and organization
of the system’s memory, then describe the algorithm, its evaluation function, and some mea-
sures of performance improvement. In the following treatment, we will use the term concept
to refer to any node in long-term memory that summarizes one or more instances, whether
these instances refer to objects, plans, motor behavior, or some other event.

2.1 Probabilistic Representation of Concepts

CLASSIT assumes that each instance is described as a conjunction of attribute-value
pairs, and it employs a probabilistic representation for concepts (Smith & Medin, 1981).
A probabilistic scheme associates a probability with each attribute value of a concept de-
scription, thus subsuming ‘logical’ representations that specify concepts as conjunctions of
necessary attributes. In particular, CLASSIT represents each concept Cj as a set of attributes
A, and a subset of their possible values V. Associated with each value is the conditional
probability of that value given membership in the class, P(A; = V;;|Ci). In addition, each
concept has an associated probability of occurrence, P(Ci). For example, the attribute
BIRTH for the MAMMAL concept would have LIVE with very high probability and EGGS with
low probability; the vast majority of mammals give live birth, with only a few laying eggs.

Although most of our examples will involve nominal (symbolic) representations, CLASSIT
can also handle real-valued attributes. In the nominal case, the system effectively stores a
discrete probability distribution for each attribute associated with a concept. Thus, a natural
analog for a real-valued attribute would be to store a continuous probability distribution.
CLASSIT assumes that the values of such real-valued attributes follow a normal distribution,
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which it can conveniently summarize by its mean g and its standard deviation . In this
scheme, more general concepts (those covering more instances) tend to have attributes with
higher o values, and more specific concepts have attributes with lower standard deviations.
Fried and Holyoak (1984) give arguments for positing a normal distribution in numeric
domains.

P(N1)=1.0 p(v|c)
SIZE MEDIUM | 0.67
LARGE 0.33
TEXT. |SOFT 0.67
pIMPLE | 0.33
COLOR [ ORANGE | 0.33
GREEN 0.33
WHITE 0.33

P(N2)=0.33 P(v|c) P(N3)=0.67 P(vic)
SIZE LARGE 1.0 SIZE MEDIUM | 1.0
TEXT. | DIMPLE 1.0 TEXT. | SOFT 1.0
COLOR |ORANGE | 1.0 COLOR | GREEN 0.5

WHITE 0.5

P(Ng)=0.5 p(v|c) P(N5)=0.5 _ |P(v|c)
SIZE MEDIUM | 1.0 SIZE MEDIUM | 1.0
TEXT. |SOFT 1.0 TEXT. |SOFT 1.0
COLOR | WHITE 1.0 COLOR | GREEN 1.0

Figure 2. A CLASSIT concept hierarchy that organizes three balls.

2.2 Organizing Knowledge in a Concept Hierarchy

Like earlier approaches to concept formation, CLASSIT organizes its knowledge into a
hierarchy of concepts. Nodes in this hierarchy are partially ordered according to their gener-
ality, with concepts lower in their hierarchy being more specific than their ancestors. Thus,
the root node summarizes all instances that have been observed, terminal nodes often corre-
spond to single instances, and intermediate nodes summarize clusters of observations. Fisher
and Langley (in press) review arguments for organizing probabilistic concepts in a hierarchy.

Figure 2 presents a simple concept hierarchy that organizes three instances of balls, along
with the probabilities for each concept and those for the attribute values. For example, the
root node (N;) has an associated probability of one and states that its members have a
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% chance of being MEDIUM in size and a % chance of being LARGE, the same probabilities
for having a SOFT and DIMPLED texture, and equal probabilities of being ORANGE, GKEEN,
or WHITE in color. Concept N3 has a -g- chance of occurring and its n..embers are always
MEDIUM sized and SOFT, but they are evenly split amonz GREEN and WHITE colors. The
terminal nodes in the hierarchy - N; (a basketball), N4 (a softball), and N5 (a tennis ball) -
have less interesting probabilistic descriptions, since each is based on a single instance. Note
that the probability of each node’s occurrence is spec. ied relative to its parent, rather than
with respect to the entire distribution.

There is a strong similarity between CLASSIT’s concept hierarchies and those occurring
in Fisher’s (1987a) CoBWEB. Both differ from EpPAM, UNIMEM, and CYRUS, which labeled
the links from parent nodes to their children with explicit indices. In contrast, CLASSIT and
COBWEB connect parents to their children only through 1s-A links, treating the concept nodes
themselves as indices. In addition, both systems divide instances into disjoint classes, so that
each observation is summarized by nodes along a single path through the hierarchy; this
differs from UNIMEM and CYRUS, which allow non-disjoint hierarchies. However, CLASSIT
diverges from COBWEB in that it does not store all observed instances; in some cases,
terminal nodes themselves may contain abstractions, as in UNIMEM. Also, Fisher’s system
stores all attributes with every n-de in the hierarchy, whereas CLASSIT (Gennari, 1989)
stores only the most diagnostic attributes, as we discuss in Section 2.5.

2.3 Classification and Learning in CLASSIT

Table 1 presents the basic CLASSIT algorithm, which classifies observations and forms a
concept hierarchy in the process. Upon encountering a new instance I, the system starts at
the root and sorts the instance down the hierarchy, using an evaluacion function (described
in Section 2.4) to decide which action to take at each level. At a given node N, it retrieves all
children and considers placing the instance in each child C in turn; CLASSIT also considers
creating a new child based on the instance. The algorithm uses its evaluation function to
determine which of the resulting partitions is ‘best’,} and then carries out the appropriate
action, which in turn modifies memory. Thus, tke processes of classification and learning are
inextricably intertwined.

More specifically, if the instance I is sufficiently different from all the concepts in a
given partition, the evaluation function recommends placing I into a singleton class rather
than incorporating it into an existing concept. In this case, CLASSIT creates a new child
of the current parent node and bases its initial description on that of the instance. The
classification process halts at this point, since the new node has no children.

If CLASSIT instead decides to incorporate the instance I into an existing child C, it
modifies the probability distribution for each attribute in C based on the instance’s values,
thus updating the concept definition. The system also updates the probability of the selected

3 This lets the system avoid the need for explicit attribute tests or indices at each node. At the level we
have described it, the CLASSIT algorithm is identical to that used in Fisher's COBWEB.
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Table 1. The top-level CLASSIT algorithm.

Input: The current node N of the concept hierarchy.
An unclassified (attribute-value) instance I.
Side effects: A concept hierarchy that classifies the instance.
Top-level call: Classit(Top-node, I).
Variables: C, L, M, P, Q, and R are nodes in the hierarchy.
U, V, ¥, and X are clustering (partition) scores.

Classit(¥, I)

If ¥ is a terminal node,
Then Create a new child L of node N.
Initialize L’s probatilities to those for ¥.
Create a new child M of node §.
Initialize M’s probabilities using I's values.
Incorporate(N, I).
Else Incorporate(N, I).
For each child C of node I,
Compute the score for placing I in C.
Let P be the node with the highest score ¥.
Let R be the node with the second highest score.
Let X be the score for placing I in a new node Q.
Let Y be the score for merging P and R into one node.
Let Z be the score for splitting P into all its children.
It W is the best score,
Then if W is high enough,
Then Classit(P, I) (place I in category P).
Else if X i1s the best score,
Then initialize Q’s probabilities using I’'s values
(place I by itself in the new category Q).
Else if Y is the best score,
Then let O be Merge(P, R, X).
Classit(0, I).
Else if 7 is the best score,
Then Split(P, ).
Classit(N, I).

category. Next, CLASSIT decides whether to recurse on the children of the concept, continu-
ing down the hierarchy only if I is different enough (according to a system parameter) from

its description.

If tke current concept C is a terminal node and if I is different enough from C, the
system extends the hierarchy downward by creating two new children, one based on C and
another based on I. Thus, the system retains specific cases only if they are sufficiently
different from previous experiences. This strategy slows the growth of the concept hierarchy,
and preliminary experiments (Gennari et al., 1989) suggest that it alsc reduces overfitting

of the data (Quinlan, 1986).

. —— T e R T W R T T e T
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Some examples based on the hierarchy in Figure 2 will clarify the effect of these operators.
Given a new instance I (a colored golf ball) described as SIZE SMALL, COLOR ORANGE, and
TEXTURE DIMPLED, CLASSIT first incorporates the observation into the root node N1, giving
a new set of probabilities. The system then considers the two children of this node, deciding
that the instance best matches N2, and that adding the instance to this class would be better
than creating a new disjunct. As a result, it incorporates / into N2 (giving new scores) and
creates two children for N2, one (N6) based on the original version of N2 and the other
(N7) based on the instance. Figure 3 presents the hierarchy after sorting is complete.

P(N1)=1.0 P(v|c)
SIZE SMALL 0.25
MEDIUM | 0.50
LARGE 0.25
TEXT. |SOFT 0.50
pIMPLE | 0.50
COLOR | ORANGE | 0.50
GREEN 0.25
WHITE 0.25

/\

P(N2)=0.5 p(vic) P(N3)=0.5 P(v|c)

SIZE SMALL 0.5 SIZE MEDIUM | 1.0

LARGE 0.5 TEXT. |SOFT 1.0

TEXT. | DIMPLE 1.0 COLOR | GREEN 0.5

COLOR | ORANGE | 1.0 WHITE 0.5
P(Ns)=0.5 P(v|c) P(N7)=0.5 P(v|c) P(N¢)=0.5 P(vic) P(N5)=0.5 p(v|c)
SIZE SMALL 1.0 SIZE LARGE 1.0 SIZE MEDIUM | 1.0 SIZE MEDIUM | 1.0
TEXT. | DIMPLE 1.0 | TEXT. { DIMPLE 1.0 TEXT. | SOFT 1.0 TEXT. |SOFT 1.0
COLOR |ORANGE| 1.0 COLOR | ORANGE | 1.0 COLOR | WHITE 1.0 | coLoR | GREEN 1.0

Figure 8. The concept hierarchy after incorporating a fourth ball.

Now suppose CLASSIT encounters another instance J (a marble), which is described as
SIZE SMALL, COLOR CLEAR, and TEXTURE SMOOTH. Again the system incorporates the
description into the root node N1, altering the probabilities. However, when it considers
incorporating J into N2 and N3, it finds the instance sufficiently different from both that
it creates a new singleton concept (N8). CLASSIT stores this new node as a third child of
N1, basing its initial counts on the values in the instance. Figure 4 shows the structure of
the hierarchy after this step.
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Any incremental learning system is sensitive to the order in which it encounters instances.
Schlimmer and Fisher (1986) have argued that, to mitigate these effects, one should include
bidirectional learning operators that can reverse the effects of previous learning should new
instances suggest the need. Such operators give the effect of backtracking without the mem-
ory overhead required by explicitly storing previous hypotheses. To this end, CLASSIT incor-
porates two additional operators - merging and splitting - to recover from poor clusterings
that might decrease accuracy and increase retrieval time.

