
REPORT DOCUMENTATION PAGE
gafrog n minanigthe data needed, a'Z ooetn n reviewing the collection of informiagic A D 4h

pub"crerit udn o hScleto of inpfoatioZsetmtd oaeaeIhorovrso -A 224 476 ur
collctio ofifrain nciuding sugetos for reducing this burden. to Washington -feadguarter eg
Davis Highway. Suite 1204,£ Arlngton. VA 2202-4302. and to the Office of Managemnent and Budget. f

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
1990 yyy

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

A VHDL INTERFACE FOR ALTERA DESIGN FILES

6. AUTHOR(S)

JEROME PAUL NUTTER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
AFITStuent t: rigt Stte nivREPORT NUMBER
AFITStuent t: rigt Stte nivAFIT/CI/CIA - 90-046

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING /MONITORING

AFIT! CI AGENCY REPORT NUMBER

Wright-Ptatterson AFB OH 45433

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for Public Release IAW AFR 190-1I
Distribution UnlimitedI
ERNEST A. HAYGOOD, 1st Lt, USAFI
Executive Officpr, Civilian Institution Programs

13. ABSTRACT (Maximum 200 words)

OTIC
ELECTE

SAUGO VNOD

14. SUBJECT TERMS 15. NUMBER OF PAGES

137
16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACI
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED d
NSN 7540-01-280-S500 ,7I~ Standard Form 298 (Rev 2-89)

4. PrescrObwd by ANSI Std ?39-18
9 V, . 2l 29-

A VHDL INTERFACE FOR ALTERA

DESIGN FILES

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science

By

JEROME PAUL NUTTER
B.S., Troy State University, 1984

1990
Wright State University

Gb , x 7

WRIGHT STATE UNIVERSITY

SCHOOL OF GRADUATE STUDIES

July 6, 1990

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY

SUPERVISION BY Jerome P. Nutter ENTITLED A VHDL Interface

for Altera Design Files BE ACCEPTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science.

Thesi s D re ct7

Committee on
Final Exam'

Accession For
NTIS GRA&I

DTIC TAB
Unannounced 5+ Just lficatton

Dis tr buti!on/
Av81lah111ty Codes
.~ -vo I a nd/or

Dean of the School of Graduate
Studies

ABSTRACT

Nutter. Jerome Paul. M.S., Department of Computer Science
and Engineering, Wright State University, 1990. A VHDL
Interface for Altera Design Files.

Altera Erasable Programmable Logic Devices (EPLDs) are chips

that can be custom designed. These EPLDs are individually

described by their Altera Design Files (ADFs). The language

structure of ADFs is not directly supported by the Very High

Speed Integrated Circuit (VHSIC) Hardware Description

Language (VHDL). VHDL is a software language that was

selected as the IEEE standard for a hardware description

language.

This thesis describes a program that is capable of

transforming an ADF into a VHDL entity declaration and

entity structural architecture. The scope of ADFs the

program transforms is limited to ADFs that contained only

Altera primitives and are not of the State Machine Format.

The transformation program was developed on a Personal

Computer (PC) and the programing language used was Turbo C

by Borland.

Further development of this program in an expanded way would

be a useful direction for future research.

iii

TABLE OF CONTENTS

Page

I. INTRODUCTION 1

Overview ... 1

Background 2

Problem 6

Scop e ...7

Assumptions 7

Approach ... 8

Sequence of Presentation 9

II. DETAILED ANALYSIS 10

Projected Use 10

Current Capabilities and Limitations 12

Performance 15

Design Conditions 16

Exact Design Requirements 18

Conditions Under Use 20

Imposed Constraints 20

iv

TABLE OF CONTENTS (CONTINUED)

Page

Established Design Criteria 22

Reasons for Program Development 23

III. DESIGN ... 25

Main Program Structure 25

Parsing Code and Data Structure of Tokens 26

Name Modifying Code 27

Entity Declaration Generating Code 28

Entity Architecture Generating Code 30

Driver Code 34

IV. PROGRAM TESTING 35

Testing Methods 35

Major Modifications 37

V. CONCLUSIONS AND RECOMMENDATIONS 38

Major Solutions 38

Recommendations 38

APPENDICES .. 42

v

TABLE OF CONTENTS (CONTINUED)

Page

A . Test Files 42

Decoder ADF 42

Swim ADF 44

B. Sample Transformed File 47

Transformed Decoder File 47

C. Supplemental VHDL Package Source Code 54

Altpk.vhd 54

D. User Manual 56

Required Files 56

Command Line Entry 56

E. Source Code for Transformation Program 58

adftovhd.c 58

adftovhd.h 59

altequa.h 60

asciidef.h 60

name mod .h 61

vi

TABLE OF CONTENTS (CONTINUED)

Page

alt-inst.h...................................... 62

calloc.h.. 63

new-fncs.h...................................... 63

tokens.h.. 64

altera-t.h...................................... 65

display.h....................................... 66

altransf.h...................................... 67

ent-arch.hc..................................... 67

calloc.c.. 69

new-fncs.c...................................... 73

alt_equa.c...................................... 83

name-rnod.c...................................... 89

alt-inst.c...................................... 94

altera_P.C...................................... 103

ent-arch.c...................................... 111

altransf.c...................................... 129

vii

TABLE OF CONTENTS (CONTINUED)

Page

BIBLIOGRAPHY.. 134

viii

LIST OF FIGURES

Figure Page

1. Altera to VHDL Interface Overview................... 2

2. Transformation Process.............................. 25

ix

I. INTRODUCTION

This thesis describes a computer program that translates

descriptions of a class of programmable logic devices from a

proprietary format (Altera EPLDs) to an industry standard

format (VHDL). The reader is expected to be familiar with

VHDL, the Altera Programmable Logic User System (A+PLUS),

and EPLDs. References in the bibliography (3, 5, 6, 7, 8)

can be used for refreshment of a specific topic.

Overview

Figure 1 shows the overall structure of the Altera and

VHDL interface. The figure is provided as a guide for the

transformation process.

Through the A+PLUS system, an ADF is created. This ADF

is what is used to program an EPLD. The ADF represents a

digital device description.

The transformation program is the subject of this

thesis. The program transforms an ADF to a VHDL entity

description file. The entity description file contains an

entity declaration and entity architecture. The entity file

name is selected by the user and must have a ".vhd"

extension.

The new file can then be processed by a VHDL analyzer.

The analyzer accesses predefined Altera primitive component

| | |1

2

descriptions during the analysis. If the analysis is

successful, the entity declaration and entity architecture

are stored in a VHDL library. The new entity can now be

used in a larger entity description. The operation of the

new entity can also be simulated using a VHDL simulator.

Altera

Boolean Equation Entry
Netlist Entry ADF EPLD

Schematic Entry I

Transfo cmation I

Process Transformation Program

Entity .vhd

VHDL

VHDL Library
containing VHDL Analyzer

Altera Primitives

VHDL Simulator

Figure 1. Altera to VHDL Interface Overview

Background

The Very High Speed Integrated Circuit (VHSIC) Hardware

Description Language (VHDL) is a full bodied software

language that supports hardware device design and

simulation. VHDL was developed at the request of the

Department of Defense, and is approved and accepted by the

IEEE as the standard for a hardware description language.

VHDL provides the capability to declare, describe, and

simulate hardware devices.

VHDL hardware devices are referred to as entities. An

entity is made up of a declaration and an architecture. The

declaration contains the name of the entity and associated

ports. Ports are the input and output paths of the entity.

The entity architecture is a description of how the device

operates.

There are two types of architectures. The first type of

entity architecture is behavioral. Behavioral architectures

describe an entity in terms of signal declarations and

signal assignment statements. Signals are the paths or

connections between ports. Signal assignment statements are

VHDL processes that contain timing information.

The second type of entity architecture is structural.

Structural architectures describe an entity in terms of

signal declarations and signal assignments but, also include

component declarations and component instantiations.

Component declarations contain the name of an entity to be

used and also the ports associated with that component.

Component instantiations are individual representations of a

component and any signal to port associations that are

necessary. Typically, a structural architecture is composed

4

of component instantiations with signal assignments that

connect the instantiated components.

Developing an entity involves producing VHDL code for an

entity declaration and entity architecture that can be

analyzed by the VHDL analyzer. The VHDL analyzer checks

VHDL code for syntactic and semantic correctness. Valid

VHDL code is then stored in a VHDL library.

Once a declaration and architecture for an entity has

been developed, the entity can be tested through the use of

the VHDL software simulator. Input signals are established

prior to simulation and output signals are recorded by the

simulator. A report can be generated to print the results

of a simulation run. The report contains the values, names,

and event times of desired ports or signals described in the

entity architecture. If the simulation reveals an unwanted

result, the entity architecture can be modified and the

simulation can be rerun.

The design and simulation are technology independent.

If one desires, an entity can be tested using different

architectures. Each architecture would represent a

different behavior (technology).

VHDL is currently installed on the SUN computers at the

Research Park.

5

Altera design files contain the information necessary to

program EPLDs when using the Altera Programmable Logic User

System (A+PLUS). ADFs represent hardware device

descriptions. An ADF has seven major sections. Three of

these sections OPTIONS, PART, and header are not germane to

this thesis. The other five sections are discussed below

and throughout this paper.

The header section is the first part of an ADF and

contains textual information about the device being

described. This information includes but is not limited to

the name of the designer, date, revision number, EPLD used,

and comments.

The second section of concern is the INPUTS section.

This section lists the input pin names and possibly the

actual pin numbers associated with the EPLD.

The third section is the OUTPUTS section. The OUTPUTS

section lists the output pin names and optionally contains

actual EPLD pin numbers.

The fourth section is the NETWORK section. This section

lists the Altera primitives used in a particular design and

the associated inputs and outputs for each primitive. An

Altera primitive is one of many digital devices that are

predefined by Altera and are used as building blocks for

more complex circuit designs.

6

The last section of concern is the EQUATIONS section.

The EQUATIONS section contains boolean descriptions of

device nodes or possibly device outputs. A device node is a

labeled connection in the ADF.

Problem

VHDL design libraries are composed of many basic and

complex hardware components. Each component was created or

described using a VHDL system. Outside of the VHDL

environment, there exist many custom designed hardware

devices which were developed using proprietary software

packages. Unfortunately, the format used for the customized

components is generally not compatible with VHDL. This

makes it difficult (if not impossible) for a designer to

incorporate components designed using proprietary software

packages into VHDL simulations.

The Altera Erasable Programmable Logic Device family is

a semi-custom chip design set. Altera chip designs are used

in Wright State University's Computer Engineering

Department's microprocessor laboratories. Although the

structure of the Altera design files (ADF) is similar to a

VHDL entity architecture, ADFs are not compatible with VHDL.

A+PLUS is currently not capable of producing VHDL

descriptions for Altera device designs. Therefore, there

exists the problem of including existing Altera hardware

devices in a VHDL design and simulation. A solution is to

7

translate the ADFs into VHDL entity declarations and entity

architectures.

Scope

The translation process described in this thesis is

limited to ADFs that contain only Altera primitives and ADFs

that were not created usinc State Machine Entry. State

Machine Entry is a method for creating ADFs that describe

the operation of state machine designs using Boolean

expressions, truth tables, state diagrams, and Algorithmic

State Machine charts.

Each ADF is transformed into a VHDL entity declaration

and associated entity architecture of the structural type.

The translation software runs under MS-DOS on an IBM

Personal Computer (PC) or compatible.

Assumptions

In order to define and restrict the scope of the

translation program, several assumptions were made before

starting it's development:

2. It was assumed that all ADFs to be converted by

the transformation process would be valid ADFs;

2. The translation process developed would not be

responsible for producing Altera primitive VHDL

entity declarations or entity architectures. These

8

would be present in the current working VHDL library

and would be created as a separate project;

3. The translation process would establish the

format for the Altera primitive components. The

component format would include the component name,

port names, port mode and port order;

4. The Altera input file and the translator

produced output would both be in ASCII form.

Approach

Program prototyping would be used to develop the program

under design. First a parser would be developed that would

break down the ADF into individual tokens. The tokens would

be stored in a structure that could be searched by an

index. A set of procedures would be developed that scanned

the tokens to extract the data necessary to then produce an

entity declaration. Another set of procedures would be

developed that would build a structural architecture of the

entity by once again using the tokens. All procedures and

functions would be verified individually after being

written.

The entity declaration and entity architecture produced

would then be transferred to a VHDL system to be tested on

a VHDL analyzer. Modifications would be made as necessary

9

to the design program in order to produce an entity

description that would be valid VHDL code.

Sequence of Presentation

This thesis is organized into five chapters. The five

chapters are Introduction, Detailed Analysis, Design,

Program Testing, and Conclusions and Recommendations.

After this Introduction section, the Detailed Analysis

chapter explores in detail the thesis problem and defines

the research intended. Next, the Design chapter describes

the design process for the development of the transformation

program. The Program Testing chapter discusses the testing

process and the associated test files. Finally, the

Conclusion and Recommendations chapter gives a summary of

the success of this thesis and recommendations for further

study.

II.DETAILED ANALYSIS

This section is concerned with a thorough analysis and

explanation of the research problem. Many factors had an

impact on the definition of the research problem. External,

internal, and self imposed restrictions limited the scope of

the problem.

The external factors discussed in this section are

Projected Use, Design Conditions, Conditions Under Use, and

Reasons For Program Development.

The internal factors affecting the problem are Current

Capabilities and Limitations, and Performance.

Finally, the self imposed restrictions are covered in

the Exact Design Requirements, Imposed Constraints, and

Established Design Criteria areas.

Projected Use

The program that was developed during the research of

this thesis is intended to be useful to a wide range of

people. Users would include students, university staff, and

outside organizations.

Students will be able to use the transformation program

on the ADF files they develop during design studies. The

ADF circuits can be tested prior to implementation in a

large scale design. In addition to learning how to design

10

11

with the A+PLUS system, the student will be exposed to the

VHDL description and simulation environment. Testing can be

performed by the students and if flaws are detected, the

design can be modified and retested. All of these steps

could be performed prior to actual programming of an EPLD.

Modifying a design on an EPLD involves erasing the EPLD and

reprogramming the EPLD. That previously mentioned process

could take as long as a half hour per reprogramming. Since

the design and testing of a circuit can involve many

redesign stages, a great amount of time could be saved by

the student when using the transformation program and

ultimately the VHDL environment.

University staff would be able to use the transformation

program for all of the same reasons as students as well as

for the following additions. Previous ADF designs that had

been developed could be transformed and simulated in VHDL.

Staff could evaluate a previous design more completely using

the VHDL simulator. This would ensure better quality

control for designs to be given to students for their use.

The designs once stored on a VHDL system could then be

incorporated into a much larger design for a more complete

simulation. The tedious task of hardware testing for each

design could be simplified and VHDL software simulations

could be substituted. The time saved for staff would be

especially valuable due to the limited amount of time they

have for course development.

12

The use of the transforming program by outside

organizations would only be limited by the number of

institutions that requested the program and any restrictions

placed on the use of the program by Wright State University.

The transformation program would be useful to any

organization that has ADFs that they would like to

incorporate into a VHDL environment. These institutions

might include individuals, private firms, other

universities, and research groups that use the A+PLUS

system.

Current Capabilities and Limitations

Currently the design and simulation of electronic

circuits described in ADFs is limited to the capabilities of

the A+PLUS system. The use of a design in the VHDL arena is

limited to designs that were completely done using VHDL

code. There is no way known to the author of translating

ADFs to VHDL legal code other than the transformation

program developed during the research of this thesis.

The A+PLUS system is a stand alone design apparatus that

utilizes the capabilities of a PC XT and an A+PLUS option

board to create electronic circuit designs and encode these

designs into EPLDs. The A+PLUS system also has a limited

simulator for checking ADFs. Using the A+PLUS system a

person can create an electronic design using schematic

design entry, boolean entry, state machine entry, and

13

netlist entry. Schematic design entry, netlist entry and

boolean entry are the only three methods that produce ADFs

that can be processed by the transformation program. There

are multiple schematic capture schemes offered with the

A+PLUS system. The final product of all of the schematic

capture methods is a valid ADF. Boolean entry is exactly

what it states, entry using boolean equations. Netlist

entry is the process of manually entering the description of

a design using standard forms. The standard forms are

limited to Altera design primitives described in the A+PLUS

system and boolean logic operators. Altera design

primitives are predefined circuit descriptions which are

stored in a library. The use of design primitives should be

considered a limitation from the point of view of

versatility. This is because the design would be limited to

incorporating only Alte:.a primitives. After an ADF is

developed, the user can program an EPLD using the Altera

option board. Testing of the design would then occur using

manual input on a real-time powered system such as a

prototyping board. The process is involved and long. Any

mistakes would require the erasure and reprogramming of the

EPLD.

