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FOREWORD

This publication includes the individual papers of DAMPING '89 held
8-10 February 1989, West Palm Beach, Florida. The Workshop was sponsored
by the Air Force Wright Aeronautical Laboratories through the Advanced
Metallic Structures Advanced Development Program Office (AFWAL/FIBAA).

It is desired to transfer vibration damping technology in a timely
manner within the aerospace community, thereby, stimulating research,
development and applications.
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DAMPDIG - A KEY TO MORE, FASTE, FARTHR, HIGHE

Major General Thomas R. Ferguson, Jr.
Deputy Chief of Staff for Technology

and Requirements Planning
Headquarters Air Force Systems Command

Andrews Air Force Base, Maryland

Vibration is everywhere. And where there is vibration, there is damping.
Most often, vibration is bad and damping is good. There are exceptions,
but since this conference is about damping, we will leave the undamping
crowd to their own devices.

After getting my primer on this subject, I was reminded that damping is a
complicated subject. In simple terms, vibratory response can lead to
cracked structure, defocused optics, or other types of degraded
performance. Historically, the damping in a vibratory system has been
"take what you get", called intrinsic damping. Only in the last few years
has damping been a design parameter. So let's begin with a scramble:
start the engines...on take off, light the burner. In my flying
experience with the B-52, it was be sure all eight were running and start
the Hound-Dogs on the roll...there's a lot of noise coming out of these
engines. During take-off roll, there are two paths from the engine
exhaust noise to the aft structure: one is direct, the other is reflected
from the runway. Take-off is typically the highest acoustic environment
the structure is exposed to. The skin panel responds to sound pressure
level as does a microphone and it vibrates. It can vibrate enough to
literally crack and break. The skin panel also re-radiates the sound into
the interior. That's called "thru transmission." That's also the
technical term for being able to hear people thru the motel wall, at least
the motels government per diem can afford in places like Boston and
Washington.

That aircraft skin panel also transmits vibratory energy into the
substructure--the stringers, frames, and bulkheads. So internal equipment
also gets hit with structural-borne vibratory energy at points like
mounting brackets and with acoustic energy on their covers. Internal
equipment can fail, malfunction or degrade to lower performance levels.
As our pilot retracts the gear and accelerates, the dynamic pressure
increases and the turbulent boundary layer, especially behind
protuberances, can create very high sound pressure levels. At about mach
0.9, the oscillating shocks have the same effect. When we maneuver,
especially transonically, the aeroacoustic levels on the leading and
trailing edges (and external stores) reach high levels. When we open
weapons bay doors, the open cavity acts like a giant whistle and the
internal structure and stores can be subjected to tones of extremely large
amplitude. Since we fly to fight, we carry weapons; we fly at ever-higher
dynamic pressures and maneuver at transonic speeds to survive: This makes
the vibroacoustics problem more severe. Today, to do our engineering
right, structures-and-vibration-and-damping-engineers must participate in
the original design of these modern flying machines.
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Vibration is also no longer an earthly problem. It is becoming a design
factor in satellites as well. Launch vibroacoustics typically cause the
highest vibration levels and can break equipment. There are also more
vibratory disturbances in orbit than you might think. There are always
imbalances in reaction wheels, momentum wheels, and control moment gyros
used for attitude control. Coolant flow, shifting solar arrays, liquid
slosh, gravity gradient, particle impact, to name just a few, are all
vibratory disturbances which, just for example, can degrade performance of
sensitive optics.

I shouldn't have to convince this audience--we know that vibration is
everywhere. Although the obvious is obvious to us, let's also acknowledge
that damping is a highly specialized subject. A damping engineer is a
specialist because he must first be a vibration engineer, who was probably
a structures engineer to start with. So, right off, we have a specialty
within a specialty within a specialty. The successful damping engineer
must know more than damping. He'd better know systems integration and be
very conversant about the operational environment. A prime example of
this is the highly successful "Damping Wrap" for the inlet guide vanes on
the engines used in the F-111F fighter. So many cracks were forming so
quickly that the inlet guide vane case had to be refurbished after TOO few
hours of service. Air coming into the engine is turned slightly by the
inlet guide vanes to get best performance from the rotating first stage
compressor. The IGV case consists of titanium inlet guide vanes welded to
inner and outer rings. Vibration was suspected as the cause of the cracks
which were forming in the heat affected zones of the welds. The intrinsic
damping was extremely low, and in this case, the dynamic magnification
factors at resonances were high. Obviously, the stage was set for a
damping engineer to really impress his boss. Adding damping to the inlet
guide vane was easy; developing a satisfactory damper wrap for a complex
systems operational environment was not. Sophisticated bonding technology
was used so that the damper wrap would adhere while exposed to the air
flow. The wrap had to be thin to minimize inlet blockage area, since
reduced air flow would affect engine performance. Engine stall
characteristics, anti-icing effectiveness, erosion, corrosion, and
durability were all investigated and proven satisfactory. The point
being...this was a complex interdisciplinary problem-solved very
successfully. This project has estimated cost avoidance savings to the
Air Force of $50M. Spin-off damping applications in similar situations
may well account for another $200 million. Other very recent
demonstrations of vibration-caused structural failures fixed by damping
are the A-7 center section leading edge flap, A-10 gun bay floor and side
wall, and F-1ll spoilers. Once again the logistics improvements in terms
of dollars were significant. I should also add these improvements lower
the heart rate for our maintainers.
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For the most part, successful damping treatments have been of the add-on
variety. The hardware has been designed and a vibration problem rears its
ugly head. A damping treatment is designed and "added to" existing
structure. Once the hardware exists, add-on damping may be an extremely
cost effective solution. But it's better to avoid the problem altogether
and that can be done with integral damping. Commercial examples are
laminated valve covers, oil pans, and timing gear covers used in
automobile and diesel engines.

Integral damping is also the key to longer life, more durable aircraft
structure. The objective is increased sortie generation rate and reduced
maintenance cost. Since we often learn more from our failures, there's no
shame to admit there have been many unsuccessful attempts to design
damping solutions. I'm told you don't have to be in this business very
long to have been bit. In fact, you don't earn your damping wings until
you've been humbled more than once. I don't want to focus on this aspect,
but during breaks and at social opportunities it also pays to discuss the
failures as well as the successes.

DAMPING '89 is put together to detail the state of the art, but the
keynote role allows me latitude to summarize. A baseline of damping
materials and manufacturing processes is established. We can measure
properties of materials fairly well. Data banks on damping materials are
also established. You can analyze simply supported beams in closed form
and can perform finite element analysis of damped structure to predict
modal frequencies and damping limits. You can experimentally measure the
modal frequencies and damping of structure. There are a growing number of
successful add-on and integral damping applications and you have
quantified these successes in terms, pay-off terms, that management
understands. Damping, in fact, is a hot, new tool in the engineer's kit
bag. But it's good not to believe as the song goes "Oh Lord it's hard to
be humble when you're perfect in every way." What we already know is just
a glimpse of the future. There is still great opportunity. Therefore,
it's important to make good investment decisions as we plan the future.

As in most technical disciplines, the explosion in computational power,
coupled with advancements in damping technology, can greatly accelerate
our knowledge. Better dynamic test techniques are needed; a greater range
of materials properties should be measured and catalogued: and extensions
to analytical methods would really expand the range of applications. With
these wishes met, let's peer in the not too distant future and I'll make
some predictions:

o Measurement of the dynamic mechanical properties of viscoelastic
damping materials will be more accurate, more efficient, and have less
scatter.

o Existing materials will be screened for toxicity, flammability,
outgassing, corrosion, long-term environmental stability and others.
These are properties which are mandatory for system application.
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o A fully computerized data clearing center will exist soon.

o Wide-temperature range and low-temperature damping materials will be
developed.

o Approximate closed form analysis methods will come into use for
structures like thin plates and shells, brackets, pipes and tubing.

o Approximate finite element analysis models will be developed as
preliminary design tools for damped structures such as satellite
equipment support structures.

0 Computer aided design will yield optimum solutions by interacting
finite element analysis of damped structure with a data base of
damping materials.

o Most aircraft sheet metal will be laminated, ditto for automobiles and
household appliances.

o Interest in damped composite structural materials will rise.

o Housings and circuit boards of avionics equipment will be damped.

0 Logistics imperatives--maintainability and reliability--will dietate
much more use of damping.

0 And, some of you who think you'll be millionaires exploiting these
opportunities will probably go bankrupt because of Murphy. So,
maximize the opportunity this conference offers.

o Learn!!

o Go home and apply the technology: Be passionate...become zealots for
your work and the opportunity it presents.

o Share your successes and failures with as wide a technical community
as possible.

0 Think of yourselves as a team: Academia and practitioners in
commercial and military applications. All must play their roles to
see the most intelligent and widespread use of this technology.

I want to conclude with some non-damping thoughts. My boss, the AFSC
Commander, General Randolph, just gave a talk at the AF Association's
Tactical Air Warfare Symposium. He ok'd my use of some of his remarks
because the message is so important for all of us. That message is about
total quality management.
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In the book, "A Passion for Excellence," Peters and Austin recall the
management style of General Electric's aircraft engine pioneer, Gerhard
Neumann when he worked with Claire Chennault's World War II Flying
Tigers. Neumann wanted make sure his maintenance people fixed aircraft
engines right...the first time. So each day he used to ask a few of his
squadron mechanics to "volunteer" to test fly in the Single-Seat fighter
they'd just repaired. The pilot would sit on the crew chief's lap, and
neither could sit on a parachute because the cockpit wasn't big enough.

Well, improvements in workmanship were dramatic: In his book, "Herman the
German," Neumann writes that each night, "Way past dinnertime, the
airfield looked as if it were invaded by glowworms; the twinkling came
from flashlights mechanics used to check--once more--the tightness of
pipes or connections they had made in case Neumann might suggest that they
'Volunteer' to ride in their planes the next day."--Now there's a guy who
knew how to motivate quality. TQM's an overdue sign of a national quality
revolution. It's a buzzword you see in commercials, hear at symposiums,
and notice in bookstores. But don't just dismiss TQM as yet another
acronym that will die off. As a term, TQM might well change over time.
However, as a philosophy TQM will last, as more companies and managers
come to understand what continuous quality improvement means and what it
can do. Affordable price tags, fair profits and high product quality will
prove TQM's merits long after the trendiness of the buzzword disappears.
It offers opportunities for every person involved in research,
development, test, production and operations.

TQM--is BETTER QUALITY AT LOWER COST. It's the prerequisite to good
performance. AFSC's senior people have been through training seminars
with W. Edwards Deming, one of the best-known quality leaders in the
world. Deming's philosophy is that 85 percent of quality problems are
caused by the system; just 15 percent are caused by people. Just to be
sure we're communicating-you're likely to be part of the 85 percent! If
the products of U.S. industry are not well liked, loved, by the customer,
you are involved because you're that 85 percent of the system that
designs-in-problems the manufacturing work force can't correct.

General Randolph was challenged about his intensity on this subject of
total quality management. The person said it sounds as if quality issues
are a matter of life and death. He said no, they're much more important
than that. Think about these statistics:

If the U.S. had service suppliers who did their jobs right 99.9 percent of

the time, there would still be:

- 20,000 wrong prescriptions filled each year;

- Unsafe drinking water almost one hour each month;

- 2 long or short airplane landings a day (That's an accident) at Los
Angeles and New York;
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- And 2000 lost articles of mail per hour every day.

- In the defense arena, given 1 million grenades, you would have 999
duds--and 1 will go off in "0" seconds.

Wher.e is your quality meter set?

General Randolph closed his talk with this story President Kennedy would
tell and I'll do the same. It's about a retired French General whose
hobby was gardening. He was a very cultured man with a deep sense of
history. On his 80th birthday he bought a small shrub and instructed his
gardener to plant it in the garden.

"But, Sir," the gardener protested, "that plant won't flower for a hundred
years!" "Then by all means," the General said, "plant it now."

The total quality we plant in our work today is FREEDOM FOR TOMORROW. We
need to plant more flowers.
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GE Astro.Space

Pioneering Damping
in Space
at GE Astro Space Division

Clyde Stahle
Damping 89
February 8, 1989
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Outline

" Initial and current electronic component applications

* Acoustic cover

* Camera bracket

" Gimbal

" Satellite add-on panel damping

* RELSAT

* Lessons Learned

" Summary
Design, Analysis and Test Results Are

Described for Damping Applications I

Purpose

* To highlight the maturing of damping technology through
a review of GE-ASD projects

* To stimulate thinking by describing various applications
where damping has effectively controlled vibration

* To emphasize basic considerations in effective use
of damping

* To stimulate product improvement through future damping
applications

GE-ASD Damping Has Spanned Two Decades
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Initial Application (1970)

" SMRD 100, developed as a space compatible sterilizable potting
compound, was felt to have excellent damping properties

* Relay reliability on Landsat 1 provided impetus to damp
relay panel

* Experimentally developed design using beam specimens with
various materials

* Stiffner removed and replaced with foam/SMRD layer to
maximize strain in viscoelastic material

* Maintained resonant frequency greater than 150 Hz and reduced
amplification from 44 to 6

Highly Effective Damping Treatment J
Flown in Early 70's

Landsat PSM Relay Panel

70P RELAY so
PANEL 0OK OF.

FREE EDGE S - WITH SMRD

30

MUTEDO CIRCUIT 20
8SRDS BOTTOM RELAY

PANEL
SURD3 10

rM INUM 10100 1000 2000
FREO. MaH

Offset Damping Layer Reduces Magnification from 44 to 6
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Viking Lander (1973)

* Reliability for long duration interplanetary mission was
motivation for reducing vibration of electronics parts

* SMRD damping strips with fiberglass constraining layers
were designed with experimental parameter variations

" Damping strips applied between boards, on component side,
or on printed circuit side

" Continuity of SMRD found to be unimportant - constraining
layer was important

* Resonant amplification was reduced to less than 10 in
most applications

" Damping felt to be the only way to reduce random
vibration - stiffening increases G RMS

SMRD Damping Reduced Random Vibration /
by 50 Percent

Viking Lander (1973)

Damper on Printed Circuit Side
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Viking Lander (1973)

Damper Between Boards

Viking Lander (1973)

Discontinuous Damper on Part Side
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Printed Wiring Board Damping Analysis

Early Analysis (1974)

" Initial SMWRD properties were derived from resonant
oberst beam tests using WLF relation to plot properties
at room temperature

* Analysis used equivalent beam based on Kerwin-Ungar
plate theory

Properties of SMRD 100F90

0 .1101 t0.0m o~o iooo

lo p 0 V1 1.05P

6.0, 0o~ 1o

Temperature /Frequency Equivalence Used to Define
Material Properties Over a Broad Frequency Range
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Printed Wiring Board Damping Analysis

Current Analysis (1980's)

* Rogers-Jones International reduced temperature nomogram
for material properties

* Nastran finite element models with modal strain energy
used for predictions over range of operating temperatures

* SMRD strips with uniaxial graphite/epoxy constraining
layers integrated Into the design

" Risk graph based on deflection and acceleration limits
developed for specified power spectral density

* Analysis agrees reasonably well with test results although
boundary conditions cause errors

Finite Element Analysis is Used to Effectively
. Integrate Damping into the Design

Typical Damped PWB

GENERAL , ELECTRIC

Damper Shown on Board Center
AAB-7



Rogers-Jones International Reduced Temperature Nomogram

E3 340 325 310 295 2851 275 285 255 E

E3 E4

0

c ElE2
o L

EOE

*a E- EC

E- AIV 4,IAJt n.J , ~ ,AJA,,' AJ I"
Mn rn t1 M r n rn m rn m r
I I I 1 0 14 - O 4 0

. f(4 IQ -

Reduced Frequency (Hz)

IApplicable Range of Data Is Shown by Solid Lines

Typical PWB Finite Element Model

Nastran Models Board, Components and Dampers
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Risk Graph

0.25 MM 0.123MM MS1.0

0.75 M

9 0.5$ A GNLRLY M

0~~~~4 10 2 0 40 0

PREQUENCY OWz

Design Adequacy Determined from Risk Graph f
Vibration Test and Analysis Results

Test Test Test Analysis Analysis Fi Analysis n,1 Analysis

PWB F1  nij GRMS F1  n, Test Test

5 189 .37 31.4 156 .31 .83 .84
6 178 .31 33.5 187 .32 1.05 1.03
7 202 .22 33.6 147 .22 .73 1.00
8 144 .25 28.6 153 .34 1.06 1.36
9 226 .23 35.6 229 .20 1.01 .87

10 243 .24 37.1 290 .19 1.19 .79
12 173 .13 27.4 147 .20 .85 1.54
13 1127 1.,26 120.2 123 *.21 .97 *.81

Random Responses Are Limited to About 30 GRMS
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NASA-GSFC Acoustic Cover (1974)

Purpose - To determine feasibility of protecting sensitive instruments
from launch vehicle acoustic environment

Design - Lightweight cylindrical sandwich construction with
viscoelastic (SMRD) strip core

Analysis - Used plate theory to optimize the design - 20 mil face
sheets and half inch thick core using quarter inch SMRD
strips in 5 inch square pattern

Results - Highly effective lightweight design having excellent low
frequency acoustic attenuation

- Subsequent testing of square thermal canister showed
about 6dB attenuation due to "add-on" damping strips

Viscoelastic Acoustic Covers Are Highly Effective 1
Acoustic Enclosure

During Fabrication Without Completed 4 Foot
Outer Face Sheet Cylindrical Enclosure

Sandwich with SMRD Core Provided

Highly Damped Stiff Design I
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Acoustic Cover Test Performance

40 -MEASURED SPATIAL
AVERAGE OF
MICROPHONES 5 TO 12

30 -PREDICTED

NOISE ENVELOPE
REDUCTION, dB

20 -020dB
OVERALL NOISE

PREDICTED

10 -VLE

0 F - I - I I I I I 1 1
31.5 s0 200 500 1000 2000 5000 10000

THIRD OCTAVE BAND CENTER FREQUENCY, Hz

Test Measured an Order of Magnitude Noise ReudctionI

Acoustic Enclosure Comparison

OVERALL SPL AB
S150 -135.5 --- DOUBLE WALL ALUM. (MMC)

z136.7 FOAMJFIBERGLASS (MMC)
135.5 -- FOAM SANDWICH (MOAC)

12140.2 UPLF CONVENTIONAL FAIRING
Sio135.3----------MSFC SPACELAB SHROUD

0

120

S110

a100 / a/ GE CAN I SIR

8 10 100 FREQUENCY -HERTZ 1000 10K

Viscoelastic Enclosure Performance is Excellent f
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NASA-GSFC Camera Bracket for IUE (1975)

Purpose - To prevent damage to camera from high deck
vibroacoustic response

Design - Double picture frame mount with metal "dog-leg" springs
and viscoelastic (SMRD) shear damping pads

- Isolate camera from deck and damp "dog-leg" resonance
without elastomeric hysteresis

Analysis - Finite element analysis using modal strain energy sized
damping pads for 0 of 3

Results - Highly effective design with 0 of about 4 due to outer
frame twisting

- Flown on IUE secondary camera

SMRD Damped Design Using MSE Analysis
Was Highly Effective

Damped Secondary Camera Bracket

LATERAL STIFFENR

S R STIFFE.NER_ .
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SAP Mode Shape

INNER
MOUNT

OUTER
FRAME

CAMERA

OUTER
MOUNT [7x

z 
Y  

1/7

Camera Response on Hard-Mounted Damped Bracket
10

-_ TEST

MAGNIFICATION

.1

50 100 200 300 400 500 1000

FREQUENCY (Hz)

Good Agreement with Analytical Predictions

AAB-1 3



Gimbal Damping (1976)

Purpose - To provide lightweight gimbal design with amplification
significantly less than original design (Q=40)

Design - Sperical sandwich construction with viscoelastic (SMRD)
core strips

Analysis - SAP finite element analysis using modal strain energy
post processor determined area coverage of SMRD

Results - Amplification reduced from 40 to 8

- Weight of gimbal reduced by 20 percent

Viscoelastic Design of Gimbal Was Highly/

Effective and Agreed Reasonably Well with Analysis I

Standard Gimbal Modified Gimbal Damping Approach

•-1I"---- "

Standard Design Requires Thick Material f Sphericalized Gimbal Has Excess Material,
and Rings for Stiffness and Strength Stiffness Removed
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Damping Material Layout

CL

1 2 3 4 5 6 7 8 9 10G 
IM 3AL

TYPICAL SECTION

1/2 GIMBAL WITH F90:
CONSTRAINING LAYER SHELL NOT SHOWN

Constrained Layer Sandwich Cross Section
Provides Damping and Maintains Adequate Stiffness

Gimbal Vibration Response for 2G Input

STANDARD GIMBAL
0 =40

RESPONSE G

10

DAMPED GIMBAL
0=8

Integrally Damped Design
Provides Low Response and
20 Percent Weight Reduction

0 I I
s0 100 200 300

FREQUENCY (Hz)
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AF Satellite Panel Damping (1978)

Purpose - To reduce vibroacoustic environment of a critical
component to existing qualification levels

Design - Uniaxial graphite epoxy constrained layer SMRD damping

strip added to structural panel supporting the component

Analysis - Nastran model using modal strain energy optimized strip
dimensions for loss factor of 0.2 (Q=5)

Results - Vibroacoustic response of critical component reduced
to existing specification levels

Damping Prevented Component Redesign I
And Preserved Heritage I

Add-on Damper on Satellite Bulkhead Panel

} ~~~~R ob u st G ra ph ite•/ Ep ox yI

~Constrained Layer

Damping Strip Was
1 Designed
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Analytical Approach

Nastran Model Nastran Parametric Optimization
and First Mode Shape of Damper Design

It
, .'-.6

MAD SECINA-A

AIED D..

LAYER AM~qELAYER.

DAMPER

.2
/CON STRAINED

% TRAIN ENERGY

Optimization of Damping Treatment Used the
Modal Strain Energy Method and Nastran I

Panel Acoustic Response With and Without
Damping Treatment

10.

UNDAMPED
1. I

ACCEL.
PSD .1

(G 2 /Hz)e"ineduced
Random Vibration to
Specification Levels

.01
DAMPED

.0011
10 100 1K 10K

FREQUENCY (Hz)
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AF-WRDC RELSAT Program (1983-1988)

Purpose - To demonstrate lightweight damping control of panel
mounted component vibration

Design - Several Integrally damped lightweight designs were
developed Including a highly effective damped stiffener
using a graphite/epoxy honeycomb constraining layer

Analysis - Nastran models were studied parametrically to damp
low frequency modes and minimize weight

- Reduced panel weight while adding damping
- Analysis predicted modal damping within approximately

20 percent

Results - Tests varied temperature to evaluate analysis
- Vibracoustic response reduced by 20 dB in low frequency

range (two orders of magnitude PSD reduction)
- Specification levels reduced by 13 dB

RELSAT Demonstrated Highly Effective
Lightweight Damped Designs

Nastran Panel Model - Honeycomb Stiffener/
Damped Honeycomb Stiffener Panel SMRD 100F90

Nastran Wea Used to Design an Integrally Damped Panel
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Damped Panel Parametric Analysis

First Mode DESIGN POINT

.3 Tcl (in.)

.25

.20

STRAIN .15
ENERGY .10

.2 48.4 48.6 48.8 49.0 49.2
WT (lb.)

.1 .2 .3 .4

VEM THICKNESS (In.)

SMinimum Weight Design Selected by Parametric Aralysis/

Test/Analysis Comparison

9 TEST

RESONANT A ANALYSIS WITH LAB A MATERIAL PROPERTIES
FREOUENCY N ANALYSIS WITH LAB A MATERIAL PROPERTIES

(Hz)

LOSS FACTOR
160

.4
140

.3
120

100 .2

so .180 TEST W/O DAMPING

0 20 40 60 80 100 120 0 20 40 60 80 100 120

TEMPERATURE ('F) TEMPERATURE (-F)

Controlled Temperature Variation is
Essential to Evaluate Analysis
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Vibroacoustic Response Out-of-Plane

95% Level at 72 Dog F Scaled to 145.3 dB Qual. Acoustic Level

10

PSD
(g2 /Hz! BASELINE

DAMPED
.01

.001
10 100 1000 10000

FREQUENCY (Hz)

i Damping Reduces Vibroacoustic Response by Up to 20 dB

DSCS Baseline & Damped Panel Qual Random Vibration Specs

Out-of-Plane Direction - Shuttle Launch at KSC

COMPONENT SPECS FOR BASELINE RANDOM RESPONSE SPECTRA FOR
& DAMPED PANELS BASELINE & DAMPED PANEL SPECS

1o 100
"~~ 

1- ASELINE - -4

/N--ASELIN 
_

PSD 
0 -

(92 /Hz) 0 Omum
g 1-1dB

.1 wDAMPED

.01

.001 /I I IIII .1 - 1 II11III

10 100 1000 10000 10 100 1000 10000
FREQUENCY (Hz) FREQUENCY (Hz)

IDamping Reduces Component Spec Level Significantly
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Damping in Space

" SMRD damping material was used in printed wiring boards
of modular attitude control subsystem (MACS)

0 MACS was used on the Solar Max Mission (SMM) satellite

" Shuttle flight 41C recovered a MACS Unit from the SMM
and returned it to earth for reuse

* Measured damping properties of the SMRD were found to
agree with those of the original material after it had been
in orbit for four years

SMRD Damping Materials Are Stable and
Can Be Used in Orbital Applications I

Comparison of SMM SMRD 100F90 to Current
Measurements by Lab B

TEMPERATURE T DEG. F
0 3 160 120 80 40 0

10 2 10 5 / 10 4
10210 l / /o

10 1  SHEAR 10 4  J; 10 3

FACTOR MODULUS FREQUENCY

ETA 0 LB/IN 2 F (Hz)
TA 10 0 XX2 10 / / 10

1O"1  1: 2  
F/ / 10 1

10- 2  101 100

10 0 102 104 108 10a 1010 1012

REDUCED FREQUENCY FR Hz

Good Damping Properties after 4 Years In Space
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Lessons Learned

* Design and analysis must show significant strain energy in the
damping material for it to work

* Select or tailor a damping material to the specific application
considering temperature, frequency, modulus and other requirements

" Integrate damping into the design to improve performance
" Temperature must be considered in determining damping material

properties In addition to frequency
" Temperature should be controlled and varied to provide analytical

correlation -- glassy and rubbery limits are helpful in assessing
model adequacy

* Constrained layer damping configurations are one of the most
effective designs

" Damping effect on loads should be considered to achieve weight
reduction and more effective damping

* Finite analysis methods can be used to predict damped behavior with
reasonable accuracy

" Stable damping materials (e.g. SMRD) are available which are
space compatible

Damping Provides a Robust Design and Should
Be Considered In Addition to Stiffening

Summary

" Damping is maturing as a predictable means of controlling

resonant vibration of large and small complex structures

- Printed wiring boards - Gimbal
- Acoustic cover - Equipment panels
- Camera bracket

" Analysis methods are available using modal strain energy

" Designs that Integrate damping into the configuration can
Improve performance and reduce weight

* Experimental results have confirmed analytical predictions
and Indicate viscoelastic material properties limit prediction
accuracy

* GE Astro Space Division has Integrated damping Into
satellite designs
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LOSS MODULUS AND DAMPING BEHAVIOR OF
POLY(VINYL METHYL ETHER)-POLYSTYRENE BLENDS AND IPN'S

J. J. Fay, C. J. Murphy , D. A. Thomas and L. H. Sperling

Center for Polymer Science and Engineering
Materials Research Center

Department of Chemical Engineering
Whitaker Lab #5
Lehigh University
Bethlehem, PA 18015

* East Stroudsburg University, East Stroudsburg, PA 18301
** Department of Materials Science and Engineering

Abstract

Sequential full interpenetrating polymer networks, IPN's,
were synthesized by crosslinking poly(vinyl methyl ether),
PVME, with dicumyl peroxide, swelling in styrene,
divinylbenzene and initiator and polymerizing in situ. The
miscibility of PVME and polystyrene (PS) IPNs was examined by
dynamic mechanical spectroscopy (DMS) and differential scanning
calorimetry (DSC). DSC indicates an increase in the breadth of
the glass transition region for midrange compositions in linear
blends and IPNs. Similarly, DMS data shows a narrow glass
transition region for a 70/30 weight composition PVME/PS IPN
and increasingly broader regions for 50/50 and 30/70 PVME/PS
IPNs. The broad transitions probably indicate a degree of
microheterogeneous phase separation that may be dependent upon
composition and degree of crosslinking. Various degrees of
haziness or turbidity of a series of 50/50 PVME/PS samples
indicates that the chemical blend is clear and miscible, while
the semi-II, the semi-I and the full-IPN are phase separated.
A cloud point curve was determined from PVME/PS physical blends
by optical microscopy, confirming earlier studies and serving
as a miscibility guideline.
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Introduction

Polymers constitute useful noise and vibration damping
materials near their glass transition temperature, Tg.1,2 The
onset of coordinated chain molecular motion in the Tg region
can be used to convert vibrational energy into heat. Whereas
homopolymers may be efficient dampers over a range of 30°C
around Tg, interpenetrating polymer networks, IPN's, have been
shown to exhibit damping over a broader range of temperatures.3

An IPN may be defined as a combination of two polymers in
network form.4  Similar to other multicomponent polymer
materials, the vast majority of IPN's are phase separated5 and
the introduction of crosslinks into each polymer limits the
domain size.

The only single phase, miscible IPNs reported are the
poly(2,6-dimethylphenylene oxide) (PPO) and polystyrene (PS)
IPNs.6  The corresponding blend of this system is miscible and
does not undergo thermally induced phase separation before
degradation.7

The phase separation behavior of the linear blend of
poly(vinyl methyl ether) (PVME) and polystyrene (PS) has been
characterized by small angle neutron scattering8 and by other
methods.9 ,10  The phase diagram for this system has been
developed indicating a lower critical solution temperature
(LCST) which is dependent upon composition and molecular
weight. Electron irradiation of the blends, which introduces
random crosslinking, has been shown to increase the size of the
single phase region of the phase diagram)O In this paper,
PVME/PS IPNs and blends are synthesized and preliminary
miscibility and damping behavior of the IPNs are examined by
dynamic mechanical spectroscopy (DMS) and differential scanning
calorimetry (DSC).

Previous Work

Research on sound and vibration damping began at Lehigh
University in the early 1970's, under a contract from Aberdeen
Proving Grounds. The objective was to prepare a two-layer
constrained layer damping system in the form of a latex paint,
based on interpenetrating polymer network technology.1 The
main advantage of the new material was its capability of
damping over very broad temperature ranges, from -30 to
00°C.'.12  The constraining layer was a filled epoxy composite

material.

More recently, research at Lehigh centered about
understanding the basic nature of the damping phenomenon
itself. How were the polymer molecules actually absorbing the
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energy? The result was a group contribution analysis, wherein
each moiety in the polymer contributes to the loss modulus
integral in the vicinity of the glass transition
temperature.13  By examining the area under the loss
modulus-temperature curves, a quantitative analysis was
developed based on the assumption of a weight fraction additive
contribution of the structural units within the repeat unit to
the total loss area. The basic equation for the LA group
contribution analysis is13

LA=n (LA) iM i  n G.LA Z = N - - (1)

i=1 i=l

where M i is the molecular weight of the it" group in the
repeating unit, M is the molecular weight of the whole mer,
Gi is the molar loss constant for the ith group, (LA)jis the
loss area contributed by the i group, and n represents the
number of moieties in the mer. As a corollary to eq. (1), an
additive mixing rule can be written for use with copolymers and
multicomponent polymer materials,13

n
LA (1A) I + wI (LA) I I + . wi(LA) (2)

1=1

where wl, wj ,''" represent the weight fractions of the
components in the material.

Table I summarizes loss areas, (LA)i , and molar loss
constants, Gi, for a number of moieties derived from group
contribution analysis.14  The group contribution analysis
provides a predictive method for LA values via the structure of
the polymer.

Experimental

Synthesis

Styrene monomer, Polysciences Inc., and divinyl benzene,
Scientific Polymer Products, were cleaned by a column
chromatographic technique using neutral alumina. Poly(vinyl
methyl ether), Scientific Polymer Products, Mw= 1.3x10 5 g/mole,
was supplied as a 50 wt% toluene solution. Dicumyl peroxide,
Phaltz and Bauer, benzoin, Adrich Chemical, and toluene, Fisher
Chemical, were used as received.

Crosslinked PVME sheets were prepared in the following
manner. Dicumyl peroxide was added to the PVME by a solution
blending technique. After mixing the solution was placed in a
teflon mold and the toluene was removed under vacuum at 1000C.

BAA-3



Table I. Summary of Group Contributions to LA 14

Group (LA)i Gi

Group Locationa (GPa*K) (GPa*K)(g/mol)

H H

I I
-C-C- 1 3.4 91.8

I I
H

-0- 1 19.1 305.8*

0
11 2 20.8 936

-C---(0)- H

0
12 20.1 905

--- C-()- H

0
II 2 20.8 936

-C-OH

2 11.9 916

-CH 3  2 11.0 165

-OCH 3  2 21.7 674

-C-- N 2 23.2 603

-0--H 2 4.7 80

-CI 2 9.2 327

-0 3 3.5 287

-- 3 3 2.2 166

CH 3
1 3 -1.7 -98

-CH - CH- CH 3

1 3,4 0.5 7
-CH-

-CH2- 3 -3.0 -42

-C-N 3 14.5 377

-CI 3 15.7 556

al: backbone; 2: side group attached to backbone directly; 3: side group not attached to

backbone; 4: value derived from isobutyl side group.
*T. Hur, J. A. Manson and L. H. Sperling, to be published.
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The resulting 2 mm thick sheet was then cured at 160°C for 60
mins. in a nitrogen atmosphere.

IPN's were prepared from the crosslinked PVME sheets by
swelling in a mixture of styrene, divinyl benzene and benzoin.
After equilibrium was achieved, swollen mass was then placed
between Mylar sheets and glass plates. The mold was then sealed
and placed in a UV box and photopolymerized for 72 hours.
Semi-I IPN's, in which only the first component, PVME, is
crosslinked, were synthesized by swelling in styrene and
initiator, without crosslinker. Semi-II IPN's, in which the
second component, PS, is crosslinked, were prepared by
dissolving linear PVME in the styrene, divinyl benzene and
benzoin solution. Synthesis of linear PS in the presence of
linear PVME results in the formation of a chemical blend. UV
photopolymerization was used in each case, similar to that for
the full IPN case. Physical blends were prepared by
synthesizing PS separately and solution blending to achieve the
desired composition. Chemical blends differ from physical
blends in that during the polymerization of the second
component grafting may occur as the result of chain transfer to
polymer.

Instrumental

A Mettler TA3000 system DSC30 (Mettler Instrument Co.) was
used to obtain heat capacity thermograms. Ten mg samples were
evaluated from -100 to 150C at a heating rate of 10°C and a N2
flow rate of 100 cc/min.

An Autovibron Dynamic Viscoelastometer (Rheovibron
DDV-III-C; Toyo Baldwin Co., Ltd.) coupled with a computer and
plotter (assembled by Imass, Inc.) was used to obtain the
storage modulus, E', loss modulus, E", and the loss tangent,
tan . The heating rate was approximately l°C/min and the
frequency was 110 Hz. The classical plots of the logarithmic
loss modulus, E", were converted to the corresponding linear
plots by a computer program.

The cloud point curve was determined using a Zeiss
microscope (Opto-Systems Inc.) equipped with a microprocessor
controlled hot stage at a heating rate of 2°C/min. Films were
cast from toluene onto glass slides from 10 wt% polymer
solutions. The films were then dried under vacuum at 100°C.

Results and Discussion

A series of 50/50 PVME/PS samples were synthesized and the
miscibility of the components was evaluated. The chemical and
physical blends were found to be clear while the semi-I,
semi-II and the full-IPN were observed to be hazy. Such
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haziness indicates a degree of heterogeneity, usually phase
separation.

The cloud point diagram determined for the PVME/PS blends
at varying compositions is shown in Fig. 1. The results are in
accord with previously determined phase diagrams for the
PVME/PS system excepting molecular weight differences.10

Microscopic phase separation was observed with generally
coarser morphology at increased PVME content. With annealing at
lower temperatures, the phase separation was observed to be
reversible, and clear films were obtained again.

180

170

160,

150 Fig. 1. The cloud point phase

140 diagram for physical blends
+ of PVME and PS, showing

130 + lower critical solution
% ~ ",temperature, LCST, behavior.

W 120

110

100 -- -- •

0 20 40 60 80 100

COMPOSITION (% PS)

Thermal analysis of PVME/PS IPN's indicates only one glass
transition temperature located between the homopolymer Tg's.
The position of the Tg is dependent upon composition but it
does not follow the prediction of the Fox equation,15 Table II.

Table II. Characterization of PVME/PS IPN's and Homopolymers.

Loss Area
% PVME (experdt (cal c Loss Peak Tg (DSC) Fox Eqr

GPa*+< "C "C "C

100 8.9 13.2 -15 -24 -15
70 10.8 12.1 -4 -16 14
50 12.4 11.5 16 -8 38
30 11.6 10.7 (20) 67 20 65
0 9.4 9.7 117 93 117

Network Crosslirker level Mc (g/mol)
x-PVME 7.5 wt % dicamyl perox. 18,000
x-PS 1 mol % DVB 7,700

based on E' = 2.85x10 dynes/cm2
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The breadth of the transition also increases dramatically with
increased PS content. The broad glass transition, resulting
from the clustering of molecules near the lower critical
solution temperature, is similar to broad transitions
associated with microheterogeneous multicomponent polymer
materials. Figure 2 compares the glass transition region of a
physical blend, cast from toluene, and an IPN of the same
composition. Both exhibit broad transitions, however, the IPN
is significantly broader than the blend.

2.10. ...

PHYSICAL BLEND......

1.73

o 1.37

...........

1.00 L_-- I I . I I

-80 -55 -30 -5 20 45 70 95 120

TEMPERATURE (C)

Figure 2. Differential Scanning Calorimetry of a
PVME/PS physical blend and full-IPN. 50 wt % PS in each
sample. Heating rate 10°C/min.

The dynamic mechanical spectra of a series of PVME/PS
IPNs is shown in Fig. 3, illustrating the linear loss modulus
plots. The homopolymers both show narrow, well defined loss
peaks. The 70/30 PVME/PS IPN loss modulus curve is slightly
broader than the PVME homopolymer peak. There is a dramatic
change in the shape of the loss curve with increasing PS
weight fraction as shown for the 50/50 and 30/70 IPNs. The
loss modulus peak extends over a range of 1000C and in the
30/70 sample there is an observable shoulder on the low
temperature end of the peak. The broad transitions indicate a
degree of microheterogeneous phase separation that may be
dependent on composition and the degree of crosslinking.
Recently, Bauer et al. found that phase separation occured as
the crosslink density of polystyrene was increased for
semi-II IPNs, where only PS is crosslinked 6  The IPNs
synthesized in this lab have PS crosslinking levels
corresponding to the crosslink level which resulted in phase
separation of the semi-II IPNs in the work of Bauer et al.
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0.. 70/30
X 240

210 50/50
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*180 Fig. 3. Linear loss modulus
0/100 versus temperature curves for

150 PVME/PS full-IPN's and
T2 homopolymers. Rheovibrono 120 DDV-III dynamic mechanical

90 spectroscopy at 110 Hz,
60 ! heating rate l°C/min.

0
~j30

0
SN N

TEMPERATURE (C)
The loss areas, LA's, obtained for the IPN's and

homopolymers are compared with the values predicted from
equation (2) and Table II. Except for the crosslinked PVME
homopolymer, the LA values obtained by DMS are within 10% of
the values predicted by the group contribution analysis. The
large deviation in the LA value obtained for the crosslinked
PVME homopolymer may be attributed to oxidation during sample
preparation, as evidenced by sample discoloration, which was
not observed in the IPN samples.

To examine the effect of phase separation on the loss
modulus, a sample of a 50/50 chemical blend was phase
separated at 130°C and and then evaluated by DMS, Fig. 4.
Note that the 50/50 PVME/PS blend shows a broad transition
indicative of clustering. This result is in accord with
previous dynamic mechanical spectra of PVME/PS blends.9
Corparatively, PPO/PS blends exhibit narrow loss moduli peaks
that vary predictably over the entire range of composition.6

Since the LCST for PPO/PS is significantly higher than the
experimental temperatures employed, clustering does not
occur, and narrow transitions are obtained. As compared to
the untreated blend, the thermally treated PVME/PS blend
shows a broader transition and also a larger loss area which
may be attributed to a change in morphology. Similarly, the
IPN shows a broader transition, however, the area is the same
as the untreated blend, within experimental error. It should
be noted that the phase separated blend has a milky white
appearance whereas the IPN is slightly hazy. The degree of
phase separation in the two cases is significantly different.
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300
PHASE SEPARATED AT 130 C270 UN-TREATED

(.. IPN

240
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150 I 6.5 GPa*K Fig. 4. Linear loss modulus
curves for 50/50 PVME/PS

0120 chemical blends, under two

7- 9different conditions, and a
90 full-IPN. Baseline

0/ •corrections are also shown.
(0 60

TEMPERATURE (C)

Conclusions

The IPNs synthesized appear to be less miscible than the
corresponding chemical and physical blends. The phase
separated IPNs, having broader glass transition regions than
the corresponding linear blends, enable damping over a
broader temperature region.
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ABSTRACT

A modern turbofan engine generates an intense acoustic environment
which results in durability problems for the surrounding aircraft
structure. Acoustic fatigue caused by jet engine noise is the principal
origin of structural failures of A-10 engine air inlet extension rings.
Many of these components exhibit failures in as few as a couple of hundred
flight hours. This paper outlines the environments which cause these
failures and presents the development of a damped A-10 inlet ring. The
durability, cost, and weight of the re-designed component are compared to
the baseline A-10 inlet ring. These comparisons demonstrate a significant
improvement in the durability, weight, and life cycle cost through the
incorporation of damping into an advanced inlet ring design.
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INTRODUCTION

Many of the failures of secondary aircraft structures may be
attributed to acoustic fatigue generated by modern turbofan engines.
Engine inlets, nacelles, cowl doors, and surrounding structure are
especially prone to these failures. While the failures themselves may not
be catastrophic from the standpoint of an individual secondary component,
potential foreign object damage to the turbofan engine could have a
detrimental effect on the flight worthiness of the aircraft. Frequently
recurring maintenance and repair of these structures adversely affects
aircraft availability and operational costs. Recent Department of Defense
directives rate operational availability equivalent to operational
performance for the design of new aircraft. As a consequence, managers of
future military system programs must incorporate advanced structural design
and manufacturing technologies into those systems to ensure their
reliability. The application of structural damping and careful structural
design practices in areas subjected to high intensity acoustic excitation
can reduce or eliminate the problems associated with the aforementioned
secondary aircraft structures. LTV has established the viability of this
technology through the re-design and manufacture of A-7 center section
leading edge flaps, F-ill outboard spoilers, and A-10 engine air inlet
rings.

This paper discusses the development and re-design of an inlet
extension ring used on an A-10 attack aircraft. Work on this project was
performed under the Structural Improvement of Operational Aircraft Program,
Air Force Contract Number F33615-81-C-3219. The goals of this program were
to develop advanced structural design and manufacturing technologies which
would increase the durability and decrease the life cycle cost of secondary
aircraft structures. These objectives were to be attained without a
performance or weight penalty as compared to the baseline component. In
pursuit of these goals, the failures plaguing the baseline inlet ring were
identified and the causes established through a series of tests and
analyses. An advanced inlet ring was then developed based on these design
criteria, and its durability validated through the same analysis and
laboratory test procedures used for the baseline inlet ring.

A schematic representation of the baseline inlet ring cross-section
and its installation is depicted in Figure 1. This structure provides an
aerodynamicaily smooth interface between the inner nacelle lip of the
aircraft and the fan shroud of a TF34-GE-100 engine. The baseline inlet
ring is approximately 42 inches in diameter and 9.25 inches wide. The
materials used in its construction are conventional 2024 and 6061 aluminum
alloys in various product forms and tempers. A laminated skin, composed of
three 0.025" layers of aluminum, bonded with 3M's AF-126 modified epoxy
film adhesive, is formed in 1800 sections, and spliced in two locations to
form the body of the baseline inlet ring. Aluminum angle stiffeners are
employed at the forward and aft ends of the skin to add rigidity to the
structure and provide attachment points for installation on the aircraft.
The forward angle stiffener supports a floating foiward flange which is
attached via 24 discrete spring elements. This spring-loaded flange
provides a flexible interface between the inlet ring and the inner nacelle
lip of the aircraft. The adaptive nature of this interface ensures the
ability to remove a damaged engine and/or inlet ring and replace it with an
undamaged spare in a minimum amount of time. Figure 2 illustrates each of
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the previously described elements of the baseline inlet ring and Figure 3
demonstrates how this component interfaces with the surrounding structure
when installed in an aircraft.

A survey of baseline inlet rings in service identified a number of
design shortcomings which induce unacceptable mean time between failure
intervals for the component. The elements which exhibit durability
problems include the rivets that attach the forward angle stiffener to the
inlet skin, and the splice plates and splice angles which join the
individual 1800 segments of the inlet ring skin and angle stiffeners.
Rivet failures occur at the forward angle stiffener in as few as 200 flight
hours, with rivet head ingestion into the engine transpiring as a
consequence of the failure. The deterioration of the rivet integrity may
be attributed to an open shank condition which exists in the interface
between the angle stiffener and the inlet skin. This situation is caused
by the presence of an elastomeric seal between the skin and forward ring as
illustrated in Figure 1. The lack of rigidity of the attachment at this
interface is aggravated by an intense acoustic environment which produces
circumferential bending and rocking modes of the forward ring. The
discontinuous load application created by the discrete spring elements also
enhances the severity of the problem. These effects contribute to the high
cycle bending fatigue and eventual failure of the aluminum rivets. The
failures associated with the splice plates and splice angles may be
attributed to an abrupt change in the bending stiffness of the structure at
these locations. When subjected to an acoustic environment, the inlet skin
tends to deform about these stress raisers and the ensuing bending causes
cracking of the splice plates. Finally, the flexible interface, at the
forward end of the baseline inlet ring, provides little or no sealing to
prevent blow-by and reduction of inlet ram pressure. This condition does
not precipitate any structural failures, yet it prevents the inlet ring
from completely and efficiently performing the function for which it was
designed.

DESIGN CRITERIA

In order to effectively solve the problems associated with the
baseline inlet ring, the reasons for the failures had to be identified.
The establishment of the design criteria involved identifying the
environments that the inlet ring encounters and verifying the failure
mechanisms through analysis and laboratory test. Due to the inlet ring's
proximity to the TF-34 engine, sonic fatigue caused by jet engine noise was
surmised to be the principal cause of the baseline inlet ring failures.
Acoustic fatigue of aircraft structures in the vicinity of modern jet
engines is a well known phenomenon discussed extensively in the
literaturel,2,3,4

Predicated on these hypotheses, an engine ground run test was
performed using an instrumented baseline inlet ring. The instrumentation
included two microphones to monitor the sound pressure level at the
interior of the inlet ring, and six accelerometers to assess the inlet ring
response to the acoustic environment identified. Figures 4 and 5
illustrate the maximum sound pressure levels witnessed at the forward and
aft ends of the inlet ring in a frequency range from 0 to 5000 Hertz. The
most severe environments, based on maximum sound pressure level, occur in a
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range of frequencies from 800 to 1500 Hertz and 2500 to 3000 Hertz. The
2500 to 3000 Hertz regime is the result of fan blade passage and generates
acoustic levels in excess of 170 dB (ref. 20 pPa). The other frequency
range of interest, 800 to 1500 Hertz, produces maximum sound pressure
levels of approximately 155 dB ( ref. 20 pPa) in a range of engine speeds
from 75 to 100 percent of maximum fan RPM. This multiple pure tone, or
combination tone excitation, is caused by geometric and aeroelastic
differences between successive fan blades which produces shock waves
forward of the fan face. Phenomenon such as these have been characterized
by various authorsl,3,4 , and shown by Hancock2 to be the cause of
structural failures in another TF-34 installation.

With the environment information obtained in the literature and
confirmed through engine ground run test, determining the amount of time
that the inlet ring experiences this severe excitation wag the only task
that remained. It must first be realized that those environments
identified through ground run testing will vary with atmospheric pressure
and air density, and thus can change dramatically in flight. To assess
these effects, an analysis of the the variation of sound pressure levels
with climatic conditions and altitude was performed. Standard atmospheric
conditions, outlined in MIL-STD-210A, were used for the purposes of this
analysis. The study concluded that the multiple pure tone sound pressure
levels remain significant to altitudes up to 8000 feet and the blade
passage sound pressure levels remain meaningful to 12,000 feet. Using
these altitude criteria and examining the A-10 mission profiles, the
percentage of total flight time the aircraft operates within the severe
excitation range of the two environments was determined. For the multiple
pure tone excitation, the duty cycle equated to 10.2 percent of the total
flight time, whereas the blade passage regime duty cycle was 22.9 percent
of total flight time. The effects of these environments and duty cycles
were further explored through finite element analysis and laboratory
testing of the baseline structure.

An MSC/NASTRAN finite element model of the baseline design inlet ring
was developed to determine the normal modes and response of the baseline
struc-urp. The two frequency regimes identified through the engine ground
run test provided the bounds for this analysis. However, the frequency
ranges used for analysis were somewhat narrower than the ranges over which
maximum sound pressure levels were identified during the engine ground run
test. Accelerometers mounted on the forward angle stiffener during this
test showed significant response of this region between 800 and 1200 Hertz
and also between 2800 and 3000 Hertz. Since this vibration was surmised to
be the primary cause of the structural failures, the bandwidths used for
analysis were decreased accordingly. Typical deformed shapes of this
structure in the multiple pure tone and blade passage frequency bands are
shown in Figures 6 and 7 respectively. Examination of these plots reveals
the rocking and bending of the forward angle stiffener which causes rivet
failure in this region. Because the excitation environments span the
frequency ranges of 800-1200 Hertz and 2800-3000 Hertz, simply determining
the stress associated with the inlet ring response at a single frequency
does not fully characterize the stresses developed in the structure. In
order to assess the stress generated by the random response of the inlet
ring, Baranek5 suggests the use of a root sum squared combination of the
stresses determined from each individual mode. The difference in
bandwidths of the two frequency regimes was taken into account by using an
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equal number of the most severe modes from each bandwidth in this
calculation. Upon calculating an equivalent stress for the frequency
range, a constitutive relationship, derived from reference 6 for high cycle
fatigue of monolithic aluminum, was applied to determine the life of
various discrete structural elements of the baseline inlet ring. Applying
the duty cycle information obtained previously yielded theoretical flight
times to failure.

The results of the sonic stress analysis identified the rivets
attaching the forward angle stiffener to the inlet skin as the most highly
stressed region of the baseline inlet ring. Subsequent fatigue analysis,
using the high cycle stress-life relationship described previously and
Miner's Rule of cumulative damage, established a rivet life of 21.6 flight
hours with the multiple pure tone environment contributing 99.8 percent of
the fatigue damage. The significance of the multiple pure tone
contribution based on analysis, coupled with the magnitude of the response
witnessed during the engine ground run test, combine to substantiate this
environment as the dominant fatigue mechanism. A good correlation between
measured inlet ring response, and the response obtained through finite
element analysis, served to further reinforce this hypothesis.

To substantiate the importance of the multiple pure tone regime in
contributino to the failure of the baseline component, a series of
laboratory tests were initiated. A modal analysis was performed on the
baseline inlet ring to determine the modes of the actual structure and
evaluate how these modes compare with those determined though finite
element analysis. The inlet ring was mounted in a progressive wave tube
and subjected to burst random excitation generated by two electro-pneumatic
transducers attached to the front of the wave tube. This test setup is
shown in Figure 8. A roving accelerometer was used to evaluate the
response of the inlet ring at various points around its circumference. The
data recorded from the roving accelerometer was then fed into a fast
Fourier modal analyzer to determine the resonant modes of the structure.
The structural modes of the baseline inlet ring were in good agreement with
those established in the finite element analysis. Upon completion of the
modal analysis testing, a sine sweep was performed. Since the duplication
of the multiple pure tone environment required the use of a random
excitation, and because the electro-pneumatic transducers could not produce
this environment at sufficient sound pressure levels to duplicate the
levels realized in service, a 450 section of the inlet ring was removed and
mounted to an electro-dynamic shaker. Figure 9 illustrates this
installation. A 450 segment was chosen as a result of the mode shapes of
the structure identified from modal analysis. This segment provided a
minimum of two wave lengths at the lowest frequencies, thus eliminating any
adverse effects to the local structural response due to the clamped
boundaries.

Sine sweeps of the segment confirmed the correlation of the response
between the segment and the complete inlet ring. Validation of the
similarity of the response led the way for the initiation of fatigue
testing which duplicated the multiple pure tone environment. Dwell fatigue
testing was initiated at 40g RMS in a bandwidth from 800-1500 Hz. The
first rivet failure occurred after approximately 20 minutes of dwell
testing. Total failure of the segment forward angle stiffener to skin
joint was accomplished after 11 hours of dwell. When extrapolated to
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flight times based on duty cycle, the failures that occurred in the
laboratory testing were within the range of the failure times reported by
Air Force maintenance personnel. By establishing the correlation between
analysis, testing, and service experience, the foundation had been
established for the design criteria, as well as providing a direct standard
of comparison between the baseline and advanced designs during both
analysis and test.

DESIGN DEVELOPMENT

Based on the environments identified when establishing the design
criteria, the advanced inlet ring had to be designed to withstand a severe
acoustic excitation. Guidelines utilized in the design of a structure
subjected to high intensity acoustic excitation include providing
continuous load paths, avoiding stiffness discontinuities, and
incorporating structural damping where necessary. Many of the failures of
the baseline inlet ring were the result of not adhering to these basic
acoustic fatigue design principals. Therefore, other than the dimensional
envelope dictated by the installation, the advanced inlet ring required a
complete re-design. Some add-on fixes are available to provide acoustic
fatigue resistance, but none of these treatments could remedy the inherent
deficiencies of the baseline inlet ring. The elements of the baseline
design which were eliminated from the advanced inlet ring include: 1) the
riveted forward ring attachment, 2) the discontinuous splice configuration,
and 3) the discrete spring elements. Improvements were also necessary in
the area which forms a seal with the nacelle lip at the flexible forward
interface. The design configuration created to satisfy these criteria is
depicted in Figure 10.

Examining this cross-section reveals the elimination of the of the
rivets at the forward flange by incorporating this element into the inlet
skin. The discrete spring elements were replaced by a continuous elastomer
spring which serves to evenly distribute the compression load when
installed in an aircraft, as well as effecting a seal around the
circumference. Figure 11 illustrates that by forming the nine individual
skin plies simultaneously, and staggering the location at which each ply
terminates, a continuous, spliceless skin can be produced. The laminated
skin also serves as a method by which damping can be incorporated into the
design. 3M's AF-32, a viscoelastic, nitrile phenolic adhesive, with proven
damping properties, was used in this manner. Additionally, while no
problems were recognized with the aft angle stiffener, its attachment
method was modified to incorporate a rivet-bond procedure. The adhesive
bond in this interface serves to provide a continuous path for load
transfer and effectively reduces the stress concentration normally
associated with a conventional riveted joint. This characteristic has
proven to be especially advantageous on previous LTV programs, for detail
attachment in structures subjected to severe acoustic excitation. Since
the adhesive is the primary load carrying component of the joint, the
number of rivets used in the aft ring attachment were reduced from the
quantity used in the baseline inlet ring.

Upon completing the design development based upon the acoustic fatigue
design practices outlined previously, analysis of the advanced inlet ring
was initiated. The establishment of the baseline finite element model,
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with the results substantiated through laboratory and field test, provided
the ground work for an advanced design finite element model which utilized
similar assumptions. Consequently, the relative durabilities of the two
components could be assessed prior to hardware production. An MSC/NASTRAN
finite element model was constructed to evaluate the effects of the
acoustic environment on the advanced inlet ring. Normal modes and response
analyses were performed. Figure 12 illustrates a typical structural mode
in the multiple pure tone frequency range and Figure 13 is indicative of
modes occurring in the blade passage environment. Circumferential bending
modes are also evident at the integral forward flange similar to those
identified in the baseline inlet ring; however, the incorporation of
damping reduces the stresses in this region to acceptable levels. The
stress results from the frequency response analysis at discrete frequencies
within the bandwidths of interest were combined using the same root sum
squared procedure described for the baseline design analysis. The stresses
which were identified in the various regions of the advanced inlet ring
were, in all cases, much lower than those observed for the baseline design.
Applying the same stress life relationship and duty cycle information
utilized in the baseline design analysis, the projected total life, and
life in flight hours based on duty cycle were obtained. This sonic fatigue
analysis predicted a life greater than 6.9x10 5  flight hours for the
advanced component.