P(N1)=1.0

P(v|c)

SIZE SMALL
MEDIUM | 0.40

LARGE

0.40
0.20

TEXT. {SOFT
DIMPLE | 0.40
sMooTH | 0.20

0.40

COLOR | ORANGE | 0.40
GREEN 0.20
WHITE 0.20
CLEAR 0.20
P(N2)=0.4 P(vic) : P(N3)=0.4 P(v|c)
SIZE |SMALL | 0.5 P(Ng)=0.2 P(vc)| [size [mEptum| 1.0
LARGE 0.5 SIZE SMALL 1.0 TEXT. |SOFT 1.0
TEXT. | DIMPLE 1.0 TEXT. |sMooTH| 1.0 COLOR | GREEN 0.5
COLOR |ORANGE{ 1.0 COLOR | CLEAR 1.0 WHITE 0.5
P(Ng)=0.5 P(v|c) P(N7)=0.5 p(vic)| [p(ng)=0.5 P(v|c) P(N5)=0.5 P(v[c)
SIZE SMALL 1.0 J s1ZE LARGE 1.0 SIZE MEDIUM| 1.0 SIZE MEDIUM | 1.0
TEXT. | DIMPLE 1.0 TEXT. | DIMPLE 1.0 TEXT. [SOFT 1.0 TEXT. |SOFT 1.0
COLOR | ORANGE | 1.0 COLOR |ORANGE | 1.0 COLOR { WHITE 1.0 COLOR | GREEN 1.0

Figure 4. The concept hierarchy after a fifth ball leads to a new disjunct.

At each level of the classification process, CLASSIT considers merging the two nodes
that best classify the new instance. It also considers the inverse operation (splitting), which
deletes the best candidate node and promotes its children to the current level. If either
of these operators gives a superior partition according to the evaluation function, CLASSIT
adjusts the structure of memory accordingly. Note that all the learning operators are local in
their effects, so that at each level the system considers only relevant concepts, as determined
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by the classification process up to that point. Qur preliminary studies suggest that the merge
and split operators can improve the retrieval efficiency of acquired concept hierarchies, but
the effect on accuracy remains less clear.

2.4 Category Utility

We have mentioned that CLASSIT uses an evaluation function to determine the appro-
priate action during classification. Since a major goal of concept formation is to let the
agent categorize new experience and make predictions, the system employs category utility
- an evaluation function that attempts to maximize predictive ability. Gluck and Corter
(1985) originally derived this measure from both game theory and information theory in
order to predict basic-level effects in psychological experiments, and Fisher (1987b) adapted
it for use in his COBWEB model of concept formation. The measure assumes that concept
descriptions are probabilistic in nature, and it favors clusterings that maximize a tradeoff
between intra-class similarity and inter-class differences.

One can define category utility as the increase in the expected number of attribute values
that can be correctly predicted, given a set of K categories, over the expected number of
correct predictions without such knowledge, normalized by the size of the partition. The
complete expression for category utility is

T P(CH Y T, P(Ai = Vi|Ch)? = X0, T, P(Ai = Vi|Cy)? )
o .

The first subexpression in the numerator of equation (1) represents a tradeoff between pre-
dictability, the ability to predict a feature given an instance of a concept, and predictiveness,
the ability to predict a concept given a feature, summed across all classes (k), attributes (1),
and values (7). The probability P(Cy) weights each concept in the partition, so that fre-
quently occurring concepts play a more important role than those occurring less frequently.
The second subexpression represents the same information at the parent Cp of a partition,
using the same measure without knowledge of categories in the partition. This difference is
divided by the number of categories, K, to allow comparison of different size partitions.

Wher dealing with nominal attributes, CLASSIT uses the above expression to decide
among operators when sorting an instance. However, real-valued attributes require one to
restate category utility in a different form. The two innermost summations in equation (1)
can be modified for real-valued attributes by changing summation to integration. Thus,
the probability of a particular attribute value is the height of the curve at that value, so
the summation of the square of all probabilities becomes the integral of the squared normal
distribution. After discarding irrelevant constants, one arrives at a version of category utility
for real-valued attributes:

K 1 1
EP(Ck)Zl/d.'k - Zl/a.‘,
k $ i
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where o, is the standard deviation for a given attribute in a given class, and o;p is the
standard deviation for a given attribute in the parent node.* CLASSIT can also deal with
mixed data, using the discrete version for nominal attributes and the continuous one for
numeric features, though we have not yet tested it on such cases.

2.5 Attention in Classification

As we have described the CLASSIT algorithm, it inspects all attributes of an instance,
matching them against concept descriptions in long-term memory as though in parallel.
However, any agent in the physical world will have limits on its perceptuai power, being able
to process in detail only a few features of an object at a given time. As a result, there must
be a sequential aspect to perception; in humans, this emerges as the phenomena of selective
attention and eye movements.

The current version of CLASSIT differs from earlier versions (Gennari et al., 1989) in
incorporating a mechanism for attention. At each level of the classification process, the
system inspects only one attribute at a time, halting when it has enough information to
make a decision. In ordering attributes for inspection, CLASSIT uses a ‘salience’ score stored
at the parent of the concept nodes it is selecting among. An attribute’s score is simply its
contribution to the category utility measure over the entire partition; thus, the salience of
attribute i over a set ot K concepts is

f: P(C)l/oiww — 1/oip
: e , (3)

which can be stored at the parent for use in ordering attributes. To make the algorithm less
sensitive to order effects, selection is only a probabilistic function of salience. Thus, CLASSIT
occasionally samples attributes that do not appear diagnostically useful, though the chances
of this on any given step are small.

In addition to ordering attributes, the system also needs a stopping criterion to determine
the number of attributes it should inspect before making a decision. CLASSIT resolves this
problem by imagining a worst-case scenario. At a given step, the category utility score for
some concept C will be superior to that of its siblings. The system computes the scores that
. would result if the unobserved attributes matched one of these sibling concepts perfectly.
If C would still emerge as the leader, there is no reason to inspect additional attributes,
because they cannot change the outcome. If C still might lose, then the algorithm continues
sampling attributes until a clear winner emerges.

4 Inour implementation, the attribute summations are divided by I, because instances may have missing
attributes. Also, note that for any concept based on a single instance, the value of 1/0 is infinite. To resolve
this problem, we have introduced the notion of acuily, a system parameter that specifies the minimum o
value. This limit corresponds to the notion of a ‘just noticeable difference’ in psychophysics - the lower limit
on one's perceptual ability. This parameter ir lirectly controls the breadth of the trees created by CLasSIT,
affecting the score of new disjuncts. See Gennari et al. (1989) for details.
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Because CLASSIT expresses category utility as a sum over all attributes, this attention
algorithm can be completely incremental. As the system inspects each attribute, it adds
that feature’s score into the current sum, avoiding the need to reprocess previously sampled
attributes. Of course, an attribute may be reexamined at lower levels in the hierarchy if it
is still diagnostically useful; the results of attention do not carry across levels.

This strategy leads to an interesting change in CLASSIT’s behavior as a function of
experience. Upon first encountering members of a general class, it has little information
and all attributes appear equally salient. As a result, the system must inspect most of the
attributes before assigning an instance to a subcategory. In domains with little regularity,
CLASSIT never moves beyond this stage, since many attributes are needed to distinguish
between classes. However, in more regular domains the system’s behavior changes as it
observes more instances. In this case, some attributes begin to contribute more heavily to
the total category utility metric, and as the salience scores become more disparate, CLASSIT
tends to inspect only those attributes with high scores. The less salient attributes can

be ignored, allowing more efficient classification with little decrease in predictive accuracy
(Gennari, 1989).

2.6 Measuring Performance in CLASSIT

Learning involves some change in performance, and one can measure CLASSIT’s behavior
on a variety of performance tasks. The simplest of these is a recognition task, in which the
system must decide whether it has seen an instance before. One can interpret the algorithm
as recognizing an instance if it decides there is no reason to store the experience as a new
node in the concept hierarchy. This is effectively a rote memoriza‘ion task, and CLASSIT’s
recognition ability should improve in domains where instances are repeated, since it can store
them as terminal nodes in memory.

A more interesting task is recall, in which the system must fill in the values of missing
attributes given the values of observed ones. This is effectively a prediction task, and most
of our tests of CLASSIT to date have focused on this-ability. Gennari et al. (1989) report
evidence that the system’s predictive accuracy improves over time, though the learning rate
and asymptotic performance are affected both by the environment and by system parameters
like acuity. These tests have focused on prediction when single attributes are omitted, and
future studies should examine CLASSIT’s recall ability when less information is available.

The prediction task provides some measure for the quality of learned concepts, but it does
not evaluate the organization of memory. For instance, runs with CLASSIT variants lacking
the merge and split operators produce quite different (and skewed) concept hierarchies, but
we have observed almost no degradation in predictive capacity. A more sensible evaluation
of hierarchy quality would measure retrieval time. One can define this measure in terms
of the total number of attributes inspected during classification, which will be affected by
attention, by the number of nodes examined at each level, and by the number of levels.
In general, we expect CLASSIT’s retrieval time to increase as a logarithmic function of the
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number of instances encountered, with the constant determined by factors like attention, use
of merging and splitting, and regularity of the domain.

2.7 Comments on CLASSIT

In summary, the CLASSIT algorithm sorts new instances through a concept hierarchy
that represents long-term memory, changing this memory in the process. Concepts are
probabilistic in nature, and the evaluation function (category utility) uses probabilities in
selecting categories in which to place an instance. The learning method is incremental
and fully integrated with performance. The system borrows ideas from earlier work on
incremental concept formation, particularly from Fisher’s (1987a) COBWEB, but it also
extends this work to handle numeric attributes, to store fewer instances in memory, and
to selectively attend to attributes.

An important direction for future research involves making CLASSIT more consistent
with results from the psychological literature. Although the evaluation {unction was designed
with basic-level effects in mind (Gluck & Corter, 1985), the current system does not model
the reaction-time aspects of this phenomenon. However, Fisher (1988) has shown that one
can extend the basic COBWEB hierarchy to allow direct indexing of concepts, and that
this explains the relative retrieval times observed in humans for certain concepts. This
approach also promises a more efficient retrieval mechanism, which may reduce degradation
in efficiency as a function of experience. Thus, the basic approach we have taken in CLASSIT
shows promise for modeling the details of human classification and concept formation, and
as we show in later sections, can be extended to a variety of more complex domains.