Simulation of the operation of an ADF can be

accomplished using the A+PLUS system. Simulation would best

be described as individual circuit input manipulation with

resolved output states being recorded. Each simulation is

14

of one ADF only. No accounting for implementation of other

components in the simulation is possible.

VHDL capabilities are vast. A full and robust software

language allows a user to define and test a circuit design.

Designs are created with a text editor and then checked and

stored using a VHDL analyzer. Testing is accomplished using

the VHDL simulator.

VHDL is a software language that is restricted only to

the environment the designer describes. There are no

primitives that restrict the user in his designing process.

A VHDL simulation allows for completely different

implementations of hardware technologies, variations of

signal delay, concurrent processing of signals, model

generation (simulation scripting), simulation event time

variations, and report generation for each simulation timing

frame. Testing to an expanded degree can be done using the

VHDL simulator. All of the previous VHDL capabilities are

not found on the A+PLUS system.

Currently, if a design which is described using the

A+PLUS system is needed or required in a VHDL simulation,

the design must be completely be redone using VHDL code.

This would require the designer to recode the circuit from

the ground up. Recoding is a possible source of new errors

and is a time-consuming operation.

15

The use of the transformation program eliminates the

need for recoding completed ADFs and expands the current

capabilities to include automatic conversion of ADFs to VHDL

code.

Performance

Even though VHDL and A+PLUS are similar, the focus of

each system is different and the implementation methods are

not compatible.

A+PLUS is a hardware oriented design system that is

implemented on a PC XT. A+PLUS's main purpose for existence

is to produce a hardware description from predefined

primitives. The whole design concept is hardware oriented.

The final product of A+PLUS is a file that is used to

program an EPLD. Because the concept of A+PLUS is

restricted to in-house building blocks, very little emphasis

is placed on simulation. Simulation is geared towards

finding out if a design that utilizes primitives will

produce the desired output for a set of given inputs. The

focus is not on the primitives themselves. The primitives

cannot be modified and therefore represent the basis of all

designs. In other words, the design process using A+PLUS is

a constrained procedure.

VHDL on the other hand is an open, versatile, and

complete hardware description language. The focus of VHDL

is modeling of systems with as few restrictions as possible.

16

This makes tbe designs described in VHDL very useful. A

designer is only limited to the environment or constructs

made within VHDL. VHDL designs themselves become the

primitives and are as malleable as any design construct

created with VHDL. Therefore, the performance of VHDL is

mainly limited to the ability of the designer. VHDL is

currently implemented on mini and mainframe computer

systems.

Simulation with VHDL is a system within a system. The

environment around the entity is under the complete control

of the user. Port levels, timing constraints, and input

values are some of the things a user can manipulate. The

design signals are processed in a concurrent manner. A

report on each signal value during a timing frame is

available. The input scripting provides a way to test a

design through all possible transformations. Entity

architectures can be substituted between simulations. This

is a way of simulating the differences in design behaviors

dictated by differing technologies. Simulations are on

entities which can be composed of any number of components.

An entity is not restricted to the size of any real or

existing hardware device. All of these factors lead to a

very versatile simulation environment.

Design Conditions

17

Numerous factors affected the way the transforming

program was designed. The equipment used, programming

languages, and existing code all had an impact on the

design.

A PC XT was selected as the computer system for the

transformation process because A+PLUS is installed on an IBM

PC XT type computer at Wright State University. The

requirements for the computer were that it had to use DOS

2.0 or higher and have at least 448K of RAM. These

requirements were dictated by the programming language. 1

The programming language selected was Borland Turbo C

version 2.0. Turbo C supports the Draft-Proposed American

National Standards Institute (ANSI) C standard, fully

supports the Kernighan and Ritchie definition, and includes

certain optional extensions for mixed-language and mixed-

model programming.1

The Turbo C package has standard include files. Some of

these include files were utilized in the transformation

program. Other than the include files, all of the

transforming program is original code developed during the

research of this thesis. Ultimately, another support

package had to be coded in VHDL. All of this code was

original and developed during this thesis.

The VHDL environment utilized to test and develop code

was the Intermetrics Standard VHDL 1076 Support Environment.

18

This support system contains the analyzer and simulation

software used to validate the VHDL code generated by the

transformation program. The code produced by the

transformation program should be valid on any standard VHDL

environment. No code specific to the Intermetrics VHDL

toolset is produced by the transformation program.

Exact Design Requirements

Specific goals were established for this research. The

intent was to develop a program that was able to accept an

ADF and produce a valid VHDL description of the device

described by the ADF. The complete process had to take

place on a PC. The exact requirements were to produce a

VHDL entity describing the ADF, produce a structural

architecture describing the behavior of the ADF, and both

entity and architecture had to be valid VHDL code.

The first step in a transformation process would be to

produce an entity declaration for the ADF device. An entity

declaration is a VHDL requirement and represents an external

view of the device being described. The input and output

pins of the ADF device would have to be converted to ports

in an entity declaration. An entity name would have to be

determined and assigned.

The entity created would also have to have a VHDL

architecture. The architecture would describe the behavior

of the device. A structural architecture format was chosen

19

because it would allow the use of components already stored

in the VHDL library and reduce the amount of repetition

involved in the transformation process. In other words, by

assuming the Altera primitives to already be stored as

components on the VHDL environment, repetitive code

describing the primitives behaviors could be eliminated from

the produced ADF device description. External development

of the behaviors of the Altera primitives is also the most

appropriate way of dealing with the primitives. The

behavior of each Altera primitive is dependent on the EPLD

it is implemented on. There are variations in speed

depending on the type and recency of the EPLD. By making

the behaviors of the primitives independent of the

transformation program, the maintainability and versatility

of the transformation process is facilitated. When a new or

faster EPLD becomes available, a user would just have to

create a new component architecture and never have to modify

the transformation program.

The most important requirement for the transformation

process was that it would have to produce valid VHDL code.

This means that the entity declaration and entity

architecture would both have to be capable of being

successfully analyzed on a VHDL system. Basically, this

requirement dictated that all prototype products developed

during this research would have to mirror standard VHDL

code. In fact, the final product would have to meet the

20

syntactic and semantic requirements of standard VHDL. The

coding style used to create the transformation program was

the only variable.

Conditions Under Use

This section describes the environment or setup to be

employed in the use of the transformation program. The

important aspects of the transformation environment would be

the location of the ADF files, location of the

transformation program, and the location of the VHDL system.

The ADF files would have to be accessible to the

transforming program. This would require the ADFs to be on

floppy disk or on the hard disk of the PC.

The transformation program would be located on a PC

because the programming language is for a PC. The

transformation program would access the appropriate ADF from

either a floppy disk or hard drive.

The VHDL system would be on a mini to mainframe computer

system. This would mean that the transformation file would

have to be transferred from the PC to the VHDL computer

system. This could be accomplished through physical media

transportation or modem transfer. The transformed file

could then be analyzed into a VHDL library.

Imposed Constraints

21

The constraints of the research were applied in an

effort to limit the tasks associated with this thesis to a

level that would promote success and the development of an

end produce that would be useful. The areas where

restrictions were imposed were equipment used, needed

supplemental code, and what a valid ADF would be.

The transformation program was developed for use on a PC

because, the Altera software is on a PC in the Wright State

University engineering laboratory and for convenient access

for computer science and engineering students. However,

because the program is written in C, porting it to other

environments should not be difficult.

The supplemental code consists of external component

descriptions and a VHDL logic package that would support the

transformed files. This research was an attempt to develop

a program that would transform ADFs into VHDL entities with

structural architectures. To that degree it was decided

that the development of the entity declarations and entity

architectures for the Altera primitives would be a given

assumption and not part of this thesis. The behavior of the

EPLDs, which is what dictates the behavior of the Altera

primitives, is not germane to this thesis. A valid

translation could be done with the understanding that the

Altera primitive components would eventually be coded,

analyzed, and stored in the VHDL library to be used. The

transformed entity would simply reference or instantiate a

22

primitive component by name. The eventual name and port

structure of the primitive components would have to match

the structure used by the transformation program. The

structure or port format used in the design of the

transformation program will be discussed in the design

chapter ot this paper.

An external VHDL logic support package was also needed.

This package was developed during the research of this

thesis and was a necessity for the successful analysis of

the transformed files by a VHDL analyzer. This subject will

also be explained in detail in following chapters.

The scope of ADFs that the transformation program would

be able to convert was limited for this research. Only ADFs

developed through schematic entry, boolean entry, and

netlist entry would be valid. State machine entry was not

considered in the development of the transformation program.

The ADFs would also have to have the INPUTS, OUTPUTS,

NETWORK, and EQUATIONS sections to be valid. The

transformation program would key off these section headings.

A valid ADF was to only use Altera primitives and not have

macros in it.

Established Design Criteria

The chosen method for program design was prototyping.

This method was selected because of the many unknowns

involved with coding the transformation program.

____ _____ ____

23

Prototyping consisted of trying program code to solve a

small core transformation problem and then building on the

prototype code to develop the larger program. Much

experimentation was done on the development of data

constructs and conversion algorithms. Prototyping

facilitated this experimentation and was consistent with the

idea of researching the transformation process.

A complete solution to the transformation of ADFs to

valid VHDL entities was not the goal of this thesis. This

is obvious from the constraints imposed on the design. The

intent was to develop a program that could transform the

majority of ADF types and stand as a good building block for

future modification. It was also taken for granted that

many new areas of improvement would be discovered during the

development of the transformation program. The inadequacies

and possible improvements of the transformation program will

be covered in the Conclusions and Recommendations chapter.

Reasons for Program Development

VHDL is now the IEEE standard for hardware description

languages. There are advantages to being compatible with

this standard. Compatibility and versatility were the main

reasons this thesis was undertaken.

With VHDL being a standard and with it's incorporation

into the Wright State curriculum and all of VHDL's

advantages to the hardware design environment, the need to

24

make existing hardware descriptions compatible with VHDL

became a necessity. There are existing ADFs which are part

of courses taught at Wright State and continuing research is

being done with them. A more complete design can be

realized with VHDL and therefore the need to convert these

ADFs to VHDL valid entities exists. As expressed before, a

great deal of development time can be -Ted with the use of

the VHDL environment. A software development and simulation

of a hardware device is advantageous over a burn and test

hard-wire method. Since no known way exists to transform

ADFs into VHDL code, the need for a transformation process

is obvious. The goal of this thesis is to fill this need.

III.DESIGN

The design of the transformation program is discussed in

this chapter. The structure and logic behind the

development of the transformation program are explained in

detail. The information covered is Main Program Structure,

Parsing Code and Data Structure of Tokens, Name Modifying

Code, Entity Declaration Generating Code, Entity

Architecture Generating Code, and Driver Code.

Main Program Structure

Altera Design File
(ADF)

------------------------------ ----------------------------- +

Transformation
Program

Parsing Code
&

Name Modifying Code

Data Structure
of Tokens

Entity Declaration Entity Architecture

Generating Code Generating Code

I I
Entity Declaration Entity Architecture

+-- ------------

Fig 2. Transformation Process

The transformation process is shown in figure 2. There

are four major code sections in the transformation process.

25

26

The four sections are Parsing, Name modifying, entity

declaration generation, and entity architecture generation.

The boxes in figure 2 show the three changes the ADF goes

through. The three changes are represented by the Data

Structure of Tokens, VHDL entity declaration, and VHDL

entity architecture. All of the parts of figure 2 are

described below in order of appearance.

Parsing Code and Data Structure of Tokens

The parsing of the ADF into tokens was the first part

of the transforming program to be tackled. A parser was

need to accept the input ADF and put the information

gathered from the file into a structure that could be

manipulated by the rest of the transformation program. The

data structure selected to hold the tokens was an array and

is discussed in detail after the parser.

The main idea behind the parser was that it should take

characters from standard input and assemble them into

tokens. The tokens would be distinguished by the

delimiters. Since no appropriate parsers could be found

that processed ADFs , an original design for ADFs was done.

The development of the parser was also an exercise in design

experience. The ADF is attached to standard input and

processed one character at a time. While the current

character is not a delimiter, the character is added onto

any preceding characters to build a token. When a delimiter

27

is found the token being built is processed to determine

type and then stored in the data structure of tokens. The

type of the token is also stored in the data structure of

tokens. The delimiters and definitions of type needed for

the parser were found in the Altera users guide. 3 When the

parsing process is complete, the data structure of tokens

remains resident as a variable to be accessed.

The data structure of tokens is composed of four parts.

There is an array holding the tokens and another array

holding the types of the tokens. There is an index value

which points to the current token and there is a value

representing the total number of tokens stored. Since the

tokens and types of the tokens are stored in their arrays in

parallel, the index points to the current token and current

type. Token types can be names, functions, and delimiters.

The delimiter type also includes the specific delimiter in

question. The index is an important value because it is a

static variable and therefore maintains the current token

position throughout the transformation process.

Name Modifying Code

Name modifying code was necessary because of the

differences between valid names in A+PLUS and VHDL. There

are certain Altera naming conventions that are not

permissible in VHDL. The modifying code makes legal names

out of all the names in the ADF.

28

Altera allows many more characters as valid in Altera

names than does VHDL. Specifically, the input and output

pins for an Altera EPLD can contain many types of characters

other than the VHDL legal A-Z, a-z, and 0-9 characters. The

previous restrictions do hold for ADF node names. Nodes are

connection points within the device design. Since the

Altera names could cause an error in the analysis of the

transformation VH2L files, the inappropriate names had to be

changed. The method chosen to fix the names was character

substitution.

Prior to a token being inserted into the data structure

of tokens, if the token is a name type then it is checked by

the name modifying code. If any invalid characters are

found in the name a substitute character is inserted in

place of the invalid character. The current substitution

character is a lower case "v'1 and could be changed if one

modified the C source code and recompiled. If a name does

not start with an alpha character, the prefix "alpha mod" is

added to the name. If a name contains a pin reference

designated by the "@" symbol, the pin citation is removed.

Entity Declaration Generating Code

The entity declaration generating code produces the

first of the two products of the transformation program.

The first product is the entity declaration for the ADF

device being transformed and the second product is the

29

architecture for the entity (see Appendix B). The entity

declaration is required if the VHDL transformation is to

analyze successfully.

The approach to designing the entity declaration

generating code was to look at the requirements for a valid

entity declaration and write code that would produce an

entity declaration that fulfilled those requirements. The

parts of a valid entity declaration that the transformation

program generates are the entity declaration identifier,

port interface list, and closing identifier.

The declaration identifier is created from the ADF input

file name. Any prefix path and any extension of the ADF

file name is stripped and the remaining portion of the file

name is used as the entity identifier. This method was

chosen for the sake of simplicity. The key word "entity" is

written to standard output and then the declaration

identifier.

The next item needed is the port interface list. The

port interface list contains a list of the port names, port

modes and port types. The port names and mode are

determined from the tokens. First, the key word "port" is

output and the structure of tokens is scanned for the INPUTS

section. All of the device input pins represent "in" mode

ports for the entity. Therefore, the input pin names can be

output to the declaration as ports of that name and mode

30

"in". The type of the port is written as alteralogic type.

This logic type is assigned because it can be described in

an external package to the liking of the user. If the type

had been declared as "bit", the port values would have been

limited to two values. To eliminate this restriction a

generic type that can be user defined is assigned to each

port. The output or mode "out" ports are found in the

OUTPUTS section of the tokens. An ADF tokens that represent

comments that are encounter are written to standard output

as VHDL comments and processing continues. This is the

manner for handling all comment tokens. This method

preserves the order and hopefully the usefulness of the

comments.

The declaration closure is handled by closing the port

interface list with a semi colon and printing the key word

"end" followed by the declaration identifier with a semi

colon. This is the last step in the entity declaration

generating process.

Entity Architecture Generating Code

The entity architecture generating code produces a

structural VHDL architecture for the entity already

declared. The architecture contains the architecture signal

and component declarations, signal assignment statements,

component instantiation, and architecture closure.