The design development and analysis procedures were confirmed through
segment and element testing of portions of the baseline and advanced design
components. These tests provided a one-to-one durability comparison
between the elements of each design before the advanced design inlet ring
configuration was finalized and a full scale component produced. The tests
also served to confirm analysis techniques and provide data where published
data and analysis procedures were inadequate. The first of these series of
tests compared the forward sections of each inlet ring design. Small
straight sections representative of the forward ring area of both the
baseline and advanced configurations were tested on an electro-dynamic
shaker. The baseline segment exhibited rivet failure in three hours of
dwell which was similar to those failures observed on the full scale
baseline inlet ring. The advanced configuration was tested for the
equivalent of 25 times that of the baseline segment, without failure,
before the test was terminated. Acoustic test panels were used to confirm
the Advanced skin lap joint durability and compare that with the durability
of the discrete splice plates used in the baseline design. The baseline
panel, when mounted in a progressive wave tube and subjected to an acoustic
environment, failed in four hours in a manner similar to that observed in
inlet rings in service. The advanced panel was tested more than ten hours
under the same environmenLal conditions without failure before testing was
terminated. Other elements of the advanced design were tested simply to
prove the proposed fabrication concept without a relevant comparison to the
baseline inlet ring. These tests included the static and fatigue
evaluation of the elastomer attachment method to the forward flange, and an
abrasive wear test of a Teflon coating used to prevent metal-to-metal
abrasion in the inlet skin radius.

The positive conclusions drawn from the development and analysis,
combined with the confirmation of the design elements through segment and
element testing, led the way for production of a full scale test component.
The advanced inlet ring test article is shown in Figure 14. This inlet
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ring was subjected to the same testing performed on the baseline inlet
ring. First, a modal analysis was used co determine the resonant modes of
the structure. Only four normal modes were extracted from the multiple
pure tone frequency regime. Those modes that were obtained were ill
defined and poorly correlated, which is indicative of a highly damped
structure. A 450 segment was then removed from the inlet ring and mounted
on an electro-dynamic shaker. Sine sweeps performed on this panel revealed
broad peaks in the stress and acceleration versus frequency domain, which
is also behavior typical of damped structure. Fatigue testing was
initiated at 40g RMS from 800 to 1500 Hertz after the completion of the
initial structural response testing. The advanced configuration was tested
for 31 hours without failure before the level was increased to 50g RMS in
the same frequency bandwidth. Six more hours of dwell were completed
successfully before the testing was terminated.

DESIGN COMPARISON

The analysis and testing performed on the baseline and advanced design
inlet rings provide a dramatic comparison between the relative durabilities
of the two components. Analysis indicated that an 80 percent reduction in
peak stress levels, and a durability increase of greater than a factor of
1000 could be expected for the advanced inlet ring. Full scale structural
response and fatigue testing confirmed these predictions. Based on this
testing, the advanced design exhibited less than half the number of modes
in the multiple pure tone regime, demonstrated an 80 percent decrease in
structural response, and was tested to greater than 500 times the life of
baseline inlet ring without failure. As with any aircraft structure,
durability alone is not the only consideration in assessing two
functionally equivalent designs. The final structural weight and cost must
also be evaluated to judge the effectiveness of the acoustic fatigue design
practices outlined in this paper. Comparing these aspects of the baseline
and advanced inlet rings reveals that the advanced component contains 86
percent fewer detailed parts, weighs 15 percent less, and has a preliminary
projected cost reduction from the baseline inlet ring on the order of 25
percent. These comparisons highlight the effectiveness of the
incorporation of integral damping as well as other other basic acoustic
fatigue design principals in gsnerating a lighter, more durable, and cost
effective design.

CONCLUSION

The design of the advanced inlet ring was achieved through a
systematic process of evaluation, analysis, design, and testing which
validated the final configuration. First, potential causes of the baseline
inlet ring failures were identified, and the installation environment was
characterized through field testing. Once the potential causes of damage
were recognized, the baseline structure was analytically modeled and tested
in a controlled laboratory environment to confirm the failure modes
exhibited in service. These activities served to pinpoint the most
damaging acoustic environment. Having established the cause of the
structural failures of the baseline -cmponent, detailed dovelopment and
analysis of advanced design concepts were initiated. By adhering to
acoustic fatigue design practices which suggest providing continuous load
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paths, avoiding stiffness discontinuities, and incorporating damping, a
final advanced design configuration was achieved. The final step of the
process involved applying the same testing used for the baseline design to
the advanced inlet ring. Extensive laboratory testing validated the
development and analysis of the final advanced inlet ring configuration.
Using this approach, an inlet ring which has demonstrated durabilities in
excess of 500 times greater than the baseline component while also reducing
overall detailed part count and total structural weight was achieved.
These factors are expected to contribute to a decrease in the life cycle
cost, and an improvement in operational availability of Air Force fleet
aircraft. Demonstrating this technology on smaller secondary structure
should also lead to the realization that this technology is a viable
alternative for application to larger primary aircraft structures subjected
to high intensity acoustic enviro'ments.
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cost-effective way to apply passive damping is
Abstract to incorporate the viscoelastic material as an

integral part of the structure during the
The sound pressure levels generated by design/taorication process. This is a more

aircraft jet engines can result In sonic efficient approach to reducing structural
fatigue of structure and damage to sensitive, vibration than the addition of constrained
on-board electronic gear. The program layers of damping material, a method that
objective is to develop the passive damp~ing characteristically requires more mabs in order
technology required to achieve sonic fatigue to be effective.
resistance at reduced weight and to suppress
structural vibration within aircraft equipment The purpose of the program described in
bays. The approach is to incorporate this paper is to demonstrate that the use of
constrained layer damping into the fuselage advanced metallics can significantly reduce
and equipment racks as an integral part of the weight and life-cycle cost of aircraft
their design, rather than to use less structures and equipment operating in a high
effective add-on damping treatment after the vibroacoustic environment. This will be
structure has been manufactured. The aft achieved by developing lightweight sonic
equipment bay of the B-lB aircraft was fatigue-resistant aircraft structures
selected as the baseline component with which incorporating passive damping. The validated
to compare and demonstrate the technology technology that evolves from this program will
developed in this program. The analyses and provide generic guidance for the incorporation
experimental testing accomplished during the of new damping concepts and materials into the
preliminary design phase of this program are design of future aircraft. In addition, the
discussed. It is shown that integral damping technology will apply to the redesign of
can reduce vibration transmitted into structural components on operational aircraft
equipment racks by 90 percent, and that the that have high maintenance costs. The program
fuselage structure can be made sonic fatigue approach will be to redesign an existing
resistant at reduced weight. aircraft structure that, because of its severe

operational vibroacoustic environment, is
especially vulnerable to damage from sonic

Introduction fatigue, and whose interior equipment bays are
subject to high vibration levels that
adversely affect sensitive electronic gear.

The skins and substructure of military This baseline structure will be identified as
aircraft are often exposed to intense the demonstration component.
vibroacoustic environments that can reduce
structural fatigue life and cause equipment Demonstration Component
malfunction.

The usual design approach to reducing The aft equipment bay (AEB) of the B-1B
resonant response is to stiffen the structure, strategic bomber was selected as the baseline
by increasing skin thickness for example, component for this program. It is considered
which results in a weight penalty. A need the best of the candidate structures for
exists to develop lightweight aircraft several reasons. It is a major structural
structures that can withstand the severe component, a 360 degree self-contained,
environment while transmitting less vibration retrofittable compartment that comprises part
into equipment racks. of the B-lB aft fuselage. The location of the

AEB makes it an excellent baseline to
The use of add-on damping treatment is a demonstrate the objectives of this program

common method of dealing with sonic fatigue (Fig. 1). It is located immediately aft and
and resonant vibration in aircraft skins and adjacent to the jet engine exhaust nozzles; as
substructure. Previous exploratory a result, the external surfaces of the AEB and
development studies have shown that the most the sensitive electronic gear within the bay

are susceptible to damage from extended

*Aerospace Engineer periods of exposure to the intense sound
"'Engineering Specialist pressure levels (SPL) generated by the

engines.
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,.. Fig. 3 View of the AEB Looking Aft.

A SOUIPSENT NAY

Program Structure

Fig. I Location of the Aft Equipment Bay on The work described in this paper will be

the B-1B Aircraft. accomplished in three phases:

Phase I (Preliminary Analysis)

Baseline design criteria will be assembled
The AEB basic construction is conventional and trade-off studies conducted of various

aluminum, stepped chem-milled skins riveted to viscoelastic materials and damping concepts.
a frame/longeron substructure. It contains Coupon samples will be tested to evaluate
two equipment rack assemblies, one forward and candidate materials. Advanced design test
one aft, that are anchored to frame webs panels will be fabricated for sonic fatigue
through cup-type vibration isolators. The AEB and noise reduction tests. Advanced design
is 130 inches (3.30 m) long, with a 90 inch features will be identified for the
(2.29 m) forward diameter at station YF-1559, replacement AEB fuselage structure and
tapering down to 60 inches (1.52 m) at station equipment racks.
YF1690. It weighs approximately 1350 lbs
(612.9 kg) without avionics equipment Phase I1 (Advanced Development Segment)
installed. The AEB structure is sealed for
pressurization above 8,0O0 ft (2440 m) A full-scale structural segment of the
altitude (Fig. 2 and 3). replacement component will be fabricated using

an advanced design based upon the results of
Phase 1. The segment will include internal
structure that is integral to the segment,
such as equipment racks, shelving, and
shelving support structure. The instrumented
segment will be used for modal response and
acoustic fatigue tests and for noise reduction
measurements. An assessment of the advanced
segment performance will be made regarding its
potential application in the design and
construction of a complete full-scale
component for future flight test
demonstrations.

Phase III (Advanced Development Component)

The end product of this program will be a
ful1-size, form-fit-and-function replacement
structure that will be retrofittable in its
entirety with the production baseline
component. It will be designated as the
advanced development component, designed on
the basis of Phase I results and incorporating

Fig. 2 Aft Equipment Bay (AEB). any modifications identified during the
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advanced segment tests in Phase 11. The rack-to-shelf interface, and shelf section. A
advanced development component will be finite element model of the baseline rack
instrumented for static, dynamic and noise assembly is shown in Figure 7.
reduction tests. These tests will be
performed in order to qualify the advanced The rear access door of the AEB is

development component for flight constructed of graphite/epoxy skins bonded to
certification. Flight demonstrations of the a honeycomb core. In addition to the
advanced development component are planned for rack-related PDFs, the door also was mdeled

a future program. by FEM to investigate damping a composite
componc,-.

Structural Analysis Analytical Results

The results from the equipment rack
Finite Element Model analysis are impressive. It was demonstrated

by FEM that by using damped honeycomb shelves,
The geometry of the baseline equipment each supported in a "floating beam" frame, the

racks, both fore and aft, is composed of a vertical end support posts and the vibration
rigid system of shelving, braces and vertical
rack supports interfacing the fuselage frames
through an array of conventional cup-type
vibration isolators. The forward equipment
rack assembly is shown in Figures 4 and 5. At
best, this arrangement presents a "stiff ride"
for sensitive shelf-mounted equipment units in
a severe vibroacoustic environment. Although
most of the vibration is structurally
transmitted into the racks, airborne noise
within the AEB is a secondary source of
excitation (Fig. 6).

.- . . .

SI: Fig. 5 Forward Equipment Rack Mounted on
0 /jl Vibration Isolators (Without Center Post).

FIg. 4 Sketch of Foard Equipment
Rack Assembley. mw -

To improve the vbroacoustc environment,.
a study was conducted to determine the best '
means of incorporating integral damping Into . c . x
the equipmnent rack structure. The approach " '

taken was to conduct a modal analysis of the | .,.. e

odeling (FEM). Key rack components and

structural joints, designated as Principal
Design Features (PO~s), were selected for FEM
analysis, both individually and as an Fig. 6 Paths of Structural Vibration and
assembly. The PDFs were: skin section, Airborne Noise into the Equipment Rack.
skin-to-frame joint, frame-to-rack interface,
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isolators can be eliminated (Fig. 8 and 9). :n
their place, polymer "tension pads" will be
used as an interface to independently anchor
each shelf directly to the fuselage frames
(Fig. 10). The tension pads also function as
expansion joints during fuselage
pressurization. The center support post of
the rack structure will be retained. It is
estimated that this "soft ride avionics"
concept will reduce the total rack weight by
over 50 percent and decrease vibration
transmitted into equipment shelving by 90
percent.

Similarly, FEM analyses show that by using
laminated skins/frames, sonic fatigue
resistance of the fuselage structure can be
achieved at a weight reduction of 20 to 25 Fig. 7 Finite Element Model of the Baseline
percent. Forward Equipment Rack.

Two concepts of damping the AEB composite
access doors were examined by FEM. These are -- FLTNSAM LAMNATEO SKINS

described in Acoustic Test Panels ASSEMOLY

It was shown that damping loss factors
should be high enough to reduce the door
weight by 5 percent. ... 'i I L

..E LIN DAMPING LATER ELASTONENI INSERMh/EUII NT RACK FRAME

Selection of Damping Adhesives
Fig. 8 Honeycomb Shelf with Laminated Skins and

Damping Septum.
Different types of damping adhesives are

required, each for a particular application,
to incorporate damping into the various
elements that comprise the advance design AEB
skins and equipment racks. The expected
resonant frequency responses and operational
temperature ranges are the most important
design parameters in adhesive selection. From
previous screening, candidate adhesives were
evaluated according to type for threeI-A
particular applications; for use in laminated
skins, rivet-bonding and graphite/epoxy \
structure. P

rAE E FLOATING WA.N~

EDGE SP4ELF MEUSER

Standard ASTM test specimens were used to
characterize the strength and damping Fig. 9 Floating Beam Support for Equipment
properties of the candidate adhesives. These Rack Shelves.
included lap shear and creep coupons and
vibrating reeds. From these tests nomographs
were constructed showing how the loss factor -us,,,
and shear modulus of a particular adhesive - :,n ,,*.u,
v'ry for a given combination of temperature
and frequency. An example is shown in
Figure 11. The nomograph is entered
horizontally from the right at the selected
resonant frequency. Where that horizontal
line intersects the temperature of interest, a
vertlcal line is drawn. It, in turn will
intersect the two plotted curves, giving the
respective values of shear modulus and loss
factor. The most promising of the candidate
adhesives were identified for further
evaluation.

Effective damping can be extended over a
wider range of temperatures by using a "duplex
system" of adhesives. This entails the use of
two different adhesives, each with its own
effective temperature range, in a back-to-back
layup and single cure cycle. Fig. 10 Shelf Interface with Fuselage Frame.
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Two duplex Systems were selected for not. 0-1 q

metallic and Graphite/Epoxy laminates. They
were AF-32/PM-2160 (film-film) and
AF-32/EC-1838 (film-paste) (Fig. 12). AF-32 ,o- too
performed best at lowei temperatures. Both
the PM-2160 and the EC-1838 were selected for ,,.. 

their high temperature properties and because I I1
their processing and cure characteristics were f
zompatible with AF-32. Although paste _0, IN '/
adhesives are generally more difficult to work I it
with, EC-1838 was included for comparison.

EC-3594 is the preferred adhesive for
rivet bonding. It mee's the room temperature , I
cure requirement and has a pot life long
enough to enable completion of assembly before Fig. 1i Loss Factor and Shear Modulus of ait ses-up.Viscoelastic Material Related to
it sets-up. Frequency and Temperature.

A c u s t i c T e s t P a n e l s 0 - laye -

Configurations

Nine curved acoustic test panels were 004 0.03? I h A S

fabricated to evaluate different skin L.,.I sI,. I,, oIP0SI . , 0.3

laminates, using the damping adhesives
previously identified. Each panel is curved _ _ U1,, .... _ _ _ _ _ _

to a 48 inch (1.22 m) radius, with a SO inch 004 ....... LI

(1.27 m) arc length and 30 inch (0 76 m)

width. The features of each of th-- nine . i
panels are listed in Table 1. *,-

3? 0.00? Inch 0' IION

Six of the panels are metallic, 9-bay L..aladIf (CWETS ,.?2Ma.1
configurations that represent the
frame/longeron construction at Station YF 1610 Fig. 12 Duplex Viscoelastic Damping Adhesives.
on the B-lB AEB (Fig. 13). The six metallic
panels are divided into two groups of three
each; the first group (Concept 1.0) all have
riveted skins; the second group (Concept 2.0) -',
all have rivet-bonded skins. Concept 1.1 is
the undamped baseline metallic with
chem-milled lands. The remaining five
met lic panels have laminated skins with
bonded doublers. They vary within their own 8- R,
group only by the type of damping adhesive ..
used in the laminates; the exception is
Concept 2.3, which has damped frames in
addition to laminated skins.

Table 1 Acoustic Test Panel Configurations

BASIC GROUP LCONCEPTJ CONSTRUJCTION ]ADM[STYES
. 1.1' SAW 1 4E Fig. 13 Construction of Metaliic 9-Bay Acoustic

N ETALL IC Test Panels.

I U-i"32C1 63" 1lL 0'l lg 
1

RIVETED.. K\\N I.] DPE *1)

2.2

K.l (11 r5),,m-

I 05T BONDED 2.3 LAMINCSATED SKIN ( NlOi t- N/

C 3.0IC 3.1 JAS(IEL4

3.2 LAMINATED SKINS ii - a

0 LIDMPING SE'L' . 4 00 I 0' 0 0l A0 . ShIu

GA/f SINS 3.2 UNEO DAMPERS 'IC-l7 O $I"C'
HoRfCm SRE Fig. 14 Cross Section of Composite Panel Using

Tuned Dampers.
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TOP VIEW

The remaining three panels (Concept 3.0) c .
a.,' constructed with grapnite/epoxy skins _'____"_____..._""___

bonded to an aluminumin honeycomb core. .
Conce't 3.1 is the baseline configuration with 4.7 .
no damping. 2.o T2,90TEST 163,94

Coezept :.2 will have either damped skins ROPHONE PANEL
or a damping septum within the structure that BOOM 0
divides the hr',ycomb core near the neutr _
axis. T, - configuration is similar to the
damped honeycomb shelf shown in Figure 8. ---

ACCESS DOORS DOOR

Concept 3.3 uses a damping system SIDE VIEW

composed of an array of "tined-damper" r .iC.i: :::i:.
aluminum slugs. As shown in Figure 14, each
slug is suspended within the honeycomb core
between two silicone inserts. This allows RECEIVING ROOM SOURCE ROOMI
each slug to oscillate freely on an axis
normal to the skins. The slugs are designed 3
to oscillate at maximum amplitude when the

panel is at its fundamental resonant '115
frequency. In principle, this is the i

mechanism by hich the vibration energy is
dissipated ...

DIMENSIONS IN m SOUND SOURCE

Fig. 15 NASA LaRC Noise Reduction Test Facility.

Test Conditions

A test plan was developed to evaluate the
performance of the candidate damping adhesives
and the damping concepts that are represented 4 random sound field is generated in tne
by the nine acoustic test panels. source room by two floor-standing centrifugal
Experimental data will be obtained to fans, reinforced by loudspeakers to obtain the
determine the modal response, sound required broadband spectrum over a frequency
transmission loss and sonic fatigue resistance range of 100 Hz to 10 kHz.
of each panel.

Space- and time-average recordings of the
Response Tests SPL are made during a 32 seconi sampling in

both rooms for each test condition. Panel
Modal response data will be recorded using temperatures are monitored using

two test methods, during which each panel is thermocouples, and accelerometer data are
shaker-driven while mounted in a high-mass recorded from the center bay of each panel.
test fixture. The roving accelerometer method
will be used first, followed by a holographic It is planned to test each panel at
technique that enables mode shapes to be ambient temperature and at 180 F, first
recorded on video tape or by still without and then with an acoustic/therral
photography. material applied to the "receiving side" of

the panel. A Fiberglas thermal blanket will
Aduitional modal response data will be be used on the two baseline panels. A sound

recorded during frequency sweeps made with the absorbent polyurethane foam will be applied to

panels mounted in a progressive wave test each of the remaining seven advanced design
section and using electropneumatic noise panels. The test procedure for each panel in
generators as a source of acoustic excitation, turn will be:
All modal tests will be accomplished at the
Flight Dynamics Laboratory's sonic fatigue a) Install panel without treatment.
test facility at Wright-Patterson AFB, OH.

b) Conduct noise reduction test at
Noise Reduction Tests ambient room temperature.

A sound transmission survey will be made c) Heat panel until its "source side"
to determine the noise loss through each of temperature stabilizes at 190OF* 10 degrees,
the nine panels. These tests will be then conduct noise reduction test.
conducted at the NASA Lagley Research Certar,
Hampton VA. Their noise reduction test d) Install appropriate material on the
facility is composed of a "source" room and a receiving side of the panel.
.receiving" room (Fig. 15). Each of the
panels will be installed in a rubber-mounted e) Conduct noise reduction test at
steel fixture *hat is built Into the wall ambient room temperature.
dividing the source and receiving rooms.

f) Repeat (c).
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Fatigue Tests Summary

Acoustic tests will be conducted on each The results of the FEM study show that a

of the nine panels to evaluate their sonic less complex design uf the equipment racks can
fatigue resistance. Each panel will be be achieved by incorporating integral damping
installed in a 2 ft (0.61 m) wide x 6 ft into the structure. This can be accomplished
(1.83 m) high x 8 ft (2.44 m) long progressive primarily by using damped honeycomb shelves
wave test section at the Flight Dynamics with "floating beam" corner supports. These
Laboratory's sonic fatigue test facility innovations would eliminate the need for the
located at WPAFB OH. A sketch of the facility heavy vertical end posts and bulky vibration
is shown in Figure 16. Three Wyle 30 kilowatt -isolators, resulting in a weight reduction of
electropneumatic noise generators provide the over 50 percent.
noise source. They are controllable from 50
Hz to 500 Hz. The upper regions of the The results also show that the sonic fatigue
spectrum are filled in by the harmonics, resistance of the fuselage structure can be

attained by using laminated skins rivet-bonded
to the substructure while reducing weight by
20 to 25 percent.

In addition, it is estimated that the overall
redesign of the aft equipment bay will result
in a 90 percent reduction in the vibroacoustic
environment currently experienced by
shelf-mounted line equipment items in the
baseline AEB.

T TEST PANFL

Fig. 16 Progressive Wave Test Section.

The qualification test conditions will be
based upon measured flight data that show the
AEB experiences 168-169 dB overall SPL at
Station YF-1610 represented by the test
panels (Fig. 17). Spectrum shaping will be
accomplished by concentrating much of the
acoustic power output into the 1/3 octave
bands that contain the predominant response
peaks that were identified during preliminary
sine wave sweeps. The required test duration
for each panel has been established at 21
hours. This figure is based on the predicted
number of full-afterburner takeoffs that the
B-lB aircraft will make during its projected
25 year life.

155dB
145lB /5uB 5d

1450B

135dB
- ~ l6Milo

Fig. 17 SPL Contours on the B-IB Aircraft.
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Abstract
Damping in Metal Matrix Composites -An Overview

S. P. Rawal
J. H. Armstrong

M. S. Misra
Martin Marietta Space Systems, Denver, CO

S. G. Fishman
Office of Naval Research, Arlington, VA

Measurements of damping in metal matrix composites (MMC) have been conducted in

flexural and extensional modes over a wide spectrum of frequency (1Hz - 80Hz) and

strain amplitude (10-7- 10- 3 in/in) with various test techniques. Dynamic response of

MMC can be described in terms of strain amplitude independent and dependent damping

behavior. At very low strain amplitudes (-5x10 5 ), darnping is nearly independent of

strain amplitude level, but varies with frequency showing a Zener relaxation peak. The

total composite damping can be calculated from the modulus or strain energy weighted

rule of mixtures. Average damping capacity (IP) of MMC is generally less than the T

value for matrix alloy because reinforcing fibers and whiskers have inherently very

low damping. Beyond a critical strain, amplitude level, the damping capacity of

composite increases with increasing strain amplitude. This strain amplitude dependent

response can be explained in terms of the Granato-Lucke theory which is based on a

dislocation breakaway model. Also discussed are the efforts to improve damping in MMC

by modifying the microstructural characteristics of fiber, matrix, and interfaces.t With

enhanced damping contribution from MMC structural materials, the degree of additional

passive and active controls required may be reduced for large precision space

structures.

t S. P. Rawal, J. H. Armstrong and M. S. Misra, "Interfaces and Damping in
Metal Matrix Composites." Final Report No. MCR-86-684, prepared for
Office of Naval Research, Arlington, VA.
M. S. Misra, S. P. Rawal and J. H. Armstrong, "Damping Characteristics of
Metal Matrix Composites." Technical Report No. MCR-8-634, prepared for
Office of Naval Research, Arlington, VA.
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HIGHLY DAMPED GR/MG COMPOSITES FOR FLEXIBLE SPACE STRUCTURES

Uday Kashalikar
Joseph Boyce

Foster-Miller, Inc., Waltham, MA
(617) 890-3200

ABSTRACT

Structures for space-based weapons must possess a high vibrational
damping for effective defense against a %ultiple missile threat. Development
of an ultrastiff material (E/p > 8 x 100 in.) with high inherent damping
capacity (%p > 2 percent) in the high frequency-low strain region will
improve performance and reliability of the system, and reduce the need for
active damping.

The Interfacial Slip Damping (ISD) mechanism consists of dissipating
frictional energy at the fiber/matrix interface under external dynamic
loading. In case of Gr/Mg composites, the fabrication residual stresses and
the interface frictional coefficient must be reduced in order to promote
energy dissipation by controlled interfacial slip rather than initiation
and/or propagation of matrix cracks. The ISD phenomenon is effective even at
low strain levels (<0 - 3) which is essential for a fast decay of free
structural vibrations to an acceptable amplitude. A 150 percent improvement
in damping was achieved with P-55 Gr/Mg composite (from ip - 1.6 percent to
'p = 4 percent), by promoting the ISD mechanism.

Advanced space structures will benefit from this technology in the
following ways:

*" mpJrng - Large improvements in strain-independent damping. A
simplified model predicts that close to an order of magnitude
improvement in damping is achievable with <5 percent reduction in
stiffness of Gr/Mg metal matrix composite (MMC).

" Specific stiffness - High fiber content (vf > 6Q percent) will result
in an outstanding specific stiffness (9 x 10 in. with l00-Mst
rernforcement).

• j - Reduced requirement for active damping will lower structural
cost.

This research was sponsored by SDIO/IST and managed by NSHC.
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INTRODUCTION

Continuous fiber-reinforced MMCs are well-suited for space structural
applications because they typically possess a high specific stiffness, a
near-zero coefficient of thermal expansion (CTE) and a good resistance to the
space environment. In addition, flexible space structures such as the Space
Based Laser (SBL) will require structural materials with a high inherent
damping to achieve the requisite dynamic dimensional precision. The SBL is
intended to destroy a large number of target missiles in a very brief period
of time, which will require rapid retargeting and accurate firing
capability. The short "readiness-to-fire" time for the SBL dictates that the
vibrations induced under the inertial retarget loads must be damped quickly.
As presented in Figure 1, the settling period of free vibrations will largely
control the effectiveness of the SBL weapon. During this research, a
significant improvement in the settling time was demonstrated In Gr/Mg MMCs
through an innovative processing technique.

For a specified value of the acceptable amplitude, as, the settling

period can be shortened by increasing:

" Material and structural damping

* Specific stiffness

" Natural frequency of the structure.

RETARGET , _7 I LINE OF SIGHT
TORQUE -- - - - - _ _ _ _ _

DISPLACEMENT, 6 LINE OF
SIGHT ERROR

RETARGET SETTLINGRERIOD PERIOD FIRE

V V

Figure 1. SBL Performance Simulation1
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The dapmping behavior of continuous fiber MMCs has been reviewed by
Timmerman, Mishra, and Steckel. 4  Various measures of damping have been
reported such as loss factor (q), loss angle (€), logarithmic decrement (&),
quality factor (Q), specific damping capacity (w) and damping ratio (c). In
this paper, specific damping capacity, %p, will be used as a measure of
material damping. At low damping levels (i.e., q < 1), these damping
parameters are interrelated by the following expression:

Q-1= = tan e - = EI/ER

= 6/- = /2n = AW/2W - 2

Damping properties of materials are a function of temperature, frequency,
static preload and material strain. The effect of these parameters on
damping in viscoelastic matrials is described in Reference 5. Generally, at
low stress or strain (00-0) levels, the damping behavior of a material is
independent of stress amplitude, but depends on frequency and temperature.
At intermediate stress or strain (10-0 to l0-3) levels of engineering
interest, polymeric materials still exhibit linear damping, but the damping
capacity of metals and alloys increases with increasing stress amplitude and
is independent of frequency and temperature. Various energy dissipation
mechanisms at these stress levels involve movement of dislocations or
interfaces such as magnetic domain walls, twin boundaries, or martensite
invariants.

In the case of MMCs, the interface is a region of imperfections (voids,
disbonds) and residual stresses. Most of the energy dissipation occurs in
this region, and can be attributed to interaction between the constituents
rather than the constituents themselves. This postulation is supported by
the fact that damping i most MMCs is greater than the inherent damping in
fiber and matrix phases.

The effect of strain on damping in graphite fiber MMCs has been
investigated by Martin Marietta , and the qualitative results are presented
in Figure 2. The total damping capacity Optot 1) of MMCs may be expressed
as a sum of its strain-independent (%i) ana strain-dependent (y )
components. While the linear strain-independent component exists a all
strain levels, the nonljnear strain-dependent component is reduced to zero at
low strain levels (<0-0).

Strain-Independent Damping:

At low strain amplitude (<10 - 5) where damping is independent of strain
but depends on frequency, the energy dissipation is primarily a result of
mechanisms involving atomic diffusion or Zener's thermoelastic effect. 8 In
the case of composites, frictional energy can be dissipated due to relative
motion between fiber and matrix phases. This is especially applicable to
MMCs, where fiber/matrix bonding is mechanical rather than chemical.
Interfacial slip can be promoted In MMCs by proper control of fabrication
residual stresses and interface coefficient of friction, as demonstrated
during this program. Strain-independence and frequency-dependence features
of the ISD mechanism were verified during this research.
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io!10- 5  10- 4  10-3

STRAIN AMPLITUDE

Figure 2. Strain-Dependence Behavior of MMC Damping
6

Strain-Dependent Damping:

At intermediate strain levels (10-5 to 10-3), the nonlinear
strain-dependent damping (%pH) may involve hysteretic losses resulting from
local yielding of the matrix under cyclic stress. At the microstructural
level, the energy dissipation may involve a break#way dislocation mechanism
as envisioned by the Granato-Lucke (G-L) model.f Mgrtin Marietta has
researched the dislocation damping mechanism in Gr/Al , as well as Gr/Mg9

composites, and has achieved significant improvement in strain-dependent
damping by promoting this mechanism.

Table 1 presents the major characteristics of ISD and dislocation damping
mechanisms. While dislocation damping offers higher payoffs at intermediate
strains, interfacial slip enhances damping in the low strain region as well.
Thus, effective application of both mechanisms Is critical in improving
dynamic dimensional precision of flexible space structures.

The objective of this research was to significantly shorten the settling
period of free vibrations for Gr/Mg MMCs. This overall objective was to be
achieved through:

" Enhanced material damping by promoting a controlled interfacial slip
under external loading

" Increased specific stiffness.
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Table 1. Primary Damping Mechanisms in MMCs

Characteristic Interfaclal Slip Dislocation Damping

1. Effectiveness Yes, tp - 4 percent Not effective
at low strain demonstrated
level (0I0 - )

2. Effectiveness Yes, as above More effective than
at -0 -  to interfacial slips
10-a strain

3. Frequency, Likely, must be None
temperature investigated
dependency

4. Miscellaneous * Lower residual * No interface wear
advantages stresses will inhibit
(projections) propagation of matrix

cracks, hence improve
fatigue strength,
transverse strength

* No limitations on
choice of matrix
alloy

* Fiber coating can
reduce stress
concentration, hence
increase transverse
strength

5. Miscellaneous W Hear at fiber/matrix * Limited to alloys with
concerns low av (more
(projections) dislolation prone)

9 Effect of coating on * High residual stresses
longitudinal stiffness (due to CTE mismatch)

essential to form
dislocations - Can
promote matrix cracks,
hence lower fatigue
strength transverse
strength
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Conventional processing techniques produce Gr/Mg composites with high
fabrication related interface residual stresses as a result of the mismatch
in CTE of the two phases. The CTE of the magnesium alloy matrix is larger
than the CTE of graphite fibers in the radial direction. Thus, as the
composite cools down to room temperature, the matrix clamps down on the
embedded graphite fibers. Compressive residq I stresses in excess of 15 Ksi
are predicted at the fiber/matrix interface." V  Considering the coefficient
of sliding fraction, IA to be 0. (typical for graphite on metal), interface
tangential stresses close to 10 psi are required to overcome the frictional
force and cause the fiber to slip. Until this stress level is attained,
there is no fiber slippage, and the input energy must be stored as strain
energy in the matrix. When the matrix cannot sustain any further strain
energy, matrix cracks will be initiated. Thus, the stress level to permit
interfacial slip will never develop in the MMC. Instead, the matrix cracks
will propagate, leading to failure. Thus, the high interface frictional
force is believed to result in low damping, low fatigue strength, low damage
tolerance, and low toughness in MMCs. During this research, interface slip
was promoted by lowering the residual stresses using a specialized processing
technique.

RESEARCH AND RESULTS

Several P-55 Gr/Mg 10 Al specimens were fabricated using a proprietary
pressure casting approach. Some of the MMC specimens are shown in Figure 3.
The flat specimens consisted of control specimens and specially processed
zirconia-dispersed specimens. The fine zirconia particulate dispersion was
expected to reduce the residual stresses in the composite as a result of its
low effective modulus. The MMC specimens were evaluated through microscopy,
tensile tests and vibrational tests.

#7-1.2.3

Figure 3. Tubular and Flat MMC Specimens
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Microscopy Results:

Figure 4 is an optical micrograph showing a representative cross section
of the control specimen. By areal measurement fiber content was estimated at
63 volume percent. The fiber distribution is uniform - "channeling" was
avoided in all specimens through a high fiber content. Also evident is the
excellent infiltration, as indicated by absence of voids In this specimen.
Figure 5 presents scanning electron micrographs (SEMs) of the same specimen
at a higher magnification (600 times). Again, the high fiber content can be
noted. The micrograph in Figure 5 shows a few small (<IA) voids present at
fiber periphery. These voids appear to be shrinkage cavities (rather than
uninfiltrated regions). The shrinkage cavities are a result of using a
preheated fiber preform, which causes matrix solidification to occur last at
the fiber surfaces. This problem can be reduced through improved directional
solidification schemes and by reducing the preform temperature during
infiltration.

Figure 6 is an SEM of a zirconia-dispersed Gr/Mg specimen. The ultrafine
zirconia particles (0.15p size) have coalesced into white zirconia regions
around the graphite fibers. Zirconia particles have lodged between the
graphite fibers, reducing the number of fiber-to-fiber contact points. This
is expected to improve MMC transverse strength. Also, slip regions are
evidenced at fiber matrix interface, promoted by reduced residual stresses in
that region. In this case, the slip has occurred to relieve the compressive
residual stresses along the fiber (due to negative fiber CTE). This is
called the Bauschinger effect.

Figure 4. Cross Section of Control P-55 Gr/Mg Specimen
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Figure 5. SEM of Control P-55 Gr/Mg Specimen

Figure 6. Zirconia-Dlspersed Gr/Mg Specimen
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Tensile Test Results:

Unidirectional P-55 Gr/Mg specimens exhibited tensile modulus at 35 Msi
with strengths over 100 Ksi. This indicates a fiber content around 60 volume
percent with no apparent fiber degradation. This represents a significant
advance over current MMC technology. The zirconia-dispersed specimens
exhibited tensile modulus at 30 Msi with average strength at 70 Ksi. These
specimens showed reduced fiber-to-fiber contact puints and are expected to
possess improved transverse tensile strength, which is a critical need of
current MMC technology.

Two each of control and zirconia-dispersed P-55 Gr/Mg specimens were
strain-gauged and tensile-tested to failure following ASTM standards. A low
strain rate (c - 0.03/mln) was maintained to simulate a static, tensile
loading. The stress-strain curve was linear to failure in every case - the
tensile modulus and strength values measured are presented in Table 2.

The modulus of the zirconia-dispersed specimens is about 15 percent lower
than that of the cont )1 specimens. This Is a result of lower reinforcement
content (about 5 to 10 volume percent) and increased compliance due to
interfacial slip phenomenon. The same factors also contribute to the reduced
tensile strength for the zirconia-dispersed specimens.

Vibrational Testing and Results:

Damping measurement tests were conducted on cantilever specimens placed
in an evacuated bell jar to eliminate aerodynamic damping. Flexural
vibrations were initiated in the specimen by a solenoid-operated striker
plate. A noncontacting fiber optic probe was used to measure displacements
of specimen surface, and the displacement history of the specimen surface
recorded at a high scan rate. A schematic diagram of the experimental setup
is presented in Figure 7. The Fotonic 1000 system produced by MTRI
Instruments, Inc., Latham, NY was used to noninvasively monitor the decaying
amplitude of vibration. The system was configured to measure submicron
(<0.04 mils) target surface displacements. Displacement data was collected
at a high scan rate (7,431 Hz - about 30 times the specimen natural
frequency) and stored in memory to calculate specimen damping.

Table 2. Results of the Tensile Tests

Specimen Modulus Ultimate Ultimate
Number Type (Msi) Strain (L) Strength (Ksi)

1-1 Control 34.97 0.276 94.55

3-1 Control 35.07 0.348 119.83

2-1 With ZrO 2  28.93 0.185 59.5

4-1 With Zr0 2  30.86 0.25 79.3
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Figure 7. Schematic Representation of Test Setup

After initiation of vibrations, the specimens exhibited a decaying
sinusoidal displacement response. The specific damping capacity * was
calculated from amplitude decay over several hundred cycles using the relation

2 9n a

where, the amplitude decays from xI to mi+j over j consecutive cycles.

Six Gr/Mg specimens were tested to measure damping, with two specimens

each of:

* Control - P-55/Mg, as-fabricated

* Annealed - P-55/Mg subsequently heat-treated

• Zirconia-dispersed - P-55/Mg with -5 percent zirconia content.

In each case, electrical noise was controlled to a small fraction of the
amplitude. Also, time-independence of the natural frequency was verified for
each specimen. These displacement response curves were used to calculate
specimen natural frequencies and strain levels using standard techniques -
the results are presented in Table 3. Also, the specific damping capacity %P
was calculated using the procedure described earlier Strain-dependence of
damping for these specimens in the range 10-6 to lO-4 strain is illustrated
in Figure 8.
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Table 3. Summary of Vibration Characterization Test Results

Maximum Strain
Naturai (cmax)

Sample Frequency, fn
ID Type (Hz) Initial Final

1-1 Control 247.70 2.1 x 10- 5  4.5 x 10- 6

3-1 Control 206.42 2.6 x 10- 5  4.1 x 10- 6

3-3 Uncoated, annealed 206.42 1.9 x 10- 5  2.0 X 10-6

3-2 Uncoated, annealed 206.42 1.6 x 10- 5  4.0 x 10-6

4-1 With ZrO2 dispersion 154.81 3.3 x 10- 5  2.7 x 10- 6

2-1 With ZrO 2 dispersion 195.55 2.5 x 10- 5  7.3 X 10-6

4.5

4 0 4-1

0 #0

3.5 -
'-

cc
M. 3

#3-1
: 2.5

2 #2-1

Uj 1.5

(I

0.5

0
10-6 10 5  10- 4

STRAIN LEVEL

Figure 8. Strain-Dependence of Specific Damping Capacity for
Various Specimens
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The baseline damping value (strain-independent) for control specimens
(No. 1-1, 3-1) Is around 1.6 percent, which compares well with Martin
Marietta data for Gr/Mg system. The annealed specimens (No. 3-2, 3-3) show
slight improvement in damping, with strain-independent damping close to
2.5 percent in specimen 3-3. The largest improvement in damping was
exhibited by the zirconla-dispersed specimen (No. 4-1), with a
strain-independent damping at 4 percent. The improvement in damping is
expected to be the result of promoting interfacial slip through reduction In
Interface frictional coefficient and residual stresses. Unlike the
dislocation damping 5mechanisms, the ISD mechanism improves damping at low
strain levels (<0- ), as seen in Figure 8. The other specimen in category
(No. 2-1) did not exhibit interfacial slip mechanism, and consequently showed
a strain-dependent damping similar to the control specimens. Thus, further
work is necessary to promote ISD in MMCs with consistency. A parametric
study must be conducted to understand the effect of fabriction process
parameters, etc., on damping, followed by optimization of these parameters to
maximize strain-independent damping. Also, the effect of vibration frequency
and temperature on MMC damping must be characterized.

Settling Time Calculations:

Decay in amplitude of vibration for a freely vibrating component is
obtained from the relation:

M(t) = Moe

where

a(t) amplitude as a function of time

o amplitude at t = o

ip specific damping capacity of material, assumed to be constant

Wn natural frequency of component

t time

Then, the settling time "ts" is defined by the relation

t - -- 9,n

where as = acceptable amplitude of vibration in the component before firing.
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These relations and the material properties measured were used to produce
an amplitude decay representation for the flexural specimens after an impulse
loading. In this calculation, only the strain-independent component of
material damping was taken into consideration to represent low strain (<10 - 5)

behavior. Figure 9 presents the amplitude variation plots for Case I and
Case 2. The decay in amplitude is much quicker for Case 2. To obtain a
certain amplitude, as, was calculated using the same relation. Figure 10
presents the variation of (tl/t 2 ) as a function of this acceptable amplitude,
as, From this figure, a 75 to 90 percent reduction in settling time over
current MMCs is projected, using the technology demonstrated during this
research.

CONCLUSIONS

The strain-independent damping of Gr/Mg composites was improved by
150 percent by promoting the ISD mechanism. This was achieved through a
zirconia dispersion with a low-effective modulus and specialized processing.
The increased compliance resulted in a 5 to 50 percent reduction in the
tensile modulus as compared to control specimens. Also, the reduced
interface bond strength and stress concentrations caused by irregularly
shaped zirconia regions were responsible for close to a 25 percent drop in
the tensile strength as compared to control specimens. The drop in static
mechanical properties can be reduced through a uniform compliant fiber
coating.

10

9

8

7

S6

~ 5

I-. r iASE I TECHNOLOGY (CASE 2)
4 Gr/Mg COMPOSITES

CL

3 CURRENT TECHNOLOGY
Gr/Mg COMPOSITES (CASE 1)

2

0
O 2 4

TIME - SECONDS

Figure 9. Amplitude Decay Representation in MMCs
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Figure 10. Reduction in Settling Time as a Function
of Acceptable Amplitude

The major advantages of the ISD mechanism over the dislocation damping
mechanism in MMCs are:

* ISD is effective in the low strain region (<10 - 5) unlike dislocation
damping.

" ISD is promoted by lowering residual stress in the MMC. This is
expected to improve other dynamic properties, such as the fracture
toughness and the fatigue strength. Dislocation damping is enhanced
through high interface residual stresses which can deteriorate dynamic
properties of the MMC.

* Dislocation damping is most effective in case of dislocation-prone
matrix alloys which typically possess a low yield strength. This
limitation will be reflected in the transverse properties of the MMC.

The interfacial slip mechanism needs to be researched further to obtain
predictable improvements in vibrational damping. A parametric study will
allow optimization of the process to minimize the deterioratory effect on
static properties. Further, the effect of temperature, frequency and service
time on the ISD mechanism must be characterized to develop suitable
applications.
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MEASURED DAMPING AND MODULUS OF COMPOSITE CYLINDERS

J. B. Andriulli
Applied Technology Division
Oak Ridge National Laboratory*

Oak Ridge, Tennessee 37831-7294

ABSTRACT

Damping and moduli are measured on graphite and glass fiber/thermoset,
thermoplastic, and metal matrix composite cylinders. Measurements are made by
the impact-hammer modal-test method with the specimen suspended in the near
free-free boundary condition. The axial and in-plane shear moduli are deter-
mined from the free-free axial and torsional vibration modes of the cylinder.
Damping-loss factors for each of the associated modes are determined from the
frequency-response function Ly the half-power point method or may also be
determined by other curve-fitting methods. The effects on damping are pre-
sented for a number of different fiber/resin composites and for different lay-
ups of the same fiber/resin material.

Cylinders are unique specimen configurations that permit simplified
measurements of both the axial and in-plane shear (torsional) material proper-
ties from the same sample. The impact-hammer modal-test method provides a
quick, inexpensive, small deformation, nondestructive estimate of the moduli
and damping for the as-fabricated cylinders. After tests are completed, the
cylinder can subsequently be used for its intended purpose. Details of the
test method and procedure are described.

*Based on work performed at the Oak Ridge National Laboratory, operated for
the U.S. Department of Energy, under contract DE-AC05-840R21400 with Martin
Marietta Energy Systems, Inc.
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INTRODUCTION

Many composite structures are cylindrical shaped. When designing and
fabricating composites, it is highly desirable to know the composition and
material properties of the as-fabricated structure. It is common practice to
cut coupon samples from an unneeded portion of the structure to submit to the
laboratory for physical and mechanical property testb. These tests ma" inrude
fiber volume fraction, matrix fraction, void, density, strength, modulus., and
damping properties. Cutting and testing coupons can be expensive and time
consuming. Also, the coupons are usually cut from one end of the composite
structure and may not represent what the material properties are throughout
the main structure.

Cylinders are unique specimen configurations that permit simplified
measurements of both the axial and in-plane shear (torsional) material proper-
ties from the same sample. The impact hammer modal test method provides a
quick, inexpensive, small-deformation, nondestructive estimate of the moduli

and damping for the as-fabricated cylinders. This technique also applies to
bar or rod samples to obtain axial modulus and associated damping. Damping
values associated with cylindrical tube bending or rod bending are also provided
by the impact-hammer modal-test method.

The cylinder and bar specimens are tested in the near free-free boundary
condition. Therefore, no special specimen mount fixtures are needed to con-
duct the test. Specimens are simply suspended in soft rubber elastic or
"bungee" cord. The instrumentation is minimal consisting of a force-gaged
striker hammer, lightweight accelerometer, and a lightweight tangential striker
block.

Knowing the specimen density, the axial, Ez, and shear, Go., moduli can
be obtained from the axial and torsional resonances using the frequency formula
for vibration of continuous media. The resonances are determined from a fast
Fourier transform (FFT) analyzer using the frequency-response function. Damp-
ing associated with each mode is also determined from the frequency-response
function by the half-power point method or some other suitable method.

This paper describes the test setup and the test method, including the
use of the exponential window to avoid leakage errors, correcting damping for
the exponential window, the effect of mass loading of light specimens due to
the striker block and accelerometer, and the use of a noncontact microphone to
avoid mass loading problems. The test method provides a pure estimate of axial
modulus and torsional modulus because the axial resonance of the specimen is
dominated primarily by the axial modulus and the torsional resonance of the
specimen is dominated primarily by the in-plane shear modulus, Gez. Likewise,
axial and torsional damping estimates are also unencumbered by possible complex
combined loading and deformation mechanisms. Other advantages of the test
method are that (1) it is nondestructive on as-fabricated cylinders; (2) no
coupons are necessary; (3) boundary conditions and air damping effects are
minimized with free-free axial and torsional modes; and (4) the test method is
quick and inexpensive.
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APPLICABLE SPECIMENS

The axial and in-plane shear moduli are determined from the cylinder's
free-free axial and torsional vibration modes, respectively. Any uniform
cylindrical, tubular, or bar-shaped (axial only) specimen that approximates
the long, slender, continuous media assumptions will provide reasonable data
from the impact modal test method without conducting a complete modal test.
Usually, it is easy to extract the modes of interest from specimens that are
long, slender, thick walled, heavy, and have a high length-to-diameter (L/D)
ratio. It is more difficult to identify the modes of interest of specimens
that are short, of large diameter, thin walled, and lightweight because of the
high modal density of the shell modes in the proximity of the axial and tor-
sional modes.

The test method employed in these studies can accommodate quite a range
in size, shape, and configuration of specimens. Examples of specimens tested
are pictured in Fig. 1. Note the 1-ft rule in the lower lefthand corner of
the photograph. Ranges of weight and dimensions of specimens tested are
listed.

Weight 15 g to 219 lb
Outside diameter 1 to 17 ir..
Wall thickness 0.030 to 1.5 in.
Length 5.0 to 109.0 in.
L/D 2.2 to 31.2

TEST DESCRIPTION

The test method employs standard modal test techniques using a force-gaged
impact hammer for input and an accelerometer for response. Specimens are tested
under near free-free boundary conditions for axial and torsional vibration modes
to determine modulus of elasticity and damping-loss factor. The cylindrical
or bar-shaped specimens are soft mounted using elastic bands, surgical tubing,
or bungee cord depending on their weight. The axial and torsional modes of
vibration are excited by impacting the specimen in the axial and tangential
directions, respectively. Data are acquired on a dual channel FFT signal anal-
yzer. The data are subsequently postprocessed, stored on disk, and plotted or
printed using a microcomputer. A schematic of the test setup is shown in
Fig. 2. A typical test is pictured in Fig. 3. Details of the axial and tor-
sional test input and response are shown in Figs. 4 and 5, respectively.

The axial impact point at the edge of the cylinder, as indicated in Fig. 4,
is eccentric to the cylinder's neutral axis and therefore excites bending as
well as axial modes of vibration. The axially mounted accelerometer can
respond to bending as well as axial modes. It is necessary to take enough data
to be able to distinguish between modes. In some cases, it may be necessary
to perform a full modal test. Some shortcut alternative mode identification
techniques are discussed in the Results section.
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Fig. 1. Examples of cylindrical, tubular, and bar specimens.
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Fig. 3. Typical test setup.
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Fig. 4. Axial input and response.

BCC-7



Fig. 5. Tangential (torsional) input and response.
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Tangential force is transmitted into the specimen through a lightweight
aluminum striker block bolted to the wall of the cylinder, as shown in Fig. 5.
The block should be just big enough to apply the hammer blow and of low weight
to minimize mass loading. Some effort should be made to match the striker
block with the curvature of the cylinder. An exact match is not necessary.
The same block has been used on cylinders from 2 to 20 in. in diameter, provided
as the bolt is sufficiently tight to prevent rattle or slippage. In addition
to the bolt, bee's wax has been used at the striker block/cylinder interface
to compensate for slight differences in curvature and surface irregularities.

The tangential accelerometer is mounted as close as possible to the neutral
axis of the shell surface, as shown in Fig. 5, to minimize sensitivity of the
accelerometer to circumferential ring and shell modes. An alternative is to
mount the accelerometer to the bottom of the striker block. On thick-wall
specimens, this may be acceptable, but on thin-wall specimens, this alternative
is not advisable because of prevalence and sensitivity to shell modes in
proximity to the primary torsional modes of interest.

The axial modulus, Ez, and the shear modulus, Goz, were determined from
the free-free axial and torsional vibration modes using the frequency equation
for prisms of continuous media, as shown in Fig. 6. Damping was measured using
the half-power point method and corrected, as shown in Fig. 7, for artificially
added damping due to the exponential window used to acquire the response accel-
erometer data. The exponential window was used to acquire response data to
ensure that the assumption of periodicity employed in the FFT analyzer for the
sample time history was not violated. Violating the FFT analyzer periodicity
assumption results in leakage errors. Leakage errors introduce an "apparent"
damping of an unknown quantity (wider peaks) in the frequency-response func-
tion. The exponential window can eliminate leakage errors, but it introduces
damping of a known quantity. The decaying exponential window is a weighting
function applied to the sampled response time history. The FFT analyzer pro-
cesses the product of the measure-time history and the exponential window. The
measured damping was subsequently corrected (see Fig. 7) for damping artifi-
cially added by the exponential window. A rule of thumb for selecting the
time constant of the exponential window is that it should be about one-fourth
of the sample time. For moderately damped materials, the response-time history
decays to a negligible value within most test sample times. Therefore, an expo-
nential window may not be necessary. For specimens with very high resonant
frequency of interest and very low damping, the response sigr..l may not decay
to near-zero values within the test sample time. Therefore, the use of the
exponential window is advisable.

The impact-modal method is applicable to composite rings as well as
cylinders and rods. But one needs to use a combination of testing and finite
element analysis to adjust the hoop modulus, E8, and shear modulus, GRO, to
match the first circumferential or ring resonance, as well as higher circum-
ferential harmonics. For thin rings, adjusting for hoop modulus, E9, may be
all that is necessary to match predicted and tested resonances. For thicker
rings, it is necessary to adjust the hoop modulus, Ee, and the shear modulus,
GRO, to obtain a reasonable match between tested and finite element-predicted
resonances and harmonics.
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EXAMPLE RESULTS

COMPOSITE DRIVE SHAFT (A LARGE SPECIMEN)

The composite drive shaft (shown as a typical test setup in Fig. 3) is
described as follows.

Outside diameter 3.515 in.
Inside diameter 2.698 in.
Length 109.66 in.
Weight 27.14 lb
Density -0.0621 lb/in. 3 , -1.719 specific gravity
Material T-700 graphite fibers, OCF S-Glass, and 2258/m-

phenylenediamine resin system

Fraction of
Material Orientation thickness

S-Glass Hoop 0.203
S-Glass Helical ±450 0.203
T-700 Helical ±450 0.594

1.000

Typical time histories of the axial forced input and acceleration response
are shown in Fig. 8. About 140-lb force lasting a fraction of a millisecond is
shown as input. The accelerati response at the input end of the cylinder is
shown on the lower plot. In this example, the total sample time was 125 ms,
about 31 ms of that sample is shown. The axial hammer input and the accelerom-
eter installation are shown in Fig. 4. The 1.342-ms acceleration pulse time
increment shown in Fig. 8, is the time required for the acceleration pulse to
travel from the input end, reflect off the opposite end and return to the
input end. The inverse of this time (-145 Hz) is approximately equal to the
first axial resonance of the system (157 Hz) as determined from the frequency-
response function (see Fig. 9). If observed, the acceleration pulse-time
increment provides a good first estimate of the axial-resonant frequency, which
aids in distinguishing this mode of interest from the other modes. Integrating
the acceleration response time history of Fig. 8 twice yields a typical maxi-
mum axial displacement of 0.1 to 0.2 mils single amplitude (SA).

The first two axial modes are shown in the axial frequency-response func-
tion of Fig. 9. The first seven bending modes can also be observed in the
axial frequency-response function because the input and response is eccentric
to the neutral axis of the cylinder. The first axial mode of 756 Hz yields an
axial modulus of -4.43E6 psi. The loss factors for the first and second axial
modes is 0.01022 and 0.01125, respectively. Note that the first two axial
modes have about the same loss factor. The classical laminate code prediction
for axial modulus for this cylinder is -4.4E6 psi, which is very close to the
measured value.
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Similarly, for tangential input and response, the first two torsional
modes are observed as shown in the frequency-response curve of Fig. 10. The
first torsional mode of 767 Hz yields a shear modulus of -4.55E6 psi. Loss
factor for the first and second modes is 0.00403 at 767 Hz and 0.00306 at
1537 Hz, respectively. The class4'-l laminate code prediction for shear modu-
lus of this specimen is 5.09E6 psi. Typical tangential displacement in this
test was 3 to 4 mils SA.

The very small axial displacement of from 0.1 to 0.2 mils SA and tangen-
tial displacement of 3 to 4 mils SA are indications that the air damping for
this specimen is probably negligible. According to Gibson's work,* where
small flexure beam specimens were tested in both air and vacuum, it was found
that air damping was negligible if beam displacements were equal to or less
than thp smallest cross-sectional dimension (thickness) of the flexure beam
specimen. Consequently, air damping on the cylindrical specimens is expected
to be very small because the response displacements are small compared with
other dimensions of the specimen. Also, for axial motion, the edge surface
area of the specimen doing the air pumping is extremely small. Likewise,
resistance to torsional motion is drag of the air along the circumference of
the cylinder, which is expected to be negligible.

One way to identify free-free axial and torsional modes of vibration from
other modes is that axial and torsional harmonics are interger multiples of
the first mode. This distinction helps to pick out these modes from the magni-
tude of the frequency-response function.

Another shortcut in determining vibration modes from modal test data is
also illustrated in Fig. 10. The imaginary part of the frequency-response
functions for tangential accelerometers mounted at opposite ends of the cylin-
der are shown in Fig. 10b and c. Because the real part of the free-free
response function is zero at resonance, the imaginary part is essentially the
total response of the specimen at resonance. The phase relationship of the
ends of the cylinder can be determined from the imaginary part of the
frequency-response function at resonance. For example, with the first tor-
sional mode at 767 Hz, the imaginary part of the frequency-response function
at the input and opposite ends have opposite signs indicating that the ends
are out of phase, as would be expected for the first torsional mode. Likewise,
for the second torsional mode at 1537 Hz, the imaginary part of the input and
opposite ends have the same sign, indicating that the ends are in-phase as
would be expected for the second free-free torsional mode shape. The same
information can be determined for the bending modes. Note that the first
bending mode has opposite ends of the cylinder in-phase, the second bending
mode has opposite ends of the cylinder out of phase, and so on, as would be
expected for the free-free bending mode shapes.