3. Recognition and Concept Formation for Composite Objects

One can use the CLASSIT algorithm to acquire and organize concepts that can be de-
scribed in terms of attribute-values, and most work on conceptual clustering and numerical
taxonomy (e.g., Michalski & Stepp, 1983; Everitt, 1974) has focused on such domains. How-
ever, objects in the physical world often have a complex relational structure, and in this
section we describe LABYRINTH (Thompson & Langley, 1989), a component of ICARUS that
carries out incremeéntal concept formation over composite objects, i.e., objects for which
the attribute values may themselves be objects that can be further decomposed. We be-

" gin by describing the representation of composite objects and concepts, and then turn to
LABYRINTH'’s performance and learning algorithms.

3.1 Representation and Organization in LABYRINTH

LABYRINTH borrows from COBWEB and CLASSIT the basic principle of probabilistic
concepts organized in a disjoint hierarchy, but it extends the representation to composite
instances and concepts. Each composite instance is described as a set of components that
are linked to their parent by PART-OF relations. Each component may itself be a composite
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Figure 5. A portion of LABYRINTH’s memory.

object, with components of its own. Simple components (the leaves of the PART-OF tree)
are described with primitive attribute values, like those used by CLASSIT.

However, one can also view composite objects (nonterminal nodes in the PART-OF tree)
as having attributes, whose values are component objects. Thus, we will use ‘attribute’ to
refer both to components (in the case of composite concepts) and to descriptive features
(in the case of simple concepts). Still, there is a major difference between attributes of
simple objects and those of composite objects. In primitive objects, the correspondence
between attributes of two instances is given in the input. However, in composite objects, the
attributes are unordered, so that LABYRINTH must determine this correspondence itself.

Composite object concepts are similar to instances in that they consist of nodes connected
by PART-OF links. At each level of a given concept’s tree, there exists a set of associated
probabilistic attributes; however, these attributes represent components rather than observ-
able attributes, except at the lowest level. The ‘values’ associated with these ‘attributes’
refer to other nodes in the concept hierarchy, giving an interleaved memory structure that,
as we discuss in Section 6.1, is similar to that proposed in Schank’s (1982) theory of dynamic
mermory. -

For example, Figure 5 presents a partial LABYRINTH hierarchy containing three com-
posite concepts and five simple concepts. The values of each composite concept refer to
simple concepts, which are represented exactly as in CLASSIT. One can view each composite
attribute as specifying a role that can be filled by its possible values (i.e., components). In
some cases, an attribute takes on a single value that corresponds to an abstract concept high
in the hierarchy. For instance, the first role of VESSEL has the single value VESSEL-BODY.
This has two more specific children ~ cUP-BODY and LADLE-BODY - which have similar
features and which occupy the analogous role in the composite concepts CUP and LADLE.
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Table 2. The basic LABYRINTH algorithm.

Input: O is a composite object.

S is the set of O’s simple components.

R is the root node of the concept (is-a) hierarchy.
Side effects: Labels 0O and all its components with class names.

Procedure Labyrinth(0, S, R)
For each simple component A of composite object O,
Let C be Classit(A, R).
Return Labyrinth/(0, 4, C, R).

Procedure Labyrinth%O. 4, C, R)
Label object A as an instance of category C.
If A is not the top-level object O,
Then let B be the composite object of which A is a component.
If all components of B are labeled,
Then let D be Classit'(B, R).
Return Labyrinthko. B, D, R).

Note: Classit’ is a variant of Classit that considers different mappings between
components of the instance and components of the concept, selecting the best
according to category utility.

However, LABYRINTH can also represent cases in which the objects that can fill a given
role are quite different. For instance, the second role of VESSEL specifies two possible values -
CUP-HANDLE and LADLE-HANDLE. Because these two concepts have quite different features,
the root node is their only common parent in the concept hierarchy. Nevertheless, the handle
of a cup and the handle of a ladle occupy the same role in their respective composite concepts,
so they are both included as values in the VESSEL concept. Such sets of concepts are very

similar to the internal disjuncts that occur in some inductive approaches to learning (e.g.,
Michalski, 1983).

3.2 Classification and Learning with Composite Concepts

] Now that we have described LABYRINTH's memory structures, we can demonstrate its

behavior on a simple two-level instance of a CUP with the components HANDLE and BODY,
each described in terms of primitive features. As specified in Table 2, the system processes
composite objects in a “component-first” style, classifying first the primitive objects and then
the composites. For instances involving more than two levels, the process can be extended
indefinitely by proceeding until it classifies all the composites contained in the instance,
including the instance itself.

In our example, the system first classifies the handle based on its primitive attribute-
value description, labeling the component object as an instance of the concept CUP-HANDLE.
The same procedure leads the system to label the body as an instance of cuP-BODY. When
both components of the overall object have been labeled, the composite instance has been

16




M

THE ICARUS ARCHITECTURE

transformed so that its attributes’ values are no longer simple components, but labels of
concepts in memory. The CLASSIT' subroutine (described below) treats these labels as simple
nominal values, letting it classify the composite instance as if it were a simple instance. In
this case, LABYRINTH labels the top-level object as a member of the composite concept CcuP.
The result is that each sub-tree of the instance is classified and labeled, starting with the
simple components and ending with the entire instance.

To classify composite instances, CLASSIT' extends CLASSIT in two ways, each of which
resolves complications in the process of incorporating an object into a concept. As we noted
earlier, the nonterminal attributes of a composite object are unlabeled, necessitating an extra
search to ‘map’ attributes in the instance to those in the composite concept. For example,
given a new instance of the VESSEL concept (say a BUCKET), the system must determine
which component (the body) should occupy the first role and which component (the handle)
should occupy the second. To determine the best mapping, CLASSIT' employs a heuristic
method, using a simplified form of category utility to estimate the predictiveness of a single
concept. To determine the overall score of incorporating an instance into a concept, it first
generates all possible mappings of components into roles and determines which mapping is
best. It then uses the best score in comparing this action with other alternatives.

In addition, CLASSIT' uses a new operator, attribute generalization, to avoid composite
concepts with overly-specific labels on their attributes. Upon incorporating a new compos-
ite instance (e.g., incorporating the instance into the concept VESSEL), LABYRINTH must
evaluate whether the attributes in the updated concept description should simply add the
label from the current instance to the attribute-value list (e.g., add CUP-HANDLE to LADLE-
HANDLE in ROLEy), or instead point to a more general common ancestor in the concept hier-
archy (e.g., to VESSEL-BODY instead of the internal disjunct <CUP-BODY, LADLE-BODY> in
ROLE;). Each time CLASSIT' incorporates an instance into an existing composite concept,
it considers both of these options, iterating over all attributes and their values to deter-
mine which action to take; Fisher (personal communication, 1989) has proposed a metric to
evaluate the quality of alternatives.

This decision involves a choice between extending an internal disjunct on the basis of
functional roles and generalizing on the basis of common structure. The second option
corresponds to learning with structured attributes through climbing a generalization tree
(Michalski, 1983). However, LABYRINTH differs from most earlier approaches in that it
is constantly revising the structure of these ‘attributes’. This results from the fact that
the descriptions-of composite concepts refer to other nodes in the concept hierarchy, which
it defines itself. In effect, LABYRINTH is dynamically changing the representation used to
describe composite concepts. This suggests that, to the extent component concepts are
shared across many composite concepts, the system should learn more rapidly than one
without this ability. Testing this prediction will be a priority in our future work.
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3.3 Comments on LABYRINTH

To date, most research on concept formation has focused on attribute-value representa-
tions. However, some work has dealt with unsupervised learning in more complex languages.
For instance, Stepp and Michalski’s (1986) CLUSTER/S incorporates background knowledge
and the “goal” of classification into the learning process. However, their clustering method
appears to be inherently nonincremental, and seems limited to logical, ‘all-or-none’ con-
cepts. Wasserman's (1985) MERGE incrementally forms a concept hierarchy from structured
instances similar to those used by LABYRINTH, but it shares many of the ad hoc mechanisms
and arbitrary thresholds of its predecessor, UNIMEM.

Fisher (personal communication, 1989) has recently proposed an alternative adapta-
tion of CLASSIT to learn composite instances. The most important difference involves the
classification strategy, which starts by attempting to classify the overall object, then its com-
ponents, and finally the simple objects. Feigenbaum’s (1963) EPAM used a similar strategy
to classify composite instances. Of course, this approach does not actually label an object
until its components have been labeled, any more than does the LABYRINTH scheme. How-
ever, it relies on knowing at the outset the mapping between components of the instance
and components of the concepts. In contrast, our approach attempts to determine the best
mapping dynamically at each level. We predict that this method will prove more efficient
and more general, but these are empirical questions that remain to be tested.

We plan to evaluate LABYRINTH along the same dimensions that we are studying with
CLASSIT, notably predictive accuracy and retrieval time. However, the system’s ability to
handle composite objects suggest some additional tests. For example, LABYRINTH should
be able to predict not only missing attributes, but also missing components and even missing
structure. We will test LABYRINTH on its ability to acquire composite concepts with different
numbers of levels and with different amounts of redundancy (e.g., how often a component
concept is used in composite concepts). We also plan to examine order effects, not only in
terms of instances, but in terms of the order in which one examines simple components.

The current version of LABYRINTH can be extended in a variety of ways. One direction
involves adding relational (multi-argument) predicates to the description language, using the
attribute-mapping process to constrain search. In this scheme, one would treat each rela-
tional descriptor as a separate ‘feature’ with an associated conditional probability. We also
" plan to incorporate CLASSIT’s mechanism for selective attention into LABYRINTH, which
would would let the system inspect components serially. Third, we hope to explore alterna-
tive search schemes that combine the current bottom-up approach with the top-down method
used by EPAM; each process tells only part of the story. Finally, the existing system was
designed for comparing objects with similar structures, and we plan to examine ways to clas-
sify and organize objects with significantly different structures, making the approach more
relevant to real-world objects. Taken together, these extensions should make LABYRINTH a
robust framework for the recognition, prediction, and formation of structured concepts.
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4. The Generation and Acquisition of Plans

In order to achieve its goals, an intelligent agent must be able plan; that is, to order its
actions in the world. We can briefly state the planning task as:

e Given: A goal to transform an initial world state I into a desired state D;
e Given: A set of primitive operators O that let one directly transform states of the world;
e Find: A sequence of operator instances from O that will transform I into D.

