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EXECUTIVE SUMMARY

The Microwave Landing System not only enables precision low approach
and landing, it also supports area navigation. This enables multi-leg,
curved, and computed-centerline approaches. These procedures require the
avionics to determine the aircraft location anywhere within the region of
coverage, which may at some airports be as large as ±600 in azimuth and
30 in elevation. This process requires reconstructing the aircraft

position in Cartesian coordinates, given the ground units' site data and
the observations of azimuth and elevation angles, and distance from a
distance measuring equipment. When the ground units are not collocated,
iteration is required.

Position reconstruction algorithms based on Gaussian techniques
converge very slowly, or diverge, for some geometries of ground unit and
aircraft location which are within the system coverage. On the other hand,
algorithms based on Newton-Raphson techniques usually converge very rapidly
but impose a significantly greater storage requirement and computational
burden on the avionics. This report presents a modified Gaussian algorithm
which uses coordinate system rotation to achieve rapid convergence for all
geometries, and with a computational burden much less than the equivalent
Newton-Raphson algorithm. It presents the theoretical foundations of this
algorithm and various results showing its effects, and compares its storage
and computational burdens against Gaussian and fewton-Raphson equivalents
in the MLS context.

Acce -1,r l For

NTIS CRA&I
DOIC TAB 0
U, ,a,*100W)Ced 0]
JuSllfIC31101"

By ... .

Avadaibility d'

Ju it~c t (I

Dist lwecal

iii



ACKNOWLEDGMENT

This document has been prepared by The qITRE Corporation under Project
No. 5420, Contract No. F19628-89-C-0001. !he contract is sponsored by the
Electronic Systems Division, Air Force Systems Command, Hanscom Air Force
Base, Massachusetts 01731-5000.

iv



TABLE OF CONTENTS

SECTION PAGE

1 Introduction ............. .......................... 1

2 Principles of Gauss-Seidel Iteration ....... .............. 3

3 Geometry, Notation and Mathematics ...... .............. 5

4 An Irrotational Gauss-Seidel MLS Algorithm .... .......... 7
4.1 Definition 7
4.2 Performance ............ ........................ 7
4.3 Analysis 9

5 A Rotational Gauss-Seidel MLS Algorithm ...... ............ 13
5.1 Definition 13
5.2 Performance ......... ........................ ... 17
5.3 Analysis 19

6 Comparisons of Performance ....... .................. .. 23

List of References .......... ......................... ... 25

Appendix A FORTRAN 77 Computer Code ..... ................ ... 27

Appendix B Alternate Newton-Raphson Algorithm ... ........... ... 29

Appendix C The Sine Form of the RGSI ..... ............... . 31

Appendix D Exercise of the Rotational Algorithm ... .......... .... 33

v



LIST OF FIGURES

FIGURE PAGE

2-1 Fast Convergence. .............. ........... 3

2-2 Slow Convergence. .............. ........... 3

2-3 The Rotation Principle ....... ................ 4

3-1 Geometry. ............. ................ 6

5-1 Conical and Planar Azimuth Angles. ................ 14

A-i Computer Code ....... ......... ............ 27

LIST OF TABLES

TABLE PAGE

4-1 Divergence with a GSI PRA. ............... ..... 8

4-2 Slow Convergence with a GSI PRA. ................. 8

5-i ROSI in Table 4-i Case. ....... ............... 17

5-2 RGSI in Table 4-2 Case. ....... ............... 18

5-3 Behavior of the RGSI PRA with a Lar~ge Azimuth Angle ..... 18

6-i Comparison of Various PRAs. ........ ............ 23

D-1 Rotational Algorithm Exercise .. ....... ........... 34

vi



SECTION 1

INTRODUCTION

The interaational civil aviation community plans to replace the
Instrument Landing System by the Microwave Landing System (MLS) [1] during
the next decade. Among the reasons are that the MLS enables much more
precise determination of the aircraft's location, and has much wider
coverage. These added capabilities will enable conduct of area navigation
(RNAV), including curved approaches, in the vicinity of the airport.
Further, it will not be necessary to locate the MLS azimuth antenna on the
runway centerline; offset sites and therefore offset runways can be used,
or the same set of ground units can service several runways. These new
capabilities are accompanied by new complexities.

In RNAV, or computed centerline, operation with the MLS, it is neces-
sary, given the data which define the sites of the three ground units, and
the observations of azimuth angle, elevation angle, and distance measuring
equipment (DME), to determine in the avionics the aircraft position in
Cartesian coordinates relative to the centerline of the desired runway.
This process is not simple when the ground units are not collocated, and
iteration is tequired to reconstruct the aircraft position from the data
and observations. Two general types, or classes, of algorithms have been
suggested [2], for this purpose, Gaussian and Newton-Raphson. Gaussian
position reconstruction algorithms (PRAs) are attractive as they tend to
have small storage and computational burdens, in comparison to Newton-
Raphson PRAs. However, they also tend to have problems of divergence or
slow convergence, depending on the particular algorithm and the geometry of
the situation, for azimuth angles which are within the system's lateral
coverage of ±600. On the other hand, Newton-Raphson PRAs may have
singularities that preclude use in various regions of the MLS coverage.
This paper presents a modified Gaussian PRA which has no singularities and
which, by using rotations, conditions the problem so that iteration is
stable and rapid everywhere within the MLS coverage. This algorithm holds
a position intermediate between Gaussian and Newton-Raphson methods. It is
slightly less compact than the equivalent Gaussian algorithm, and has a
greater computational burden; however, it converges faster and converges
everywhere. The algorithm converges more slowly than the equivalent
Newton-Raphson PRA; however, it is more compact, has no singularities, and
has a significantly-reduced computational burden.

Section 2 presents a heuristic discussion of the principles of the
fastest member of the class of Gaussian algorithms, Gauss-Seidel iteration
(GSI), in a simple and general way to show the operating principles of the
GSI process, and especially to motivate the concept of coordinate rotation
in this application. Section 3 provides the notation and mathematical
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foundation, section 4 develops and shows the behavior of a conventional
irrotational GSI MLS PRA, and section 5 extends section 4 to include the
rotation principle and thus form a rotational Gauss-Seidel iterative (RGSI)
PRA. Comparisons of speed, computational burden, and storage requirements
against both a GSI and a Newton-Raphson PRA are presented in section 6,
followed by conclusions. Appendixes give the computer code for the
proposed algorithm, the formulation of the Newton-Raphson PRA which was
used for comparisons, analysis of an alternate formulation for the RGSI
PRA, and a small but representative sample of the behavior of this
algorithm for a variety of ground unit geometries and aircraft location.
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SECTION 2

PRINCIPLES OF GAUSS-SEIDEL ITERATION

This section presents a heuristic discussion of the principles of
Gauss-Seidel iteration (GSI). Its purposes are to provide an intuitive,
although rudimentary, understanding of GSI, and, especially, to motivate
the application of the rotation principle used in this study.

Consider a pair of nonlinear functions, f and g, of x and y. The
functions are continuous in the vicinity of their unique solution, and it
is assumed that the magnitude of the slope of f with respect to x is small
compared to that of g. This situation is shown in figure 2-1. An initial
condition, x0 , is asssumed for x, and f is evaluated with this value,
yielding yI. The other equation, g, is then evaluated with yl, yielding x1
which is in turn used in f td find Y2 , etc. As iteration continues, the
successive estimates of x and y converge to the solution. The process is
shown by arrows in the figure.

Now consider the effect if the slope of f is appreciably greater, as
in figure 2-2. It is evident that the process converges much more slowly
than in figure 2-1.

y y

g 9

Figure 2-1. Fast Convergence Figure 2-2. Slow Convergence

Some of the principles of GSI may be deduced from these figures:

a. The increments to x and y are parallel to the x and y axes;

b. Convergence slows as the magnitude of the slope of f increases;

c. New values of x and y are used as soon as they are available.
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If convergence is too slow, it would presumably help if the increments
were not constrained to be parallel to the x and y axes. In particular, it
would be especially helpful if the increments could be parallel to the
slope of the function f, as with Newton methods. This can be accomplished
by using a rotated set of coordinates, x* and y*, such that (x*) is
parallel to f at each iteration-point. In this situation, shown in figure
2-3, the slope of f with respect to x* is almost zero at each iteration,
each increment is in the x* direction, rather than the x direction, and
thus the iteration, with each Ax* step, will go almost directly to the
solution-point. This is the motivation for exploring the utility of
rotation as a conditioning method for rectifying an ill-conditioned
problem.

Y

9 
X

X
XC;

Figure 2-3. The Rotation Principle

The analogy between the very simple example outlined above and the MLS
problem is now presented. The function f is, at least to some extent,
similar to the azimuth-angle guidance locus, while the function g is
similar to the DME locus. The idea of using rotations as a means to
improve convergence speed and stability is especially attractive since the
required rotation angle is approximately the observed azimuth angle, and is
thus provided a priori as an input to the PRA.

These ideas will now be more formally developed.
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SECTION 3

GEOMETRY, NOTATION AND MATHEMATICS

This section presents the geometry, notation, and the mathematical
foundations for the MLS PRA problem.

The coordinate system for the problem is defined in figure 3-1. The
MLS x-axis is selected to be the runway centerline and its extension, with
negative values toward the stop-end of the runway. The origin of the
coordinate system is set at the runway threshold so that a conventional
location for the ground equipment has a negative x-value. Thus, an azimuth
antenna located near the stop-end of a 5000 foot runway has an x-value of
approximately xA = -5000, where the subscript A implies azimuth antenna.
The positive direction of y lies to the left of an observer who is standing
at the origin with the stop-end of the runway behind him. The positive
direction of z is up. The elevation angle is defined as positive
counterclockwise looking along the positive y-axis so that positive angles
correspond to positive altitude. Azimuth is defined as positive clockwise
from the x-axis, looking down towards the ground. This coordinate system
is not right-handed but conforms to that of [1] and [2]. The azimuth
antenna boresight is assumed, for simplicity but without loss of
generality, to be parallel to the runway centerline; a well-known rotation
and de-rotation enable treating other orientations.