*R. F. Gibson et al., Vibration Characteristics of Automotive Composite

Materials, ASTM STP 772, 133-150 (1982).
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INJECTION-MOLDED BAR (A SMALL SPECIMEN)

Another example of a specimen tested is shown in Fig. 11. It is a standard
5-in.-long flex-beam specimen made from long glass fiber-reinforced injection-
molded aylon. The specimen weighs just over 15 g, and the accelerometer shown
in the figure weighs 1 g. This example is shown to illustrate the effect of
mass loading of very light specimens with the accelerometer and to illustrate
the use of a microphone to measure the axial response and thereby eliminate
the need and the effect of the accelerometer mass. In Fig. 12a, the axial
acceleration frequency-response function shows a resonance at 11,000 Hz with
a damping loss factor of 0.00870. In Fig. 12b, the frequency response is
measured by a microphone with the accelerometer still attached to the speci-
men. It shows a resonance of -10,995 Hz and a loss factor of 0.00880. Fig. 12c
shows the frequency-response function measured by the microphone without the
accelerometer attached, giving a resonance of 11,840 Hz and a loss factor of
0.0071. The resonance is higher because the accelerometer mass is removed
from the specimen. The 11,840-Hz resonance yields an estimated modulus of
2.01E6 psi, which compares favorably with the vendor specification axial modulus
of 2.22E6 psi from tensile tests and 2.00E6 psi from flexure tests. Note that
the microphone shows more resonances than does the accelerometer. The reason
is that the microphone is a omni-directional transducer and can measure noise
resulting from many of the specimen modes, whereas the accelerometer is a
single-direction transducer, and it will pick up motion, primarily in the
direction that the accelerometer is oriented.

FREQUENCY RESOLUTION EFFECTS

A comparison of frequency-resolution effects on estimating damping is
shown in Fig. 13. It is desirable to have the smallest frequency resolution
in order to make a good estimate of damping using the half-power-point method.
For the example trial-fabrication thin-walled composite cylinder, the axial
resonance is determined by using base-band frequency analysis with a resolu-
tion of 8 Hz. A loss factor of 0.00231 was estimated at 4546-Hz axial reso-
nance. By using zoom with frequency resolution of 2 Hz (see Fig. 13b), the
loss factor for the first axial mode was 0.00219 at 4546 Hz. The axial modu-
lus was estimated to be 24E6 psi, which compared well with the classical lami-
nate code prediction of 27.3E6 psi. This example illustrates that there is
very little difference in estimating the loss factor whether one uses zoom or
a reasonable base band analysis as long as interpolation is used to estimate
the half-power frequency width. When conducting tests on a large number of
specimens, it is much easier and faster to conduct base-band frequency analy-
ses than it is to conduct zoom analyses. As an initial test setup, it is
recommended that one select a base-band frequency range so that the resonance
of interest falls in the upper half of the frequency analysis range. Also, it
is recommended that one use an interpolation method to estimate the half-power
bandwidth.
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Fig. 11. Axial test of a small bar specimen.
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AN EXAMPLE OF THE EFFECT OF COMPOSITE LAY-UP ON DAMPING

An interesting set of axial and torsional damping loss factor data were
taken on a dimensionally consistent set of cylinders made from various wet-
wound composite lay-ups of AS4 graphite fiber/ERL-2258 epoxy matrix composite.
Trial specimens were fabricated consisting of four different lay-ups, each
with three different wall thicknesses. The inside diameter was -4.40 in, the
cylinder length varied from - 61 to 67 in., and the three nominal wall thick-
nesses were 0.125, 0.188, and 0.25 in. Table 1 shows the lay-up angle, the
fraction of the total thickness at that angle, and the damping-loss factors
for axial, torsional, and bending resonances. The 00 angle direction is axial,
and the 900 direction is hoop. Because there was no significant difference in
damping for various wall thicknesses, the average damping value for all three
thickness is reported in Table 1.

Table 1. Axial and torsional damping loss factors for various
cylinder lay-ups of AS4/2258 epoxy composite

Loss factor
(normalized loss factor)

Lay-up angle,d fraction Axial Torsional Bending

00, 0.5/900, 0.5 0.00245 0.01749 0.0C726

(1.00) (7.14) (2.96)

00, 0.33/900, 0.67 0.00355 0.01740 0.00688

(1.45) (7.10) (2.81)

00, 0.25/900, 0.25/±450, 0.5 0.00456 0.00448 0.00744

(1.86) (1.83) (3.04)

±540 Helix 0.01653 0.00327 0.01632
(6.75) (1.34) (6.66)

ao0 = axial, 900 = hoop

Inside diameter, in. = 4.40
Nominal wall, in. = 0.125, 0.188, 0.25
Tube length, in. = 61.78 to 66.88

In the 00/900 lay-up with the same amount of materials in the axial and
hoop directions, the torsional loss factor is over seven times higher than
that of the axial direction. This is because the torsional mode is dominated
by the matrix material which provides a much higher damping than the fiber,
whereas the axial mode is dominated by the fiber material. In the 00/900 lay-
up with twice as many hoops as axial, the torsional loss factor is likewise
six to seven times higher than that of the axial loss factor. Again, this is
due to the matrix dominance of the torsional motion and the fiber dominance of
the axial motion.
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For the 00/900/±450 quasi-isotropic composite lay-up, the torsional and
axial damping loss factors are approximately equal as would be expected for a
quasi-isotropic lay-up. Because the damping value for the quasi-isotropic
lay-up is very close to that of the axial damping for the 00/900 lay-up, one
would conclude that both the torsional and axial modes of vibration for the
quasi-isotropic lay-ups are fiber dominated.

For the ±540 helix lay-up, the axial loss factor is about five times
greater than the torsional loss factor. This is true because, for the ±540
helix, the axial resonance is dominated by the matrix, and the torsional reso-
nance is dominated by the fiber, which is opposite the case for the 00/90 °

lay-up, as would be expected. Also, note that for the ±540 helix lay-up, the
loss factor for bending is approximately the same as for axial. This should
be expected because bending vibration involves the same axial strain energy
loss mechanism as axial vibration.

In these data, it is also observed that the loss factor associated with
bending for the 0/90 lay-ups and the quasi-isotropic lay-ups are approxi-
mately two to three times higher than the axial loss factor. It is speculated
that there could be two reasons for this. One is that beam bending involves
some shear deformation. Consequently, matrix-dominated shear deformation in
beam-bending vibration provides a supplemental damping mechanism to the fiber-
dominated axial strain in beam bending. A second possibility is that addi-
tional apparent damping could be added to the free-free bending modes by the
soft bungee cord or surgical tube suspension system. Additional work is
planned to evaluate the significance of possible added damping from the soft
suspension system by testing standard aluminum and steel (low damping material)
in the same test setup under various test conditions including bending.

A similar set of data and conclusions can be drawn for a pair of specimens
shown in Table 2. These data are for 7-in.-inside-diameter IM6 graphite/ERL-
2258 epoxy composite cylinders--one with 00/90 ° lay-up and one with quasi-
isotropic 00/900/±450 lay-up. For the 00/900 specimen, there is about eight
times more damping for the matrix dominated torsional vibration than for the
axial vibration. For the quasi-isotropic lay-up, there is about the same
amount of damping in both the torsional and axial vibration modes.

ADVANTAGES OF THE TEST METHOD

The advantages of the impact modal test method are described as follows.

1. The modal impact test method provides nondestructive modulus and damping
data on as-fabricated cylinders. There is no need to cut, fabricate, and
test coupon samples.

2. The method applies to a wide variety of cylindrical or bar specimen sizes,
weight, and configurations.
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3. The near free-free boundary test condition requires no special fixturing.
Also, the free-free test condition eliminates uncertainty in the resonant
frequency and added damping which other constraining support mechanisms may
introduce.

4. The pure axial and torsional modes provide data that are free of complex
loading issues as might be encountered in a bending specimen that has both
axial and shear deformation associated with bending vibration. Both axial
and shear moduli and damping are obtained from the same specimen sample.

5. Air-damping effects are expected to be minimal because (a) displacements
are small for axial and torsional modes compared with other dimensions of
the specimen cad (b) the pumping action normal to the moving surface area
is negligible for axial modes of vibration and zero for torsional modes of
vibration. For example, surface shear drag on the cylinder in torsional
motion is expected to be negligible.

6. A noncontacting microphone can be used to detect resonances to avoid
accelerometer mass loading of lightweight specimens. The use of a micro-
phone has been demonstrated for detecting axial resonances. It is
questionable as to whether it would detect torsional resonances.

7. Analyzer leakage errors can be eliminated by using exponential windows to
acquire response time history data.

8. Tests are simple, quick, and inexpensive.

DISADVANTAGES OF THE TEST METHOD

The disadvantages of the impact modal test method include the following.

1. Data are limited to small deformations.

2. The modulus is associated with oscillatory stress--not one direction

loading.

3. Modulus and damping are global--not local properties.

4. Data are associated with only specific specimen resonant frequencies unless
steps are taken to alter them.

5. A variable, nonstandard specimen size and configuration may make it dif-
fic"It to compare modulus and damping properties of similar material and
composite lay-up.

6. Data may be difficult to obtain from specimens with low L/D ratios and
with thin walls. High shell modal density or bending modes may obscure
axial and torsional modes of interest. Acquiring meaningful data in a
short period of time may be difficult or impossible under these condi-
tions.
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7. The accelerometer and tangential striker block can mass load and signifi-
cantly alter resonances of relatively lightweight specimens. This is
expected to affect the modulus measurement because of the lower resonant
frequency but not to affect the damping measurement.

8. A noncontact displacement probe may be difficult to use on a free-free
mounted specimen that is lightweight because high displacements after
impact may move the specimen outside the range of the probe. This is less
of a problem with heavy specimens that undergo small displacement under
impact conditions.

9. There may be a question of the effect on axial resonance due to point
excitation at the edge of a large-diameter cylinder instead of uniform
loading distributed over the entire circumference.

ISSUES NEEDING ADDITIONAL WORK

To resolve some questions about the test methods, additional work in the
following areas is recommended.

1. Investigate the effect on damping of the soft near free-free suspension
system especially for vibration modes associated with beam bending.
Dr. D. I. G. Jones of the Wright Research Development Center/Materials
Laboratory recommended that this could be evaluated by testing specimens
of known low-damping value, such as aluminum or steel, with the same near
free-free soft suspension system.

2. Eliminate or compensate for the striker block and accelerometer mass
loading affects on lightweight specimens in torsion.

3. Evaluate the use of a miccophone as a noncontact transducer with other
specimens.

4. Evaluate the affects of point vs uniform excitation on axial resonants of
low L/D ratio cylindrical specimens.

SUMMARY

The impact modal test method on cylinders will provide a "pure" measurement
of axial and in-plane shear moduli and associated damping. Since these are
nondestructive tests on as-fabricated cylinders, no coupon tests are necessary.
Boundary conditions and air-damping effects are minimized with free-free axial
and torsional modes. For most specimens, the impact modal test method is a
quick, inexpensive and nondestructive means of measuring moduli and damping of
as-fabricated cylinders and rods.

Examples of damping data and modulus were shown for several sizes, con-
figurations, and lay-ups of composites. Composite damping was shown to be
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very sensitive to the applied principal stress relative to the fiber direction,
even in the same specimen. In the composites illustrated, matrix-dominated
deformation or motion provides (@ to 6." times more damping than fiber-dominated
motion.

Axial and in-plane shear moduli determined from the impact modal test
method of free-free cylinders compared well with expected values for most lay-
ups.

Some helpful hints (short of a full-modal test) were described to dis-
tinguish axial and torsional modes of interest without performing a time-
consuming, more costly full modal analyses including measured frequencies and
mode shapes.

Careful selection of base-band analyses to ensure that resonances of
interest are in the upper half of the frequency band, in many cases, will pro-
vide reasonable estimates of half-power points and damping loss factors. For
many specimens, the use of time-consuming zoom analyses to increase frequency
resolution can be avoided.

The effect on the bending-mode damping due to the soft, near free-free
suspension system needs to be investigated. Difficulties may be encountered
with low L/D, thin-walled, lightweight specimens because of the possible
existence of high shell modal density in the vicinity of the primary axial or
torsional modes of interest. Striker block and accelerometer mass loading of
lightweight specimens may affect the estimate of modulus but is not expected
to affect damping measurements.
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THE USAGE OF ELECTRORHEOLOGICAL MATERIALS IN
VISCOELASTIC LAYER DAMPING APPLICATIONS

John P. Coulter Theodore G. Duclos Debra N. Acker

Lord Corporation
Thomas Lord Research Center

Cary, North Carolina 27512, U.S.A.

ABSTRACT

For many years, viscoelastic material layers have been used as structural components to obtain
desired levels of structural damping. In common applications, the viscoelastic material is either
placed in a constrained position subjected to shear loading or in a free position subjected to
extensional deformation. In such situations, the damping behavior of the overall structure can be
related using well developed theories to the viscoelastic material properties of the constrained or
free layers. Since most classical viscoelastic damping materials exhibit complex mechanical
properties which cannot be controlled after fabrication, once a structure is designed and fabricated
the damping characteristics of that structure are unchangeable. On the other hand, if the
viscoelastic layer contains an electrorheological material having controllable viscoelastic material
properties, then structures can be constructed with controllable damping behavior. This control
of structural behavior would be very useful in many situations, examples of which are the
vibration of robotic manipulators and space structures. In the present work, the classical
viscoelastic theories are extended to constrained layers of electrorheological materials and
experimental results demonstrating the controllable structural behavior concept are presented.
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NOMENCLATURE

B flexural rigidity, [N-ml X shear parameter
E tensile modulus, [Pa] Y stiffness parameter
fn modal frequency, [s-l]  7y shear yield strain

G* complex shear modulus (=G' + iG"), [Pal il loss factor

H lamina thickness, [m] i beam area mass density, [Kg/m 2]

L beam length, [m] v viscosity, [Pa-s]

n mode number p density, [Kg/m 31

p wave number, [rT,1 I Ty shear yield suess, [Pal

INTRODUCTION

Viscoelastic material layers have been utilized in structural damping applications for many
years. In short, there are two classes of viscoelastic damping applications, one in which the
viscoelastic material is placed in a state of tension, and the other in which the same material is put
in shear. Both classes of structural damping were first conceived in the 1950s. Elongational
viscoelastic damping was first reported in France by Lienard in 1951 and shortly thereafter in
Germany by Oberstl ,2. Following this, the concept of shear viscoelastic damping was developed
in America and first reported in 1959 by Kerwin3 . Kerwin and his co-workers developed a
theory relating the material properties and geometrical arrangement of panels made up of
viscoelastic and elastic layers to the overall flexural behavior of the composite structure. This
theory, which has since become well accepted for certain applications and known as the Ross-
Kerwin-Ungar (RKU) model, was initially presented in 19594. The RKU model with its
limitations is discussed in several contemporary vibration control texts, and is widely used to
design for structural vibration behavior in many present day applications ranging from the
vibration of robot arms and space structures to the motion of buildings exposed to wind5,6.
Relatively speaking, high modulus viscoelastic materials are used in extensional damping
applications and lower modulus viscoelastic materials are used in shear damping applications. In
general, shear damping treatments are the most effective of the two types of damping layers, and
only such treatments were considered during the present investigation.

The single most important component in the design of a shear damping treatment is the
selection of the viscoelastic material or materials to be used. During the past few decades, the
v,,riety and quality of materials designed for such treatments have improved dramatically, but the
materials available today still have several shortcomings. The most important of these is the
limited temperature range over which any single material is effective as a shear damping layer.
This limitation has been partially overcome in many instances by the usage of polymer blends of
components with different ranges of temperature applicability and/or by the use of multiple
constrained layers of several different damping materials, but an ideal solution to this complexity
remains to be found. A second shortcoming of modem day viscoelastic damping materials is the
lack of controllability of their material properties once they are installed in a selected application.
The majority of design and analysis related to structural behavior control utilizing viscoelastic
layers is based on the assumption that the properties of the viscoelastic materials being used
remain constant with time, and these materials are placed within structures at strategic locations
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so as to obtain a single invariable overall structural response to the proposed conditions which the
structure is to be exposed. A possible exception to this is the recent use of piezoelectric polymers
and ceramics 7-9 to vary structural response in a fully active manner. It would be desirable to
have the capability to control structural response by varying the properties of viscoelastic
damping materials encased within structural components, for having such a capability would
allow for the in service tuning of the structure to avoid selected resonances and possibly
accommodate temperature changes. A class of materials which may meet this need are
electrorheological (ER) materials which exhibit viscoelastic properties that vary as a function of
frequency and applied electric field. The potential usage of ER materials in viscoelastic layer
shear damping applications is introduced in the present investigation.

ELECTRORHEOLOGICAL MATERIAL CHARACTERIZATION

Electrorheological materials are suspensions of very fine dielectric particles in insulating
mediums which exhibit controllable rheological behavior in the presence of applied electric fields.
The typical constitutive behavior of an ER material is shown in figure 1 where shear stress is
plotted as a function of shear strain and shear rate respectively. As shown in figure la, ER
material behavior can be divided into pre-yield and post-yield regions. The electrorheological
effect was first observed by Winslow in 194710. At that time, materials which behaved in this
manner were labelled electroviscous fluids since from a macroscopic viewpoint the most notable
change of a flowing ER suspension is a change in apparent or effective viscosity. Some years
later, it was determined that the actual viscosity of the material, v, remains relatively constant as
the applied electric field is varied while the property that changes is try, the yield stress of the
Bingham plastic-like suspension. This is shown in figure lb. The manifestation of this variable
yield stress has proved very useful in devices where controllable post yield or flow properties are
desired. Examples of electroactiv. devices in which this behavior has been used effectively
include valves and clutches11 .

SPost-Yield Increasing
Pre-Yeld ost-ieldElectricI Field

y - - - Increasing t;y

Shear Electric Shear
Stress Field Stress

Shear Strain Shear Rate
(a) (b)

Figure 1: Typical rheological behavior of an ER material denoting the pre- and
post-yield material behavior regions.
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In comparison to the post-yield behavior, the controllable viscoelastic material behavior
that ER materials exhibit while in the pre-yield phase remains virtually uninvestigated. As shown
in figure la, this region is defined by a yield strain (yy), a yield stress (ty), and a complex shear
modulus (G*). Since the yield stress in an ER material increases with increasing applied electric
field and the yield strain normally remains at approximately 1% for all field strengths, the
complex shear modulus increases with increasing electric field. The controllability of this pre-
yield complex shear modulus and its usage to obtain controllable structural behavior was the
focus of the present investigation.

The complex shear modulus can vary several orders in magnitude as a result of electric
field strengths ranging between 0 and 4000 V/mm. A full analytical understanding of this
phenomenon has not yet been obtained, but several workers including Adriani and Gast are
pursuing this matter1 2. In the absence of this understanding, an experimental characterization of
the pre-yield complex shear modulus of ER materials was undertaken. Many techniques exist for
measuring the complex shear modulus of viscoelastic materials 13,14 . Of these, the best test
method to use with ER materials has not yet been determined. Two methods, however, were
selected for initial testing. These included a standardized resonating cantilever sandwich beam
method, (ASTM G756-83) and a simplistic but as of yet non-standardized concentric cylinder
annular pumping technique. In addition to the fact that it is a well accepted and widely used test
method, the vibrating sandwich beam test was chosen for its inherent large frequency range
capability and its direct relationship to distributed structural damping. Following some initial
te-ting, however, the applicability of this technique was found to be questionable due to fact that
present ER materials were found to have modulus values much lower than the materials
commonly characterized using this method. Thus, for the purposes of the present study, the
complex shear modulus of the chosen ER materials was determined using the concentric cylinder
annular pumping technique. A diagram of the experimental apparatus used to accomplish this is
shown in Figure 2.

TO WaHAICAL ,tE i

OUTRR MAT

*-I PI i

CCYUNDEN

CYUNNOR

Figure 2: Cylindrical annular pumper apparatus used for
complex shear modulus measurement.

CAA-4



A hollow aluminum cylinder having a thickness of 0.8 mm., an outside diameter of 44.5
mm., and a length of 47.6 mm. was connected to the actuator of a hydraulic mechanical testing
machine. This cylinder was then lowered into an ER material filled stationary aluminum cup of
thickness equal to 3.0 mm., inside diameter equal to 46.5 mm., and inside depth equal to 63.5
mm. This cup was connected to a load cell with a force range of 0-110 N. The depth of the cup
was chosen to be much larger than the immersed length of the inner cylinder to minimize end
effects and the diameters were chosen as stated to produce an ER material filled annulus with a
thickness of 1.0 mm. An electric field was maintained in the gap between the cylinders by using
the inner cylinder as a DC high voltage electrode and the outer cylinder as electrical ground. For
each selected electric field, the inner cylinder was displaced vertically using band limited white
noise with a bandwidth from 0 to 200 Hz. The frequency range was limited below 200 Hz. due
to the capabilities of the mechanical testing machine. An amplitude of excitation was chosen so
as to produce a maximum shear strain level of 1% within the ER material. The complex shear
modulus was then deduced from the force and displacement waveforms resulting for each set of
test conditions. All tests were performed at room temperature, and at electric field levels between
0 and 4000 V/mm.

The ER materials chosen for use in the present study were two proprietary materials
developed over the past three years by Lord Corporation. The formulations are known as
materials ERX-03-145 and 5501-21C respectively. The resultant pre-yield complex shear moduli
for these two materials are presented as functions of frequency and applied electric field in figures
3 and 4. These results are presented in the form of shear storage modulus, G', and shear loss
factor, 1]. The shear loss factor is related to the real and imaginary components of the complex
shear modulus, G' and G" respectively by the relation

G" tl - (1)

and was chosen for presentation due to its importance in viscoelastic damping applications. The
shear modulus for material ERX-03-145 is presented in figure 3 and that for material 5503-21C
in figure 4. Both materials exhibited storage modulus values that increased with applied electric
field and frequency. For ERX-03-145 the magnitude of the storage modulus ranged from 0 up to
70 KPa. at the highest applied electric field and frequency tested while the corresponding range
for 5503-21C only reached a level of 21 KPa. The shear loss factor for the two materials also
increased with frequency but was generally found to decrease with applied electric field. This
decrease, however, was less evident at the higher levels of electric field than it was at the lower
levels where the material is more fluid-like in nature. Thus, for the 2000 to 4000 V/mm electric
fields commonly applied in ER material applications, the shear loss factor of the two materials
generally stayed between 0 and 4.0.

When comparing the properties of the ER materials discussed above with those of
standard viscoelastic damping materials, it is immediately obvious that while the loss factor
ranges are comparable, the storage modulus values of ER materials are several orders of
magnitude less than those of present day shear damping treatment materials. The continued
development of stronger ER materials along with their unique behavior, however, appropriates
further discussion of their use in damping applications. The unique feature referred to is the
controllability of the material properties within certain ranges. Examples of this are shown in
figures 3 and 4. For each frequency value, the complex shear modulus can be controlled within
the minimum and maximum values by the adjustment of applied electric field. This control can
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be adjusted over time increments of several milliseconds, which is the response time of present
day ER materials to changes in electric field levels. The capability for such control would be very
useful to the structural damping industry.

Aside from the material property behavior discussed above, several other parameters are
commonly considered when discussing ER materials. Two such parameters are current density
and temperature dependence. The current density must be kept low to avoid large electrical
power requirements at the high voltage levels required. For the materials presented, the current
density is on the order of 0.1 -A/cm2 at an electric field of 4000 V/mm The useful temperature
range of both ERX-03-145 and 5501-21C is approximately 10-851C. Within this range the pre-
yield mechanical properties of the materials are relatively independent of temperature. The
current density, however, does increase with temperature. Other factors worth mentioning are
the stability and long term behavior of the materials. Some formulations of ER materials have
shown a tendency of particle/carrier fluid separation over time. ERX-03-145 has exhibited this
behavior in the past, while 5503-21C is much more stable. The long term behavior of both
materials is presently being studied.

80000

60000, Applied Electric Field

G' (Pe) - 0 V/um

40000' 2000 Vtnuw

6- 3000 Vtmm

20000' 4000 V/mi

01
0 50 100 150 200
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(a)

20.0,

15.0, Applied Electric Field

1I 1-- 000 Vfram
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Figure 3: Complex shear modulus of electrorheological material ERX-03-145.
(a) Storage modulus, (b) Loss factor.
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viscoelastic layer as shown in figure 5b. The strain energy associated with this shear tends to
dominate the damping behavior of the overall structure.

rElastic Layers

H2 I

Viscoelastic Layer

(a)

(b)

Figure 5: Typical section of a panel with a constrained viscoelastic layer.
(a) Undeformed, (b) Deformed.

Assuming that the extensional stiffness of the viscoelastic layer is small compared to that
of the elastic materials, the loss factor of the entire structure is

1 T2 Y(2)+(2+Y)X + (lY(+1) 2

In equation (2), 112 is the loss factor in shear of the viscoelastic layer, (12 = G" / G'), Y is a
stiffness parameter, and X is a shear parameter. In its full form, the stiffness parameter, Y, is
defined as

E1 H + E 3 H3 1 (3)

12 H3 1  E3 H3

where Ei and Hi are the tensile modulus and thickness of the ith layer respectively and H31 is the
distance between the mid-planes of the elastic constraining layers, ( H31 = H2 + (H1 + H3) / 2 ).
For the present discussion, the elastic layers will be considered to be made of the same material
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and to be of equal thickness, thus E1 = E3 and H1 = H3. With these assumptions, the stiffness
parameter becomes simply a geometric parameter, which is

Y(31) 2

Y = 3(H3-1 -)2. (4)

The shear parameter, X, is defined as

X G2 1(5)
p2 H2  E 1H1

+ E3 H3

where p is the wavenumber, which for simply supported beams is related to the length of the
beam, L, and mode of flexural vibration of the composite panel, n, by the relation p = nn / L.
Thus, by choosing a viscoelastic material with a given complex shear modulus and designing a
layer of this material into an otherwise elastic composite panel, one can determine the effective
loss factor, and thereby the damping, of the overall structure.

In addition to dominating structural damping, the existence of a constrained viscoelastic
material in a composite panel as shown in figure 5 also modifies the flexural rigidity of the
structure. For the configuration shown, the real component of the effective complex flexural
rigidity per unit depth of the structure is

1 X + X2 ( 1 + 112 6
B = (Bi+B 3){ 1 +[ 2 1 (6)

where
EiH

Bi = j 1 (7)12

This change in effective stiffness of composite panels due to the existence of a viscoelastic layer
brings about a corresponding change in the resultant frequency of flexural vibration, fn. For
simple beam panels, this is evident through the relation

fn = i ,[H~gl(8)

in which g is the mass per unit area of the panel. For three layer laminated composite beams, g
can be determined using the expression:

3

g= pi Hi (9)
i:=1

in which pi is the mass density of the material of layer i. Thus, like the loss factor, the frequency
of vibration of composite panel structures encompassing a viscoelastic layer changes with
corresponding changes in the complex shear modulus of the viscoelastic material.
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DESCRIPTION OF VIBRATION EXPERIMENTS

In order to test the usage of ER materials in distributed viscoelastic layer damping
applications, small amplitude vibration experiments were performed with ER material filled
symmetric sandwich beam specimens. A diagram of a specimen is shown in figure 6. As shown
in the figure, sandwich beams were constructed with 0.53 mm thick aluminum face layers and
2.0 mm thick ER material filled cores. The total length and width of each beam was 0.254 m and
0.0254 m respectively. A constant core thickness throughout each beam was obtained by
positioning small silicone rubber face plate separators of the desired thickness at the ends and
center of each side of the beam. At the center of the beams, these separators were adhered to one
side only while at the ends of each beam, the silicone was bonded to both the upper and lower
face plates. The sides of the beams were sealed by the loose application of a 0.25 mm thick latex
sheet material bonded to the outside surfaces of the face plates to create a sealed core. For the
purpose of clarity, only one latex side skin is shown in figure 6. After the appropriate ER
material was placed in the core, the ends of each beam were sealed with silicone rubber sealant.
The application of an electric potential to each face plate was allowed for by the inclusion of small
end tabs at one of the corners of each plate. Two such beams were fabricated, each containing
one of the two ER materials previously discussed.

(V LATEX SHEET AUIU

.--- 2.54 cm
~0.254 m---

~SILICONE

SEALANT ER MATERIAL

Figure 6: Configuration of ER material filled composite sandwich beam specimens.

During testing, each beam was positioned in a horizontal simply supported configuration
as shown in figure 7. A non-contacting electromagnetic actuator was used to input a 0-200 Hz
random vertical oscillating force on the beam at an axial position equal to one fourth of the length
of the beam from one of the supports. Likewise, a non-contacting electromagnetic proximity
probe was used at the other quarter length position to record the vertical displacement at that
location as a function of time. Small steel targets were attached to the beam at the actuator and
sensor locations to permit their use. The maximum amplitude of oscillation at any point along the
beam was maintained at a level less than 0.5 mm. Controllable high voltage was applied by
grounding one face plate of the beam and applying a DC voltage to the other face plate using a
high voltage power supply. Voltage levels between 0 and 5000 volts were applied to the beam in
1000 volt increments. This resulted in electric field levels between 0 and 2500 V/mm. At each
level of applied electric field, the natural frequency for each mode of vibration below 200 Hz was
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determined from the spectral response of displacement at the proximity probe location.
Corresponding structural loss factors were determined for each mode from the half power
bandwidth of the frequency response.

SIGNAL SIGNAL
ANALYZER GENERATOR

__t ~66I
all m--

ELECTROMAGNETIC
ACTUATOR

SIMPLE SUPPORT TEST FRAME

Figure 7: Experimental apparatus used during vibrational testing.

RESULTS AND DISCUSSION

For all but the lowest voltages applied during testing, only the first three flexural modes
of vibration existed within the 0-200 Hz. range chosen. The resultant modal frequencies and
corresponding loss factors observed for the two sandwich beams are presented as functions of
electric field applied across the ER material in figures 8 and 9. As evident from figure 8a , the
natural frequency of each of the three modes of the beam containing ER material ERX-03-145
increased significantly with applied electric field. Over the 0-2500 V/mm range tested, this
increase was nearly linear, and the lines resulting from least squares analyses of the data are
included in the figure. The change in modal frequency with applied electric field for modes 1
through 3, in units of Hz/(KV/mm), were 12.1, 13.0, and 18.6 respectively. All the curve fits
yielded correlation coefficient values exceeding 0.97. The observed behavior in modal loss
factor with applied electric field for the same beam, shown in figure 8b, was not as orderly as the
frequency behavior. It can be concluded, however, that the modal loss factor was found to
decrease with mode number and generally increase with applied electric field. Overall structural
loss factor values ranging between 0.03 and 0.11 resulted.
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Figure 8: Observed dependence of beam modal frequency and loss factor
on applied electric field; ER material ERX-03-145.

(a) Modal frequency, (b) Modal loss factor.

The modal frequencies of the beam filled with ER material 5503-21C were also found to
increase linearly with applied electric field. This is shown in figure 9a, and the resultant
gradients of frequency with applied electric field were 8.2, 7.9, and 14.1 Hz/(KV/mm) for
modes 1 through 3 respectively. The correlation coefficients of the curves all exceeded 0.98.
The dependence of modal loss factor on applied electric field for this case, as shown in figure 9b,
was again somewhat disordered. For modes 2 and 3 the loss factor followed the previously
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mentioned pattern of generally increasing with applied electric field. For mode 1 however it was
observed in this case that the loss factor increased with applied electric field for fields below 1500
V/mm and then decreased with electric field for field levels above this point. This behavior was
seen consistently during repeated testing.
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Figure 9: Observed dependence of beam modal frequency and loss factor
on applied electric field; ER material 5503-21C.

(a) Modal frequency, (b) Modal loss factor.
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Following the obtainment of experimental results, an attempt was made to theoretically
predict the observed behavior using the classical RKU theory. This was done by firSt obtaining
appropriate ER material shear storage modulus and loss factor values at the observed frequencies
of vibration and applied electric field levels using the data presented in figures 3 and 4. These
values were used along with the density of the ER material, the properties of aluminum, and the
geometry of the beams constructed to determine predicted structural modal frequernies and loss
factors using equations (2) through (9). Initially, no effects of the silicone rubber or the latex
were considered. The predicted modal frequencies and loss factors resulting from these
calculations for the highest two electric field levels tested are included in figures 8 and 9. From
figures 8a and 9a it can be concluded that the theory as applied generally underpredicted the
vibrational modal frequencies observed. The degree of deviation from experimental observation
ranged from practically none for mode three of the beam filled with ER material 5503-21C to as
much as 63% for mode one of the beam filled with ER material ERX-03-145. The loss factor
data shown in figures 8b and 9b reveal that although the loss factor was predicted to increase
with applied electric field and mode number, the actual magnitudes of the theoretical loss factors
calculated were much less than those observed. The only exception to this is the loss factor for
the first mode of vibration of the beam filled with ERX-03-145.

In response to the above mentioned discrepancies in predicted and observed behavior, the
possibility of accounting for the influence of the silicone sealant was investigated. The influence
of the latex material was assumed to be minimal due to the loose manner in which it was
purposefully installed. Since the silicone is believed to have a higher shear storage modulus than
the ER materials, the beams constructed were probably stiffer than would be pre 4icted by only
considering the ER material between the face plates. This in turn would lead to _ observation
of higher than predicted frequencies of flexural vibration. To test this hypothesis, a volume
weighted rule of mixtures component was added to the theoretical analysis and an effective
complex shear modulus of the material occupying the core region of the beams was determined
using the relationships

= G si Vsi + GER VERGetvTW (10)

and
Gfn Gsi V Si + GER VER

= V (11)

where the subscripts Si and ER refer to the silicone rubber and ER material respectively and V
represents to volume of viscoelastic material in the beam. The resultant effective complex shear
modulus values were then used throughout the remainder of the calculations to determine new
structural modal frequency and loss factor values. Since the silicone occupied less than 10% of
the viscoelastic material volume in the beams, however, this revised analysis did not lead to
significant changes in the theoretical predictions. The possibility remains that the properties used
for the silicone rubber were inaccurate since they were taken from the literature to be G'si =
69,000 Pa and G"s, = 6,900 Pa. The actual properties of the silicone sealant used remain to be
measured.

Another potential source of error in the calculations is inaccuracy in the values of the ER
material complex shear modulus. During the material characterization phase of the study, the
properties of the ER materials tested varied with tim, of continuous exposure to an electric field
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and whether field levels were being increased or decreased. Although care was taken to obtain
similar material property conditions during material characterization and structural testing, it is
likely that the two situations did not exactly coincide. Further work is in progress to better
quantify the rheological behavior of ER materials, and as this supporting work progresses it is
likely that more accurate structural behavior predictions will also result.

Accepting the fact that further work is needed to more closely correlate theory and
experimentation in this area, the controllable vibration observed remains a truly remarkable
phenomenon which may be of significant utility in the vibration control industry. This can be
seen by simply examining the line ir behavior of structural modal frequency with applied electric
field, as shown in figures 8a anl 9a. A potential use of this technology is in the tuning of
structural properties to avoid vibrational resonances. An example of this is shown in figure 10,
where the observed structural response amplitude of one of the beams tested is plotted as a
function of frequency for the two cases of no electric field and an electric field of 2500 V/mm. If
one desired to avoid resonances over a given frequency range, the structure could be "tuned" by
either applying or removing the electric field so that the response to a given frequency of
excitation was minimized. If the excitation frequency for one reason or another changed, the
structure could be adjusted in a matter of milliseconds to again produce a minimized response at
the new frequency. This would result in a capability of obtaining a response amplitude spectrum
equivalent to the shaded area in figure 10. Such a capability has not been obtainable using any
other means of controllable passive damping to date.

Displacement Applied Electric Field

Response 0 V/mm
Amplitude . .

.,-.
(d B) ., :i~ "

... .............

0 50 100 150 200

Frequency (Hz)

Figure 10: Structural response amplitude as a function of frequency for
two states of an ER material filled composite beam.
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CONCLUSIONS

The present study was among the first in which the controllable pre-yield properties of
electrorheological materials were investigated as to their utility in distributed structural control
applications. Although the pre-yield shear storage modulus values of present day ER materials
were found to be much lower than those of conventional viscoelastic shear damping materials,
composite sandwich beams were constructed encasing ER materials and demonstrated to exhibit
controllable response to flexural vibration excitation. Most notably, a linear relationship was
found to exist between modal response frequency and applied electric field for the beams tested.
An attempt was made to predict this behavior using a classical constrained layer damping
analysis, and it was concluded that further work was needed to more closely correlate theory and
experimentation. Nevertheless, it was suggested that composite structures containing ER
materials would have the unique capability of tunable vibrational response. This tuned passive
approach to structural behavior is likely to be very useful in the vibration control industry in the
years to come.
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ABSTRACT

Conventional hydraulic dampers, which are widely employed in mechanical
vibration and shock isolation systems, exhibit inherent performance limitations
due to the fixed orifice damping characteristics. In this paper, a conventional
hydraulic damper is modified to achieve variable damping via simple passive
means. The variable damping mechanism is realized passively by limiting the
pressure differential across the hydraulic damper piston, using pressure relief
valves. The hydraulic damper is modelled as a nonlinear dynamical system
incorporating the nonlinearities such as orifice damping, gas-spring and pressure
relief mechanism. The damping characteristics of both conventional and the
modified dampers are discussed in view of vibration isolation performance. The
dynamic response of a vehicle suspension model employing the modified
hydraulic damper is investigated via computer simulation. The transmissibility
characteristics of the vehicle suspension system are obtained to evaluate the
vibration isolation performance of the proposed damper. The shock isolation
performance is evaluated in terms of its transient response to a road bump
input. The simulation results of the modified vehicle suspension are compared
with that of the conventional hydraulic shock absorber system. It is concluded
that the vehicle ride performance can be improved considerably using the
modified hydraulic damper.
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INTRODUCTION

The selection of appropriate spring and damping mechnisms is one of the
most important tasks in the design of vibration and shock isolation systems.
Conventional passive hydraulic dampers are widely employed in mechanical
vibration and shock isolation systems and offer a simple, inexpensive and
reliable mean to protect the mechanical systems and human body from
vibration and shock disturbances. However, it is well known that the passive
vibration isolation systems exhibit inherent performance limitations due to the
fixed orifice damping characteristics [1, 2]. A heavily damped passive vibration
isolation system tends to reduce the amplitude of vibration response only when
the frequency of the base disturbances is around the natural frequency of the
system. While the vibration isolation performance of the passive system is
deteriorated considerably at higher frequency range. On the other hand, a
lightly damped vibration isolation system is desirable when the disturbance
frequencies are beyond the natural frequency; however it yields a poor response
at the resonance of the system. In order to overcome these inherent
limitations of the passive vibration isolation systems, various vibration isolation
systems with variable parameters have been proposed, such as active and
semi-active vibration isolation systems.

In active vibration isolation systems, the controlled damping and stiffness
parameters change with variations in excitation and response characteristics and
thus provide superior isolation performance. However, active controlled damping
mechanisms, proposed in the literature, require an external energy source,
complex feedback control devices and sensors. Thus the general use of active
shock and vibration isolation systems has been severely limited due to the
associated high costs, complexities and poor reliability [3, 4].

Semi-active vibration isolation systems generate damping forces passively
while the damping parameters are modulated using an active control system.
Semi-active damping is often realized by modulating the orifice area of
hydraulic dampers using various control schemes, such as skyhook [5, 6] and
sequential or 'on-off' schemes [2]. Semi-active vibration isolation systems require
only low level electrical power for necessary signal processing and can provide
improved vibration and shock isolation performance compared with that of the
passive vibration isolation systems. However, the semi-active vibration isolation
systems still require a comprehensive instrumentation and control devices.

In this paper, a conventional hydraulic damper is modified to achieve a
variable damping in vibration and shock isolation systems via simple passive
means. The variable damping mechanism is realized passively by limiting the
pressure differential across the hydraulic damper piston, using pressure relief
valves. The hydraulic damper is modelled as a nonlinear dynamical system
incorporating the nonlinearities, such as orifice damping, gas-spring and pressure
limiting mechanism. The damping characteristics of both conventional and the
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proposed dampers are discussed in view of their vibration isolation performance.
The concept of the proposed modified hydraulic damper employing pressure
limiting valves is discussed through the flow and force balance equations. The
dynamic response of a vehicle suspension employing the modified hydraulic
damper is investigated via computer simulation. The vibration isolation
performance of the proposed damper is discussed in terms of the vibration
transmissibility characteristics of the vehicle model. The shock isolation
performance is established in terms of its transient response to a road bump
input. The simulation results of the modified suspension system are compared
with that of the conventioal hydraulic shock absorber system to demonstrate
the improved vehicle ride performance of the proposed damper.

DEVELOPMENT OF ANALYTICAL MODEL

Fig. 1 presents the schematic of a conventional passive hydraulic damper.
Neglecting leakage flows and seal friction, the total dynamic force fD generated

by the hydraulic damper due to pressure differential across the piston is
expressed as:

fD= (p - p0 )Ap - (P 2 - po)(AP + AR) (1)

where pO is the hydraulic pressure corresponding to the static equilibrium

position, p, and P2 are the instantaneous pressures in chambers I and II,

respectively, Ap is the piston area, and AR is the cross section area of the

rod. By letting pij=pi-pj, equation (1) can be expressed as:

fD = Pl 2 Ap + P32AR - P30AR (2)

where P3 is the instantaneous pressure in chamber III. Assuming turbulent

flow condition the pressure differentials P 12 and P32 across the piston and

cylinder orifices are expressed as [7]:

P12 22 zz (3)
2n 0 d1

and
p AR 2

P3 2  R- -) Izjz (4)

dl
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where z is the relative velocity across the damper, given by

z = x - X.
1

and n is the number of orifices on the piston, al and a2 are areas of orifices

on the piston and cylinder, respectively, Cdl and Cd2 are discharge coefficients,

and p is the density of hydraulic fluid. The pressure differential in chamber
III can be related to the relative compression/extension of gas column.
Assuming polytropic process, the differential pressure P30 is be expressed as:-

[(V0+ARz) - V0
P30 - - P0 (5)(V0 + ARz) (

where V0 is the initial gas volume corresponding to the static equilibrium

position and -y is the polytropic constant. It is evident from equations (2) to
(5) that the total dynamic force generated by the damper comprises of a
damping force fd due to the orifice flow and a restoring force f due to the

pressurized gas column. The total dynamic force generated by the hydraulic
damper can be expressed as:

fD(t) = fd(t) + fa(t) (6)

where

fa(t) -- - R (7)

fd(t) al 2  (8)

and

p 2 Ap + (9)
P12R

From equations (3) and (4), it is evident that the ratio of pressure differentials

(p32/p12) can be expressed as a constant:
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P32 C d1j2 nal 2 AR 2
P2 (d2) R - A (10)

P12

From equations (3) and (8) it is clear that the pressure differential P 12

and thus the damping force are dependent upon the square of relative velocity
across the damper. The magnitude of the damping force becomes predominant
at high excitation frequencies and thus yields poor vibration isolation
performance. The magnitude of damping force at high excitation frequencies
can be lowered in a manner similar to the sequential semi-active dampers by
limiting the pressure differential across the piston. However, the pressure
limiting and thus variable damping force can be realized via passive means
using pressure relief valves. The pressure relief valves are selected to limit the
magnitude of pressure differential across the piston to a preset value (P 12)0 by

modulating the flow through compression and rebound relief valves across
chambers I and II, as shown in Fig. 2. When the magnitude of the pressure
differential P12 is less than a preset limiting value (P 12)o of the relief valves,

the relief valves remain closed and thus the damper acts as a conventional
passive hydraulic damper. However, when the magnitude of the pressure P12

exceeds the preset value (P 12)., the relief valve opens. The damping force is

then reduced considerably by permitting the fluid flow pass through the opened
relief valve. Neglecting dynamics of the relief valves, the sequential damping
force due to the modified passive damper can be expressed as:

( aP1 2' IP121 < (P 12)o

fd- (11)

= a(Pl2 )osgn(P 1 2 ), otherwise

where

I +I '  (*) >0o

sgn(*)

(*) < 0

The sequential damping via pressure limiting can be realized completely
passively, and it does not require the instrumentation and control package and
external power required by the active and semi-active systems.

DAMPING CHARACTERISTICS OF THE MODIFIED DAMPER
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A damping parameter /3 is defined as the ratio of the damping force to
the critical damping force of a viscously damped vibration isolation system:

,8 = fd/(2vTk z) (12)

From equations (3), (8) and (12), the damping parameter of the conventional
passive hydraulic damper is obtained as:

a1 P A~ 2A/3-2 2 -C "P z (13)

It is obvious that the damping parameter of the conventional hydraulic damper
is proportional to the magnitude of relative velocity across the damper. The
damping parameter of the modified hydraulic damper can be obtained from
equations (11) and (12):

2fi- ' 2 C-J a2 Iz1, Ip121 < (P 12)(- (2n .Cdl

di (14)

C2V/a 1  otherwise

Equation (14) reveals that for 1P121<(P 12)o the damping parameter of the

modified damper is proportional to the magnitude of the relative velocity
response as in the same case of the passive damper. However, the damping
parameter is inversely proportional to the magnitude of the relative velocity
response, when the pressure differential P12 exceeds the limiting value of (P12)..

In view of vibration isolation performance, it is desirable to achieve a high
value of damping parameter around the resonant frequency so that the resonant
peak can be appropriately controlled. On the other hand, a low value of
damping parameter is desirable at high frequencies to achieve the improved
vibration isolation performance. The modified hydraulic damper can provide the
desirable damping characteristics expressed in equation (12) when (P12 )0 is

appropriately selected. In order to control the resonant peak response, the
minimum value of the limiting pressure is estimated by using the relationship
of damping parameter and resonant amplitude of a linear vibration system [8].
A suitable value of the preset limiting pressure (P12)o is then expressed as:
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(p) v(kX/) (15)

where X. is the amplitude of excitation, and v is the pressure limiting factor of1

the modified hydraulic damper. The pressure differential characteristics of a
base excited single degree-of-freedom mechanical system employing the modified
damper is compared with that of the conventional damper as shown in Fig. 3.
The pressure differential P12 across the conventional damper piston increases

rapidly with the increase of the excitation frequency. However, the pressure
differential P 12 of the modified damper increases with the excitation frequency

and then settles down to the preset value (P 12)0 . The value of pressure

differential P 12 and thus the damping force at high excitation frequencies are

dependent upon the limiting factor v as shown in Fig. 3. The damping
characteristics of the modified damper as well as the conventional hydraulic
damper are presented in Fig. 4. It is observed that at low excitation
frequencyies the damping parameter of the modified damper is identical to that
of the conventional hydraulic damper. However, the damping parameter of the
modified damper decreases at higher frequencies when P 12 exceeds (P 12).

MODELLING OF A VEHICLE SUSPENSION WITH MODIFIED DAMPER

A vehicle suspension equipped with the modified hydraulic damper, as
shown in Fig. 5, is modelled and analysed, in order to evaluate the vibration
and shock isolation performance of the modified damper. The vehicle is
modelled as a two-degree-of-freedom dynamic system, often refered to as 'quarter
vehicle model' [9]. The vehicle mass is represented by a sprung mass m, and

the wheel and axle assembly is modelled as an unsprung mass mr. The

primary vehicle suspension model comprises of a linear spring of stiffness k8 and

a modified nonlinear hydraulic damper D. The total force generated by the
modified damper includes a restoring force due to the gas-spring and a
dissipative force due to the orifice flow. The tire is modelled as a linear
spring of stiffness kt, assuming point contact with the terrain. The hysteretic

properties of the tire is assumed to be small. The equations of motion of the
two-degree-of freedom vehicle model are expressed as:

m + ksz + fa(t) + fd(t) = 0 (16)

1 muR - ksz - fa(t) - fd(t) + ktx I = ktxi  (17)
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where z=x-xl, fa(t) is the gas-spring force derived in equations (5) and (7),

and fd(t) is the modified damping force expressed in equations (3) and (11).

The simulation parameters of the vehicle model and the modified hydraulic
damper are selected as follows:

m,=240 kg, mu=36 kg, k,=16000 N/m, kt=160000 N/m, p=797.18 kg/m 3,

-3 2-4 2 -4

Cdl-0.7, Cd2=0.7, Ap=2.513x10 m , AR= 3 .141 6 xlO m, -=1.4, Vo=.9x10
3 15 -6 2 -6 2

m , P0=13.7x10 Pa, and a1=3.1416x10 m , a2 =3.1416x10 m , and X. =

-3
1.86x10 m.

RESULTS AND DISCUSSION

The vehicle model incorporating nonlinearities due to gas-spring, orifice
damping and pressure relief valve mechanism is simulated using the numerical
integration technique. The dynamic ride performance of the vehicle suspension
employing the modified damper is evaluated through the vibration and shock
isolation characteristics. The vibration isolation characteristics of the modified
hydraulic suspension are expressed in terms of vibration transmissibility of the
suspension system. The shock isolation performance of the modified damper is
evaluated in terms of its transient response to a road bump input.

Vibration Isolation Performance

The vibration isolation performance of the conventional and modified
suspensions is evaluated for harmonic displacement excitations at the tire-road
interface. The vibration transmissibility is obtained by computing the ratio of
the steady state response amplitude to the excitation amplitude for each
excitation frequency.

The velocity transmissibility response of the sprung mass of the vehicle
employing modified and conventional passive dampers is shown in Fig. 6. The
damper piston with two orifices is considered for the conventional as well as
modified damper ( n=2 ). A unit pressure limiting factor v=1 is selected for
the modified hydraulic damper. It is observed that the transmissibility of the
conventional hydraulic damper system yields two peaks corresponding to the
resonant frequencies of the sprung and unsprung masses of the vehicle,
respectively. The second peak corresponding to the resonance of the unsprung
mass mu, is mainly due to the high value of orifice damping produced by the

conventional passive damper. The transmissibility characteristics of the vehicle
model employing the modified hydraulic damper, is identical to that of the
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conventional suspension system at low exciting frequency. The modified
hydraulic damper continues to dissipate energy identical to that of the
conventional damper around the first resonant frequency. However, as the
excitation frequency and thus the relative velocity response increase, the pressure
differential P1 2 is held around (P 12). by the pressure relief mechanism to reduce

the damping force generated by the modified hydraulic damper. Thus the
velocity transmissibility peak corresponding to the unsprung mass resonance is
reduced significantly as shown in Fig. 6. A comparison of the transmissibility
characteristics of the modified and conventional dampers reveals that the
vibration isolation performance of the modified hydraulic damper system is
considerably superior to that of the conventional damper at higher excitation
freqiencies.

The vibration transmissibility of the conventional passive damper,
corresponding to the unsprung mass resonance, can be reduced considerably via
increasing the number of orifices, as shown in Fig. 7. However, the peak
transmissibility response, corresponding to the the sprung mass resonant
frequency, increases considerably with light damping. A comparrison of the
displacement transmissibility characteristics of the conventional dampers ( n=2
and n=4 ) with the modified damper ( n=2 and v=1 ) reveals that the
modified damper can provide an appropriate control of the peak response
corresponding to the low as well as high frequencies. A comparison of velocity
and displacement transmissibilities in figures 6 and 7 also confirms that for
nonlinear dynamical systems the transmissibiities of velocity and displacment are
no longer identical as in the case of linear systems.

The velocity transmissibility characteristics of the modified hydraulic
dampers with different preset pressure limiting factors, L-- 0.7, 1.0 and 1.5, are
shown in Fig. 8. The influence of limiting factor vi and thus the pressure
limiting value (P 12). on the vibration transmissibility is observed by comparing

the response due to the different v values. A low value of pressure limiting
factor v yields a further improved vibration transmissibility at the higher
excitation frequencies as compared with that of a higher value of v factor.
However, a lower value of v factor with a lower preset pressure limiting value
(P 12)0 results in a early opening of relief valves, that may produce a very large

resonant peak due to the insufficient damping at the resonance. A higher
value of v' factor results in a late opening of the relief valves and yields a
higher transmissibility value at higher excitation frequency. It is obvious that
the suspension system equipped with the modified hydraulic damper with the
pressure limiting factor, 0.7<v<1.5, exhibits superior vibration isolation
performance.

Shock Isolation Performance
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The shock isolation performance of the conventional as well as modified
dampers is investigated for bump excitation, as shown in Fig. 9. The bump
represent a half round obstacle of radius h. The vehicle is assumed to travel
at a constant speed v. The instantaneous coordinate of the vehicle u(t) is
expressed as:

u(t) = u0 + vt (18)

where t is the time, u0 is the initial possition of the vehicle away from the

centre point of the bump. The instantaneous excitation due to the road bump
can be expressed as:

x / h 2 - u2  -h < u < h

( 0 , 
otherwise

The shock isolation characteristics of the suspension system equipped with the
modified hydraulic damper are established through computer simulaticn, with
the following parameters: h=0.1524 m, u0 =-0.2524 m, and the vehicle speed is

selected as v= 5 m/s.

The transient displacement response of the sprung mass m8 of the vehih:e

suspension system with a conventional passive damper and a modified hydraulic
damper, together with the history of the input displacement xi, is shown in

Fig. 10. Where the total orifice areas of both convent-oral and modified
hydraulic dampers are identical ( n=2 ), and the pressure limiting factor for
the modified damper is selected as v= 1. Fig. 11 shows the transient velocity
response of the sprung mass with the conventional and modified hydraulic
damper systems. Figs. 10 and 11 reveal that the peak displacement and
velocity response of the modified hydraulic damper are considerably smaller tant
that of the conventional damper. Moreover, the transient response of the
modified damper is less oscillatory than that of the conventional damper. The
transient displacement response of the unsprung mass mu, xj(t), for the same

systems is shown in Fig. 12. The maximum transient response of the modified
hydraulic d1amper is slightly larger than that of the conventional damper
system, however ii yields less oscilations than that of the conventional system.
Since the main purpose of the suspension design is to reduce the oscilation of
the sprung mass, the modified hydraulic damper can, therefore, be used to
improve the ride performance.
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The transient displacement response of the sprung mass m. with a lightly

damped suspension system ( n=6 ) both the conventional and modified
hydraulic dampers, together with the bump input history, is shown in Fig. 13.
The conventional passive damper system with much small damping yields an
improved transient response as compared with that of the conventional system
with a higher damping in Fig. 10. The maximum amplitude of the response is
slightly lower and the oscilations are much less than those of the highly
damped system. However, the modified hydraulic damper yields a further
improved transient response, in terms of both the maximum amplitude and the
munber of oscillations, as compared with that of the lightly damped
conventional system. Moreover, it should be pointed out that a lightly damped
conventional system yields a high peak value of vibration transmissibility of the
sprung mass at the resonance as shown in Fig. 7.

CONCLUSIONS

A conventional hydraulic damper is modified to achieve a variable damping
in vibration and shock isolation systems. The damping characteristics of the
modified hydraulic damper are discussed in view of the vibration isolation
performance. A vehicle suspension model employing the modified hydraulic
damper is analysed via computer simulation. The shock and vibration isolation
performance of the suspension due to the modified passive hydraulic damper
with the variable damping is evaluated and compared with that of the
conventional hydraulic damper system. The vibration isolation performance of
the modified damper is presented in terms of its transmissibility caharacteristics.
The shock isolation performance is evaluated in terms of its transient response
to a road bump input. From the results of both the vibration transmissibility
and the transient respons, it is concluded that the vehicle ride performance can
be improved considerably by using the modified hydraulic damper.
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Fig.1 Schematic of a conventional hydraulic damper
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Fig.2 Schematic of a modified hydraulic damper with two relief valves
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ABSTRACT

A new generation of revolutionary multi-functional, dynamically-
tunable, intelligent, ultra-advanced composite materials featuring electro-
rheological fluids is proposed herein for the active continuum vibrational-
control of structural systems. This paper reports on a pioneering proof-of-
concept experimental investigation focused on evaluating the elastodynamic
transient response characteristics of cantilevered beams fabricated in this
new class of materials. The results of this investigation clearly
oemonstrate the ability to dramatically change the vibrational characteris-
tics of beam-like specimens fabricated in ultra-advanced composite materials
by changing the electrical field imposed on the fluid domains. The
capability of these materials to interface with modern solid-state electron-
ics can be exploited by extending the fundamental phenomenological work
presented herein by the successful incorporation of intelligent sensor
technologies and modern control strategies in order to significantly
accelerate the evolution of these composite materials for military and
aerospace applications.
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PREFACE: BACKGROUND ON ELECTRO-RHEOLOGICAL FLUIDS

Electro-rheological (ER) fluids are typically suspensions of micron-
sized hydrophilic particles suspended in suitable hydrophobic carrier
liquids, which undergo significant instantaneous reversible changes in
material characteristics when subjected to electrical potentials.
References [1-121 provide a flavor of the research activities in ER fluids.
The most significant change in the material characteristics of an ER fluid
is associated with the energy dissipation characteristics of the suspension
which varies dramatically upon applying an electrical field to the fluid.
The tailoring of this rheological property by the imposition of a suitable
electrical potential can be usefully exploited in vibration-suppression
applications.

Figure 1. Photomicrograph of an Electro-Rheological Fluid
with and Electric Field Strength of 0 kV/mm

Figures I and 2 present photomicrographs of an electro-rheological
fluid subjected to electrical field intensities of 0 kV/mm and 2 kV/mm
respectively. The photomicrographs were taken in the Biothermal Sciences
Laboratory at Michigan State University using a Zeiss universal phase-
contrast microscope with a X40 magnification and a Chinon camera. The black
regions at the sides of the photographs are images of the electrodes
employed to generate the electrical field in the ER fluid. Figure I clearly
shows the random structure of the suspension when a potential difference is
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not generated between the electrodes. This structure imparts nominally
isotropic global mechanical properties to the suspension. Figure 2 clearly
shows the truly dramatic change in the structure of the suspension upon
developing a potential difference between the electrodes of magnitude 2
kV/mm. Under these conditions, the particles in the suspension orientate
themselves in relatively regular chain-like patterns to form a mixture with
globally anisotropic mechanical properties. These columnar structures
increase the energy-dissipation characteristics of the suspension, they
increase the stiffness of the global suspension/electrode structure, and
they are also responsible for re-orientation of the mass distribution of the
suspension. Thus, by imposing an electric field upon an ER fluid, the mass,
stiffness and energy-dissipation characteristics of the electro-viscous
suspension are changed. When the field returns to a zero potential upon
switching off the electrical energy supplied to the electrodes, the
particles return to a state of random orientation in the carrier fluid as
shown in Figure 1.