This formulation makes a number of assumptions. First, one must have some explicit descrip-
tion of the desired state, even though this may be only partially specified. It also assumes
that the planning task involves a single agent, making timing less important than in multi-
agent planning tasks. Third, it makes the closed-world assumption - that all aspects of the
world remain constant unless the agent applies some operator. Finally, it assumes that one
can separate the process of plan generation and plan execution.®

4.1 Approaches to Planning

One can identify three distinct paradigms within the Al planning literature. The earli-
est approach uses weak, domain-independent methods like means-ends analysis (e.g., Newell,
Shaw, & Simon, 1960; Fikes, Hart, & Nilsson, 1971) to select relevant operators and cre-
ate subgoals.® A second framework incorporates domain-specific goal decompositions or
schemas, which specify useful orders on operators or useful subgoals (e.g., Bresina, 1988). A
third approach - case-based reasoning - retrieves specific plans from memory and uses them
to constrain the planning process.

Because one cannot predict interactions among operators, plan..ng in novel domains may
require search. This makes many planning methods impractical for use in controlling real-
time robotic agents (Georgeff, 1987). One natural response is to employ machine learning
techniques to acquire domain-specific planning knowledge, and to use this knowledge to
reduce or eliminate search on future problems. Researchers have applied machine learning
techniques to all three of the planning paradigms described above. For instance, Minton
(1988) has studied learning within a means-ends planner, DeJong and Mooney (1986) have
used a schema-based method, and Hammond (1986) and Kolodner (1987) have examined
case-based approaches.

In this section, we describe the planning component of ICARUS - as implemented in
a system called DEDALUS - which views these paradigms as ‘stages’ in the development
of planning expertise. The system begins with knowledge of the operators for a domain
and, like Minton’s (1988) PRODIGY, uses means-ends analysis to construct plans. However,

5 In future work we hope to loosen these assumptions, and to address the generation and acquisition of
nonlinear plans (Mooney, 1988).

6 More recent work in this tradition has invoked more powerful (and more expensive) search methods
(Wilkins, 1982), but has continued to use general, domain-independent techniques.
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Figure 6. A DEDALUS plan generated with initial knowledge of operators.

DZAEDALUS stores these plans (cases) in a probabilistic concept hierarchy, describing them
by the differences they reduce. Upon encountering a previously unseen problem, the system
retrieves a relevant plan (one with analogous differences) and uses it to select operators for
the new task. The retrieval process leads DEDALUS to generalize its stored plans so that
it gradually shifts from a case-based mode to one using abstractions, while still retaining

the ability to employ means-ends analysis when necessary. Below we describe DEDALUS’
" representation and organization of plans, its performance and learning components, and its
overall behavior. -

4.2 Representing States, Problems, and Operators

DEDALUS acts on data structures of three types: states, problems, and operators. In
general, a state consists of some description of the world, possibly including the internal
state of the agent. States can be viewed as composite objects of the type processed by
LABYRINTH, as described in Section 3. For our examples of planning, we will use a simple
STRIPs-like state representation (Fikes et al., 1971), with each state described as a set of
objects and symbolic relations that hold among them.
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A problem consists of an initial state and a desired state that the agent wants to achieve.
Each state may contain only partial descriptions of the world. For instance, Figure 6 (a)
presents a graphical description of a simple problem in the blocks-world domain. One can
also describe a problem in terms of the differences between the initial and desired state.
Node P1 in Figure 6 (b) summarizes the problem in this manner. The notion of representing
problems as differences is central to our approach.

Most work on planning assumes that operators have known preconditions and effects,
and that they should be reasonably efficient (i.e., require no search). To this end, DEDALUS
assumes that operators correspond to compiled motor skills, which we discuss in Section 5.
For the purposes of planning, this means that one can treat operators as ‘black boxes’, de-
scribing them in terms of preconditions and postconditions. However, from this information
one can derive a set of differences that exist between states before and after application,
giving a description similar to that used for problems.

4.3 The Organization of Plan Memory

DADALUS uses the notion of differences to organize its memory for planning knowledge.
As in CLASSIT and LABYRINTH, long-term memory takes the form of a probabilistic concept
hierarchy. Initially, the terminal nodes in this hierarchy consist only of general cperators
described in terms of the differences between their initial and final states. Internai nodes
correspond to classes of operators that have some overlap in their difference descriptions.
Essentially, this hierarchy is an efficiently organized difference table (Newell et al., 1960)
that changes with expe:ience.

Figure 7 (a) presents an initial difference hierarchy for the blocks-world domain. Each
node has an associated name N (top), a set of associated differences D; (center), and a set of
one or more associated operators (bottom). Moreover, each node has a certain probability of
occurrence P(N), and each difference has a conditional probability P(D;|N) of occurrence
given the concept, as does each operator. For clarity, Figure 7 (b) shows a traditional STRIPS
representation for each operator. Thus, node N3 depicts DEDALUS’s summary description
for the operator (stack ?x ?y), which has preconditions (clear ?x) (clear ?y) (on 7?x
table), where question marks indicate pattern-match variables. Its actions include adding
(on 7x ?y) and deleting (on ?x table) (clear ?y). Thus, it can be summarized by the
set of differences (on ?x ?y) -(clear ?y) —(on ?x table), as shown in the terminal
node N3. The ‘hierarchy’ in this figure has only two levels, but domains involving more
actions would contain internal nodes that index and summarize subsets of the operators.

The system represents a plan for solving a particular problem in terms of a derivational
trace (Carbonell, 1986) that states the reasons for each step in the operator sequence. This
trace consists of a binary tree of problems and subproblems, with the original task as the top
node and with trivial (one-step) subproblems as the terminal nodes. Each node (problem)
in this derivational trace is described by differences between its initial and final state, along
with the operator instance that was selected to transform one into the other.
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CONDs: (ON ?7x ?Y) CONDS: (CLEAR 7X) CONDs: (ON ?7x ?v)
(CLEAR 7X) (CLEAR ?Y) (CLEAR ?X)
(CLEAR 72) (ON ?X TABLE) ADD: (oN ?X TABLE)
ADD: (oN 7x ?72) ADD: (oN 7x 7Y) (CLEAR ?Y)
(CLEAR 7Y) DELETE: (ON ?X TABLE) DELETE: (ON 7X 7Y)
DELETE: (ON ?X ?Y) (CLEAR ?Y)
(CLEAR 72)

Figure 7. An initial difference hierarchy (A) that organizes three operators (B).

Figure 6 (b) presents a simple derivational trace for the task in Figure 6 (a) that involves
three problems and three operators. This trace only branches downward, since each operator
. can be applied as soon as it is selected. However, the simple structure does not mean the
problem is trivial. The first time it attempts this task, DEDALUS selects (stack a b) and
(puton a b) in-preference to (unstack a), considering the latter only after its first two
choices lead to failed plans that involve loops.”

DZEDALUS uses its ‘concept’ hierarchy to store information about the problems and
subproblems it has encountered, along with the operators that led to their successful solution.
Because each problem can be described as a set of differences, they can be stored in the

7 Note that this trace contains no information about failed operators, though future versions of DEDALUS
may retain results of this sort as well. We will draw traces from left to right, to distinguish them from
concept hierarchies.
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same format as the original operators. In this case, one interprets nodes in the hierarchy as
problems DEDALUS has solved, and the associated operators as the ones that led the system
to a solution. Thus, nodes correspond to probabilistic ‘selection rules’ for deciding among
operators, but the program does not retain the derivational trace itself in memory. Figure
8 presents a modified version of the difference hierarchy from Figure 7, after the system has
incorporated the problem-operator pairs from the derivational trace in Figure 6.

4.4 Using and Acquiring Plan Knowledge

As shown in Table 3, the planning component of DADALUS uses a variant of means-ends
analysis (Newell et al., 1960). In this framework, solving a problem (transforming a current
state into a desired one) involves the recursive generation of subproblems. The standard
means-ends approach determines all differences between the current and desired state, selects
the most important difference (using some predefined criteria), and then retrieves an opeiator
that reduces the difference. If the selected operator cannot be applied, a subproblem is
generated to change the current state into one that satisfies the operator’s preconditions.
Applying the operator produces a new state, along with a new subproblem to transform this
into the desired state; the algorithm is then called recursively to solve this task.

D&DALUS differs from most means-ends planners in the way it retrieves operators from
memory. First the system computes all differences between the current and goal states. It
then uses a variant on CLASSIT to sort the difference structure, D, down the difference hier-
archy, looking for the best match between the differences of D and the differences stored in
the hierarchy.® DEDALUS selects the operator associated with the difference node retrieved
through this process. Should this operator lead to an unsuccessful plan (e.g., if its precon-
ditions cannot be achieved), DEDALUS backtracks, retrieving the operator with next best
match, and continues.

This strategy also differs from earlier methods in placing an ordering on operators, rather
than dividing them into relevant and irrelevant sets. One result is that it prefers operators
that reduce multiple differences in the current problem, which should make it more selective
than traditional techniques. More important, although DEDALUS prefers operators that
reduce problem differences, it is not restricted to this set. If none of the ‘relevant’ operators
are successful, it falls back on operators that match none of the current differences. This
gives it the potential to break out of impasses that can occur on ‘trick problems’.

DEDALUS integrates learning into its planning process, using the derivational traces
described above.- Whenever it finds a plan that achieves a problem or subproblem, it stores
the description of that problem in its concept hierarchy. This involves storing the problem
description (the differences and the selected operator) as a new terminal node (case) in the

8 This variant treats each difference as a separate feature that takes on the value PRESENT or ABSENT.
(For simplicity, we have shown only the probabilities for the PRESENT value.) The current version computes
all maximal partial matches between the differences at a node and those in an instance, computes a simplified
version of category utility for each match, and selects the one with the highest score. One can imagine more
efficient greedy and attentional approaches to this matching problem, but we have not implemented them.
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P(N1) = 1.0 |p(p|c)
—(oN ?x 7Y) 0.33
(CLEAR ?Y) 0.33
(oN 7x 72) 0.83
—(CLEAR 72) 0.67
—(oN ?x TABLE) | 0.50
(oN ?x TABLE) | 0.17
(oN ?w 7x) 0.33
=(oN ?w 72) 0.17
—(CLEAR 7X) 0.33
—(oN ?w TaBLE)| 0.33
(putoN ?x 72z) | 0.17
(sTack 7x 7z) | 0.50
(unsTACK ?x) | 0.17
(UNSTACK ?w) | 0.17
P(N2) = 0.17 |p(p|c) P(N3) = 0.67 [pr(p|c) p(N4) = 0.17 [r(D|c)
-(oN 7x ?Y) 1.0 (oN 7x ?Y) 1.00 —(oN 7x ?7Y) 1.0
(CLEAR ?Y) 1.0 —(CLEAR ?Y) 0.75 (cLEAR ?Y) 1.0
(oN 7x ?z) 1.0 -(oN ?x TABLE) | 0.75 (oN ?x TABLE) | 1.0
= (CLEAR 72) 1.0 (oN ?Y 72) 0.25 {UNSTACK 7X) 1.0
(PuToN 7x?2) | 1.0 —(CLEAR ?X) 0.50
—(oN ?w TABLE)| 0.50
—(oN ?7x ?Y) 0.25
(oN 7w 7x) 0.50
(sTACK 7x ?Y) | 0.75
(UNsTACK 7w) | 0.25
P(N5) = 0.25 |p(p|c) P(N6) = 0.25 [r(D|c) P(N7) = 0.50 |p(p|c)
(oN 7x ?Y) 1.0 (oN 7x ?Y) 1.0 (oN 7x ?Y) 1.0
(on 7Y ?72) 1.0 —(CLEAR ?Y) 1.0 —(CLEAR ?7Y) 1.0
-(oN ?x 72) 1.0 -(oN ?X TABLE) | 1.0 —(ON ?X TABLE) | 1.0
—(CLEAR ?Y) 1.0 (oN 7Y 72) 1.0 (STACK ?X ?Y) 1.0
—(oN ?y TaBLE) | 1.0 —(CLEAR ?2) 1.0
(unsTack 7x) | 1.0 ~(on ?y TABLE) | 1.0
(sTack 7y ?2) | 1.0

