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1. PRODUCTIVITY MEASURES OVER THREE YEARS

® Refereed papers submitted but not yet published 7
® Refereed papers published 74
® Unrefereed reports and articles 4
® Books or parts thereof submitted but not yet published 6
® Patents filed but not yet granted 0
® Patents granted 0
® Invited presentations 47
® Contributed presentations 31

® Honors received (fellowships, technical society appointments,

conference committee role, editorship, etc.) 15
® Prizes or awards received 4
® Promotions obtained 6
® Graduate students supported >25% of full time 16
® Post-docs supported > 25% of full time 4

® Minorities supported (include Blacks, Hispanics, American Indians
and other native Americans such as Aleuts, Pacific Islanders, etc,
Asians, and Indians) 0
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2. OVERVIEW OF TECHNICAL ACTIVITIES OVER THREE YEARS

In the Executive Summary .of the proposal for this project, we opened with the fol-
lowing problem statement. ."The use of robots to diagnose and disassemble defec-
tive equipment during and after manufacture, to detect faulty parts and replace them
with properly functioning parts, and then to reassemble a total system and make it
operational, is a potentially important application of robotic technology. However,
present robotic technology only provides very immature approximations to the capa-
bilities required to accomplish operations of such sophistication.’

The proposal was to study the ... "essential subcapabilities and develop demonstra-
tions which aim to show how these separate capabilities can be integrated to realize
important repair processes for industry and maintenance shops.”

“*To respond to this challenge, we have integrated five essential components of
engineering science:

1) -graphical simulations of assembly, repair and manufacturing,
2) -automated manufacturing of parts

3) ‘dextrous manipulation of parts

4) »computer vision for scene analysis and inspection of parts
5) *system integration and real-time operating systems, -

Our individual research efforts have focussed on the-first four areas because we
believe they are the basic scientific ingredients that must be set in place prior to
integration for the scenario in figure 1. -*Automated repair is dependent on realistic
graphical simulations, deterministic manufacturing procedures and dextrous robots
that can manipulate the manufactured parts produced in the remote manufacturing
situation. Computer vision is likewise essential to provide the scene analysis of such

a remote manufacturing station, and the automated inspection of manufactured
parts.

As a final point of emphasis, the integration of the form a complete system,
depends on using de facto emerging standards in the areas of computer hardware
operating systems and programming languages. In general, we have used the
Sun/VMEbus/Unix/C configuration for (respectively) our hardware/hardware
extension/operating system/language needs. This has allowed dramatic portability
within our laboratory and, futhermore, it allows knowledge transfer to other univer-
sities and industry. As an example, the Open-Architecture Manufacturing System
(described in section 4.2.) was constructed and operational in only 12 man-months
(2 engineers working from December '88 to May '89) because of our use of de facto
standards. The Sun/VMEbus/real-time-Unix/C environment already available in fig-
ure 2 was readily used as the platform for figure 3. The importance of such porta-
bility cannot be emphasized enough. The economic success and reliability of future
autonomous robotics and manufacturing systems will depend on the ease with which
sensors and software can be added to a flexible, open-architecture environment.




3. SUMMARY OF MAIN TECHNICAL FINDINGS

In this section 3, we list the main achievements of the work and then present details
in section 4.

As research test-beds for "studies in automated repair” we have constructed the two
laboratory workcells shown in figures 2 and 3:-

® Figure 2 - the Utah/MIT hand, held by a Puma 560, operated by a VPL Data-

glove and an electromagnetic wrist Polhemus. This enables studies in dextrous
manipulation for automated repair.

@ Figure 3 - an open-architecture manufacturing system in which CAD tools,
expert systems, sensors and quality control routines can be integrated. This

enables studies in autonomous repair-part manufacturing for the scenario in
figure 1 below.

Imagine a computer controlled machine tool that is in a geographically
remote land-based facility. Alternatively the machine might be on board
an aircraft carrier serving as the resource base for a fleet on manuevers.
Without warning, a telephone call is received, urgently requesting the
manufacture of a part that has failed on an aircraft or a ship. If a rich
source of information is available, describing both the part and the way it
should be manufactured, then it can be made on the spot. From a library
in a central land base, such information would be sent over a network to
the machine tool at the remote location. It would contain CNC programs
and instructions on fixture selection, stock size, initial setup, ordering of
CNC subroutines, and machining technology. Then, an engineer who had
general skills, but not specific machining skills, could work with this
detailed information and produce the part. It would be as if an expert
machinist, located many miles away in the central land base, were looking
over the engineer’s shoulder and describing the actions.