Figure 2.. Photomicrograph of an Electro-Rheological Fluid
with an Electric Field Strength of 2 kV/mm
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INTRODUCTION

The insatiable demand in the international marketplace for high-
performance structural and mechanical systems for the aerospace and defense
industries has triggered the evolution of advanced composite materials
technologies. These diverse high-performance applications have mandated
that designers tailor the materials and the material microstructural
characteristics in order to provide optimal performance of the structural
systems under various service conditions and unstructured environments.
[13,14]

With traditional advanced composite materials, the optimization
strategies result in an optimal design which is passive in nature and cannot
respond to unstructured environments. For instance, the vibrational charac-
teristics of a helicopter rotor fabricated in an advanced composite material
are clearly dependent upon several factors such as the rotational speed,
aerodynamic loading, payload and the ambient hygrothermal environment. An
optimally-tailored rotor designed in a traditional advanced composite
material is passive in the sense that it cannot actively respond to changes
in the rotor speed and aerodynamic loading, for example. It is clearly
evident, therefore, that the elastodynamic response of the rotor is sub-
optimal for all service conditions except the one for which the rotor was
optimally designed.

In order to overcome this limitation, a new generation of
revolutionary, intelligent, ultra-advanced composite materials featuring ER
fluids is proposed herein which will enable the response characteristics to
be continuously varied in order to achieve the optimal performance under
varying service conditions. These ultra-advanced composite materials
capitalize on the superior characteristics of advanced composite materials
which are interfaced with dynamically-tunable ER fluids contained in voids
in the advanced composite structure. Changes in the electrical field
imposed upon the ER fluids dramatically alter the rheological characteris-
tics of the fluids and hence the global mass, stiffness and dissipative
characteristics of the ultra-advanced composite structure. A methodology
for synthesizing this class of smart materials is presented in Figure 3.

The instantaneous response-time of the ER fluids and the inherent
ability of these materials to interface with solid-state electronics and
modern control systems provides designers, for the first time, with a unique
capability to synthesize ultra-advanced intelligent composite structures,
whose continuum electro-elastodynamic response can be actively controlled in
real-time. An application of this philosophy to control the vibrational
response of an aircraft wing is schematically represented in Figure 4.
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Figure 3. A Methodology for Synthesizing Materials
Incorporating ER Fluids
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Figure 4. A Schematic Diagram of an Aircraft with a Wing Fabricated
from an Ultra-Advanced Intelligent Composite Material

This class of innovative materials derive their intelligence from
the merger of sensors, built into the finite element control segments of the
ultra-advanced composite material continuum, microprocessors, and
dynamically-tunable electro-rheological fluids as shown schematically in
Figure 5. The sensors monitor the elastodynamic behavior of the ultra-
advanced composite structure, and the signals from the sensors are fed to
the appropriate microprocessor which evaluates the signals prior to
determining an appropriate control strategy in order to synthesize the
desired elastodynamic response characteristics. This is typically
accomplished by controlling the rheological characteristics of the ER fluid
domains in the finite element segment associated with the particular sensor.
This change in the rheological characteristics of the ER fluid in a typical
finite element control segment, in turn alters the global mass, stiffness,
and damping characteristics of the ultra-advanced composite structure in
order to achieve the desired vibrational response.
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Figure 5. Schematic of a Cantilevered Beam Fabricated in an Ultra-
Advanced Intelligent Composite Material Showing Sensor and
Date-Processing Components

This paper reports on a pioneering proof-of-concept experimental
investigation focussed on evaluating the elastodynamic response of
cantilevered beams fabricated from ultra-advanced intelligent composite
materials. The preliminary results of this investigation clearly demon-
strate the ability to dramatically change the transient elastodynamic
response characteristics of beam-like specimens fabricated in the ultra-
advanced composite materials by changing the electrical field imposed on the
ER fluid domains.

EXPERIMENTAL PROGRAM

The objective of the experimental program was to investigate the
transient response characteristics of various cantilevered beam specimens
fabr.cated in smart ultra-advanced composite material in a variety of
different operating conditions in order to provide a basis for evaluating
the controllability of these structures in real-time. The experimental
investigation focussed on evaluating the responses of AS4/3501-6 graphite-
epoxy beams featuring various stacking sequences, and containing various ER
fluids. The subsequent investigations focussed on evaluating the transient
behavior of ultra-advanced composite beams subjected to sudden changes in
the electrical field intensity as a first step towards evaluating the
controllability of this innovative class of structures.
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and Without Electric Field at Room Temperature

CAC -8



DISCUSSION OF EXPERIMENTAL RESULTS

Figure 6 presents polaroid photographs of the oscilloscope traces of
the transient elastodynamic responses of a cantilever beam specimen at room
temperature at two discrete, different, voltage stages. It is evident from
these results that the frequency of the response and also the damping ratio
of the signal are strongly dependent upon the voltage applied to the beam.
Thus as the electrical field intensity increases, the damping increases
monotonically and the fundamental natural frequency of the beam also
increases.

50.0-
w IMSL-B-88

' .- IMSL-A-88

40.0-

z

Ui

30.0

0
z

a

20.0

z

< 10.0 8

0.0* "" I ,

0.0 1.0 2.0 3.0

ELECTRIC FIELD(kV/mm)

Figure 7. Comparison of thp Relative Damping Ratio Increment
Between AS4/3501-6 Specimens Featuring Different
ER Fluids at Room Temperature

Figure 7 presents a comparison of the damping ratio increments
between different specimen classifications as a function of the applied
voltage. The relative increment in the damping ratio of each ultra-advanced

composite beam specimen in the presence of an electric field is defined with
respect to the corresponding magnitude in the absence of an electric field,
which is employed as the datumn. Thus, in the context of Figure 7 and the
damping ratio increment, when the fluid domain in the beam specimen is not
subjected to an external voltage, the damping ratio increment is zero,
however, the beam naturally has a non-zero damping ratio due to the energy-
dissipation characteristics of the structural and fluid components of the
ultra-advanced composite material. The results presented in Figure 7 were
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obtained from specime.- with the same ctructural properties and geometries
but one specimen fertured ER fluid type IMSL-B-88 and the other featured ER
fluid type IMSI_-A 38. These results indicate that the type of ER fluid has
a major impact on the change in damping and hence controllability of the
elastodynamic response of the material.

Figure 8 presents the experimental results for the damping ratio
inciement as a function of the applied electrical field for two classes of
o am specimens. The specimens contained the same ER fluid and they were
fabricated with identical geometries, but the layups of the graphite pre-
preg AS4/3501-6 were different. A consequence of these different layups is
that the stiffness and damping properties of the specimens are quite
different, thus the properties of the ER fluid and the properties of the
encasing structional material are crucial parameters in the synthesis of
this class of dynamically-tunable smart materials.
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Figure 8. Comparison of the Relative Damping Ratio Increment Between
Specimens Featuring Two Different Lay-ups of AS4/3501
at Room Temperature

Figure 9 presents the polaroid photographs of the oscilloscope
traces of the controlled transient elastodynamic response of a cantilever
beam specimen at room temperature. The transient response of the specimen
for zero applied voltage is presented in Figure 9a). Figure 9b) presents
the transient response of the identical specimen subjected to the same
initial conditions, namely the same initial tip transverse deflection and an
electrical field intensity of 0 kV/mm. This field intensity was maintained
for the first 0.37 seconds of the response profile, prior to instantaneously
generating a field intensity of 2.5 kV/mm. These two piecewise-constant
discrete voltage inputs represent the active-control inputs based on a bang-
bang control strategy. A cursory review of the response profiles presented
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Figure 9. Controlled Transient Response of a Cantilever Beam Specimen
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in Figures 9a) and 9b) clearly indicates that the amplitude of the vibra-
tional response in the two profiles is identical for the first 0.37 seconds.
Subsequently, the amplitude of vibration presented in Figure 9b) is
substantially attenuated upon imposing the 2.5 kV/mm electrical field
strength.

It is clearly evident from these proof-of-concept results that the
elastodynamic response characteristics of structures fabricated from ultra-
advanced composite materials can be actively controlled in real-time in
order to obtain desired performance characteristics of the structure by
altering the applied voltage. Naturally, advanced control algorithms and
sensors must be employed to realistically implement this philosophy in
practice.

CONCLUDING REMARKS

A new generation of innovative, ultra-advanced, intelligent
composite materials featuring ER fluids has been proposed herein. A proof-
of-concept investigation focussed on evaluating the elastodynamic response
characteristics of beam-like specimens has been undertaken. The results of
these investigations clearly demonstrate for the first time the feasibility
of actively controlling in real-time the continuum vibrational characteris-
tics of structures fabricated upon ultra-advanced composite materials by
altering the voltage applied to the structure. It is anticipated that the
successful integration of the fundamental phenomoneological work presented
herein with modern control strategies and intelligent sensor technologies
will significantly accelerate the evolution of a new generation of
innovative ultra-advanced intelligent composite materials for the defense
and aerospace industries.
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Abstract

Presented is a method for state space model improvement using measured free decay time histories
of a dynamic system. This methodology is called the matrix exponential method (MEM). MEM
assumes that some state space model exist for a dynamic system, and that the model's system
matrix, A(P), is a function of various parameters, Pi's. MEM uses a first order Taylor series
expansion of the measurement time histories to determine what changes in the system parameters,
APi's, are necessary such that the dynamic response of our model more closely resembles the
measured response of the physical system. This paper will present the results of this parameter
correction method to a control structure interaction problem, namely, a slewing control experiment.
MEM will be used to correct some unknown, and often unpredictable, parameters, e.g., the
angular viscous damping. Comparisons of the model's time histories and frequencies will be
compared with measurements from the experiment.
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I. Introduction
Arriving at a mathematical model that accurately reflects events that occur in physical systems can
often be extremely difficult. In many instances certain parameters of a dynamic system can be
measured and/or calculated precisely. For example, knowing the mass distribution and geometry
of a rigid body allows dynamicists to obtain accurate values for the inertia of such bodies.
Similarly, in elastic structures, the measurement of force to displacement yields precise
information about stiffness, in the sense that the predicted inertia and stiffness for a system can be
calculated and/or measured. Damping can be considered to be a dynamic parameter in that it can
only be measured using the response of the system to some known force, or a free-decay from
some initial condition.

Typically, models are developed based on our knowledge of a system's parameters. However,
simulation results quite often do not correspond to the dynamic behavior of the physical syst, .m.
In the finite element method, users often adjust models by using "equivalent lengths" or
"equivalent mass" elements so that the eigenvalues of the FEM model and those of the physical
system appear similar. The goal of MEM is simply to determine what changes in the system
parameters, APi's, are necessary such that the model's response simulation results more closely
resemble the measured response of the physical system.

The matrix exponential method(MEM) was developed by Tsen and Mook in Ref. 1 and 2. Another
time domain identification scheme 3 identifies entire system matrices, i.e., the mass, stiffness, and
damping. However, this method assumes that all acceleration, velocity and displacement time
histories are measurable. The MEM approach is different than other approaches because it simply
determines which parameters in an existing model should be adjusted in order to improve a
model's prediction of the physical system's dynamic response, rather than assuming the need to
develop a new or realized model.

II. Matrix Exponential Method
Let us consider the following linear, time-invariant state space model.

x = Ax (la)
y = Cx (1b)

where
x - 2nx 1 state vector
A - 2nx2n system matrix
B - 2nxm input matrix
C - px2n output matrix

where, x(O) is an 2nxl vector of initial states. Let the system matrix A, be a function of system
parameters, PL s, as follows,

A = A(P) (2)
where, pT = [P 1, P 2 ... ].
Now let us assume the measurements, Ymeas, are equal to the value of those predicted by the
model Y, if we could adjust the parameters of the model by AP , e.g.,

Ymeas = Y(P + AP) (3)
Taking a Taylor series expansion of Eq. (3) we can say that,

Ymeas = Y(P) + ay AP + ... higher order terms (4)aP
Note that Y(P) is the output vector of the model. We now drop the higher order terms and solve
for AP,
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AP =.aJ (Ymeas - Y) (5)

The model's output sensitivity with respect to a parameter, DYIaPi, is determined as follows.
Take the partial derivative of Eq.(Ib) with respect to the parameter, Pi,

= - x + C- (6)
aPi api aPi
ac

Since - = 0,

aY C ax (7)
a)Pi aPi

To find --, we take the derivative of Eq. (la) with respect to the parameter in question, Pi ,i.e.,aPi,

- = - x+A D (8)
aPi aPi ai

We now define a new state space, ZT = [xT: axaPiT], so that, and solve Eqs. (8) and (la)
simultaneously, i.e.,

2 = A'Z (9)
where [ A01

A'= dA "
A

and

Z(O))

Equation (9) is solved by finding a matrix exponential of the matrix A'. Here it has been assumed
that the initial conditions of the physical system, hence, those of the model x(0), do not depend
upon the parameter, Pi, i.e.,

x(0)=0  (10)

The state vector Z(t) contains the response of our model, x(t), and the sensitivity of the state vector
ax ( <t).

a,',
Computational Implementation
A more general form of Eq. (5) can be written as follows. If the number of parameters that are
being adjusted is], and k measurements of the time histories are measured, Eq. (6) becomes,
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aY(to) aY(t0 )
FYmeas(40) - YNt) p ... ai[ Ymeas(t) - Y( • AP,1:1(11)

APi
Ymeas(tkl) - Y(tk-1) Y(o "t -- tk

or, in matrix form,

E=SAP (12)
where E - k-m x 1, vector of model error

S - km x i, matrix of output sensitivities
AP - j x 1, vector of parameter adjustments

Equation (12) is an over-determined problem which can be solved using the least squares
approach 4 , i.e.,

AlP = (STS)- STE (13)
In large order problems where the inverse of STS may not exist, and it may be necessary to apply a
rank decomposition technique, such as, singular value decomposition.

Algorithm
The only rational reason for dropping the higher order terms from Eq. (4) was convenience.
Therefore, there is no reason to believe a first order expansion of the measurements is accurate.
Hence, in order to find the total change in parameters, APi's we must apply Eq. (5) in a recursive
manner. First an initial value is chosen for all Pi's (this may be P = 0), and then following
procedure is applied.

(1) Find the model's output time histories Y(to)...Y(tk. 1) and subtract this form the
measurements, [Ypmas(ti1) - Y( 1 1 )] where I1 =...,k.

(2) Find the output sensitivities,- i = I,...j. (Recall that sensitivities andapi

predicted outputs are solved simultaneously.)
(3) Find AP
(4) Add AP to P, update the model and repeat (1)-(3) until IAPil << Wil fori= 1,.....

Note that only one set of measurements are needed.

III. Modeling
The following formulation is similar to the modeling approach formulation found in Ref.6. The
apparatus used in the slewing control experiment can be described as a flexible beam clamped to a
rigid hub(see figure 1), where, Y - X is in the horizontal plane, 'r is a torque applied to the hub,
and y(x,t) is the displacement of the beam with respect to x. The hub parameters are the radius,
a,and the hub inertia, 1H. The beam has the following properties, El, the flexural rigidity, p, the
mass density per unit length, and L , the beam length.

The Lagrangian, Lg, is the total kinetic energy of the system minus the total potential, so that,
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L
SL a2y,2

Lg= f (p(a+x) 6 + y) 2dx+ 111 02 -L El(2 d (14)

20 ax2
We assume a separation of variables solution for the motion of the beam, i.e.,

n

y(x,t) = Y qi( t ) 4i(x) (15)
i=1

where, n is the finite number of of the beam modes included in the model. The functions, Oi(x),
are the beam's eigenfunctions, and the equations of motion are derived from Hamilton's principle.

to
f[ Lg +Wnc ]dt = 0 (16)

If
where, Wnc = CO, is the work performed by non-conservative forces, i.e., the applied torque. The
eigenfunctions of the beam are orthogonal and normalized with respect to mass density. 5 Using a
three mode expansion for the motion of the beam, we arrive at the open loop equations of motion.

4 + Kq = Bt (17)
where, qT = [0, ql, q2 , q3], BT=[1, 0, 0, 01,

-L

OJ p(a+x)2dx+lH Il 12 13
I1 1 0 0

12 0 1 0
13 0 0 1 _

0 0 0 0-

0 oW 1 0 00 2

0 0 ) 0
, 2

0 0 0 3

and
L

1i = Ofp(a+x)4i(x)dx.

The terms qj are the modal coordinates of the beam.

Actuator Dynamics
The torque applied to the hub is generated by an armature controlled electric motor whose
dynamics are characterized by the circuit in figure 2. By applying Kirchoff's Ia.. :.- Ls cirLul,
and summing the moments about the motor's armature, the following expression for the torque is
derived as a function of armature voltage.

et ea-IM- (Cv + K ) (18)Ra Ra
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Since the motor inductance is small in our experiment, its contribution to the dynamics is neglected
in Eq. (18).

Closed Loop Response

A simple closed loop response is given by setting the armature voltage proportional to the position,

ea = Kg(Oref- 0) (19)
where, Kp is t e position feedback gain.

Combining Eqs. (18) and (19) with the beam dynamics of Eq. (17), we arrive at Eq. (20) which
describes the response of the closed loop system with the simple position control law.

M "q+D q+Kq=BOref (20)
where -' IM l1x 3

M=f+ 03xl 03x3 (21)

[(CV+KbKt/Ra) 010

F/ DIAG(41o1,2,3)]!
KpKgIRa F1

and
BT=[ 1.0, KpKtIRa r 1, ..... KpKt1R a Fn]

Note that the modal damping terms, 2 Cico i , were added to the damping matrix, D. The assumed
modes of vibration for the beam were found using Euler-Bernoulli beam analysis where the
boundary conditions were assumed to be spring-hinged at the slewing axis and free at the other
end.9 The value of the spring constant is determined by the servo-stiffness term, KpKt/Ra. The
modal participation factors were added to the stiffness and control matrices, K and B. The modal
participation factors account for the direct transmission of the control's restoring torque to the
modal deflections of the flexible structure.

IV. Set Up and Experimental Response
The experimental apparatus, depicted in figure 1, consists of a steel beam clamped to a rotating
axis. The hub is the rigid mechanical interface between the beam and the slewing axis. The beam is
3" wide and 1/32" thick. An Electrocraft permanent magnet DC electric motor (Model #586) is
attached concentrically to the axis of rotation. Angular sensing is performed using a potentiometer,
and a tachometer provides an angular velocity sensor. A strain gauge, located at the root of the
beam, is used for additional sensing. The physical characteristics of the motor/beam system are as
follows.

EIlp= .857 Nm3/kg Kb =5.539x 10-2 volts/rad/sec
Im = 6.02x 10-2 kg m2  Kt =5.508x10 -2 Nm/A
L = 1.19 m La =2.3x1 O

-3 H
a =.06m Ra =2.0 ohms
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IH = 3.49x10-3 kgm 2

The position control was implemented using an EAI 2000 analog computer, where the feedback
constant was set to 8 volts/rad. The viscous damping parameter, Cv, is unknown, hence, is one of
the parameters in the identification procedure.

The beam was set to an initial position in the slewing plane. The feedback circuit was then closed
and the beam returned to the zero voltage reference point of the potentiometer. The potentiometer,
tachometer, and strain gauge signals were recorded during the response (figure 3). The responses
were sampled at a frequency of 128 Hz, although only a 12.8 Hz sampling frequency was used in
the identification procedure to reduce the number of data points, hence, the computational effort.
The flatness in the peaks of the position response were due to the discrete number of windings in
the potentiometer.

V. Results of the Identification Procedure
The position response of the system was dominated by the rigid body motion of the structure,O.
The effects of the structural modes on the measured position response of the beam were secondary.
The only contribution to the position measurement came from the 1st flexible mode of the
structure. The measured position response was used to apply MEM to the model.

The initial unknown parameters of the model were arbitrarily set to C, = .0528 and the modal
damping term was set 2 1o1 = 0.5. The higher mode damping terms were set to 2 20>2 = 2 3co3 =
1. Since the modes of the beam did not participate strongly in the position response, the modal
damping was not included in the identification procedure. The focus here was to find the correct
viscous damping constant which would yield a more accurate model. Figures 4a and 4b contain
plots of the measurements, the initial model and the improved model for the single parameter
tuning of Cv, and the multiple parameter tuning of C, and Kp, respectively. Figures 5a and 5b
show the convergence of the algorithm. The error is defined as,

"Yerror"l = (Ymeas - Ymodel)T (Ymeas - Ymodel) (22)

where, Yerror Ymeas and Ymodel are vectors in time. Table 1 contains the changes in parameters
for our model, and table 2 contains the natural frequencies and damping ratios for the
measurements and the model responses. Measurement frequencies and damping ratios were
determined by a version of ERA7 found in Ref. 8.

Run 1: Single Parameter Adjustment
The simple case was considered where only one parameter, C. , is adjusted. Figure 5a shows the
model error, IlYerorII, was reduced from 40.21 to 8.78 and shows the algorithm converged
smoothly in a few iterations. In this case the response of the final model simply contains too much
damping (see Fig. 4a), i.e., the 1st modal damping of the closed loop response is 1 = 24.4%.

Run 2: Multiple Parameter Adjustment
Due to current limits in the amplifier circuit, simulations indicated that some amplifier saturation
occurred. To correct for this, the model's position feedback constant was also adjusted. The final
model of Run 1 was used as the initial model for this run. The model error was further reduced
from 8.78 to 3.65. The first natural frequency error was reduced from 6.7% in our initial model to
3.1% in our final model. However, the model error, IIYerror, did not show a smooth
convergence.
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VI. l)iscussion and Conclusions
.-\t ii ortant point of this analysis is that the damping term C, and the final positions feedback,
K.,,. ad!iutcd our linear model to account for what is often nonlinear effects in the actual system.

0r ins.tance, anal\,is in the effects of air damping on slewing experiments show that air drag
effect,v , nonlinear functions. 1( Our resulting improved model is a linear approximation to the
lier ,:nci nonlineair parameters of the physical system, while not perfect, such linear models are of
mach intcrcst for design purposes for the control engineer.

l~r~luuk'as is another important topic in modeling improvement. Although, the least squares
solutiorn of Lq.) 12) is a unique solution4 , the recursive procedure does not guarantee the final
Naui,, a 1o,,Hal minimum of the modeling error. The algorithm proposed is similar to the
classic Nc ton-Raphson method, and as in the Newton-Raphson method, very ignorant initial
eac:,s cn l:etd to rnumerical instabilities. Moreover, numerical minimums may not be physically
>_',,atc i.e., in Run I the numerical minimum simply contained too much damping. This is
bceause tic d(Icurce to which the modeling error is minimized depends on a judicious choice of
lpra2Cte rs I h icih arc tuned.

MN-EM fin , tunes a current model such that there is better agreement between the predicted response
of the rcspon~c of the physical system. The algorithm requires only one set of measurements, and
P, a time dm ain technique which requires only modest computational effort. The MEM method
has ieen applied to a slewing control experiment. This method reduced the disagreement between
the Im ,ilt n,! the .measurements.
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Table I Parameter Values

Initial Final AP-'s
Run 1:

Cv .0528 .2048 .1520
"1yerrord 40.2109 8.7819

Run 2:
Cv  .2048 .1299 -.0741
K 8.0 6.5753 -1.4247
IIf 1 1rrrl 8.7819 3.6512

Table 2 Modal Parameters Closed Loop Response
Mode 1 Mode 2

Measurements. .1421 9.92% 1.5648 3.10%
Run 1:

Initial .1520 6.32% 1.72% 2.31%
Final .1519 24.48% 1.724% 2.46%

Run 2:
Final .1377 17.73% 1.7249 2.42%

y

a x
figure 1. Flexible Beam Attached to Rigid a Hub.
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figure 2. Motor Armature Circuit.
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An Alternative To FFT For Precise Damping Estimates
Sudhakar M. Pandit

Mechanical Engineering-Engineering Mechanics Department
Michigan Technological University
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ABSTRACT

The prevalent methods of estimating structural damping are based on the
FFT of the test data. The paper discusses the distortion introduced by FFT to
show that any post-processing of the FFT will provide a poor estimate of
damping. typically overestimating it; this will be the case even with curve
fitting in frequency domain, or in time domain after applying inverse FFT.
The paper then presents an alternative time domain methodology called Data
Dependent Systems (DDS) for precise damping estimation. The DDS methodology
uses difference equation models directly fitted to the time domain data for
estimating damping ratios, natural frequencies. and mode shapes. After
explaining the rationale of why the DDS damping estimates are more precise
complared to those from FFT. the paper gives examples to highlight the
precision. Tiese examples demonstrate that the DDS is capable of precise
system identification even in the presence of high damping, high modal density
and considerable noise. In particular, it is shown that the frequency and the
damping ratio are correctly identified even when the damping ratio is so high
that the corresponding peak disappears from the authospectrum and hence it is
impossible to identify it from FFT.
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INTRODUCTION

Determination of structural damping is a difficult problem that can be
solved only using test data in most cases. Although finite element modeling
can be used to determine natural frequencies, modal testing is usually needed
to provide the damping estimates necessary in predicting the realistic
response from the finite element codes.

Much of the current modal testing hardware and modal analysis software is
based on Fast Fourier Transform (FFT) of the test data to take advantage of
the computational efficiency of FFT. However, the FFT of test data introduces
distortions due to problems such as leakage and resolution, and also errors
such as bias and variance (random error). Smoothing of raw FFT by averaging
or windowing is necessary to reduce the effect of such errors. Such
distortion and smoothing both affect the damping estimates. Therefore.
damping estimates obtained by post-processing FFT of test data are usually
unreliable; typically FFT overestimates damping.

This paper briefly outlines an alternative time domain methodology called
Data Dependent Systems (DDS) for precise damping estimatiqpn and reviews some
of the results illustrating the precision from references , which may be
referred for more details. Difficulties in damping estimation from FFT of
test data are discussed at the beginning. The rationale of more precise
estimation by DDS is then explained. Examples from the literature
demonstrating the precision of damping estimation by DDS are given at the end.

Why Does FFT Overestimate Damping?

Usually FFT and its post-processing tends to flatten a sharp peak and thus
leads to overestimation of damping. The primary causes of such flattening of
the (Peaks are discussed below briefly, more details may be found in texts such
as

1. Frequency Resolution, Leakage and Aliasing: When the record length say T

of the data is not large enough, since the FFT is calculated at multiples of
Ifrequency ,, the frequency resolution may not be adequate to capture sharp

peaks. Even when the record length is increased, the leakage caused by the
absence ot integral number of cycles in the record length spreads over
neighboring frequencies and flattens the peaks as illustrated in Figure 1.
This flattening of peaks persists even when damping is high. as illustrated in
Figure 2. Post-processing of FFT by averaging and windowing to reduce leakage
and use of antialiasing filtering also adds damping. Figure 1 illustrates the
peak flattening caused by truncation-another windowing effect.

2. Bias and Variance (Random Errors): The finite amount of data used in FFT

may be considered as the original "infinite" data truncated by a rectangular
"box-car" window, which introduces bias in the estimate of the peak. Since
this bias is usually negative, it has the effect of increasing the damping.
Moreover, when the test data is noisy, the FFT introduces variance (random
error) and is consequently erratic and choppy. containing many spurious peaks
in addition to the genuine ones. It is therefore usually necessary to smooth

CBB-2



the FFT by averaging, either simple or weighted, which applies another window
that also increases damping. To make matters worse, one cannot reduce bias
and variance simultaneously. a window that reduces bias inevitably increases
variance and vice versa.

PRECISE DAMPING BY DDS

The DDS methodology [1-7] estimates damping by fitting difference equation
models of successively higher order until the reduction in the residual sum of
squares is statistically insignificant or the variance of the residuals drops
below a known noise floor. 'he eigenvalues or characteristic roots of these
models then yield the estimates of natural frequencies and damping ratios. No
prior assumptions or conjectures about the model are needed, thel can be
obtained directly from the data by available computer routines . The
difference equation is in the form of an Autoregressive Moving Average model,
ARMA (n,n-l):

X =€ X + X +..+a- a ..- a
Xt 1Xt-1 + o2 Xt-2 + ' + t 01a t-1 "' 0n- a t-n+ J

where X is a single scalar or multiple vector series of data, ' and 0, are

scalar or matrix parameters and a represents scalar or vector white noise.

These a's model and remove the noise in the data to provide modal parameter

estimates from one sample without any need for averaging.

The natural frequency and damping ratio corresponding to each mode are
obtained from the characteristic roots or eigenvalues Ai defined in the scalar

case by

(1 - 10B - 0B2 .... -0nB-) = (I-A IB)(I-A 2B) ... (I-A B).

If A. andA. are a complex conjugate pair of roots, then the corresponding
damping and natural frequency terms are obtained by

2C'o n = In (IiA i )1A

w = tan-' (nA3 )/,A
tan [R-e-X-I)/

where A is the sampling interval and Im and Re represent imaginary and real

parts respectively. The mathematical background, procedure and expressions
for obtaining other parameters such as mode shapes and mass, 7 damping and
stiffness matrices from the response data may be found in references*.

The number of parameters in the model fitted by DDS is limited by the
actual effective degrees of freedom reflected in the response data.
Therefore, as the number of data points is increased, the additional
information improves the accuracy of the limited number of parameters such as
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mode shapes and damping ratios. This is in contrast to the FFT, where such
additional information from the increased number of data points is spread over
the increased number of frequencies. and the accuracy of estimates at any
given frequency does not improve; subsequent processing by averaging,
smoothing or windowing adds its own distortion as explained earlier. This is
the basic reasons why the DDS methodology provides far more precise damping
estimates than the FFT.

ILLUSTRATIVE EXAMPLES

The relative precision of DDS compared to FFT is already clear graphically
from Figures 1-2. These figures show that the DDS estimates of damping almost
exactly match with the actual, whereas the FFT always overestimates it. This
is true at low damping, Figure 1, as well as high damping, Figure 2. We will
now give examples with numerical estimates to demonstrate the precision.

Table 1 gives results from reference 3 on a simulated 3-degrees-of-freedom
system using 500 data points and scalar models. Note that the results are as
precise with noise as without it; the only difference is that the model order
needs to be higher for noisy data to model the noise modes. Results in Table
2 from the same reference then show that closely spaced mode shapes can also
be resolved if high enough model order is used. Similar results on a
2-degree-of-freedom system in Table 3, taken from reference , show that this
precision extends to mass, damping and stiffness matrices [m], [C] and [K].

Table 1: Comparison of Estimates With and Without 17% Noise

Theoretical Noise-Free Noisy
ARMA(12,11) ARMA(26,25)

Natural 0.58569 0.58567 0.58503
Frequency 1.2319 1.2323 1.2312
(Rad/Sec) 1.6003 1.6002 1.5999

Damping 0.03122 0.03122 0.03118
Ratio 0.16404 0.16412 0.16412

0.10206 0.10200 0.10202

Mode 2.4829 2.4788 2.4912
Shapes 3.7044 3.7023 3.6976

(Relative 1.0420 1.0493 1.0493
Amplitudes) 2.0963 2.0959 2.0651

1.0000 0.9988 1.0009
0.7122 0.7149 0.7111
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Table 2: Comparison With Closely Spaced Modes

Theoretical ARMA(28,27)

Natural 0.96697 0.96698
Frequency 1.8881 1.88888
(Rad/Sec) 2.0000 2.0009

Damping 0.15512 0.15503
Ratio 0.07944 0.07965

0.07500 0.07471

Mode 1.0669 1.0667
Shapes 1.0000 1.0009

(Relative -1.4366 -1.4359
Amplitudes) 1.0000 1.0071

0.0 0
-1.0 -1.0010

Table 3: Comparison of Parameter Matrices

[nil [C] [K]

Theoretical: [- 0.5] [4 -2]

DD Etiatd:- 0.[1 1.000 -0.5002] r4.000 -2.001]10.001 -0.5002 1.500J [-2.001 6.001]

Tables 4 and 5 present results from reference7 obtained using vector
models for a 2-degree-of-freedom system with light and heavy damping
respectively. Note that since the vector models use multiple series of data
simultaneously. their estimates are even more precise than the scalar models
with the same number of data points per series. The precision of damping
ratio estimates is quite good in both low and high damping environment.
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Table 4: Comparison of DDS and Theoretical Mode Shapes
and Natural Frequencies for ACSL-Simulated 2
DOF System With Light Damping

PARAMETER THEORETICAL DDS

IST MODE SHAPE Mag. Phase(deg) Mag. Phase(deg.)
1.0 0.0 1.0 0.0
3.14603 -2.57608 3.14573 -2.5750

2ND MODE SHAPE 1.0 0.0 1.0 0.0
0.159754 175.714 0.159753 175.7140

1ST NATURAL 68.3069 68.3067
FREQUENCY (Hz)

2ND NATURAL
FREQUENCY (Hz) 114.298 114.298

1ST DAMPING RATIO 0.0216419 0.0216420

2ND DAMPING RATIO 0.0601704 0.0601704

Table 5: Comparison of DDS and Theoretical Mode Shapes
and Natural Frequencies for ACSL-Simulated 2
DOF System With Heavy Damping

PARAMETER THEORETICAL DDS

IST MODE SHAPE Mag. Phase(deg) Mag. Phase(deg.)
1.0 0.0 1.0 0.0
2.50746 14.8578 2.50745 14.8570

2ND MODE SHAPE 1.0 0.0 1.0 0.0
0.245211 163.0810 0.245211 163.0807

IST NATURAL 68.7122 68.7122
FREQUENCY (Hz)

2ND NATURAL
FREQUENCY (Hz) 113.624 113.624

1ST DAMPING RATIO 0.212392 0.212392

2ND DAMPING RATIO 0.606938 0.606936
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Some results of DDS modeling of tool vibrations from reference are
reproduced in Table 6. The second mode of tool vibration that is sensitive to
tool wear is small compared to other modes and hence difficult to use for tool
wear using FFT. Its damping increases with tool wear and the peak
corresponding to it altogether disappears from the FFT plot. However, as
Table 6 indicates, the DDS model continues to track it even at nearly 30%
damping.

Table 6: Tool Vibration Modes With Increasing Tool Wear

First Mode Second Mode

Nat. Nat.
Wear Freq. Damp. Freq. Damp.
(mm) (Hz) Ratio (Hz) Ratio

0.000 4340 0.007 8616 0.028

0.175 4320 0.007 8596 0.030

0.225 4276 0.007 8578 0.036

0.288 4328 0.006 8700 0.051

0.338 4354 0.009 8996 0.163

0.400 4526 0.007 9308 0.279

Finally, a comparison of DDS and FFT modal analysis of disc-brake rotor
vibrations is partially reproduced from reference in Figure 3.
Overestimation of damping by FFT is evident for every model. This study
further shows the capability of DDS in resolving repeated roots,
characteristic of symmetric structures like rotors, by closely spaced modes
that were illustrated by simulation in Table 2.
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Figure 3: Comparison of DDS and FFT Modal
Analysis of Disc Brake Rotor

DDS MODAL FFT MODAL

MODE 1

Fd = 769 Hz Fd  a 750 Hz

C 0.0047528 C a 0.02416

MODE 2'

Fd a 849 Hz +F d  802 Hz

a 0.007445 C C 0.02499

MODE 3

+ Fd a 1175 Bz - + d a 1177 Hz

+ a 0.0039828 + a 0.015447

MODE 4

Fd a 1272 Hz F d- 1275 Hz

+ - 0.0087091 C a 0.01558
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ABSTRACT

This paper deals with the identification of coupled modes; the viscous damping
ratio can be estimated with good precision by the complex signals generated via the Hilbert
transform.

The proposed technique consists in windowing the time domain data with an
increasing exponential window in order to decouple the modes by decreasing their half
power bandwidths.

Natural frequencies and damping ratios have been estimated in the time domain
because of the possible lack of frequency resolution or truncation.

In noise free data the method works quite well, whereas some troubles arise when
noisy data is considered; for low noise levels, acceptable estimations can be obtained using
an exponential window truncated before the time when the noise level becomes comparable
or greater than the signal.

The limits and validity of the proposed approach have been explored considering
different amplitudes and different damping ratios of two coupled modes.
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1. INTRODUCTION

The identification and resolution of coupled modes is an important topic in the
general field of modal analysis and it is a basic point in the aerospace structural design.

The viscous damping ratio estimation, for one or several modes, could be carried
out with good precision from the complex signals generated by the Hilbert transform. The
Hilbert transform technique permits, starting from the impulse response of a system, to get a
complex signal, the real part of which is the original function and the imaginary one is its
Hilbert transform.

Filtering one mode at a time, the modulus of the complex signal represents the
envelope that exponentially decays, while its argument is the instantaneous phase. The slope
of the envelope, in the semi-log plane, is the decay rate, whereas the damped angular
frequency is derived from the slope of the instantaneous phase.
It is straightforward to get the natural angular frequency and the viscous damping ratio from
the above mentioned estimated parameters.

The method, as said before, only works on a single degree of freedom system, and
therefore, when two modes (or more) are excited as considered in this paper, it is necessary
to filter the one of interest. This signal processing leads to a distorted envelope because of
both the filtering itself 1 and the tail of the rejected mode.

Sometimes, for very tightly coupled modes, it is quite impossible to filter the mode
of interest; actually two coupled modes may also appear as a single mode,

In these cases the data in the time domain can be multiplied by an increasing
exponential window; the decreasing of the bandwidth of the two coupled modes allows one
to filter each mode and then to evaluate with acceptable errors the natural angular frequency
and the viscous damping ratio. Nevertheless this technique, as pointed out by Dossing ,
yields unacceptable errors if the parameters estimation is carried out in the frequency domain
with the half power method. In fact the new signal could result highly truncated at the end of
the observation window and then the half power method leads to an overestimation of the
damping ratio 3,4 ; on the other hand, the half power bandwidth could become so narrow that
it results filled by an insufficient number of spectral lines. In addition the random noise,
always present in the experimental time data, is amplified by the exponential window, that,
for this reason, must be limited at a time when the impulse response level is still higher than
the noise 5.

The parameters evaluation, using the Hilbert transform technique, is carried out
from the instantaneous envelope and phase by linear least square regressions, which average
out the residual random noise.

2. THEORETICAL BASIS

The impulse response of a system, with N modes excited, can be written as

follows:

N
h(t)- I[ I r kIexp (-Yk t) sin(Co) k+ (Xk) ] U ( t ) (1

k-1

where I rk I is the residue magnitude of the k-th mode, oxk its phase, ak the decay rate and

codkthe damped angular frequency (u(t) states the causality of the function).
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Hereafter only two real modes will be considered, then h(t) reduces to:

h(t) = [Irll exp(-Ot)sin(dlt)+I r 21 exp(-0 2t) sin(O)d2t)]u(t) (2)

If the modes are close together, calling:

A(o = (Od2 - 0)) (3)

with (0 d2>W)dl, the damped angular frequencies are:

Aw

[dl =d 2

(4)

A cod

d2 = + 2

where oid is their average value:

d (1 + (%2 /2  (5)

The impulse response (2) can be also expressed with the product:

h(t) = {M(t) sin[0dt +4t)u(t) (6)

wherein the modulation function is equal to:

2 2 12

M(t)= (r 11 exp (-2a(It) + Ir21 exp (-22 t) +2 irll r 21exp [-(a 1+a) tloos (ACadt)1

(7)

and the phase is:

y~t) = ar{t r 2 1 e x p (- Y2t) - I r l I e x p ( - (Yl t ) 
t,(±'d t)

SIr2 1 exp (-02t) 4I r 1 I exp (-0 1t) (8)

Let us consider the Bedrosian theorem 6,7 valid, at least in limit sense 8, thus the
Hilbert transform of the impulse response is given by the following relationships:

V

h(t)=-{ 1rl exp (qt) cOS (O)dlt) + I r 2 I exp (-0 2t) cos ((0 2 t) } (9)

or

The complex signal z(t) formed by the original impulse response and its Hilbert transform:

z(t) = h(t) + jh(t) (11)
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permits to obtain the average value of the damped angular frequency from the slope of the
total phase:

Varctg[.h (t) ] = ;dt (12
1t) d t 2

in fact, the values assumed by 9p(t) are in general much smaller than those ones of the linear
term; while from the envelope:

2 2 1/2
Iz(t)I = {h (t) + h (t)} (13)

it is possible to get a global decay rate and after dividing by 0 d' a damping ratio Cc from
which the window parameter can be derived:

a =w d (14)

When the increasing exponential window:

w(t) = [exp(Owt) I u(t) (15)

is multiplied by the impulse response:

hw (t) = h(t) w(t) (16)

the half power bandwidths of the two coupled modes reduce to [ 2(01 - aw)] and
[ 2(02 - a w )] respectively. After this reduction it is possible to evaluate the damping ratios
either by the half power method or by the Hilbert transform approach (Figure 1).

CC

15.63 17.19 18.75 20.31 21.88 23.44 25.00 15.63 17.19 18.75 20.31 21.88 23.44 25.00

f (Hz) f (Hz)

(a) (b)
Fig.1 - Magnitudes of Frequency Response Functions derived from unwindowed (a) and windowed time

histories (b).
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Some troubles can arise with the first method, in fact the bandwidth of the mode of
interest could be so narrow that an insufficient number of spectral lines is contained within it,
besides for small decay rates the windowed impulse response can be truncated at the end of
the observation time and that leads to overestimated damping ratios 3,4

On the contrary, evaluations, carried out in the time domain through the complex
signals obtained by the Hilbert transform, seem not to feel the effects of either the truncation4

or the poor frequency resolution 5.
Actually this method must be applied to a mode at a time and thus the mode of

interest has to be filtered in order to obtain its decay rate from the slope of the envelope (in
the semi-log plane) and its damped angular frequency from the slope of the total phase ,8.

The scheme of the technique used in the numerical tests and based on the Hilbert
transform is presented in Figure 2.

Sume noise is always present in an impulse response derived from experimental
tests, therefore when the exponential window is applied,whereas h,,(t) decreases, the
additive noise, supposed as incorrelated with the impulse response and with zero mean
value,results amplified 2:

h (t) = h (t) + n(t) w(t) (17)w w

For this reason the time duration of the increasing exponential window must be
limited at the time to, when the level of the impulse response is higher than the noise 5:

n n

h (t;to) = h (t) rect [ (t-to/2),'to] (18)w w

Attention must be paid to the length of the observation time, in fact if to is too
short the main lobe of the Dirichlet kernel becomes so wide that the coalescence of Lhe two
peaks occurs in the frequency domain 9 and neither filtering nor parameters evaluation can be
carried out.

The possibility to separate two coupled modes was investigated by Pendered 10,
who calculated the critical value of the dimensionless quantity:

E=K or E=K

2C, 2 2 (19)
where:

(On 1

and coe > (on,. For r < c Cr it is not possible to separate the modes and only one natural
frequency can be found. If equal damping ratios are considered, the common critical value
can be achieved from the following relationship:

Aw Aon n
Ccr Awn =r c(0n (21)

where Aw n is the difference between the two natural frequencies, while @n is their mean

value (on 2 appears because the mode with the widest half power bandwidth has been
considered).
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As shown by Pendered, t depends on the method used to analyse the frequency
response function, in particular the maximum frequency spacing technique, introduced by
Kennedy and Pancu 11, is the most sensible, i.e. it has the lowest r, and then it permits to
single out the presence of two modes when the other methods fail.

3. NUMERICAL TESTS AND COMPARISONS

Numerical simulations have been carried out using the Hilbert approach, that
seems to give more reliable results 4,8

As it is necessary to filter the spectrum of the impulse response, the discrete
Fourier transform has been used in order to get the discrete Hilbert transform; for this
purpose a null buffer, the length of which was equal to the data block, has been added at the
end of the time samples so that the circularity of convolution is avoided.

In Table 1 estimations derived from two coupled modes, with one of the residue
decreasing are shown.

Ir2 1= 10 ;f = 20 (Hz); f 2 = 20.5 (Hz); ri = 42 = 0.005

A A A A

f Mr I I If Ck1 f2 ~ f2 1 '2 4

10 20.001599 0.0109 0.004603 7.9317 20.497197 0.0137 0.004912 1.7617

7 19.993841 0.0308 0.004475 10.4954 20.494073 0.0289 0.005021 0.4220

5 19.998928 0.0054 0.004724 5.5280 20.503985 0.0194 0.004763 4.7323

3 19.977730 0.1113 0.004402 11.9654 20.500705 0.0034 0.004674 6.5168

1 20.019244 0.0962 0.005918 18.3534 20.492994 0.0342 0.004669 6.6256

Table 1 - Coupled modes with the same damping ratio ( C = 2= 0. 0 0 5 ) and one variable residue

The errors in the damping ratio evaluation increase as the ratio Iri / Ir2 i decreases,
in fact the two half power bandwidths remain constant and then the interaction between the
greater mode and the smaller one becomes more significant.
The same cases are presented in Table 2, where natural frequencies and damping ratios are
evaluated applying the method of the increasing exponential window; the errors are always
negligible and however much lesser than those ones obtained from a direct estimation.
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I r 2 1= 10; fl = 20 (Hz); f 2 = 20.5 (Hz); 41 = 42 = 0.005

A A A{ ~ f r I E l f 1 %1 M ' I I'm Er ( 2 f 2 1 %  r2 4 2 1 %

10 19.997749 0.0113 0.005023 0.4685 20.502273 0.0111 0.004990 0.1957

7 19.997583 0.0121 0.005025 0.5077 20.501585 0.0077 0.005017 0.3300

5 19.996528 0.0174 0.004981 0.3769 20.501337 0.0065 0.005003 0.0526

3 19.995084 0.0246 0.005118 2.3586 20.500651 0.0032 0.005014 0.2765

1 19.986315 0.0684 0.005003 0.0589 20.500233 0.0011 0.004993 0.1469

Table 2 - Coupled modes with variable amplitudes (increasing exponential window)

In Tables 3 and 4 similar numerical simulations are shown; due to the higher
damping ratios, worse evaluations than those in Table 1 have been obtained, nevertheless
also in this case the use of the proposed technique permits to obtain good results.

Ir2 I = 10 ; f1 = 20 (Hz); f2 = 20.5 (Hz); 4 42 = 0.01

A A A A
I r I I Ef 1 M r 1 4 I I (%) f2 f2 1 M r.2 E I%)

10 19.973086 0.1346 0.008041 19.5950 20.536197 0.1766 0.307115 28.8508.

7 20.016101 0.0805 0.007161 28.3903 20.455063 0.2192 0.308976 10.2372

5 20.041772 0.2089 0.009051 9.4935 20.477664 0.1090 0.)07062 29.3810

3 19.987569 0.0622 0.006886 31.1412 20.544468 0.2169 0.007089 29.1125

Table 3 - Coupled modes with one variable amplitude and higher damping ratios
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1r 2 1 = 10 ; f= 20 (Hz); f 2 = 20.5 (Hz); 41 = 2 = 0.01

A A A A

10 19.998091 0.0096 0.010012 0.1223 20.501640 0.0080 0.010009 0.0892

7 19.997747 0.0113 0.009988 0.1167 20.500241 0.0012 0.010017 0.1704

5 19.997330 0.0133 0.010055 0.5468 20.500887 0.0043 0.009986 0.1391

3 19.998745 0.0063 0.010091 0.9120 20.500416 0.0020 0.010003 0.0341

Table 4 - Increasing exponential windows applied to coupled modes with one variable amplitude

When modes with variable coupling due to different damping ratios are considered
(Table 5), better evaluations have been achieved, expecially for the mode with the smaller
damping ratio, because it gets predominant while its half power bandwidth narrows. For
these reasons the tail of the rejected mode, present in the bandpass filter used before the
processing that permits to get the envelope and phase, is smaller and smaller and therefore an
acceptable estimation of 2 and at the same time an improvement of , have been obtained for
the last case.

Ir,1 = Ir 2 1= 10 ;f1 = 20 (Hz); f 2 = 20.5 (Hz); 41 = 0.01

A A A Ar,2 1 I ll 1 I 1( f2 1 f21 (%) r2 1 2 1 M)

0.01 19.973075 0.1346 0.007971 20.2923 20.538392 0.1873 0.007670 23.2974

0.007 19.950628 0.2469 0.007976 20.2324 20.531764 0.1588 0.005662 19.1099

0.003 19.962001 0.1900 0.008379 16.2111 20.501625 0.0079 0.029280 2.3914

Table S - Coupled modes with variable coupling

The use of an exponential window leads to very good results (Table 6) if the

damping ratios of the two modes are similar, whereas if the damping ratios are different

enough as in the case , = 0.01 and 2 = 0.003 it is convenient to apply a first window, the
parameter of which is determined from the initial part of the envelope where the most
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damped mode is still present, in order to estimate , and a second window, derived from the

second part of the envelope, for C2. Actually for the second mode it could be possible to
evalutate the damping ratio directly, without any window, from the envelope of the two
coupled modes when the first of them is damped out.

Ir11 = Ir2 1= 10 ;f, = 20 (Hz); f2 = 20.5 (Hz); 4, = 0.01

A A A A

r 2 1 f- I I (9,) rI I I (t) f22 42 1

0.01 19.998411 0.0079 0.009992 0.0815 20.501839 0.0090 0.009954 0.4574

0.007 19.999648 0.0018 0.010003 0.0318 20.502988 0.0146 0.007006 0.0852

0.003 20.022103 0.1105 0.011088 10.8792 20.501602 0.0078 0.003004 0.1457

Table 6 - Estimation obtained with the proposed technique for the examples of Table 5

In Table 7 both the damping ratios are variable and the estimations have been only
carried out by the exponential window approach. The results are always acceptable also in
that case (& = 2=0.03) wherein it is not possible to discern the presence of two modes from
the frequency response function.

This damping ratio is critical, for the theoretical study carried out by Pendered,
for all the methods used in the frequency domain, except for the Kennedy-Pancu technique
that permits, only with an accurate study of the frequency spacing, to single out that two
close natural frequencies are present.

Actually the presence of two modes could be revealed from the envelopes 12 i
fact if only one mode is present in the frequency response function its envelope in the
semi-log plane is represented by a straight line, on the contrary for two modes the slope is
not constant due to the modulation, see relationship (7), Figure 3.

2-t (. ) "- (s)_

4- 4-

2- 2-

-2--2

"-4- e
-& -& -4-

Fi.- Eneoerfasnl-md a n ftotghl ope oe b

C C 1

W~ ta -6.

-I0- -to

-1 -121

.12 A2 .7 .;o .i2 .;5 7 40 .12 .25 .37 .0 i2 .75 .8 IEo
i (S) t (S)

(a) (b)

Fig. 3 -Envelopes of a single mode (a) and of two tightly coupled modes (b)
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1rl1= Ir 2 1= 10 ;f, = 20 (Hz); f 2 = 20.5 (Hz)

/%A A A
41-- 42 l 1f 1 1 v I (%) f 2  1, f2 I (%) 42 I 42 1 (%)

0.015 19.999378 0.0031 0.014857 0.9565 20.499313 0.0034 0.015079 0.5293

0.02 20.004927 0.0246 0.020207 1.0343 20.499645 0.0017 0.020230 1.1476

0.025 20.016885 0.0844 0.023802 4.7916 20.468004 0.1561 0.024475 2.0996

0.03 19.977632 0.1118 0.026540 11.5340 20.507453 0.0364 0.026589 11.3712

Table 7 - Two modes with different damping ratios

The window parameter, evaluated with the abovementioned technique, resulted
too small and therefore the modes remained rather coupled and errors greater than 10% , in
the last case, are due to the high influence of the tails within the filter. An interactive
procedure permits to get much better results, in fact using aw = 3.2 (rad/s) the following

A A

results have been obtained: C, = 0.03008 and C2 = 0.02966.

An evalutation from modes with low frequencies and damping ratios is presented
in Table 8. It is interesting to note that, even if the theoretical critical value of the damping
ratio is far from the ones considered, the half power bandwidths of the two modes equals
(2cy) =- 0.0025 (rad/s), whereas the angular frequency spacing is 8W = 0.0049 (rad/s) and
therefore it is impossible to use the half power method.

I r, I = I r21 = 10 ; f, = 0.2 (Hz); f2 = 0.201 (Hz); 41= r2 = 0.001

A A

41 IF r1 1 ( ) 42 I 42 1

raw data 0.000849 15.1337 0.000873 12.(,637

windowed data 0.000991 0.8626 0.001043 4.;762

Table 8 - Coupled modes with low frequencies and damping ratios

In order to simulate the noise present in an actual acquisition, a random
noise with zero mean value and standard deviation given in per cent of the residue
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magnitude has been added to the impulse response. If an increasing exponential window is
applied, the impulse responses still result exponentially damped, whereas the noise is
amplified and therefore if the modes are damped out before the end of the observation time
and all the data block is employed a useless frequency response function is obtained. For
this reason the time window must be limited at an instant when the noise level is lower than
the function. In Table 9 examples with different os of the added noise are presented, errors
less than 10% have been obtained also in the worst condition. Actually the considered noise
is relatively low, therefore in a high noise environment it is necessary to process the impulse
response in order to decrease the noise level.

Irl I = Ir2 1 = 10 ; 1 = 20 (Hz) ; f2 = 20.5 (Hz); 4i = 4 2 = 0.01

A A A A

N fl I (t)I (1 f2 f2IM2 4 1
(%of I r 1)

0.03 19.981120 0.0944 0.009719 2.8063 20.535809 0.1747 0.009445 5.5506

0.07 19.957235 0.2138 0.009537 4.6306 20.547187 0.2302 0.009425 5.7464

0.10 19.945065 0.2747 0.009410 5.8980 20.552418 0.2557 0.009341 6.5945

Table 9 - Estimations from noisy impulse responses

4. CONCLUDING REMARKS

A precise evaluation of natural frequencies and damping ratios of tightly coupled
modes can be obtained by windowing the impulse response with an increasing exponential
function.

The numerical tests have been carried out using the complex signals generated via
the Hilbert trasform because estimations in the frequency domain could have been affected
by poor frequency resolution and truncation effects.

The method suggested in this paper has leaded, in all the considered cases, to good
results and for many examples the errors in the damping ratio estimations have been reduced
to immaterial values.

Troubles can arise when very different damping ratios are considered, in fact in this
case it is convenient to use a first window, in order to obtain an acceptable damping ratio
estimation for the most damped mode and a second one for the other mode.

Also in presence of an additive random noise the method gave acceptable results;
due to the amplification of the noise by the increasing exponential window, it is necessary to
limit its duration up to the time when the noise level is less than the signal. This implies a
preprocessing of the time data in order to increase the signal to noise ratio when high noise
measurements are encountered.
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Abstract:

Improved finite element methods for the design and analysis of passive
damping treatments in complex structures have been developed. These methods
account for the non-linear properties of the viscoelastic materials commonly
used in damping treatments and were implemented in the design of a
constrained layer damping treatment for a large ring-and-truss structure.
Modal damping for this structure was analytically predicted and then
experimentally measured to verify the accuracy of these methods.

Specifically, a simplified method for modeling co,trained layer damping
treatments in finite element analysis was developed. This reduces the number
of degrees-of-freedom required permitting faster and less costly analysis
while accurately modeling the dynamic effects of the treatment.

A Damping design program was also developed which calculates modal
damping for any number of modes simultaneously. The program accounts for the
non-linear properties of viscoelastic materials and allows quick evaluations of
designs. It is based on the modal strain energy method and utilizes Nastran
strain energy calculations from complete dynamic math models.

Lastly, an enhanced Nastran-based modal frequency response analysis
method for damped structures was developed. The analysis generates response
curves using a non-orthogonal eigenstructure created by the above-mentioned
design program to account for the non-linear properties of the viscoelastic
materials used. This model is more representative of the damped structure than
that of a conventional, constant stiffness model.
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Introduction

Large complex structures are typically designed and analyzed using finite
element analysis (FEA). Visco-elastic materials (VEM) are being used to
passively damp their vibration for improved performance, and to increase
stability in active control systems. Analysis of a damping treatment design
must involve the structure so it is only logical that it too be done in FEA. The
modal strain energy method (MSE method) is a manner of calculating damping
values which works well with FEA. It was therefore employed in the damping
design program discussed in this paper. Implementation of FEA to damping
design presents one problem. Conventional FEA solutions assume linear
materials and utilize a constant stiffness matrix. This is inaccurate when
non-linear VEM constitute part of the model. To overcome this, the damping
design program employs the use of a family of FEA models which differ only in
their VEM modulus values. The values cover the analysis frequency range. The
program then interpolates the modal properties of not only modal damping and
eigenvalues, but also the eigenvectors from among the discrete states
presented by this family of finite element models.

With the total eigenstructure now defined, it is possible to create an
enhanced frequency response (FR) analysis solution to utilize this
eigenstructure, which better represents the true dynamics of the structure with
VEM damping.

A simplified method to model constrained layer (CL) damping in FEA was
also developed which reduces the number of degrees-of-freedom (DoF), and
hence time and cost, for coverage on beam members.

All these methods were developed for use with MSC/Nastran.
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1.0 Simplified Finite Element Modeling of Constrained Layer Damping

The MSE method requires accurate modeling of the damping materials in
the structure to be analyzed. Previous to this study, CL damping treatments
were modeled in FEA using solid elements for the damping material, and plate
elements for the CL. This required at least two grid points across the width.
Since the damping material thicknesses are typically quite small compared to
other structural dimensions, aspect ratio concerns dictated the need for many
elements along the length to model the treatment. If the structure was curved,
even more elements were required. This can lead to very large models which
are time consuming and expensive. The objective was to develop a simpler
method of modeling the treatment in FEA by requiring fewer DoF.