Figure 8. A revised difference hierarchy that incorporates the problem-operator pairs from
Figure 7.

hierarchy, making it a sibling of the node that was first retrieved. In addition, DEDALUS
updates the summary descriptions of the nodes (indices) by revising the probabilities on
all nodes along the path that the problem was originally sorted. The system invokes this
process for each subproblem as it is solved, effectively storing (and indexing) a ‘selection
rule’ (Minton, 1988) describing the operator to use for that problem.
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Table 8. DEDALUS’ means-ends planning algorithm.

Inputs: STATE is a (partially described) initial state.
GOAL is a (partially described) desired state.
Outputs: A final state that matches the description of GOAL.
Side effects: A modified concept hierarchy that includes this probles.

Procedure Transform(STATE, GOAL)

If STATE matches GOAL,
Then return STATE.
Else let L be the null list.
Let D be the differences between STATE and GOAL.
Repeat until FLAG = true.
Let FLAG be fail.
Retrieve the operator O that best matches differences D and
that is not a member of L.
If 0 # fail,
Then let L be Insert O into L.
Let NEV be Apply(0, STATE).
It NEV # fail,
Then let NSTATE be Transform(NEW, GOAL).
It NSTATE # fail,
Then let FLAG be true.
Else let FLAG be true. ’
It 0 = fail,
Then return fail.
Else incorporate difference-operator pair (D, 0) into memory.
Return ESTATE.

Procedure Apply(0, STATE)

Let C be the preconditions on operator 0.
Let R be the results of operator 0.
It R is pathological (e.g., if R has been seen during this problem),
Then return fail.
Else if STATE does not match C,
Then let NEW be Transform(STATE, C) and return EEW.
Else return R.

-

Upon encountering a new problem, DEDALUS uses its memory of past successes to
select operators in a more discriminating fashion. Specific problems (described by differences
and operators) are stored in the same concept hierarchy as the original operators, and the
same sorting process is used to retrieve them. If a stored case matches a new problem or
subproblem more closely (according to category utility) than one of the original operator
descriptions (because it has more differences in common), DEDALUS retrieves this case and
attempts to apply the associated operator. In some situations, a problem may be sufficiently

. unique that the system does not sort it all the way down to a terminal node, instead using a
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Figure 9. A DADALUS plan guided by knowledge stored in the difference hierarchy.

more abstract node. This retrieved problem description may specify more than one operator;
in such cases, DEDALUS selects the operator with the highest conditional probability.

For example, given the iop-level problem P4 in Figure 9 (a), the system sorts its difference

description through the hierarchy in Figure 8. In this case, the instance passes from node
N1 through node N2, eventually reaching the terminal node N6, which describes the top-
level problem P1 from Figure 6. DEDALUS retrieves the operator associated with the case
- giving the instantiation (unstack b) - and attempts to apply it to the current state.
Without knowledge of the right operator to apply for this case, the system would have
selected stack or puton, searching down faulty paths and being forced to backtrack, as it
was on the earlier problem. Instead, the system selects the right operator at the outset.

The remainder of the example is less interesting. Since the preconditions of (unstack
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this time retrieving (stack c d) as the preferred action. However, the preconditions of this
operator instance are not met, so DEDALUS first attempts to generate a state that satisfies
them, giving the new subproblem P6. In this case it selects (unstack a), which solves
P6 in a single step and lets the system apply (stack ¢ d). This process continues, with
the program selecting (stack b ¢) and then (stack a b), both of which can be applied
without additional subproblems. The last application produces a state with no differences
from the desired state, so DEDALUS halts, having solved the top-level problem P4. For the
sake of simplicity, we have not shown how the system updates its difference hierarchy after
solving this problem.

4.5 The Behavior of DADALUS

Our approach to planning in DEDALUS bears similarities to certain work in case-based
reasoning. Like Kolodner’s (1987) JULIA and Hammond’s (1986) CHEF, our system stores
specific cases and retrieves them when solving new problems. However, our approach to
organizing plan memory and indexing cases is significantly different from their methods,
focusing on the differences occurring in each problem. DEDALUS is most similar to Veloso
and Carbonell’s (1988) approach to derivational analogy, sharing the notion of derivational
traces and a means-ends planner. However, our system organizes plan knowledge into a
probabilistic concept hierarchy, whereas their work to date has not focused on issues of
indexing and retrieval. Finally, our approach only retains knowledge of successful plans and
does not store failed cases.

DEDALUS also differs from all three systems in another way. Rather than storing cases
as monolithic data structures, it stores only the operator selected for each problem or sub-
problem. This is similar to the use of preference rules in Laird, Rosenbloom, and Newell’s
(1986) SOAR and in Minton’s (1988) PRODIGY. This means DEDALUS retains no memory of
the relation between problems and their subproblems, and it must sort each new subproblem
through memory even if a similar problem-subproblem pair has previously occurred. Thus,
the system cannot retrieve entire plans from memory, as in JULIA and CHEF, but it can
effectively regenerate them using the difference-operator cases stored in memory. Laird et
al. (1986) have argued that SOAR’s distributed knowledge structures lead to greater transfer
than storing macro-operators or entire cases, and we expect this to hold for DEDALUS as
well.

As noted earlier, one emergent effect of our approach to learning should be a three-
stage development of planning expertise. Initially, DEDALUS has access only to the domain
operators stored in its concept hierarchy. As a result, it will sometimes select a poor operator
and be forced to backtrack. In this stage, it behaves much like any knowledge-lean means-
ends planning system. However, as DEDALUS gains experience in the domain, it stores
specific cases that specify useful operators and the situations in which they should be applied.
In this stage, the system will behave like a case-based planner, retrieving particular problems
it has solved in the past as a guide to its actions on new tasks.
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As it gains more experience in a domain, DEDALUS will begin to encounter problems
that are similar to earlier ones. When this occurs, the system does not bother to store
the new problem by extending its concept hierarchy downward to retain the new instance.
Instead, it simply ‘averages’ the new case into the existing problem description, changing its
probabilities and increasing its chance of being retrieved in the future. Gradually, many of
the terminal nodes will ‘blur together’ previous experiences, and DEDALUS will move from a
case-based reasoning mode into a one relying on abstractions. However, at each stage in its
development, the system can employ earlier stages when necessary. If a case is unusual, it
will be retained as a separate terminal node in memory and will be retrieved when needed.
Similarly, if DEDALUS encounters a truly unfamiliar problem, it still has access to its original
operators and cac solve that problem using means-ends analysis and search. '

4.6 Comments on DEDALUS

We plan to test DADALUS’s learning ability using two performance measures - optimality
of the generated plans and the amount of search during the planning process. We expect that
retrieval of previous cases will let DEDALUS avoid operator-selection errors that it made on
previous runs, and that with experience its search will become much more selective than that
of a non-learning means-ends planner. However, Minton (1988) has demonstrated that in
some cases the cost of matching preference rules can exceed their benefit, so we must address
this issue in our experiments. In particular, we predict that DEDALUS’ indexing scheme will
be very efficient, increasing in cost only logarithmically with the number of stored problems
and subproblems.® In addition, the system will be selective in the cases it stores, retaining
only those that are sufficiently different (according to category utility) from the retrieved
case.

We also hope to explore variants and extensions to the basic approach, implementing a
version that stores entire plans (derivational traces) rather than problem-operator combina-
tions. As in the current approach, DEDALUS would retrieve a previous problem based on
its difference description. However, rather than sorting new subproblems through the differ-
ence hierarchy, the system would simply use subproblems associated with the retrieved plan,
checking to make sure they are still necessary. In some cases, the new problem will require
additional steps, forcing DEDALUS to generate novel subproblems and sort them through

~memory. In these ways, the system could adapt a stored plan to a similar but slightly dif-

ferent problem. This approach would require us to integrate DADALUS with LABYRINTH,
because the latter would be needed to support the retrieval and update of structures like
derivational traces.

9 Testing this claim would involve comparing the total number of nodes visited and the differences in-
spected during the traversal of memory during planning in both learning and non-learning versions of the
system.
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An ideal intelligent agent learns not only from successes, b-  so from failures. The
current version of DEDALUS learns from failures in the sense that .. stores operators found
during backtracking search, but it retains no information about operators retrieved earlier in
that search which led to failed paths. We hope to augment the system in this manner, storing
with difference nodes the operators that one should not select. As with the rejection rules
in SOAR and PRODIGY, this knowledge should help constrain search by eliminating possible
candidates even when no positive advice is available. However, it is not clear whether this
information should be stored in the same hierarchy as the selection rules or in a separate
one entirely.

In future work, we hope to implement a tight coupling between planning and motor
control, which we describe in the following section. We currently treat operators as compiled
motor skills that one can execute without creating subgoals, but the dividing line between
planning and motor behavior should be a function of the agent’s goals and experience.
Presumably, DADALUS would come to a new domain with only a few general operators, but
practice in the domain would lead to new domain-specific motor schemas that augment the
repertoire of operators available for planning. We describe one method for acquiring such
motor skills in the next section. We also hope to incorporate an ‘automatization’ process
(Schneider & Fisk, 1983) that gradually transforms planning expertise into compiled motor
skills with practice, but our ideas on this mechanism remain somewhat vague.