31

The architecture body is started by outputting the key

word "architecture", the entity identifier prefixed with

"structured_", the key word "of", the entity identifier, and

the key word "is". This represents the architecture body

header. An example might be:

architecture structuredsample of sample is

The signal and component declarations follow the header.

A signal is a connection path within the design other than a

port. Components are the predefined Altera primitives.

Signals connect components together and are also any

intermediate nodes within the device. To find the signals,

the network and equation sections of tokens are scanned for

any node names other than primitive names. The signal is

taen declared as an alteralogic type and sent to the

standard output. This process continues until the end of

the equation section. The signal name and type are separated

with a colon and the signal declarations are closed with a

semi colon. An example would be:

signalname : alteralogic;

Component declarations represent the primi ives used in

the ADF design. The network section is scanned for

primitive names a,,d any names found are stored with no

duplication in an array. The components are then output

32

with the header "component", primitive name, port interface

list, and closing primitive name. The port interface list

is retrieved from a function that holds specific information

on all the Altera primitives. The port list is enclosed in

parenthesis followed by a semi colon and closed with an end

statement with the key word "component" and a semi colon.

An example would be:

component And2
port (Inl : altera logic, In2 : alteralogic;

Outl : altera logic);
end component;

The body of the architecture is all that remains to be

generated. The body begins with the key word "begin". This

word is output and the component instantiation are created.

The component instantiation represent all of the primitives

used in the design with their associated node connections.

The tokens are again scanned for the network section. Each

primitive is located and the associated node connections for

that primitive are collected from the tokens that follow and

proceed the primitive token. The outputs of a primitive

precede the primitive token name and are separated from the

name by an equal sign. The inputs to a primitive follow the

primitive token name and are enclosed with parenthesis. All

of this information is collected and sent to standard

output. The running label "U?" is printed with the question

mark being replace by the current instantiation number. The

33

primitive name is output followed by the key word "port

map". A parenthesis encloses the port names associated with

the node names. The port names for the primitive are found

from the same function as mentioned before. VHDL allows for

a no connection to be labeled as "open". Therefore, if no

specific name is associated with a port as determined from

the tokens, the default value is used or open if no default

value is listed. A no default condition is labeled "ndf" in

the information passed fror the primitive information

function. An example of this might be a sample primitive

where input 1 is VCC, input 2 is GND, input 3 is TESTIN,

and input 4 in a no connection. The Altera description

would read "OUTPUT = SAMPLE (,,TEST IN,);". The produced

VHDL instantiation would read:

UO: SAMPLE
port map (inl => VCC, in2 => GND, in3 => TESTIN, in4 =>

open, outl => OUTPUT) ;

The information passed by the function that holds the

primitive's information is a list describing the parameters

for that primitive. The list includes, for each parameter,

the parameter name , the mode, and the default value. The

example for SAMPLE would be:

inl in VCC in2 in GND in3 in ndf in4 in ndf outl out ndf.

34

The architecture body is closed with the end statement

and architecture identifier with semi colon. Any comments

encountered during the architecture processing are handled

as stated before in an effort to maintain the designers

intended placement of his comments.

Driver Code

The driver code is simply the code that calls the

procedures and functions necessary to produce the

transformation process. The driver code is arranged in the

order that produces the entity declaration first and entity

architecture second.

The driver first opens the ADF file or asks the user for

valid name if it can't open the ADF with the name provided.

The driver will except an ADF name issued at the command

line or will prompt for the file name if none is given on

the command line.

The driver next builds the data structure of tokens.

This data structure is then used by the entity declaration

and entity architecture generating code driver calls.

All output is directed to standard output and all input

is read from standard input. Prompts are issued to and

responses retrieved from the display.

IV.PROGRAM TESTING

Program testing involves validating program requirements

and verification of program design. This section is a

discussion of validation and verification of the

transformation program. The testing methods used on the

program and the process of VHDL validation will also be

presented.

Testing Methods

Both top down and bottom up testing were employed to

check the transformation program during it's development.

Bottom up testing was used the majority of the time. Top

down testing was used to test the overall progress and

validity of the program.

Many lower modules were developed for the transformation

program. These low level modules were tested for most of

their possible permutations. With the C programming

language many errors in low level modules are not detected

until additions are made to high level code. This is

usually caused by memory space not being properly allocated

for variables. This became a problem because low level

testing would not detect an error, but higher level testing

would fail. The debugging process was extremely difficult

during the testing of the parsing code.

35

36

The parsing code manipulated the data structure of

tokens. The tokens and their types were stored in arrays of

pointers pointing to character strings. Sometimes, program

halts would occur after seemingly small changes were made to

the parsing code. This was caused because the new code

modification might cause an improperly allocated variable's

memory storage area to be over-written and this would

eventually halt the program. Once the arrays were sorted

out, the rest of the low level modules became fairly

manageable during the testing process.

Top down testing was employed to verify the overall

development progress. Test ADF files were constantly tested

in whole to verify the correct direction of implementation

of the transformation process. The input files were ADFs

that are currently in use in the Wright State University

computer and engineering course curriculum. The test files

were modified as necessary to make them exercise the full

range of input possibilities. Two of the test files are

included in Appendix A.

Unfortunately, the low level testing was unable to

reveal the major errors in design requirements. Many

syntactic and semantic errors were found only after actual

VHDL analysis was performed. Use of the VHDL analyzer was

not attempted prior to the completion of the initial version

of the transformation program because even slight omissions

of code in a VHDL file will stop the analysis process.

37

Major Modifications

The first major problem with the output of the

transformation process was the problem of illegal names in

the transformation file. VHDL has strict naming conventions

and not all of the illegal Altera naming methods were taken

into account in the original design. After the naming

methods were solved, the problem of a support package became

apparent.

The use of a generic type for all of the ports and

signals caused a problem in that the type hac Lc be defined

and all operations on that type had to be defined. Instead

of generating the support package each time an ADF is

transformed, it was decided to develop a support package,

store it in the working VHDL library, and make it visible to

the analyzer. The support package contains type information

and operator overload code to define the environment of the

type altera logic. The support package is listed in

Appendix C.

The final group of errors was confined to the areas of

syntax and semantics. These errors were caused by omissions

of required verbiage or misunderstandings on the designer's

part as to what was legal VHDL code. The VHDL analyzer once

again was the source of code checking. Validation of the

VHDL requirements was accomplished by extensive testing of

the transformation program product with the VHDL analyzer.

V.CONCLUSIONS AND RECOMMENDATIONS

The research accomplished for this thesis was a

successful endeavor. The transformation program was

developed and met the goals established at the onset of this

thesis research. The major solutions and recommendations

will be expounded upon in this section.

Major Solutions

A transformation program was developed that processes

ADFs into valid VHDL entity declarations and entity

structural architectures. The transformation program will

transform ADFs obtained the Boolean entry, Netlist entry, or

Schematic entry format. All of the allowable Altera

primitives used in an ADF are correctly transformed into

VHDL component instantiations.

The produce of the transformation program is a file that

contains an entity declaration and entity architecture.

Both of these items will analyze into a VHDL library by

passing syntactic and semantic checks by the VHDL analyzer.

This research showed that there is a way to transform

ADF device descriptions into VHDL entity descriptions. The

end product of this thesis research is a transformation

program that accomplished the preceding goal.

Recommendations

38

39

Some improvements on the transformation program are

possible. The recommended improvements are:

1. The program should be menu driven with more set

up options possible;

2. The program should be able to handle macros in

an ADF;

3. The State Machine entry method should be allowed

for ADFs to be processed by the program;

4. A method for adding new Altera primitives to the

allowable primitives list should be found with the

removal of all internal code referencing of specific

primitives.

5. Timing for signal assignment statements should

be more generalized.

6. ADF pins which are both input and output should

be converted to "inout" mode VHDL ports.

Currently, the program accepts an ADF name and processes

the ADF automatically. It would be better if selection of

input files were menu driven with the availability to modify

program operation. An example of program modification might

be the ability to change the invalid name substitution

character.

40

The current version of the transformation program cannot

handle macros. Changes could be made to the program to

allow macros. This could be done by simply treating macros

as primitives.

The State Machine entry form of an ADF is different from

the currently allowed entry methods. Modifications could be

made to the transformation program to allow this form of

ADF.

Currently, the Altera primitives allowed and each

primitive's parameter information is hard coded into the

transformation program. This requires that, if a new

primitive needs to be added to the allowable ones, redesign

and recompilation would be necessary. A method should be

found to remove all specific references to primitives from

the transformation program and change the primitive

information to an external information source that the

program can access each time the program is invoked.

This version of the transformation program applies the

timing constraint "after 5 ns" to each signal assignment

statement. A more general way to do this would be to output

the timing constraint "DELAY" for each signal assignment

statement and assign a constant value to DELAY in the Altera

support package. This would allow the delay for signal

assignment statements to be varied by the user.

41

If an ADF has a pin which is both an input and output

pin, the transformed file will not successfully analyze.

The produced port modes will be incompatible and cause an

error during analysis. This error could be corrected by

parsing over the INPUTS and OUTPUTS section tokens to

determine if the condition exists and then assigning the

mode "inout" to the declared port.

Overall, I feel this thesis research was successful and

produced a useful transformation program. The

transformation program should be helpful to anyone needing

to transform ADFs into VHDL entity descriptions.

APPENDIX A

Test Files

Decoder ADF

Tom G. Purnhagen
CEG 453
02/02/89
45301.500
5.00
5C090
DECODER/WAIT-STATE GENERATOR/VPA-VMA GENERATOR

OPTIONS: TURBO = ON

PART: 5C090

INPUTS: A19, A18, A17, A16, A15, A14, A7, A6,
AO, AS*, DS*, RW*, RESET*, FC2, FCI, FCO, ROMWS1,
ROMWSO, CLOCK, E

OUTPUTS: RAMENO*, RAMEN1*, ROMEN0*, ROMEN1*, ACIAEN*,
PIAEN*, VPA*, DTACK*

NETWORK: % INPUTS %
A19 = INP (A19)
A18 = INP (A18)
A17 = INP (A17)
A16 = INP (A16)
A15 = INP (A15)
A14 = INP (A14)
A7 = INP (A7)
A6 = INP (A)
AO = INP (AO)
ASB = INP (AS*)
DSB = INP (DS*)
RWB = INP (RW*)
RESETB = INP (RESET*)
FC2 = INP (FC2)
FC1 = INP (FC)
FCO = INP (FCO)
ROMWSI = INP (ROMWS1)
ROMWS0 = INP (ROMWSO)
CLOCK = INP (CLOCK)
E = INP (E)

% ASYNCHRONOUS CLOCKS

42

43

ASBa = CLKB (ASB)
Ea = CLKB (En)

% DEVICE SELECTS %

RAMENO* = CONF (RAMENOc,)
RAMEN1* = CONE (RANENic,)
ROMENO*,ROMENOf =COIF (ROMENOc,)
ROMEN1*,ROMENlf = COIF (ROMENic,)

ACIAEN* =CONF (ACIAENb,)

PIAEN* =CONF (PIAENb,)

% BOOT CIRCUIT %

QA = NORF (DA, ASBa, RESET, GND)
Q= NORE (DB, ASBa, RESET, GND)

QC = NORF (DC, ASBa, RESET, GND)
BOOTB = NORF (BOOTBd, ASBa, RESET, GND)

% DTACK* GENERATOR %

WSO = NORF (VCC, CLOCK, ROMSELc, GND)
WS1 = NORF (WSld, CLOCK, ROMSELc, OND)
WS2 = NORF (WS2d, CLOCK, ROMSELc, GND)
DTACK* = CONF (DTACKc,)

% VPA*/VMA GENERATOR

VPA = NOJF (VPAj,Ea,GND,ASB,GND)
VMA = NORF (VMAc,CLOCK,ASB,GND)
VPA* = CONF (VPAn,)

EQUATIONS:

% DEVICE SELECTS %

RAMENOc = /(BOOTB * /DSB * /(FCO * FC1 *FC2)*

/A19 * /A18 * /A17 * /A16 * /A15 * /A14
* /AO) ;

RAMENlc = /(BOOTB * /DSB * /(FCO * FC1 * FC2)*
/A19 * /A18 * /A17 * /A16 * /A15 * /A14
* AO) ;

ROMENOc = /((/BOOTB * /DSB * /AO) + (/P'SB * /(FCO
" FC1 *FC2) * RWB */A19 * /A18 * /A17
" /A16 A15 * /A14 / AO));

ROMENic = /((/BOOTB */DSB * AO) + (/ASB * /(FCO*
ECi FC2) *RWB * /A19 * /A18 * /A17 *
/A16 A15 /A14 *AO)

ACIAENc = /(/DSB * /(FCO * FC1 * FC2) * /A19
/A18 * /A17 * Al6 * /A15 * /A14 * /A7 *
A6 * /AO) ;

44

PIAENc = /(/DSB * /(FCO * FC1 * FC2) * /A19 * /A18
* /A17 * A16 * /'A15 * /A14 * A7 * /Ab*
AO) ;

% BOOT CIRCUIT %

DA = /QA;
DB = (QA * /QB) + (/QA * QB);
DC = (QA * QB) + QC;
BOOT~d =(QA * QB * QC) + BOOTB;
RESET /RESETB;

% DTACK* GENERATOR

DTACKRAMc = /(BOOTB * (DSB + /ASB * /RWB) * /A19
* /A18 /A17 * /A16 * /A15 * /A14);

ROMSELc = ROMENOf * ROMENlf;

WSld = WSO;
WS2cI= WS1;
DTACKc = (DTACKRAMc * (/WSO + ROMWS1 + ROMWSO)

" (/WS1 + ROMWS1 + /ROMWSO)
" (/WS2 + /ROMWS1 + ROMWSO))
+ (ROMWSO * ROMWS1);

% VPA*/VMA GENERATOR %

VPAj =(/A19 */A18 * /A17 * A16 * /A15 */A14) +
(FCO *FC1 * FC2)) */ASB;

VPAn =/VPA;
VMAd =(/ACIAENc + /PIAENc) * VPA;
ACIAENb = ACIAENc + /VMA;
PIAENb = PIAENc + /VMA;
En =/E

END $

Swim ADF

Tom G. Purnhagen
CEG 453
02/09/89
45302.100
1.00
5C090
SINGLE-STEP/WATCHDOG TIMER/INTERRUPT MODULE

OPTIONS: TURBO = ON

PART: 5C090

45

INPUTS: RUNMODE*, STEPMODE*, ADVANCE*, HOLD*, ABORT*,
NOABORT *

AS*, CLOCK, E, IRQ2*, IRQ5*

OUTPUTS: RUN*, BERR*, IPL2O*, IPL1*

NETWORK:

% INPUTS

RUNMODEb = INP (RUNMODE*)
STEPMODEb = INP (STEPMODE*)
ADVANCEb = INP (ADVANCE*)
HOLDb INP (HOLD*)
ABORTb =INP (ABORT*)
NOABORTb = INP (NOABORT*)
ASb = INP (AS*)
CLOCK =INP (CLOCK)
E = INP (E)
IRQ2b = INP (IRQ2*)
IRQ5b =INP (IRQ5*)

% ASYNCHRONOUS CLOCKS

ASc = CLKB (AS)
STEPc =CLKB (QSTEPf)

% SINGLE STEP MODULE %

QSTEPSf =NOCF (QSTEPS)
QNSTEPMf =NOCF (QNSTEPM)
QSTEPf = NOCF (QSTEP)
QRUN = NORE (VCC, STEPc, ASb, GND)
QSTEPMODE = NORE (QSTEPM, XSc, QNSTEPMf, GND)
RUN* =CONF (RUNb,)

% WATCHDOG TIMER MODULE

QT1 =NORE (AS, E, WCLf, GND)
QT2 =NORF (QT1, E, WCLf, GND)
QT3 =NORF (QT2, E, WCLf, GND)
BERR = NORF (QT3, E, WCLf, GND)
BERR* = CONE (BER~b,)
WCLf = NOCE (WCLR)

% INTERRUPT ENCODER MODULE

QSWAf = NOCF (QSWA)
Q2b = NORF (IRQ2b, CLOCK, GND, GND)
Q5b = NORF (IRQ5b, CLOCK, GND, GND)
QABT = NORF (QSWA, CLOCK, GND, OND)
IPL2O* =RONF (IPL2flb, CLOCK, GND, GND,)
IPL1* RONF (IPLlb, CLOCK, GND, GND,)