The method developed proved to greatly reduce analysis time while
sacrificing little in the way of accuracy. It utilizes spring elements and
concentrated masses to model the damping material's stiffness and mass. Grid
points from the structure are rigidly attached to one set of coincident-pair grid
points placed at the damping material's center of thickness. Three concentrated
springs connect the coincident-pair grid points' three translational DoF. Spring
rates are based on area percentages of the damping material in the vicinity of
each. The CL is modeled by bar elements whose end DoFs are offset to the other
grid point of the spring pair. By modeling the damping material this way, only
one DoF through the treatment width is necessary versus two for the solid
element method. Figure 1 illustrates this method of modeling.

Results from a Nastran model of a cantilevered beam with a constrained
layer damping treatment showed that modeling the damping material with
springs results in frequencies for the bending modes within 2% of those
calculated using solid elements (see table 1 ). Strain energy calculations for
the first three bending modes were within 2%. Error in strain energy for higher
modes increased rapidly, due to coarseness of the model for these higher modes.
Computer run time, and therefore costs, were 55 percent lower for the spring
modeling versus the solid modeling due to the fact that only one grid point
through the treatment width is necessary for the springs. Table 1 compares
frequency and strain energy calculations using solid elements and the spring
elements in Nastran.
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FIGRE 1: W.deling of Constrained Layer Damping Using Spring Elements.

TABLE 1
Accuracy of Simplified Modeling Method

Cantilevered Beam with Constrained Layer Damping

SolidEemn S i

Run Time (sec) 308 132

Bending Md
1 Hz. 16.6 16.4

0/%SE 17.8 17.8

2 107.6 106.6
23.1 23.1

3 269 266
14.9 15.2

4 503 496
8.4 9.2

5 814 799
5.1 6.1
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2.0 Damping Design Program

A damping design program has been written which calculates both modal
damping values, and a corrected eigenstructure for use in dynamic analysis of
structures damped by VEM. The term eigenstructure refers to both the
eigenvalues and eigenvectors of a structure's math model.

The program is based on the MSE method *,whose basic principle is:
(r-)

MSE.
= / ,.J SEI

where

= damping loss factor for mode (r).

rLn = material loss factor for material region, j.
SE-)

S E3  = strain energy in material region, j, for mode (r).
M

SE = total strain energy for mode (r).

The design program consists of four segments, which are run in series to
complete an entire design and analysis.

The program uses Nastran real eigenvalue finite element solutions to
calculate the structure eigenvalues, eigenvectors, and strain energy in each
material for each mode of interest. Since the moduli and loss factors for VEMs
are strong functions of frequency, a single analysis would not result in accurate
frequencies and mode shapes over a wide frequency range. This is overcome by
performing a series of real eigenvalue analyses on the same structure, which
differ only in the value of the VEM's modulus. The modulus values correspond to
frequencies which are logarithmically spread over the analysis bandwidth.

Johnson, Conor D. and David A. Kienholz. Finite Element Prediction of
Damping in Structures with Constrained Viscoelastic Layers. AIAA Journal, Vol.
20, No. 9, Sept. 1982, pp. 1284-1290.
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The F06 output file from each Nastran run is read into the first segment,
named GETSD for "get strain data", where mode frequencies, and percentage
of mode strain energy for all user defined material groups, are extracted for
each user identified mode of interest. The loss factor for all material groups
other than the VEM group are also entered. This segment is done for each
Nastran run, creating a separate output file for each. Although the damping
design program can only work on one VEM type at a time, the identification and
use of multiple material groups allows for the computation of damping
contribution from frequency independent mechanisms, such as frictional and
structural damping.

The second segment, named SORTSD for" sort strain data", reads in all
the output files from GETSD and organizes the data into two matrices: 1)
modal frequency versus VEM modulus for each mode, and 2) percentage of modal
strain energy in each material region versus VEM modulus for each mode. This
data contains two very important functions of the structure: 1) modal frequency
versus VEM modulus, for each mode, and 2) percentage strain energy in the VEM
versus it's modulus, for each mode. Third order and fourth order polynomials
are fitted to this data, respectively, to simplify it's handling and further
calculation operations. The equations are included in SORT_SD's output file
along with plots of these two functions. Figures 2 and 3 are examples of these
plots.

The third segment, named MSEM, is where the calculation of modal damping
and the interpolation of eigenvalues occur. Two functions of the VEM under
consideration are supplied to MSEM, namely: 1) VEM modulus versus frequency,
and 2) VEM loss factor versus frequency. Third order polynomial functions are
fitted to this data, and plots are created so that the user can verify the
accuracy of the curve fitting (see Figures 4 and 5 for examples). The program
then calculates modal damping by first finding the intersection points of the
VEM's modulus versus frequency function ( Figure 4 ) with that of the
structures ( Figure 2 ), for each mode. Figure 6 illustrates this operation. This
gives the frequency at which each mode of the structure with this VEM damping
treatment will vibrate, and the modulus that the VEM will have for each mode.
With the modal frequencies now determined, the loss factor of the VEM can be
found for each mode from the polynomial for VEM loss factor versus frequency (
Figure 5 ). Likewise, with the VEM modulus known for each mode, the
percentage strain energy in the VEM can be found from the structure functions
of strain energy versus modulus of the VEM material ( Figure 3 ). The
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percentage strain energy in each of the other material groups is found by
linearly interpolating the data from SORTSD with the known VEM modulus for
each mode. With loss factors and percentage strain energy now calculated for
each material group, for each mode, the modal damping values are calculated
using the MSE method equation. The eigenvalues are determined from their
simple relationship with modal frequency.

The fourth and final segment of the design program, named "INTERPEIGEN",
calulates the eigenvectors which correspond to the eigenvalues found earlier.
This is accomplished by retrieving output information from the third and first
segments, MSEM and GETSD, respectively. The VEM modulus for each mode is
used to select the two Nastran F06 files containing the eigenvectors between
which the interpolation will occur for a given mode. The interpolation point is
determined by the relationship of the calculated eigenvalue to the eigenvalues
corresponding to the two retrieved eigenvectors. The validity of determinig
eigenvectors by interpolation is discussed in the following section on enhanced
FR analysis.

This completes the damping design program. In summary, it enables the
calculation of modal damping values, eigenvalues, and eigenvectors for a
structure with damping treatment. This eigenstructure better describes the
true resonant frequencies and mode shapes of the actual structure compared to
standard FEA modeling means.
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3.0 Enhanced Frequency Response Analysis Method

The damping design program calculates modal damping values for use in
dynamic modal analyses, such as frequency response (FR). However, Nastran
assumes a constant stiffness matrix which is not true for structures with
VEMs. For an approximate FR analysis, a modulus of the VEM can be used which
corresponds to a frequency in the middle of the analysis range. Resonant
frequencies and amplitudes will be accurate in the vicinity of this assumed
frequency, but will be less accurate for higher and lower resonances.

An improvement in the modal FR can be made if, instead of using the
orthogonal eigenstructure of the middle-frequency structure, it is replaced by
an eigenstructure consisting of the interpolated modes found in the damping
design program. This results in an eigenstructure which is no longer orthogonal,
but orthogonal eigenstructures are only true for structures with linear material
properties. This non-orthogonal eigenstructure of interpolated eigenvalues and
eigenvectors better desribes the true resonant frequencies and mode shapes of
the actual structure with VEM damping by accounting for the frequency
dependency of VEM properties.

The approach is based on the ability to accurately interpolate modal
parameters. This was demonstrated in an excercise where interpolated
parameters errored less than 0.2 percent from actual values. Table 2 shows one
set of interpolated parameters from a structure whose damping material
modulus was varied over a significant range.

TABLE 2
Interpolation of Modal Parameters

Nastran Interoolated Values
o% Error

Damping Material Shear Modulus 350 psi 350 psi
Generalized Mass 1.450 E-3 1.4528 E-3 0.15
Generalized Stiffness 16.84 16.81 0.17
Eigenvector Component 2.203 2.206 0.12
Eigenvalue 17.14 Hz. 17.12 Hz. 0.16
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An enhanced FR solution method was created which makes use of this
non-orthogonal, interpolated eigenstructure. The method uses a standard finite
element method FR solution sequence, with commands added to enable the
substitution of the interpolated eigenstructure from the damping design
program. The tedious writing of these commands has been automated by another
program.

The other quantities required to perform a standard modal frequency

response analysis are:

Generalized stiffness matrix

Generalized mass matrix

Generalized force vector

Modal damping matrix

The generalized stiffness matrix is a diagonal matrix with components
equal to the corresponding eigenvalue, squared. In the enhanced FR analysis the
eignvalues are replaced as mentioned early and therefore cause the proper
adjustment to the stiffness matrix. If the eigensolution normalizes the
eigenvector to unit modal mass, the generalized mass matrix is equal to the
identity matrix and hence remains unchanged for the enhanced method. The
modal forces for the enhanced method are calculated in the same manner as
those in a standard FR solution. The modal damping values are calculated by the
damping design programs as mentioned earlier, and are included in the solution
sequence.
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4.0 Application of Methods

The methods described above were implemented in the design and analysis
of a CL damping treatment for a structure of moderate complexity to
demonstrate the ability and accuracy of these methods.

The structure choosen was a ring-and-truss shown in figure 7. It consists
of an aluminum ring 100" in diameter with a box cross section, and a fixture
kinematically supported above the ring by six composite tubes approximately
70" in length. For test purposes, the structure was secured to a large, isolated
granite surface plate by means of 12 rod flexures and 3 plate flexures.

4.1 Damping Treatment Design

The objective of this task was to design and test a CL damping treatment
for the ring/truss structure using the simplified modeling method and the
damping design program. The goal was to significantly damp the first three ring
modes of the structure with an inexpensive, easily constructed and applied
damping treatment.

3M Company's acrylic core foam tape, Y-4945, was chosen for the design
for two reasons: 1) ease of application due to high compliance, 2) excellent loss
factor at room temperature and 1-200 Hz. frequency range (the analysis
bandwidth ).

The first segment of the design program, GETSD, was used to design the
damping treatment. Five conclusions were drawn from this work:

- Increasing extensional stiffness of the constraining layer increases the
strain energy in the damping material.

- Increasing bending stiffness of the CL increases the strain energy in the
damping material.

- All the strain energy in the damping material is due to shear strain.
Tension and compression contribute an insignificant amount.
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FIGURE 7: Ring/Truss Test Structure
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-An optimum shear stiffness of the damping material exists for a given
structure and CL.

- The effect of segmenting the constraining layer is mode specific. For
treatments covering the entire circumference, segmenting it in four equal
sections, causes a decrease in strain energy > 10 %.

The design chosen consisted of the 3M tape two inches wide, doubled to a
thickness of 0.090 inches, and constrained by a steel band three inches wide,
0.125 inches thick and covering the entire circumference with four equal
segments rolled to the outer curvature of the structure's ring.

The CL was made of steel because it is inexpensive and has a high modulus.
Extensional and bending stiffnesses were limited to that afforded by the 3.0
inch by 0.125 inch dimensions because of handling, application, and removal
limits. Doubling the 3M tape thickness to 0.090 inches gave the design the
optimal damping material shear stiffness to damp the first three rings modes.

Modal damping values were calculated for this design and are shown in
Table 3. Significant levels of structural damping were achieved by this design (
damping loss factor> .10 ). Figures 2 - 6 were produced by the damping design
program. Figure 2 shows how modal frequencies for the structure and this
damping design change with modulus of the VEM. It is important to note that
these numbers are based only on the asumed dimensions of the damping material
and the range of modulus values used. The numbers are not based on a particular
damping material. Figure 3 shows how strain energy in the VEM changes with
VEM modulus for each mode. Note the strong maximums for many modes.
Figures 4 and 5 show the material properties of the VEM used in this design.

4.2 Damping Test Measurement

The objective was to measure the actual damping levels of the first three
ring modes of the structure to verify the passive damping values predicted by
the damping design program with the simplified modeling method. This was
accomplished by a modal survey test.

Test data was first acquired for the structure without the CL damping
treatment to check the accuracy of the math model, and to measure damping
values before addition of the treatment. Results show that the math model
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calculated ring bending mode frequencies to within 1 - 5 % of the test
measurements ( see Table 3 ). This is very good considering the ring is an
assembly of plate sections welded to form a box cross-section. Structural
damping values are also shown for the ring/truss before the damping treatment
was added.

Modal properties of the ring/truss with the CL damping are also shown in
Table 3. Comparing analytical to test values, the modal frequencies again agree
to within 2 - 4.5 % even though the frequencies changed significantly after the
damping treatment was added (compare test values before and after the
damping treatment was added). This confirms the simplified modeling
method's and the damping design program's ability to accurately represent the
mass and stiffness of the CL treatment.

Significant structural damping values were measured, ranging from 2.8 -
6.8 %. This compares with values for the bare ring/truss ranging from 0.2 - 1.4
%. Figure 8 illustrates the increased damping for these modes. Comparing test
damping values to analytical for the structure with the CL treatment, shows
test values ranging from 42 - 89% of those predicted. Although it was hoped
that these values would have agreed better, these first-attempt results are not
discouraging. The design program and simplified modeling method enabled the
conscientious design of a CL damping treatment which significantly increased
modal damping by as much as 18 times. The agreement between test and
analytical values is significant when the following sources of error are
considered:

- The MSE method calculates approximate damping values for a nonlinear
structure using linear analyses.

- Error in Nastran's calculation of modal strain energy is difficult to
quantify by experimental testing.

- VEM properties are complex and less consistent than that of elastic
materials, making their measurement more difficult.

- The extraction of damping values from test data of highly damped,
closely spaced resonances is difficult and prone to errors. Modal analysis
software is least accurate in it's determination of damping. It is most accurate
and more commonly used to determine resonant frequencies and mode shapes.
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TABLE 3
Ring-Truss Structure Modal Properties.

Analytical versus Test Values.

Structure without constrained layer damping:

Frequency (Hz) Structural Damping
Ring Bending Mode Pair NASTRAN Test Test

1st 11.474 11.304 .0021
11.478 11.372 .0037

2rd 49.1 51.40 .0038
53.5 56.20 .0086

3rd 141.5 137.6 .0120
142.1 138.1 .0116

Structure with constrained layer damping:

Frequency (Hz) Structural Damping
Ring Bending Mode Pair NASTRAN Test MSE Test

1st 11.11 10.88 .036 .032
11.77 11.50 .095 068

2nd 48.1 49.5 .106 .056
51.1 53.40 .067 .028

3rd 128.8 125.5 .073 .037
131.2 127.3 .107 .065

0.08

0.06

e 0.04

0.02

0.00
10.9 11.5 49.5 53.4 125.5 127.3

MODAL FREQUENCY (HZ.)

FIGURE 8: Ring/Truss Passive Test Results
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- The results reported are for one treatment designed and one modal test
at one shaker location. Given sufficient time, multiple designs should be tested
numerous ways to better account for the origin and extent of errors.

Effort will continue to increase the match-up of analytical damping
predictions to test measurements. Possible errors will be pursued in both the
analytical calculation, and the measurement techniques.

4.3) Enhanced Frequency Response of Test Structure

An enhanced FR analysis was performed on the ring/truss test structure with
it's constrained layer damping treatment as described earlier in section 4.1.

Figure 9 is a plot of the enhanced FR analysis for a point on the ring of the
damped ring/truss structure. Acceleration is plotted verses frequenj (Hz.).
The first three ring bending modes ( six modes total since each bending shape
has a twin ) are marked. The damping treatment damped only the ring modes
appreciably and hence eigenvalues and eigenvectors for only these modes were
calculated by the damping design program. All other modes are as normally
calculated for the structure with a damping material shear modulus
corresponding to a frequency in the middle of the analysis bandwidth.

A standard Nastran FR analysis for the damped structure ( using damping
material shear modulus corresponding to a frequency in the middle of the
analysis bandwidth) was also performed. Table 4 shows differences of up to
5% in eigenvalue, and 12% in response amplitude at resonance. These are small,
but may be greater for different treatments and other structures.
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TABLE 4
Comparison of Resonant Freouency and Amplitude

between Enhanced and Standard FR
for the Ring/Truss Structure

Ring Bending Resonant Freouency Peak Amplitude
ModePai Enhanced Standard ?/&LL Enhaned Standard % Diff.

1 11.18 11.60 4% 29.7 29.2 2%
11.94 12.57 5% 7.5 6.2 21%

2 48.7 49.6 2% 29.2 28.4 3%
51.5 52.0 1% 43.0 42.4 1.5%

3 129.9 129.3 .5% 36.2 40.4 12%
132.8 131.8 .75% 50.0 52.6 5%
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Summary

Improved finite element methods for the design and analysis of passive
damping treatments in complex structures have been developed. These methods
account for the non-linear properties of the viscoelastic materials commonly
used in damping treatments and were implemented in the design of a
constrained layer damping treatment for a large ring-and-truss structure.
Modal damping for this structure was analytically predicted and then
experimentally measured to verify the accuracy of these methods.
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APPLICATION OF THE RITZ PROCEDURE
TO DAMPING PREDICTION

USING A MODAL STRAIN ENERGY APPROACH

By
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3400 Investment Blvd.
Hayward, CA 94545

ABSTRACT

An automated procedure is defined to derive modal damping values in
constrained-layer damping problems. The procedure uses the NASTRAN finite
element program with DMAP modifications to derive modal loss factors using a
Modal Strain Energy (MSE) approach. The frequency-dependent properties of the
constrained viscoelastic layer are taken into account in an iterative
solution. The Ritz procedure, a specialized Lanczos method for eigenvalue
extraction, is used in the procedure together with standard NASTRAN super-
element techniques to increase eigenvalue solution efficiency. Sample
problems are discussed to illustrate the accuracy and efficiency of the
method.
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INTRODUCTION

Vibration reduction in structures has been a subject of investigation for
many years. One of the most weight-effective means of reducing vibration is
to incorporate a viscoelastic material in the form of a constrained layer in a
built-up structure. In this method, an elastomer is sandwiched between two
metallic sheets and is bonded to both. Flexural vibration causes shearing
strain in the core, which dissipates energy and thereby reduces vibration.

An additional advantage of constrained-layer damping is that analytical
methods and modeling techniques exist to predict structural behavior of the
damped system. Using these analytical techniques, studies can be performed to
gauge the adequacy of different damping treatments in eliminating unwanted
responses.

It is generally felt that the Modal Strain Energy (MSE) approach using
commercially available finite element programs is the most computationally
efficient for use in analyzing constrained-layer damping problems. One of the
major problems confronting MSE, however, is the frequency-dependent material
properties of the viscoelastic layer. An automated procedure to derive modal
loss factors using the undamped mode shapes and the material loss factors of
the frequency-dependent material is presented in this paper. The same concept
can then be extended to solve the forced-response problem by evaluating modal
stiffness and modal mass matrices from the resulting mode shapes and
frequency-dependent system stiffness.

The Ritz procedure, first described by Wilson, et al. [I1, has also been
taken advantage of in this application to constrained layer damping problems.
The Ritz procedure provides a means to reduce the number of eigenvectors used
in a forced response analysis without reducing solution accuracy. It can also
provide significant savings over other eigenvalue solution techniques.

OVERVIEW OF MODAL STrRAIN ENERGY METHOD

In this approach, first suggested by Johnson, et al. 12], it is assumed
that a standard mode superposition approach can be used to uncouple the
equations of motion:

Mx + Cx + Kx = p(t) (1)

where

M,C,K = physical coordinate mass, damping and
stiffness matrices (all real and constant)

xx,x = vectors of nodal displacements
velocities, and accelerations

p = vector of applied nodal loads
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The damped structure can be represented in terms of the real normal modes
of the associated undamped system if appropriate damping terms are inserted
into the uncoupled modal equations of motion:

"" Cr) 2 p(t) (2)+n w +w =P

(r)

x = r (t) r = 1,2,3... (3)r

where

a = rth modal coordinate
r

= natural radian frequency of the rth mode

(r) = rth mode shape vector of the associated

undamped system

r) = loss factor of the rth mode

P= modal force vector for rth mode

It is implied that the damping matrix, C, of Eq. (1), need not be
explicitly calculated, but that it can be diagonalized by the same real modal
matrix that diagonalizes K and N.

Modal loss factors are calculated using the undamped mode shapes and the
material loss factor for each material [3]. For a structure damped with a
viscoelastic layer, the material loss factor of the metal sheet is very small
compared with that of the viscoelastic layer. Hence, the modal loss factor is
found from:

Cr) C r) v~Cr)iC)
n =ri Iv[

1i U

where n is the material loss factor of the viscoelastic core evaluated at the
U (r) Cr)

rth calculated resonant frequency and V / V is the fraction of elastic
strain energy attributable to the sandwich core when the structure deforms in
the rth mode shape.

Eq. () implies that damping of a structure can be described by
associating a single number, the modal loss factor, with each undamped natural
mode shape and frequency. The composite loss factor for each mode is taken to
be proportional to the material loss factor for the viscoelastic portion of
the structure. This approximation has been shown to be accurate for practical
applications.
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A basic difficulty with the modal strain energy method is that the modal
properties are obtained from system matrices that are assumed to be constant.
Viscoelastic materials, however, have storage moduli that vary significantly
with frequency. To resolve this contradiction, a simple correction is made to
the modal loss factor described in Eq. (4). The corrected value of modal loss
factor is given as:

n (r)'= n ( G2(fr )/G2,re f  (5)

where

(r)' = adjusted modal damping ratio for the

rth mode(r)
= modal damping ratio for the rth mode

obtained by iteration
G = core shear modulus used in final normal
2,ref modes calculation to obtain modal

frequencies, shapes, and masses

G2 (f) = core shear modulus at f = fr where
f is the rth mode frequency calculated
with G2 = G2,ref

To design a damping treatment, one begins by making several normal mode
runs for a range of different core shear moduli. A set of natural frequencies
and damping ratios is obtained for each value of the core shear modulus.
Curves are drawn for each mode, and the intersections with the material

property curve are found as shown in Figure 1, taken from 12]. Each inter-
section represents the shear modulus value which is appropriate for calcu-
lating the damping ratio of the associated mode. An intermediate value of the
core shear modulus within the frequency range of interest is then selected as
a source for the final values of modal stiffness, mass and mode shape which
are used in subsequent forced response calculations. Additionally, modal

damping ratios obtained by the iterative scheme are corrected according to Eq.

(5).

OV1IRIW OF THE RITZ PROCU

The Ritz procedure, first described by Wilson, et al. [11, provides an
efficient way of solving large eigenvalue problems. The procedure has been
implemented in both COSMIC and MSC/NASTRAN 14,51. The algorithm is
illustrated in Figure 2.

To start the procedure, a Krylov sequence is used to compute a set of
mass-orthogonal starting vectors. A static load is used to derive the initial
vector of the set. Note that cases involving singular stiffness matrices are
also easily handled. Given this set of starting vectors, an eigenvalue
problem of order L is solved (where L is the size of the starting vector set,
or number of desired eigenvalues) to derive both the structure eigenvalues and
the generalized eigenvectors, Z. These eigenvectors are then applied as a
transformation matrix to the starting vector set to produce the final set of
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* Given mass matrix M, stiffness matrix K and load vector p

" Triangularize K such that

K = LTDL

" Solve for starting vector
K j =

" Solve for additional vectors i = 2,..., L, orthonormalizing with respect to M

Kii = M -1

ej iMi. 1 , for j=,...,i--i

" Form M" and K"
x =

M= XTMX

K" =XTKX

" Solve the L by L eigenvalue problem

[KO - WMJZA = 0
Z-= [j1l1 *.*,'L]

" Compute final Ritz vectors by orthogonalizing X with respect to K

OX = XZ

Figure 2 The Ritz Procedure
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Ritz vectors which are both mass and stiffness orthogonal. The resulting Ritz
vectors and eigenvalues contain no components which are orthogonal to the
applied static displacement used as the initial starting vector. This is an
important property of the Ritz procedure -- unwanted eigenvectors which would
be recovered in a standard normal modes analysis, but which would show no
participation in subsequent forced-response analysis, are eliminated in the
Ritz procedure.

Studies using the Ritz procedure 14,6] have indicated that for normal
modes analysis, it provides a reduction by a factor of three to ten in the
eigenvalue extraction procedure when compared to the FEER method used in
COSMIC/NASTRAN for the same number of modes. In addition, because the static
load vector can eliminate recovery of unwanted modes in the eigenvalue solu-
tion, fewer Ritz modes can be used to obtain the same level of accuracy for
subsequent forced-response analysis. Use of the static load vector also
eliminates any need for a static correction factor in forced-response
analysis.

Following Wilson's original publication of the Ritz procedure, it has
been demonstrated that the procedure is identical to the Lanczos method with
full reorthogonalization. In fact, the Lanczos method has recently been
implemented in MSC/NASTRAN [71, and its efficiency is comparable to the Ritz
procedure for general eigenvalue extraction problems. Still, the Ritz proce-
dure offers some advantages for applications in which the dynamic loading
imposed in subsequent forced-response analysis is spatially invariant and well
defined. Such may be the case for evaluation of constrained-layer damping
concepts. In these cases, the numerical efficiency of the Lanczos procedure
is obtained in solving the eigenvalue problem, while at the same time, the
number of modes recovered is limited only to those that participate in the
forced-response problem by dictating the starting vector used in the sequence.

The NASTRAN implementation of the Lanczos method will be used in this
paper as an efficient means to derive true natural mode shapes and frequen-
cies. The Ritz procedure is used to derive Ritz modes and frequencies which
may or may not correlate directly with the true natural modes. Both proce-
dures simply provide a set of normal modes and frequencies which can be used
for efficient forced-response analysis, as well as to predict values of modal
damping for constrained-layer problems.

AIOMATIC EXTRACTION OF MODAL LOSS FACTORS FOR CONSTRAINED-LAYER DAMPING
PROBLM

An automated iterative procedure has been developed to derive modal loss
factors for constrained-layer damping problems. The key issue in deriving the
mode shapes and normal modes of the facesheet and constrained-layer assemblage
is the ability to update the stiffness matrix of the viscoelastic layer at the
beginning of each iteration.

The structure stiffness matrix of the assemblage is partitioned, as in a
standard NASTRAN superelement approach, into a frequency-independent part
(i.e., facesheets) and frequency-dependent part (i.e., viscoelastic constrained
layer). Initially, with a starting value of G, the shear modulus of the
viscoelastic layer, the stiffness matrix is formed and assembled with the rest
of the structure. The natural frequencies and mode shapes of the assembly are
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then found using the Ritz procedure implemented in NASTRAN. A new estimate of
shear modulus of the viscoelastic layer for the next iteration is found from
the frequency vs. G table for the first natural frequency. With this new
value of G, the stiffness matrix of the constrained layer is updated and
assembled with that of the frequency-independent part, and the eigenvalue
extraction proceeds again. The iterative operation for this mode is continued
until the current estimate of the natural frequency is acceptably close to the
previous estimate. This process is repeated for all modes requested by the
user. The converged values for frequencies, eigenvectors, and corresponding
shear moduli of the core are saved for each mode to determine the modal loss
factors according to Eq. (4). Additionally, these values can be utilized for
subsequent forced-response analysis of the candidate structure. Figure 3
shows the flow chart of the procedure described here.

A basic assumption in this method is that the mode shapes of the
assemblage do not vary significantly with the change in core shear modulus.
Each mode shape is derived using a different value for the shear modulus of
the constrained layer. If there is no significant change in mode shape with
shear modulus, then the diagonal terms of the generalized stiffness matrix,
Ko, will remain large in comparison to the off-diagonal terms:

K = T K 4 (6)
-0 0

where

* = ... I

= mode shape i, derived using stiffness matrix Ki

K = stiffness matrix assembled using intermediate
value of core shear modulus

For truly normal modes, of course, K, contains only diagonal terms. This
assumption is implicit in any MSE approach, since the modal damping values
which are derived are generally used in subsequent linear forced-response
analysis.

FINITE EMENT MODELING METHOD

The method used for finite element modeling of a viscoelastic constrained
layer is described in [2]. Briefly, the viscoelastic core is modeled with
three-dimensional isoparametric solid elements called HEXA elements in
NASTRAN. Each element has three translational degrees of freedom defined at
each node. The face sheets are modeled with quadrilateral shell elements,
QUAD4's, which have three translations and two rotational degrees of freedom
at each corner node. Since the plate nodes are offset to one surface of the
plate and coincident with the corner nodes of the adjoining solid elements,
there exists a coupling between stretching and bending deformations of the
plate elements. This membrane-bending coupling is defined via the property
card of QUAD4's. After the model is assembled, a standard superelement normal
mode extraction with the user-specified DMAP is performed. Specifically, the
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Formulate & assemble mass matrix M

Formulate stiffness matrices Kal., Kvo

Kal - stiffness matrix of facesheets

Kvo - stiffness matrix of core with

Estimate new G GOUT(j) = G

based on new w. WOUT(j) = w.
NOUT(j) = n'

IVU = GXTKvX

[Kv] G[Kvo]

I Yes

Evaluate Modal Find new G
Loss Factors based on wj

Figure 3 Flow chart for automatic extraction of

modal loss factor.
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facesheet elements are placed in an upstream superelement, whereas the solid
elements making up the core are placed in the residual structure. This allows
partitioning of the stiffness matrix into frequency-dependent and frequency-
independent parts. The user is required to input a table defining the shear
modulus, G, and the material loss factor, n, of the core as functions of
frequency. Additionally, it is most convenient to set the initial value of G
of the ccie to 1.0.

Calculation of elastic strain energy is performed using a standard option
in MSC/NASTRAN. The fraction of total strain energy within a group of ele-
ments corresponding to the viscoelastic core for each normal mode will be
output. Multiplying this value for each mode by the viscoelastic material
loss factor yields the modal loss factor for that mode. The modal loss
factors are output as a matrix print option in NASTRAN.

EXAMPLE PROBLEX

A cantilever beam similar to the one in [2] is analyzed using four
different approaches to show the validation and advantages of the proposed
solution method. The 7 inch long cantilever beam has identical aluminum face
sheets 0.060 inch thick and a viscoelastic core 0.005 inch thick, as shown in
Figure 4. The finite element model consists of 20 elements in the lengthwise
direction and one element widthwise. All nodes are at element corners.
Poisson's ratio of the core elements is taken to be 0.49. The viscoelastic
material loss factor is assumed to be a constant (1.35) with respect to
frequency. The tip of the cantilever beam is subjected to a random loading

function as shown in Figure 5. The objective is to determine response
functions which are accurate, in a cost-effective manner.

To establish a reference set of response functions the sandwich beam is
first analyzed using the direct frequency response (DFR) method. The visco-
elastic core shear modulus is defined as a function of frequency as shown in
Figure 6(a). The use of frequency-dependent material properties for direct
frequency response analysis is described in [71. Results from the other three
approaches are compared with results from this method for validation.

The second approach is similar to the one used in [21. Initially, a set
of the lowest five modes and damping ratios is obtained for a range of dif-
ferent core shear moduli. For example, four shear moduli are examined in the
present case, using the Lanczos method. The normalized structural damping
factor and the first five natural frequencies are plotted versus G for each
mode, as shown in Figure 6b. The intersection of the curve for each mode with
the material property curve represents the G value which is appropriate for
calculating modal damping of the associated mode. Subsequently, an inter-
mediate value of G of 300 psi was used in the forced-response calculations to
evaluate the responses. The damping ratios used for this analysis were
adjusted with a correction factor obtained using Equation (5). The natural
frequencies, corresponding shear moduli, and damping factors (after
adjustment) used in the forced-response analysis are listed in Table 1.

In the third approach, the natural frequencies and unadjusted damping
ratios for the first five modes are automatically obtained with an iterative
procedure discribed earlier using the Lanczos method for the eigenvalue
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Figure 4 Cantilever Sandwich Beam Subjected to Random Loading.
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TABLE 1

MODAL DAMPING RATIOS USING
NORMALIZED LOSS FACTORS

OBTAINED FROM A SET OF NORMAL MODE RUNS
WITH LANCZOS METHOD

Core Shear Normalized Modal*
Mode Frequency Modulus Loss Factor Damping
No. Type (Hz) psi T/ Ratio

1 1B 64 90 0.290 0.214

2 2B 350 280 0.305 0.398

3 IT 650 450 0.095 0.157

4 3B 925 575 0.30 0.561

5 4B 1,720 920 0.30 0.709

* Used C2,ref = 300 psi; refer to Eq. (5).

CCB-15



extraction. The output eigenvalues, shear moduli, and damping ratios are as
shown in Table 2. Since the output values of Table 1 and Table 2 are
virtually identical, output from forced-response calculations will also be
similar to the one obtained from the first approach.

The fourth approach is similar to the third approach, except that the
Ritz procedure is used for eigenvalue extraction. The output from the eigen-
value extraction run is listed in Table 3. Note that the first torsion mode
at 650 Hz. is not extracted. Evidently, this is because the starting load
vector used for eigenvalue extraction does not contain any components of the
torsional mode. The forced-response analysis is then performed using modal
loss factors derived from the Ritz procedure eignenvalue extraction, which are
markedly different for higher modes compared to those obtained using the
Lanczos method.

The response at the tip of the beam obtained by forced-response analyses
using the first, second, and fourth approaches is presented in Figures 7
through 9. Note that the response from all three approaches is similar up to
500 Hz., at which the peak of the forcing function occurs. Moreover, the
responses obtained from the Ritz procedure compare quite well with those from
the Lanczos method throughout the frequency spectrum.

The differences in response at higher frequencies for the Ritz and
Lanczos method compared to the DFR method can be be attributed to two factors.
First, at higher frequencies, the error due to the correction factor (Eq. (5))
increases as the difference between the true shear modulus and the reference
modulus increases. Secondly, at higher frequencies, modes six and higher
contribute more significantly to the response. However, the contribution from
higher modes is ignored in the Lanczos mode superposition analysis with just
five modes, and only approximated in the Ritz modes.

For a further comparision between used Ritz modes and Lanczos natural
modes, a set of mode superposition analyses (third and fourth approaches) were
performed using only the first three modes. The output from an eigenvalue
extraction run using the Ritz method is shown in Table h. The eigenvalues and
modal loss factors from the Lanczos method, which remain the same since it
provides true natural modes, are in Table 2. The response from the forced-
response analyses is plotted with that from the original DFR analysis in
Figures 10 through 12. Note that the response from both methods, Ritz and
Lanczos, compare well with that from DFR up to 500 Hz. At higher frequencies,
however, the responses from the Lanczos method diverge considerably from DFR,
whereas the responses from the Ritz method continue to correlate well with
responses from the DFR method up to 1300 Hz.

This close correlation between the Ritz procedure results and the DFR is
due to the use of a static load vector to derive the initial Ritz vector in

the algorithm. The third Ritz mode (which is not the same as the third
natural mode) contains components of all of the higher modes that are not
orthogonal to the initial Ritz vector. Thus, the contribution to response
from higher modes is approximated when the Ritz procedure is used, in the same
manner as a static correction factor.
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TABLE 2

MODAL DAMPING RATIOS USING
OUTPUT FROM THE AUTOMATIC PROCEDURE

WITH LANCZOS METHOD

Core Shear Normalized Modal*
Mode Frequency Modulus Loss Factor Damping
No. Type (Hz) psi n/. Ratio

1 1B 63.3 88.5 0.291 0.213

2 2B 343.8 282.3 0.302 0.395

3 1T 654.6 441.7 0.0995 0.163

4 3B 920 560.2 0.311 0.574

5 4B 1,748 930.9 0.305 0.726

* Used G2,ref = 300 psi; refer to Eq. (5).
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TABLE 3

MODAL DAMPING RATIOS (FIVE MODES ONLY)
USING OUTPUT FROM THE AUTOMATIC PROCEDURE

WITH RITZ METHOD

Core Shear Normalized Modal*
Mode Frequency Modulus Loss Factor Damping
No. Type (Hz) psi 'I/nv Ratio

1 1B 63.1 86.9 0.291 0.211

2 2B 343.1 278.6 0.302 0.393

3 3B 918.8 556.8 0.311 0.572

4 4B 1,'133.8 927.4 0.303 0.719

5 - 3,763.5 1,584.5 0.287 0.890

* Used G2 = 300 psi; refer to Eq. (5).
2,ref
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TABLE 4

MODAL DAMPING RATIOS (THREE MODES ONLY)
USING OUTPUT FROM THE AUTOMATIC PROCEDURE

WITH RITZ METHOD

Core Shear Normalized Modal*
Mode Frequency Modulus Loss Factor Damping
No. Type (Hz) psi q/71. Ratio

1 1B 63.1 86.9 0.29 0.211

2 2B 343.4 278.8 0.303 0.391

3 3B 1,182 682.2 0.33 0.672

* Used G2,ref = 300 psi; refer to Eq. (5).
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Table 5 shows the CPU seconds used for the analysis of the 360 DOF model
which was used with the various approaches described above. The Ritz
procedure requires 27% less CPU time compared to the Lanczos method. The
manual method with five modes requires less CPU than either the Ritz or the
Lanczos method, but the time required to submit and examine five computer
runs, and then to plot contours to obtain the modal loss factors can be
substantial. In addition, the manual method is more vulnerable to the
possibility of human error.

CONCLUSIONS

The modal strain energy method has numerous attractive features as a
means to estimate damping in structures with constrained viscoelastic layers.
The procedure presented in this report automates the extraction of modal loss
factors. Instead of making several normal modes extraction runs, the user
needs to execute the finite element model only once, thus saving costly
engineering time. Additionally, the automatic extraction of the loss factors
minimizes the introduction of human error inherent in the manual method.
Finally, a substantial savings in CPU time accrues due to the Ritz method,
making the automatic extraction of loss factors and subsequent forced-response
analysis using the Ritz procedure an attractive alternative for designs using
constrained-layer damping.
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Abstract

The paper develops and illustrates a new method for constructing system
transfer functions for structures which may be regarded as assemblies of
constituent members connected at joints. Several transfer functions for
each individual member which describe required displacement-output to force-
input relationships must be available. The individual members may be rigid,
elastic, or viscoelastic, and the composite structure may be any combination
of the three.

The method is illustrated with a triangular structure. First, an
elastic version of the closed-form frequency response is verified using a
comparison with a consistent, finite-element approximation for the same
structure. Next, one of the elastic members is replaced vith a highly
damped viscoelastic member modeled with a fractional derivative constitu-
tive law. Again, the frequency response is illustrated graphically. The
damped and undamped responses are compared.

Finally, a method is developed in vhich the elastic/viscoelastic struc-
ture's impulse response can be determined by inverting the mixed transfer
function. This ability to invert Is of particular interest since the
"composite" transfer function includes appearances of the Laplace variable s
raised to fractional powers.
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Introduction

Nonrigid satellite control has been, and continues to be, a subject of
considerable interest. To date, much of the effort has been devoted to the
study of elastic models for vhich governing finite-order differential equa-
tions of motion are determined from finite element analyses. Vhere linear
damping is assumed to be present in the models, methods of approximation
which rely on the availability of frequency-dependent loss factors are used
to determine damping coefs. which are associated with each modal frequency
and corresponding mode shape. Thus, the decoupled elastic (modal) equations
of motion are replaced with corresponding damped equations of motion.

Other methods, too, have been developed 1 to approximate equations of
motion for damped systems, but the difficulty remains that these approaches
are limited to "small" damping, and that they may not easily incorporate
experimental information available for individual members foL which, due to
internal complexity, the damping mechanism may not lend itself to accurate
analysis.

It is likely that many applications of system response descriptions
will not require complete equations of motion for the system, but that
transfer functions which describe (absolute or relative) displacement out-
puts, or stress outputs, at points of interest to generalized force inputs
at points of actuation or disturbance may be sufficient. Such transfer
functions are useful for determining frequency response as well as the
closed-loop behavior of feedback control systems. If the structure's
transfer functions can be inverted, then transient responses also become
available.

It has been shown2 that transfer functions of structures composed of
members for which individual-member transfer functions are available may be
determined algebraically and exactly from the structure's geometry. Most
often, these methods (which incluge the "transport matrix method" and the
"dynamic stiffness matrix method" ) are applied to cases where "exact," or
transcendental, infinite dimensional transfer functions are used--producing,
with a finite amount of computation, transfer function responses of infinite
order. Nevertheless, the amount of computation that is necessary to solve
such systems tends to grow with the cube of the number of joints which con-
nect these members, making the approach impractical.

It is the purpose of the present paper to suggest--and to illustrate--
how the computational burden that is associated with these calculations may
be reduced substantially by taking advantage of geometric patterns and prop-
erties which are likely to inhere in actual structures. It is furthermore
intended to indicate the ease with which one or several elastic members may
be replaced by viscoelastic members (or vice versa) once the algebra that is
associated with a given structural geometry has been established. This is a
useful design capability, particularly since it becomes very convenient to
consider the effect of a large variety of component options on both dis-
placement and stress responses at points of interest within the overall
structure. Another point of the paper is that the presence of substantial
damping in component members of an othervise elastic structure can alter
radically the character of a structure's frequency response near certain
frequencies which, for the corresponding elastic structure, represent res-
onant frequencies. At the same time, other resonant peaks remain largely
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unchanged. Such occurrences could not have been forecast using modal strain
energy methods.

It has been shown5'6 that viscoelastic material damping is often well
and concisely represented using fractional time derivatives operating on
stress and strain, and that therefore transfer functions7for members which
include these kinds of materials might best be expressed in terms of frac-
tional powers of the Laplace variable s.

There exists for various kinds of distributed-element models, such as
the member illustrated in Figure 1, a number of distinct displacement/output
to force/input relationships. These may be expressed using a "transfer
matrix," elements of which can be selected to give the desired relationship

3j YsIF,"
AA

rAy

YA

Figure 1.

among these input and output quantities of interest in the Laplace domain.
For a member such as that shown in Figure 1, the transfer matrix might
appear as follows:

xA G1  0 0 G2  0 0 FAx

YA 0 G4  G9  0 G3  GIO FAy

e A 0 G9  G6  0 G10 G8 A (1)

XB 0 0 0 0

i 0 G3  G10  0 G4  G9  FBy

0 0 a 0 9  G6  B

where the bar over each variable name denotes the Laplace transformation of
that time-varying quantity. The exact form of G will depend on the partic-
ular kind of model used for the member (e.g. Rayleigh beaps, 16moshenko
beams, transversely rigid member, etc.). Various authors ' , have written
out forms for these sorts of transfer functions.

As an example (which will be referred to later herein), consider a
uniform member which deforms elastically in the axial direction, but vhich
is transversely rigid. A few of the examples of the transfer functions in
the matrix of Eq. (1) have the following forms:
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G = x/ XA/~ tanh (aLs/r)J (2)

G2 =AFBx = x B'FAx

= -Gllcosh(aLs/ rE) - tanh(aLs/ 'E)sinh(aLs/Ij_)J (3)

G3 = yBiFAy 2 2- (2I) - 2/MI (4)

G4 - -Y/F Ba - IL/(21) + 2/M] (5)G E=Y/By =s

where L is the length of the member, H is its mass, I is the mass moment of
inertia about the mass center (axis normal to the page), E is Young's modu-
lus, and a is given by

a = r (6)

where p is the mass per unit length, and A the cross-sectional area.

The transfer functions vhich describe a corresponding viscoelastic
member (axially) will depend upon the particular constitutive law that is
used to model the viscoelestic material behavior. In general, for axial
stress and strain, and linear viscoelastic behavior, such a model may be
expressed according to

Poao] = PC lEI (7)

where P and P are linear operators, and a and c are the normal, axial
stress Ind strkin, respectively. For one particular constitutive form vhich
has worked vell in characterizing a number of viscoelastic materials:

av
P a I * a -- V(8)

at

PC E 1 + E2 - (9)

This four-parageser model (v is the fractional order of the derivative) is
one of several' that have been suggested that involve a fractional-order
derivative.

The correspondence principle 11 is used to convert transfer functions
which are derived using the assumption of an elastic material (e.g. Eqs.
(2,3)) to their viscoelastic counterparts. It is noted that in the expres-
sions for G and G of Eqs. (2,3), the kplace variable s appears in two
contexts. 6ne is &here it multiplies [E, and the other is its (quadratic)
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appearance in the denominator outside the bracketed term. The latter
appearance represents rigid-body motion, and is unaffected by the transition
to a viscoelastic material. The change that is made, however, involves con-
verting each appearance of (i/jIi{s) to the function h(s) given by

h(s) = s 1P' a(s)/ (s) (10)

or, using the constitutive equation example of Eqs. (8,9)

h(s) - s 1 + as (11)
E E2s

and Eqs. (2) and (3) become

G = L_ [-IA- tanh (ahL) (12)

G2 = - G1[cosh (ahL) - tanh (ahL) sinh (ahL)| (13)

As a practical matter, the simple use of the correspondence principle
may be inadequate to characterize many highly damped members. Highly damped
members may be composites in which the actual damping mechanisms are very
complex, involving not simply the constituent materials but also several
complex interactions between materials. Such members may demonstrate con-
siderably different properties from specimen to specimen, as small differ-
ences in manufacturing produce large differences in response.

To handle such a situation, it is useful to be able to incorporate
transfer function descriptions for actual damped members which have been
characterized experimentally in the laboratory. Such "fits" of experimental
data for as-built members can be made using fractional order derivatives in
a concise, infinite-dimensional form (which contains transcendental func-
tions), 11nd may even involve an estimation of the order v of the derivative
itself. The methods of analysis which are discussed in the next section
will work equally well regardless of whether individual-member transfer
functions are determined experimentally or analytically.

Combining Transfer Functions

General methods which have been developed to combine indivilual-member
transfer functions include the dynamic stiffness matrix method. This
approach is illustrated using a particular structure, illustrated in Figure
2. We consider the case where each of the five members is pinned at both
ends (resulting in zero bending moment at these endpoints), and where the
axial and transverse behavior of each end responds to forces as described in
Eqs. (1-5). The problem in this illustration will be to determine the
transfer function which describes the displacement response to the right,
T(s), of the leftmost joint of the structure to an external force which acts
upon the same point, and to the right.
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Figure 2

Initially, the 20 axial and transverse displacements associated

with each member and the 20 axial and transverse forces are defined

using the vectors q* q' q2 ' ***, q20  for the displacemets, and
If*, f;, "', f;0 1T for the forces, as indicated in Figure 3a.
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Figure 3a
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Figure 3b
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The dynamic stiffness matrix for member 1 is then expressed using the trans-

fer functions G1, G 1, GI G1 as given in Eqs. (2-5), where a subscript 1 has

been added to denote that the elastic, mass, and geometric properties asso-

_zated with member 1 apply. In the Laplace domain the "stiffness" relation-

ship can be shown to be given by

1 12 1 2 1 12 1 2
1/'1''Gi (G2) 0 -G /[(G) (G., q1

1 1 2 2 1 12 1 2
f20 G4 /[(G 4 )- (G 3  G 3 /('(G4)- (G 3)J 0

o1 1 2 1 2 1 1 2 ~1 2-
f 3 0t G 3/((G4) - (G3) G -4/[(G4) (- 3) , U

4 21 1 2 1 1 2 4

(14)

where the matrix of Eq. (14) is given the name K1 . A similar matrix K
th Ii

can be developed for the J of the five members by replacing aach G ,4*

i - 1,2,3,4, in the matrix of Eq. (14) with GJ. Thus, a matrix [K ] can
be formed which gives the stiffness relationship

f* [K*J1 * (15)

where K* has the block diagonal form

IK*I K (16)

Figure 3b indicates the definition of the coordinates _qafql' q2 "''q9J

which represent the actual, allowable displacements of the points of connec-

tion. From geometric considerations alone, a (20x8) connectivity matrix [CI

can be found which relates the unconstrained displacements q to the nodal

displacements q accordiag to

!* W (17)

where in the case of the structure of Figures 2 and 3, (C] has the form
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-Cos e -sin 1
-sin Cos ;1-sin e -sin e

:Cos 0i  Cos e

-cos 01 sin 1I
-sin ei -cos Il sin Cos

cos 9i -sin e1
-11

lCl-
-1

-cos e -Cossin ;. sin
2in0 s-sin e -cosO

Cos -sin
cos sin

-sin cos ;2

sin -cos 2

-Cos -sin

(18)

If the vector of external force components f = If1  f2 ' "'" f8
] Thich

corresponds vith the elements of q is defined as indicated on Figure 3b,
f*

then it can be shown that f is related to f according to

f - [N f* (19)

Combining Eqs. (15,17,19) produces

f - [KJl (20)

vhere

(KI - [lT (K*l (Cl (21)

The transfer function of interest is

X/F - ql/fl (22)

which is the 1,1 element of 1KI-1 .

At this juncture three points should be made.

First, the method outlined above is general in the sense that it is not
restricted to members which are pinned (provided transfer functions giving
responses to applied end-moments are available for each member). Further-
more, the method can be applied with little additional effort to three-
dimensional structures.
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The second point is that the numerical burden that vill be associated
vith evaluating the function X/F a H(s) at a given value of i viii, in
general, grow with the cube of the number of nodal points (n ) present on
the structure.

And thirdly, the method outlined above does not exploit certain very
elemental geometric properties likely to be found in most actual structures.
Neither does it provide for a means to exploit repeated geometric patterns
as they may appear in actual structures. Based on the experience which we
have gained with the exercise that follows, we believe that there may be
some significant reduction to (at most) a computational burden which grows
with n , where n is the number of nodal points, if such things are con-
sidered carefully.

Consider the simpler triangular structure of Figure 4, which represents
the left portion of the more elaborate structure of Figure 2. An analysis
similar to that which is described above can be performed on this nev struc-
ture to produce an elastic frequency response. The algebra associated with
performing the inversion of K can, however, be reduced by using geometric
properties which are possessed by any triangle.

F

Figure 4

Exec- aSlutS

III JEA: 3

Figure 5
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Figure 5 gives the (amplitude) frequency response fcr the triangular
structure of Figure 4. The elastic properties that are associated with the
axial deformation of each member, along with geometric and inertial proper-
ties, are indicated on the figure. Superimposed onto the "exact" frequency
response solution is a finite-element approximation (Ritz approach, 6 nodal
pointi for the same structure. As expected for any consistent approxima-
tion, the frequencies at which (infinite, resonant) peaks for the approxi-
mation occur move progressively further to the right of their counterparts
in the exact solution, until peaks for the approximation run out altogether.
This, combined with the marked similarity of the two solutions at the lower
frequencies, gives confidence in the accuracy of the two solutions.

Figure 6 repeats the exact frequency response of Figure 5. This time,
however, a different exact solution is superimposed. Using the viscoelastic
material properties which are indicated to the right of Figure 6, the elas-
tic model that was used for the material description of the vertical member
was replaced by the viscoelastic model. The two diagonal members were left
unchanged. All of the computational economies which were established for
the elastic triangle remain intact for the mixed case.

L L

0.4 I I
!A

I. I '

0.2 3

N.| /
0.8. -

0.0 0.5 I.0 t.0 a.*

Figure 6

In addition to the transfer function of interest, / the inversion of
K provided a full complement of displacement/output to force/input transfer
functions for the single triangle. As such, this triangle can be thought of
as one member of a second triangle which in reality is the structure of

Figure 7
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interest of Figure 2. This is suggested in Figure 7. It must be noted that
the analysis of this second "triangular structure" will differ somewhat from
the first triangle. In particular, the more complex new member carries with
it input/output relationships which were zero for the axially symmetric mem-
bers of the first analysis. These include the axial displacement response
to transverse force inputs, and vice versa. In addition, the response of
nodal points at which the "new member" is connected are sensitive to actu-
ation at a location in the member which, in the context of the second tri-
angle, is not a joint. Although these added transfer function! do increase
the computational burden that is associated with evaluating K- for jhe new
triangle, the number of computations (after a prior evaluation of K- for
the first triangle) is not significantly higher.

Figure 8 illustrates the same comparison between exact and (9 nodal
point) finite-element approximation for the elastic double-triangle struc-
ture that Figure 6 illustrated for the single triangle. Again, the rela-
tionship between the "exact" and approximate solutions tends to give
credence to the accuracy of both. The exact solution shown in Figure 8 was
generated by regarding the triangular structure of Figure 5 as one of the
members of a second triangle, as discussed above.

I:

0.0 0. .0.

Figure 8

Again, once the algebraic formulation has been established, there is no
difficulty substituting viscoelastic members at will for elastic members.
Figure 9 illustrates a superposition of ("exact") elastic versus ("exact")

composite structures for which viscoelastic members have been used in place
of the two rightmost members in the mixed structure. It is interesting to
observe how the elastic frequency response has been altered in the presence
of the viscoelastic members. The resonant peak that appears near W . 1.5 in
the purely elastic structures Is evidently eliminated completely with the
insertion of the two viscoelastic members. Other peaks, meanwhile, appear
on the plots of Figure 9, to be largely unaffected by the introduction of
the viscoelastic members. The result would be not be predicted by existing
methods of approximation for damped structures.
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Figure 9

It is noted that this method can be applied successively and recursive-
ly to structures as indicated in Figure 10a, which would have the effee of
reducing the computational burden to something of order n rather than n.

so

IFI

Figure 10

Preferably, hover, for actual complex structures, a means of subdividing
the structure judiciously such that repetitions of substructures are fully

exploited would be identified. Consider, for example, the structure of
Figure 10b. The two small triangles (top and bottom) are mirror images, butotheritse Identical and the set of required transfer functions for both may

be found using a single treatment. The leftmost triangle, meanwhile, is an
equilateral triangle which can be examined next. Finally, the general form
from this result can be reused to complete the analysis by treating thePhole structure as a second equilateral triangle, sith the leftmost member
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consisting of the earlier equilaterial triangle, while the upper and lover
members are described by results from the small triangle which vas analyzed
initially. Rather than doing the required algebra (K ) on four triangles
(which would be the case if the successive method were used blindly), only
three are required.

Inverting Mixed Transfer Functions

Transcendental transfer functions of combination elastic/viscoelastic
systems of the kind used for illustration in the previous section can be
shown to be expandable to the form

Th'(s2 + zf) (h2(s) + z 
2)

H(sh(s)) -I s (s) + p2) T(h(s) + p 2)

k 1

Y :+2 Z hl(s) + p(3
k k 1

where the to kinds of poles p 2 *2are found using standard (real)

wrethe tw15 k ofoe s hk adep 1 at on sing s (real)

root finders 5 together with the definition of h(s), (e.g. Eqs. 10,11).

Residues rk and r; are then found according to16

rk l1im [(a+p)24

rk asI+p H(sh(s))] (24)

=h 2 -p3 [ 2) H(s(h),h)] (25)

With the transfer function of interest, H(s,h(s)), in the desired form
of Eq. (23) (retaining an "adequate" number of terms), it remaing6 to invert
terms of two types. The first of the two is easily expressed as"

Zt1 {. rk} r sin(pkt) (26)

Terms of the second type have the form

,( r gl( 4) (27)

hC(s) + P1
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vhere it is understood that the order of the fractional derivative of Eqs.
(8,9) is V - %.

In order to invert such expressions, one uses the formula
16

{( )} I k(t,u) fl(u) du (29)
(9 0

vhere

X (fl(t)) - gZ(s) (29)

and

1 13o)'
k(t,u) u exp- (30)

Using Eq. (11) in Eq. (27), ve are thus lead to invert

(E1 + E2s) r (31)

s4(1 + as) + p*2(E'1 1 + 2 )

If the roots of the fifth degree polynomial in the denominator of (31)
are "s," (I - 1,2,3,4,5), then it is straightforvard to vrite it as partial
fracti ns, vith each term having the form of a constant multiplying

1 (32)
-s + s

the inverse of vhich is given by

Cr -1 - I) - - exp (sit) (33)

Use of the formula (28) then gives an integral representation of the
solution.

It may be noted that s are in general complex, and one may require
numerical vork to get the ctmplete structure of the solution.

It may also be noted that, if, instead of the square root, one has any
rational fraction, it is still possible to develop integral formulas of the
type of (28).
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Summary and Conclusions

Transcendental (infinite dimensional) expressions for transfer
functions of individual members which may comprise a structure can often be
formulated with a concise algebraic expression either analytically or exper-
imentally, using a suitable form determined on the basis of a plausible con-
stitutive equation as well as geometric considerations. Once established,
these individual-member transfer functions can be combined algebraically to
form transfer functions of the larger structure. By taking advantage of
geometric properties that are likely to arise in such structures, the com-
putational burden that is associated with evaluating the transfer function
associated with the input and output points of interest for any desired
value of s can be reduced significantly from that which is incurred from
direct application of methods such as the dynamic stiffness matrix method.

Using a sample structural configuration, the method was shown to
compare well in terms of frequency response in the elastic case with results
from a finite-element analysis. Replacement of certain elastic members with
viscoelastic members substantially changed the character of the frequency-
response profile near certain (formerly) resonant frequencies. Such alter-
ations would not likely result with the use of methods of approximation that
are often employed to model the effects of viscoelastic damping, based on a
modification of results from the elastic eigenvalue problem.