Although our examples to date have focused on STRIPS-like symbolic states and oper-
ators, we hope to extend DEDALUS to handle more realistic, numeric descriptions of the
physical world. Although the same basic planning and learning methods should apply, one
important issue remains to be resolved. In means-ends analysis, a problem is solved only
when no differences remain between the current and desired state. This decision is clear-cut
in a STRIPS framework, but given real-valued state descriptions, one must use some form
of partial-matching scheme to decide when the remaining differences are insignificant. We
hope to use some principled metric like category utility to address the issue, but the details
remain open.

Finally, we plan to incorporate a priority queue into DEDALUS, which would provide a
more realistic model of attention in planning and let the system handle multiple independent
goals. Problems could enter this queue from high-level drives (e.g., hunger or sleep), from
the planner as subproblems, or from an execution monitoring component when a plan fails.
Each problem would be ordered by its associated priority, which generally decreases over
time, so that old problems would be gradually forgotten. If a new problem were passed to
the queue with a higher priority than the currently active one, the current problem would
be set aside in lieu of the more important one. The extended system would work on this
task until it was solved or until another problem (possibly the original one) becomes more
important. In summary, DEDALUS provides a fertile framework within which to formulate
and test our ideas about the relations among memory, planning, and learning.
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5. The Execution and Improvement of Motor Skills

Planning techniques like those used in DEDALUS seem well-suited to solving high-level
problems, but they halt at the level of primitive operators. In order to interact with a
physical environment, one requires some way to represent and execute such operators. We
can state this task of motor control as:

e Given: A goal to transform an initial world state I into a desired state D, obeying path
constraints P;

e Given: A primitive operator O that lets one directly transform states of the world;

e Generate: A motor program, specifying the locations, velocities, or forces for body parts,
over time, that achieves this goal.

As in other areas, one can also define a related learning task, which involves improvement
in the execution of motor skills. In this section, we examine M/EANDER, the component of
ICARUS that deals with issues of motor behavior.!® As before, we describe its representation
and organization of memory, then turn to its performance and learning components.

Very little Al research has focused on the generation and improvement of motor skills.
‘Classical’ planning systems (e.g., Sacerdoti 1977; Segre, 1987) have focused on generating
a sequence of abstract operators described in terms of high-level preconditions and effects,
without reference to how they accomplish these effects. Research in robotics deals with
issues of grounding desired actions in appropriate torques and voltages (e.g., Swartz, 1984),
and some work in Al has attempted to integrate high-level planning with agents in the
world (e.g., Nilsson, 1984; Laird et al., in press). However, research on motor behavior has
generally avoided issues of skill acquisition and improvement. As we will see, MEANDER'’s
approach to motor behavior operates at a lower level than the symbolic descriptions like
(puton a b) that are used in most planning systems, but it operates at a higher level than
the actions used in robots like SHAKEY (Nilsson, 1984). In addition, our approach differs
from most robotics work in its emphasis on the role of knowledge in motor control.

5.1 Representation and Organization of Motor Skills

Our approach to motor behavior assumes that the agent has knowledge of its limbs, and
that, for any given time, it can specify the position and velocity of each joint. We further
- assume that, if physically possible, the low-level motor system responds to such commands
by manipulating.torques and voltages as needed. In this framework, the task of motor control
involves specifying joint positions and velocities so as to generate appropriate behavior.

MZEANDER represents its domain knowledge in terms of motor schemas, which represent
different movement patterns for sets of limbs. Each schema specifies the state of one or more
joints at several points in time during the course of an action, and can be viewed as the

10 1ba and Langley (1987) describe MAGGIE, an earlier system that has much in common with M.EANDER.
The current system differs primarily in its organization of motor schemas into a concept hierarchy at different
levels of abstraction.
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memory structure that encodes that action. Thus, a schema consists of a temporal sequence
of states, (S1,52,...,S5n), where each state, S; = (i, {(Ji, P, V), . ..}), contains a time value
t; and a set of 3-tuples. The states (S;) are ordered so that the ..me values (¢;) are in an
increasing sequence, t; < t; for i < j. Each 3-tuple includes a joint name Ji, the expected
position p of the joint in three-space at time ¢;, and the desired velocity vector v of the
joint upon reaching the position p. All numeric attributes have an associated mean and
variance that summarize previous experience with the schema. Each state contains a set of
such 3-tuples, one for each of the agent’s joints, though not all joints need be specified.

We distinguish between two sorts of motor schemas. The first type - viewer-centered
schemas - represent the position and velocity vectors using Cartesian three-space coordinates,
with the origin centered at the agent. This representation describes all joints in terms of
a single Cartesian coordinate system. We assume this information is available as visual
feedback during execution of a skill; it can also be used to describe another agent’s actions.
The second type - joint-centered schemas - represent information in their own local, joint-
centered coordinate system. Each local coordinate system is spherical, being defined with
the previous joint in the effector as the origin. We assume this information is available as
proprioceptive feedback during execution; MEANDER uses this representation to directly
control its motor behavior. "

As we will see, MEANDER can initially acquire motor skills in viewer-centered form, by
observing another agent performing that skill. In addition, DEDALUS (when run in physical
domains) describes problems and subproblems in terms of initial and final states using the
viewer-centered scheme. However, an agent needs a joint-centered schema in order to exe
cute an action. Intuitively, viewer-centered schemas are better suited to how things ‘look’,
whereas joint-centered schemas are better suited to controlling 'nmbs. MAANDER moves
from a viewer-centered schema to a joint-centered one by applying an inverse kinematic
transform (Wylie, 1975). In general, this process will generate errors in the joint-centered
representation. This results from the differing representational power of the two coordinate
systems and the sparse representation of the schema. Actions that may appear simple in
one coordinate system can be quite complex from the other’s point of view, and the transla-
tion process is inherently imperfect. As we will see, learning can be used to overcome these
limitations. |

Like other parts of ICARUS, the M/EANDER component organizes its domain knowledge
in a probabilistic concept hierarchy. We have already mentioned that schema attributes have
associated means and variances. This lets the system represent motor knowledge at different
levels of abstraction, with nodes higher in the hierarchy tending toward higher variances.
For example, different types of throwing actions might be stored as children of a more gen-
eral THROW concept; similarly, each type of throw might have children representing specific
cases of throwing behavior. Each schema also has an associated probability, sumnmarizing the
percentage of times it has been used relative to its siblings. MAEANDER’s memory organiza-
tion differs from other facets of ICARUS in that viewer-centered and joint-centered schemas
always occur in pairs, being stored in the same place in the hierarchy.

31




THE ICARUS ARCHITECTURE

5.2 Retrieving, Executing, and Monitoring Motor Skills

MAEANDER’s retrieval process has much in common with the one used by DEDALUS. The
system indexes motor schemas by the differences they reduce, so that retrieving an operator
to solve a problem is equivalent to retrieving an operator for planning. However, MEANDER
can also be used to recognize instances of motor skills when another agent executes them.!!
In such cases, the system also takes the internal structure of motor schemas into account,
using category utility to determine the degree of match between the observed sequence of
states and viewer-centered schemas stored in memory. MEANDER can recognize similar cases
of its own joint-centered behavior by sorting a trace through memory of its past actions.

Having retrieved a relevant motor schema based on a problem described in viewer-
centered coordinates, MZEANDER attempts to execute this schema. If no joint-centered
description is associated with the retrieved schema, the system must first translate it into
a joint-centered representation, using an inverse kinematic transform. If such a description
is already stored, MAEANDER uses the stored version instead. Both forms of knowledge
structure are sparse, containing joint descriptions for only a few points in time. In order
to generate movement, the system must “fill in” the intermediate points through a process
of interpolation. We will refer to the resulting dense representation as a motor program;
in contrast to schemas, which represent positions and velocities only at selected times, pro-
grams specify joint information at many points. MAANDER never stores its motor programs
in long-term memory; instead, it generates them “on the fly” by computing a spline for each
joint, based on successive pairs of states specified in the joint-centered schema.

MZEANDER then ‘runs’ the resulting program by placing the joints at the specified posi-
tions with the stated velocities. However, recall that the translation between representations
can introduce errors. Figure 11 shows viewer-centered and joint-centered schemas for draw-
ing a straight line, along with the interpolated behaviors each would genera:: of its own
accord. The joint-centered motor program (on the right) gives a poor approx:-.ation of the
desired behavior given by the viewer-centered schema (on the left).

To alleviate this problem, MAANDER monitors the environmental states it generates,
comparing actual positions with the intended positions as given in the viewer-centered
schema. Execution and monitoring proceed in parallel until the system detects an error.

- The monitoring process occurs at a constant rate, checking whether the results of executing
the motor program diverge from the desired (viewer-centered) action by more than a thresh-
old. If the error is significant, the monitoring process calls an error-recovery mechanism that,
in an attempt to reduce the error, applies a correction function that modifies the velocity of
the joint for a short period of time.

In this manner, MEANDER can approximate the desired action even though its joint-
centered description has inherent errors. However, the degree to which it accomplishes this
goal depends on its rate of monitoring and the speed at which it executes the skill. Thus,

g, principle, one could also use DEDALUS for the purpose of plan recognition, but we have not applied
the system to this problem.
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Figure 11. Traces of the behavior generated by a viewer-centered and joint-centered motor
schema, with arm shown in the positions it occupies at times specified by states
in the schemas (from Iba & Langley, 1987).

the system exhibits a tradeoff between speed and accuracy (Iba & Langley, 1987) similar to
that observed in humans. Moreover, if one assumes that the monitoring rate corresponds to
the attention level, then MAEANDER is more accurate when it attends more carefully to the
task at hand. Both of these effects suggest an important role for learning in motor behavior,
which we discuss below.

5.3 Acquisition and Improvement of Motor Skills

In principle, MEANDER can acquire new joint-centered schemas through play or through
active experimentation on existing schemas. However, a simpler strategy involves observing
the motor behavior of other agents. In this scenario; the system sorts observed behavior
through its memory of viewer-centered schemas, extending and revising a concept hierarchy
in the same fashion as other components of ICARUS. Thus, MAEANDER can accumulate
considerable expertise about possible actions before it ever attempts to carry them out.
Once the system has an accurate viewer-centered description of a motor skill, it can use this
summary to generate an initial joint-centered schema and to recover from errors during its
execution.

However, MEANDER’s learning does not end at this point. The monitoring process
provides data about execution errors, and the system attempts to learn from these errors so
it can avoid them in the future without the need for monitoring. To this end, MEANDER
retains information about the largest error that it detects during execution monitoring. After
the trial during which this error occurred, the system produces a modified joint-centered
description that should more closely approximate the viewer-centered schema from which it
was derived. Table 4 summarizes the algorithm used to generate the variant description.
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Table {. MEANDER's algorithm for altering joint-centered schemas.