46

EQUATIONS:

% SINGLE STEP MODULE %

AS = /ASb;
QSTEPS = /(ADVANCEb *QNSTEPS);

QNSTEPS = /(QSTEPSf* H-OLDb);
QSTEP = QSTEPS * QSTEPM;
QSTEPM = /(STEPMODEb * QNSTEPMf);
QNSTEPM = / (QSTEPM * RUNMODEb);
RUNb = /(/QSTEPMODE + QRUN);

% WATCHDOG TIMER MODULE %

BERRb = BERR';
WCLR = ASb # !QNSTEPMf;

% INTERRUPT ENCODER MODULE %

QSWA = / (ABORTb & QNSWA);
QNSWA = /(QSWAf * NOABORTb);
IPL2Ob = Q5b * /QABT;
IPLlb= /QABT * /(/Q2b * Q5b);

END $

APPENDIX B

Sample Transformed File

Transformed Decoder File

-- Tom G. Purnhagen
-- CEG 453
-- 02/02/89
-- 45301.500
-- 5.00
-- 5C090
-- DECODER/WAIT-STATE GENERATOR/VPA-VMA GENERATOR

-- OPTIONS: TURBO = ON

-- PART: 5C090

library work;
use work.altera package.all;
entity decoder is

port (A19 : in altera logic;
A18 : in alteralogic;
A17 : in alteralogic;
AI6 : in altera logic;
A15 : in alteralogic;
A14 : in altera logic;
A7 : in altera_logic;
A6 : in alteralogic;
AO : in altera_logic;
ASv : in alteralogic;
DSv : in alteralogic;
RWv : in altera logic;
RESETv : in alteralogic;
FC2 : in altera-logic;
FCI : in alteralogic;
FCO : in altera logic;
ROMWS1 : in altera logic;
ROMWSO : in altera logic;
CLOCK : in alteralogic;
E : in alteralogic;
RAMENOv : out altera logic;
RAMENlv : out alteralogic;
ROMENOv : out alteralogic;
ROMENlv : out altera logic;
ACIAENv : out altera logic;
PIAENv : out altera logic;
VPAv : out altera_logic;

47

48

DTACKv : out altera_logic);
end decoder;

architecture structured-decoder of decoder is

signal Al9mod : altera logic;
signal Al8mod altera-logic;
signal Al7mod altera-logic;
signal Al6mod altera-logic;
signal Al5mod altera logic;
signal Al4mod : altera logic;
signal A7mod : altera Togic;
signal A6mod : altera logic;
signal AOmod : altera-logic;
signal ASB : altera logic;
signal DSB : alteralogic;
signal RWB : altera logic;
signal RESETB : altera logic;
signal FC2mod : altera logic;
signal FClmod : alteralogic;
signal FCOmod : altera logic;
signal ROMWSlmod : altera_logic;
signal ROMWSOmod : alteralogic;
signal CLOCKmod : alteralogic;
signal Emod : altera_logic;
signal ASBa : alteralogic;
signal Ea : altera_logic;
signal ROMENOf :'altera logic;
signal ROMENlf : altera logic;
signal QA : altera_logic;
signal QB : altera_logic;
signal QC : altera logic;
signal BOOTB : altera logic;
signal WSO : altera_logic;
signal WS1 : altera_logic;
signal WS2 : altera_logic;
signal VPA : alteralogic;
signal VMA : alteralogic;
signal RAMENOc : altera logic;
signal RAMENlc : altera logic;
signal ROMENOc : altera logic;
signal ROMENIc : altera logic;
signal ACIAENc : altera logic;
signal PIAENc : alteraTogic;
signal DA : altera-logic;
signal DB : alteralogic;
signal DC : alteralogic;
signal BOOTBd altera logic;
signal RESET altera Togic;
signal DTACKRAMc : altera logic;
signal ROMSELc : altera logic;
signal WSld : altera logic;
signal WS2d : alteralogic;
signal DTACKc : alteralogic;

49

signal VPAj : altera logic;
signal VPAn : altera-logic;
signal VMAd : altera logic;
signal ACIAENb altera logic;
signal PIAENb altera logic;
signal En : altera_logic;

component INP
port (Inl : in alteralogic; Outl : out altera logic);

end component;

component CLKB
port (Inl : in alteralogic; Outl : out alteralogic);

end component;

component CONF
port (Inl in altera logic; Oe : in alteralogic;

Outl out altera_logic);
end component;

component COIF
port (Inl in altera logic; Oe : in alteralogic;

Outl out altera_logic; Fbk : out alteralogic);
end component;

component NORF
port (Inl : in altera logic; Clk : in altera logic; C

in altera_logic; P : in alteralogic; Fbk : oit
lteralogic);

end component;

component NOJF
port (Jn : in altera logic; Clk : in alteralogic; Kin

in altera logic; C in alteralogic; P : in
alteralogic; Fbk ol'.t alteralogic);

end component;

begin

DEVICE SELECTS

RAMENOc <= not (BOOTB and not DSB and not (FCOmod and FClmod
and FC2mod) and not Al9mod and not Al8mod and
not Al7mod and not Al6mod and not Al5mod and
not Al4mod and not AOmod) after 5 ns;

RAMENIc <= not (BOOTB and not DSB and not (FCOmod and FClmod
and FC2mod) and not Al9mod and not Ai8mod and
not Al7mod and not Al6mod and not Al5mod and
not Al4mod and AOmod) after 5 ns;

50

ROMENOc <= not ((not BOOTB and not DSB and not AOmod) or
(not ASB and not (FCOmod and FClmod and
FC2mod) and RWB and not Al9mod and not Al8mod
and not Al7mod and not Al6mod and Al5mod and
not Al4mod and not A0mod)) after 5 ns;

ROMENIc <= not ((not BOOTB and not DSB and A0mod) or (not
ASB and not (FCOmod and FClmod and FC2mod)
and RWB and not Al9mod and not Al8mod and not
Al7mod and not Al6mod and Al5mod and not
Al4mod and A~mod)) after 5 ns;

ACIAENc <= not (not DSB and not (FCOmod and FClmod and
FC2mod) and not Al9mod and not Al8mod and not
Al7mod and Al6mod and not Al5mod and not
Al4mod and not A7mod and A6mod and not A0mod)
after 5 ns;

PIAENc <= not (not DSB and not (FCOmod and FClmod and
FC2mod) and not Al9mod and not Al8mod and not
Al7mod and Al6mod and not Al5mod and not Al4mod
and A7mod and not A6mod and A0mod) after 5 ns;

BOOT CIRCUIT

DA <= not QA after 5 ns;

DB <= (QA and not QB) or (not QA and QB) after 5 ns;

DC <= (QA and QB) or QC after 5 ns;

BOOTBd <= (QA and QB and QC) or BOOTB after 5 ns;

RESET <= not RESETB after 5 ns;

DTACK* GENERATOR

DTACKRAMc <= not (BOOTB and (not DSB or not ASB and not RWB)
and not Al9mod and not Al8mod and not Al7mod
and not Al6mod and not Al5mod and not Al4mod)
after 5 ns;

ROMSELc <= ROMENOf and ROMENIf after 5 ns;

WSId <= WSO after 5 ns;

WS2d <= WS1 after 5 ns;

DTACKc <= (DTACKRAMc and (not WSO or ROMWSlmod or ROMWSOmod)
and (not WS1 or ROMWSlmod or not ROMWSOmod) and
(not WS2 or not ROMWSlmod or ROMWSOmod)) or
(ROMWSOmod and ROMWSlmod) after 5 ns;

VPA*/VMA GENERATOR

51

VPAj <= ((not Al9mod and not Al8mod and not Al7mod and
Al6mod and not Ai5mod and not Al4mod) or (FCOmod
and FClmod and FC2mod)) and not ASB after 5 ns;

VPAn <= not VPA after 5 ns;

VMAd <= (not ACIAENc or not PIAENc) and VPA after 5 ns;

ACIAENb <= ACIAENc or not VMA after 5 ns;

PIAENb <= PIAENc or not VMA after 5 ns;

En <= not Emod after 5 ns;

-- INPUTS

UO : INP
port map (Inl => A19, Outl => Al9mod);

Ul : INP
port map (Inl => AI8, Outl => Al8mod);

U2 : INP
port map (Inl => A17, Outl => Al7mod);

U3 : INP
port map (Inl => A16, Outl => Al6mod);

U4 : INP
port map (Inl => A15, Outl => Al5mod);

U5 : INP
port map (Inl => A14, Outl => Al4mod);

U6 : INP
port map (Inl => A7, Outl => A7mod);

U7 : INP
port map (Inl => A6, Outl => A6mod);

U8 : INP
port map (Inl => AO, Outl => AOmod);

U9 : INP
port map (Inl => ASv, Outl => ASB);

U10 : INP
port map (Inl => DSv, Outl => DSB);

Ull : INP

port map (Inl => RWv, Outl => RWB);

U12 : INP

52

port map (In). => RESETv, Out). => RESETB);

U13 :INP
port map (In). => FC2, Out. => FC2rnod);

U14 :INP
port map (In). => FCl, Out. => FClmod);

U15 :INP
port map (In). => FCO, Out). => FCOmod);

U16 INP
port map (In). => ROMWS., Out. => ROMWS).mod);

U1.7 :INP
port map (In). => ROMWSO, Out). => ROMWSOrnod);

U1.8 :INP
port map (Il => CLOCK, Out. => CLOCKmod);

U1.9 :INP
port map (In). => E, Out. => Emod);

-- ASYNCHRONOUS CLOCKS

U20 :CLKB
port map (Inl => ASB, Out). => ASBa);

U21: CLKB
port map (In). => En, Out. => Ea);

-- DEVICE SELECTS

U22 :CON'
port map (In). => RAMENOC, Oe => VCC, Out). => RAMENOv);

U23 :CON'
port map (In). => RAMENic, Oe => VCC, Out. => RAMEN).v);

U24 :COIF'
port map (In). => ROMENOc, Oe => VCC, Out. => ROMENOv,

E'bk => ROMENOf);

U25 :COIF'
port map (In). => ROMENic, Oe => VCC, Out. => ROMENlv,

E'bk => ROMENif);

U26 : CON'
port map (In). => ACIAENb, Oe => VCC, Out. => ACIAENv);

U27 :CON'

port map (In). => PIAENb, Oe => VCC, Out. => PIAENv);

-- BOOT CIRCUIT

53

U28 : NORF
port map (Inl => DA, Clk => ASBa, C => RESET, P => GND,

Fbk => QA);

U29 : NORF
port map (Inl => DB, Clk => ASBa, C => RESET, P => GND,

Fbk => QB);

U30 : NORF
port map (Inl => DC, Cik => ASBa, C => RESET, P => GND,

Fbk => QC);

U31 : NORF
port map (Inl => BOOTBd, Clk => ASBa, C => RESET, P =>

GND, Fbk => BOOTB);

DTACK* GENERATOR

U32 : NORF
port map (Inl => VCC, Clk => CLOCKmod, C => ROMSELc, P

=> GND, Fbk => WSO);

U33 : NORF
port map (Inl => WSld, Clk => CLOCKmod, C => ROMSELc, P

=> GND, Fbk =:> WSI);

1334 :NORF'

port map (Inl => WS2d, Clk => CLOCKmod, C => ROMSELc, P
=> GND, Fbk => WS2);

U35 : CONF

port map (Inl => DTACKc, Oe => VCC, Outl => DTACKv);

VPA*/VMA GENERATOR

U36 : NOJF
port map (Jn => VPAj, Clk => Ea, Kin => GND, C => ASB, P

=> GND, Fbk => VPA);

U37 : NORF
port map (Inl => VMAd, Clk => CLOCKmod, C => ASB, P =>

GND, Fbk => VMA);

U38 : CONF
port map (Inl => VPAn, Oe => VCC, Outl => VPAv);

end structured-decoder;

APPENDIX C

Supplemental VHDL Package Source Code

Altpk.vhd

package altera_package is

type altera logic is ('0', 'I' 'Z') ;

signal VCC : alteralogic '1';
signal GND : altera_logic '0';

function "not" (L : altera logic) return altera logic;
function "and" (L,R altera logic) return altera logic;
function "or" (L,R alteralogic) return altera_Togic;

end alterapackage;

package body alterapackage is

function "or" (L,R : alteralogic) return alteralogic is
begin

if 1 = 'Z' or r = 'Z' then return '1';
elsif 1 = 'Z' or r = 'I' then return '1';
elsif 1 = 'I' or r = 'Z' then return '1';
elsif 1 = 'I' or r = 'I' then return '1';
else return '0';
end if;

end;

function "not" (L : alteralogic) return altera_logic is
begin

if 1 = 'Z' then return '0';
elsif 1 = 'Z' then return '0';
elsif 1 = 'I' then return '0';
elsif 1 = '0' then return '1';
end if;

end;

function "and" (L,R : alteralogic) return alteralogic is
begin

if 1 = 'Z' and r = 'Z' then return '1';
elsif 1 = 'Z' and r = '1' then return 'i';
elsif 1 = '1' and r = 'I' then return '1';
else return '0';
end if;

54

55

end;

end altera-package;

APPENDIX D

User Manual

Required Files

Alttovhd is the name of the transformation prograr and

is required to perform the transformation process.

Altpk.vhd is the name of the VHDL support package. It

must located in the VHDL library "work" and is required to

successfully analyze a transformed ADF with a VHDL analyzer.

Command Line Entry

The command line entry to invoke the transformation

program is of the form:

alttovhd [d:] [pathname] [input file name.adf] [>
[d:] [pathname] [outputfilename.vhd]]

d: is the drive specification if other than the
current drive.

pathname is the path to input file if other than the
current directory.

input file name is the input ADF and must have the
extension ".adf".

outputfile name is the file name that standard
output will be directed to and should have the
extension ".vhd".

The transformation program "alttovhd" will prompt the

user for the input file name if inputfilename.adf is not

included in the command line entry. The output will default

56

57

to the screen if standard output is not redirected to

outputfilename.vhd.

Alttovhd will prompt the user as major portions of the

transformation process are accomplished.

APPENDIX E

Source Code for Transformation Program

adftovhd.c

* adftovhd.c *

* Module: adftovhd.c

* Version: 1.0

* Purpose: This module contains procedure
* for driving the transformation
* of an Altera Design File to a VHDL
* entity description.

*/

#include <adftovhd.h>

* Function: main

* Interface: main (int argc, char *argv[])

* Purpose: This procedure drives the transformation
* process by calling the procedures contained
* in the external modules.

main(int argc, char *argv[])
{

FILE *in stream;
char ch, *inputfile;
int len, conclude = 0, start or continue = 1;

clrscr();
cputs (HEADERi);
gotoxy (1, 2) ;
cputs (HEADER2) ;
gotoxy(1,3);
cputs (HEADER3) ;
gotoxy (1, 5) ;
if (argv(l] == NULL)

58

59

{
inputfile = get filenameo;

else
{
if (is_good filename(argv[1]))

{
strcpy(inputfile, argv[lJ);}

else
{
screen message("FILE <%s> NOT FOUND\r\n\n");
inputfile = get_ ile name(;
}

}
in-stream = getfile stream(input file);

build tokens(in stream);
set token index(FIRST);
while (! issectionheader(toptoken)))

makecomment (top_token), start or continue);
advance to next token();

generate entitydeclaration(input file);
if (set to network sectiono)

settoprevioustokeno;
Ibuild-entity_architecture (input-file) ;

adftovhd. h

* adftovhd. h *

* Module: adftovhd.h

* Version: 1.0

* Purpose: This is the header file for adftovhd.c.

*/

60

#include <stdio.h>
#include <conio.h>
#include <altera t.h>
#include <display.h>

alt equa.h

* altequa.h *

*************************** *

* Module: altequa.h

* Version: 1.0

* Purpose: This is the header file for altequa.c.

*

*/

#include <stdio.h>
#include <altera t.h>
#include <asciidef.h>

extern void generate_signalassignmentstatements);
extern int is boolean operator();
extern void outputidentifiero;
extern void output signal assignment_symbol();
extern void output boolean identitfiero;
extern void outputstring(0;
extern void terminate signal assignment);
extern int is delimiter semi);

asciidef.h

* asciidef.h *

* Module: asciidef.h

* Version: 1.0

61

* Purpose: This is a header file that contains the
* ASCII definitions use in the adftovhd
* program.