Figure 1. A scenario for rapidly producing and/or assembling a repair part
on an aircraft carrier. A rich source of machining and repair information
arrives to instruct an inexperienced machinist or maintenance engineer. In
the future, increased automation of such a facility will require the auto-

nomous manipulation routines being developed in figure 2 and our findings in
model-based vision
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Specific Contributions

Within the context of applying the basic sciences of graphics, automated manufac-
turing, dextrous manipulation and vision to these work cells, our major contribu-
tions have been:

i) Graphics and Simulation

® New CAD software for creating convincing representations of gaseous, liquid and
solid objects (the Pixel Steam Editing (PSE) language)

® New CAD software for modelling kinematic objects such as the Utah/MIT hand
(Motion Editor)

® Simulation software for robotics and manufacturing processes, allowing a designer
to "sketch events and device activities over time" (Scratch)

® Multilevel search software for manufacturing and robotics (Pad)

ii) Manufacturing

® Quantitative models of the mechanics of fixturing, tool interactions and machining

technology for providing CAD information on how to setup and organize automated
repair.

® Heuristic models of more complex setup situations that have now been combined
into a working expert system called Machinist. This adds to the above quantitative

models for wider applications in automated repair. In both cases, work is on-going
with more situations being analysed.

® An introductory version of the Machinist Guiding System that is an interactive,
multimedia, on-line help system for the scenario described in figure 1.

® Basic studies and implementations of Open Architecture Manufacturing. The cell
in figure 3 in an example of radically new technology for the machine tool industry
and remote repair operations, enabling the integration of CAD tools and sensors.

iii) Dextrous Manipulation

® Development of position, force and hybrid-force-position control algorithms for

dextrous repair tasks. These were first carried out on our custom-made four finger
manipulator.

® Algorithms for motion planning and determining the degree of goodness of grasps

in the context of general arm/hand designs and specific designs such as the
Utah/MIT hand.




® Development of the Open-Architecture Dextrous Manipulation Cell shown in fig-
ure 2 that allows the integration of sensors (including vision) and the hardware
shown in the figure.

® Development of static grasp taxonomies, homogenous manipulaticn routines and
hierarchical control methods for artificial hands.

iv) Computer Vision

® Development of 2-D and 3-D model-based vision methods especially geometric
hashing algorithms and affine invariant point, line and curve matching.

® Further refinement of general ‘low-level’ vision algorithms such as relaxation
labelling methods and the zero-crossing data methods.

4. A MORE DETAILED REPORT OF PROGRESS

4.1. Graphics for Automated Repair

During the three year period, work in graphics was developed as a "front-end” to
our open-architecture manufacturing system and dextrous manipulation experiment.

In the early part of the grant (1987) we focussed on the static modelling of objects
and their textures. This enabled us to develop basic methodologies.

Initially, well behaved stochastic functions were created to yield a rich set of visual
textures. In order to be able to write, compile and run the programs efficiently, a
Pixel Stream Editing language (PSE) was developed to facilitate creation of con-
vincing representations of clouds, fire, water and solid objects. The algorithms

developed within this research paradigm are generally extremely fast, highly realis-
tic and asynchronously parallelizable at the pixel level.

This initial work was extended in our Hypertexture system, which makes it possible
to obtain visually realistic representation of such shape+texture (hypertexture) com-
binations as hair, fur, fire, glass, fluid flow and erosion. This is done, first by
describing a set of base level functions to provide basic texture and control capabil-
ity, then by combining these to synthesize various visual effects. Using such
software we developed models and digitized photographs of "downstream"” manufac-
turing devices such as robot hands and machine tool fixtures that can be displayed in
a SUN-window of the designers CAD station. This motivates the designer to create
part designs that are sympathetic to downstream manufacturing and assembly con-
straints. In addition, recent work has developed animation sequences for such dev-
ices. For a given machine tool or manipulator type the designer can employ our
high-level interaction graphics, whereby frequently used machine tool actions or

robot hand gestures are simply referenced and brought out of a library of com-
mands, rather than recreated.

After some experience, the user develops a set of basic grasping motions (pinch
grasp, circular grasp, lateral grasp) which can be stored graphically. This would not
be practical in a scripted system, where the user would need to store such iconic




gestures symbolically, and would then quickly lose track of them for purposes of
interactive recall. A number of tools are provided for extending, blending, rcar-
ranging, or otherwise combining and editing motions. These are in a sense the
heart of the system, since they provide the user with the power to create an ever
richer library of gestures.

The graphical system developed by 1990 at the end of the contract (Scratch) aims to
allow its user to "sketch things over time" with the same immediacy with which one
can now compose a letter, draw a picture, or improvise at a piano. Using the
Scratch program one can describe gestures, time-dependent logical relationships,
facial expressions, overlapping temporal events, etc., very easily and rapidly,
without being forced to resort to text or other analytic abstractions.