The ground units' site data, defined below, are transmitted to the
aircraft.

xA, YA, ZA Components of location of azimuth antenna

XD, YD, zD Components of position of DME

XE, YE, ZE Components of position o elevation antenna

XT, YT, ZT Components of true position of the aircraft

xi, yi, zi Components of the ith estimate, i=O, 1, 2,

01 Observed conical azimuth and elevation angles

P Observed slant range from the DME

P, C Subscripts: planar (P), conical (C)

The observations received in the aircraft, p, * and e, are generated
respectively by a distance-measuring equipment (DME), a conical-pattern

-5-



azimuth antenna (AZ), and a conical-pattern elevation antenna (EL).

Figure 3-1 shows a typical and general geometrical situation.

AIRCRAFT
DME XT YT ZT

XD YY zA P ELEVATI

ANTENNAXA xA ZAz
XE YE zE Y

/X

Figure 3-1. Geometry

The observations in the aircraft are now defined.

The observed slant range from the DME to the aircraft is p, where

p = [(xT-xD)2 + (yT-YD)2 + (zT-zD)2 ]1/2  (3-1)

The azimuth antenna forms a conical beam, with the axis of radial
symmetry parallel to the y-axis. The observed azimuth angle at the
aircraft is eC, measured exterior to the cone, where

tan9C = -(YT-YA) / [(xT-xA)2 + (zT-zA)2 ]1/2  (3-2)

Similarly, the elevation antenna forms an always-conical beam, with a
vertical axis of radial symmetry. The observed elevation angle at the
aircraft is , measured exterior to the cone, where

tafn = kz-zE) / [(x-xE)2 + (y-yE)2 ]1/2  (3-3)

The geometrical site data and the observations are combined in the
avionics' PRA to determine the aircraft's location.
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SECTION 4

AN IRROTATIONAL MLS GAUSS-SEIDEL ALGORITHM

A typical irrotational GSI MLS PRA is now formed. It will be used as
the basis for a rotational algorithm (RGSI), and will also enable
comparisons of performance and complexity. Three distinct topics are
addressed in this section:

a. An irrotational Gaussian PRA will be defined;

b. It will be shown that this PRA can diverge or converge slowly
within the MLS RNAV coverage;

c. The properties of this PRA will be demonstrated analytically.

4.1 DEFINITION

The observations, p, 4, and e lead to a GSI PRA which is, in essence,
identical to Case 9 of [2] and [4]. Initial conditions for x0 and y0 are
required, but an initial condition for z0 is not needed.

Conical elevation equation (3-3) solved for altitude, z

zi+1 = zE + [(xi-xE)2+(yi-YE) 2 I1 /2 tan (4-1)

Conical azimuth equation (3-2) solved for lateral position, y

yi+l = YA - [(xi-xA)2 + (Zi+l-ZA)2 ]1/ 2 taneC (4-2)

DME equation (3-1) solved for along-runway position, x

xi+1 = XD + I P2-(Zi+l-ZD)2-(Yi+i-YD)2]1/2 (4-3)

Iterate to (4-1) until a solution of acceptable accuracy is reached.

4.2 PERFORMANCE

Table 4-1 shows that this PRA can diverge. The four lines at the top
of the table show the geometry of the three ground units; the azimuth
antenna is in a conventional split-site arrangement, but the DME is
collocated with the elevation unit, in accordance with a suggestion in [5].
Below this area is a line which presents the observations; notice that the
observed azimuth angle is 37.950, less than the minimum MLS coverage of
400. The four lines below that are organized in columns: the first
column shows the three components of the aircraft's true location, the
second
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shows the initial condition assumption, and the other six columns show the
estimated position after each of six iterations; the iteration number heads
the column. In column 2, the place for z0 is blank, as that initial
condition is not needed. The process is divergent: at each stage the
estimates of x and y are further from the true location, although z
converges. The initial conditions were arbitrarily selected to show the
divergence clearly, and are thus not consistent with the initialization
proposed in [2]. The configuration in this figure is 3-9 (ground unit
arrangement 3, and aircraft location 9), consistent with the database of
exercises; this nomenclature appears in the heading of ground geometry and
aircraft position in the table.

Table 4-1. Divergence with a GSI PRA

GROUND STATION SITE GEOMETRY # 3

AZIMUTH ANTENNA SITE DME TRANSMITTER SITE ELEVATION ANTENNA SITE
X Y Z X Y Z X Y Z

-6000. -1000. 10. -1000. 500. 5. -1000. 500. 5.

AIRCRAFT POSITION #9. OBSERVED DATA: RHO=12588.3 THETA=37.95 PHI=16.12

TRUE POS. INIT. POS.
ITERATION NUMBER I 1 2 3 4 5 6

X 5000.00 5500.00 4061.68 6092.74 3264.82 6824.62 1337.77 8210.56

Y -10000.00 -10500.00 -10418.31 -9301.11 -10815.98 -8720.97 -11365.27 -7336.81
Z 3500.00 3697.55 3482.99 3501.42 3499.88 3500.01 3500.00

Table 4-2. Slow Convergence with a GSI PRA

GROUND STATION SITE GEOMETRY # 2
AZIMUTH ANTENNA SITE DME TRANSMITTER SITE ELEVATION ANTENNA SITE

X Y % X Y Z X Y Z
-6000. 0. 5. -6000. 0. 5. -1000. 500. 5.

AIRCRAFT POSITION #29. OBSERVED DATA: RHO=36976.0 THETA=32.74 PHI=4.31
TRUE POS. INIT. POS.

ITERATION NUMBER I 1 2 3 4 5 6
X 25000.00 31100.24 22041.99 26139.90 24517.92 25196.47 24918.69 25033.45
Y -20000.00 -20000.00 -23929.78 -18106.58 -20730.01 -19691.33 -20125.80 -19947.93
Z 2500.00 2875.13 2535.59 2484.62 2506.40 2497.38 2501.08
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Table 4-2, (configuration 2-29), organized in the same format, shows
an example of slow convergence with this algorithm. The ground units are
arranged in a conventional split-site; the DME is collocated with the
azimuth unit. The initialization uses the procedure suggested in [2]. But
after five iterations, the error in lateral position is -125.80'. This
error is excessive according to the criterion for slow convergence and
excessive error set forth below.

An allowance of 0.0170 is given in [1] for the "Path Following Error"
which may be tolerated in the avionics. There are many sources of error in
the avionics; some are governed by physical considerations such as received
signal power which impose limits on performance. But, in principle, the
algorithm can yield an almost-perfect result. The algorithm, for this
discussion, is therefore allowed an error of 0.0170/3, which is neglible
when added RSS; this allowance is approximately 0.01%, and the value
(xT/10,000) is used hereafter. The algorithm is considered to be slow if
the magnitude of the error in any variable exceeds (XT/10,000) after five
iterations.

The examples shown in these tables are not exceptional; they are
intended to show that an irrotational GSI may have unsatisfactory behavior
in geometrical situations which might be expected in MLS RNAV.

4.3 ANALYSIS

A rigorous analysis of the stability and speed of convergence of a
Gauss-Seidel MLS algorithm is now developed, following [3].

The procedure is outlined:

(a) The method of analysis for GSI algorithms assumes that the
functions are linear; therefore (4-1) through (4-3) are linearized
about the solution at XT, YT, zT;

(b) Two matrices are formed: A matrix S is the coefficient of the
(i+l) values of the variables, while a matrix T is the coefficient
of the (i) values of the variables;

(c) The eigenvalues of the matrix-product (S-1T) are determined.
These are the values of X for which the determinant A = IX-S-IT1
is zero, where I is the identity matrix in three variables.

The error at each iteration changes by the factor X', where that is
the eigenvalue of greatest magnitude. If X' < 0, the error oscillates at
each iteration; if Ij' = 1, the iteration will not converge, while if
IX'I > 1 the iteration diverges.
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Following the procedure outlined above, expand ,the three functions by
a multi-dimensional Taylor series about the solution at xT, YT, zT; the
linearized increments about the solution-point are

Azi+I = [(xT-xE)tanp/RE]X i  + [(yT-YE)tan /RE]AYi (4-4)
Ayi+ 1 =-[(xT-xA)tane/RA]Axi - [(zT-ZA)tanE/RA]Azi+ 1  (4-5)
Axi+1 =-[(yT-YD)/RD]Ayi+ - (zT-zD)/RD]Azi+1 (4-6)

where

RE = (xT-x )2+ (YT-YE)2 ]1/2  (4-7)
RA =I(XT-xA)2+(zT-zA)2j]i 2  (4-8)
RD [p2 -(y .T-YD)2-(zT-ZD) 2 ]1/ 2  (4-9)

Then, following step (b), the matrix of the (i+1) coefficient, is S,
where the first row is from (4-6), the second is from (4-5), while the
third row is from (4-4). The vector of variables which post-multiplies S
is (Axi+i, Ayi,+, Azi+l)T, so that

1 [(YT-YD)/RD] [(ZT-ZD)/RD]
S 0 1 [(ZT-zA)tanG/RAI (4-10)

0 0 1

and the matrix of the (i) coefficients is T, in the same order.

f0 0 0
T = -[(XT-XA)tanG/RA] 0 0 (4-11)

[(xT-xE)tan /RE] [(yT-YE)tan4/RE] 0 1

The matrix S-1 is easily written directly from (4-10), as

1 -S12 (S12S23-s13)JS_1 0 1 -S23 (4-12)

0 0 1

and A = 113 X-S-ITI is

X - I-s12 t21+t31 (s12s23-s13)
]  -[t32 (s12s23 -s13)] 0

A= -[t21-s23t31 ]  X + [s23t32] 0
-t31  -t32  X

(4-13)
Expanding (4-13) by minors of the third column yields

A = X{X2 + Xjs23 t32 + s12 t21 - t31(s12s23 - s13)] + s13 t21t32) = 0
(4-14)

The term within the braces of (4-14) is in the form (X2 + BX + C),
where

10



B = [(zT-ZA)tanetan1/RA]{[(yT-YE)/REI-[(XT-XE)/REI[(yT-YD)/RDI)
-[(yT-YD)/RDI(xT-xA)/RA]tane + [(xT-xE)/RE][(zT-zD)/RD1tan

and (4-15)
C = -[(xT-xA)/RAI[(yT-YE)/REI[(zT-zD)/RD]tanetan

(4-16)

A simplification is useful in order to enable physical interpretation
of this result. Assume a configuration with the three ground units
collocated at the origin; then xD = YD = zD = 0, xA = YA = ZA = 0, and
XE = YE = ZE = 0. As a result, ZT/RE = tan , YT/RA = -tane, and RD = x
This set of assumed values reduces (4-15) and (4-16) to B = tan 2e + tan4*
and C = tan2etan2 , and the determinant becomes

A =X[X 2+(tan 2e+tan2 )X+tan2etan2 I] = X(X+tan 2e)(X+tan2 ) (4-17)

with solutions

X = 0, X = -tan 2e, and X = -tan 2 . (4-18)

The iteration becomes unstable if either angle exceeds 45 degrees.
Elevation angles above 30 degrees are out of coverage, but, as noted above,
the azimuth angle may be large enough to cause divergence.
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SECTION 5

A ROTATIONAL GAUSS-SEIDEL MLS ALGORITHM

The irrotational GSI presented in section 4 is now used as the basis
for developing the rotational GSI (RGSI) in this section. This section has
three parts, in which the topics of definition of the RGSI, its
performance, and its analysis are presented.