*/

#define TAB 9
#define LF 10
#define CR 13
#define SPACE 32
#define EXCLA 33
#define LBSYM 35
#define PCENT 37
#define LOGAN 38
#define SQUOT 39
#define LPARN 40
#define RPARN 41
#define ASTRC 42
#define PLUS 43
#define COMA 44
#define SLASH 47
#define SEMI 59
#define EQUAL 61
#define BSLASH 92

name mod.h

* name mod.h *

* Module: name mod.h

* Version: 1.0

* Purpose: This is a header file for name mod.c.

*/

#include <stdio.h>
#include <display.h>
#include <altera t.h>

62

extern char *is makinglegalvhdlname(char *tokenname);
extern void advance past comment();
extern void search andchange(char *the name, char

*new name, char *input_pin_name);
extern void modify_name(char *node name, char

*inputpinname);
extern void checkand changeidentifiers();
extern void remove illegalvhdl name characterso;
extern char *concat strings(char *prefix-string, char

*suffixstring);

alt inst.h

* alt inst.h *

* Module: alt inst.h

* Version: 1.0

* Purpose: This is the header file for alt inst.c.

*/

#include <stdio.h>
#include <altera t.h>
#include <calloc.h>

extern int is delimiter left pareno;
extern int is delimiter-rightpareno;
extern void outputcomment statement();
extern void outputinstantiation close);
extern void outputassociation(char *local, char *actual,

int component mark);
extern void outputinstantiationheader(char

*component mark);
extern void output_componentinstantiations(char

**component_inputsoutputs, char
*componentmark);

extern void output instantiation close);
extern char **collect inputs_and-append(char **outputs);
extern char *determine component marko;
extern void generate instantiationso;
extern int isequation sectiono;

63

calloc.h

* calloc.h*

*Module: calloc.h

*version: 1.0

*Purpose: This is the header file for calloc.c.

#include <asciidef.h>
#include <altera t.h>
#include <stdio.h>

#define MINFILESIZE 1000

extern char *get -new -ptr (mnt number of-chars);
extern char *append_to_token (char *token__ptr, char

*new char str);
extern mnt is delimiter (mnt ascii char, mnt

in_equation-section);
extern char **get-token -array(long filesize);
extern long get-file-length(FILE *in);

new fncs.h

* new-fncs.h*

*Module: new-fncs.h

*Version: 1.0

* urpose: This is the header file for new-fncs.c.

64

#include <stdio.h>
#include <display.h>
#include <altera t.h>
#inicludie <conio.h>

extern int is -good file name(char *input-file);
extern FILE *get file-stEream();
extern char *get file -nameo;
extern mnt has -leading periods();
extern char *is removing leading_periodso~;
extern char *is prefixing-xycord-too;
extern char *is -removing_pin-reference(char *port-name);
extern void generate entity-declaration (char

*the file name);
extern char *get_port -nameo;
extern void output port (char *name, char *mode, char *type);
extern void begin port-decl();
extern void end_port -dec10);
extern void end-entity_decis (char *entity-name);

tokens .h

* tokens.h*

*Module: tokens.h

*Version: 1.0

*Purpose: This is the header file for alteraP.C.

#include <stdio.h>
#include <altera t.h>
#include <fcntl.h>
#include <sys\stat.h>
#include <io.h>
#includie <display.h>

#ifndef TOKENS H
#define TOKENS H

65

typedef struct
char **tokenarray;
char **tokentypearray;
int index;
int total entries;
} tokens struct;

typedef char *tokon;

extern char *get identifier type:);
extern void advance to next-tokeno;
extern tokon *get tokeno;
extern tokon *next token();
extern char *get delimitertype(;
extern void build tokens();
extern int is identifier variable(;
extern int settoprevioustokeno;
extern int is delimiter commento;
extern int end of tokenso;
extern char *get token type);
extern tokon *top_token);
extern tokon *get token();
extern int gettoken indexo;
extern void set token index(int index);
extern int beginning_of network sectiono;

#endif

altera t.h

* altera t.h *
* *

* Module: altera t.h

* Version: 1.0

* Purpose: This header file contains the type
* definitions for the Altera transformation

types.

*/

66

#ifndef ALTERA TYPES
#define ALTERA TYPE "altera logic"
#define MAX LINE LENGTH DECLS 77
#define FIRST 0 -
#define SECOND 1
#define MAX NUM FUNCTIONS 100
#define STANDARD STR LEN 40
#define MAX NUM COMPONENT OUTPUTS 8
#define MAX NAME LEN 40
#define MAX BUFFER SIZE 40
#define DELAY "5 ns"
#define HEADER1 " ALTERA to
VHDL"
#define HEADER2 " File
Translater"
#define HEADER3 " ver
1.0"
#define REPLACEMENT CHARACTER 'v'

#ifndef TRUTH LOGIC
#define TRUE 1
#define FALSE 0
#endif

#endif

display.h

* display.h *

* Module: display.h

* Version: 1.0

* Purpose: This header file contains a display macro.

*

*/

#include <conio.h>

#ifndef DISPLAY FUNC
#define screen message(smessage) cputs(smessage);
#endif

67

altransf .h

* altransfh*

*Module: altransf.h

*Version: 1.0

*Purpose: This is the header file for altransf.c.

#include <stdio.h>
#include <asciidef.h>
#include <tokens .h>

#ifndef ALTRANSF H

#include <tokens.h>

extern void declare-entityO);
extern void error -messageo;
extern void error message2();
extern int is-section header(tokon *current-token);
extern char is code for(tokon *current-token);
extern void make comment (tokon *current-token, int

start-continue);

#endif

ent arch.hc

* ent-arch.h*

*Module: ent-arch.h

68

* Version: 1.0

* Purpose: This is the header file for ent arch.c.

*/

#include <stdio.h>
#include <altera t.h>
#include <display.h>

#ifndef ENTARCHH

extern int set to inputs section();
extern char *get input_pin name);
extern void end the signal decl();
extern int is-io pinname(char *signalname, char

**list_of io pin names);
extern char **get list of io pins();
extern int settoinput_section();
extern int is delimiter comma(;
extern int at-network sectiono;
extern char *getports for(char *componentname);
extern void outputdeclf(char *name, char *mode, char *type,

int flag);
extern void output_componentdeclheader(char

*component_name);
extern void output_componentdecl close(;
extern void output_componentports(char *ports);
extern void get_portvalues(char *ports, char *name, char

*mode, char *type);
extern int set to left_pareno;
extern int getparameter count(0;
extern void appendnumber of parameters if necessary(char

*component_name);
extern int comma counto;
extern void build entity_architecture(char *inputfile);
extern void end body(char *entityname);
extern void begin body(;
extern void generatesignaldecls);
extern void generatecomponentdeclso;
extern void generate architecture header(char *entity_name);
extern int set to equations sectiono;
extern void outputsignal(char *signalname, char *type);
extern char *getsignalname(;
extern void output signal headero;
extern void end signal decls);
extern int is delimiter equal();
extern void readpast_equationo;
extern int set to network sectiono;

69

extern void output_componentdecl(char *componentname);

#endif

calloc.c

* calloc.c *

* Module: calloc.c

* Version: 1.0

* Purpose: This module contains procedures and
* functions for manipulating the tokens
* data structure of the adftovhd driver
* program. Specifically, this module is
* concerned with the allocating memory and
* evaluating the tokens to determine type.
*1

#include <calloc.h>

* Function: getnew_ptr

* Interface: char *getnewptr(int numberofchars)

* Purpose: This function returns a new pointer to a
* string memory space of size "numbe r of chars"

char *getnew_ptr (int number of chars)
{

return ((char *)calloc(numberof chars,sizeof(char)));

* Function: iscomponent

* Interface: int is_component(char *token)

* Purpose: This function returns true is "token" is an
* Altera primitive.

70

int is-component (char *token)

int length = strien~token);

return(
strcmp(token, "INP") ==0 11
strcmp(token, "LINP") 0 11
strncmp(token, "AND", 3) ==0 11
strncmp(token, "BAND", 4) ==0 11I
strcmp(token, "BEUF") ==0 11
strcmp(token, "CLKB") 0 I I
strncinp(token, "NAND", 4) ==0 11
strncrnp(token, "BNAND", 5) ==0 11
strncmp(token, "NOR", 3) 0 11
strncmp(token, "BNOR", 4) ==0 1I
strcrnp(token, "NOT") 0 11
strncmp(token, "OR", 2) 0 I 1
strncmp(token, "BOR", 3) ==0 11
strcmp(token, "XNOR") ==0 11
strcmp(token, M~XR") 0 11
strcmp(token, "COMF) =0 11
strcmp(token, "COIF") 0
strcmp(token, "COLF") 0 I
strcrnp(token, "CONF") ==0 I
strcnp (token, "CORF") ==0

strcrnp(token, "JOJF") ==0

strcmp(token, "JONF") ==0

strcmp (token, "NOCW") ==0

strcmp(token, "NOJW") ==0II

strcmp(token, "NORF") ==0 I
strcmp(token, "NOSF") 0 I
strcmp(token, "NOTF") ==0

strcmp(token, "ROCF") ==0

strcmp(token, "ROIF") ==0 I11
strcmp(token, "ROLF") ==0 I
strcmp(token, "RON") =0 11
strcrnp(token, "RORF") ==0 11I
strcmp(token, "SONF") =0 11
strcmp(token, "SOSF") =0 11
strcmp(token, "TOIF") ==0 I I
strcmp(token, "TON") 0 11
strcmp(token, "TOTE") =0 11
strcnp (token, "BUSX-) =0 I I
strcmp(token, "LBUSI")M 0 I1
strcmp(token, "LBtJSO") ==0 11I
strcmp(token, "LINP8")= 0 11
strcmp(token, "RBtJSI") ==0 I I
strcmp(token, "RINP8") =0)

*Function: append--to -token

71

* Interface: char *append to token(char *token_ptr,
* char *new char str)

* Purpose: This function returns a pointer to a string
* which is the result of appending
* "newchar str" to "token_ptr".

char *append to token (char *tokenptr, char *newcharstr){
return(strcat(tokenptr, newcharstr));}

* Function: getfilelength

* Interface: long getfilelength(FILE *in)

* Purpose: This function returns the length of the
* file pointed to by "in".

long getfile length(FILE *in)
{

long filesize = 0;

while (fgetc(in) != EOF)
filesize++;

rewind(in);
if (filesize < MIN FILE SIZE)

return(MIN FILESIZE);
else

return(filesize);

* Function: gettokenarray

* Interface: char **gettokenarray(long filesize)

* Purpose: This function returns a pointer to an array
* of pointers that number "filesize".

char **gettokenarray(long filesize){
int i;
char **temparray;

72

temp_array = (char **)malloc(filesize *sizeof (char

for (i = 0; i < filesize; i++)
temp_array~i] = NULL;

return (temp-array);

*Function: is-delimiter

*Interface: int is delimiter(int ascii char,
* Tnt in_equation-section)

*P rpose: This function returns true if "ascii char"
* is a delimiter.

int is delimiter (mnt ascii char, mnt in-equation section)

mnt next-character;

if (ascii char ==TAB 11
ascii char ==LF I
ascii char ==CR I
ascii char ==SPACE

ascii char ==PCENT I
ascii char ==LPARN I
ascii char ==RPARN I
ascii char EQUAL I 1
ascii char ==COMA

return (TRUE);

else if (in equation section)

if (ascii char ASTRO I
ascii char PLUS I
ascii char SLASH I
ascii char ==EXCLA

ascii char ==LESYM I
ascii char ==LOGAN I
ascii char ==SQUOT 1 I
ascii-char ==SEMI

return (TRUE);

return (FALSE);

73

new fncs.c

/ *********************** **********************************

* new fncs.c *

* Module: new fncs.c

* Version: 1.0

* Purpose: This module contains procedures and
* functions for manipulating the tokens
* data structure of the adftovhd driver
* program. Specifically, this module is
* concerned with miscellaneous functions.
*/

#include <new fncs.h>

* Function: getfilestream

* Interface: FILE *getfilestream(char *filename)

* Purpose: This function returns a FILE pointer to
* a file stream for the file -'file naiLe".

FILE *getfilestream(char *filename)
{

FILE *inputstream;

input stream = (FILE *)malloc(sizeof(FILE));
if ((input_stream = fopen(file name, "rt")) == NULL)

screenmessage("File Not Found.\r\n");
return (inputstream);

* Function: is_goodfilename

* Interface: int is_good_filename(char *inputfile)

* Purpose: This function returns true if "input-file"
* exists.

74

int isgood file name(char *input-file)

FILE *input_stream;

if ((input_stream = fopen(input file, "rt")) == NULL)
{
return (FALSE);
}

else

fclose(input stream);
return (TRUE);

I}

* Function: getfilename

* Interface: char *get_filename()

* Purpose: This function returns a pointer to a file
* name retrieved from the user.

char *get filename()

FILE *input stream;
char *temp filename, *buffer, *tempstr = "

int file not found = 1, ch;

input stream = (FILE *)malloc(sizeof(FILE));
temp file name = (char *)malloc(256 * sizeof(char));
while (file not found)

I
screen message("\r\nEnter the file name.\r\n");
strcpy(temp_file name, "\0");
while ((ch = getche)) != 13)

{
tempstr[O] = ch;
strcat (tempfilename, temp_str);

screen message("\r\n");
if ((inputstream = fopen(tempfile name, "rt"))

== NULL)
{
screen message("File <");
screenmessage(temp file_name);
screen message("> Not Found.\r\n");

else

75

file not found = 0;
}

fclose(input stream);
return(tempfilename);

* Function: get_entityname

* Interface: char *getentity_name(char *thefilename)

* Purpose: This function returns a pointer to an entity
* name created from "the file name".

char * get_entityname(char *thefilename)
{

int number of characters = 0;
char *temp_ptr, *start_ptr, *endptr;

if ((start_ptr = strrchr(thefilename, '\\')) NULL)
{
startptr = startptr + 1;

else if ((startptr = strrchr(the file name, ':')) !=

NULL)
{
startptr = startptr + 1;
}

else

startptr = the file name;

if ((endptr = strchr(thefile name, ' ')) NULL)
{
numberofcharacters = (endptr - startptr);
}

else
{
number of characters = strlen(startptr);

tempptr = (char *)malloc((number of characters + 1) *
sizeof(char));

*tempptr = NULL;
return(strncat(temp_ptr, sta -_ptr,

number of characters));

76

/ **

* Function: has leading_periods

* Interface: int hasleading_periods(char *str name)

* Purpose: This function returns true if there are
* leading periods on "str name".

int hasleadingperiods(char *str name)
{

return(*str name ==}

* Function: isremovingleadingperiods

* Interface: char *isremovingleadingperiods(
* char *str name)

* Purpose: This function returns a pointer to
* "str name" after the periods have been
* removed.

char * is removingleading_periods(char *strname)

int index = 0;
char *tempstr;

while(*(str name + index){
index++;
I

temp_£tr = (char *)malloc(strlen(strname + index) *
sizeof(char));

strcpy(temp_str, str name + index);
return(tempstr);

* Function: is_prefixingxycordto

* Interface: char *is-prefixingxycordto(
* char *input_string)

* Purpose: 7his function returns a pointer to
* "inputstring" after prefixing "xycord".

77

char * is prefixingxycordto(char *input_string)
{

char *resolved-name = "xycord\O";

return(strcat (resolvedname, input_string));

* Function: isremoving_pin_reference

* Interface: char *isremoving_pin_reference(
* char *portname)

* Purpose: This function returns a pointer to
* "portname" after removing a pin reference.

char *is removing_pin_reference(char *portname)
{

char *tempptr;

if((temp_ptr = strchr(portname, '@')) 1= NULL)

*tempptr =\0';
}

return (portname);

* Function: outputport

* Interface: void outputport(char *name, char *mode,
* char *type)

* Purpose: This function outputs a string built from
• "name", "mode", and "type".

void outputport(char *name, char *mode, char *type)
{

printf("%s : %s %s", name, mode, type);
F

• Function: begin_port_deci

78

* Interface: void begin_portdecl()

* Purpose: This function outputs the string
*"port (" for the beginning of a port decl.

void begin_port_decl()
{

printf(" port (");}

* Function: end port decl

* Interface: void endportdecl()

* Purpose: This function outputs the string
* ");" to close a port declaration.

void endportdecl()
{

printf(") ;\n");
I

* Function: endentity_decl

* Interface: void endentity_decl(char *entityname)*
* Purpose: This function outputs the string
* that closes an entity declaration.

void endentity_decl(char *entityname)
{

printf("end %s;\n\n", entity_name);I

* Function: more_ports present

* Interface: int more ports_present()

* Purpose: This function returns true if more ports
* need to be processed.