Inputs: S is the schema that one wants to modify.
F is the state in the motor buffer with the largest error.
R is the root node for the hierarchy of motor schemas.
Side effect: A modified version of the achema S.

Procedure Alter-Schema(S, F, R)

Let M be the best possible modification to the state values of schema S.
Let P be the percentage improvement of M over the current version of S.
If the improvement P is larger than the bias B,

Then modify S by adding M.

Else add failure state F to S.
Classit(S, R).

Given that a stored schema is specified as a sequence of states, there are two natural
approaches to improving its accuracy. One can modify the velocity for a given joint, or
one can change the schema’s structure by adding a new state. MAEANDER first determines
possible changes to the velocity of the joint involved in the error, selecting the best change
according to an evaluation function; we describe the details of this process elsewhere (Iba
& Langley, 1987). The system estimates the percentage improvement that would occur if
it altered the velocity in this manner. If the percentage is greater than a ‘bias’ parameter,
it selects this change; otherwise, the system decides to add the state with the largest error
as a new state in the schema. The bias parameter models the tradeoff between adding a
new state (structural change) and modifying an existing state (fine tuning). Preliminary
experiments show that an intermediate setting leads to the most rapid learning.

Having decided on a modification, one might alter the joint-centered schema directly.
However, recall that MZEANDER relies on probabilistic descriptions of its schemas for re-
trieval, and these are modified gradually in response to experience. Thus, in order to ‘imple-
ment’ the desired change, the system must ‘practice’ the modified joint-centered behavior.
This requires sorting the modified joint-centered description through memory, giving the
effect of ‘mental practice’. Alternatively, MAEANDER can run the modified schema in the
physical world, sorting actual traces through the joint-centered hierarchy. In either case,

\ the sorting process alters schemas along the retrieval path, and may alter the organization
. of memory by causing disjuncts, merges, or splits. As a result, MEANDER gradually gains
experience with the modified behavior, until it can be reliably retrieved and executed. In this
view, the learning method shown in Table 4 corresponds to a conscious strategy, designed to
take advantage of the unconscious learning that occurs during the retrieval and execution of

motor schemas.

5.4 Comments on MZANDER

Of the four ICARUS modules, we have spent the most effort in making MAEANDER consis-
tent with knowledge of human behavior. The system improves its motor skills in a gradual
manner, following a learning curve roughly similar to the power laws observed in human

34




THE ICARUS ARCHITECTURE

skill acquisition. This occurs because the learning algorithm always focuses first on the state
causing the largest error, leading the system to overcome larger errors before smaller ones.
Like humans, MEANDER exhibits a tradeoff between speed and accuracy, and this trade-
off decreases with practice. We also predict that the system will exhibit effects of practice
variability (Schmidt, 1975), though we have not yet demonstrated this phenomenon.

To date, we have tested MEANDER primarily on simple motor skills like drawing straight
lines, since these predominate in the literature on human motor behavior. However, we
plan to test the system on more complex skills, such as handwriting, throwing objects into
a basket, and juggling. The latter two tasks raise issues of hand-eye coordination and
manipulating objects over which one has only partial control. We believe these can be
cast within the framework of viewer-centered schemas, making them accessible to the same
monitoring and error recovery methods that MEANDER uses for :impler motor skills.

In the longer term, we hope to integrate MEEANDER’s execution process more fully into
DADALUS, letting ICARUS interleave planning and execution in a principled way. We also
hope to account for automatization in terms of the compilation of plan knowledge into motor
schemas. This process would gradually transform derivational traces stored in the plan
hierarchy, eliminating the reasons for actions and thus increasing efliciency at the expense
of flexibility. The details of this mechanism remain an issue for future research.

?

6. Discussion

In the previous sections we described ICARUS in terms of its various components. With
this as background, we can examine its relation to other cognitive architectures, discuss
some aspects of the overall framework, and present our plans for integration and evaluation.
Below we address each of these in turn.

6.1 Related Work on Cognitive Architectures

Because the ICARUS model attempts to span a substantial portion of cognitive behavior,
it bears clear relations to many aspects of earlier Al research. We have cited some relevant
work in the context of individual components, but here we briefly discuss related learning
work on cognitive architectures for learning. The best known examples of such architectures
are Anderson’s (1983) ACT*, Laird et al.’s (1986) SOAR, and Minton’s (1988) PRODIGY.!?

Like ICARUS, these architectures attempt to cover a broad range of behaviors within a
unified theoretical framework, though they differ in their generality and theoretical content.
For instance, PRODIGY makes strong claims about the nature of problem solving, but is
largely limited to this facet of cognition. At the other extreme, ACT* takes a weaker
stance on the organization of thought processes, but has been applied to domains as diverse

12 Another recent example is Mitchell et al.’s (in press) THEO architecture, which differs significantly
from both IcaRUs and earlier systems. Briefly, it organizes memory into frames, uses a backward-chaining
mechanism to control reasoning, and employs a caching technique to improve retrieval efficiency. Unlike
other architectures, THEO has no explicit short-term memory.
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as problem solving, natural language, and concept recognition. ICARUS attempts to make
strong theoretical statements about the nature of cognition, but also aims for broad coverage
by including specific modules for object recognition, planning, and motor control.

The design of each architecture has been constrained by knowledge of human cognition,
though each focuses on different phenomena. Anderson’s framework incorporates psycholog-
ical results mainly into its spreading-activation retrieval mechanism and into its strengthen-
ing processes. Laird et al.’s framework incorporates ideas on chunking from Rosenbloom’s
(1986) model of human learning. Minton’s system shows less concern with psychological
issues, though its use of means-ends analysis was influenced by Newell et al.’s (1960) GPS,
an early model of human problem solving. Some aspects of ICARUS have been significantly
constrained by psychological results, though its focus on categorization and motor behavior
distinguishes it from the other frameworks.

The four architectures clearly describe a set of memories and their characteristics, with
domain knowledge residing in a permanent long-term memory. SOAR, PRODIGY, and ACT*
all represent this knowledge in the form of production rules, though the latter also includes
a separate declarative memory. Traditionally, work on roduction systems has assumed that
condition-sides can be matched in parallel, and this has discouraged researchers from ad-
dressing issues of memory organization and indexing. In contrast, ICARUS’ use of interleaved
concept hierarchies makes these issues central; thus, it takes a clear stance on the structure
of memory, whereas the other architectures sidestep the problem.

All four frameworks identify a set of primitive processes that are supported at the ar-
chitectural level. In the systems based on production systems, the primitive actions involve
matching condition sides and applying one or more of the matched rules. In SOAR and
PRODIGY, this occurs during an elaboration cycle, in which selection, rejection, and pref-
erence rules ‘vote’ in favor of particular states, operators, and goals; the architecture then
makes a decision based on these votes. ACT* makes less commitment about the nature of
its rules, with some acting as operators, others as goal generators, and others as inference
makers. ICARUS diverges from these systems, with heuristic classification as its primitive
operation and with other processes, such as means-ends analysis and motor execution, built
on top of this basic mechanism.!3

In addition, all the architectures incorporate a single basic learning mechanism that
constitutes a form of incremental hill climbing. Chunking in SOAR, knowledge compilation
in ACT*, and explanation-based learning in PRODIGY have much in common, effectively
caching the results of rule or operator applications to simplify future processing. In contrast,
the central learning mechanism in ICARUS is concept formation, the process of updating
probabilistic descriptions and altering the structure of the concept hierarchy. This scheme is
primarily concerned with improving accuracyin terms of recognition and prediction, whereas
chunking and its relatives focus mainly on improving efficiency. Of course, the hierarchical

13 Fach of the architectures incorporates Newell's (1980) problem-space hypothesis - that all cognitive
behavior can be viewed as search through a problem space. Also, each implements this process using some
more primitive mechanisms - classification in ICARUS and the recognize-act cycle in the other three.
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orgaaization of memory has implications for efficiency, and Rosenbloum (1987) has shown
that SOAR can exhibit a form of ‘data chunking’ that shares features with LABYRINTH's
formation of object concepts. However, the systems differ in what they treat as underlying
processes and what they treat as emergent phenomena.

On many dimensions, ICARUS is most similar to ‘analogical’ or ‘case-based’ approaches
to cognition (e.g., Carbonell, 1986; Kolodner, 1987). We have noted that the system’s basic
data structures share aspects of Schank’s (1982) theory of dynamic memory, and in its
early stages, the DADALUS component exhibits a form of ‘case-based reasoning’ (Kolodner,
1987). Like dynamic memory, ICARUS relies on interleaved hierarchies of different concepts,
with complex concepts being specified in terms of their components and with more abstract
concepts stored above their specific children. Our framework differs from dynamic memory
(as it does from SOAR, PRODIGY, and ACT*) in its emphasis on probabilistic descriptions,
in its focus on grounded symbols and interaction with physical environments, and in its
concern with sensori-motor phenomena in addition to high-level cognition. However, both
ICARUS and dynamic memory emphasize retrieval from an organized memory, and both can
be viewed as direct descendants of EPAM (Feigenbaum, 1963; Feigenbaum & Simon, 1984),
the earliest model of incremental concept formation.

6.2 Attention and Short-Term Memory in ICARUS

One central finding of cognitive psychology is that the human information-processing
system contains sequential ‘bottlenecks’ that require some form of selective attention. In
describing ICARUS’ components, we revealed three different forms of attention. The first
dealt with the basic processes of retrieval and object recognition as modeled by CLASSIT
and LABYRINTH. This variant corresponds roughly to the notion of perceptual attention in
the psychological literature (Treisman, 1969), though we have not attempted to account for
such attentional phenomena.

A second form of attention occurs in MEANDER'’s process of execution monitoring. This
corresponds roughly to the notion of closed-loop processing in theories of human motor
behavior (e.g., Adams, 1971), and it underlies the system’s ability to model the tradeoff
between speed and accuracy in motor control. However, MEANDER currently uses a system
parameter to describe the level of attention, and does not reflect the conscious nature of
this process. Future versions should model execution monitoring in more detail, possibly
borrowing from the method used in CLASSIT.

The attentional bottleneck is not limited to the sensori-motor level, and one can cast
D&EDALUS (like any means-ends system) as modeling the cognitive aspects of attention. In
this framework, the agent generates new goals (subproblems) sequentially, and the focus
of attention is on one goal at any given time. In future work, we plan to associate levels
of attention with each subproblem that reflect their priority, and to integrate the planning
process with the application of internal drives. We also hope to use goal information to
direct the attentional processes in object recognition and motor control.
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Attention is closely related to short-term memory, a feature that has been notably lack-
ing in our description of ICARUS. Production-system architectures like SOAR and ACT*
incorporate a declarative working memory that is distinct from knowledge stored in produc-
tion rules, but this dichotomy makes little sense in the ICARUS framework. One model would
have the classification process ‘activate’ nodes in ICARUS’ long-term memory, with the set
of active nodes constituting short-term memory. As in ACT*, activation levels would decay
over time, requiring explicit rehearsal or external stimuli to keep a goal or concept active.
However, working out the details of this memory model remains an issue for future work.