5.1 DEFINITION

The irrotational GSI presented above is now used as the basis for
development of the RGSI; it was defined in section 4 by the relationships

Conical elevation equation (3-3) solved for altitude, z

zi+1 = zE + [(xi-xE) 2+(yi-YE) 211 / 2 tan4 (5-1)

Conical azimuth equation (3-2) solved for lateral position, y

yi+1 = YA - [(xi-xA)2+(Zi+l-zA)2 ]1/ 2 tanOC (5-2)

DME equation (3-1) solved for along-runway position, x

xi+1 XD + [ P2-(Zi+l-ZD)2-(Yi+l-YD)2]1 / 2  (5-3)

Iterate to (5-1) until a solution of acceptable accuracy is reached.

The RGSI exhibits better convergence for high elevation angles,
independent of azimuth, if (5-1) is replaced by

zi+1 = zE + [(xi-xE)2+(yi-YE)2+(zi-zE)2]1 / 2 sink (5-4)

which may be derived from (5-1) or the geometry. This formulation is used
to generate the numerical results. However, the prior formulation (5-1) is
used in this section to maintain symmetry with the GSI and its analysis.

The geometry of a conical azimuth antenna system, figure 5-1, shows
that the horizontal plane projection of the observed conical azimuth angle
points to the horizontal projection of the aircraft location only when the
aircraft altitude is zero. Therefore, the ideal rotation places the
rotated x*-axis so that it passes through that projection. This step
brings the new x* axis parallel to the planar azimuth angle, which is
independent of altitude, rather than the conical azimuth, which is a
function of the altitude, as in figure 2-1. But the relationship between
the planar and conical azimuth angles must involve the altitude, as shown
in figure 5-1.
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Figure 5-1. Conical and Planar Azimuth Angles

The rotation shown in figure 5-1 requires that the coordinate origin
be moved to the azimuth site prior to the rotation, as in (5-5).

Aircraft xi' = xi - XA Yi' = Yi - YA zi' = zi - zA
Azimuth xA ' = xA - xA = 0 YA' = YA - YA = 0 zA ' = zA - zA = 0

DME XD' = XD -XA YD' = YD - YA ZD' = ZD - ZA
Elevation XE' = XE - XA YE' = YE - YA ZE' = ZE -zA

(5-5)

where the primes (') imply translated variables. It is not necessary to
translate nor rotate the z-components, but some reduction of the required
computations during the iteration, and a more orderly notation, result if
they are translated.

The desired rotation of coordinates about the newly translated origin
of figure 5-1 is defined by the matrix equation

xy XA* XD, XE, cosep -sinep 0 x xA' xD' xE'
*A D" YE, sinp cosOp 0 y' YA' YD' YE' (5-6)

z* zA  zD ZE 0 0 .1 z A ' zD ' zE '

where the superscript stars (*) imply both translation and rotation, and
the subscripts (i) have been omitted as redundant. As (5-5) sets the
offsets xA' = YA' = ZA' = 0, then XA* = YA* = zA* = 0 in (5-6) and may be
omitted. This rotation causes the horizontal-plane projection of the
lateral position y* of the aircraft in the rotated coordinates to converge
to zero.
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of (5-6) expresses the fact that, as the rotation is the horizontal plane,
about the z-axis, the z-values are not rotated.

However, the required rotation angle is the planar azimuth angle, Op.
This angle is not available as an observation, but must be deduced from the
observation of the conical angle, eC.

From (5-4), the conical azimuth angle is

sine C = -(y-yA)/t(x-xA)
2+(y-yA) 2+(z-zA) 2 ]1/2

When evaluated at z = zA this reduces to the planar azimuth angle

siniep = -(y-YA)/t(x-xA)2+(y-yA)
2 ]1/2

so that the quotient of these two expressions yields the relationship

sinep = (l+(z-zA)2/[(x-xA) 2+(y-yA) 2 ]}1/2sinec (5-7)

Now, (5-7) may be used to calculate ep exactly only when the values
of x, y, and z are the exactly correct values. Otherwise, the right hand
side values for x, y, and z are the estimated aircraft location at the end
of any iteration cycle, and the left hand side is the estimated value of
the planar azimuth angle. However, as the process converges, at each
iteration it yields a better set of values for estimated position. It thus
also yields a better estimate of sinep, and therefore converges towards
the exactly correct location of the aircraft. Note that (5-7) reduces to
sinep = secsine0C if the elevation and azimuth antennas are collocated.

The iterative process now takes the form:

Translated and rotated elevation equation solved for altitude, z

Z*i+l = ZE* + [(x*i-xE*)2+(y*i-YE*)2]1 /2 tan (5-8)

This may be simplified, for y*i may be set to zero as that is the terminal
result known a priori.

The translated and rotated lateral position estimate equation vanishes, for
the correct rotation, ep, is that for which y* = 0. As the iteration
proceeds, the estimate of sinep converges to the correct value thereof,
and since the translation (5-5) forced YA* to be zero, then y *i converges
to zero. This equation therefore becomes identically zero and may be
omitted. Omission does not reduce the complexity of the problem, for the
y * equation is replaced by the required rotation-equation.
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Translated and rotated DME equation solved for position, x*

x*i+1 = XD + [ p2-(y*i+l-YD*) 2-(z*i+l-ZD*)2]/ 2  (5-9)

in which, again, y* = 0 may be used.

Translated and rotated coordinate value of the estimated sine of the planar
azimuth angle required for the coordinate rotation

A

sinepi+l = [1+(z*i+i/x*i+l)21l/2sinec (5-10)

from (5-7), where the hat (A) shows that (sinep) is estimated, not (ep).
Again, y* = 0 has been used as the a priori knowledge of the final result
of the iteration, and xA *, YA* and ZA* have been omitted, as before, since
the translation step forced them to be identically zero. The estimated
cosine of the planar azimuth angle required for the rotation of coordinates
is calculated directly from (5-10) using a trigonometrical identity. An
equivalent to (5-10) can be reached by using tanep and tanE C functions,
instead of the sines.

The process is now iterated, returning to (5-6) and (5-8).

When the solution has stabilized, the de-rotation and de-translation
are performed in that order to find the aircraft location in the original
coordinates. The de-rotation uses the inverse of (5-6) with the calculated
planar azimuth angle to find x' and y', and the de-translation uses the
inverse of (5-5) to find x and y. The inverse rotation, with fewer
variables than the direct rotation, is

(x' cosep sinEp 0 (x
l -sinep cos~p 0 Y

zIx Y' = -c s Ps ~ 8  inoP0 0 1 Ix* Yz

As y* = 0, this can be simplified to

y' = sin~p 0 z* (5-11)
z' 0 1

The inverse translation is

X =x/ + xA
y = Y' + YA (5-12)
z = z/ + zA

This completes definition of the rotational algorithm. As was noted
above, this is somewhat more complex than the basic GSI, for although the
rotation-angle equation (5-10) replaced the lateral-displacement equation,
the rotation process (5-6) must be repeated at each iteration. The steps
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of de-rotation (5-11) and de-translation (5-12) impose additional storage
and computation burdens, although they are outside the iteration.
Nonetheless, the improved speed, and, especially, the universal stability
of the rotational algorithm will be shown to justify these additions.

5.2 PERFORMANCE

The performance of the RGSI is now discussed.

In section 4, tables 4-1 and 4-2 showed that the GSI may diverge or be
slow to converge within the coverage of the MLS. Tables 5-1 and 5-2,
below, show the behavior of the RGSI for the same conditions. A variety of
other cases are presented in appendix C, which contains an abbreviated
sample of the exercise of this algorithm. It should be noted that, in
addition to the initial conditions x0 and y0 used in the GSI PRA, the RGSI
PRA also requires the initial condition z0 (arbitrarily set to 3000' here).

Table 5-1. RGSI in Table 4-1 Case

GROUND STATION SITE GEOMETRY # 3
AZIMUTH ANTENNA SITE DME TRANSMITTER SITE ELEVATION ANTENNA SITE

x Y Z X Y Z X Y Z
-6000. -1000. 10. -1000. 500. 5. -1000. 500. 5.

AIRCRAFT POSITION 09. OBSERVED DATA: RHO=12588.3 THETA=37.95 PHI=16.12

TRUE POS. INIT. EST.

ITERATION NUMBER I 1 2 3 4 5 6

X 5000.00 5500.00 5061.23 4982.69 4998.14 5000.27 5000.04 5000.00

Y -10000.00 -10500.00 -10071.39 -9994.98 -9998.41 -10000.04 -10000.03 -10000.00
Z 3500.00 3000.00 3608.70 3533.09 3499.11 3499.32 3499.99 3500.01

In tables 5-1 and 5-2, it is evident that there is no sign of either
slow convergence nor of divergence.

Table 5-3 shows the behavior of the RGSI PRA in a case involving a
large azimuth angle. The GSI PRA of section 4 was divergent for this case.
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Table 5-2. RGSI in Table 4-2 Case

GROUND STATION SITE GEOMETRY # 2

AZIMUTH ANTENNA SITE DME TRANSMITTER SITE ELEVATION ANTENNA SITE

X Y Z X Y Z x Y Z

-6000. 0. 5. -6000. 0. 5. -1000. 500. 5.

AIRCRAFT POSITION #29. OBSERVED DATA: RHO=36976.0 THETA=32.74 PHI=4.31

TRUE POS. INIT. EST.