79

int more-ports-present()

int found_port = 0, token-index, temp_return value;
char *dulpjy-token;

token index = get-token index();
while Uis-delimiter-conrento)

advance to next token();

advance to next token();
while (T beginning-of-network-sectiono)

if (is -delimiter-commento)

dummy -token =get-tokeno;
temp -return -value = more_ports-present();
set-token -index(token index);
if (temp -return-value)

I
return(temp return-value);

else

return (found-port);

if (is -identifier-variableo)
f
set token index(token index);
return (++found-port);,
I

dummy-token = get-token();
I
set -token -index(token index);
return (found_port);

*Function: get_port_name

*Interface: char *get-port-name()

*Purpose: This function returns a pointer to a port
* port identifier.

char *get_port name()

80

int searchingfortoken = 1, startcontinue comment =
1,

stop_comment = 0;
char *tempname = "", *print_type;
char *current-token;

while (searching_fortoken)
{
if (end of tokens() 11 is delimiter comment() 11

is section header(top token()) 11
is identifier variable()

{
searching_fortoken = 0;}

else
{
currenttoken = gettoken(;
}

if (is delimiter comment()
{
current token = get token();
if (moreportspresent ()

{
printf(";\n\n");
}

else
{
end port decl();
printf("\n");

while(! is delimiter commento)I
current token = gettokeno;
make comment (current token,

start continue comment);

currenttoken = get tokeno;
make comment (currenttoken, stopcomment);
printf(" ") ;
return ("commentinterupt");

else if (end of tokenso)

return (NULL);

else if (issectionheader(toptokeno))

current token = gettokeno;
return (NULL);

else
{
current_token = get token();

81

tempname =
is removing_pin_reference(currenttoken);

return(tempname);
}

* Function: generate entitydeclaration

* Interface: void generate entity declaration(
* char *the file name)

* Purpose: This procedure generates the entity
** declaration from the tokens.

void generateentitydeclaration(char *the filename){
int port decl started = 0, last was comment = 0,

first_port = TRUE;
char *current port, *in mode = "in", *out mode = "out",

*type = ALTERATYPE, *entity_name, *lastport;

entityname = get entity_name(the file-name);
screenmessage("\r\nmaking entity

declaration \r\n");
print-'("library work;\n");
printf("use work.alterapackage.all;\n");
printf("entity %s is\n", entity_name);
if (set_to_inputs sertion()
advance to next tokeno;
f
while ((current_port = getportname() NULL)

{
if (! portdeclstarted)

{
begin_portdecl();
portdeclstarted = 1;
}

if (strcmp(currentport, "comment interupt") == 0)
{
last was comment = 1;

else
{
if (! lastwascomment)

{
if (firstport)

{
outputport(currentport, in mode,

type);
first port = FALSE;

82

else {
printf(";\n ")
outputport (current port, in mode,

type);

else
{
outputport (current_port, inmode,

type);
last was comment = 0;
}

I
I

while ((currentport = getportnameo) ! NULL)

if (! portdecl started)

begin portdecl();
port_declstarted = 1;

if (strcmp(currentport, "comment interupt") 0)

last was comment = 1;

else
{
if (! last was comment)

{
if (first_port)

{
output_port (current port, out mode,

typeT;
firstport = FALSE;
)

else

printf(";\n ");
outputport (current port, out mode,

type);

else {
outputport (currentport, outmode,

type);
last was comment = 0;
}I

I
if (port decl started && !last was comment)

83

{
end_portdecl();
}

if (last was comment)
{
printf ("\n");
I

end entity_decl (entityname);

alt equa.c

* altequa.c *

* Module: altequa.c

* Version: 1.0

* Purpose: This module contains procedures and
* functions for manipulating the tokens
* data structure of the adftovhd driver
* program. Specifically, this module is
* concerned with the EQUATIONS section.
*/

#include <altequa.h>

* Function: is delimiter semi

* Interface: int is delimiter semi()

* Purpose: This function returns true if the current
* token in the token data structure is a
* semi-colon delimiter.

int is delimiter semi(){
return(strcmp(toptokeno, ";") == 0);

}

* Function: terminate signal_assignment

84

* Interface: void terminate_signal_assignment()

* Purpose: This procedure outputs the termination
* string for a signalassignment statement.

void terminatesignalassignment()

char *string_buffer;

stringbuffer =(char *)malioc(MAXBUFFERSIZE
sizeof (char));

sprintf(string buffer, " after %s", DELAY);
outputstring(string_buffer);
outputstring(";");

* Function: outputstring

* Interface: void outputstring(char *thestring)

* Purpose: This procedure outputs "the-string" which
* is a portion of a signal assignment
* statement.

void outputstring(char *thestring)
{

int i, no space = FALSE;
static int line length = 0, indent = 0, newsignal

TRUE,
lastwasleftparen = FALSE;

if (strpbrk(the string, "\t\f\n\r\v") == NULL &&
strcmp (the-string, 0)

{
if (last was left_paren ii

strcmp(thestring, ")") == 0)
{
nospace = TRUE;
}

if (strcmp(thestring, "(") == 0)

last wasleftparen = TRUE;
I

85

else

last -was -left paren = FALSE;

if (new_signal,

indent = strlen(the_string) + 4;

if (strcrnp(the string, ") =0)

printf(";\n\n") ;
new-signal =TRUE;

line length =0;

no-space = FALSE;

else

if ((strlen(the-string) + line-length + 3) > 78)

{rnf O

for(i =0; i < indent; i++)

printf(")

I
printf("%s", the_string);
new signal =FALSE;

line -length =strlen(the string) + indent;

if (no_space 11 new-signal)

printf("%s, the_string);
new signal FALSE;
line-length =line_length +

strlen (the-string);

else

printf(" %s", the string);
new signal =FALSE;

line-length =line_length +
strlen(the-string) + 1;

no-space =FALSE;

*Function: output_signal_assignment symbol

86

* Interface: void outputsignalassignmentsymbol()

* Purpose: This procedure outputs "<=" which is a
* signal assignment symbol.

void output_signalassignment_symbol()
{

outputstring("<=");}

* Function: outputidentifier

* Interface: void outputidentifier()

* Purpose: This procedure outputs the current token
* preceded by "not" if the token is
* followed by a "'"

void output identifier()
{

if (strcmp(next token(, "'") == 0)
{
outputstring ("not");
outputstring(toptoken();
advance to next token);
}

else
{
outputstring(toptoken());
}

* Function: outputboolean_operator

* Interface: void outputbooleanoperator()

* Purpose: This procedure outputs the VHDL boolean
* operator for a given Altera boolean
* operator.

void output booleanoperator()

87

if (strcrp(top_tokeno, ") =0 11
strcmp(top_tokeno, ") =0)

output_string("not");
I

else if (strcmp(top_tokeno, "*' =0 11

fstrcrnp(top_tokeno, "&" = 0)

output_string("and");
I

else if (strcmp(top_tokeno, +) =0 11
strcmp(top_token(), "M" 0)

output_string("or");

else

printf("ERROR in output boolean operator\n");

*Function: output_identifier-variable

*Interface: void output-identifier-variable()

*Purpose: This procedure outputs the variable
* identifier names which need to be preceded
* by "not".

void output identifier-variable()

mnt string length = strlen(top -tokeno);
char *string_buffer, *str ptr;

string-buffer = (char *)malloc(MAXBUFFERSIZE*
sizeof (char));

str-ptr =strdup(top_token());
if T*str_ptr =I)

sprintf (string -buffer, "not %s", top_token() + 1);
output_string(string_buffer);

if (string_length > 1)

if (*(str_ptr + string_length - 1) =

88

*(str 'ptr + string_length -1) = \;
sprintEf (string_buffer, "not %s",
top_tokeno);
output-string(string_buffer);

*Function: is boolean-operator

*Interface: mnt is-boolean-operator()

*Purpose: This function returns true if the top token
* is a boolean operator.

mnt is-boolean-operator()

if (strcmp (top_tokenO,"" 0 11
strcrp(top tokeno, it!") 0 11
strcmp(top~token(), '*) 0 11
strcmp(top_token(), "&) 0 il
strcmp(top_tokeno, 11+1) 0 11
strcmp(top_ token(), "1# 1) 0)

I
return (TRUE);

else

return (FALSE);

*Function: generate_signal-assignment_statements

*Interface: void generate_signal_assignment-statements()

*Purpose: This procedure generates signal assignment
* statements by scanning the tokens for signals
* and outputting the VHDL code to represent
* the signal.

void generate-signal assignment-statements()

89

if (set toequation section())
{
advance to next tokeno;
while (strcmp(top token(), "END$") ! 0)

{
if (is delimiter commento)

output_commentstatement();
}

else if (is identifier variable()
{
output_identifier(;
}

else if (isboolean_operator())
{
outputbooleanoperatoro;I

else if (is delimiterequal())
{
outputsignal_assignmentsymbol();
I

else if (is delimiter semi())
{
terminatesignalassignment(;

else
{
output string(top_tokeno);
I

advance to next token(;
}

else
{
printf ("ERROR in generate signal assignment

tatement\n");
}

name mod.c

* name mod.c *
* *

***************** *** ***** ** * * ****** ** ****** *

* Module: name mod.c

* Version: 1.0

* Purpose: This module contains procedures and

90

* functions for manipulating the tokens
* data structure of the adftovhd driver
* program. Specifically, this module is
* concerned with modifying the identifiers
* of the Altera design files to legal VHDL
* identifier names.
*/

#include <name mod.h>

* Function: concatstrings

* Interface: char *concat strings(char *prefixstring,
* char *suffix-string)

* Purpose: This function returns a pointer to a string
* which is the result of concatenating
* "suffix-string" to "prefix-string".

char *concatstrings(char *prefix_string, char
*suffix-string)

{
int i, firstindex = strlen(prefixstring),

second index = strlen(suffix_string);
char *temp-str;

tempstr = (char *)malloc((strlen(prefix string) +
strlen(suffix string) + 1)

* slzeof(char));
for (i = 0; i < first index; i++)

{
*(tempstr + i) = *(prefixstring + i);I

for (i = 0; i < second-index; i++)
{
*(tempstr + first index + i) =

*(suffixstring + i);}
*(temp str + first index + second index) =\0';
return(tempstr); -

* Function: advance_pastcomment

* Interface: void advance_past_comment()

91

* Purpose: This procedure moves the current token to
* the first token past a comment token.

void advance_pastcomment()
{

advance to next tokeno;
while (! is delimiter commento)

{
advance to next token();
}

advance to next token();}

* Function: searchandchange

* Interface: void searchandchange(char *old-name,
* char *new name,
* char *input_pin_name)

* Purpose: This procedure substitues "new name" for
* "old name" while not disturbing the original
* "inputpinname". All of the tokens in the
* token data structure are checked.

void search andchange(char *old-name, char *new-name, char
* inputpinname)
{

int old-token index;

oldtoken index = gettokenindex();
advance to next tokeno;
if (set to network sectiono)

{
while (! end of tokens()

{
if (strcmp(top_tokeno, old-name) == 0 &&

toptoken() != input_pinname)
{
strcpy(top_tokeno, newname);
}

advance to next tokeno;
}set token_index(old_token_index);

}

II

92

/ ********* ***

* Function: modify_name

* Interface: void modifyname(char *nodename,
* char *input_pin_name)

* Purpose: This procedure adds "mod" to the "node name"
* and calls searchandreplace to modify all
* tokens of the same name.

void modifyname(char *nodename, char *inputpinname)
{

char *old-name;

oldname = strdup(nodename);
node name = concat strings(node name, "mod");
search and change(oldname, node_name, input_pin-name);
free(old name);

* Function: is_making_legalvhdlname

* Interface: char *is makinglegalvhdlname(
* char *token-name)

* Purpose: This procedure checks to make sure that
* "token name" starts with an alpha character
* and contains no illegal characters. The
* character "v" is substituted for any
* illegal characters. A pointer to the token
* name is returned.

char *ismakinglegalvhdlname(char *tokenname)
{

char *current_position, *firstcharacter =
*alphastring = "alpha_";

int i, first index = strlen(alphastring),
second-index = strlen(token name);

while ((current_position =
strpbrk(token name,

"!@&#*{}[]l\\/\?.,<>;\'\"+- .~$:^")) != NULL)
{*current_position = REPLACEMENTCHARACTER;
}

93

*first character = *token name;
if ((currentposition = strpbrk(first character,

"0123456789") != NULL))
{
return (concatstrings (alpha_string, tokenname));I

return (token name);

*Interface : void remove-il legal-vhdl-name-characters (

*Purpose: This procedure checks each tokenl to make
* sure it contains not illegal characters.

oinvoid remove_illegal_vhdl_name_characters

{

char *tempptr, *currenttoken;

if (setto_inputssection())
{
advance to next tokeno;
while (T end of tokens())

{
if (is delimiter commento)

{
advancepastcomment ();
I

if (is identifier variable()
{
currenttoken = top_token();
tempptr = strdup(currenttoken);
strcpy(current token,
ismaking_legalvhdlname(tempptr));

free (temp_ptr);
}

advance to next tokeno;
I

else
{
screenmessage("ERROR in remove illegal vhdl name

characters");
I

94

*Function: check-and change identifiers

*Interface: void check-and-change_identifiers()

*Purpose: This procedure checks each token to make
* sure it is a legal vhdle name.

void check-and-change-identifiers()

char *last-identifier, *input-pin-name;

if (set-to-network-sectiono)

advance-to-next-token();
while (!is-equation-section()

if (is -identifier-variableo)

last -identifier = top-token();

if (strcmp(top-tokeno, "INP?") == 0)

input -pin-name = get-input-pin-nameo;
if (strcmp(input pin name,

lfast-identifier)
-- 0)

modify_name (last identifier,
input-pin-name);

advance-to-next-tokenoi;

alt inst.c

* alt-inst.c

*Module: alt-inst.c

*Version: 1.0

*Purpose: This module contains procedures and

95

* functions for manipulating the tokens
* data structure of the adftovhd driver
* program. Specifically, this module is
* concerned with generating VHDL component
* instantiations from Altera design files.
*/

#include <alt inst.h>

* Function: isequation_section

* Interface: int isequationsection()

* Purpose: This function returns true if the current
* token in the token data structure is
* EQUATIONS.

int is_equationsection()
{

return(strcmp(toptokeno, "EQUATIONS:") == 0);}

* Function: is delimiterleft_paren

* Interface: int isdelimiterleftparen()

* Purpose: This function returns true if the current
* token in the token data structure is
* a left parenthesis.

int isdelimiterleftparen()
{

return(strcmp(top tokeno, 0);}

* Function: is delimiter_right_paren

* Interface: int isdelimiterrightparen()

* Purpose: This function returns true if the current
* token in the token data structure is

96

* a right parenthesis.

int is delimiter rightparen()
{

return(strcmp(top_tokeno, "')") == 0);}

* Function: outputcommentstatement

* Interface: void outputcommentstatement()

* Purpose: This procedure outputs a comment string.

void outputcommentstatement()
{

advance to next token();
while (T is delimiter comment()

{

make comment (top token(), TRUE);
advance to next token();
I
makecomment(toptokeno, FALSE);

* Function: output_instantiationclose
*

* Interface: void outputcommentstatement()

* Purpose: This procedure outputs a comment string.

void outputinstantationclose()
{

printf(");\n\n");I

* Function: outputassociation

* Interface: void output association(char *local,
* char *actual,
* int first-association)

97

* Purpose: This procedure outputs an association
* between a "local" and "actual" and sets
* a flag "first association" if it is the
* first association.

void output association(char *local, char *actual, int
first-association)
{

static int linelength = 0;

if (first association)
{
linelength = 0;
}

if (strlen(local) + strlen (actual) + line-length + 7
> 65)

{
printf(",\n %s => %s", local,

actual);
line length = strlen(local) + strlen(actual) + 5;
}

else
{
if (first association)

{
printf("%s => %s", local, actual);
first association = FALSE;
line length = line length + strlen(local) +

strlen(actual) + 4;
I

else
{
printf(", %s => %s", local, actual);
linelength = linelength + strlen(local) +

strlen(actual) + 6;
}

* Function: output_instantiationheader

* Interface: void output instantiation(
* char *componentmark)

* Purpose: This procedure outputs an instantiation
* header that includes the "componentmark".

void outputinstantiationheader(char *component-mark)

98

static int label identifier number = FIRST;
char *label id;

label id = (char *)malloc(MAX NAME LEN * sizeof(char));
if (sprintf(labelid, "%c%d",'U',

label identifier number) <= 0)
{
printf ("ERROR in output instantiation header\n");
}

printf(" %s : %s\n port map (", label id,
componentmark);

label identifier number++;

* Function: outputcomponentinstantiations

* Interface: void output_component instantiations(
* char *component inputsoutputs,
* char *componentmark)

* Purpose: This procedure outputs generates the
* component instantiations from the tokens
• data structure.