This line of research is opening a path to a fundamentally new mode of communica-
tion that will, in important ways, be more expressive than verbal or written descrip-
tions. Such research has great potential for simulating the flow of events in fac-
tories and manufacturing processes and as a means of engineer-to-engineer and
engineer-to-administration communication. We propose to extend the current
Scratch system extensively and combine it with Pad which is just beginning to be
developed as a search tool for multiple levels of representation.

4.2. Manufacturing in Automated Repair Facilities

In the three year period we studied the planning of manufacturing, its modelling and

various implementations to prove out our concepts. All of our efforts have been
focussed on the following problem:

In today’s systems, a designer, working at a CAD system preparing the manufactur-
ing instructions, generally has a poor understanding of the setups and machining
practices appropriate to actual manufacture of the object which he designs geometri-
cally. Thus the designer is currently obliged to prepare only an approximate and/or
imperfect plan, needing crucial ‘shop-floor’ editing, and forcing work that is both
costly and prone to quality-control ambiguities. And obviously this set of ambigu-
ous data cannot be tolerated for the scenario in figure 1. This situation has justified

our research in setup planning, fixturing design, and the physics of processes as
they relate to accuracy and general quality control.

Two approaches have been pursued. The first, more quantitative line of work has
involved analysis of the mechanics of fixturing, tooling selection and machining
technologies for rapid-prototyping. Typical situations include: a) for toe-clamping,
force equilibrium equations have been developed that relate clamp positions and
pressures to cutting-path-angles-of-attack and resistance to slip. The results allow
the designer to use as few toe-clamps as possible - thereby maximizing the surface
area of the part that can be machined in any one setup - while not damaging the
integrity of the part by bearing down too heavily with the few clamps used nor
allowing tangential slip to occur during machining; b) for parallel-sided vises, we
had analyzed the possible movements and/or buckling of plates clamped by the vise
and then the additional movements of the same plate as different cutting tools and
tool paths interact with it. The results allow the designer to clamp for maximum

rigidity, and hence part quality, while not obscuring the part in the vise nor damag-
ing it.




The second analysis method involves heuristics and qualitative data. In a
future “mechanical MOSIS" like facility (or the scenario in figure 1) the remote
users will need to use standardized rules and databases on machining technology
(especially fixturing) in order that the parts made on remote systems will be safely
and accurately provided. Deterministic models of machining and other manufactur-
ing processes are thus a prerequisite. Machinist is an expert system that provides
step by step instructions on the ordering of events on the "downstream” machine
tool. Machinist has been constructed by interviewing skilled machinists and CNC
programmers. Approximately 300 OPSS rules formulate stock-squaring operations,
avoid feature interactions that might create an out-of-tolerance part, and advise on
proper clamping procedures. The geometric modeller in Machinist contains nine
primitives (thruhole, slot, angle, pocket, etc.) enabling prismatic parts to be
described. The program is given a description of the part, the stock from which to
make it and a list of tools and fixtures. As the program runs two plans are pro-
duced - one for squaring the stock and one for obtaining the features. Using further
heuristics (now in the program as rules) these two sub-plans are merged as effi-
ciently as possible to produce a final setup plan that is as short as possible. This
program is of great potential for automated process planning and we have made
good plans for a wide variety of part styles that compare well with plans made by
humans. Nevertheless, new parts often present problems that our current program
cannot handle and new rules have to be sought from the experts and put into the
program. Further work is highly desirable to create a broad based reliable system
and to produce generalities that extend to other domains of manufacturing planning.
Connections to PDES for the specifications of features is also needed in the future.

In the area of control, for automated repair we have focused on basic research that
leads to a radical redesign of today’s factory floor machinery. The new results and
software tools that are emerging from the basic research above “push’ in a direct
way, the redesign and construction of conventional machine tools. Until recently,
the integration of the new CAD tools and on-machine sensors was frustrated by the
““closed’” architecture of typical machine tool controllers: these are still based on the
programmable logic controllers (PLCs) of the 1970s. Thus to accommodate our
new directions it has been necessary to propose an Open-Architecture Machine Con-
troller. It is based on a general purpose computer (a SUN Workstation) running a
standard operating system (a real time version of Unix) programmed in a standard
langnage (C) and having a standard hardware (VMEbus). This provides a flexible
environment that can drive the 3-axis machine tool, manipulator and sensors. For
example, the CAD files merged with Machinist will lead to the creation of tool-
paths in APT that can then be directly interpreted. This is done in real-time, elim-
inating the need for traditional post-processing. The ‘“open” design of this
CADCAM/Rapid-Prototyping system is its strongest attribute in terms of future
expansions in sensors, hardware and expert system software. The new design is
sufficiently radical that we chose (with New York University funding) to build a
prototype of our design during 1989. The new system is now a viable system and is
attracting attention from Martin Marietta, Hurco, Pratt and Whitney, and other
companies as a prototype of the Next Generation Controller.