ITERATION NUMBER I 1 2 3 4 5 6

X 25000.00 31100.24 24966.68 24999.97 25000.00 25000.00 25000.00 25000.00

Y -20000.00 -20000.00 -20000.00 -20000.00 -20000.00 -20000.00 -20000.00 -20000.00

Z 2500.00 2778.47 2884.17 2500.38 2500.00 2500.00 2500.00 2500.00

Table 5-3. Behavior of'the RGSI PRA with a Large Azimuth Angle

GROUND STATION SITE GEOMETRY # 2

AZIMUTH ANTENNA SITE DME TRANSMITTER SITE ELEVATION ANTENNA SITE

x Y Z X Y Z x Y Z

-6000. 0. 5. -6000. 0. 5. -1000. 500. 5.

AIRCRAFT POSITION #12. OBSERVED DATA: RHO=25631.8 THETA =-51.29 PHI=2.54

TRUE POS. INIT. EST.

ITERATION NUMBER I 1 2 3 4 5 6

X 10000.00 16030.91 9988.85 9999.99 10000.00 10000.00 10000.00 10000.00

Y 20000.00 20000.00 20000.00 20000.00 20000.00 20000.00 20000.00 20000.00

Z 1000.00 1138.01 1165.55 1000.11 1000.00 1000.00 1000.00 1000.00
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5.3 ANALYSIS

This subsection presents the analysis of the stability characteristics
of the RGSI. It follows the form of section 4.3, and uses the same
mathematical procedures.

The key equations are expanded by a multi-dimensional Taylor series
about the solution point. The independent variables of the expansion are
the altitude estimate, the lateral-position estimate, and the estimate of
the sine of the planar azimuth angle. There are several dependent
variables that did not appear in the prior work; these are the partial
derivatives of the ground unit locations with respect to the estimated sine
of the planar azimuth angle.

The increments are formed.

From (5-8) converted to the tangent form of the altitude equation,
shown in (5-1), in order to show the key difference between this RGSI PRA
and the irrotational PRA of section 4,

6z*i+1 = (X *T-XE*)[6x*i--(xE*/aq)6qi] + (yE*)(aYE*/aq)Aqitan /RE
(5-14)

where
RE = [(xT*-xE*) 2+(yE*) 2 ]1/ 2  (5-15)
q = sinep and Aqi = A(sinep)i  (5-16)

and (5-6) will be used to evaluate the partial derivatives. The definition
of q in (5-16) is in part a notational convenience. But it also reflects
the fact that it is the sine of the angle that is being estimated, not the
angle; this choice of variable has significant consequences in the
subsequent analysis.

From (5-10)

Ax*i+1 = [(aXD*/aq)Aqi] - [yD*(aYD*/aq)6qi + (z*T-zD*)Azi+l]/RD
(5-17)

where
RD = [P2-(yD*)2-(Z*T-ZD*)2]1/2 = X* T-X* (5-18)

Next, from (5-11)

qi+ I = [(z*T/X*T2 )azi+I - (z*T2/X*T3 )Axi+l]sinec/Rq (5-19)

where Rq = [1 + Z*T2/x*T21l/2  (5-20)

Finally, the partial derivatives of the geometrical constants with
respect to the estimated sine of the azimuth angle are from (5-6). The
zeros in the third row and column of (5-21) express formally the fact that
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the geometrical parameters of altitude are independent of the rotation.

(3XD*/aq axE I/aq -tanep -1 0 xD' XE )
DyD*/aq 9yE*/aq 1 -tanOp 0 YD' YE' J(5-21)
aZD*/a q  3ZE*/aq 0 0 0 ZD' zE'

The matrices S and T may now be defined. The variables are taken in
the following order:

1. Az*, from (5-14); this will appear in the third rows of S and T;

2. Ax*, from (5-17); this will appear in the second rows of S and T;

3. 6q, from (5-19); this will appear in the first rows of S and T.

This sequence is consistent with the definition of the vector of
variables as [A(sinep) Ax* Lz*]T. Then the matrix S is

1 (z*2/x*3)sinOc/Rq (-z*/x*2 )sinOc/Rq
S = 0 1 (z*-zD*)/RD 1 (5-22)

0 0 1

There is a significant and deliberate similarity between (5-22) and
(4-10). In both equations, the main diagonal elements are 1, and the zero
and non-zero elements appear in the same locations. In harmony with the
forecast, the consequence is that S-1 will have exactly the same form as in
section 4.

The matrix T is

0 0 0o0
T = /RD) BYD / aq)] 0 0

(x -xE*)(axE /aq)=YE aYE*/aqjtan /RE [(x*-xE*) tan /Rg 0
(5-23)

There are further consequences of the definition of the variable as
the estimate of (sinep):

a. The zero and non-zero elements of T are in the same locations as
in (4-11);

b. The characteristic equation for the RGSI problem is identical in
form to that of the RGSI problem expressed in (4-13);

c. The expansion of the determinant of the RGSI characteristic
equation has the same form as (4-14), and thus is

A = X(X2 + X[s 23 t32+s12t21-t31 (s12s23-s1 3)] + s13 t21 t32 } = 0 (5-24)
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One eigenvalue of (5-24 is zero. The others are found from the
quadratic term in (5-24), (X + BX + C), which is now examined under the
simplifying assumption, used in section 4, of collocation of the ground
units at the origin.

When the several units are collocated at the origin, the determinant
simplifies much more than with the GSI in section 4. The geometry
parameters vanish as xA = YA = zA = XD = YD = zD = XE = YE = ZE = 0, and
thus xA' = YA' = zA'= XD' = YD' = zD = XE' = YE' = zE' = 0 in accordance
with (5-5). And, since these translated parameters (XA', etc.) are all
zero, then (5-6) shows that all of the rotated geometry elements, such as
xD*, are all zero. Finally, (5-21) shows that the partial derivatives of
the rotated geometry elements ( axA*/aq, etc.) also are all zero. With
these values, (5-23) reduces to

= X(2 + Xtan24) = X2(X + tan 24) = 0 (5-25)

and the three eigenvalues are X = 0, X = 0, and X = -tan 2  (5-26)

The meaning of this result is that the convergence rate, which is mostly
determined by the eigenvalue of greatest magnitude, is completely
independent of the observed azimuth angle, and is a function only of the
elevation angle. The maximum elevation angle is 300, and the
corresponding eigenvalue is -1/3. If the resulting convergence rate is too
slow, the process can be improved by using the sine-form of the elevation
equation, (5-8) Alternately, it is possible to undertake a second
translation of the origin, followed by a rotation about the y* axis into
the altitude direction; however, this seems not worth the effort to pursue
further.

A very similar simple result is achieved under the more interesting
assumption that the azimuth and DME units are collocated in a conventional
split-site configuration, with the elevation antenna at the conventional
location. In this case the term s13t21 t32 in (5-24) is zero since the
partial derivatives in t21 are zero. Therefore, two eigenvalues are zero.
If it be assumed that the three ground units are at the same altitude so
that zA = zD = zE, then the third eigenvalue is

X = -[ [(x*-xE*)/x* ] + [(x*-XE*)(axE*/aq)-yE*(ayE*/aq)](sinep/x*2)}tan2
(5-27)

and this eigenvalue converges towards (-tan2 ) as x* becomes large

compared to xE*. And, in any case, the value cannot be far from (-tan2 @).

The analysis of the sine form of the altitude equation, (5-4), is
presented in appendix C.
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SECTION 6

COMPARISONS OF PERFORMANCE

Table 6-1 compares various statistical elements of the characteristics
and performance of this RGSI PRA against the GSI presented in section 4 and
also against an equivalent Newton-Raphson approach.

A Newton-Raphson PRA was presented in [41 as an alternate to the
algorithm offered in [2] as Case 12, because it combines compactness,
performance, and a relatively small computational burden. It is used here
for comparisons, and, here and in [4], is designated as Newton-Raphson
Alternate (NRA). See appendix B for an outline of its principles.

However, these algorithms used different initializations in the
various sources referenced; a common form of initialization is used in this
report to enable proper comparisons. The initialization used herein is:
x0 = pcose, Yo = -psine and z0 = psin4, where the initial values of x0
and Yo are required for the prototype GSI, while the NRA and the proposed
RGSI also require zo; see also [2]. The comparisons are in terms of:

a. Lines of FORTRAN 77 code, as a measure of the required storage;

b. The mean and standard deviation of the number of iterations to
converge to the accuracy criterion (xT/10,000) cited above in
section 3, as a measure of speed;

c. The number of products and quotients, and the number of
transcendental operations (trigonometrical and square-root),
inside the iterative loop as measures of the complexity.

Table 6-1. Comparison of Various PRAs

Property RGSI GSI NRA

Lines 44 35 48
Mean Iterations 2.72 4.18* 2.00
Std. Dev., Iterations 0.88 1.48* 0.56
*or +in Loop 22 9 65

Transcends. in Loop 4 1 2

* Note that the GSI diverges or is slow in 140 of the
250 cases in the database.
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The RGSI requires more storage than the GSI and slightly less than the
NRA; it can be further compacted if required. It converges faster than the
GSI, wherever the GSI converges; it is important to recall that a principal
motivation for this study was that the GSI PRA diverges within the MLS
coverage, as was demonstrated in table 4-1. The RGSI converges
approximately one iteration slower than the NRA.

The RGSI has about twice as many products or quotients in the
iterative loop as the GSI, but has only 1/3 of these operations compared to
the NRA. The number of transcendental operations in the iterative loops
differ for the three PRAs. If it be assumed that a transcendental
operation is equivalent to five products, then the GSI has 14 products, the
RGSI has approximately 42 products, and the NRA has 75 products. The
product of the mean number of iterations to convergence with the number of
products may be taken as a crude measure of the computational burden. From
this viewpoint, the iterative computational burden of the RGSI is about
thrice that of the GSI, but only about half that of the NRA. Other Newton-
Raphson formulations exist, as in [21 and [4]; the NRA used herein is the
smallest of these in terms of size, and the number of operations, false
solutions and singularities.