* ** *** ****************** *** *** *********** ******* ******* ***

void output_componentinstantiations (char

**componentinputs_outputs,

char *componentmark){
int portindex = FIRST, firstassociation = TRUE, index

= FIRST;
char *localvalue, *default-value, *actual-value,

*dummyvalue, *portlist;

portlist = strdup(get_portsfor(component mark));
local_value = strtok(port_list,)
dummy value = strtok(NULL, " ");
default value = strtok(NULL, ""
output instantiation header (component mar):);

while (local-value != NULL)
{
if (strcmp(componentinputsoutputs[port index],

"open")
== 0)

{
if (strcmp(defaultvalue, "ndf") != 0)

actual value = default-value;

99

else
{
actual value =

component_inputsoutputs[portindex];

else
{
actual-value =

componentinputsoutputs[port index];
}

port-index.-+;
outputassociation(localvalue, actual value,

first-association);
first association = FALSE;
local value = strtok(NULL, "

dummy-value = strtok(NULL, "
default value = strtok(NULL, "
}

free(port list);
outputinstantiationclose(;

* Function: collect_inputsandappend

* Interface: char **collect inputs_andappend(
* char **outputs)

* Purpose: This function returns a pointer to an array
* of pointers to the inputs for a component
* and also contains the appended outputs.

char **collectinputsand append(char **outputs)
{

int index = FIRST, commacount = 0, inputfound -

FALSE,
outputindex = FIRST;

char **componentinputsandoutputs, *openinput =
"open";

advance to next tokeno;while (! is_delimiter_left_paren()
{
if (is delimiter comment()

output comment statement();

100

advance to next tokeno;
I

comma count = count-commas(")");
component_inputsandoutputs =

gettokenarray(comma count +
MAX NUMCOMPONENTOUTPUTS + 2);

advance to next tokeno;
while (! is_delimiterright_paren()

{

if (is delimiter commento)
{-

ouitputcommentstatement);
}

else 'is identifier variable()

compor.ent_inputs_andoutputs[index] =
toptoken();

input found = TRUE;
index++;
I

else if (is delimiter comma())

if (! inputfound)f
component inputsandoutputs[index] =

openinput;
index++;
I

else
{
input_found = FALSE;
I

I
advance to next tokeno;

if (! input_found)

component_inputs_andoutputs[index] = open_input;
index++;

while (outputs[outputindex] != NULL)

component_inputs_and outputs[index] =
outputs[outputindex];

output-index++;
index++;

index = FIRST;
return(componentinputsandoutputs);

101

* Function: determinecomponentmark

* Interface: char *determine_componentmark()

• Purpose: This function returns a pointer to a string
• that a component mark.

char *determine componentmark(){
advance to next token();
while (! iscomponent(toptoken()) &&

end of tokens()){
if (is delimiter commento)

{-

outputcomment statement);}
advance to next tokeno;
}

if (end of tokenso)
{
printf("ERROR in determine component mark\n");
}

else
{
return (top_token ();
I

* Function: collectcomponent_outputs

* Interface: char **collect_componentoutputs()

* Purpose: This function returns a pointer to an array
• of pointers to the outputs to a component.

char **collectcomponentoutputs()
{

int index = FIRST, endofinput = FALSE;
char **outputsarray;

outputsarray =
gettokenarray(MAXNUMCOMPONENTOUTPUTS + 2);

advance to next tokeno;
while (! is_delimiterequal())

{

if (isequation sectiono)
{

102

return (NULL);

if (isdelimiter commento){
output_commentstatement(;
}

else if (is identifier variable())
{
outputs_array[index] = top_token();
index++;
}

advance to next token();
}
return (outputs_array);

* Function: generate instantiations

* Interface: void generateinstantiations()

* Purpose: This procedure generates component
* instantiations from the tokens.

void generateinstantiations()
{

int done with instantiations = FALSE;
char **componentoutputs,

**componentinputsandoutputs,
*component_mark;

if (set to network section())
{
while (! done with instantiations)

{
if ((componentoutputs =

collectcomponent_outputs()) != NULL)
{
componentmark =

determine componentmarko;
component_inputsand outputs =

collectinputsandappend(
componentoutputs);

output_componentinstantiations(
component_inputsandoutputs,
componentmark);}

else
{done with instantiations = TRUE;
}

103

}
}

else {
printf ("ERROR network section not present\n");

}}

altera p.c

* altera_p.c *

* Module: altera_p.c

* Version: 1.0

* Purpose: This module contains procedures and
* functions for manipulating the tokens
* data structure of the adftovhd driver
* program. Specifically, this module is
* concerned building the tokens structure.
*/

#include <tokens.h>

static tokens struct tokens;

* Function: get identifiertype

* Interface: char *getidentifier type(
* char *tokenentry)

* Purpose: This function returns a pointer to the
* type of "tokenentry".

char *getidentifiertype(char *tokenentry){
if (strcmp(token entry, "EQUATIONS:") == 0 i I

strcmp(tokenentry, "INPUTS:") == 0 1 i
strcmp(token_entry, "OUTPUTS:") == 0 ii
strcmp(token entry, "NETWORK:") == 0 II
strcmp(tokenentry, "END$") == 0

{
return("identifier reserved");

104

I
else

{
return ("nametype");
}

/ **

* Function: advance to next token

* Interface: void advance to next token()

* Purpose: This procedure advances to the next token.

void advance to next token()
{

tokens.index++;
}

/**

* Function: end-of tokens

* Interface: int end of tokens()

* Purpose: This function returns true if the current
* token is the last.

int end of tokens()
{

return(tokens.index >= tokens.total entries I1
strcmp(tokens.tcken_array[tokens.index], "END$")

== 0);}

* Function: gettoken

* Interface: token *gettoken()

* Purpose: This function returns a pointer to the
* current token and advances to the next.

105

tokon *get-token()

if (end of tokens 0)

return (NULL);

else

tokens.index = tokens.index + 1;
return(tokens.token_array [tokens.index -1]);

*Function: next-token

*Interface: token *next-token()

*Purpose: This function advances to the next token.

tokon *next-token()

if (tokens.index + 1 >= tokens.total-entries)

return ('\O');

else

return (tokens.token arrayftokens.index + I]');

*Function: is identifier-variable

*Interface: mnt is identifier-variable()

*Purpose: This function returns true if the current
* token is of the type "name-type".

mnt is identifier variable()

return(strcmp(tokens.token-type_array[tokens.index],
"name type") ==0);

106

* Function: settoprevioustoken

* Interface: int set toprevious token()

* Purpose: This function sets the current token to the
* previous token.

int set to_previoustoken()
{

if (tokens.index < 1)
{
return(0);
}

else
{
tokens.index = tokens.index - 1;
return(1);}

* Function: is delimiter comment

* Interface: int is delimiter comment()

* Purpose: This function returns true if the current
* token is a comment.

int is delimiter comment()
{

return (strcmp (tokens.token_type_array [tokens.index],
"delimitertypecomment") == 0);I

* Function: gettokentype

* Interface: char *gettoken_type()

* Purpose: This function returns the type of the
* current token.

107

char *get-token-type()
{

return(tokens.tokentypearray[tokens.index]);
}

/ **

* Function: toptoken
.

* Interface: token *top_token()
,

* Purpose: This function returns a pointer to the
* current token.

tokon *toptoken()
{

return (tokens.token array[tokens.index]);I

* Function: gettokenindex

* Interface: int gettokenindex()

* Purpose: This function returns the index to the
* current token.

** ******** **** ************** *************** *** *** * *********

int get token index()
1

return (tokens. index);I

* Function: set token index

* Interface: void set token index(int index)

* Purpose: This procedure sets the index to "index".

void set token index(int index)
{ tokens.index = index;

108

*Function: beginning-of-network-section

*Interface: mnt beginning_of-network-section()

*Purpose: This procedure returns true if the current
* token is "NETWORK:".

int beginning-of-network-section()
I

return(strcmp(tokens.token array(tokens.indexl,
"NETWORK:") == 0);

*Function: get delimiter-type

*Interface: char *get delimiter-type(
* char *delimiter-name)

*Purpose: This procedure returns the type of
* "delimiter-name"

char *get-delimiter-type (char *delimiter-name)

if (strcmp(delimiter-name, "" =0)

return("'delimiter-type comment"l);

else if (strcmp(delimiter-name, "I"1) ==0)

return("delimiter-type_slash");

else if (strcmp(delimiter-name, "\" =0)

return("'delimiter-type-back-slash"');

else if (strcmp(delimiter-name, "" =0)

return("'delimiter-type comma"l);

else if (strcmp(delimiter name, "" =0)

109

return("delimiter-type_semi-colon");

else if (strcmp(delimiter-name, ":) 0)

return("delimiter-type colon");

else if (strcmp(delimiter-name, 1*) =0)

return("delimiter-type_astric");

else if (strcmp(delimiter name, "" =0)

return("delimiter-type plus");

else if (strcmp(delimiter-name, "" =0)

return("cielimiter-type_left paren");

else if (strcmp(delimiter-name, "" =0)

returri("delimiter_type_right_paren");

else if (strcmp(cielimiter-name, 1=) =0)

return('delimiter-type_equal");

else if (strcmp(delimiter-name, "\n") ==0)

return("delimiter_type_lf");

else if (strcmp(delimiter-name, ") =0)

return("delimiter-type_space");

else

return("delimiter-type unknown");

*Function: build-tokens

*Interface: void build-tokens (FILE *input-stream)

*Purpose: This procedure builds the array of token
* pointers from the input file.

void build tokens (FILE *input_stream)

110

int i, ch, at_equation section = FALSE,
at inputs section = FALSE,
word started = FALSE, index = FIRST;

long filesize;
char *tokenentry, *new_ptr,

*newstr, **tokenarr, **tokentype_arr;

screen message("\r\nparsing input file \r\n");
filesize = getfilelength(inputstream);
token arr = gettoken_array(filesize);
token-type_arr = get tokenarray(filesize);
while ((ch = fgetc(inputstream)) != EOF)

{

if (is delimiter(ch, at equation section))
{
if (word started)

{
token arr[index] = token entry;
if (strcmp(token entry, "INPUTS:") 0)

{
atinputssection = TRUE;
}

if (strcmp(token_entry, "EQUATIONS:") ==
0)

{
at_equationsection = TRUE;
I

if (iscomponent(tokenentry))
{
tokentypearr[index] =

"functiontype";
I

else
{
token type arr[index] =
getidentifiertype(tokenentry);
I

index++;
word started = FALSE;
I

new_ptr = getnewptr(2);
*newptr ch;
*(newptr +1) = '\0';
token arr[index] = newptr;
tokentype arr[index] =

get_delimitertype(new_ptr);
index++;
}

else
{if (! word started)

iii

{
token entry = get newptr(l);
*tokenentry = '\0';
word started = 1;
}

new str get newptr(2);
*new str = ch;
*(new str + 1) = '\0';

token-entry append-to token (tokenentry,
new str);

}}

if (word started)
{
token arr[index] = token-entry;
token typearr[index] = "terminator-type";
index++;
word started = 0;
}

fclose(inputstream);
tokens.tokenarray = token arr;
tokens.tokentype_array = tokentypearr;
tokens.index = 0;
tokens.total entries = index + 1;
remove illegal vhdl name characters(;
checkandchange_identifierso;

ent arch.c

Sentarch.c

*Module: entarch.c

* Version: 1.0

* Purpose: This module contains procedures and
* functions for manipulating the tokens
* data structure of the adftovhd driver
* program. Specifically, this module is
* concerned with building the entity
* architecture.
*/

#include <ent arch.h>

112

*Function: get-ports-for

*Interface: char *get_ports-for(char *component-name)

*Purpose: This function returns a pointer to a list
* of the ports for "component-name".

char *get--ports-for(char *component-name)

if (strcmp(component-name, "1INP1) ==0)

return("Inl in ndf Outi out nd~f")

else if (strcmp(component-name, "1CLKB") ==0)

return("Inl in ndf Outi out ndf")

else if (strcmp(component-name, "CONF") ==0)

return("Inl in ndf Qe in VCC Outi out ndf")

else if (strcmp(component-name, "1COIF") == 0)

return("Inl in ndf Oe in VCC Outi out ndf Fbk out
ndf 11);

else if (strcmp(component name, "NORE") ==0)

return("Inl in ndf 01k in ndf C in GND P in OND
Fbk out ndf")

I

return("Jn in ndf Clk in ndf Kin in ndf C in GND P
in GND Fbk out ndf "1);

else if (strcmp(component-name, "INOCF") 0)

return("Inl in ndf Fbkl out")

else if (strcmp(component-name, "RONF") 0)

return("Inl in ndf 01k in ndf C in GND P in GND
Outi out ndf)

else if (strcmp(component name, "AND2") ==0II

113

strcmp(component_name, "NAND2")9 0 11
strcmp(component_name, "0R.2") ==0 11I
strcmp(cornponent_name, "NOR.2") ==0)

I
return("Inl in ndf 1n2 in ndf Outi out ndf")
I

else if (strcmp(component name, "AND3W) =0 11I
strcmp(component_name, MNANDY") =0 I 1
strcmp (component_name, "0R.3") ==0 I11
strcmp(compcnent_name, "NOR3M) =0)

f
return("1n1 in ndf 1n2 in ndf 1n3 in ndf Outi out

ndf")

else if (strcmp(component name, "AND4") =0 11I
strcmp (component_name, "NAND4") =0 11I
strcmp (component_name, tIOR4t") ==0 1 I
strcmp (component_name, "NOR4") ==0)

f
return("Inl in nd~f 1n2 in ndf 1n3 in ndf 1n4 in

ndf Outi cit ndf")

else if (strcmp(component n-me, "ANDY") ==0 I
strcmp (component_name, MNANDY") ==0I

strcmp (component_name, "OR.6") ==0

strcmp (component_name, "NOW) ==0)

return("1nl in ndf !n2 in ndf 1n3 in ndf InM in
ndf 1n5 in ndf In6 in ndf Outi out ndf)

I
else if (strcmpkaompor-nt name, "AND8") ==0 11I

strcmp (component_name, "NAMVD8) =0 I 1
strcmp (component_name, "0R8") ==0 I1
strcmp(component_name, "NOR8") ==0)

f
return("Inl in ndf In2 in nd~f 1n3 in ndf 1n4 in

ndf 1n5 in ndf InE in ndf 1n7 in ndf 1n8 in
ndf Outl out ndf")

else if (strcmp(component name, "AND12") ==0 I I
strcmp (component name, "NAND12") ==0 1I
strcmp (component name, "OM1") ==0 I I
strcmp(component-name, "NOR12") ==0)

return("Inl in ndf 1n2 in ndf 1n3 in ndf 1n4 in
ndf 1n5 in ndf 1n6 in ndf 1n7 in ndf 1n8 in

ndf 1n9 in ndf InlO in ndf mul in ndf
1n12 in ndf Outi out ndf)

else

printf ("ERROR get ports for\n");
return (NULL);

114

*Function: output-decl

*Interface: void output-decl (char *name, char *mode,
* char *type, mnt new-component)

*Purpose: This procedure outputs a component
* declaration.

void output decl (char *name, char *mode, char *type, it
new component)

static int line-length = 0, first_signal;

first-signal = new-component;
if (first-signal)

line-length =0;