4.3. Dextrous Manipulation for Automated Repair

Significant results have been obtained in the control of dextrous hands and arms. In
our laboratory workcell, a PUMA 560 carries the MIT/Utah hand which is a 16 joint
mechanical hand having great flexibility. In recent work, we have teleoperated this
system in the following way. A human programmer wears a VPL dataglove and a
wrist Polhemus. The dataglove is a cloth glove that the human wears in a the nor-
mal way but which carries optical fibers on its back to monitor the human gesticula-
tions. The Polhemus sensor is a magnetic sensor mounted on the back of the wrist
that measures the 6-degrees-of-freedom of the wrist location. With these two sen-
sors it is possible to control both the robot arm and the fine manipulations of the
Utah/MIT hand. Videotapes show that we have successfully used this setup for sim-
ple domestic and industrial tasks such as insertion, screwing a nut onto a bolt, and
light assembly tasks. At present, our research in this area is moving in the direction
of autonomous manipulations rather than teleoperation. We have been building
homogenous manipulation primitives that allow our robot hand to functi~n indepen-
dently on small sub-tasks. The concateration of such primitives (..ow being ‘.sta-
blished in a library) will allow a user to build more complex extended tasks.
Between such sets of concatenated primitives transitions occur, during which the
overseeing human needs to resume teleoperation control temporarily. As we
integrate tactile sensors with the hand and also incorporate some of the vision algo-

rithms mentioned in section 4.5 these transition recoveries will become increasingly
automated.

It is also important to mention dextrous manipulation work on the planar, four-
finger manipulator designed especially to test algorithms for hybrid force/position
control. Each of the digits in this system can be moved in an xy plane and is com-
pliant. Strain gauges and motor encoders provide the information required for
force, position, or hybrid force/position control. An example of our control algo-
rithms, involves the continuous rotation of a suspended disc by cooperating fingers.
This is an exercise in simultaneous force control and controlled rotation.

4.4. A Note on Real-Time Operating System Development during this contract

Improved real-time operating systems were developed to support work on the four
finger manipulator and Utah/MIT hand. Our SAGE system is an extension of Bell
Labs’ NRTX system designed specifically for real-time robotics supervisory control.
It incorporates multi tasking, memory management, low overhead synchronization
and provides network communication capabilities. After its development in a
robotic setting it was adapted for use in our open-architecture machine tool project.
An additional hierarchical control system (HIC) was developed for use in imple-
menting low-level control systems under the supervisory control of SAGE. HIC,
which is very fast, provides the inter-processor communication, the user interface,

the timer interface and the debugging support for the Utah/MIT hand attaining a 4
msec control cycle.

It is important to conclude that SAGE has been the crucial element in the speed with
which the integration of the Open-Architecture Manufacturing system has taken
place. (2 project engineers completed this work in the duration of 6 months.)




4.5. Computer Vision for Analysing Automated Repair Scenes

Durinyg the three year period we continued to develop new efficient algorithms for
model-based object recognition, with the main emphasis on the more complicated
problem of object-recognition in the presence of partial occlusion. There were two
major interrelated objectives in our research. One was to develop shape representa-
tions, which are informative enough to allow object identification and location in the
presence of occlusion. The other was to develop computationally efficient algo
rithms to match the representations of the model objects against the representation
of the sensed scenc data. This required the shape representations to be terse.

We developed a new general object recognition scheme, the Geometric Hashing
paradigm, which enabled a unified treatment of the object recognition task under
various viewing transformations. The paradigm was based on an intensive off-line
model preprocessing (learning) stage, where model information was indexed into a
hash-table using minimal transformation invariant features. This enabled the on-
line recognition algorithm to be particularly efficient. (The new technique was
presented as a long paper at the 2nd International Conference on Computer Vision.)
Special attention was given to recognition of general 3-D objects from a single inten-
sity image. The affine invariant recognition technique is especially suitable for
aerial photograph matching and interpretation.

We alsc evaluated the performance of the Geometric Hashing technique in the pres-
ence of substantial sensor noise. We developed a theoretical noise model, and a
series of experiments on simulated data to evaluate the expected performance.
Recognition of objects in ‘real’ scenes was successfully performed.
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