The data presented in this table show that the RGSI is clearly
superior to the equivalent GSI without rotation, as the GSI diverges, or
converges slowly, in many areas within the MLS coverage. Further, the RGSI
has a smaller computational burden than the NRA, while its convergence
speed is almost equal to that of the NRA. It thus appears to be superior to
the NRA.
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APPENDIX A

FORTRAN 77 COMPUTER CODE

Line State & Code
# Com #

1 SUBROUTINE AGRI(XD,YD,ZD,XA,YA,ZA,XE,YE,ZE,RHO,THETAPHI
2 1 ,XT,YTZT,156,ITER,ARAOUT,IFLAG)
3 DIMENSION ARAOUT(3,10)
4 C STORE TRUE POSITION IN OUTPUT ARRAY; DON'T INCLUDE IN LINE-COUNT.
5 ARAOUT(1,1)=XT
6 ARAOUT(2,1)=YT
7 ARAOUT(3,1)=ZT
8C
9 C ALGORITHM BEGINS HERE; FOR NOTATION SEE SECTION 3 IN TEXT.

10 C TRIG FUNCTION ABREVIATIONS; POSTSCRIPT "M" IMPLIES MEASURED ANGLE.
11 STM=SIN(THETA)
12 CTM=COS(THETA)
13 SPHIM=SIN(PHI)
14 C INITIALIZATION; SEE ALSO [2] AND [3]. "HAT"=POSITION-ESTIMATE.
15 XHAT=XD+RHO*CTM
16 YHAT=YA-RHO*STM
17 ZHAT=ZE+RHO*SPHIM
18 C INITIALIZE SINE & COSINE OF ROTATION-ANGLE ESTIMATE.
19 C POSTSCRIPT "H" IMPLIES ROTATION-ANGLE SIN & COS ESTIMATES.
21 STH=STM
22 CTH=CTM
23 C STORE INITIALIZATION OF POSITION ESTIMATE IN OUTPUT ARRAY;
24 C DON'T COUNT THAT STORAGE AS PART OF LINE-COUNT.
25 ARAOUT(1,2)=XHAT
26 ARAOUT(2,2)=YHAT
27 ARAOUT(3,2)=ZHAT
29 C TRANSLATIONS TO AZIMUTH ANTENNA SITE; SEE (5-5) IN TEXT.
29 C SUBSCRIPT P=PRIME SIGNIFIES TRANSLATION, & R SIGNIFIES ROTATION.
30 C NOTE THAT ZDPR=ZDP & ZEPR=ZEP, & THUS DON'T NEED SEPARATE LINES.
31 XDP=XD-XA
32 YDP=YD-YA
33 ZDPR=ZD-ZA
34 XEP=XE-XA
35 YEP=YE-YA
36 ZEPR=ZE-ZA
37 XHATP=XHAT-XA
38 YHATP=YHAT-YA
39 ZHATPR=ZHAT-ZA

Figure A-I. Computer Code
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40 C Z-COMPONENTS DON'T NEED ROTATION; SEE (5-6).
41 C INITIAL X & Z ARE NEEDED IN TRANSLATED-ROTATED COORDINATES.
42 XHATPR=XHATP*CTH-YHATP*STH
43 C FOR INITIAL Z USE ZHATPR FROM LINE 39, ABOVE.
44 C START OF ITERATION LOOP
45 DO 420 I=1,ITER
46 C ROTATIONS; SEE (5-6). ZDPR & ZEPR ARE COMPUTED OUTSIDE THE LOOP.
47 XDPR=XDP*CTH-YDP*STH
48 YDPR=XDP*STH+YDP*CTH
49 XEPR=XEP*CTH-YEP*STH
50 YEPR=XEP*STH+YEP*CTH
51 C COMPUTE Z & X IN ROTATED COORDS; SEE (5-8) & (5-10).
52 ZHATPR=ZEPR+SQRT((XHATPR-XEPR)**2+YEPR**2+(ZHATPR-ZEPR)**2)*SPHIM
53 RAD=RHO**2-YDPR**2-(ZHATPR-ZDPR)**2
54 C NEGATIVE RADICAND TRAP AND SIGNAL THEREOF FOLLOW.
55 IF(RAD .GE. O.O)GOTO 421
56 GOTO 422
57 421 XHATPR=XDPR+SQRT(RAD)
58 IFLAG=1
59 C RECOMPUTE THE AZ ANGLE'S SINE & COSINE, SEE (5-11).
60 C 156=0 FOR CONICAL, =1 FOR PLANAR; SEE [1], P.150B, NOTE 2.
61 STH=STM*SQRT(1.0+(I-156)*(ZHATPR/XHATPR)**2)
62 CTH=SQRT(1.0-STH**2)
63 C DEROTATIONS (5-12) AND DE-TRANSLATION; THESE GO OUTSIDE THE LOOP &
63 C ARE HERE FOR PRINTOUT. DON'T COUNT THE STORAGE LINES.
64 XHATP=XHATPR*CTH
65 YHATP=-XHATPR*STH
66 C DE-TRANSLATIONS; SEE (5-13).
67 XHAT=XHATP+XA
68 YHAT=YHATP+YA
69 ZHAT=ZHATPR+ZA
70 GOTO 423
71 422 XHAT=O.O
72 YHAT=O.O
73 ZHAT=0.0
74 IFLAG=2
75 423 ARAOUT(1,(2+I))=XHAT
56 ARAOUT(2,(2+I))=YHAT
77 ARAOUT(3,(2+I))=ZHAT
78 C THIS COMPLETES THE ITERATION. 420 IS END OF ITERATION LOOP.
79 420 CONTINUE
80 RETURN
81 END

Figure A-i. Computer Code (concluded)
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APPENDIX B

ALTERNATE NEWTON-RAPHSON ALGORITHM

An Newton-Raphson approach to forming an MLS PRA was used to form a
basis for comparison with the RGSI which is the subject of this report.
The derivation of the alternate form, NRA, is presented here, to make this
report more self-contained.

The Newton-Raphson approach for a three-dimensional problem first
forms a vector, F, from the system equations; its three components are to
be simultaneously zero at the solution. This procedure then increments the
vector of estimates, X, according to the matrix product

_i+l = J-lFi (B-i)

where J is the (Jacobian) matrix of the partial derivatives of the vector F
with respect to the vector of variable, X, and the right-hand side is
evaluated at iteration i. The process fails if the matrix J is singular,
(when its determinant equals zero), and it may yield false solutions or
fail in other ways, such as extreme sensitivity to round-off errors, if the
estimate is at any point in the iteration near a singularity. The NR
approach also may fail to converge, or converge to a wrong solution if the
desired solution is separated by a maximum or a minimum, or a point of
inflection, from the (xT, YT, zT) triple of the solution at any point in
the iteration. Initial conditions are required for x, y, and z; their
selection determines which of the multiple solutions will be found. This
concept is now applied to the MLS problem.

In this NRA approach, the vector of variables, X, is the set of
variables x, y and z, and the vector F is defined by f, g and h where

f = (1/2)[(X-XD)2 + (y-y) 2 + (z-z) 2 - P21 (B-2)
g = (y-yA)cOSG + [(x-XA) + (z-zA) Il/2sine (B-3)
h = (z-ZE)COS - [(x-XE)2 + (y-yE)2 ]1/2sin (B-4)

The Jacobian matrix of partial derivatives is

r (X-xD) (Y-YD) (z-zD)

J (X-XA)sine/RA cose (z-zA)sinG/RA (B-5)
-(X-XE)Sin /RE  -(y-yE)sin /RE  COOs I

where RA = [((X-XA)2 + (z-zA)2 ]1/ 2 , and RE = [(x-xE) 2 +(y-yE) 2 ]I/2 .

This algorithm is believed to have the minimum possible number of
false solutions. It has one condition in which the matrix J is singular,
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which precludes solution. This is now considered.

Assume the ground units are arranged so that xA = xD = XE. Then the
factor (x-xE) appears everywhere in the first column of (B-5), and the
matrix is singular when the aircraft is at a location such that x = xE.
This surface tends to be nearly-vertical, with its concave face towards the
stop-end of the runway. The surface is thus out of coverage.
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APPENDIX C

THE SINE FORM OF THE RGSI

This form yields a slight, but worthwhile, improvement of the speed of

convergence of the RGSI. Instead of (5-1), use (5-4), rewritten as

-'+ E +[ xFX*)2+(y -YE* )2+ (z*i-ZE*)2]I /12 sin (C-1)
z i+1 = ZE + [(x sin' (-

With this change, the matrix S is unchanged, while the third column of

matrix T becomes ( 0 0 t3 3)
T where

t33= (z*T-zE*)sinV/RE] (C-2)

and RE is redefined as

RE = [(x*T-XE*)2+(yE*) 2+(z*T-zE*) 2 Il/2  (C-3)

The third column of the determinant [IX-S-ITI becomes

I [-(s 12s23-s13 )t33] [s2 3t3 3] [I-t 3 3] )T (C-4)

and the characteristic equation, replacing (5-24), is

= X( X2 + [ s2 3t3 2 + sl 2t21 - ( SlZS23 - s13 ) t31 - t3 3 I X

+ [ s1 3t2 lt3 2 - s12 t2!t3 3 I ) = 0 (C-5)

One eigenvalue is zero, while the other two are found from the

quadratic factor in (C-5).

The simplifying assumption that the three ground units are collocated

at the origin reduces (C-5) to

A = X2 ( X + s 2 3t3 2 - t3 3 ]= 0 (C-6)

since t21 = t31 = 0, as shown in section 5. Then the non-zero eigenvalue
is

i = t3 3-s23 t3 2 = [(Z*T-ZE*)sin /RE]-[(Z*T-zD*)/RD][(X*T-XE*)sin /RE ]

which reduces to

X = [sin 2 ] - [tanf][sin~cosf] = sin 2p - sin 2  
- 0. (C-7)

It thus develops that all three eigenvalues are zero in the collocated
case. This happy result is confirmed by the data presented on the first
two pages of the exercise in appendix D.
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APPENDIX D

EXERCISE OF THE RGSI

The conical-azimuth form of this algorithm, defined in appendix C, was
tested and exercised in a simulation. Five different arrangements of the
ground units were selected. The first assumes that all units are
collocated at the usual site for the elevation antenna, the second assumes
a conventional split-site with the DME collocated with the azimuth antenna
at the usual location of the latter, and the third assumes a split-site but
with the DME collocated with the elevation antenna as suggested in [8].
The fourth and fifth arrangements assume that all three units are
separated, in order to test the ability of the algorithm to handle general
sites correctly.

The aircraft was assumed to be at 75 different locations which span
the possibilites of range, azimuth and elevation conditions within the MLS
coverage. The algorithm was tested at each aircraft location for all five
of the ground unit arrangements, so that there is a total of 375 tests.