Finally, an approach was outlined to indicate how time-domain impulse
responses can be determined on the basis of transfer functions which may
include both elastic and viscoelastic members where constitutive equations
which describe the latter include fractional-order derivatives.
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Abstract

The fractional order state equations are developed to predict
the effects of feedback intended to reduce motion in damped
structures. Lhe mechanical properties of damping materials are
modeled using fractional order time derivatives of stress and
strain. These models accurately describe the broad-band effects
of material damping in the structure's equations of motion. The
resulting structural equations of motion are used to derive the
fractional order state equations. Substantial differences between
the structural and state equations are seen to exist. The
mathematical form of the state equations suggests the feedback of
fractional order time derivatives of structural displacements to
improve control system performance. Several other advantages of
the fractional order state formulation are discussed.

Nomenclature

A : state Matrix

-afl,  system eigenvalue

-a: diagonal matrix of eigenvalues

B state control matrix

b viscoelastic model parameter

DJ : the beta order fractional derivative

* Associate Professor, Associate Member ASME

** Professor, Associate Fellow AIAA
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D modified beta order fractional derivative

E ;E 1 viscoelastic model parameterso 1

E (x) the beta order Mittag-Leffler function

F(t) applied loads prior to initial time, t - 0

(t) :applied loads after initial time, t - 0

f(t) :modal loads prior to initial time, t - 0

F(t) modal loads after initial time, t - 0

f (t) stress operator acting on loads

G(t) structural pseudo loads

g(t) modal load

g(t) modal psendo load

-G : feedback gain matrix

I the one minus a order fractional integral

k structural stiffness matrix
=0

k structural visco-stiffness matrices=1

N number of physical degrees of freedom

M structural mass matrix

t time starting at the onset of motion

t time starting at the initial time

t time interval between t - 0 and t - 0
0

w(t) : structural displacements

x : spatial coordinates

x : the reduced state vector

x(t) : state vector

x : intial state vector
-0

y(t) modal response

y(t) modal response for loading prior to t - 0
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y(t) : modal response for loading after t - 0

z :impulsive load coefficients vector

basis fraction (1/n) for he system

r the gamma function

e(t) : strain history

': system orthonormal transformation

a(t) : stress history

(E +E D a Strain operatoro 1

(l+bD ) stress operator

Introducti

In the modeling of the linear elastic behavior of large space
structures, damping has typically either been ignored or modeled
as being linearly dependent on velocity. This damping model is
adequate for very lightly damped structures and also allows a
linear state space model to be defined for the structure's motion.
This formulation is well suited to the design of active control
systems using state space techniques.

However, for heavily damped structures ignoring the damping
is imprudent and modeling it as being linearly dependent on
velocity is inadequate. Velocity dependent damping models, while
mathematically straightforward, fail to describe the broad band
mechanical behavior of damping materials. Historically, the need
for more refined models has pushed the development of
viscoelasticity as a discipline within engineering mechanics.
Applicable viscoelastic models relate time dependent stress and
strain fields with series of ordinary time derivatives. These
models yield acceptable broad band Bode plots of material
properties, but they have drawbacks. Typically these models
contain many terms, making them mathematically cumbersome and
increasing the order of the differential equations describing the
system.

As an alternative we will present accurate broad band
viscoelastic damping models having only four parameters2 and posed
in terms of non-integer order time derivatives. The real strength
of this approach is that these non-integer or fractional order
derivatives describe inertial effects, damping effects, elastic
effects and control effects with equal precision. Substantial
accompanying benefits are that the order of differentiation in the
system equations does not exceed three and that a potentially
infinite number of additional feedback states arise to improve
system performance.

To reap the benefits of this approach; however, one must
become comfortable with the concept of fractional order
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different'-tion. While the convolution operator that produces
these time derivatives at first appears alien, frational
differentiation in the Laplace transform domian is exceedingly
simple. Multiplying a transform by sa, in effect, produces the
transform of the a order derivative.

The development and applications of fractional order
derivatives in viscoelasticity and structural dynamics are well
documented.1 -9 ,12 - 14 16 18  The models are consistent with
themodynamic constraintsa and have their foundation in classical
molecular theories predicting the macro mechanical properties of
viscoelastic materials.

4

The resulting structural equations of motion serve as the
foundation for the state equations, but they are substantially
different. The hereditary nature of the structural equations
suppresses the existence of homogeneous solutions found in the
state equations. In addition, the two sets of equations employ
different operators that lead to different requirements for
initial conditions. It should come as no suprise that the
generalized or fractional order state equations comprise a
generalization of the initial value problem. The generalization
begins with the structural equations of motion.

The Structural Equations of Motion

The structural equations of motion differ from classical
formulations in that fractional order derivatives are used to
model the viscoelastic damping phenomenon. The extended Riemann
Liouville fractional derivative is a linear operator

D a [w(t)] df w(t) dr (I)
(t(t)t) dt f-t-

(t) o ral-a)(t-r)

and serves as the basis of the generalized model of the
viscoelastic phenomenon. The most general form of the models is

N a N a
a(txi) + Z b D P [a(t,x E E(t'x + Z E D P [E(t x (2)

p-l p (t) 01 - P-x) 1 p (t)()

where the derivatives acting on the stress and strain fields are
of real, rational fractional order. Note that this model becomes
the classical viscoelastic model 0  when the orders of
differentiation are taken to be integers.

The Fourier transform of the fractional derivative of a
function has a special property when Lae function is zero for
negative time.
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F [D' [x(t)]] - (i) F[x(t)] (3)
(t)

where

F [x(t)] - f-00 x(t)e- iWt dt (4)

This property, eqn 3, is that the transform of the a order
derivatives is the transform parameter, iw, raised to the a power
times the transform of the function. Note the similarity of this
transform with the Fourier transform of an ordinary derivative.

The attractive feature of the fractional derivative operator
is the ability to vary the degree of its frequency dependence
through the choice of a. As a direct result, fractional
derivative models are capable of modeling linear,
frequency-dependent phenomena not easily captured by the
transforms of ordinary derivatives. This leads to models accurate
over several decades of frequency needing very few, typically
four, parameters6

In the time domain the four parameter model for uniaxial
deformation takes the form

(1 + bD*)o(t) - (E + EIDa)e(t) (5)

where b, E0 , E and a are the parameters. This model has been

used to construct the general three-dimensional constitutive
equations1  for linear, homogeneous, isotropic viscoelastic
materials . When these general constitutive equations are
employed, it can be shown that the general form of the finite
element equations of motion take the form

3

bMD2+aw(t) + MD 2w(t)_ + k1Daw(t) + k ow(t) - bDF(t) + F(t). (6)

where M is the mass matrix, k is the stiffness matrix, k is the

visco-stiffness matrix, F(t) are the applied forces and w(t) are

the strucLure's deflections. Note that the equations of motion
are posed in terms of three real, square symmetric matrices. In
general the visco-stiffness matrix k will not be a linear

combination of M and k and usually the equations of motion cannot- 0

be decoupled in their present form.
To overcome this obstacle to spectral analysis and begin the
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derivation of the state equations, we will pose the structural
equations of motion in terms of two real, square symmetric
matrices, for which an orthonormal transformation exists. To
begin this process one takes advantage of the composition property
of the fractional order derivative,

Da[D7 [w(t)] ] - DO+7[w(t)], (7)

and poses the structural equations of motion as

(bM(E)m + M(DO)r + k (DO)" + k) w(t)- (1 + b(4O))F(t) (8)

Here m, r and q are integers and (D6)m is the $ order derivative
taken m times.

fm - 2 + a

Or - 2

fiq -a

S- 1/n

is chosen to be the largest fraction of the form 1/n, where n is
an integer, common to all the rational orders of differentiation
in the structural equations of motion,. As we will see later,
this form for P is necessary to insure that initial velocities
appear in the fractional order state equations. The most general
form of these equations of motion is

m OP *i
I c (D )p w(t) - (1 + b(D %q)F(t) - f*(t). (9)p-

Here the c are real and constant, although many may be zero, and
* =-p

f (t) is the result of the viscoelastic stress operator acting on

the applied forces, F(t), as shown in eqn 8.

Eqn 9 describes the structures with N degrees of freedom
producing N equations of order Om that can be alternatively posed
as m.N equations of order 0. In matrix form the m.N equations of
O order are
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(Do) w(t)
H

(DP) 'w(t)

(D) 1w(t)

0c 00 c c~t f!(

- = 3-2-J- (10)

0 0 1)-w

(D w(t) -

+ -H 02D)Z~~ 0

S (Dp)'w(t)

-'-"T--' -O c...w(t) f (t)j

where the lowest set of partitioned equations is seen to be eqn 9.

The matrix [H] is chosen such that both square matrices of order
m.N become symmetric and the top (m-l).N equations are satisfied
identically. This is accomplished by constructing H such that all
matrices, c p lying on any given diagonal running from lower left

to upper right in the first matrix of eqn 10 are equal. We will

refer to this form of the equations of motion as the expanded
equations of motion.

For example, if a is one half in eqn 6, then 0 is one half
making m-5 in eqn 8 and the expanded equations of motion become

-0 0 0 0 bM '(D 1/2) 4w(t)'

0 0 0 bM M (D' /2)3w(t)

D 1/2 0 0 bM M 0 (D' 12)Iw(t).

0 bM M 0 0 (D' /2)1w(t)

bM M 0 0 k w(t)

0 0 0-bM 0 '(D1/2 ) 4wt),

0 0-bM -M 0 (D 12 ) 3 (t)

+ 0-bM -M 0 0 (Dl / 2 )  (t)

- M= = . -0

-bM -M 0 0 0 (D' 2/ Wz ) t

0 0 0 0 k w(t) l~D/2
. . .M -O (I~D )F(t)j

Boe th loe general form (eqn i0) and the example in eqn are
now posed in terms of two real, square, symmetric matrices for
which an orthonormal transformation exists,
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Ym.N(t)

(J ) w(t) . Y3(t) (12)

(Y)w(t) y2 (t)

w(t) Yl(t)

which leads to a system of m.N uncoupled differential equations
of order 0.

MJ+ [\a"]{yct)} [ ]T{ f *(t)} -f(t)} (13)

Constructinathe Modal State Eauations

The decoupled structural equations of motion or basis
equations (eqn 13) individually take the form

(Di+ ao)y(t) - f(t) 6 - 1/n (14)

where the subscripts have been dropped to simplify notation.
Green's function solutions for these equations are relatively
straightforward and the resulting expressions for the forced
response of the structure can be shown to be real, continuous and
causal (1:73). These solutions to eqn 14 may be viewed as
particular solutions of the structural equations of motion.

It is important to note that the only homogeneous solution to
eqn 14 is the trivial solution. This is consistent with a strict
interpretation of eqn 2, the generalized visocoelastic
constitutive model. Inherent in the model is the implication that
at time zero the viscoelastic material should be in its virgin,
undeformed state and the structure is commencing motion from a
quiescent state. Attempting to impose non-trivial initial
conditions implies the existence of previous motion that is
inconsistent with the hereditary viscoelastic model and hence,
homogeneous sol-tions are not needed.

To construct the modal state equations, one needs to shift
the time scale such that the initial time occurs at some time, t

0

after the onset of structural motion. This shifted time scale is
shown in figure 1. Posing the basis equations, eqn 14, in terms
of this shifted time scale yields

1 9 ":48

1 d ft y(-t d +ap (t - f(E-to) (15)

dt 0 (1-r)p d0 0
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The applied loads prior to t (0 :t-t ) are ?(i-t ) and the

corresponding response is y(t-t ). The equation predicting this
0

response is

D y(t-t )+a y(t-to)-f(t-t0 ) (16)

The loads for the episode of interest (tot) are T(I-t ) and the
equation for the corresponding response 0( -t 0 is

DP=(t-t ) + aP (Zt-) " r(t-t) (17)

y 0 y 0 0)

The total response for t t is y + y and the general
0

expression for the response is

1 t (r-u) + (r-u) +~ r + y-1
r(l-) 0du +a r I Y:rzj

(18)

- T(r) + g(r)

where r - t-t , u - t-r. Here g(r) is a pseudo forcing function
0

that produces the residual response of the structure due to the

prior application of f(t-t ).
0

r+t

1 y (r-u) 0
g(r) - - I + (r+to ) (19)

Expressing eqn 18 in terms of the time t scale in Figure 1, where
zero time is now t after the onset of structural motion, yields

0

1 (ly (-') d + apy(t) - Y(t) + g(t) - g(t).r al-p) 0O TP

(20)

Note that here the order of differentiation and integration
in the fractional derivative operator is the opposite of eqn I.
This reversal of operations occurred when Leibnitz's rule was used
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to differentiate in eqn 15, producing eqns 18 and 19. This change
will prove crucial to solving the initial value problem, because
in contrast with eqn 14, eqn 20 possesses both a particular
solution, uniquely dependent on the forcing function, and a
homogeneous solution, uniquely dependent on the initial value,

y(o).
Before presenting these solutions it is important to address

the relationship between the operator appearing in eqn 20 and the
original definition shown in eqn 1. Using Leibnitz's rule to
differentiate the integral in eqn 1 yields

1 d ft w(t-T) d. __ - () t, r)d (21)
r(I-a) dt a r- a) 0 ra

or in operator form

D w(t)-) + w(t)I r(l-) P (t) (22)

D - 1I -  t
L~tw(t)J [w'-t(t)]

A

where Da is the definition and D is the modified derivative
operator appearing in eqn 21. In fact Da is the Riemann-Liouville
indefinite, fractional order (1-a) integral of the first
derivative of the function or effectively an order -a integral of

a function. 15,17 The key observation here is that the indefinite
fractional order integral operator in effect produces a constant
of integration ii1 each modal response. These constants will be
used to statisfy the initial conditions in the fractional order
state equations.

Posing equation^ 0 in terms of tne modified fractional
derivative operator, D

(Df + a ) y(t) - T(t) + g(t) - g(t) (23)

produces the modal state equations. Note the similar appearance
of eqns 14 and 23. Recall that eqn 14 is based on the t time
scale and has a trivial homogeneous solution. On the other hand,
eqn 25 is based on the t time scale, posses a non-trivial
homogeneous solution and accounts for the effects of previous
motion through the initial value, y (0), and pseudo forcing
function, g(t).
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Constructing the Fractional Order State Equations

The overall goal is to determine the nature of the fractional
order state equations from the modal state equations. The

immediate goal is to use the modal state equations, eqn 23 to
predict structural response, where the relaxation effects induced
by previous motion are accounted for by the pseudo forcing
functions, g(t). The transient structural response will be a
superposition of the homogeneous solutions of the modal state
equations and will be shown to satisfy the initial conditions.
The forced structural response will be constructed from the
particular solutions to the modal state equations derived using

Green's functions. Superimposing the transient and forced
response produces the total structural response.

The transient structural response is constructed by first
determining the general form of the homogeneous solution for the
modal state equations, eqn 23. These solutions take the form

(-(at)P )(24)
Yh(t) - () r(l+p)

which is a special case of the beta order Mittag-Leffler function
defined as (14:102)

- (x)P (25)
E0(x) - r(l+pp)

p-o

In Mittag-Leffler notation the homogeneous solution is

yh(t) - yh(O) E0(-(at)l), (26)

where this special Mittag-Leffler function has the property

DPE 0 (-(at)) - -a E4#(-(at)O) (27)

The property should come as no surprise because the
Mittag-Leffler function has long been viewed as a generalized
exponential function". In related work12 ~1 4 Koeller has shown
that the quasi-static fractional calculus viscoelastic formulation
leads to Mittag-Leffler functions.

Including the particular solution, the total solution to each
of the modified basis equation is

y(t) - Yh(O) E,(-(at)o) + ft Dl'[E,(-(ar)fl]g(t-r)dr (28)
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which can be determined using Laplace transforms or other
traditional solution techniques for integral-differential
equations. The kernel in the convolution integral of eqn 28 is
the unit impulse solution (Green's function) for the modified
basis equations, and is singular. Note that EP(O) is not zero and

that the singular behavior of the kernel can be determined through
a straightforward application of eqn 1.

It h s the singular nature of fractional order derivatives of
E (-(at) ) that is useful in resolving an apparent paradox in the

overall initial value problem. Recall that there are m.N (eqn 23)
modal state equations needed to characterize the structure, where
the solution for each equation has a homogeneous solution
containing a different initial value. This paradox becomes
apparent when eqn 12 is used to solve for the m.N initial values
of the homogeneous basis functions in terms of the structure's
initial displacements Wh(t) and their derivatives evaluated at

time zero.

(Dfi) M-1Hh( t) Ym.N(t)

(D) (t) ) 2 ] y3 (t) (29)
(DP)1Hh (t) y2(t)

±h(t) yl(t)

t-0 t-0

The paradox is that at this point only w h(0) and D1w h(0) can be

specified, while the remaining elements in the state vector on the
left of eqn 29 are undetermined. Note that the order of the
differential equations of motion (eqn 6) is order 2 + a or
equivalently 6m and that the state vector in eqn 31 calls for the
initial values of derivatives up through 2 + a - P or equivalently
,(m-l). In other words, when posing N, Pm order differential
equations as a system of m.N differential equations of order 0,
the corresponding initial value problem calls for all the initial
values of the pO order derivatives of the displacement vector,
w h(t): p - 0,1,2,..., m-l. These requirements appear to be

analogous to the traditional initial value problem, but also leave
one with the requirement for yet more initial conditions.

It is proven in reference *95A that all of the non-integer
derivatives of w h(t) of order less than two appearing in the state

vector have zero initial value. The initial values for
acceleration and the accompanying higher order derivations
appearing in the state vector can be determined by returning to
the original equation of motion, eqn 6, and using successive
applications, of eqn 22 to determine the singular terms in the
equation of motion. The resulting equation of motion for the
response to turning off the previous forcing function is
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Figure I Time Scales for the Loads and
Responses of the Initial Value Problem.
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Figure 2 The Response of the Damped Oscillator
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W(o )t a  m-2n-1t- (-n-)

-bM -bM t
-b r(l-a) b= X (I )D (0)

" e-i -

A ((O' A)t

+(M(t) -D 1k +(k +k kD )w(t) (30)
-r(l-az) =0 =1 -(0

b r(l-a) +_am

The fractional derivatives in this equation of motion are
evaluated for t - 0 or equivalently t - t . G(t) are the pseudo

forces needed to produce the residual motion associated with the
previous loading history, already accounted for in the modified
basis equations. The singular forcing function is the result of
the o order derivative of the step function turning of F(t). The
remaining singular behavior is the result of repeatedly applying
eqn 22 to separate out the singular behavior of the fractional
derivatives of acceleration.

The corresponding equation of motion for the response to the
new loads is

+(O+)t m-2n- t-t, ^ (m-2n- )

bM + bMZ r(l.i) D1

A(0+)t -
(31)0 0-

(1 + bD) w'(t) + k1 r(l-*) + (ko + k ID)W(t)

bf(O+)t 0'

- r(l-a) + (I + bD0 )P(t)

where the singular forcing function results from again usin& eqn
22 to express the effects of the step function turning on P(t).

The remaining singular behavior is also the result of using eqn 22
to separate out the singular behavior of the fractional
derivatives of acceleration. Again the tilde and double tilde
notation identify motion due to previous forces, F(t), and present

forces, f(t), respectfully, as in eqns 16 and 17.

Equating the coefficients of the strongest singularities
(order a) in eqn 30 and then in eqn 31 yields two equations needed
to establish the initial conditions acceleration.
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S -bM w(O () - - bF(O (32)

bM ' (0+ ) + ki W (0 + )  0( b(+) (33)

Adding these two equations produces the relationship needed to
establish changes in the initial conditions due to stopping and
starting of the load histories.

- (O)) + bl1k,( W(O+) - W-(O-)) ?(O+) - F(O-) (34)

Since this relationship is based on step loading, which is
incapable of instantaneously changIng the displacement or velocity
time history between time 0 and 0 , one can conclude that

;(0 - W(O) (35)

!(0+ ) !(0") (36)

and eqn 36 can now be re-expressed as

-w(O -M ( 1O+) - kwO)) (37)

Thus we see that the change in the initial accelerations is
proportional to any instantaneous changes (steps) in the
magnitudes of the applied loads at t - 0. It is reassuring to
note that eqn 37 is strongly reminiscent of Newton 's second Law.
To determine the initial accelerations at time 0 one needs to
determine the accelerations at time 0 and then add to them the
additional component of acceleration from the change in load
histories. Should there be a continuous transition from one load
history to the other, then

-( W(O) (38)

and the accelerations at time 0 are the accelerations used in the
initial value problem. Satisfying the initial conditions on
acceleration in this manner effectively removes the a order
singular terms on both sides of eqns 30 and 31.

The remaining singular terms in these equations do not have
corresponding terms on the respective force sides of the
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equations. To preserve the equality one must conclude that the
coefficients of these singular terms are zero. Note that setting
these coefficients to zero in effect generates the remaining
initial conditions needed in eqn 29. From eqn 30

(m-2n-t)p

D Pw(0") - 0 t - l,2,3,...,m-2n-1 (39)

and from eqn 31

(m-2n-t)
A

D (O+)j- QI - 1,2,3,".,m-2n-1. (40)

19:54
Proof is given in reference Hence, one can see that the
initial values of the fractional derivatives of displacement
greater than second order and less than order 6m must be zero to
preserve the equation of motion. Adding the two equations of
motion and recalling that

v(t) + !(t) - w(t) t t 0 (41)

yields

A A A

1(1 + bD )w(t) + (k +k D )w(t) - (1+bD') f(t) + (t) (42)

which is identical to eqn 8 except for one very important detail.
The fractional derivative operator has changed from the original
definition, eqn I, to the modified definition eqn 22. Recall that
the modified basis functions use this modified definition as well.

In fact, the entire initial value problem (constituted by
eqns 42, 10, 23, and 29) and its solutions (eqn 28) can be cast in
terms of the modified definition of fractional differentiation.
The composition property for the modified operator

A A A

D[D7 [w(t)]] - Da [w(t)], (43)

holds when the initial values of the fractional derivatives are
zero as stipulated in the initial value problem. One can now
straightforwardly demonstrate that eqn 42 leads to a coxj esponding
form of eqn 10 where the D" operator is repl~ed by Dr. The P
operators in eqn 29 can now be replaced by D' as well. Noting
that the particular solution in eqn 28 is independent of the
initial value and may be viewed as an excitation from a quiescent
state, one can show that the solution of the modal state equation
takes the form
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y. (tW - Yj (O) E0 (-(ajitY)

t (44)

+ (-a )ml D I E((at)')]gj(t-)dr
J0

Proof is given in reference19 :
6
2 and note that the kernel is now

non-singular. One can now conclude that eqn 44 is the solution of
a well-posed problem. The uniqueness of the solution follows
immediately from Laplace transforms. Multiplying the initial
value and the modal forcing function, gj (t), by (1+e) and taking e

small demonstrates continuous dependence on the data, so long as
the convolution integral is bounded.

To test the robustness of the modal state equations, one
needs to ascertain its ability to generate the structural response
to impulsive loading. The method entails solving the initial
value problem for a step response (using initial accelerations,
eqn 37) from a quiescent state and noting that the impulse
response is the first derivative of the step response. The
structural response for a unit impulse load at the zth degree of
freedom of the structure is

m.N

6 t) - b X  0 l(-a)D- E,(a Jt) lj

m.N

+ b m tlj( 'aj) .lTZ .t (45)
j-i

where z is a N order column vector of zeroes except the zth
element, which is one. Here 0lj are the structure's mode shapes

which constitute the lowest N terms of the jth eigenvector of the
expanded equations of motion, eqn 10. Again the solution is seen
to be continuous and is expressed in terms of the modified
operator and the Mittag-Leffler function. Derivation of this

19:67
expression is given elsewhere

At this point one might be tempted to assert that the
original definition of fractional order differentiation, eqn 1, is
somehow inappropriate for the initial value problem. Not true.
Recall that the initial value problem has insufficient numbers of
physically motivated initial values to determine uniquely the
overall homogeneous solution as a superposition of solutions to
the modified basis equations. The additional auxiliary initial
conditions, developed by suppressing singular behavior at time
zero, provided precisely the number of needed initial conditions
for a unique solution. Recall that the original definition,
eqn 1, produced this singular behavior without which the initial
value problem would flounder for lack of initial information

19
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Moreover, having derived the structural equations of motion
in terms the modified fractional derivative operator, eqn 42, and
having established the robustness of the formulation through the
existence of its impulse response, one can now proceed to
construct the structure's fractional order state equations.
Casting equation 42 in terms of two real, square and symmetric
matrices, as shown in eqn 10, produces the fractional order state
equations.

0 (D)m -1 (t)

^ H* (D ) w(t)
D 2

0(D ) w(t)

LC ~c c c w(t)
=rn =3=2=l j (46)

2 (Dr) rnlw(t)0(A "

H 0 (D)0w(t)

(D )'w(t) - 0

0..0 c w(t) f (t)+G(t)
0 (

with straightforward matrix manipulation these state equations
take the form

D x(t) - A x(t) + B u(t) + B G(t)

Note that applying the orthogonal transformation given in eqn 12
to the state equations yields the modal state equations, eqn 23.
In effect one has come full circle and derived equations of motion
capable of describing the hereditary viscoelastic damping effects
as well as characterize the system in terms of its initial states.

It is reassuring that the fractional order state equations
predict a response that is, strictly speaking, a function of all
its previous states, as it should be for a system that exhibits
hereditary behavior. The pseudo forces 0(t) describe the effects

of previous internal viscoelastic defcrmation, and the initial
states (taken at some time t after the onset of motion) describe

0

the effects of immediately previous motion. To predict accurate
short term system response, records of previous motion must be
kept to construct the pseudo forces. This is necessary for
heavily damped structures. In lightly damped structures the
hereditary effects are much smaller and the pseudo forces may be
ignored.

With or without the pseudo forces included the fractional
order state equations one can predict open or closed loop system
response. The closed loop feedback relationship between the
state vector and the applied forces is
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- x
= -r

^(~ (47)
c(t) - -(I+bD)G A - - x (

Here x is the reduced state vector containing the displacements-r

w(t) and all derivatives (including fractional order) of w(t) up

to, but not including, the second derivative. When the stress
operator takes the a order derivative of x , this generates the

"Z

higher order derivatives of w(t) in the full state vector. Here

the -G is the matrix of actual gain coefficients, -G is the matrix

of effective gain coefficients and x is the full state vector

appearing in eqn 46.
Note that when b is zero in the stress operator the reduced

state vector is the full state vector and no distinction is
necessary between actual gains and effective gains. Substituting
eqn 47 into eqn 46 produces the equations for the closed loop
response.

D x - (A - B G ) x=. . . . (48)

This equation includes the feedback of fractional order
derivatives of the structure's response. Recall that the
fractional derivatives actually being fed back are those of order
less than two, namely those in the reduced state vector x . The-r

fact that the full state vector appears in eqn 48 is a consequence
of the mathematics in eqn 47. However, eqn 48 is in fact the
closed loop state equations. There is no a priori reason to
exclude the fractional derivatives from feedback.

In fact Oldham20 has developed RLC circuits that generate the
fractional order derivatives and integrals of input signals over
limited frequency ranges. It is possible to take signals
proportional to structural deflections and accelerations and
produce signals proportional to their fractional derivatives and
feed them back.

The Fractional Order Matrix Exponential Function

Although the modal equations are an effective tool in
deriving the fractional order state equations, solution formats
for these state equations are not limited to modal analysis. When
modal analysis is unwarranted, the fractional order analogue of
the matrix exponential function can serve as an alternate
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solution format.
The development begins with the open loop state equations

without the pseudo force.

Dfx - A x (49)

One can use the following approach to determine the closed loop
response by substituting A - BG, into eqn 48 for A here and

replacing the orthogonal transformation that follows with a
similarity transformation for the asymmetric matrix A -B G. For

simplicity of notation the open loop case is considered.
One assumes a time series solution of the form.

x(t) - x0 +x 1 to + x 2 t 2f + " + x tPf + ... (50)
- -a - 2-p

Substituting this solution into eqn 49, evaluating the fractional
derivatives term by term using the modified operator defined in
eqn 22 and equating terms of like power in time yields the
following solution.

A 2 t 2,6 Pt P
F At

~t - [ + r(l+2) + r +PP) + ].. (51)

or

x(t) - E (A to) x (52)
P 8= -0

Here E (Atf) is the fractional order matrix exponential function.

It may be viewed as the generalized matrix form of the scalar
Mittag-Leffler function given in eqn 24. Similar to its scalar
counterpart, the fractional order matrix exponential function has
the property

D E  (A - (A t. (53)

One can relate this form of the solution back to the modal
solutions, eqn 22, by using the orthogonal transformation given in
eqn 12

X- y (54)

DAB-20



to decouple the homogeneous form of eqn 46. The result is the
homogeneous modal state equations.

D y- (55)

where -aO is a diagonal matrix containing the system's

eigenvalues. Solutions of this equation take the form

(t) - E (-(at))y (0) (56)

which are identical to those in eqn 26. However, using the
orthogonal transformation to construct the structure's response
from eqn 56 produces

x(t) - j E6(- aftl) 0T o (57)

This result is equivalent to that shown in eqn 52.

Example Problems

To demonstrate the solution techniques developed for the
fractional order state equations, one will first apply them to two
simple cases. The first case is a homogeneous first order
differential equation with constant coefficients. The second
example is a second order differential equation for a single
degree of freedom viscoelastically damped oscillator.

If one is to view the fractional order state formulation as a
generalization of the initial value problem, its solution
techniques should apply to ordinary differential equations with
constant coefficients. The first order differential equation is
A
^ 2

D 1w + a w - 0 w(0) - w

which using the composition property can also be expressed as
^/ 2

D 2/2w +a w- 0

Posed in fractional order state form this equation becomes

D 1 0~~ { w wl+ [ 0 2] { w }{0}

The associated eigenvalue problem is

1 0a0

which has eigenvalues
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- ± ia

and associated eigenvectors of the form

{ } { ±ia}
The solution takes the form

A

J D 1 W(t) j ia -i i(0 / (-(tat 1 2 )
Y2 (O)E1/2( (-iat' /

2 ) )

To determine the initial values y1 (0) and y2(O), one evaluates

this expression at t - 0

{0} [ia .ia]{y(O)}
w 0 1 1 y 2(0)

and solves for y (0) and y (0)

fY,(O)j I [rI ialf0 WO'21
2 (0)J 21a L ia ] wJ -w/2J

Substituting these values into the solution for w(t) given above
yields

w w0 1/2 0 1/2
w(t) - T E/2('-(iat )) + 2 1/2 ('('iat

Using the series representation of the Mittag-Leffler function
given in eqn 25 and summing the two series, the terms having
fractional order powers of time add out and one is left with

W~t) (-a t p

0 r(l+p)

p-O

or

2

w(t) - 0 e-a t
0

as expected.
In the second example the fractional order time behavior does

not add out, but instead describes the decaying motion of a damped
oscillator.

A A

D2w(t) + 2D' 2w(t) + w(t) - 0
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For simplicity the coefficient of the 1/2 order derivative in the
stress operator is taken to be zero. The remaining half order
derivative describes the low frequency viscoelastic damping and

the mass and stiffness coefficients are taken be to one. Again
using the composition property the equation may be posed as

A A

D /2w(t) + 2D 1/w(t) + w(t) - 0

In expanded form the equations become

A A

S0 01 0 D2/ 2w(t) i0 -10 D2/ 2w(t) 0

0 1 1 0 0 1/2w(t) 0

1 0 0 2 w(t) 0 001 w(t) 0

The eigenvalues and eigenvectors for this system appear in
Table 1. Applying the initial conditions

A --0.5437 A --i.0 A -0.7718+i. I1511 A -0.7718-1.11511
1 2 3 4

1i{j 2{~ # 3 } ~4A 2 X 2 X 2

1- 1 2- 21-X3 4- X4

Table 1 - The Eigenvalues and Eigenvectors of the Fractional Order
State Equation for the Damped Oscillator.

A A A

x(O) - 2.0 D1/2w(O) - 0 D 2/w(O) - 0 D 3/2w(O) - 0
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and solving for the coefficients of the Mittag-Leffler functions
as before yields the response of the heavily damped oscillator. A
plot of the response is given in figure 2.

Conclusions

The fractional derivative model of viscoelastic damping
appears to be a useful tool in constructing state equations that
describe the motion of damped structures. The essential value of
this viscoelastic model lies in its use of generalized derivative
operators. When the model is incorporated into equations of
motion, the accelerations describing inertial effects can be
expressed in terms of the same operator that describes
viscoelastic effects. Furthermore when the external loads are
related to structural responses through constant gain feedback,
the feedback forces can be described in terms of this operator as
well. Given that these fractional order state equations contain
fractional order time derivatives of structural motion in the
state vector, this formulation suggests the feedback of rational
order time derivatives of structural response.

These fractional order state equations appear to constitute a
generalization of the classical initial value problem. Posing a
system of integro-differential equations as higher order matrix
equations with lower, fractional order differential operators
produces additional homogeneous solutions with accompanying
requirements for additional initial conditions. These additional
or auxiliary initial conditions are developed by suppressing
singular behavior in the equations of motion. Eliminating the
singular behavior in the equations of motion also leads to the use
of a modified fractional order derivative that accommodates
initial conditions (initial states) in the state equations. Thus
the state equations are seen to be related to the original
structural equations of motion, but not identical as they would be
in a classical formulation.

Moreover, this formulation apppears to be a strong candidate
for the general description of linear systems exhibiting strong
hereditary behavior with weak frequency dependence. The
advantages for the controls engineer are numerous. First, one
avoids the use of time dependent coefficients in the state
equations. Also the fractional derivative models are compact,
making least squares fits to data tractable and manipulation of
the model practical. The resulting state equations have analytic
solutions and the solution techniques are similar to classical
approaches. Finally, the inclusion of the fractional order
derivatives in the state vector provides additional forms of
feedback to improve system performance. Given that a fractional
derivative model accurately captures the hereditary effects, the
fractional order state equations appear to be a useful tool in the
design and analysis of a feedback control system.
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IMPROVED SOLUTION TECHNIQUES
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Michele Gaudreault* and Ronald Bagleyt

Air Force Institute of Technology
Wright-Patterson AFB, Ohio

March 29,1989

Abstract

Re structural problem of a viscoelastically damped rod is considered. A
four parameter fractional derivative viscoelastic model rather than the tradi-
tional viscous model is used to describe the stress-strain relationship. The in-
troduction of fractional order derivatives leads to high order matrix equations,
which are cumbersome and time consuming to solve. Thus, there exists a mo-
tivation to seek alternate solution techniques. An existing technique, modified
matrix iteration, is presented, and a new one, employing spectrum shift con-
cepts, is proposed. The spectrum shift technique is shown to be significantly
more efficient.

*Ph. D. Student, Dept. of Aeronautics and Astronautics
tAssociate Professor, Dept. of Aeronautics and Astronautics
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Nomenclature

[[ ] square matrix
transpose of matrix
inverse of matrix

{ } column vector

A cross-sectional area
bm parameters of viscoelastic model

[D(A)] dynamical matrix
D ( ] generalized derivative of order a
E Young's modulus
En parameters of viscoelastic model
F[ ] Fourier transform operator

{F(8)} Laplace transform of the vector of
forcing functions

i square root of negative one
[K(s)] viscoelastic stiffness matrix
[K1] pseudo stiffness matrix of expanded

equations of motion
L[ ] Laplace transform operator

L length of a rod element
[M] mass matrix
[M] pseudo mass matrix of expanded

equations of motion
a Laplace parameter

{z(t)} column vector of structural displacements
{X(s)} Laplace transform of {z(t)}
an parameters of viscoelastic model
6,n parameters of viscoelastic model
c(t) strain history
r(a) gamma function of a

A eigenvalue associated with expanded
equations of motion

{} mode shape
JA shift factor

o,(t) stress history
W Fourier parameter and frequency

Introduction

The fractional derivative viscoelastic model has its earliest roots in Nutting's
observations that fractional powers of time could model the stress relaxation
phenomenon (5]. Gemant later noted that stiffness and damping properties
of viscoelastic materials seemed proportional to fractional powers of frequency,
implying that fractional order time differentials might be used to model the be-
havior (14]. Scott-Blair combined the ideas of Nutting and Gemant by proposing
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the use of fractional order time derivatives [2]. Caputo applied the concept to
the viscoelastic behavior of geological strata [4]. Then he and Minardi showed
that constitutive relationships employing the fractional calculus described the
mechanical properties of some metals and glasses [5]. Bagley proposed incorpo-
rating fractional derivatives into finite element models of viscoelastically damped
structures. Since then, he and Torvik have jointly published several papers
demonstrating the feasibility and benefits of using fractional calculus. Of par-
ticular note is "A Theoretical Basis for the Application of Fractional Calculus
to Viscoelasticity" [5], which uses molecular theory to derive the existence of
generalized derivatives. Their efforts have shown that fractional calculus is an
attractive approach to modelling viscoelastically damped structures. The result-
ing model requires very few parameters and is often accurate over six decades
of frequency [2].

Generalized calculus is not a new concept - mathematicians have dealt with
it for some time [10, 115-118]. A generalized derivative is represented in this
paper as

De[a(t)].

The generalized derivative can be defined for complex a, but only real values
will be considered here. Fractional derivatives are generalized derivatives with
rational a. The term "fractional calculus" implies the use of fractional deriva-
tives.

This paper reviews the properties of generalized derivatives and the ex-
panded equations of motion for a fractional order system describing a viscoelas-
tically damped rod. The technique proposed by Bagley to solve for the eigen-
structure is presented. A more efficient method is presented later, along with
some examples.

Generalized Derivatives Applied to Viscoelastic Materials

Before applying generalized derivatives to structural problems, it is neces-
sary to understand the properties of generalized derivatives and their use in
viscoelastic theory. As will be shown, generalized derivatives behave in much
the same way as conventional derivatives. When used to model viscoelastic
materials, generalized derivatives typically provide an excellent model over a
broad range of frequencies [4]. To show how generalized derivatives can be used
to model viscoelastic materials, it is appropriate to present first the properties
of generalized derivatives, especially the Laplace and Fourier transforms. The
generalized derivative is defined as [1, 2]

1 d / zr)
D*[z(t)] [(-) =- Y- -) dr for 0< < 1 (1)

Note that this definition is only valid for a < 1. However, the definition requires
only a slight modification for a generalized derivative of order greater than one.
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Let m be a nonnegative integer, and a defined as before. Then (1, III

1 djfl +l =t z(r)
Dm+ ~Z(j)j- rc- a) di + 0__ (t.-)a dT (2)

Although imposing in the time domain, in the Laplace (or Fourier) domain,
the generalized derivative manifests itself as a fractional power of s (or w). To
calculate the Laplace transform, let r = t - 17. Then,

D*[z(t)] = d(1 a) d * (t- 7) dri (3)

Applying Leibnitz's rule,

D[z(t)] = rI - ) a .z (t -q)di+ ri-) (4)

Noting that the integral is a time convolution, and that

L [r(: ) =] -1 (5)

the Laplace transform is

L[D*(x(t)jj = (8L(Q(t)j - z(O)) + z(O)
8a1-a

or, more simply,
L[D*[z(t)]] =,s*L[z(tfl (7)

where co

L[x(t)] = j x(t) e-" dt (8)

Notice that for initial conditions equal to zero, the Laplace transform of a gener-
alized derivative of order at has the same property as the conventional derivative:
the transform is 8* times the transform of the function. In fact, the generalized
derivative satisfies many of the same properties as the conventional derivative,
particularly linearity and the composition property (1, 8-10]

DaLy(t) + z(t) = Da[y(t)] + D*[z(t)] (9)

D*[r9[x(t)j = D*+OI[a(t)] (10)

The Fourier transform is defined as

F[z(t)] j z(t) e" d (11)
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If x(t) = 0 for t < 0, then the Fourier transform can be written as

F[z(t) = j z(t) e' ° dt (12)

It is easily seen that the Fourier transform of a generalized derivative is

F[Da[x(t)]] = (iw)*F[z(t)] (13)

In the preceding discussion, the only restriction placed on a was that it be a
nonnegative real number less than one. However, for engineering applications,
an irrational number can be approximated by a rational number. So a will now
be restricted to be rational as well. Using the term "fractional derivative" will
indicate this additional restriction.

To illustrate the use of fractional derivatives in viscoelastic theory, consider
the standard linear viscoelastic model relating stress and strain [2]

M dn E d'e(t)
o(t) + Zbm d---- Eod(t)+ E,, 1t4

M=1 t n=1 -(4

Recalling Scott-Blair's proposal, replace the conventional derivatives by deriva-
tives of fractional order. The result is the general form of the fractional deriva-
tive viscoelastic model [2]

M+ N

0'(t) + E bmY D-[O(i)] = Eoc(t) + D E Da-[C(t)] (15)
m=1 n=1

A large number of materials can be modelled by replacing each sum in Equa-
tion 15 by a single term involving a fractional derivative

a(t) + b Y [u(t)] = Eo(t) + El D[c(t)] (16)

Invoking the Second Law of Thermodynamics requires that [3]

Eo _ 0 El _ bEo
El _ 0 a = 9 (17)

b > 0

These constraints enlsure nonnegative energy dissipation and nonnegative work.
The stress-strain relation in the Laplace domain is

a'(s) Eo + Eisa (18)
c(s) 1 + bso

This is known as the four parameter model, and has been shown to be very
accurate over several decades of frequency [4, 14, 15].
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Figure 1: Finite Elements of Rod

Expanded Equations

Although the fractional derivative viscoelastic model mty provide an 2x-
cellent description of a material's properties, in order for it to be useful, its
application to a structure must lead to a solvable problem. This section il-
lustrates the existence of a solution by examining the finite element model of
a viscoelastically damped rod. The equations of motion are developed using
the elastic-viscoelastic correspondence principle, which states that a viscoelas-
tic problem is equivalent to an elastic problem with the elastic moduli replaced
by the appropriate viscoelastic moduli [7, 42]. This section develops the fi-
nite element model of a viscoelastically damped rod, constrained at each end.
Figure I shows a five degree-of-freedom rod, constrained at each end, with vis-
coelastic damping pads at each node. Assume the rod is uniform and purely
elastic. Using standard finite element techniques, the stiffness matrix for the
elastic rod is of the form [8, 300]

2 -1 0 0 0
-1 2 - 1 0 0

[KE) = E 0 -1 2 -1 0 (19)
L 0 0 -1 2 -1

0 0 0 -1 2

where E is the Young's modulus for the material in the rod, A is the cross-
sectional area, and L is the length of one element. Assume the modulus of the
viscoelastic material is

!(s) E0 + E s* (20)(s) = - 1 + bsa

as derived in the previous section. The damping pads provide an out of phase
shear stress to the rod. The shear stress is partially elastic and partially viscous.
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due to the real and imaginary parts of the modulus. As an example, let a = 1/2,
b = 0, and s = iw, where w is an observed frequency of the system. Then

E(w) = Eo + El(iw)/ 2

= Eo + (w)ll 2Eleiv/ 4  (21)
= (Eo + (w) 11 2 E1 cos 1.) + i(w) 1 1 2 E1 sin

The real part represents the elastic component of the shear stress, and the
imaginary part represents the viscous component, which is ninety degrees out
of phase.

The contribution to the structure's stiffness matrix due to the viscoelastic
pads is

G(s)(Kv] - (22)

A 1/itl 0 0 0 0

Go + Gis a  0 A 2/t 2  0 0 0
0 0 A3/t 3  0 0
0 0 0 A 4 /t 4  0

0 0 0 0 A 5 /t 5

where Ai is the area of the pad attached to the rod at ith degree of freedom and
ti is the pad's thickness. The ratios Ai/ti are the stiffness coefficients for the
damping material at the corresponding degree of freedom. Then the stiffness
matrix for the total structure is

[K(8)] = [K] + Go + Gsa [Kv] (23)[K~s)]-[K + lbs a

The mass matrix for the rod is [8, 301-302]

4 1 0 0 0
1 4 1 0 0

[M]=PAL 0 1 4 1 0 (24)
6 0 0 1 4 1

0 0 0 1 4

where p is the density of the rod, and A and L are defined as above.
The equations of motion in the Laplace domain are

[82 [M] + [K(s)]] {X(e)} = {F(s)} (25)

where {F(s)) is the Laplace transform of the forcing function. Setting {F(s)} =
0 yields the homogeneous equation from which the eigenstructure is found.
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To clear the denominator in [K(s)], multiply through by (1 + bso). Defining

[Ao] = Go(Kv] + [KE] (26)

[Aq] = GI[Kv] +b[KE] (27)

and expressing a as a ratio in lowest terms, q/m, gives

(s(2m+q)Im b[M] + s2m/m [M] + s/m [Aq] + [Ao]) {X(s)}

= (1 + bs'lm){F(s)} (28)

In order to obtain an orthogonal transformation and decouple the equations

of motion, cast the equations of motion in the following format

81/m[M] {9(s)} + [K] {9(N)} = {F(s)} (29)

[0] [01 ... [0] b[M]

[0] [0] ... b[M]

[M] = . .. [A91

[0] b[M] ... [Ag]

b[M] ... [A] ... [0]

[01 [0] . [0] -b[M] [0)

(01 [0] ... -b[M] ... [0]

(K] =[-A]

[0] -b[M] ... [-Ag] ... [0]

-b[M] ... [-A] ... [0] [0]
[0] [0) ... [0] [0) [Ao]

s(2M-lj/M {X(8)}
{(2M)2)/m {X(S)}

SIm {X(8)}
1 {X(s)}
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[0]

[o]+ (1+bs1/'){F(s)}

With {F(s)} = 0, the problem is now in terms of real, square, symmetric ma-
trices. Thus, the eigenvalues will be distinct and either real or occur in complex
conjugate pairs. Also, the eigenvectors will be orthogonal to one another. It is
a straightforward matter to decouple the expanded equations of motion using
standard techniques [1, 67-68] Notice that for an n degree-of-freedom structure,
the order of the expanded equations is n(2m + q). From Equation 28, it can
be seen that there are (2m + q) branches to the problem, with n eigenvalues on
each, resulting in n(2m + q) eigenvalues. In a standard viscous formulation of
the problem, only 2n eigenvalues would be found. The additional ones are due
to the use of the fractional order derivatives. For a large structure, the higher
order of the equations of motion represents a significant computational burden.
Now that the existence of the solution has been proved, it will be beneficial
to consider solution techniques that avoid solving the expanded equations of
motion.

Modified Matrix Iteration Solution

The current method of determining the eigenstructure of the fractional order
system developed in the previous section is to use a modified matrix iteration
scheme on the homogeneous form of the original equation. Matrix iteration
avoids computing and solving the characteristic polynomial of the matrix. Un-
like using a Bessenberg matrix, which requires knowing the eigenvalue before
the eigenvector can be calculated, matrix iteration determines both at the same
time.

Matrix iteration is typically used to find the eigenstructure of undamped
systems. With some modification, the concept can be applied to damped sys-
tems. Two different algorithms will be needed to find all n(2m + q) modes.
For convenience, the modes on a given branch will be numbered beginning with
the one corresponding to the eigenvalue with the smallest magnitude. A mode
corresponding to an eigenvalue with larger magnitude will be referred to as a
higher mode. Lower modes are defined in the same way.

For an undamped system, the homogeneous form of the equations of motion
in the Fourier domain is

- w2 [M]{4i} + [K]{4} = 0 (30)

or

[KI- 1 [M]{4} = .- {1 }(31)

DAC-9



To demonstrate matrix iteration, select a trial vector,{tp}, and express it as a
linear combination of the eigenvectors of [K]-l[M]:

n
{i f Oi(32)

This is possible since the eigenvectors of [K]-[M] span n-space. The only
restriction on the ci's is that c1 9 0. Premultiplying both sides of Equation 32
by (K]-I[M] produces

n

[K]-'(M]{fb} = Z i (33)
i=I

Subsequent multiplications produce

n

([K]- [M])k {P} = E -{ b, (34)
WI.

Since for large k,
2 k < 2 k < • < 2k (3 5 )

w1 4 2  n~'w

it is clear that Equation 34 converges to the lowest mode [11, 124- 125]. If
Equation 34 is normalized with respect to the same element between premulti-
plications by (K]-'[M], the the normalization factor reaches a constant value,
equal to 1/w2 (since cl : 0), and the normalized vectors converge to the first
mode. To find higher modes, subtract off lower modes using Turner's method
[6, 168-269]. L.tting

j-1

[D] = [K]-'[M] - 1 i }{f i }T [M] (36)

then

[D]{} = -{(37)

converges to the jth mode. Note that the lower modes must be normalized such
that {.i}T[M]{f}) = 1.

To apply this technique to a fractional order system, let A = s li r . Then
Equation 30 can be written as

Abm[M]{~} + [K(\)]{} = 0 (38)

or
[K(,A)-'(M]{4i} = - {}(39)

where [K(A)] is equivalent to [K(s)] in Equation 25. Each time the estimate of
A is updated, [K(.\)] must be recomputed. Notice that for \2m, there are 2m
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possible values of A. The different values arise because z 112m is a multivalued
function and has 2m branches. The value of A on the kth branch is computed
using DeMoivre's Theorem [13, 22]. Using the form A2,, = re'9 ,

1/2m O+ 2 w . +2kir\
A = r (cos 2m + isin - ) (40)

The primary branch is assigned the number "0",
so k = 0, 1,2,...,2m- 1.

Since the stiffness matrix is a function of A, to find the higher modes Equa-
tion 36 must be modified:

,-I

[D(A)] = [K(A\)]-[M] - -fl'j" f-ti l T [M ]  (41)

The quantities Ai and {4i} are called pseudoeigenvalues and pseudoeigenvec-
tors. They are computed from the eigenvector problem:

[K(A)]-[M1} =-- ) (42)

It is important to realize that the pseudoeigenvalues and pseudoeigenvectors
are not modes of the system. Their computation is merely an intermediate step
in calculating the solutions of the equations of motion. In computing the jth
mode of the system, only the first j - 1 pseudomodes of Equation 42 are needed.
Then Equation 41 is used to converge on the j" mode of the system. Notice that
for each new guess of A, j - 1 pseudoeigenvalues and pseudoeigenvectors must
be recalculated. This represents a significant computational burden. The next
section proposes a technique to reduce the amount of computation required.

Note that this technique produces 2mn eigenvalues, but Equation 28 pre-
dicted n(2m + q) eigenvalues. The remaining qn of the n(2m + q) eigenvalues
and eigenvectors are found using a scheme very similar to the one above [1,
80-83]. After clearing the denominator of Equation 38, it can be written as

A2m(l + bA')[M]{O} + (1 + bA)[KE]{}+ (43)
(Eo+EA')[Kv]{fO} = 0

Writing the equation in this form allows Aq to appear explicitly in the equation,
making it possible to find the remaining roots. Notice that these additional
roots only exist for b 9 0.

The solution method used to find the additional roots is somewhat subtle.
By defining

Q = bA2m + q + A2 ma  (44)

[K'(A)] = (1 + bA,)[KE] + (Eo + EIA')[Kv] (45)
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Equation 43 can be written in the more recognizable form

[K'(A)]-V[M]{f} = -10 (46)

Matrix iteration is applied to this equation, with the th estimate of A determined
from

Ai r= Q _ ,2 t, q 1 (47)
R\ i-I )/

The kth branch of the qth root of the quantity in brackets is used to determine
the eigenvalue on that branch.

Turner's method is again employed to find the higher modes on each branch,
as in Equation 41, with Q(A,) replacing w?.

This section has shown that it is possible to find all n(2m+q) eigenvalues and
eigenvectors without solving the expanded equations of motion. However, the
technique still requires a substantial amount of computation. In the next section,
a technique is proposed which greatly reduces the computational burden.

Spectrum Shift Technique

While the modified matrix iteration technique is effective, it is not very
efficient. In this section, spectrum shift methods will be combined with the
matrix iteration technique, reducing the amount of computation required. The
purpose of spectrum shift is to shift the eigenvalues of the system so that the
desired eigenvalue becomes the fundamental one. Matrix iteration will then
produce the desired eigenvalue. If spectrum shift methods could be used to
compute the higher modes in the viscoelastic model, the pseudoeigenvalues and
pseudoeigenvectors of the corresponding [K(A)]-'(M] would not have to be
computed. Determining the appropriate spectrum shifts is not easy, and requires
certain precautions, which will be presented later.

The spectrum shift technique is usually used in elastic systems when a par-
ticular frequency and corresponding mode shape are of interest. To illustrate
the theory behind the spectrum shift technique, consider again an undamped
system

[[K] - W2 [M] {} - 0 (48)

Picking the shift factor, p, close to the desired w? gives the shifted equations (8,
330]

[[K] - A[M] - (w2 - 0)[M]] {b} = 0 (49)

Letting
[KJ=[K) - u[M] and W 2 - p (50)

Then 1
[[k]- 'M {j = 0 or (K)-'M]{} = =JO} (51)
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Applying matrix iteration to this equation produces the mode closest to p.
Now consider the matrix [K(Ai)]-I[M] of the viscoelastic model. Only the

th eigenvalue and eigenvector are desired. By letting A = si/m = (iW)i/M,
Equations 50 and 51 can be written as

[R(A)] -- [K(A,)] - p[M] (52)
[k(A)V]i[M]{4,} = r{}

As a first guess of the appropriate shift factor for the i1h mode, the eigenvalue
of [K(Ai_.)]-'[M] closest to Ai-i is used. It is computed by using Turner's
method. The dynamical matrix is

[D(A~l)]= [K(A,.- 1)]-'[M]- .{i-{#-1TM

(53)

If p,_ . was the shift used to find Ai-1, then by Equation 52, the new shift factor
is

P =i-1 - A2m  (54)

Since the magnitude of the igh eigenvalue must be larger than the magnitude of
\i-I, if

1141 < 1pI-11 (55)

then 5C2 - was in the wrong direction. The shift is recomputed as

Il = 14_ + A2"  (56)

Notice that matrix iteration on

= 1 (57)

will converge to the i - 1 mode if the magnitude of pi is not large enough. If

this occurs, pi is adjusted by adding the new A2m (as in Equation 56).
For undamped systems, the jth eigenvalues on all 2m branches have the

same magnitude and are evenly spaced on a circle about the origin. For lightly
damped systems, the jth eigenvalues lie near the those for an undamped system.
This is portrayed graphically for a single degree of freedom system with a = 1/2
in Figure 2a. Since A2M is roughly the same magnitude for all the eigenvalues,
the method can be modified slightly to use the A m values on the principal
branch to calculate shifts for the other branches. This modification is valid for
systems with less than a 0.01 damping ratio.

To understand the location of the A2 values in the s-plane, it is necessary
to realize that the Riemann surface for the function w = z1/2 consists of two
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Figure 2: Locations of A and A2 values

Riemann sheets, joined together at the branch cut. Taking the branch cut along
the negative real axis, the sheets can be defined by

So = {z- - r < ag(z)< ) (58)
S1  = {Z= < arg(z) < 3r}

So the eigenvalues in the first and fourth quadrants of the s'/ 2 -plane map
into the second and third quadrants, respectively, of So. These are shown in
Fiqure 2b. But the eigenvalues in the second and third quadrants of the s 112

_

plane map into the fourth and first quadrants, respectively, of S1 . To see this let
rei (3 ,1 4+6 ) represent the second quadrant eigenvalue, where 6 is an small angle.
Then

arg( 2 ) = 3w + 26 (59)

Si.Ae .;,. ,, is greater than 7r. A2 im on S1 at the angle given by Equation 59.
The third quadrant eigenvalue is a little more subtle. Its angle is -(3w/4+6),

so 37r
arg(A2 ) = _ T- 26 (60)

But neither sheet contains values with this angle. When the value crossed the
negative real axis in the negative direction, its angle experienced a 41r jump
discontinuity from -7r to 3r. Therefore the angle is really

arg(A2 ) 3r - 26 + 4w = 5 26 (61)
2 2
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Technique t = 0.1m t = 0.05m
Modified matrix iteration 0:52.11 1:14.51
Spectrum shift 0:21.78 0:32.43
Modified spectrum shift 0:12.06 0:15.15

Table 1: Computation Times (in CPU minutes)

This angle is in the first quadrant of S1 . Notice that for undamped systems, the
A2 values in S1 lie directly above those in So. To map back into the s"/ 2-plane,
the 4w must be subtracted off before taking the square root.

For a ten degree-of-freedom system, the spectrum shift technique more than
halved the computation time required by the modified mabrix iteration tech-
nique. Storing the principal branch's A2 , values reduced the computation time
by another 50%. (Exact computation times are given in Table 1.) Computed
eigenvalues were accurate to at least five significant figures.

Example Problem

To demonstrate the efficiency of this technique, a ten degree-of-freedom
model was considered. The rod was similar to the one in Figure 1, and its
equations of motion had the same form. The rod was assumed to be pure alu-
minum, with Butyl B252 damping pads. The values of the parameters were
[4](all values are in compatible mks SI units)

p = 2.71.103 E = 5.516.1010
A = 0.0625 Go = 7.6.10 s

A, = 0.0625 G1  = 2.95. 10"
L = 0.909 b = 0.001
ti = 0.1

These parameters resulted in low damping, on the order of 10- 2, so it could be
solved using the modified spectrum shift technique, as well as by using modified
matrix iteration or spectrum shift. The computation times for two different pad
thicknesses are given in Table 1. The solution took longer than for the thinner
pad due to the increased damping.