6.3 Action and Perception in ICARUS

The distinction between action and perception cuts across all aspects of intelligent be-
havior. Action, whether imagined or real, can range from the production of sequential plans
to the invocation of motor schemas to the design of physical devices. Similarly, perception
can range from simple recognition of an object or motor behavior to complex understand-
ing of another agent’s plan. The current version of ICARUS associates perception mainly
with object recognition and action only with planning and motor control, but this is a clear
oversimplification. To this end, we should briefly consider the relation between action and
perception.

Our current view is that action-oriented behavior is connected directly to goals, whereas
perception and understanding are linked to beliefs. This is not a distinction between the
mechanisms used in perception and action, but between the interpretation of structures in
memory. In fact, we intend that future versions of ICARUS more fully integrate the mech-
anisms for perception and action, generating beliefs in some cases and goals in others. We
have already seen that MEEANDER can use the same mechanism to retrieve motor schemas for
execution and to recognize another’s behavior. Similarly, DEDALUS should be able to infer
another agent’s plan from an observed sequence of actions; the task of plan understanding can
be viewed as a more constrained version of the plan generation task. To distinguish between
such alternative interpretations, the system will place clear labels on its data structures,
stating whether they describe the agent’s goals (which should lead to action) or describe
events in the world (which should simply be summarized).

One might also make finer distinctions within the broad categories of goals and beliefs.
- For instance, one could separate goals that should actually be implemented from those
that involve wishful thinking; this might be handled with notions of goal priority. More
important, one might divide beliefs into two classes: observations, which one knows are true,
and predictions, which one may or may not confirm. The current versions of CLASSIT and
LABYRINTH are able to make predictions, but they do not store these in memory along
with observations. This certainly seems desirable, but it is less clear whether to assume a
strong dichotomy or to allow for many sources of beliefs, which may or may not disagree.
Identifying appropriate roles for prediction and observation remains an important goal of
our research program.
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6.4 Spatial Knowledge in ICARUS

An intelligent agent exists in some physical environment larger than its sensors can
encompass. In order to reason about such surroundings, it must be able to represent familiar
locations, organize them in memory, access them from that memory, and acquire them
from experience. Before we can herald ICARUS as a successful model of such an agent, we
must show it can handle all these aspects of spatial knowledge, and here we discuss the
architecture’s potential in this context.

We will use the term place to refer to a location and its associated sense data (i.e., the
visible objects it contains and their features). LABYRINTH's ability to deal with composite
concepts suggests an approach to handling knowledge of places. Briefly, one can represent
each place as a complex ‘object concept’, with objects visible from that location (e.g., boul-
ders, posts) as its component objects. Upon receiving a sensory description of its current
surroundings, ICARUS would pass this information to LABYRINTH for incorporation into
long-term memory. This process would involve classifying and storing component objects,
redescribing the overall scene by treating the component labels as its ‘features’, and finally
classifying and storing the scene in memory, described in terms of its components. If the
scene is genuinely new, LABYRINTH would store it as a new place concept; otherwise it would
store the experience as a child of a familiar place.

This approach to place description also supports the notion of landmarks, which are
generally viewed as useful in navigation and exploration. In this framework, landmarks
are objects that can be seen from many positions, making them components of many place
concepts, and are sufficiently unique to aid in distinguishing places from each other. The
complexity of spatial information requires that we incorporate the CLASSIT attention mech-
anism into LABYRINTH, and the augmented version should tend to focus on landmarks early
in the process of place recognition. It should also use landmarks in identifying sequences of
places as it moves along, which leads us to a different but related aspect of spatial knowledge.

In addition to recognizing familiar places, an intelligent agent should also be able to
navigate from one place to another, and knowledge of routes is generally viewed as useful to
this end. In ICARUS, it seems natural to view routes as sequences of places that occur in the
context of plans. Thus, generating (or retrieving) a route involves generating (or retrieving)
a plan for moving between two places, and acquiring a route involves storing a successful
plan for moving from one place to another. We hope to use DEDALUS to handle the task of
navigation and the acquisition of route knowledge, letting the agent’s navigational abilities
improve with experience of a particular area.

However, before any system can formulate routes, it must have some basic information
about spatial relations between different places. We assume that LABYRINTH will recognize
familiar places and store them in memory, but we need some additional mechanism for
linking nearby places. To this end, we plan to incorporate a drive for ezploration into
IcArus. Given no high-priority goals, this will lead the agent toward novel objects and
places in its environment, so as to examine them in more detail. It will also lead the agent
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away from familiar places in search of novel ones. These goals should be interrupted by other
drives if the agent runs low on fuel or energy, or if it is about to collide with an obstacle,
causing the agent to return to a fuel source or avoid the object. But lacking other goals, the
exploration drive will lead the agent to new experiences, letting it store information about
new places and connections between those places.

As we anticipate implementing them in ICARUS, drives will be evoked by stimuli rather
than goals. As a result, explciatory behavior would not produce any coherent plan that
can be stored in memory for future retrieval. Instead, it would lead to local actions, which
ICARUS would store as instances of particular operators. However, the preconditions on a
given operator instance would be the place in which the agent applied that operator, and
the postcondition would be the place resulting from its application. Thus, the drive for
exploration should lead ICARUS to store information about connections between specific
places in its hierarchy of motor schemas or operators.

Once the agent has stored connections in this form, it can invoke DEDALUS to solve
particular navigation problems. Given the task of moving from place A to place B, it will
retrieve operators that let it transform one into another. If the two places share some
component (landmark) object C, then DEDALUS can use information about the differences
between the current and desired description of C to select appropriate operators. If there
are no shared components, then the system must resort to a strategy of depth-first search
until it finds some sequence of operators that transform A into B. DEDALUS will succeed
in this effort only if memory contains some path that connects the two places, and even if it
does find a path, the process may take considerable search.

However, once means-ends analysis has found a route between A and B, the system will
store information about the successful plan in long-term memory. Given the same problem
or another task with shared subproblems, D£DALUS will use its previous experience to
constrain the search process. As it gains experience in a given environment, the system will
construct a repertoire of route plans thaf it can use to efficiently navigate between various
places. This information will be topological rather than metrical in nature, but the former
constitutes an important aspect of spatial knowledge (Kuipers, 1982).

6.5 The Status and Evaluation of ICARUS

’ The ICARUS architecture does not yet exist as an integrated entity, but all of its com-

ponents have been implemented. An initial version of CLASSIT (Gennari et al., 1989) has
been tested on simulated physical domains, and we have extended the system to include
selective attention. MEANDER's predecessor, MAGGIE (Iba & Langley, 1987), was tested
on simple motor tasks, and the current version extends this approach by organizing motor
schemas into a concept hierarchy and employing concept formation as the main learning
mechanism. LABYRINTH, DEDALUS, and MZANDER have all been implemented and are
currently undergoing initial tests.
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Combining these four systems into a single, integrated architecture will be a challeng-
ing task, but we have made some progress in this direction. For instance, LABYRINTH,
DEDALUS, and MEANDER already use the CLASSIT system as their primary subroutine.
We forsee few problems with connecting DEDALUS and MZEANDER,; the former will generate
plans that the latter can execute, and we will not attempt a tight integration of planning and
execution in the near future. One major issue that remains is the interaction between inter-
nal drives and the planning process. Another concern is the interaction between planning
and object recognition, but we hope to delay this in the first version of ICARUS, a.ssummg
that these processes run independently and in parallel.

We plan to evaluate each of these systems experimentally using artificial domains, some
purely symbolic in nature and others designed to mimic the continuous nature of the physical
world. As in previous studies, we plan to vary aspects of the environment, such as the
regularity of object classes and the complexity of problems. We also plan to vary aspects
of the systems, such as their parameter settings and evaluation functions, and we hope
to carry out lesion studies, comparing the behavior of each system to that when certain
components are omitted. In each case, we plan on measuring learning in terms of performance
improvement over time, examining both accuracy and efficiency as dependent variables. A
central hypothesis is that retrieval time will not degrade with large amounts of experience;
to this end, we plan to run the systems on training sets of many instances.

Evaluating the overall architecture will be more difficult, but we will attempt this task
only after studying the components in some detail. For this purpose we plan to use a
simulated environment such as the World Modeler’s System,!* which simulates a three-
dimensional world obeying the laws of Newtonian physics. This simulation models time
in discrete steps, updating the positions of objects based on their previous positions, their
velocities, and the forces applied to them, including gravity, torque, and friction. The
simulator computes the effects of elastic collisions among rigid objects, and alerts the agent
when it touches other objects. The agent controls its effectors by placing them in desired
positions, and can pick up objects as a primitive action.

We have designed two initial domains within this testbed. The first involves a blocks
world in which the agent consists of a robot hand that must pick up blocks and place
them in specified locations. The second domain involves a mobile agent that can wander
around, learning about its environment while subject to conflicting drives like hunger and
curiosity. Both domains are relatively simple, but they should provide initial tests of the
overall architecture and let us compare variants to each other. For instance, we expect
the innate drives to have a major influence on both initial performance and learning. The
simulated world also lets one control levels of uncertainty in sensori-motor data, and we will
vary this as well. In the longer term, we hope to test ICARUS in complex worlds, and our
ultimate goals include connecting the system to a physical robot for more realistic tests.

4 This software was developed by researchers at Carnegie Mellon University and the University of Cali-
fornia, Irvine.
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6.6 Summary

In this paper we have described our designs for ICARUS, an integrated cognitive archi-
tecture for controlling autonomous agents situated in the physical world. We considered the
architecture’s four main components in some detail. These modules included: LABYRINTH,
which classifies objects and acquires complex object concepts; DEDALUS, which generates
plans and acquires plan expertise; and MEANDER, which executes motor programs and
acquires motor schemas. All three components invoke CLASSIT, which classifies instances
described in terms of primitive attributes and organizes them in a probabilistic concept
hierarchy.

Although we have detailed ideas about ICARUS’ components, the overall architecture
must still be finalized and tested. Many issues still remain open, but we believe ICARUS
constitutes a promising theory of intelligent behavior that deserves further exploration. The
initial design responds to the six goals stated at the outset of the paper, and the basic
framework continues to provide fertile ideas for improvements and extensions. It may be
some time before we develop a complete architecture capable of controlling a physical robot,
but we feel that we are rapidly making progress in that direction.
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