A small sample of these tests is presented in this appendix,
consisting of ten aircraft locations at each of the five ground unit
arrangements. The structure of the tables is the same as in tables 1
through 4. The heading for each page gives the positions of the ground
units, and the five sets below present the components of aircraft location
estimate for five different aircraft locations. The first column in each
set is the true location of the aircraft, the second column is the initial
condition estimate, and the following six columns show the behavior of the
algorithm at six successive iterations. The error may be determined in any
case by comparing the estimated location after an iteration with the true
location in column 1.

Several comments on the characteristics of the algorithm are offered.
In the entire database of 375 tests there is no case in which the negative-
radicand condition was encountered, although this was common with the GSI;
see the code in appendix A, above Statement 421. There is no case in which
the algorithm diverged, nor any in which it required more than five
iterations to meet the accuracy criterion of IFImax < (XT/lO,000).

The initial conditions for the database are

x0 = xD + pcose (D-1)

YO = YA - psine (D-2)
z0 = zE + psin (D-3)

Performance of the RGSI without XD, YA and zE may be seen in [7].
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Table D-1. Rotational Algorithm Exercise

GROUND STATION SITE GEOMETRY # 1

AZIMUTH ANTENNA SITE DME TRANSMITTER SITE ELEVATION ANTENNA SITE

X Y Z X Y Z X Y Z

-1000. 500. 5. -1000. 500. 5. -1000. 500. 5.

AIRCRAFT POSITION #1. OBSERVED DATA: RHO=11628.4 THETA=-54.78 PHI=14.93

TRUE POS. INIT. EST.

ITERATION NUMBER I 1 2 3 4 5 6

X 5000.00 5705.97 4950.21 5000.00 5000.00 5000.00 5000.00 5000.00

Y 10000.00 10000.00 10000.00 10000.00 10000.00 10000.00 10000.00 10000.00

Z 3000.00 3000.00 3097.74 3000.00 3000.00 3000.00 3000.00 3000.00

AIRCRAFT POSITION #6. OBSERVED DATA: RHO=6102.5 THETA= -4.70 PHI=9.38

TRUE POS. INIT. EST.

ITERATION NUMBER i 1 2 3 4 5 6

X 5000.00 5081.94 4997.81 5000.00 5000.00 5000.00 5000.00 5000.00

Y 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00

Z 1000.00 1000.00 1013.14 1000.00 1000.00 1000.00 1000.00 1000.00

AIRCRAFT POSITION #11. OBSERVED DATA: RHO=22742.3 THETA=-59.03 PHI=10.12

TRUE POS. INIT. EST.

ITERATION NUMBER I 1 2 3 4 5 6

X 10000.00 10702.99 9977.59 10000.00 10000.00 10000.00 10000.00 10000.00

Y 20000.00 20000.00 20000.00 20000.00 20000.00 20000.00 20000.00 20000.00

z 4000.00 4000.00 4061.17 4000.00 4000.00 4000.00 4000.00 4000.00

AIRCRAFT POSITION #16. OBSERVED DATA: RHO=11926.4 THETA=-22.17 PHI=,..79

TRUE POS. INIT. EST.

ITERATION NUMBER i 1 2 3 4 5 6

X 10000.00 10044.91 9999.69 10000.00 10000.00 10000.00 10000.00 10000.00

Y 5000.00 5000.00 5000.00 5000.00 5000.00 5000.00 5000.00 5000.00

Z 1000.00 1000.00 1003.46 1000.00 1000.00 1000.00 1000.00 1000.00

AIRCRAFT POSITION #21. OBSERVED DATA: RHO=47552.1 THETA=-56.17 PHI=6.03

TRUE POS. INIT. EST.

ITERATION NUMBER I 1 2 3 4 5 6

X 25000.00 25475.46 24994.71 25000.00 25000.00 25000.00 25000.00 25000.00
Y 40000.00 40000.00 40000.00 40000.00 40000.00 40000.00 40000.00 40000.00

Z 5000.00 5000.00 5027.48 5000.00 5000.00 5000.00 5000.00 5000.00
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Table D-1. Rotational Algorithm Exercise (continued)

GROUND STATION SITE GEOMETRY # 1
AZIMUTH ANTENNA SITE DME TRANSMITTER SITE ELEVATION ANTENNA SITE
X Y Z X Y Z X Y Z

-1000. 500. 5. -1000. 500. 5. -1000. 500. 5.

AIRCRAFT POSITION #26. OBSERVED DATA: RHO=27793.4 THETA=-19.99 PHI=5.15
TRUE POS. INIT. EST.

ITERATION NUMBER I 1 2 3 4 5 6
X 25000.00 25119.44 24999.04 25000.00 25000.00 25000.00 25000.00 25000.00
Y 10000.00 10000.00 10000.00 10000.00 10000.00 10000.00 10000.00 10000.00
Z 2500.00 2500.00 2510.03 2500.00 2500.00 2500.00 2500.00 2500.00

AIRCRAFT POSITION #31. OBSERVED DATA: RHO=90835.8 THETA=-55.10 PHI=6.32
TRUE POS. INIT. EST.

ITERATION NUMBER I 1 2 3 4 5 6
X 50000.00 50970.18 49988.14 50000.00 50000.00 50000.00 50000.00 50000.00
Y 75000.00 75000.01 75000.00 75000.00 75000.00 75000.00 75000.00 75000.00
Z 10000.00 10000.00 10060.33 10000.00 10000.00 10000.00 10000.00 10000.00

AIRCRAFT POSITION #36. OBSERVED DATA: RHO=90835.8 THETA=-55.10 PHI=6.32
TRUE POS. INIT. EST.

ITERATION NUMBER I 1 2 3 4 5 6
X 50000.00 50970.18 49988.14 50000.00 50000.00 50000.00 50000.0C 50000.00
Y 75000.00 75000.01 75000.00 75000.00 75000.00 75000.00 75000.00 75000.00
Z 10000.00 10000.00 10060.33 10000.00 10000.00 10000.00 10000.00 10000.00

AIRCRAFT POSITION #41. OBSERVED DATA: RHO=129193.8 THETA=-43.85 PHI=8.90
TRUE POS. INIT. EST.

ITERATION NUMBER I 1 2 3 4 5 6
X 90000.00 92170.81 89947.37 90000.00 90000.00 90000.00 90000.00 90000.00
Y 90000.00 89999.99 89999.99 90000.00 90000.00 90000.00 90000.00 90000.00
Z 20000.00 20000.00 20238.05 20000.00 20000.00 20000.00 20000.00 20000.00

AIRCRAFT POSITION #46. OBSERVED DATA: RHO=103611.0 THETA=-28.54 PHI=1.10
TRUE POS. INIT. EST.

ITERATION NUMBER I 1 2 3 4 5 6
X 90000.00 90021.86 89999.99 90000.00 90000.00 90000.00 90000.00 90000.00
Y 5000C.00 50000.00 50000.00 50000.00 50000.00 50000.00 50000.00 50000.00
z 2000.00 2000.00 2000.37 2000.00 2000.00 2000.00 2000.00 2000.00
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Table D-1. Rotational Algorithm Exercise (continued)

GROUND STATION SITE GEOMETRY # 2

AZIMUTH ANTENNA SITE DME TRANSMITTER SITE ELEVATION ANTENNA SITE

X Y Z X Y Z X Y Z

-6000. 0. 5. -6000. 0. 5. -1000. 500. 5.

AIRCRAFT POSITION #1. OBSERVED DATA: RHO=15164.8 THETA=-41.26 PHI=14.93

TRUE POS. INIT. EST.

ITERATION NUMBER I 2 3 4 5 6

X 5000.00 5400.44 4966.02 4998.98 4999.97 5000.00 5000.00 5000.00

Y 10000.00 10000.00 10000.00 10000.00 10000.00 10000.00 10000.00 10000.00

Z 3000.00 3910.82 3122.11 3003.76 3000.11 3000.00 3000.00 3000.00

AIRCRAFT POSITION #6. OBSERVED DATA: RHO=11090.1 THETA=-5.17 PHI=9.38

TRUE POS. INIT. EST.

ITERATION NUMBER I 1 2 3 4 5 6

X 5000.00 5044.91 4996.59 4999.96 5000.00 5000.00 5000.00 5000.00

Y 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00

Z 1000.00 1813.23 1036.99 1000.46 1000.01 1000.00 1000.00 1000.00

AIRCRAFT POSITION #11. OBSERVED DATA: RHO=25922.2 THETA=-50.49 PHI=10.12

TRUE POS. INIT. EST.

ITERATION NUMBER I 1 2 3 4 5 6

X 10000.00 10491.21 9984.73 9999.85 10000.00 10000.00 10000.00 10000.00

Y 20000.00 20000.00 20000.00 20000.00 20000.00 20000.00 20000.00 20000.00

Z 4000.00 4558.60 4060.65 4000.59 4000.01 4000.00 4000.00 4000.00

AIRCRAFT POSITION #16. OBSERVED DATA: RHO=16792.6 THETA=-17.32 PHI=4.79

TRUE POS. INIT. EST.

ITERATION NUMBER i 1 2 3 4 5 6

X 10000.00 10030.91 9999.64 10000.00 10000.00 10000.00 10000.00 10000.00

Y 5000.00 5000.00 5000.00 5000.00 5000.00 5000.00 5000.00 5000.00

Z 1000.00 1405.97 1005.77 1000.01 1000.00 1000.00 1000.00 1000.00

AIRCRAFT POSITION #21. OBSERVED DATA: RHO=50852.2 THETA=-51.87 PHI= 6.03

TRUE POS. INIT. EST.

ITERATION NUMBER I 1 2 3 4 5 6

X 25000.00 25399.84 24995.63 24999.99 25000.00 25000.00 25000.00 25000.00

Y 40000.00 40000.00 40000.00 40000.00 40000.00 40000.00 40000.00 40000.00

Z 5000.00 5346.66 5027.03 5000.05 5000.00 5000.00 5000.00 5000.00
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Table D-1. Rotational Algorithm Exercise (continued)

GROUNO STATION SITE GEOMETRY # 2

AZIMUTH ANTENNA SITE DME TRANSMITTER SITE ELEVATION ANTENNA SITE

X Y Z X Y Z X Y Z
-6000. 0. 5. -6000. 0. 5. -1000. 500. 5.

AIRCRAFT POSITION #26. OBSERVED DATA: RHO=32668.4 THETA=-17.82 PHI=5.15

TRUE POS. INIT. EST.