The damping in the system was increased by decreasing the thickness of
the viscoelastic pads to 0.01m. For this case, the equivalent damping ratio was
0.069, as computed from the fundamental mode. For the principal branch, the
complex frequencies and mode shapes were found to be
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-107 + 1545i
-77 + 2962i
-66 + 4459i
-61 + 6051i
-60 + 7762i
-61 + 9606i
-64 + 11566i
-69 + 13567i
-74 + 15415i
-79 + 16779i

and

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.9 1.7 1.3 0.8 0.3 -0.3 -0.8 -1.3 -1.7 -1.9
2.7 1.8 0.7 -0.3 -0.9 -0.9 -0.3 0.7 1.8 2.7
3.2 1.4 -0.4 -1.1 -0.5 0.6 1.1 0.4 -1.4 -3.2
3.5 0.5 -1.2 -0.6 0.8 0.8 -0.6 -1.2 0.5 3.5
3.5 -0.5 -1.2 0.6 0.8 -0.8 -0.6 1.2 0.5 -3.5
3.2 -1.4 -0.4 1.1 -0.5 -0.6 1.1 -0.4 -1.4 3.2
2.7 -1.8 0.7 0.3 -0.9 0.9 -0.3 -0.7 1.8 -2.7
1.9 -1.7 1.3 -0.8 0.3 0.3 -0.8 1.3 -1.7 1.9
1.0 -1.0 1.0 -1.0 1.0 -1.0 1.0 -1.0 1.0 -1.0

The first three mode shapes are plotted in Figures 3 to 5. The magnitude of the
complex frequencies for the first five modes is less than 10% higher than those
for an undamped continuum model, but the higher frequencies differ by up to
20%.

The spectrum shift method complements the finite element model. With
spectrum shift, finite element problems with viscoelastic damping can be solved
much faster than with modified matrix iteration. For a ten degree-of-freedom
model, the savings was more than 50% of the CPU time.

Conclusions and Recommendations

The spectrum shift technique is more efficient than the matrix iteration
technique. The computational burden does not increase as drastically with in-
creasing degrees of freedom. For lightly damped systems, the modified spectrum
shift technique represents even greater computational savings.

The existing program (presented in [9]) can be made more efficient by real-
izing that in real systems eigenvalues and eigenvectors appear in complex pairs,
and by taking advantage of the symmetry of the stiffness and mass matrices.
Also, for larger systems, it would be beneficial to examine matrix inversion
techniques that are designed to handle large matrices.
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Figure 3: First Mode Shape for Damped Rod
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Figure 4: Second Mode Shape for Damped Rod
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Figure 5: Third Mode Shape for Damped Rod

References
[1] Bagley, R. L., Applications of Generalized Derivatives to Viscoelasticity,

Ph. D. Dissertation, Air Force Institute of Technology; also published as
Air Force Materials Laboratory TR-79-4103, Nov. 1979 (AD- A071726).

[2] Bagley, R. L. and Torvik, P. J.,"Fractional Calculus-A Different Approach
to the Analysis of Viscoelastically Damped Structures," AIAA Journal,
Vol. 21, May 1983, pp. 741-748.

[31 Bagley, R. L. and Torvik, P. J.,"On the Fractional Calculus Model of Vis-
coelastic Behavior," Journal of Rheology, Vol. 30, No. 1, 1986, pp. 133-155.

[4] Bagley, R. L. and Torvik, P. J.,"Fractional Calculus in the Transient Anal-ysis of Viscoelastically Damped Structures," AIAA Journal, Vol. 23, June
1985, pp. 918-925.

[5] Bagley, R. L. and Torvik, P. J.,"A Theoretical Basis for the Application of
Fractional Calculus to Viscoelasticity," Journal of Rheology, Vol. 27, No. 3,
1982, pp. 201-210.

[6] Bisplinghoff, R. L., Ashley, H., and Halfman, R. L., Aeroelasticity, Addison-
Wesley Publishing Company, Inc., Reading, Massachusetts, 1955.

DAC- 18



[7] Christensen, R. M., Theory of Viscoelasticity: An Introduction, Academic
Press, New York, 1971, p. 42.

[8] Craig, R. R., Jr., Structural Dynamics: An Introduction to Computer Meth-
ods, John Wiley & Sons, New York, 1981.

[9] Devereaux, M. L., Improved Solution Techniques for the Eigenstructure of
Fractional Order Systems, Masters Thesis, Air Force Institute of Technol-
ogy, 1988.

[10] Gel'fand, I. M., and Shilov, G. E. Generalized Functions, Vol I, Academic
Press, New York, 1964.

[11] Hurty, W. C. and Rubinstein, M. F., Dynamics of Structures, Prentice-Hall,
Inc. , Englewood Cliffs, New Jersey, 1964.

[12] Jenkins, W. M., Matrix and Digital Computer Methods in Structural Anal-
ysis, McGraw-Hill, London, 1969, pp. 170-171.

[13] Spiegel, M. R., Mathematical Handbook of Formulas and Tables, McGraw-
Hill Book Company, New York, 1968.

[14] Torvik, P. J. and Bagley, R. L.,"On the Appearance of the Fractional
Derivative in the Behavior of Real Mac-rials," Journal of Applied Mechan-
ics, Vol. 51, No. 2, 1984.

[15] Torvik, P. J. and Bagley, R. L.,"Fractional Derivatives in the Description
of Damping Materials and Phenomena," The Role of Damping in Vibra-
ton and Noise Control, DE-Vol. 5, The American Society of Mechanical
Engineers.

DAC- 19



STUDY OF THE RHEOLOGY OF AN ELASTIC MEDIUM THROUGH THE

SPLITTING OF ITS EIGENFREQUENCIES,

Michele C outo

Dip-rtinerto di Fisica, Urniversitt "La Sapienza", Roma.

Italy.

Abstract.

It is seen how the rheolooy causes the splitting of the

ei'enireauencies of a harmonic elastic oscillator into a

n,umber of lines sp~read over a freauency bard depending or,

the rheology of the medium. The observation of these lines

m-v ailow to irier properties of the rheology.

In most cases the splitting of the eigenvalues of -

system of partial differential eouations is due to the

removal of some geometric symmetry in the model considered,

In the model of this note the splitting is due to the

the removal of the symmetry of the time coordinate sirnce the

presence of the dissipat ion makes the Phenomenon

irreversible.
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I ritroduct 1 or,

Amora the pheriomera;i occurrinr, i, Physics the

dissipation of erergy is of great interest in many branches

of app. 1led research ranaing from aeeral meechanics to

aseismic constructions,

The effect ffor simple oscillator, is generally

measured with the qualty factor 0 defired as the ratio

-i E.,'2 i E (i)

where E4s the peak energy and &E is the decrease it, energy

betweet two suc--esave Peaks or the percerittual loss of

energy per unit cycle.

From the experimental point of view the phenomenon

r esul ts iT, i bro en i rg of the spectral lines of the

sPeCtrum)

E.,i the .heTiomenon may be see also from another point

of view relat ni it to the eioenvalues of the oscillator.

We sra11 see here that it, the :ase of an arneIast ic
medium iT, wh Ic, tie st ress-stra Ir relations contain a

memor., ne,-havls, represented by a convolution as follows

where T is stress f is strain, pl is the elastic parameter,

and h(t) represents the memory mechanism actng through the
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convolutioy, irdizated by * ,For a wide class of elastic

materials h(t) mav be assumed (Caputo 1967)

It, that case the relation (2) becomes a gereralization

of that of ta'<well in which the derivative of first order

with respect to time is substituted by that of real order

he + z.

It was also shown that the stress strain relation, (2)

with h (t ) as in (31 may represent also the phoenomenon, of

fat1gue 'Caputo 1979) by coTIsidering the hysteresis loop of

the medium subject to a cyclic deformation; it allows to

conpui:e the uumber of cycles which would give the fatigue

as fTCtio, of the frequency and of the amplitude of the

cyclic strai, applied.

The solutioi for the harmonic oscillator.

W- sh, li see here that the stress-strait, relation (2)

With h (t) 3, r, (3), causes a splitting of each of the

s.etrl ;liseb of the oscillator in a set of lines depending

or, t he' v-aIue of arid limited it, a and whose width

deper,ds oT, rmv-zansd or, the frequency.

It, fact, indicating by u('x,t) the displacement of a point

of the medium and assUming that this, for t = 0, is at

rest by takir,9 the Laplace Transform (LT) of (2)
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and (3) arid substituting it, the equilibrium condition we

f i rid

(4)

where caDital letters irdicate the LT of the f urctions

iTidi'ated by the corresponding lower case letter and p is

the LT variable; is the dens itb.

To obtain (4) we used the theorem of Appendix A of

Caouto (1969) which extends to the derivatives of real order

the well ki, owri theorem of the LT of derivatives of integer

order.

Equation (4) gives

e' ) (p
(5)

AS boundary conditions we may choose those when the

displacement is nil for any t at = 0 a rd x = S which

imply that

I.'

- --0
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Substittutinrg p = i C, itr (6) with LO angular

frequency, we have

(7)

Trie eiaerivaljaes are obtaired solving the equation

It is seem that for every n there is more than one

eigeTIv lue due to the presence of k. They are

$

For many elastiz media we may reasonably assume that

,y1 mZAML > > 1, then

- r -
reA
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It is thus clear that depending or, the value of z one

may have a finite or arT infinite number of eigenvalues for

each ri.
-1

The 0 of the spectral lines is one half the ratio of

the immaginary to the real part of 6

The solution, for each value of n, are limited ir, the

band

The term m(1/2 + 2k)fT does not affect the number of

elaenvalUeS, also, since r, does not enter the corrective

factor of (10), it is clear that each eigenvalue,

corresP.oTidlIhg to a value of r, of the perfectly elastic

case, is split ii, the same number of eigenvalues , for all

which depends only or z.

The effect of m depends only on its parity arid is

limited to a shift of the solutions, in fact is m is ever

and multiple of four then the argument of the cosine is

shifted by a multiple of 21Y, if m is ever, and not multiple

of four ther, the argument of the cosine is shifted by

if m is ever but not multiple of four then the
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arQUmert of the cosivie is shifted by T/2.

If z is riot rational thern there is an infinite number

of eiaensvalues limited in the band defined by (12) . If

is rational the riumber of eigerivalues is limited.

In the followiTig we shall consider few cases in which z

is rational which will illustrate how the solutions are

spread ir the rarie (12) and di'scuss the corresponding

values of Q

The number of eigenivalues generated in the splitting.

It is rio limitation to the discussion to assume that m

is a multiple of four, that z = q/(41 + 1) with q arid 1

integer and also that q, 41 + 1 are relatively prime.

When q = 4r + 1, with r integer the values of

cos%1/2 + 2k) as function of k i, the range -21,21,

are repeated periodically when Fk > 21; the resulting

eigerv1aiues A0) are therefore 41 + 1 arid correspond to

aT eq:;l number of spec:tral lires.

Whel, q 2r + 1, with r odd, one may see that the

spe,:tral lines are ag-ai, 21 + 1. When, q is even, due to the

s1mmetr- of the cosine arid to the simmetry of its argument

with respect to k = I 1, ± 3, + 5, .. . the values of

cos(1/2 + 2k) Z, as function of k, in the range -1,1

are repeated wheT, k l 1; the resulting eigerivalues

(10) are therefore 21 + I arid correspond to art equal

niiber of spectral l ines.
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The values of Q corresponding to each of the spectral

lines is given by (11); depending on the argument of the

sine we may therefore have modes without dissipation, they

correspond to frequencies or the extremes of the band

defined by (12).

The spectral lines with the largest Q are those

for which the argument of the sine is (2u + 1) f/2 with u

ever,: they correspond to the eiaerifrequencies of the purely

elastic case.

The eiaenivalJes which correspond to the argument of

sine with u odd would have a negative 0 and are therefore

d.isreaarded for their physical insignificance.

The discussion of the cases when z = q/(21 + 1), with 1

odd, or = qi21 is similar to that made for the case whenI

== q/(41 4 1),

Coniclus ionis

It is seer, how the rheology causes a splitting of the

spectral lines of ar, oscillator.

In general the rheology of elastic media is studied

observing phenomena with very low forced frequency therefore

requiring that the observations are takerp for very long
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time, which is generally difficult to obtain. The

observation of the splitting of the spectral lines may allow

to infer properties of the rheology with observations takern

for a time interval one order of magnitude longer tharn the

length of the period of the fundamental mode.
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Table caption

Yalues of the cosine of formul.a (10) giving the eiervalues

for = = qi(21 + 1), ni = 0 with I = 3 and q = 1, 2, 3, 4, 5,

6, When q is evert there are 4 different eigenvalues when

is odd there art, 7 different eigerivalues,
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T ab 1 e

V lues of q

2 1 4 21 4

6 3 3 6 3 3

5 5 5 5

Ei Qerfvalues

-1.00 -0.97 -0.90 -0.78 -0.62 -0.43 -0.22 0

Values of q

1 I 2 1,

3 3 6 3

5 5

E i gerva lles

0.22 0.43 0. 62 0.78 0.90 0.97 1.0
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A Viscous Isolator for Shuttle
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by
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Frank Schmitt, and Charles See
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(602) 561-3000

ABSTRACT

Two isolator designs are being developed using the Hubble Space Telescope (HST) Reaction Wheel
Assembly (RWA) isolator heritage. The first application provides a six-degree-of-freedom passive
isolation system for space shuttle payloads. The HST solar arrays and science instrument packages
cannot survive launch and reentry when directly exposed to shuttle vibration. The isolation mount
for these payloads consists of a carrier assembly attached to the shuttle structure by an array of
isolator struts. Various isolation characteristics, obtained by varying the strut's spring arrangement
and damping coefficient, were evaluated. Twelve identical struts are arranged in tripods at each of
the four comers of the carrier for redundancy and isoelasticity. The entire isolated mass has its
resonance at 8 Hz with a damping ratio of 0.4; the effective loading is reduced by at least a factor of
two. Prototype isolators have been built and characterization has been done. This provides the basis
for the flight design currently underway.

The second application is to provide isolation between the Space Station and the Payload Pointing
System. An array of struts, each containing damping and spring elements, was studied. The require-
ment for the first mode to be significantly lower than 0.05 Hz necessitates the use of novel
approaches to design very soft springs.
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INTRODUCTION

There is an increasing need for vibration isolation for spacecraft applications. Two specific applica-
tions of isolation technology are: 1) to reduce emitted vibrations from dynamic hardware, such as
rotating machinery, and 2) to protect sensitive hardware from launch vibration and spacecraft distur-
bances. The Hubble Space Telescope (HST) Reaction Wheel Assembly (RWA) Isolator (Figure 1)
is an example of the first application. It significantly reduces the vibrations emitted from the RWA,
which would limit the telescopes imaging ability (Figure 2). Such isolation is also important to
sensitive pointing systems and mircrogravity research and processing.

Two isolator designs are being developed using the HST-RWA isolator heritage for the second
application, that of hardware isolation. The HST-Solar Array System Isolator (SASI) provides six-
degree-of-freedom (DOF) passive isolation for space shuttle payloads. The Payload Pointing Sys-
tem (PPS) isolator provides isolation between the Space Station and the Payload Pointing System,
which requires a first mode significantly lower than 0.05 Hz.

AXIAL

THERMAL
COMPENSATOR UEFLUID

RADIAL

L 
G -

X

13ELLOWS

Figure 1. Hubble Space Telescope RWA Heritage
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Axial Force (3.39 lb Peak) Reaction Wheel Axial Force (0.025 lb Peak)

Figure 2. RWA Disturbance Isolation

THE HST-SOLAR ARRAY SYSTEM ISOLATOR (SASI)

The significantly large mass of the HST satellite causes its first mode of vibration to be relatively
low while mounted in the space shuttle cargo bay. Consequently, the vibration spectra seen by
hardware attached to it, such as the solar arrays and axial scientific instruments, are attenuated for
frequencies substantially above this mode. When considering resupply of these items to the HST
vehicle, it is necessary to assure that launch vibrations experienced do not exceed the design capa-
bilities. Consequently, it is necessary to isolate these items from the shuttle.

The Solar Array (SA) Carrier (Figure 3) provides the needed isolation for the SAs by using twelve
spring-damper isolations elements configured in four tripods. The carrier attaches to the shuttle via a
removable/jettisonable deck. The tripod arrangement, as presented in Figure 4, is configured to
provide iso-elastic isolation and failsafe redundancy at each attachment point. The effect of this
isolation system is presented in Figure 5. Unisolated, the response spectrum produces stresses in the
solar arrays in excess of their design limits. This spectrum consists primarily of high-frequency
components. Isolating the carrier with spring elements tuned to significantly lower frequency, in this
case, 8 Hz, substantially reduces the higher frequency response. However, the spring elements
introduce a response peak at the resonant frequency. Introducing damping limits the resonant peak-
ing and produces a substantially reduced response spectrum. The result is induced stresses within
the design limits of the solar arrays.
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Figure 3. Isolated Solar Array Carrier

. q

Figure 4I SASI Tpod Arrangement
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Acceleration Response to Landiag
Unisolated Isolated and Undamped Isolated and Damped
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Courtesy of Bill Haile, Swales and Associates, Beltsville, MD

Figure 5. Representative Solar Array Response Changes

To verify manufacture isolator element performance against the characteristics of those in the ana-
lytical model, prototype isolator elements were designed, built, and tested to the specifications
presented in Table 1. The prototype elements presented in Figures 6 and 7 provide passive damping
via a viscous silicon fluid that is forced througn an annular passage between two bellows-type
pressure chambers. As the isolator is exercised, the volume of one of the chambers is increased at
the same rate as the other is decreased, resulting in consistent damping. A compensation device
provides for thermal expansion of the fluid and preloads the chambers to avoid cavitation. Helically
wound coil springs are used to provide the correct stiffness for isolation.

Two types of dynamic tests were run on the prototype isolators: a transmissibility transfer function
test and a velocity/pressure margin test. The transfer function test, as shown in Figure 8, coiisisted
of connecting the isolator element between a suspended mass and an electromagnetic shaker. The
mass was sized to provide an 8-Hz resonant frequency. The shaker was swept at a constant accelera-
tion from a, .,,ximately 4 to 200 Hz. Accelerometers on the shaker and mass were used to plot the
transfer function, from which the Q and damping coefficients were calculated. The test was run for
two different viscosity fluids: 250 centistoke and 500 centistoke. The results are presented in
Figure 9.
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Table 1. SASI Prototype Element Specification

Deflection ±0.5 in.
Velocity 11. 5 in./s
Damping 2.6 lb-s/in.
Stiffness 400 lb/in.
Temperature

Design 140C to 36 0C
Storage -2L50C to +400C

Length 15 in.
Diameter 3 in,
Weight 3 lb

Figure 6. SASI Prototype
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Figure 8. Transfer Function
10.0

250 CS
(C 1.2 lb-S/in.)

1.0

SM CS
(C =2.6 lb-s/Jn.)

.01

410 
100 

10Fresquency (Hz) 10

Figure 9. Transfer Function Test ResultsVerification of the damper design was accompished by rigidly fixing one end of the isolator to the
shakr fameand driving the other end at a constant amplitude displacement, as shown in Figure io.of~ ~ ~t ecttowawept to Provide velocities from below nominal to those that pro-

duced chamber Pressures equal tothe belowsprof Pressure.
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IX

Fig"Ure I). Velocity Test

The storaIce tempcrnit nrc rangec was dlemonlstrated by thermal cycling the prototype and rerunning the
transfecr lund tion test. The stiflness, stroke, unld weight were measuredcduring assembly. A summiary
of' the prototype test results is presentedi in, Table 2. Off-the-shelf springs were used to decrease
procirement time: C011SeCILICetlv, their stiffness did not match the dlesign goal. Variation in spring
lengil th ad stiffne1ss resulted inl a1symmfiet ric assemblly, Causing less usable stroke to be availabic thin
was nal v~l (desi red. With these exceptions, the prototypes behaved very much as expected.

Tlable 2. Prototype Test Summary

Design Goal Test Results 500 cs)

Stlles lbin)4WX 570
Damilping (lb-s/in.) 2.6 2. 6
Resonance (Ilz) 6.( 7.8
Stroke (in.) ±0.5 ±0.44
We1iht (Ib) 3.0 3.01
Velocity Capacity (in./s) 11.5 41.5
Swfrage Teipcirattnrc CV~) -25 to +40) -25 to ±-10



The actual isolation requirements for the solar array carrier necessitate isolator elements that are
considerably larger than those used for prototype testing (Figure 11). The flight isolator design
requirements are presented in Table 3. The higher peak velocity requirements necessitate extremely
large bellows in order to keep the chamber pressure within the design limits. The increased stroke
requirements also drive the bellows' size up, due to increased fatigue loading.

Figure 11. SASI Bellows-Type Isolator Element

Table 3. Isolator Element Flight Specification

Deflection ±0.91 in.
Velocity ±15 in./s
Damping 35 lb-s/in.
Stiffness 1875 lb/in.
Temperature

Design 25 ± 50C
Storage -35 0C to +49 0C

Length 27 in. Brg qjto Brg (j
Body Diameter 8 in. max
Fatigue Life 10,000 full stroke cycles
Weight 33 lb

To combat the increased size and weight, a higher pressure capacity damper (originally designed for
isolation from Titan launch loads) was adapted to the isolator (Figure 12). It operates on the same
principal of viscous flow through an annular gap to provide damping, but can withstand much higher
internal pressures. Small displacement performance is sacrificed, however due to stiction in the 0-
ring seals. The parameters used in the design of the isolators presented in Figure 12 are listed in
Table 4. A metal bellows could be added to provide a hermetic seal.
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Rigid Cylinder Temperature Compensator

Damping Fuid

Vapor Entrapment 1 R d l D p sa
Volumes '

Annular Gap Piston Isolation Spring Housing

1 " 20 in.

Figure 12. Rigid Volume Damper Isolators

Table 4. Rigid Volume Damper Isolator Specifications

Deflection ±0.91 in.
Velocity + 15 in./s
Damping 35 lb-s/in.
Stiffness 1875 lb/in.
Temperature

Design 25 ± 50 C
Storage -350C to +490 C

Length 20 in. Brg CL to Brg 1L
Body Diameter 6.5 in. max
Fatigue Life Extended
Weight 22 lb

The major features of each type of isolator considered for the SASI application are presented in
Table 5. The bellows-type design is superior for on-orbit, small amplitude vibration isolation due to
its excellent small displacement (microinch) performance and large dynamic range (five orders of
magnitude). The rigid-volume, piston-type isolator has advantages for launch/landing load isolation.
Its simplicity, ruggedness, and increased pressure margin make it more economical to manufacture.
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Table 5. Isolator Features

Bellows Piston With Bellows Piston Without Bellows

" Heritage • Heritage * Heritage
- Fluidic viscous damping - Fluidic viscous damping - Fluidic viscous damping
- Hermetic seal - Hermetic seal - Silicon fluid
- Wide dynamic range - Silicon fluid - Annular flow damper
- Silicon fluid - Annular flow damper - Pressure preload and
- Annular flow damper - Pressure preload and temperature compensation
- Pressure preload and temperature compensation - Lightweight spring

Temperature • Lightweight spring * Improved fatigue margin
compensation * Improved fatigue margin * Reduced fluid leakage

* Lightweight spring * Reduced fluid leakage potential
potential - Reduced fluid volume
- Reduced fluid volume - Increased pressure margin
- Increased pressure margin - Rugged pressure chamber
- Rugged pressure chamber - Redundant seal

* Reduced size and weight * Reduced size and weight
* Increased adaptability 0 Increased adaptability

• No offset loading
* Rugged design
* Improved manufacturability

THE PAYLOAD POINTING SYSTEM ISOLATOR

A study to determine the applicability of the HST viscous damped isolator to the Space Station
Payload Pointing System was performed for the Jet Propulsion Laboratory. Such a passive isolation
system would probably have cost, reliability, and possibly weight advantages over an active isolation
system.

The baseline concept for the study is shown in Figure 13, with eight isolator struts comprising the
passive isolation system. Several payloads are planned. However, the study was done using the
requirements shown in Figures 14 and 15. These requirements are based on JPL's modelling of the
system. The resonant frequency of <0.05 Hz is fundamental for this study. The stroke, damping,
and stiffness values Ki and K.2 are derived from the modelling.

The mass load (1375 pounds) is used as the effective load in the analysis of a single strut. Stiction
effects in the end joints can be minimized by using flexure pivots in a two-degree-of-freedom (DOF)
gimbal at one end and a three-DOF arrangement at the other.

The appropriate model for a mass-loaded strut is shown in Figure 15; Figure 7 represents the
baseline design concept. The spring K, represents the stiffness of the bellows (or the parallel spring
if it were used). The spring K2 represents the spring effects in series with the damping element; that
is, the compressibility of the fluid and the volume change of the bellows due to the pressure of the
fluid. The stiffness ratio will be used in the evaluation of the transmissibility of the isolator strut.
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K1 K2

Design K, K2  C K 2/K1

1. SASI Scaled to PPS length 400 lb/in, spring 3,800 lb/in. 0.26 lb/(in./s) 9.5
1.2 lb/in, bellows 3,000

2. SASI Scaled and folded 0.45 lb/in. 1,350 lb/in. 3.4 lb/(in./s) 3,000

3. Design Potential (Double 0.22 lb/in. 0.10 lb/in. 3.4 lb/(in./s) 0.5
Length, Folded, with Air)

Requirements <0.23 lb/in. <0.70 3.4 lb/(in./s)

Figure 15. Summary of Isolator Component Values

An evaluation of the general transfer function was performed to investigate the influence and impor-
tance of the various parameters. Figure 16 shows the model and the transfer function of a three-
spring isolator and two simplifications of it.

L D-Strut/Supplemental Damper HST/SASI Basic

M

K3  Stiffness of K1C LJK 1

Outer Tube or .I U

] Parallel StructureK2  1 ' K3  o K2  o

K3  .. _... oo

Transfer function

B (I+x QNu B (I+) B+ (1+I
_ +,- + + Q++

S Kl M K2 K3B- Q= N- P=
C K K

1 /M

Figure 16. Isolator Modules
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The effects of varying the spring values are shown in Figure 17. The curve at the right shows the
characteristic for both V., and 13 relatively stiff with respect to K,(N&P large). Softening K2 results
in the curve that is second from the right; a high frequency isolation increase is seen but with an
increased peak just above the break frequency of the basic isolator. Softening K3, in addition, in-
creases these two effects, as shown by the two left most curves. The middle curve shows the charac-
teristic for a stiff K2 and a softer K3. It is shifted left from the baseline curve but shows a smaller
peak, more damping, than the other curves. The shift is again due to the lower effective stiffness
between the mass and the base. The stronger damping influence is due to the large Y2 imposing
larger forces and velocities on the damping element. The roll-off is essentially second order for all
curves.

The best combination of isolator elements required for a given application depends on the vibration
input, the sensitivity of the isolated body to various frequencies, and the structural characteristics of
the body and the base. Figure 5 illustrates this for single-spring isolator. The Ki value is chosen to
set the resonant frequency and then damping is added to reduce the resonant peaking, at some cost to
high-frequency isolation. An acceptable balance for the SASI system is shown in Figures 5c and 5f.

Design No. 2 Q = 0.37

40-

_ ~N 1 10 / 1020-

-1TN0-00

-20-

~. -20-

-60-__ _

480- ____

0.2 0.4 0.6 0.8

0.1 1.0 2 4 6 8 10 20 40 60 80100

Frequency Ratio (.)

Figure 17. General Isolator Transfer Function
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Figure 18 shows the transmissibility for the second design of Figure 15. This design represents the
first attempt at meeting the requirements by scaling the SASI design. It is within the length require-
ment, but the effective bellows length is increased by "folding," that is, arranging the design so that
the two active bellows and the compensator bellows are beside each other rather than end to end.
The effective length is roughly tripled this way, reducing the bellows stiffness K, to one-third. The
value for K, is still twice the required value; doubling the length would reduce the bellows stiffness,
K1, as needed. The value of K2 is too large by nearly three orders of magnitude. A means must be
used to reduce the effective compressibility of the fluid or effective expandibility of the bellows.
Using air changes K2 by the ratio of the compressibility of silicon damping fluid to that of air. At
standard conditions, this ratio is 1/7500. Scaling K2 by this ratio and doubling the length renders the
third design in Figure 15.

Since the damping coefficient depends on the inverse of the radial gap cubed and directly on the
viscosity, the damping coefficient can be maintained in spite of the 20:1 viscosity decrease by
decreasing the fluid passage radial gap by a factor of about three.

51.2 in. Length Design N=3000 - Fluid, P Large, N=3000
30-

20-

K2" Damping Variation

10- A =.01 (0 Varied Through C Only)

a=.01
0-

0=.
V 0== -10-

E
4C .0-"1 C=3.4

S -20-

-30-

-40-

-50- I 1 1 1 ! 1 1 1 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Frequency (Hz)

Figure 18. Isolator Transfer Function - Variable Damping
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Figure 19 shows the effects on isolation of varying 1K2. Note that for a very compressible damping
fluid, such as air, high-frequency isolation is improved at the expense of resonant peaking.

0 Double Length Folded Design: 0 -0.26, C -3.4

2-KA 
KCI N ,

20
10

-30 - N 100

-40-N I

NuS

-70-

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Frequency (Hz)

Figure 19. Isolator Transfer Function - Variable K2

CONCLUSION

This study of an isolator for PPS has shown that the HST concept can be extended to a low stiffness,
long stroke application with certain modifications. These include removing the coil spring and using
lengthened bellows and a folded design to decrease K,; air is used as the working fluid to decrease
K2. In addition, K3 can be added to also vary the transfer function. In the final PPS isolator system
layout and optimization, this versatility can be used to closely obtain the desired isolator strut prop-
erties. Some development steps will be necessary to arrive at a flight design. A means must be
found to protect the long bellows against buckling (e.g. telescoping concentric tubes) without intro-
ducing excess stiction, and tests will be required to verify the damping equations for air.

For isolation of payloads from launch and landing loads, an adaptation of the HST viscous annular
flow damping technology, using a high-pressure rigid chamber and piston, has shown to improve
manufacturability and reduce weight.
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Abstract

Pointing requirements for present space-based optical systems dictate state of the
art precision structural designs. Future space-based optical systems will require
even tighter pointing budgets. A vibration control technique, such as constrained
layer damping, is an attractive approach for reducing vibration induced pointing
error in these systems. This paper presents the results of a study to integrate
constrained layer damping in the design of a graphite/epoxy truss structure. This
precision structure is representative of those designed for space-based laser
communication systems. Several constrained layer damping treatments were
analytically and experimentally evaluated for a component of the structure. The
component results were used to analytically predict system performance. Analysis
of the system, with constrained layer damping integrated in the design, predicts an
order of magnitude reduction in vibration induced pointing error. This reduction in
pointing error results in decreased power requirements for the laser. Lower laser
power leads to longer laser life and higher reliability. This results in a lower system
weight and cost.
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Introduction

A study was undertaken to evaluate the increased performance benefits of
integrating constrained layer damping in the design of a representative structure of
an optical system. The representative structure, shown in Figure 1, was designed
for a space-based laser communication system. The design required very tight
tolerances and a thermally stable structure to meet the on-orbit performance
requirements. The result was a graphite/epoxy truss structure with very low
intrinsic damping, on the order of 0.2 % of critical damping. Constrained layer
damping was attractive for this structure to significantly increase the damping and
reduce the jitter response. The objective of the damping design was to reduce the
nominal ;;ne of sight error in the optical system by an order of magnitude.

Another consideration in the damping design was that the modal frelLencies
above 100 Hz were of interest. Below 100 Hz, an active control system was used
for beam steering. For modes above 100 Hz, although magnitudes of
displacement response were low, the vibration induced jitter contributed directly to
the line of sight error of the system.

The components with high strain were identified from the nominal system structural
response. Sweral constrained layer damping designs were identified which were
consistent with the temperature and disturbance frequency bandwidth for the
typical structure shown in Figure 1. These designs were analyt'f"ally evaluated for a
'representative' graphite/epoxy truss component of tho system.

The Modal Strain Energy technique1 , was used to calculate the structural system
response with constrained layer damping. The constrained layer damping design
led to predicted order of magnitude reduction in pointing error for a 1% system
weight increase.

Testing was performed on a 'representative' component, a tubular graphite/epoxy
truss member to validate the analytical systwi level predictions. Se'.'qral
constrained layer damping designs were experimentally evaluated to verify the
range of damping values predicted in the analytical model.
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Approach

Constrained layer damping has been shown to be more efficient than
unconstrained layer damping for a given weight. To obtain constrained layer
damping, a viscoelastic damping material is sandwiched between the structure and
a constraining layer. A cross section of constrained layer damping is shown in
Figure 2. The constraining layer forces the viscoelastic layer to deform in shear,
which is the optimum manner to dissipate energy in a viscoelastic material. The
performance of the constrained layer system depends on stiffness and geometry of
the constraining layer and viscoelastic layer, the environmental conditions, and the
location of the passive damping in the system.

The stiffness and geometry of the constraining layer and viscoelastic layer is
characterized in the shear parameter3 gn:

gn = G2Xn/Echcho

where: G2  Shear modulus of viscoelastic material

X.n Semi-wavelength for nth mode
Ec Young's modulus for constraining layer
hc Constraining layer thickness
ho  Damping layer thickness

For this application, a constraining layer stiffness equal to the stiffness of the
structure produces the maximum shear strain in the viscoelastic layer.

Environmental conditions which determine the performance of the constrained
layer damping system include operating temperature range, magnitude and
frequency of dynamic excitation, and the response frequency range. Additionally,
the viscoelastic material must be able to "survive" the non-operating temperature
range. Outgassing of the viscoelastic material for space applications must be
minimal since outgassing can result in material contaminating the optical system or
degradation of the performance of the damping design. The environmental
conditions, the response of the structure to these conditions, and the damping
requirements are important elements in the damping design.
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The performance of constrained layer damping system is influenced by its location
in the structural system. Constrained layer damping is applied to areas of the
structure which experience the highest strain levels during dynamic jitter response.
The Modal Strain Energy approach1 ,2 is a technique to analytically assess the
effectiveness of passive damping in a structure.

The Modal Strain Energy method is based on the assumption that the damping in a
a built up structure may be expressed as the sum of the damping dissipated by
each of its structural components. The components with passive damping, having
high damping with respect to the remainder of the components in the system,
contribute to the equivalent modal damping. This equivalent modal damping is
used when predicting the damped system structural response.

The shear parameter, the environmental conditions, and the location of constrained
layer damping in the system are important elements that must be merged with
system requirements such as performance and weight to develop an acceptable
constrained layer damping design.

Analysis

Constrained layer damping was integrated in the design of a representative
graphite/epoxy truss structure for a "typical" space-based optical system. The
thermally stable graphite/epoxy structure, shown in Figure 1, was attached to the
satellite at three points. An on-orbit disturbance was assumed to originate in the
satellite due to events such as momentum wheel imbalances, slewing of solar
arrays, thruster firing and drive the base of this representative structure. The goal
of the constrained layer damping was to reduce the vibration induced jitter which
contributes to the line of sight error in the optical system.

The following environmental conditions were assumed to develop the
constrained layer damping design:

Operating temperature range: 00F to 860F
On-orbit dynamic disturbance: 100 to 150 Hz; 1 microradian at the base.
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Using a finite element model of the truss structure, the on-orbit dynamic
disturbance was input at the attach points. The line of sight error for the dynamic
disturbance, as a function of frequency, is shown in Figure 3. The two modes,
which contribute to the peak response shown in Figure 3, were selected for
vibration control. The high strain areas for these modes were identified. About
25% of the strain area for the two modes resided in two pairs of truss members
shown in Figure 4. These four truss member were selected as candidate for
application of constrained layer damping.

A finite element model of a representative graphite/epoxy truss component was
developed to evaiuate different constrained layer damping designs. A 50 inch
graphite/epoxy truss tube was modeled as shown in Figure 5. To simulate the
dynamic behavior (modal frequencies) of the component in the structural system,
the translation was restrained at one end and a mass moment of inertia was
applied to the other end. The constrained layer damping design chosen consisted
of four 0.25" width damping strips, covering the center two-thirds of the truss tube.
The stiffness of the constraining layer and viscoelastic material were varied during
the analysis (Figure 6). Strain energy increased with increasing stiffness of the
constraining layer and viscoelastic material. DYAD 606, ISD 110 and SMRD
100F90 were candidate viscoelastic materials since they have been qualified and
used in other space applications4 . The SMRD 100F90 and a 0.20" graphite/epoxy
constraining layer was one damping design that yielded a 2% equivalent modal
damping for the two modes of interest. The resultant line of sight error, shown in
Figure 7, met the objective of an order of magnitude reduction in dynamic jitter.
This damping design resulted in a 1% increase in system weight.

Test Program

A test program was developed for a representative component of the system to
validate range of damping values predicted analytically. The test configuration is
shown in Figure 8. Six graphite/epoxy truss tubes, 54 inches in length, were
fabricated as test articles. The lay up and fabrication procedure for the
graphite/epoxy tubes were identical to the components in the structure of the
optical system. Soft springs were attached to each end of the tubes to approximate
free-free end conditions. Testing was conducted at Soundcoat, Inc.
Approved for Public Release
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Due to time constraints some compromises were made in selection of material for
the constraining layer and the viscoelastic material. Steel was chosen for the
constraining layer because of lower cost and ready availability. Three different
steel constraining layer thicknesses were chosen, 1/16", 3/32" and 1/8" thick.
SMRD 100F90 could not be obtained in the time available. The DYAD 606 and
ISD 110 were readily available from the manufacturers. DYAD 601 was chosen
for testing since its performance was better in the 0 to 860F operating temperature
range than the DYAD 606, which was analytically evaluated. The material
compositions of DYAD 601 and 606 are very similar, therefore outgassing
properties should be the same.

The graphite/epoxy tubes were excited by a force impulse from an instrumented
hammer with a piezoelectric force transducer. Impact measurements were made at
the center of the tube and 26 additional points spaced two inches apart. The
accelerometer was mounted at an antinode for mode two of the beam, 12 inches
from the end. The tubes were mass loaded at their ends and third points, in order
to obtain the second mode frequency of 110 Hz. The intent was to approximate the
second modal frequency and mode shape of the component in the complete
structural system.

The test matrix is shown in Figure 9. The objectives of the test were threefold. First,
to determine damping and modal characteristics for the first three mode, with mode
two of particular interest. Second, determine damping measurement dependence
on shear parameter, temperature and frequency. Third, to determine if the
damping is the same for low and high excitation force levels.

Test Results - The six test configurations were tested with and without
constrained layer damping treatments at room temperature. For two test
specimens the temperature was varied from 30 to 801F.

Second mode test results for the six test configurations, before applying the
constrained layer damping treatment and with the constrained layer damping
treatment, are presented in Figure 10. The results are compared to a value of 2%
damping which is required to obtain an order of magnitude reduction in the
vibration induced jitter. The intrinsic damping in the component without
Approved for Public Release
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constrained layer damping is partly due to the weights bolted to the end fittings and
the weights attached at the third points.

A comparison of damping versus temperature for sample 2 and sample 4 is shown
in Figure 11. The DYAD 601 loss factor for 100 Hz peaks between 50 and 600F.
The ISD 110 material loss factor peaks above 800F. Material data for the DYAD
601 and ISD 110 confirm the loss factor peaks (at 100 Hz ) are at 50°F and 11 0°F
respectively. The DYAD 601 with a 3/32" steel constraining layer meets the 2%
damping objective over the test temperature range (30 to 800 F). The material data
for the DYAD indicates that below 30°F the damping value would fall below 2%.
Another viscoelastic material is needed in the damping design to achieve the 2%
damping over the entire operating temperature range.

The stiffness of the constraining layer versus damping relationship, shown in
Figure 12, exhibits the same trend as the analytical data. Measured damping
increased with stiffer constraining layer. The objective of 2% damping was met by
all damping designs (at room temperature) except the DYAD 601 with 1/16" thick
steel constraining layer.

Linearity of response with respect to input level was verified for the dynamic range
of the test system. The measured damping response for low excitation force
(response acceleration of .06 g) was the same as measured response at the high
excitation force (response acceleration of 3 g).

Conclusions

It has been shown analytically that integrating a constrained layer damping
treatment in the design of a space-based optical system can yield an order of
magnitude reduction in the vibration induced line of sight error for the system.
Testing of a graphite/epoxy truss component confirmed the range of damping used
in the analytical model. Reducing line of sight error for space-based optical
systems can have significant system benefits in terms of reduced laser power
requirements, increased communication reliability, and longer laser life. Reduced
pointing error can also result in performance improvements such as increased
communication data rates, lighter weight designs, and better target discrimination.
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CONSTRAINING VISCOELASTIC MATERIAL EXTENSIONAL STIFFNESS
LAYER (VEM) RESISTS ELONGATION AND

DAMPING LAYER "CONSTRAINS" THE VEM

STRUCTURE

BENDING CAUSES
SURFACE ELONGATION

* DIFFERENCE IN ELONGATION CAUSES VEM TO DEFORM IN SHEAR

* VIBRATION CYCLE DISSIPATES ENERGY UNDER STRESS-STRAIN
HYSTERESIS LOOP OF VEM

CONSTRAINED LAYER DAMPING
Figure 2
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Figure 4
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CONSTRAINED LAYER DAMPING TRUSS TUBE
(PLATE ELEMENTS)

MODEL DATA
2104 GRID POINTS
11,684 DEGREES OF FREEDOM CONSTRAINING LAYER
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SECTION A-A

FINITE ELEMENT MODEL OF GR/EP TUBE WITH
CONSTRAINED LAYER DAMPING

Figure 5
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SAMPLE VISCOELASTIC DAMPING CONSTRAINING LAYER
NUMBER MATERIAL DESCRIPTION DESCRIPTION

1 DYAD 601A -80 MILS STEEL - 1/16" THICKNESS
2 DYAD 601A - 80 MILS STEEL - 3/32" THICKNESS
3 DYAD 601A - 80 MILS STEEL - 1/8" THICKNESS
4 ISD 110 -90 MILS STEEL - 1/16" THICKNESS
5 ISD 110 - 90 MILS STEEL - 3/32" THICKNESS
6 ISD 110 -90 MILS STEEL - 1/8" THICKNESS

PASSIVE DAMPING DESIGNS FOR COMPONENT TESTING
Figure 9

SAMPLE SAMPLE INTRINSIC DAMPING
NUMBER DESCRIPTION DAMPING W/ VEM

%cc %C c

1 DYAD 601,1/16" STEEL 0.7 1.4
CONSTRAINING LAYER

2 DYAD 601, 3/32" STEEL 0.5 2.5
CONSTRAINING LAYER

3 DYAD 601, 1/8" STEEL 0.5 2.5
CONSTRAINING LAYER

4 ISD 110, 1/16" STEEL 0.5 3.2
CONSTRAINING LAYER

5 ISD 110, 3/32" STEEL 0.5 3.9
CONSTRAINING LAYER

6 ISD 110, 1/8" STEEL 0.6 4.3
CONSTRAINING LAYER

MEASURED DAMPING VALUES WITH AND WITHOUT
CONSTRAINED LAYER DAMPING

Figure 10
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A - SAMPLE 2, MODE 1

10 0 - SAMPLE 2, MODE 2

SAMPLE 2 - 3/32" DYAD 601 0 - SAMPLE 2, MODE 3

SAMPLE 5 - 3/32" ISD 110 A - SAMPLE 5, MODE 1

m - SAMPLE 5, MODE 2

, - SAMPLE 5, MODE 3
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HYMSTTIc DAM M F0R HE SPAE SW= MIN ENGE (SSE)
HIH PESSURE OXIDIZER IURBOPMP (HFrP)

by David G. Goggin, Joseph K. Scharrer, and Robert F. Beatty

Rocketdyne Division

Rockwell International

6633 Canoga Avenue

Canoga Park, California 91303

ABSTRACT

Alternative methods were evaluated for increasing rotor damping on the SS4E

HPOTp to reduce bearing dynamic loads and extend their useful life. A unique

application of a hydrostatic damper was developed by incorporating a

hydrostatic element between stationary turbine bearing support components.

Damper design is shown to be dependent on accurate rotordynamic response

analysis. Optimization to achieve maximn damper performance under high

loading conditions and limited supply flow is discussed. Danping levels

approaching critical damping were achieved without major modifications.

Bearing dynamic loads are reduced up to 70% and rotor mode logarithmic

decrement was increased from 0.085 to as much as 1.0. Possible opportunities

for further inprovents in damper performance are also discussed.
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INTRODUCTION

Hydrostatic bearings have been used as load support devices in many
applications since they were invented in 1862 by L. Girard. However, only
recently that they have been considered for use as an active damping device.
Choy and Halloran(I) used a hydrostatic damper in conjunction with journal and
tilting-pad bearings. Their theoretical and experimental results showed that
the hydrostatic damper could ensure stable and low-vibration operation for a
centrifugal cmpressor.

Goodwin and Roach( 2 ) presented an experimental and theoretical investigation

into the development of a hydrostatic bearing in series with a ball bearing
where the dampers' dynamic characteristics could be tuned during rotor
operation. Adams and Zahloul(3) presented an analytical study which showed

the feasibility and potential benefits of using hydrostatic dampers as active
control devices.

Ball bearings used in the SSME HPOTP have suffered wear attributed in part to
large dynamic loads(4,5). It was determined that a fluid film damper should
be developed to reduce these loads. The damper would be required to use LOX
with its low viscosity as the working fluid; consequently Reynolds' numters
would be high. The state-of-the-art in squeeze film damper technology was
reviewed and found to be insufficient to support development of a high
Reynolds' number damper. In contrast, hydrostatic bearing technology is well
developed and a IDX hydrostatic bearing has been successfully tested by Pratt
and Whitney( 6 ).

A project was therefore initiated to develop a so called "hydrostatic damper"
for the SSME HPOr?. Preliminary analysis indicated rotor damping could be
significantly improved by using the radial clearance between the turbine
bearing carrier and its backup support as a hydrostatic bearing. Although the
bearing would need to support large static loads imparted by the rotor, risks
would be minimized by placing the bearing between nonrotating ccmponents.
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BACKGROUN

A cross section of the HPOTP is shown in Figure 1. Turbopump operating speeds
extend from 19,700 RPM at Minimum Power level (MPL) to 29,300 RPM at Full

Power Level (FPL). Maximum design speed is 30,000 RPM.

The rotor is supported at both ends by duplex angular contact ball bearings.

A 0.0005 in. radial clearance, or deadband, is retained between the ball

bearing outer race OD and ID of their respective carriers to allow axial

movement with the rotor. Additionally, the turbine bearing carrier, referred
to as the "cartridge," is supported by a soft axial spring and has a 0.0010

in. radial clearance between it and its backup support for additional axial

freedom (Figure 2).

Rotordynamic analysis is performed using rotor and housing finite element
models verified through modal testing and integrated using using modal
synthesis techniques(4,5,7,8). Linear critical speeds and stability
parameters are sumarized in Table 1. Of importance is the 14.7% margin

between the maximum design speed and second critical which is less than the
20% margin normally desired. Also of note is the moderate damping available

to limit response of the first and second rotor modes.

Rotor unbalance response and the bearing loads experienced during operation

are simulated using nonlinear analysis techniques(4,5). Experience has shown

that incorporating nonlinear characteristics such as floating ring seal stick-
slip friction and ball bearing nonlinear stiffness and deadband in the

analysis is essential for accurately reproducing HBPYP rotordynamic response.

Response predictions from the nonlinear model are correlated to bearing loads
measured during engine tests by strain gages located on the pump end bearing

carrier. A "test data match" is accomplished using a priori knowledge of
sideloads, bearing deadbands, unbalance distributions, and rotor-housing

boundary conditions. Bearing package design analysis is then based on the

upper envelope of predicted bearing loads.
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DESIGN PFYCUIREMENTS

Radial clearances in the turbine bearing package previously described are
necessary to allow axial movement with the rotor. During normal operation,
though, static rotor loads exceed dynamic loads such that the rotor operates
fully engaged against the bearing carrier and backup support. Rotor orbits do
not enter the deadband clearance, avoiding the detrimental effects of
"deadband interaction" on rotor response and stability(4 ).

Figure 3 shows a schematic of the bearing package nonlinear model and proposed
location for the hydrostatic damper. The damper is formed by developing a
hydrostatic film between the bearing carrier and backup support. The
corresponding analytical bearing model included ball bearing deadband,
nonlinear stiffness versus deflection, and cartridge-backup support radial
clearance. Ability to simulate contact between the bearing package and
hydrostatic damper components due to relative motion was retained.

The hydrostatic film is located in series with the bearings and backup support
that previously operated fully engaged, thereby reducing the effective rotor-
casing support stiffness. A design goal was to ensure the subsequent
reduction in margin between maximum operating speed and second critical is
offset by a proportionately larger increase in effective rotor damping. Also,
although the hydrostatic film is located between nonrotating components,
sufficient load capacity was required to avoid contact between damper

components.

Accurate nonlinear rotordynamic response analysis proved essential to the
damper design effort. By definition the effective increase in rotor damping
is dependent on the magnitude of the relative deflections across the damper
hydrostatic film. Maximum damping is achieved with relative deflections just
less than the available clearance. Accurate response analysis is necessary to
ensure the damper is optimized for maximum benefit without allowing contact

between cmponent surfaces.

The nonlinear models described were used to determine loads and deflections
across each of the bearing/damper package components. Key results are shom
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in Figure 4. The potential reduction in turbine bearing load is shown for a

range of damper conditions, along with the mininum acceptable stiffness to

avoid contact between damper surfaces.

Two penomna are involved in producing the load reductions shown, one of

which can only be predicted by a response analysis incorporating

bearing/danper package nonlinear characteristics. For values of hydrostatic

film stiffness near the minimum acceptable limit, maximum improvIennt in

rotor damping is achieved minimizing the resulting dynamic bearing loads. At

large values of stiffness, though, the hydrostatic film acts as a rigid

support between the bearing carrier and backup structure, effectively

eliminating the 0.0010 in. radial clearance between them. This clearance has

a significant influence on the effective second critical speed and therefore

on bearing loads at FPL as shown in Figure 5. Reductions in bearing load

shown in Figure 4 for values of film stiffness greater than 6.0 E+06 lb/in are

almost exclusively due to this reduction in effective bearing deadband.

Reductions in load due to increased rotor danping are preferable to load

reductions via decreased bearing package deadband. The margin between the

second critical speed and maxinum operating speed, and correspondingly the

dynamic bearing loads experienced at FPL, can be adversely affected by pump

build tolerances and/or wear during operation. These factors might fully

offset predicted reductions in response with a very stiff damper. In

contrast, increased rotor damping would limit dynamic response regardless of

these factors, producing uniform behavior for a wide range of pump conditions.

This is further illustrated by results fran the linear eigenvalue analysis.

Figures 6 shows the impact of damper characteristics on second rotor mode

logarithmic decrement at FPL. As shown, the largest increase in effective

rotor darping is achieved when damper stiffness is just sufficient to avoid

bore contact.

Another key aspect of the damper was potential sensitivity to manufacturing

tolerances. Preliminary damper designs optimized for ncuminal dimensions were

found to exhibit unacceptable variations in stiffness for the expected range

of manufacturing tolerances. Damper coefficients for a typical configuration
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varied from 3.1 E+06 to 7.4 E+06 lb/in for a target radial clearance tolerance

of 0.0010 - 0.0025 in. As shown in Figure 7, smaller radial clearances also

result in larger values of damping as well as stiffness such that the nominal

reduction in bearing load appears insensitive to damper operating clearance.

As discussed, the predicted load reductions at high values of damper film

stiffness would be less consistent than if the damper stiffness remained near

the point of optimum damping regardless of manufacturing tolerances. A final

design goal was therefore to optimize the damper design to produce nearly

uniform film stiffness over the range of expected operating clearances.

DAMPER ANALYSIS

The hydrostatic bearing code used is based on the theory of Artiles, et.

al. (9). This code utilizes Reynolds' equations and accounts for turbulent

flow, fluid inertia at the recess edge, and has been extended to account for a

tapered bore. This code has been anchored to the available experimental
results for hydrostatic bearings in oil(i0,ii,12,13), water(14 ,15), liquid

hydrogen and liquid oxygen(6), liquid hydrogen(16), and liquid hydrogen and

freon(17 ) and has been found to give reasonable results for leakage, torque,

and direct stiffness. There are no reliable results in the literature for

cross-coupled stiffness and direct damping.

Rotordynamic analysis determined the limiting design characteristic was damper

stiffness. The parasitic nature of the damper supply flow also required that

leakage be kept to a mnnmum. Consequently danper design revolved around

optimizing the stiffness/leakage ratio. Parameters to be defined were the

nurber of recesses, area ratio, dimensions of the recess, orifice diameter,

recess depth, and radial clearance.

The number of recesses was constrained to a multiple of 3 by the configuration

of the 18 bolt hole bearing package support flange which also serves as the

damper supply annulus. Nine recesses were determined to provide the cptimum

balance between stiffness and manufacurability. Stress considerations would

not allow the recesses to be located on the danper stator. A novel
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configuration was therefore developed with the recesses located on the damper

journal as shown in Figure 8.

Preliminary calculations showed a radial clearance of 0.0025 in. or less would

be necessary to meet damper stiffness requirements. Figure 9 illustrates the

stiffness/leakage ratio as a function of area ratio for the maximum radial

clearance of 0.0025 inches. (Area ratio = Total Recess Area/Total Bearing

Area.) The figure shows the 0.20 area ratio is optimum for this application.

Figure 10 shows the stiffness/leakage ratio as a function of the axial length

to circumferential width ratio for the 0.20 area ratio at the maximum radial

clearance. The figure shows that a recess with a circumferential width twice

the axial length is optimum for this application.

The orifice diameter was optimized according to the well known results in

Figure 11. As shown, a pressure ratio of 0.5 yields the optirTn c-biination

of stiffness and damping. Testing proved necessary to accurately assess the

orifice loss coefficient. Results of this testing are beyond the scope of

this paper and will be published at a later date.

Preliminary analysis had shown that optimizing the orifice diameter for

nmzinal damper clearances resulted in a wide variation in stiffnesses for the

expected range of manufacturing tolerances. Analysis was performed to

determine the effect of optimizing orifice diameter on the minimum, nominal,

or maximum radial clearance case. An integrated flowpath/damper analysis was

required since variations in damper radial clearance significantly alter the

supply flowpath resistance. Figure 12 illustrates dimensionless damper

stiffness as a function of radial clearance for the following four cases:

1) The orifices optimized for each clearance

2) The orifices optimized for the nzminal clearance

3) The orifices optimized for the minimum clearance

4) The orifices optimized for the maximum clearance

As shown, the minimum variation in stiffness occurs when the orific- :i

optimized for the maximum radial clearance expected.
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Depth of the hydrostatic damper recess was determined using the guidelines
from Pratt and Whitney( 6 ) for LDX. It is stated that the pressure variation

within the recess should not exceed 10% of the pressure drop and that the

ratio of the recess volume to the total volume of the bearing film be less

than 2.0 for LOX.

Based on the analyses just described, the final damper configuration was

defined as follows:

Number of recesses = 9

Recess dimensions = 0.457 X 0.914 in.

Recess depth: 0.009 < depth < 0.011 in.
Radial clearance: 0.001-0.0025 in.

Orifice diameter = 0.095-0.105 in.

RESUTS

The resulting improvement in rotordynamic characteristics are shown in Table 2
for the range of damper operating conditions. By designing the damper to

provide uniform stiffness aver the range of operating clearances, consistent

performance is achieved. The only variation is in the degree of rotor

damping, or in turn, the degree of dynamic bearing load reduction achieved.

The stiffness required to avoid contact results in only a slight loss in

margin between maximum operating speed and the second critical. This is more

than offset by improved second mode damping. A significant reduction in first
critical speed is noted since the hydrostatic film is relatively soft at the

lower speeds. The film stiffness increases approximately with the square of

the operating speed, so the frequency of the first mode at FPL is not
significantly lowered. (It is typically required that the first mode

frequency remain greater than 50% of the operating speed). This, along with

the increase in first mode damping, indicate there should be no problem with

first mode stability. Linear stability analysis indicates both first and

second mode stability threshold speeds exceed 50,000 RPM.
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As expected frun these results, there is a significant reduction in bearing

loads at speeds near FPL. Figure 13 shows nominal turbine bearing dynamic

loads for speeds ranging fram 5,000 to 35,000 RPM. Figures 14 and 15 show

reductions in pump and turbine end dynamic bearing loads at FPL. Dynamic

loads are reduced frum 50% - 65% depending on damper operating cleararxes.

Dwmper performance is currently limited to stiffness values greater than those

shown in Figure 4 to prevent contact between damper cxmponents. If rotor

loads are reduced as planned through other pump modifications, latitude would

exist to improve darper performance. Engine tests with the damper will
therefore be monitored closely to take advantage of potential performance

improvements. Reductions in damper stiffness could be easily accmplished
tircugh minor adjustments in radial clearance or supply pressure.

Final damper design details are currently near ccmpletion. Fabrication and

installation of a test damper in a development turbpump is expected during
1989. The turbopump, instrumented with accelerometers and strain gages on

the pump end bearing carrier, will then be hot fire tested in simulated

flight mission test profiles. Results will be cxmpared against data frum

previous tests on this redesign pump as well as the data base frum other

configurations tested.

CONCLUSION

A novel hydrostatic damper configuration was developed for reducing ball

bearing dynamic loads on the SSME HPOTP. The necessity for accurate

rotordynamic response predictions in determining damper design requirements

was illustrated. Dmper design optimization was presented, including the

benefits of optimizing the orifice diameter for the maximum expected radial

clearance to produce uniform damper performance. Damping levels approacing

critical damping were achieved without major modifications. Bearing dynamic
loads are reduced up to 70% and rotor mode logarithmic decrement was increased

from 0.085 to as much as 1.0. Possible opportunities for further improvnts

in damper performance are also discussed.
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OPTIMIZED DESIGNS OF

VISCOELASTIC DAMPING TREATMENTS

Warren C. Gibson, Ph.D.
Conor D. Johnson, Ph.D.