I
if (strlen(name) + strlen (mode) + strlen(type) +

line-length + 6 > 65)

printf(";\n %s : %s %s", name, mode,
type);

line-length =strlen(name) + strlen(mode) +
strlen(type) + 5;

else

if (first signal)

printf ("%s : %s %s", name, mode, type);
first signal =FALSE;

line-length line -length + strlen(name) +
strlen(mode) + strlen(type) + 3;

else

printf("; %s :%s %s", name, mode, type);
line-length = line -length + strlen(name) +

strlen(mode) + strlen(type) + 5;

*Function: output-component decl header

115

* Interface: void output_componentdecl header(
* char *componentname)

* Purpose: This procedure outputs a component
* declaration header.

void outputcomponentdeclheader(char *componentname)
{

printf(" component %s\n port (", componentname);

* Function: output_closecomponentdecl

* Interface: void outputclosecomponent decl()

* Purpose: This procedure outputs a component
* declaration end.

void outputclosecomponentdecl()

printf(");\n end component;\n\n");}

* Function: outputcomponentports

* Interface: void output_component_ports(char *ports)

* Purpose: This procedure outputs a component ports
* from the list "ports".

void outputcomponent_ports(char *ports)
{

int new component;
char *portname, *portmode, *dummy, *portslist;

newcomponent = TRUE;
ports list = strdup(ports);
portname = strtok(portslist,)
port mode = strtok(NULL, "
dummy = strtok(NULL, "
while (port_name != NULL)

116

outputdecl(portname, portmode, ALTERATYPE,
newcomponent);

newcomponent = FALSE;
port-name = strtok(NULL,) ;
port-mode = strtok(NULL, "
dummy= strtok (NULL, "
I

free(ports list);

* Function: output_component_decl

* Interface: void output_component_ports(char *ports)

* Purpose: This procedure generates the output of
* a component declaration.

void outputcomponentdecl(char *componentname)
{

char *ports;

ports = getports_for (componentname);
output_componentdecl header(component name);
outputcomponent_ports(ports);
outputclosecomponentdecl();

}

* Function: set toinputssection

* Interface: int set to inputssection()

* Purpose: This function returns true if the current
* token can be set to the inputs section.

int setto_inputssection()
{

int index = FIRST;

set token index(FIRST);
while (! end of tokens()

{if (strcmp(top_token(), "INPUTS:") == 0)
{

117

return (TRUE);
)

index++;
set token index(index);
I

return (FALSE);
}

* Function: set to network section
*w

* Interface: int set to network section()

* Purpose: This function returns true if the current
* token can be set to the network section.
*

int set to network section()
{

int index = FIRST;

set token index(FIRST);
while (! end of tokenso)

{
if (strcmp(toptoken(, "NETWORK:") == 0)

{
return (TRUE);
I

index++;
set token index(index);

return (FALSE);

/***

* Function: count-commas

* Interface: int countcommas(char *stoppoint)

* Purpose: This function returns the number of commas
* between the current token and "stoppoint".

int countcommas(char *stopypoint)

int comma-count = 0, old-index;

old index = gettoken index();
advance to next token(;
while (strcmp(toptoken), stop_point) != 0)

118

{
if (is delimiter commao)

comma count++;

advance to next token();
}

set token index(old index);
return ((commacount));

* Function: set to leftparen

* Interface: int settoleftparen()

* Purpose: This function returns true when the current
* token can be set to a left parenthesis.

int set toleftparen()
{

while (! end of tokens()
{
if (strcmp(top_token(, "(") == 0)

{
return (TRUE);
I

else
{
advance to next tokeno;
I

}
return (FALSE);I

/***

* Function: getparametercount

* Interface: int getparametercount()

* Purpose: This function returns the number of
* parameters found by counting commas.

int getparametercount()
{ int comma count;

119

if (set -to left_paren()

comma count = count-commas(

return(comma-count + 1);

*Function: append_parameter-number-if-necessary

*Interface: void append_parameter -number -if -necessary(
* char *component-name)

*Purpose: This procedure will append the number of
* inputs to a component name.

void append -parameter-number-if-necessary(char
*component-name)

int parameter count;
char *temp-name, *temp-str, *parameter-count-string;

if (strcmp(component name, "AND") ==0 11
strcmp(component name, "NAND") ==0 I11
strcmp(component name, "OR") ==0 11
strcmp(component-name, "NOR") ==0

parameter count = get parameter counto;
temp-str = (char *)mafloc(STANDjARD -STR -LEN*

sizeof (char));
parameter-count-string = itoa (parameter-count,

temp str, 10);
temp_name = strcat (component -name,

parameter count string);
component-name =temp name;

return (component-name);

*Function: generate-component-decis

*Interface: void generate_component-decls()

*Purpose: This procedure generates all the component
* declarations.

120

void generate_component-decls()

int index = 0, adding_to_list = TRUE;
char **component list;
char *temp_ token;

component -list = get -token-array(MAXNUM FUNCTIONS);
if (set -to -network-section()

f
temp -token = get-tokeno;
while (!end-of-tokenso)

if (is_component(temp_token))

append _parameter-number-if necessary(
temp_ token);

index =0;
adding to list = TRUE;
while (adding-to-list)

if (component-list [index] == NULL)
I
component-list[index]

temp_token;
adding-to-list = FALSE;

else if
(strcmp (component list [index],

temp-token) ==0)

adding_to list = FALSE;

else

if (index < MAX NUM FUNCTIONS)

index++;

else

printf("ERROR in
gen-comp_decls\n");

temp_token =get_tokeno;

index =0;

while (component-list[index] != NULL)

output_component-decl (component list [index]);
index++;

121

}
printf("\n");
}

* Function: output_signal

* Interface: void outputsignal(char *signalname,
* char *type)

* Purpose: This procedure outputs a signal string.

void outputsignal(char *signal-name, char *type)
{

printf("%s : %s", signalname, type);}

* Function: endthe_signaldecl

* Interface: void endthe_signaldecl()

* Purpose: This procedure outputs an end string for a
* signal declaration.

void endthesignaldecl()
{

printf(";\n ");I

* Function: endthe_signaldecls

* Interface: void endthesignaldecls()

* Purpose: This procedure outputs an end string for a
* all signal declarations.

void end signaldecls()
{ printf ("\nkn") ;

II

122

* Function: output_signalheader

* Interface: void output_signalheader()
*

* Purpose: This procedure outputs a header string for
* a signal declaration.

void output_signalheader()
{

printf("signal ");}

* Function: isdelimiterequal

* Interface: int isdelimiterequal()

* Purpose: This function returns true is the delimiter
* is an equal operator.

int isdelimiterequal()
{

return(strcmp(toptoken(), "=") 0);}

* Function: read_past_equation

* Interface: void readpastequation()

* Purpose: This procedure advances the current token
* past the equation semi-colon.

void read_pastequation()
{

while (strcmp(toptoken(, ;") = 0)
{
advance to next token();
I

advance to next token();

123

* Function: at network section

* Interface: int at network section()

* Purpose: This function returns true if the current
* token is "NETWORK:".

int at network section()

return(strcmp(toptoken(), "NETWORK:") == 0);

* Function: is delimiter comma

* Interface: int is delimiter comma()

* Purpose: This function returns true if the current
* token is a comma.

int is deliri.er comma()
{

re ,rn (strcmp (toptoken(), ,0)I

* Function: set to inputsection

* Interface: int set to inputsection()

* Purpose: This function returns true when the current
* token can be set to the inputs section.

int set to inputsection()
{

set token index(FIRST);
while (strcmp(toptoken(, "INPUTS:") != 0)

{advance to next token();

/ ** ** * ** ** ** * ** ** ** * ** ** ** * * **** * * ** *

124

*Function: get-list-of_io_pins

*Interface: char **get-list-of-io-pins()

*Purpose: This function returns a pointer to an array
* of pointers to component io pins.

char **get-list-of_io_pins()

mnt number of io pins, io-index = FIRST;
char **listE-of io__pins;

set to input sectiono;
number of io-pins = count-commas("INETWORK:") + 5;
list of io pins = get-token array(number of io-pins);

advance to next tokeno;
while (T at netwokscto-

t{wr-etoo

if (is -delimiter cormento)
f
advance-past-coramentO;

else if (is-identifier-variable() &&
is-section-header(top-tokeno))

list -of -io-pins~io index] top-tokeno;
io index++;
I

advance-to-next-tokeno;

return(list-of-io-pins);

*Function: get_signal-name

*Interface: char *get-signal_name()

*Purpose: This function returns a pointer to signal
* name found in the tokens.

char *get_signal-name()

char *last-identifier;

while (!end-of-tokens()

if (is delimiter commento)

125

advance-past-commnentO;

else if (is identifier variableo)

last -identifier = top-tokeno;

else if (is-delimiter_equal())

advance to next token();
return (fast -idenHtifier);

advance-to-next-tokeno;

return (NULL);

*Function: set-to-equation-section

*Interface: mnt set-to_equation-section()

*Purpose: This function returns true when the current
* token can be set to the equations section.

mnt set-to-equation-section()

mnt index = FIRST;

set token index(FIRST);
while (!end-of-tokens 0)

if (strcmp(top-token(), "EQUATIONS:") 0)

return (TRUE);

index++;
set -token-index(index);

return (FALSE);

*Function: is_io_pin-name

*Interface: mnt is -io-pin-name (char *signal-name,
* char **list_of_iopin_names)

*Purpose: This function returns true when
* "signal name" is in the list of io pins.

126

int is io pin_name(char *signal_name, char

**list of io pinnames)

int io index = FIRST;

while (list ofio pinnames[ioindex] != NULL)
{
if (strcmp(list_of_iopinnames[io index],

signal-name) == 0)
{
return(TRUE);

else

io index++;

return (FALSE);

* Function: generatesignal_decls

* Interface: void generate_signaldecls()

* Purpose: This procedure generates all the signal
* declarations from the tokens.

void generatesignal_decls()
{

int signal headerprinted = 0, io index;
char *signal name, **list of iopinnames;

list of io pinnames = get list of io pinso;
if (set to network section()

advance to next tokeno;
while ((signalname = getsignalname()) NULL)

{
if (! is io pinname(signalname,

list of io pinnames))

outputsignal headero;
outputsignal(signalname, ALTERA TYPE);
end the signal decl(;
signalheaderprinted = 1;

}

127

if (signal header printed)
{
endsignal_declso;}

}

/ ******************* **************************************

* Function: endbody

* Interface: void endbody(char *entityname)

* Purpose: This procedure outputs the end to the
* entity architecture body.

void end-body(char *entityname)

char *architectureprefix, *architecturename;

architecture prefix = (char *)malloc((12 +
strlen(entity name)) * sizeof(char));
strcpy(architectureprefix, "structured_");

if((architecture name = strcat(architecture_prefix,
entityname)) == NULL)

printf ("ERROR in endbody\n");
I

printf("end %s;\n\n", architecturename);

* Function: begin-body

* Interface: void begin body(char *entity_name)

* Purpose: This procedure outputs the beginning of the
* entity architecture body.

void beginbody()

printf ("begin\n\n");

* Function: generatearchitectureheader

* Interface: void generate architectureheader(

128

* char *entity_name)

* Purpose: This procedure outputs the header for the
* entity architecture.

void generatearchitectureheader(char *entity_name)

char *architectureprefix = "structured-",
*architecture name;

if ((architecturename = strcat(architectureprefix,
entity_name)) == NULL){

printf ("ERROR in gen_archheader\n");
I

printf ("architecture %s of %s is\n\n ",
architecture-name,

entityname);
}

* Function: get_inputpinname

* Interface: char *get_input_pin_nane()

* Purpose: This function returns a pointer to the name
* of an input.

**** *** ** ******* ***** ** ********* *** ******* ***** ********

char *get_input_pin_name()

char *input_pin_name;

advance to next tokeno;
while (strcmp(toptokeno, 0)

{
if (is identifier variableo)

{
input_pinname = toptoken();

advance to next token();

return(inputpinname);

* Function: build entityarchitecture

129

* Interface: void build entityarchitecture(
* char *inputfile)

* Purpose: This procedure generates the entity
* architecture from the tokens.

void buildentity_architecture(char *inputfile)
{

char *entityname, **list of iopins;

entity_name = get entity_name(inputfile);
screenmessage("\r\nstarting entity

architecture \r\n");
generatearchitecture header(entity_name);
screenmessage("\r\nmaking signal

declarations \r\n");
generate_signal decls(list of iopins);
screenmessage ("\r\nmaking component

declarations \r\n");
generatccomponentdecls(;
begin bodyo;
screenmessage("\r\nmaking signal assignment

statements \r\n");
generatesignal assignmentstatements(;
screen message("\r\nmaking component

nstantiations \rn");
generate instantiations();
end body(entityname);
screenmessage("\r\nfinished.... \r\n");

altransf.c

* altransf.c *

* Module: altransf.c

* Version: 1.0

* Purpose: This module contains procedures and
* functions for manipulating the tokens
* data structure of the adftovhd driver
* program. Specifically, this module is
* concerned with the transformation of an
* Altera file.
*/

130

#include <altransf.h>

* Function: declareentity

* Interface: void declareentity()

* Purpose: This procedure outputs a message for
* the start of the entity declaration.

void declareentity()

printf("Here is the entity declaration\n");I

* Function: errormessage()

* Interface: void errormessage()

* Purpose: This procedure outputs an error message.

void error message()
{

printf("ERROR ***OUTPUT: SHOULD HAVE ALREADY BEEN
PROCESSED***\n");I

/**

* Function: error message2()

* Interface: void errormessage2()

* Purpose: This procedure outputs an error message.

void error message2()
{

printf("ERROR ***EQUATIONS: SHOULD HAVE ALREADY BEEN
PROCESSED***\n");I

/**

131

* Function: is section header

* Interface: int is section header(tokon *current-token)

* Purpose: This function returns true is
* "current-token" is a section header.

int is section header(tokon *current-token)
{

return(! (strcmp(current token, "INPUTS:"))
(strcmp(current token, "OUTPUTS:")) I
(strcmp(current-token, "NETWORK:")) I
(strcmp(current-token, "EQUATIONS:")) I
(strcmp(currenttoken, "END$")));

* Function: is code for

* Interface: char is code for(token *current-token)

* Purpose: This function returns a pointer to the code
* for "current token".

char is code for(tokon *current-token)
{

if (! strcmp(current token, "INPUTS:"))
{
return('I');
}

else if (! strcmp(current token, "OUTPUTS:"))

return('0');
I

else if (! strcmp(current token, "NETWORK:"))
{
return('N');
}

else if (!strcmp(current token, "EQUATIONS:"))
{
return ('Q');
I

else if (!strcmp(current token, "ENDS"))

return('E');

else {

132

return('Z');
I}

* Function: make-comment

* Interface: void makecomment(token *currenttoken,
* int start or continue)

* Purpose: This procedure outputs a comment from the
* "current-token" while "start or continue".

void make comment (tokon *current-token, int
start or continue)
{

char *comment = "--
static int comment character count = 0, comment started

- 0;

if (! start or continue)

if (comment-started)
{
printf("\n\n");
comment started = 0;
comment character count = 0;
)

else
{
printf ("\n");
I

else
{
if (! comment-started && *current token != LF)

{
printf("%s", comment);
comment-started = 1;
}

if (*current-token == LF)
{
printf("%s", current token);
comment character count = 0;
comment-started = 0;
I

else if ((comment character count +
strlen(current token)) < 77)
{printf("%s", current token) ;

133

comment character count =
comment character count +

strlen(current token);
I

else
{
printf("%s", comment);
comment character count = 0;
printf("%s", current token);
comment character count =

comment character count +
strlen(current token);

I

BIBLIOGRAPHY

1. Borland. Turbo C User's Guide. Scotts Valley:
Borland International, 1988.

2. Borland. Turbo C Reference Guide. Scotts Valley:
Borland International, 1988.

3. Altera. A+plus User Guide. Santa Clara: Altera
Corporation, 1985, 1986, 1987.

4. Altera. A+plus Reference Guide. Santa Clara:
Altera Corporation, 1985, 1986, 1987.

5. Lipsett, Schaefer, Ussery. VHDL: Hardware
Description and Design. Norwell: Kluwer
kcademic Publishers, 1989.

6. Coelho, David R. The VHDL Handbook. Norwell:
Kluwer Academic Publishers, 1989.

7. Kernighan, Brian W. and Ritchie, Dennis M. The C
Programming Language. Murray Hill: Prentice
Hall, 1988.

8. Alford, Roger C., Programmable Logic Designer's
Guide. Howard W. Sams & Company, 1989..

134