ITERATION NUMBER I 1 2 3 4 5 6

X 25000.00 25100.24 24999.01 25000.00 25000.00 25000.00 25000.00 25000.00

Y 10000.00 10000.00 10000.00 10000.00 10000.00 10000.00 10000.00 10000.00

Z 2500.00 2937.62 2512.24 2500.02 2500.00 2500.00 2500.00 2500.00

AIRCRAFT POSITION #31. OBSERVED DATA: RHO=94132.4 THETA=-52.82 PHI=6.32

TRUE POS. INIT. EST.

ITERATION NUMBER I 1 2 3 4 5 6

X 50000.00 50884.97 49989.36 49999.99 50000.00 50000.00 50000.00 50000.00

Y 75000.00 75000.00 75000.00 74999.99 74999.99 74999.99 74999.99 74999.99

Z 10000.00 10362.73 10059.44 10000.06 10000.00 10000.00 10000.00 10000.00

AIRCRAFT POSITION #36. OBSERVED DATA: RHO=94132.4 THETA=-52.82 PHI=6.32

TRUE POS. INIT. EST.

ITERATION NUMBER I 1 2 3 4 5 6

X 50000.00 50884.97 49989.36 49999.99 50000.00 50000.00 50000.00 50000.00

Y 75000.00 75000.00 75000.00 74999.99 74999.99 74999.99 74999.99 74999.99

Z 10000.00 10362.73 10059.44 10000.06 10000.00 10000.00 10000.00 10000.00

AIRCRAFT POSITION #41. OBSERVED DATA: RHO=133100.7 THETA=-42.55 PHI=8.90

TRUE POS. INIT. EST.

ITERATION NUMBER I 1 2 3 4 5 6

X 90000.00 92060.20 89949.63 89999.95 90000.02 90000.112 90000.02 90000.02

Y 90000.00 90000.00 90000.00 90000.00 90000.00 90000 00 90000.00 90000.00

Z 20000.00 20604.66 20240.39 20000.30 20000.00 20000.00 20000.00 20000.00

AIRCRAFT POSITION #46. OBSERVED DATA: RHO=108258.9 THETA=-27.51 PHI=1.10

TRUE POS. INIT. EST.

ITERATION NUMBER I 1 2 3 4 5 6

X 90000.00 90020.73 89999.99 90000.00 90000.00 90000.00 90000.00 90000.00

Y 50000.00 50000.00 50000.00 50000.00 50000.00 50000.00 50000.00 50000.00

Z 2000.00 2089.49 2000.38 2000.00 2000.00 2000.00 2000.00 2000.00

Table D-1. Rotational Algorithm Exercise (continued)
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GROUND STATION SITE GEOMETRY # 3
AZIMUTH ANTENNA SITE DME TRANSMITTER SITE ELEVATION ANTENNA SITE
x Y Z X Y Z x Y Z

-6000. -1000. 10. -1000. 500. 5. -1000. 500. 5.

AIRCRAFT POSITION #1. OBSERVED DATA: RHO=11628.4 THETA=-43.98 PH1=14.93

TRUE POS. INIT. EST.

ITERATION NUMBER I 1 2 3 4 5 6

X 5000.00 7367.72 5075.96 4998.73 4999.17 5000.00 5000.01 5000.00
Y 10000.00 7074.73 10047.20 10002.34 9999.54 9999.97 10000.00 10000.00
Z 3000.00 3000.00 2904.97 3013.88 3001.25 2999.87 2999.98 3000.00

AIRCRAFT POSITION #6. OBSERVED DATA: RHO=6102.5 THETA=-10.26 PHI=9.38

TRUE POS. INIT. EST.

ITERATION NUMBER I 1 2 3 4 5 6
X 5000.00 5004.80 5003.37 4999.98 5000.00 5000.00 5000.00 5000.00

Y 1000.00 87.39 1000.20 999.99 1000.00 1000.00 1000.00 1000.00
Z 1000.00 1000.00 974.86 999.88 999.99 1000.00 1000.00 1000.00

AIRCRAFT POSITION #11. OBSERVED DATA: RHO=22742.3 THETA=-51.86 PHI=10.12

TRUE POS. INIT. EST.

ITERATION NUMBER I 1 2 3 4 5 6

X 10000.00 13045.39 10061.37 9999.67 9999.71 10000.00 10000.00 10000.00
Y 20000.00 16886.79 20043.47 20002.22 19999.81 19999.99 20000.00 20000.00
Z 4000.00 4000.00 3893.25 4008.52 4000.57 3999.97 4000.00 4000.00

AIRCRAFT POSITION #16. OBSERVED DATA: RHO=11926.4 THETA=-20.52 PHI=4.79
TRUE POS. INIT. EST.

ITERATION NUMBER I 1 2 3 4 5 6
X 10000.00 10169.70 10003.65 10000.02 10000.00 10000.00 10000.00 10000.00

Y 5000.00 3180.64 5000.46 5000.01 5000.00 5000.00 5000.00 5000.00
Z 1000.00 1000.00 960.19 1000.02 1000.00 1000.00 1000.00 1000.00

AIRCRAFT POSITION #21. OBSERVED DATA: RHO=47552.1 THETA=-52.55 PHI=6.03

TRUE POS. INIT. EST.

ITERATION NUMBER I 1 2 3 4 5 6
X 25000.00 27912.30 25026.88 25000.10 24999.98 25000.00 25000.00 25000.00
Y 40000.00 36752.87 40016.89 40000.57 39999.99 40000.00 40000.00 40000.00

Z 5000.00 5000.00 4913.61 5002.07 5000.08 5000.00 5000.00 5000.00
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Table D-1. Rotational Algorithm Exercise (continued)

GROUND STATION SITE GEOMETRY # 3

AZIMUTH ANTENNA SITE DME TRANSMITTER SITE ELEVATION ANTENNA SITE

X Y Z X Y Z X Y Z

-6000. -1000. 10. -1000. 500. 5. -1000. 500. 5.

AIRCRAFT POSITION #26. OBSERVED DATA: RHO=27793.4 THETA=-19.48 PHI=5.15

TRUE POS. INIT. EST.

ITERATION NUMBER I 1 2 3 4 5 6

X 25000.00 25202.70 25003.52 25000.01 25000.00 25000.00 25000.00 25000.00

Y 10000.00 8267.88 10000.27 10000.00 10000.00 10000.00 10000.00 10000.00

Z 2500.00 2500.00 2465.42 2500.03 2500.00 2500.00 2500.00 2500.00

AIRCRAFT POSITION #31. OBSERVED DATA: RHO=90835.8 THETA=-53.19 PHI=6.32

TRUE POS. INIT. EST.

ITERATION NUMBER I 1 2 3 4 5 6

X 50000.00 53430.50 50026.59 49999.73 49999.99 50000.00 50000.00 50000.00

Y 75000.00 71721.88 75019.75 75000.26 74999.99 75000.00 75000.00 75000.00

Z 10000.00 10000.00 9934.87 10002.64 10000.04 10000.00 10000.00 10000.00

AIRCRAFT POSITION #36. OBSERVED DATA: RHO=90835.8 THETA=-53.19 PHI=6.32

TRUE POS. INIT. EST.

ITERATION NUMBER I 1 2 3 4 5 6

X 50000.00 53430.50 50026.59 49999.73 49999.99 50000.00 50000.00 50000.00

Y 75000.00 71721.88 75019.75 75000.26 74999.99 75000.00 75000.00 75000.00

Z 10000.00 10000.00 9934.37 10002.64 10000.04 10000.00 10000.00 10000.00

AIRCRAFT POSITION #41. OBSERVED DATA: RHO=129193.8 THETA=-42.86 PHI=8.90

TRUE POS. INIT. EST.

ITERATION NUMBER I 1 2 3 4 5 6

X 90000.00 93698.86 90000.78 89998.99 90000.00 90000.00 90000.00 90000.00

Y 90000.00 86881.60 90016.86 89999.84 89999.99 89999.99 89999.99 89999.99

Z 20000.00 20000.00 20085.17 20003.94 19999.97 20000.00 20000.00 ?JO000.00

AIRCRAFT POSITION #46. OBSERVED DATA: RHO=103611.0 THETA=-27.97 PHI=1.10

TRUE POS. INIT. EST.

ITERATION NUMBER I 1 2 3 4 5 6

X 90000.00 90504.79 90000.36 90000.00 90000.00 90000.00 90000.00 90000.00

Y 50000.00 47601.48 50000.05 50000.00 50000.00 50000.00 50000.00 50000.00

z 2000.00 2000.00 1986.92 2000.00 2000.00 2000.00 2000.00 2000.00

Table D-1. Rotational Algorithm Exercise (continued)
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GROUND STATION SITE GEOMETRY # 3

AZIMUTH ANTENNA SITE DME TRANSMITTER SITE ELEVATION ANTENNA SITE

x Y Z X Y Z X Y Z

-1000. -500. 5. -5000. -1000. 25. -1000. 500. 5.

AIRCRAFT POSITION 41. OBSERVED DATA: RHO=15160.8 THETA=-57.44 PHI=14.93

TRUE POS. INIT. EST.

ITERATION NUMBER I 1 2 3 4 5 6

x 5000.00 3160.38 4772.59 5033.49 4994.05 5000.87 4999.85 5000.02

Y 10000.00 12277.28 9906.24 10027.09 9997.46 10000.68 9999.93 1000.00

Z 3000.00 3509.80 3298.58 2971.38 3008.27 2999.22 3000.21 2999.98

AIRCRAFT POSITION #6. OBSERVED DATA: RHO=10244.5 THETA=-13.85 PHI=9.38

TRUE POS. INIT. EST.

ITERATION NUMBER I 1 2 3 4 5 6

X 5000.00 4946.50 4993.67 5000.06 5000.00 5000.00 5000.00 5000.00

Y 1000.00 1953.12 1000.60 1000.03 1000.00 1000.00 1000.00 1000.00

Z 1000.00 1675.36 1051.63 1000.40 1000.02 1000.00 1000.00 1000.00

AIRCRAFT POSITION #11. OBSERVED DATA: RHO=26111.3 THETA=-60.28 PHI=10.12

TRUE POS. INIT. EST.

ITERATION NUMBER I 1 2 3 4 5 6

X 10000.00 7945.42 9897.56 10008.60 9999.23 10000.07 9999.99 10000.00

Y 20000.00 22176.35 19936.16 20006.46 19999.52 20000.05 20000.00 20000.00

Z 4000.00 4591.82 4170.50 3987.09 4001.31 3999.90 4000.01 4000.00

AIRCRAFT POSITION #16. OBSERVED DATA: RHO=16184.9 THETA=-26.47 PHI=4.79

TRUE POS. INIT. EST.

ITERATION NUMBER I 1 2 3 4 5 6

X 10000.00 9487.97 9996.43 10000.09 10000.00 10000.00 10000.00 10000.00

Y 5000.00 6714.53 4999.52 5000.04 5000.00 5000.00 5000.00 5000.00

Z 1000.00 1355.27 1028.33 999.91 1000.01 1000.00 1000.00 1000.00

AIRCRAFT POSITION #21. OBSERVED DATA: RHO=51046.6 THETA=-56.83 PHI=6.03

TRUE POS. INIT. EST.

ITERATION NUMBER I 1 2 3 4 5 6

X 25000.00 22931.27 24971.16 25000.53 24999.97 25000.00 25000.00 25000.00

Y 40000.00 42226.98 39980.24 40000.68 39999.98 40000.00 40000.00 40000.00

Z 5000.00 5367.07 5080.91 4997.52 5000.08 5000.00 5000.00 5000.00
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Table D-1. Rotational Algorithm Exercise (continued)

GROUND STATION SITE GEOMETRY # 4

AZIMUTH ANTENNA SITE DME TRANSMITTER SITE ELEVATION ANTENNA SITE

X Y Z X Y Z X Y Z

-1000. -500. 5. -5000. -1000. 25. -1000. 500. 5.

AIRCRAFT POSITION #26. OBSERVED DATA: RHO=32048.8 THETA=-21.90 PHI=5.15

TRUE POS. INIT. EST.

ITERATION NUMBER I 1 2 3 4 5 6

X 25000.00 24736.02 24996.09 25000.04 25000.00 25000.00 25000.00 25000.00

Y 10000.00 11453.86 9999.59 10000.01 10000.00 10000.00 10000.00 10000.00

Z 2500.00 2882.00 2529.98 2499.90 2500.00 2500.00 2500.00 2500.00

AIRCRAFT POSITION #31. OBSERVED DATA: RHO=94342.5 THETA=-55.46 PHI=6.32

TRUE POS. INIT. EST.

ITERATION NUMBER i 1 2 3 4 5 6

X 50000.00 48492.40 49963.61 50000.88 49999.97 49999.99 49999.99 49999.99

Y 75000.00 77211.41 74979.21 75000.48 74999.99 75000.00 75000.00 75000.00

Z 10000.00 10385.85 10110.61 9997.22 10000.06 10000.00 10000.00 10000.00

AIRCRAFT POSITION #36. OBSERVED DATA: RHO=94342.5 THETA=-55.46 PHI=6.32

TRUE POS. INIT. EST.

ITERATION NUMBER I 1 2 3 4 5 6

X 50000.00 48492.40 49963.61 50000.88 49999.97 49999.99 49999.99 49999.99

Y 75000.00 77211.41 74979.21 75000.48 74999.99 75000.00 75000.00 75000.00

Z 10000.00 10385.85 10110.61 9997.22 10000.06 10000.00 10000.00 10000.00

AIRCRAFT POSITION #41. OBSERVED DATA: RHO=133060.1 THETA=-44.17 PHI=8.90

TRUE POS. INIT. EST.

ITERATION NUMBER I 1 2 3 4 5 6

X 90000.00 90445.80 89914.30 90001.53 89999.96 90000.00 90000.00 90000.00

Y 90000.00 92209.77 89981.45 90000.59 89999.99 90000.00 90000.00 90000.00

Z 20000.00 20598.38 20298.63 19995.88 20000.13 20000.00 20000.00 20000.00

AIRCRAFT POSITION #46. OBSERVED DATA: RHO=107842.0 THETA=-29.02 PHI=1.10

TRUE POS. INIT. EST.

ITERATION NUMBER I 1 2 3 4 5 6

X 90000.00 89300.65 89999.77 90000.00 90000.00 90000.00 90000.00 90000.00

Y 50000.00 51819.11 49999.93 50000.00 50000.00 50000.00 50000.00 50000.00

Z 2000.00 2081.47 2005.25 2000.00 2000.00 2000.00 2000.00 2000.00
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Table D-1. Rotational Algorithm Exercise (continued)

GROUND STATION SITE GEOMETRY # 5

AZIMUTH ANTENNA SITE DME TRANSMITTER SITE ELEVATION ANTENNA SITE

x Y z X Y Z x Y z

-12000. 1000. 0. -5000. -1500. 5. -1000. -1000. 10.

AIRCRAFT POSITION #1. OBSERVED DATA: RHO=15531.3 THETA=-27.54 PHI=13.42

TRUE POS. INIT. EST.

ITERATION NUMBER I 1 2 3 4 5 6

X 5000.00 8771.94 4918.00 4979.48 4999.90 5000.12 5000.00 5000.00

Y 10000.00 8180.09 10007.56 9991.47 9999.70 10000.04 10000.00 10000.00

Z 3000.00 3614.97 3504.63 3022.10 2997.29 2999.78 3000.01 3000.00

AIRCRAFT POSITION #6. OBSERVED DATA: RHO=10355.7 THETA=.00 PHI=8.90

TRUE POS. INIT. EST.

ITERATION NUMBER I 1 2 3 4 5 6

X 5000.00 5355.68 4992.81 4999.93 5000.00 5000.00 5000.00 5000.00

Y 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00

Z 1000.00 1611.50 1069.77 1000.69 1000.01 1000.00 1000.00 1000.00

AIRCRAFT POSITION #11. OBSERVED DATA: RHO=26518.1 THETA=-40.35 PHI=9.55

TRUE POS. INIT. EST.

ITERATION NUMBER I 1 2 3 4 5 6

X 10000.00 15208.12 9957.43 9987.06 10000.01 10000.06 10000.00 10000.00

Y 20000.00 18170.96 20032.37 19991.28 19999.72 20000.04 20000.00 20000.00

Z 4000.00 4411.31 4424.53 4013.76 3998.13 3999.91 4000.01 4000.00

AIRCRAFT POSITION #16. OBSERVED DATA: RHO=16378.0 THETA=-10.29 PHI=4.52

TRUE POS. INIT. EST.

ITERATION NUMBER I 1 2 3 4 5 6

X 10000.00 11114.39 9996.40 9999.85 10000.00 10000.00 10000.00 10000.00

Y 5000.00 3926.87 4999.94 4999.98 5000.00 5000.00 5000.00 5000.00

Z 1000.00 1300.02 1069.60 1000.20 999.99 1000.00 1000.00 1000.00

AIRCRAFT POSITION #21. OBSERVED DATA: RHO=51450.9 THETA=-46.25 PHI=5.87

TRUE POS. INIT. EST.

ITERATION NUMBER I 1 2 3 4 5 6

X 25000.00 30579.96 24986.84 24997.14 25000.01 25000.00 25000.00 25000.00

Y 40000.00 38165.39 40022.38 39997.58 39999.96 40000.00 40000.00 40000.00

Z 5000.00 5270.56 5251.12 5003.90 4999.68 4999.99 5000.00 5000.00
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Table D-1. Rotational Algorithm Exercise (concluded)

GROUND STATION SITE GEOMETRY # 5

AZIMUTH ANTENNA SITE DME TRANSMITTER SITE ELEVATION ANTENNA SITE

x Y z x Y z x Y z

-12000. 1600. 0. -5000. -1500. 5. -1000. -1000. 10.

AIRCRAFT POSITION #26. OBSERVED DATA: RHO=32225.4 THETA=-13.64 PHI=5.04

TRUE POS. INIT. EST.

ITERATION NUMBER I 1 2 3 4 5 6

X 25000.00 26316.33 24995.62 24999.80 25000.00 25000.00 25000.00 25000.00

Y 10000.00 8600.16 10000.34 9999.96 10000.00 10000.00 10000.00 10000.00
Z 2500.00 2841.30 2584.47 2500.32 2499.99 2500.00 2500.00 2500.00

AIRCRAFT POSITION #31. OBSERVED DATA: RHO=94747.8 THETA=-49.68 PHI=6.23

TRUE POS. INIT. EST.

ITERATION NUMBER I 1 2 3 4 5 6

X 50000.00 56307.31 49981.52 49997.39 50000.01 50000.00 49999.99 49999.99

Y 75000.00 73239.63 75033.71 74997.97 74999.95 75000.00 75000.00 75000.00

Z 10000.00 10290.61 10290.06 10005.37 9999.72 9999.99 10000.00 10000.00

AIRCRAFT POSITION #36. OBSERVED DATA: RHO=94747.8 THETA=-49.68 PHI=6.23

TRUE POS. INIT. EST.

ITERATION NUMBER I 1 2 3 4 5 6

X 50000.00 56307.31 49981.52 49997.39 50000.01 50000.00 49999.99 49999.99

Y 75000.00 73239.63 75033.71 74997.97 74999.95 75000.00 75000.00 75000.00

Z 10000.00 10290.61 10290.06 10005.37 9999.72 9999.99 10000.00 10000.00

AIRCRAFT POSITION #41. OBSERVED DATA: RHO=133405.6 THETA=-40.57 PHI=8.83

TRUE POS. INIT. EST.

ITERATION NUMBER I 1 2 3 4 5 6

X 90000.00 96334.04 89945.45 89995.49 90000.04 89999.99 89999.99 89999.99

Y 90000.00 87766.70 90038.56 89997.91 89999.95 90000.00 90000.00 90000.00

Z 20000.00 20.186.39 20505.90 20010.35 19999.54 19999.99 20000.00 20000.00

AIRCRAFT POSITION #46. OBSERVED DATA: RHO=108079.7 THETA=-25.65 PHI=1.09

TRUE POS. INIT. EST.

ITERATION NUMBER I 1 2 3 4 5 6

X 90000.00 92424.98 89999.90 89999.99 90000.01 90000.01 90000.01 90000.01

Y 50000.00 47793.20 50000.17 50000.00 50000.00 50000.00 50000.00 50000.0G

Z 2000.00 2071.41 2023.43 2000.01 2000.00 2000.00 2000.00 2000.00
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