CSA Engineering, Inc.
Palo Alto, California

ABSTRACT

The modal strain energy method is a proven design tool for viscoelastic damping
treatments. It provides a quantitative criterion for evaluation of candidate designs
using finite element models coded for NASTRAN. This paper presents a method for
optimizing damping treatments. As design variables, the method uses viscoelastic
stiffness and layer thickness, and thicknesses of constraining layers or base layers. It
seeks to maximize viscoelastic modal strain energy subject to constraints on weight
or natural frequencies. Optimization of a damping treatment for a demonstration
space structure is shown. Only four complete NASTRAN runs were required to
produce a reduction in RMS response by a factor of more than seven, for a PSD
base input. Current research aimed at increased efficiency is discussed.
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1. Introduction

The modal strain energy method has proved valuable for design of viscoelastic
damping treatments for a wide range of damping design problems.1 23 Its effective-
ness is such that analysis methods are now the strongest link in the design chain
rather than the weakest. The success of the MSE method has spawned research
and development in material characterization methods, testing methods, and in
optimization.4

Simple structures such as cantilever beams can be designed manually for optimal
damping performance. But with even moderate complexity, intuition and experi-
ence sometimes fail. Experienced structural engineers have often been chagrined
when an automated optimization program generates a design that exceeds their
manual efforts. Sometimes there are simply too many design variables or too many
design goals to keep track of. Sometimes optimization programs produce solutions
that seem counterintuitive (although in hindsight, designers generally come up with
explanations).

Such is the case with design of viscoelastic damping treatments. Modal strain
energy values are highly sensitive to variables like viscoelastic stiffness. When more
than one mode is to be damped, there are usually tradeoffs: a design that is effective
for one mode may be ineffective for another. When different treatments are proposed
for different areas of a structure, where mode shapes are spatially complex, or where
weight is critical, manual design efforts may be inadequate. This is the motivation
for optimization. With some of the quantitative design decisions automated, the
designer can spend more time investigating alternate configurations or performing
tradeoff studies. The net result is better designs produced in less time.

This paper reports on a method that was developed for optimization of viscoelas-
tic damping treatments. The method was implemented in a computer program
called ODAMP, and is illustrated by a demonstration problem.

2. Review of Structural Optimization

2.1 Key Concepts in Optimization

Automated optimization is generally carried out by casting a constrained minimiza-
tion problem in the form

Minimize f(X)
Subject to g,(X) < 0 1 = ... ,m

and XL<X1<X k=l,...,n
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In general, the objective function f(X) may be weight, cost, or some other measure
of performance. (If f(X) is to be maximized, one can simply minimize its negative,
-f(X)). X is a vector of design variables, the parameters that the optimizer is
allowed to vary. The inequality constraints gj(X) include any conditions that limit
the acceptability of a proposed design. For example, if a natural frequency f is
not to fall below fin, then the corresponding constraint would be specified in
normalized form as

g - (1)
fmin

The limits XU and XL are called side constraints because they limit the region
of search for the optimum. These could be included in the set of general inequality
constraints, but are treated separately for efficiency, and because they must never
be violated during the design process. For example, a member thickness less than
zero would render the finite element analysis meaningless. Thus, it is important
to provide an explicit limit on such design variables. However, other constraints
such as frequency constraints can be and often are violated during all or part of the
optimization process.

A textbook should be consulted for more information on optimization techniques.5

2.2 ADS Optimizer

ADS is a general-purpose optimization program which is used with ODAMP.6

ODAMP sets up the design variable vector X, objective function f(X), and the con-
straints gj, along with the sensitivities (partial derivatives) c8f/OX, and 89gj/Xi.
This data is passed to ADS which then carries out one stage of approximate opti-
mization as discussed under "Approximate Models."

ADS includes a wide variety of strategies and algorithms. The method used in
ODAMP (subject to user override) is called "0,5,7," which is the method of feasible
directions with bounded polynomial search.

2.3 Structural Optimization

In structural optimization, the design variables X are typically properties like thick-
nesses, bar areas, material properties, and shapes. All design variables must be
related to the analysis model so that the optimizer can modify this model and
get revised response predictions. The constraints gj(X) are typically responses like
stresses, displacements, or natural frequencies. Minimum weight is often chosen as
the objective function f(X), but a particular response quantity can be chosen as
an objective instead (e.g., maximize viscoelastic modal strain energy).
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Sensitivity analysis is a key concept in structural optimization. This term de-
notes the calculation of partial derivatives or gradients of structural responses with
respect to design variables. The optimizer needs this information in order to decide
which way to move in "design space." In some optimization problems, calculation of
f(X) and gj(X) is simple, and in these cases the optimizer can calculate gradients
by finite difference approximations. In structural optimization, f(X) and gj(X)
are very expensive to calculate (i.e., a complete finite element analysis is entailed).
Therefore, it is necessary to calculate these gradients explicitly in the finite element
code.

2.4 Approximate Models

A key concept used in ODAMP is an approximate model. This concept, devel-
oped by Schmit and Miura, makes it possible to achieve near-optimal designs with
very few complete finite element analyses.' These analyses with their accompany-
ing sensitivity calculations consume the vast majority of the computer time in an
optimization cycle. Thus, when properly applied, approximation techniques can
achieve a great improvement in efficiency when compared with direct coupling of
an optimizer with a finite element code.

The basic idea is to use the sensitivity information to set up a Taylor series
expansion of both the objective function and the constraint function, i.e., they are
linearized. Provided these functions are reasonably well behaved, the linearized
functions form a good approximation over a fairly wide range of design variable
values. Thus, the optimizer can search for a local optimum within such a region.
Since evaluation of the linearized functions is trivial, this local optimization process
takes very little computer time. In fact, it is ironic that approximation techniques
in many cases make questions of efficiency of the optimizer irrelevant. It does not
matter if the optimizer makes a lot of iterations, if the iterations cost practically
nothing.

Only after the approximate optimization is complete is the structure re-analyzed.
The linearization process is then repeated and the new approximate optimization
problem is solved. At each such stage, move limits are imposed to insure that
the structure is not changed so drastically that the linearization is not valid. The
process of constraint linearization and optimization is repeated until no further
design improvements can be found.

Figure 1 shows the progress of an optimization problem using an approximate
model in a hypothetical two-variable design space. The design begins at point 1,
and is limited by the first box on the left. The move from point 1 to point 2 is
accomplished by a series of calls to ADS, which returns proposed designs to be
evaluated. The progress from point 1 to point 2 would not be a straight line, in
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general. However, the intermediate points tried by ADS in getting from 1 to 2 are
not shown because they are of no particular interest. At point 2, a NASTRAN
analysis and a sensitivity calculation are performed. A new approximate model
is set up, bounded by another set of move limits. Two more cycles of analysis
and approximate model optimization are carried out, and the design terminates at
point 4.

design side constraint
variable

2

I 4

design variable 1

Figure 1. Move limits in approximate optimization

Note that the box surrounding point 1 would have extended into the negative
region. In this case, the left move limit is pre-empted by a side constraint at
a positive value for design variable 1. Also note that the first two moves were
terminated on a move limit boundary, and that move limits were decreased as the
design progressed.
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3. Modeling Layered Damping Treatments

La3 e:ed damping treatments consist of a base layer, a layer of viscoelastic material,
and an optional constraining layer. When integral damping treatments are designed,
however, there may be no distinction between the constraining layer and the base
layer, as both may be considered part of the basic structure.

These layups are typically modeled using QUAD4 or TRIA3 plate bending ele-
ments for the outer layers, and HEXA or PENTA solid elements for the viscoelastic
layers. Solid elements are used even though the viscoelastic layer is typically much
thinner than the metallic or composite layer, for two reasons: first, the material is
nearly incompressible, and this is difficult to model with two-dimensional elements,
and second, the only important actions in the viscoelastic are transverse shear
deformation and sometimes in-plane extension, and these are best represented by
solid elements.

Figure 2 shows a portion of a layered damping treatment model, with the node
points located on the interfaces between the viscoelastic and the constraining or base
layers. This means that the offset feature of the QUAD4 and TRIA3 elements must
be used to indicate that the nodes are not at the plate elements' middle surfaces.

constraining layer

offset QUAD4 element viscoelastic layer

HEXA element base layer
offset -QUAD4 element 0

Figure 2. Modeling layered damping treatments

4. ODAMP Optimization Code

ODAMP (Optimization of DAMPing treatments) is a research code intended for
development and demonstration of optimization methods for damping design.8 It
relies on MSC/NASTRAN for computation of modal strain energies and sensitivi-
ties. It also uses ADS (Automated Design Synthesis), a public-domain mathemati-
cal programming package, to perform constrained minimization.
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The modal strain energy method relates the structural loss factor 77U) for mode
j to the strain energy distribution and material loss factors:

M (2)

= s

where

77= material loss factor for viscoelastic material number i

S j ) = strain energy in material i due to deformation
in natural vibration mode j

SUj  = total strain energy in natural vibration mode j

Stated differently, the effectiveness of a given damping treatment for a particular
mode is best when its strain energy in the viscoelastic is maximized for that mode.
Since eigenvectors are indeterminate with respect to scaling, the viscoelastic strain
energy must be expressed as a fraction of the structure's total strain energy.

When MSC/NASTRAN is used, strain energies can be calculated in two ways.

First, the GPFDR module may be used to compute strain energies broken down
by element. This data can be written to a file for post-processing by CSA's MSET
program.9 With this method, users are free sum strain energies over groups of
elements that may be selected arbitrarily after the NASTRAN run has finished.

The second method, used for optimization, is as follows: Divide the structural
stiffness matrix k into separate matrices

M

k = k(m) + !v) (3)

where there are M distinct viscoelastics, k . ) includes only the elements for vis-

coelastic i, and k(' ) is the stiffness of all the metallic (or other non-viscoelastic)
elements. Then the strain energy ratio for viscoelastic i for a mode shape j is simply

cIT k¢(v) It

si = ZT kl(4)

This second method is more economical and easier to use for computing sensitivities

(discussed below).

5. Operation of ODAMP

ODAMP works in conjunction with MSC/NASTRAN, passing data to and from
NASTRAN. The flow of control is shown in Figure 3. The process begins with a
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PREPAREANALYSIS

MODEL
REViSIONS

NASTRAN ANALYSIS NASTRAN , 1 INSPECT
" NATURAL FREQUENCIES INSPECT SENSITIVITY USING IED
" MODE SH-APES ANALYSIS CLUAIN APPROXIMATE REVISED
-RAIN ENRGY RATIOS R

Figure 3. ODAMP flow of control

finite element model prepared in the usual manner. It is augmented by a design
model, which is a description of the optimization problem in terms of design vari-
ables, constraints, and an objective. (An example of a design model is shown in
Figure 7.) Natural frequencies, mode shapes, and modal strain energies are com-
puted by NASTRAN. At that point, the user may inspect the results and make
manual design revisions, or proceed with sensitivity calculations and a cycle of
optimization. Each cycle of optimization involves an inner loop in which the
response of the structure is represented by an approximate model as explained
above. The revised design may be revised manually, or one can go directly back to
NASTRAN for another analysis and another cycle of optimization. Several cycles
can be scheduled for unattended computation.

The sensitivity calculations are particularly important. This operation is carried
out by a program written in NASTRAN's DMAP language, for which details may
be found in Appendix A.

6. Demonstration Problem: Equipment Tray

Figure 4 shows a sketch of a satellite equipment tray with stiffeners around the
edges and at the centerlines. The tray provides support for a piece of sensitive
electronic equipment. The tray is to be redesigned so as to reduce the response of
the equipment to launch disturbances. Figure 5 shows the finite element model of
the tray with displays of strain energies in its first three modes. Figure 6 shows the
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Figure 4. 'Equipment tray

Figure 5. Equipment tray: strain energy display

DBD-9



excitation acceleration in the form of a power spectral density (solid line), together
with the response of the payload with an undamped tray. A layer of viscoelastic
material is to be applied to each section of the bottom of the tray, between the
center stiffeners. The viscoeiastic is to be covered by a metallic constraining layer
which is not connected to the stiffeners. The goal is to reduce the response of the
payload as much as possible without increasing the weight of the tray.

Acceleration response

103

102 I

, PAYLOAD (undamped)

N 101 I'

' 100

0
.i t

o 10- 1 BASE\ =L

U

1II 0-2

10- 3

10-4 I

I 10
2  103

Frequency, Hz.

Figure 6. Undamped equipment tray: input and response

A design model (i.e., a definition of design variables, constraints, and an objec-
tive function) was prepared (Figure 7) for this problem. The optimizer is allowed to
vary the thickness and shear modulus of the viscoelastic, the thickness of the base
layer, and the thickness of the constraining layer.
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$ Design model for equipment tray
$
CLT I CLT 4 .002 .100
$ Viscoelastic material thickness. Refers to grid points 289-336

VENT 2 VEMT .002 .050 -6
GLISTI 2 1.0 289 THRU 336
$ Viscoelastic material shear stiffness.

VEMG 3 VEMG 2 50.0 5000.0
$ Base layer thickness
CLT 2 BASE 1 .002 .500
$ Design objective: MSE for modes 2,3,4 (equally weighted)
DESOBJ SE MAX 2 1. 3 .5 4 .5
$ Constraint: weight not to exceed 22.7 lb.

CONSTR 11 WEIGHT 22.7

Figure 7. Equipment tray design model

An add-on treatment is initially selected. As shown in Figure 8, the response
is reduced slightly, but the weight is increased substantially. Figure 9 shows the
optimized damping tray obtained after just two cycles of optimization (i.e., two
more complete NASTRAN analyses). The RMS response value (1.0 to 300 Hz) has
been reduced by a factor of about seven while the weight has been reduced slightly
below the weight of the undamped design. As the PSD response curve shows, the
structure has been softened considerably, but the large increase in damping (over
ten percent structural damping in the first three modes) has more than compensated
for this softening in terms of response.

7. Current Research: Approximate Reanalysis

Computation of eigenvector sensitivities is rather time-consuming. Depending on
the number of modes and the number of design variables involved, sensitivity anal-
ysis may take more computer time than the normal modes analysis itself. Approx-
imate reanalysis promises to alleviate this problem by increasing the efficiency of
the analysis itself in addition to the sensitivity computation.

Figure 10 illustrates how approximate reanalysis can contribute to the design
process. For full optimization, it can be coupled with sensitivity analysis and an
optimizer, as shown in the left branch of the chart. It could also be coupled with a
curve-fitter for semi-automated optimization, or with manual redesign.
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The basic premise of approximate reanalysis is that once a complete analysis has
been performed for a particular design (the "basis" design), there is considerable
information available from this analysis that can be "recycled" and used as the basis
of a more economical redesign of a modified structure. At the outset, it was hoped
that methods could be developed to provide both accurate reanalysis and accurate
recomputation of sensitivities for "large" design variable changes (on the order of
100% or more). This goal has been met, as shown in the following section.

7.1 Basis Modes

The first approach that was pursued followed some work presented by Smith.10 The
idea is simply to use the modes of the basis design as a vector space for computation
of revised eigenvalues and eigenvectors. Thus if one has a set of m basis modes
collected in a matrix i(b), the reanalysis problem, characterized by stiffness and
mass matrices K and M, may be transformed by

k = 4K (5)

m =,pTMp (6)
The reduced eigenvalue problem

(k - ,m)P = 0 (7)

may be solved very economically, after which full sets of eigenvectors may be recov-
ered as

-, = q" b)  (8)

This method is reminiscent of the modal superposition method of response calcu-
lation in that physical degrees of freedom are exchanged for a much smaller set of
modal amplitudes.

Approximate sensitivity calculations could again be calculated economically by
simply differentiating Eq. 8 to obtain

( b 8 AP (b ) + ( b )( 9 )ax -ax

Computation of 8'!/9X should be economical because of the small size of %F. Com-
putation of the large set of sensitivities "M(b)/aX, although time-consuming, would
only have to be done once, or at least infrequently.

First experiments with this method were somewhat disappointing. While accu-
rate frequencies could be obtained, the mode shapes, and particularly the modal
strain energy values, were much less accurate. In one test problem it was nec-
essary to compute as many as 75 modes of the basis structure in order to pro-
duce accurate modal strain energies for the first six modes of the revised structure.
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Evidently the change in these mode shapes included significant contributions from
many higher modes. This made the basis analysis rather costly and all but ruled out
the possibility of computing sensitivities as in Eq. 9. That is, even if one culled out
only those modes that made significant contributions to the approximate reanaly-
sis, there would likely be so many that computation of their sensitivities (4/6X)
would not be economical.

Upon rethinking this method, the authors noticed its resemblance to the well-
known subspace iteration method of eigenanalysis (see Appendix B). After some
experimentation, it was found that a single step of subspace iteration applied to the
basis modes produced much better results. This consists of computing

%F = K-M4I(b) (10)

and then solving the reduced problem

k =&TKqp

m =pTM I

(k- \m)i = 0(11)

Early tests of this method show excellent agreement for the first fifteen modes
of a test structure (natural frequencies, mode shapes, and modal strain energies)
using only fifteen basis modes. Figure 11 shows timing figures for computation of
the first fifteen modes of a structure having 2100 degrees of freedom. The solid
line shows the time required for a complete NASTRAN analysis, and the dashed
line shows the time required for approximate reanalysis. The dotted line shows the
estimated additional savings using stiffness matrix extrapolation (explained below).

7.2 Extrapolation of Stiffness Matrices

The amount of time spent in computing and assembling element stiffness and mass
matrices (as well as eliminating single- and multi-point constraints) is not trivial.
If we focus attention on the particular kinds of elements and the particular design
variab' +-s that are used in viscoelastic damping design, we can derive some simplify-
ing assumptions that can be used to provide rapid regeneration of stiffness matrices
for design changes.

Two kinds of elements are used in analysis of viscoelastic damping treatments:
plate bending elements to represent the base layer and the optional constraining
layer, and solid elements to represent the viscoelastic, as shown in Figure 2. The
design variables, again, are viscoelastic thickness and shear modulus and constrain-
ing layer thickness.*

*The base layer thickness may also be included as a design variable, grouped with the constrain-
ing layer thickness design variables.
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7.2.1 Plate Element Stiffness and Mass Matrix Variation

Plate bending element stiffnesses depend on the plate thickness t, as follows:

" Membrane stiffness: proportional to t,,.

" Bending stiffness: proportional to t'.

" Membrane-bending coupling stiffness (active in damping models due to place-
ment of grid points at the plate elements' surfaces rather than at their center
plane): proportional to tC.

The plate stiffness is obviously insensitive to the viscoelastic shear modulus, and
it is also insensitive to the viscoelastic thickness. Since this last assertion may
contradict intuition, it needs some elucidation. Obviously a sandwich consisting of
two plates separated by an intermediate material (viscoelastic, in this case) gets
stiffer in bending roughly in proportion to the square of the distance separating the
layers. Consider the assembled stiffness for such a layup as the sum of three parts:
the upper layer, the middle layer, and the lower layer:

K = K. + Km + Kt (12)
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As t. increases, K, and Kt do not change. They consist of elements that merely
undergo rigid-body motions and hence no change in stiffness." The quadratic in-
crease in stiffness comes from the fact that the grid points are farther apart. Thus
a unit curvature of the sandwich means greater relative in-plane displacements of
the two layers. The effect of these greater relative displacements multiplied by the
modified total stiffness gives the overall quadratic variation with t,.

The mass matrix for a constraining layer is clearly proportional to t,.

While these arguments are well-grounded theoretically, we do not have access to
the source code that generates stiffnesses for QUAD4 elements in MSC/NASTRAN.
Hence it was deemed prudent to carry out some "experiments" that compared
extrapolated stiffness and mass matrices with those generated by MSC/NASTRAN.
These experiments yielded favorable results with and without offsets.

The details of the extrapolation are as follows. NASTRAN was used to generate
an element stiffness matrix for iour values of thickness: a reference value to, and
incremented values t.,(1 + 6) and tc0(1 + 26) where b is an arbitrary increment,
say 5%. Call the corresponding stiffnesses K0 , K 1, and K 2. We then write the
approximation formula as

K(t.) ;zKo t) + K2(t., - to) + K (t- (13)

It should be emphasized that each K is a complete matrix. This means that each
term of the stiffness matrix can have a separate cubic variation. One would expect
to see membrane terms having only K1 entries, bending terms having only K2 terms,
etc. However, again due to the lack of access to the QUAD4 source code, not to
mention reluctance to delve into it, an empirical approach has been taken.

Finally, after some algebra, we obtain expressions for the coefficient matrices K
in terms of K:

K0 = Ko (14)

= 1o [-3K0 + 4K, - K2] (15)

2=  1
K 2(t - 4o) 2 [Ko - 2K1 + K2] (16)

The case of a singly-curved damping layer has not been considered but should
be straight-forward. NASTRAN has no curved shell elements and hence a curved
shell has to be modeled as a facetted assemblage of flat plate elements. This is
not particularly controversial among finite elerient analysts as long as the angle
subtended by a single element is reasonable, say, 30 degrees or less. In this case two
opposite sides of the element get longer in proportion to changes in the viscoelastic

"Assuming flat damping treatments. Curved treatments are considered later.
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thickness. One would expect a cubic increase in flezibility in this case which might
lead to the expanded approximation

,) + -2t
+KIt,- t,,.O) 1' + R... 2(t,,- _t.,)- 2  (17)

The case of a doubly-curved viscoelastic layer is possible but is not considered
here.

7.2.2 Solid Element Stiffness and Mass Matrix Variation

The viscoelastic solid element stiffnesses are clearly affected only by changes in the
viscoelastic shear modulus and layer thickness, and not by the constraining layer
thickness.

The shear modulus is dealt with most easily. The entire element stiffness matrix
is proportional to G. This may be clearer if E and v are used as independent
elasticity constants. E is proportional to G and E appears as a scalar factor in
front of the stiffness matrix.11 However, this assertion was tested and confirmed
with HEXA elements. Thus changes in shear modulus may be handled by simply
scaling the viscoelastic stiffness matrix:

k. = KVO(18)
Go

We now turn to the variation in solid element stiffness as the length of one side
(i.e., the layer thickness) varies. Refer to Figure 12 which shows a thin solid element
with sides a and b and thickness t. For simple in-plane extension, one would expect
stiffness terms like the AEII of a rod, i.e., Ebt/a or Eat/b. For in-plane shear,
one would expect Gt/ab. For extension in the thin direction, Eab/t. From these
observations we jump to the conclusion that each term in the stiffness matrix is
either directly or inversely proportional to t. This assumption is only applied to
the limited shape we are considering here, namely a completely rectangular element
with one side much shorter than the others. This assumption was tested empirically
for a small thickness change. From a printout, it was observed that all the terms
seemed to be nearly proportional to t,, or 1/t,,, with some staying constant. This
was enough to proceed boldly with the assumption

K. -,- I + K_± + L--KI (19)
tB to
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Figure 12. Solid element

The variation of the viscoelastic and constraining layer thicknesses with the various
design variables is summarized in the following table:

Design Stiffness Mass
variable VEM CL VEM CL

G linear independent independent independent
scalar

t" linear, independent linear independent
constant, scalar
inverse

matrices
t' independent constant, independent independent

linear,
quadratic,

cubic
matrices

Appendix A: Modal Strain Energy Sensitivity
Calculations

The sensitivity analysis for modal strain energies, coded in NASTRAN's DMAP
language, proceeds as follows:

For each design variable X,:

1. Compute approximations to the stiffness and mass matrix sensitivities OK/8X,
and BM/OXi by finite differences. This involves incrementing grid locations, a
shear modulus, or a plate thickness, depending on whether design variable X.
represents a viscoelastic thickness, viscoelastic shear modulus, or constraining
layer thickness.
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2. For each mode j whose strain energy sensitivity is required, do the following:

(a) Compute the eigenvalue sensitivity using the formula

O A - T OK _M_

ax ~ = axk-' a-
from which the frequency sensitivity is

af3  1 89A3
OX: 87r2f3 aXj

(b) Compute the eigenvector sensitivity using Nelson's method.1 2 Solve
r OA M I

,gxi lax 3ax,
Since (K - AjM) is singular, its order is first reduced by one by invoking
the normalization that was used for Iij.

(c) Compute modal strain energy ratio sensitivities. Let

S(J) 2 -'TK(v) -t (viscoelastic strain energy)

Si I- I T~j (total strain energy)

R, -s (ratio)

(d) Differentiate:

aS )8 - ITK( ) + 1 -PTOK(_ pj

aX 2 -7 X

Sj IJTK¢-I- 14' TaK j(9x 2 -8X

_ 1[ Ti 1 3 2T
ox s

where
Q =K (v) - R jK

9K (-)  LK
ax, 3ax,

Derivations of the expressions used here may be found in reference 8.1
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Appendix B: Subspace Iteration

Subspace iteration is a popular eigenvalue analysis method."' Briefly, this method
consists of the following steps:

1. Select a set of starting vectors 4(). Set the iteration count k = 1.

2. Compute 4V(+l) = K-Mj(k)

3. Orthonormalize the new approximation 1(k+1) by forming and solving the
following small eigenproblem:

(a) Let k(k+l) = t(h+1)TKt(h+l)

(b) Let m( k+ l ) - 4 ,(k+l)TM(h+1)

(c) Solve [k(h+ l) - Am(+')]%P - 0
(Is(+1)_

4. For the next iteration, use 4 = 4(k+) . It can be shown that because
the vectors % are orthonormal with respect to m(k+l), 4 (h+,) is orthonormal
with respect to M.

5. Increment k; go to step 2.

The efficiency of subspace iteration depends on selection of a suitable set of trial
vectors. There is also a theoretical possibility of selecting trial vectors that are ex-
actly orthogonal to one of the eigenvectors so that this eigenvector would be missed.
In practice, numerical roundoff makes it very likely that some component of such an
eigenvector will creep into the solution set so that the eigenvector will be computed.
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CONSIDERATIONS OF SYNTHESIZED SYSTEM DAMPING
IN DYNAMIC ANALYSIS OF SPACE STRUCTURES

Wan T. Tsai *

ABSTRACT

In considerations of space structures, a great number of degree-of-
freedoms (DOFs) are modelled and thousands of them are retained for
dynamic analysis. Natural frequencies of the structure represented
by the retained DOFs may be very close to each other and the system
is easily over-excited by the applied forcing function when it
contains frequencies in the vicinity of the natural frequencies.
In order to bring the excessive excitement down to a somewhat more
realistic response level, viscous damping is usually applied.
Since the damping coefficient for a flight system can not be
directly obtained from ground tests, no test derived system damping
is available. Damping coefficient for substructure constrained at
the interface DOFs to a rigid base is obtained instead. The
coefficients obtained from this test are applied to appropriate
DOFs of the discrete substructure and the coefficients related to
the interface DOFs are assumed to be zero. The damping matrix so
constructed, upon releasing the constrained DOFs of the discrete
substructure, is then transformed into an equivalent matrix for
flight system analysis. Known as triple-matrix-product (TMP), this
method of constructing a damping matrix by neglecting the off-
diagonal elements has been widely adopted in aerospace industries.
This paper is first to assess the validity of the above stated
damping matrix of a discrete structure and the TMP approach, and
then to propose a new method in constructing the system damping
matrix by using the damping coefficient obtained from ground test.
Specifically, the proposed damping matrix is synthesized by a
diagonal matrix in the free-free system coordinates. Its
corresponding damping elements in the substructural coordinates are
best fitted to the test derived damping by using Gaussian least
square technique. Applicability of the result is illustrated and
assesed.

• Member of Technical Staff, Payload Cargo Loads Analysis, Rockwell
International, Downey, California. Members of ASME, ASCE.
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INTRODUCTION

In dynamic analyses of a large structural system, geometric and
material characteristics are represented by a system of mass and
stiffness matrices. Together with a damping matrix, they
constitute a complete set of governing differential equations for
structural response analyses when applied forcing functions and
appropriate initial conditions are given. Both mass and stiffness
matrices are derived from analytical means. The damping matrix
which can not be determined by analysis is usually obtained in
conjunction with generalized modes of the structural system.
Specifically, the analytically derived mass and stiffness matrices
are used to establish a transformation matrix. Through this, the
mass matrix can be transformed into an identity matrix and the
stiffness matrix into a diagonal matrix in which the diagonal
elements are the square of circular frequencies. Thus, a damping
matrix, called system damping, is defined by multiplying a set of
coefficients to a diagonal matrix consisting of circular
frequencies. At this point, the set of equations in the
generalized coordinate system consists of many independent
differential equations. Each is a single degree-of-freedom (DOF).
This set of equations can be solved by using the TRD module of the
NASTRAN computer program [1]. Structural responses are then
obtained by inverse transformation of the generalized DOFs.

It is known that coefficients of system damping are different for
each mode. Their magnitudes can be derived from modal survey test
results of the complete structural system. Since a space structure
consists of a great number of DOFs and is actually operated in
space of near zero gravity environment, it is very difficult, if
not impossible, to establish system damping values through testing
of the complete structure on the ground before a flight. In order
to estimate the damping coefficients, an alternate method using
modal survey test of the substructures constrained at their
boundary DOFs is usually performed. The damping matrices obtained
from modal survey tests of all the substructures together with
assumed damping values in their boundary DOFs are then coupled into
a Craig-Bampton (C-B) form [2] in the same manner as that for
coupling the mass and stiffness matrices. However, a mathematical
difficulty arises now. This newly coupled damping matrix, the
discrete damping, can only be transformed into a fully populated
damping matrix in the generalized coordinates. Thus, all
generalized DOFs are still coupled to each other through the
transformed damping matrix. The advantage for reducing
computational time by using the TRD module is lost and the cost to
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solve these equations for a large structural system can not be
saved. In order to take the advantage of using TRD module, an
approximation by removing the off-diagonal elements from the
transformed damping matrix has been commonly practiced. When this
is done, the damping matrix becomes a diagonal, known as the triple
matrix product (TMP) damping [3]. The set of generalized equations
now become independent. The TRD module can then be readily applied
to perform loads analyses with low computer cost.

The TMP damping technique has been proved to be a good
approximation. Usually, results within an acceptible range of
error can be obtained. Occasionally, unexplainable reponses occur.
In a study of loads analysis for space transportation system
payload, a larger response at a larger damping coefficient has been
seen for a particular DOF when the damping value is within a
particular range. The cause for this type of behavior is yet
unclear. It may be partially induced by the use of TMP damping,
since the practice of neglecting the off-diagonal elements is
arbitrary. A new approach is proposed to refine the damping matrix
used in system analyses. The proposed method applies Gaussian
least square technique to synthesize the system damping. The
condition is that the synthesized damping yields a smallest error
between the converted and the given discrete damping values.

As an introductory development, the paper starts with a brief
review of the TMP method. Derivations for the proposed approach
follows. The goals of this approach are: (1) the synthesized
system damping is a diagonal matrix; (2) the converted values of
the synthesized damping are best fitted to the discrete damping;
and (3) structural responses using the proposed method are at least
as good as the results of TMP method. An example of a uniform beam
is used to illustrate the characteristics of the proposed method.
Results are compared to those obtained from both direct integration
and TMP methods.

BRIEF REVIEW OF TRIPLE MATRIX PRODUCT DAMPING METHOD

To simplify matrix formulations for a structural system, let the
mass, damping, and stiffness matrices of subetructures be expressed
in the C-B form. Explicitly, the boundary DOFs are kept in
physical coordinates. The interior DOFs are represented by modal
coordinates while the boundary DOFs are assumed to be completely
constrained for each substructure. Upon coupling several
substructures together to form a complete structural system, the
governing differential equations for the system is given by

My + D§ + Ky - P (1)

where M, D, and K are respectively the mass, damping, and stiffness
matrice, y the displacement vector consisting of physical
components at boundary DOFs and modal components at interior DOFs,
-dy/dt, and P the forcing vector associated with the y component
coordinates. Explicitly expressed into the C-B form, M, D, and K
appeaar
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Mbb _ I Mb i  Kbb I Ki
M = K = (2ab)

[Mib I Mii Kib Kii

D Dbb I D (2c)

Dib I Dii J
In these matrices, the subscripts b and i are respectively
associated with boundary and interior DOFs of substructures. The
submatrices with subscripts ii are diagonal. Dii is the diagonal
discrete damping obtained from substructural modal test. Dbi, Dib,
and Dbb are usually left empty due to the lack of test data. This
assumption is believed to be conservative. Occasionally, Dbi and Dib
are assumed to be empty and Dbb is given by a set of nonzero values
associated with a subsystem damping when boundary DOFs alone are
treated as an independent subsystem [4].

The exact method of transforming Eq.(l) into a generalized
coordinate system is through the use of complex variable modes.
This method of analysis has been shown in many publications, for
instance [5]. However, a real variable transformation appears to
be more popularly accepted even though it is an approximate
approach. The procedure of the approximation is as follows. Lct
be the generalized DOFs corresponding to y by

y = f (3)

where f is the transformation matrix satisfying

'MO = I, 0'K4 = W (4a,b)

In Eqs.(4a,b), 0' is the transpose of O, I an identity matrix, and
W a diagonal matrix. The diagonal elements of W are the square of
circular frequencies. Introduction of Eqs.(3,4) into Eq.(l) gives

A+ Ck +Wr Q (5)

where Q=0'P and

C = (4c)

C is a fully populated matrix. Since the off-diagonal elements are
generally smaller than the diagonal elements, the response using
the fully populated matrix, C, makes little difference from that
using the diagonalized TMP damping, Cd=diag(C). Using this matrix,
the generalized DOPs are approximately computed from Eq.(5) upon
replacing C by Cd. Namely,

+ Cdk + Wrl = Q (5*)

Effectively, the responses obtained from Eq.(5*) are actually not
associated with the provided discrete damping matrix D, but with a
fully populated equivalent damping matrix, Dd . Namely;
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Dd = (-' ) 'C (0-') (6)

Using the responses determined from Eq.(5*), the physical responses
of structures are then computed from Eq.(3).

SYNTHESIS OF SYSTEM DAMPING

Let B be the diagonal matrix to be synthesized in the generalized
coordinates and F the converted matrix of B in the C-B coordinates.
The correlation between B and F is

F = (0-l)'B(O-') (7)

By letting bk be the diagonal elements of B and fij be the elements
of F, the element correlations in Eq.(7) can be written by

n
fj = Z bk gkij (8)

k=1

where gkii is the coefficient associated with fij when the kth
element alone in matrix B is a unity, all other elements are zero.

Now, let dij be the elements of discrete damping matrix D. The sum
of the square of the differences between converted damping fij and
provided discrete damping dij is

n 2 n 2
S = I (fij - dij) + 2 (fjj - djj '9)j=l i= 3  j=nb +1

where nb is the number of boundary DOFs. Upon substituting Eq.(8)
into Eq.(9), the sum becomes a function of the diagonal elements
bk. Thus, a set of Gaussian least square functions is formed when
S is minimized by the condition

as

--- = 0, m = 1,2,...,n (10)
abm

Explicitly, Eqs.(8-10) give a system of linear algebraic equations
for elements bk in the form

n n
2 (_ !gkijgmij+ g gkjj gmjj )bk
k=l J=1I3j= +1

n nk n
= ! z dijgmij + djjgmjj , m=l,2,...,n. (11)

j=l i= J=nb+l

Using Eq.(ll), the synthesized elements of system damping matrix B
are obtained. The generalized DOFs can then be determined by using
Eq.(5) upon replacing C by the synthesized damping matrix B. The
structural responses can then be evaluated by using Eq.(3).
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It is noted that the best fit shown in Eq.(9) includes only the
specified discrete damping elements, those belonging to the
boundary DOFs and the diagonal elements of internal DOFs. The rest
of elements are not included in the fitting. In fact, it is
uncertain if the off-diagonal discrete damping elements are really
zero [6]. Therefore, it may be acceptible for practical
applications to neglect fitting of elements which are not really
obtained from testing but from assumptions.

ILLUSTRATION

To illustrate the performance of TMP method, let us consider a
uniform beam of 25 translational DOFs. The total length is 120
inches and it is equally spaced into 24 segments. The beam
properties are A=.0974 sq. in., I=.0480 in ., E=10 6 psi, and
p=.031 8 lb-sec 2/in4 . The boundary nodes are 1, 6, 13, 18, and 25
(Fig. 1). Heavisides step forcing functions are applied to three
points of the beam, 5 lbs at both ends (nodes 1 and 25) and 10 lbs
at the middle point (node 13). A nominal damping coefficient of
10% for the interior modal DOFs of C-B form is assumed in order to
easily illustrate the contribution of damping. Two cases of
damping values at boundary DOFs are considered, Dbb=o and Dbb0.
For the case of DbbkO, a set of damping value equivalent to 0% is
applied when Mbb and Kbb are assumed to be an independent
subsystem. Explicitly, a transformation is first performed to
generalize the boundary DOFs alone into a subsystem. A subsystem
damping of 10% is then obtained. Inverse transformation of the
subsystem damping, the boundary damping matrix Dbb is thus defined.
To simplify the analysis, no other substructure is coupled to the
beam. Therefore, the problem is simply the transformations between
C-B form and the generalized system.

Based on the material and geometric properties, the matrices of
mass, stiffness, and discrete damping are established. Through the
use of Eqs.(3-5*), structural responses are obtained. To verify
the damping values actually used in TMP response analysis, Eq.(6)
is applied to transform the TMP damping back to C-B coordinates.
The diagonal elements of the converted matrix are then compared to
the corresponding elements of the discrete damping. The results
shown in Table 1 indicates that the converted damping are
significantly different from the provided discrete damping. The
maximum error is up to 23% in the 6th mode for the case without
boundary damping. When the synthesized damping is applied, the
maximum error of converted diagonal damping are less than 1% in all
modes for both cases of Dbb=O and Dbb#O. Therefore, the
synthesized system damping are much more accurate than TMP damping
when the discrete damping values are compared.

Despite the significant discrepancies between the provided discrete
damping and the damping values actually used in the TMP method, the
responses are in good agreement with the results of direct
integrations of using the discrete damping. As shown in Table 2,
the largest response error which happens to be at the negative
value of node 6 is only over-estimated by 1.6% with respect to the
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peak acceleration 1.672 g, for the case of Dbb*O. The
corresponding maximum error by using the synthesized system damping
method is 2.9% at the negative value of node 18, for the case Dbb=O.
It must be noted that if the errors are computed by using local
values, the maximum errors become very large. They are
respectively 11.2% for TMP and 20.3% for synthesized system damping
methods, both at the negative value of node 18 for the case of Dbb
k0. However, due to ignorance of accumulated numerical error
acquired by using these approximate methods, this way of numerical
comparison may not be fair. Generally, the results obtained from
both TMP and synthesized damping methods are about in the same
degree of accuracy. TMP may be slightly more accurate than the
synthesized damping in this illustration.

Nevertheless, the proposed approach provides room for future
improvement that TMP method does not. One of the possible
improvement in syntheses of system damping is to weigh the
importance of certain particular DOFs by using participation
factors of the associated forcing functions. Although formulations
using the factors are yet to be derived, one can capture the
concept by studying the correlations between system mode shapes and
the distribution of forcing functions. For this purpose, the
damping values at generalized DOFs must be considered. Table 3
shows that the values for both TMP and synthesized damping are
fairly close for some modes, but are significantly different for
others. This indicates that the responses by using TMP damping and
synthesized damping may be significantly different, depending upon
the frequency of the applied forcing function. For a set of three
point loads applied to the beam, the distribution of the forcing
function is close to the 5th mode if it is expanded into mode
shapes of the beam. Explicitly, the forcing function is more
sensitive to frequency 5.2 Hz of the 5th mode. The successive
important frequencies are 23.5 Hz for the 9th mode, 54.4 Hz for the
13th mode, etc., since these mode shapes, as shown in Fig. 1 for
the first 9 modes, are closer to the distribution of the applied
forcing function. Using these modes, it is shown by Table 3 that
the coefficients of both TMP and synthesized damping are fairly
close. Therefore, the responses due to both methods are little
different. It may be expected that structural responses become
significantly different if the distribution of forcing functions
coincides with a mode for which the damping coefficients in TMP and
synthesized approaches are significantly different.

The results between the cases Dbb=0 and Dbb*0 must also be noted.
These results are independent of the methods of analysis. For the
case of Dbb=0, Fig. 2 shows that the amplitude of oscillations are
fairly uniform after the early time spikes. However, Fig. 3 for
the case of Dbb*O reveals that the responses decay considerably at
later time. Therefore, boundary damping is important to structural
responses. Due to the lack of test data, it may be difficult to
establish a perfect boundary damping. Until a better approach is
available, a uniform subsystem damping of 1% or 2% in the form
similar to that illustrated earlier for DbbtO may be acceptible for
practical applications.

DBE-7



DISCUSSIONS AND CONCLUSIONS

The purpose of this study is to synthesize a system damping matrix
that may best simulate the true damping behavior of a structural
system. Using a given discrete damping matrix, a new approach in
synthesis of system damping by using Gaussian least square is
proposed. The synthesized damping matrix is always a diagonal and
is readily applicable to the TRD module in NASTRAN. As illustrated
by a uniform beam subjected to three point step function forces,
the synthesized damping are in excellent agreement with the
provided discrete damping in C-B coordinates. The structural
responses using the synthesized damping also correlate very well
with those using direct integration. Therefore, the new approach
is worthy of further investigation for developing an improved
method which can best represent the true system damping.

Many possible syntheses can be made to upgrade the proposed method,
depending upon the goal of an analysis. Specifically, a set of
participation factors can be assigned to weigh a class of interest.
Using the factors as a weighting function, a best fit can be
performed for the interest of certain structural components. For
instance, the damping values can be best estimated for certain DOFs
that are closest to the modes and frequencies of forcing functions
as explained earlier.

In addition to the potential of the proposed method in synthesizing
system damping, several properties found from the illustration may
be useful for future refinement of the method. (1) Variations of
boundary damping may significantly influence structural responses.
The influence is more expressive for late time than for early time
responses. (2) Discrepancies between the provided discrete damping
and the converted values of TMP and synthesized damping appear to
be not an important factor to structural responses. It is known
that this may not be a correct statement. Further study is
required to determine the true correlations. (3) The 10% constant
discrete damping in the C-B coordinates are different from those in
the generalized coordinates. It is particularly significant in the
low frequency modes.
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Table 1. COMPARISONS OF DAMPING VALUES FOR 10% DISCRETE DAMPING

I DISCRETE I Dbb = 0 I Dbb # 0
MODE I I--------------------------------------

I DAMPING* I TMP I SYN. I TMP I SYN.

1 1 (.0423)1 .0023 1 .0027 1 .0405 1 .0426
2 1 (.1306)1 .0104 1 .0127 1 .1247 1 .1316
3 1 (.2000)1 .0127 1 .0146 1 .1929 1 .1999
4 1 (.1518)1 .0079 1 .0082 1 .1486 1 .1567
5 1 (.0271)1 .0006 1 .0006 1 .0260 1 .0272
6 1 7.603 1 5.867 1 7.660 1 7.289 1 7.603
7 1 9.195 8.282 9.223 10.38 9.195
8 15.91 15.15 15.92 15.57 15.91
9 19.48 19.64 19.51 20.38 19.48

10 29.05 30.30 29.18 32.52 29.05
11 33.21 36.55 33.25 38.14 33.21
12 52.83 56.35 52.85 57.63 52.83
13 56.96 62.53 57.08 65.06 56.96
14 65.10 72.69 65.13 1 74.51 65.10
15 72.76 80.26 72.77 82.46 72.76
16 102.9 108.7 102.9 109.6 102.9
17 107.6 123.1 107.7 125.9 107.6
18 120.6 131.8 120.6 133.3 120.6
19 129.6 141.2 129.6 143.0 129.6
20 156.2 173.6 156.2 174.5 156.2
21 161.7 182.5 161.7 183.1 161.7
22 185.8 200.4 185.8 201.1 185.8
23 190.1 212.1 190.1 213.2 190.1
24 200.9 230.1 200.9 231.4 200.9
25 203.5 229.7 203.5 232.6 203.5

* Values in () are for the case Dbb'O.
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Table 2. COMPARISONS OF ACCELERATION RESPONSES FOR 10% DAMPING

i NODAL NUMBER

ITEMS I 1 (END) i 6 I 13 (MIDDLE) I 18

I MIN I MAX I MIN I MAX I MIN I MAX I MIN I MAX

D bb=O I I I I I I I I
DIR. INT. 1-.389 11.672 1-.374 1 .481 1-.259 11.672 -.263 1 .355
TRD-TMP -.390 11.672 -.399 1 .471 -.260 11.672 -.282 1 .354
TRD-SYN. 1-.387 11.672 1-.414 1 .478 1-.265 11.672 -.303 1 .354

D bb*O I I I I I I I I
DIR. INT. 1-.148 11.672 -.343 1 .412 1-.174 11.672 -.242 1 .290
TRD-TMP -.147 11.672 1-.370 1 .412 1-.174 11.672 -.269 1 .286
TRD-SYN. 1-.153 11.672 -.389 1 .418 1-.189 11.672 1-.291 1 .290

Table 3. COMPARISONS OF TMP AND SYNTHESIZED DAMPING COEFFICIENTS (%)
IN GENERALIZED COORDINATES FOR 10% DISCRETE DAMPING

I SYSTEM D bb = 0 1 D bb * 0
MODEl FREQ. I---------------------------------

(Hz) I TMP I SYN. I TMP I SYN.

1 0
2 0 ....
3 .9675 .009 .001 9.90 10.1
4 2.657 .193 .146 9.44 I10.1
5 5.191 .484 .536 9.55 9.98
6 8.550 12.3 16.7 14.0 15.0
7 12.73 16.5 17.5 18.3 13.9
8 17.71 14.1 15.1 14.2 15.3
9 23.49 14.9 13.9 15.1 13.9

10 30.06 13.5 13.2 13.9 12.2
11 37.41 14.5 12.6 14.9 12.4
12 45.51 11.2 10.5 11.3 10.5
13 54.36 12.5 11.4 12.9 i11.1
14 63.91 12.9 11.3 13.2 11.3
15 74.13 13.4 11.9 13.6 12.0
16 84.94 10.6 i10.1 10.7 i10.1
17 96.25 12.1 10.4 12.4 10.3
18 107.9 11.7 10.7 11.8 10.8
19 119.7 12.1 11.3 12.2 11.3
20 131.3 i11.1 9.99 11.2 9.99
21 142.4 12.0 10.5 12.0 10.5
22 152.4 10.5 I10.1 10.5 i10.0
23 161.2 11.8 10.4 11.8 10.4
24 167.9 11.6 9.99 11.7 9.99
25 172.1 I11.1 10.2 11.8 10.2
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ON PASSIVE SPOT DAM]PING ANOMALIES

by

Dr. Maurice I. Young
Consultant

Vigyan Research Associates, Inc.
Hampton, VA 23666-1325

Telephone: (804) 865-1400

ABSTRACT

Analysis and computation for several damping coupled, lumped parameter
models of structural systems demonstrates that passive spot damping treatments
become progressively less effective as the natural frequencies of dissimilar
modes of vibration coalesce. In the limiting case of dissimilar modes with
identical frequencies, an analytical solution is given demonstrating the
anomaly of complete loss of damping in one damped mode and the doubling of the
damping in another damped mode. These damped modes are shown to be linear
combinations of the undamped ones with identical frequencies.

The analysis is extended to continuous structural members such as
rectangular membranes and plates, where the anomaly of complete damping loss
is again demonstrated. When the aspect ratios of these structural members are
selected to yield differing modal patterns with identical natural frequencies,
application of passive spot damping yields a pair of damped modes, where one
has no damping and the other has twice the effective damping expected.

Finally, a numerical study employing the rectangular plate as an example
is presented to quantify the efficacy of a passive spot damping treatment as a
function of natural frequency separation. This is then contrasted with the
effects of a pervasive damping treatment of the plate.

INTRODUCTION

Vibration control through spot damping treatments can sometimes produce
the anomalous result that some of the "damped" modes either remain undamped or
have more damping than anticipated. Several lumped parameter examples are
presented demonstrating that this is most pronounced when dissimilar modes
have the same natural frequency. A plate vibration example is also presented
which shows that a spot damping treatment can fail [1,2,3] to damp certain
dissimilar modes having the same natural frequency, while others have twice
the damping expected. It is shown that frequency matching of damping coupled
modes employing spot damping results in nodal and anti-nodal points at the
point of application of the spot damping, and that this is the basis of the
anomalous result.
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ANALYSIS

Consider first two single degree of freedom oscillators of natural
1/2 1/2frequencies w, - (k/m) and w2 - (k2/m2 )I. Their displacements x, and

x2 are coupled by a dashpot of viscous damping rate c as shown in Figure 1.

The coupled equations of motion are

m+xk + c(c1 - 2)+ klx1  0, (1)

m2x2 + c(c 2 - 1z) + k2x2  0. (2)

Consider now the special case when w = 2 o Introducing the relative

motion coordinate y - (x1 - x2) and the damping fraction C1 - (c/2ml l) and

- (c/2m2o2), equations (1) and (2) can be combined to yield2 2)

y + 2(c1 + C2)y +W y : 0. (3)

Clearly the modal pattern x 1  x2 yields no relative motion across the dashpot

and the coupled mode has the natural frequency w and no damping. The modalpattern xI . -x2, or y - 2x also has the natural frequency w, but the

damping fraction C - C1 + C2" As a second illustration, consider the damping

coupled oscillations of the bouncing and pitching motions of the rigid body
shown in Figure 2. The coupled equations of motion are

mz + c(I + b;) + kz - 0 (4)

2 °2

mp 2 + cb(bo + 1) + ka2  -0. (5)

When the radius of gyration p equals the spring offset distance a, the

natural frequencies of bouncing and pitching are equal with w - (k/m) / 2 -

1/2(a/p)(k/m) Introducing the variable u- (z + b) which is the displace-
ment at the dashpot, equations (4) and (5) can be combined to yield

0 2
u+2(C +C z)u +W u = 0 (6)

where , = (b/p) 2(c/2w ) and Cz F (c/2nu). As in the first example, when

u - (z + bo) is zero, there is an undamped oscillation at natural frequency W.
When u - (z + b4) is not zero, the oscillation has the damping fraction C -u
C + C As a third example, consider the three degree of freedom, damping

coupled oscillator shown in Figure 3. The three uncoupled natural frequencies. k/)1/2 1/2 2 2 2)]1/2
are ( u /v / (kv/1/2 , and -- [(kud + kvd )/( 2 ) .) Intro-

ducing tE w = t C (c/2wu ) and - dod-, then the three damping coupled

equations of motion in matrix format are
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in2 sin 2a

2 C0s a 2 C sa

0 1 V_ + L2 sin2a £cosa eCOSa

( wlw ) o 1 2~ v

L0 0 L sin a E COS a

+ 0v 0 (6)

Lo0 (Wl /W)J .

Consider the case of (w I ) - 1 when the horizontal and vertical motion

natural frequencies are equal. The loss of damping anomaly can again be

demonstrated: there is a modal pattern lu , v, tj corresponding to the pure
2imaginary eigenvalue X - J, j = -1. That is, the damping coupled mode occurs

at the frequency w - w but with no damping. Direct substitution in equation

(6) yields the characteristic determinant

1 (2C coo a)j (2(c)

cosa {[(W/W -1 + 2 cosJ2 ai} (24 coS a)j " 0 (7)

(2cc cos a)j {[(Wt /Wu)2 - 1] + ( 2 )j}

Expanding and taking (w V/Wu) 2 - 1, the determinant vanishes for (w u)2 * 1;

the determinant also vanishes for (w /wU) 2- 1 and (w v/u)2 * 1. It does

not vanish unless two of the three natural frequencies are equal.

As a final illustration of the spot damping anomaly, consider a simply
supported, uniform rectangular plate as illustrated in Figure 4. A dashpot
applies a concentrated damping force at the interior point (1,'Y). The
governing partial differential equation for free vibration follows, where D
is the plate flexural rigidity, p is the plate mass per unit area and d is
the viscous damping constant per unit area for the dashpot at (1,Y).

4 W(xyt) + W(x,y,t) + dCx,,t) - 0. (8)

The undamped modal patterns and associated natural frequencies for the
integers m and n, and for a plate aspect ratio N - (a/b) are

W (x,y) - sin(mnx/a) sin(nxy/b) (9)
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2 = ( /a)4  (m2 + N2  n2) (D/ ) (10)

Now consider the case where the differing modal patterns W and s have

the same natural frequency. Then the plate aspect ratio N is related to the
modal integers m, n, r and s by

[r 2 )/(n 2 1/2 (11)

Now consider the hypothesis that two of the damping coupled modes are

W (+V)(xy) Wmn(,y) + V'rs(x,y) (12)

W (x'Y) - WMn(xy) - OWrs(x'y). (13)

This hypothesis leads to the eigenvalue equation in X

S4[ Wmn(X,y) * V-Wrs(XY)] + 2[Mn (x,y) * VWrs(X,Y)]

+ * X, 0 (14)

mnW'~,~ y ra )1 0

Taking the parameter v--[w n?,P be rsy)] constrains the displacement at
io be either an anti-node or a node point. In the

case of an anti-node, the modal pattern

W {W (X,y) + [ri (,' )Ww scx,-]W (,l (15)
(+v) mn wn rs r)Wx~

has twice the effective damping constant since

14 C-X, ) + V-9 x3~ 2W Cx,-) (16)
am rs mn

and W (x,y) and W (xy) are mutually orthogonal functions despite their
matchng natural fMequencies. This can be seen by multiplying equation (14)
by Wmn (x,y) and integrating over the surface area of the plate. Noting that

DV 4 mn(x,y) = Itwmn (x,y) (17)
m mnmn

the surface integration yields

-72 2 -
x(+v) + [(8d/p mnX)]X(+v) + mn 0 (18)

and

Ceffective 4 (d/p[Wn x wnn] (19)

(+V)

which is double that for W (xy) when the frequency for W rs(xy) does not

match.

In the case of a nodal 1o4nt at , j4 2 5,6J, W(-.7 "
{Wmn(x,y)-[W (x)/Wrs ,'y)]W' (-v)--mn' the modal pattern
occurs with nom'amping. al
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It has been demonstrated that spot damping treatments can fail when
dissimilar modes have the same natural frequency. A numerical analysis is now
presented which reveals that as the natural frequencies of a rectangular plate
depart from the normal spacing of dissimilar modes and coalesce, a progressive
deterioration of the effective damping provided by spot damping treatments
results.

PLATE NUM RICAL ANALYSIS

The governing partial differential equation for the plate is given in
equation (8). A modal expansion of undamped modes is employed. That is
taking

w(x,y,t)- W (x,y)eXt (20)
m,n-l

and employing the orthogonality relationships that

ba
f f W(X,y)--r (x,y)dxdy = 0 (21)

r,0Mn rs%O

for differing integer subscripts and

b a -2 (xydd ab (22)f f (xymxd0 0

Truncating the modal expansion at N terms, the first N modes of undamped plate
vibrations are damping coupled. Employing matrix notation with the general-
ized coordinates q1 (t),q 2 (t),.,.,qN(t), the governing matrix differential
equation is as follows:

1 0 - 0 qI d 1 1 d1 2 .s.e d IN- q' 1

0 1 0 0] q2  d d21 d22  *d 2N 42 /

0 I LqN dNldN2 dNN N

[02 0e Ld d 00 qed

10

+ (23)

N N
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where w2, ,. W2 are the undamped natural frequencies of the undamped plate

corresponding to the rectangular plate modal patterns; they are arranged in
ascending order of frequency; the damping matrix is symmetrical with

ba
f f wren CX Y )wr s ( ' )dxdy

d ij = d _ c b 0 0 (24)
mn,rs b a s

f f Wm2 n(x,y)dxdy
00

or

d4 -w (25)mn, rs ,-2

Introducing dimensionless time T E w1t and the reduced damping matrix entries
26 (d /) the governing matrix differential equation becomes

1 0 I0. qN- I 6 2 6N qN

1  ~ 611612 6 1N1

0 62 212622 6 2N

+ =(26)

£ 6" N 1 )2 q N

A solution is sought in the form

{q(t)) = qe'j* (27)

where
V 2 (X/'1  (28)

Taking 22 (/w)2)
(Wp/Wl)2 - r,2 p 1,2,..*,N (29)

the characteristic determinant follows as
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11 1212
+26Ll + v2 2612 " + "n 261N2 2 22 . 29V(v 26 1 2v + 1  22v+ 6N

2 v2  26 2v 2 2NV- 0 (30)

2 26NV2 262v26 +'N

The influence of natural frequency separation is now evaluated by systematic-
ally perturbing the plate aspect ratio N while preserving the plate area, with
mass per unit area and flexural rigidity properties constant, with spot
damping coupling the first nine modes. Since the reference aspect ratio No
has yielded a frequency match and a complete loss of damping, a tabular
relationship is now obtained which shows the influence of natural frequency
proximity on the effective or virtual damping. This is shown below in Figure
5 in tabular format for several nominal damping levels ranging from 5% to 50%
of critical in the fundamental plate mode, with the frequency match occurring
in the fourth and fifth modes. It is seen that the loss of damping is almost
complete over a significant range of frequencies above and below the match.

PLATE WITH PERVASIVE DAMPING

To contrast the foregoing spot damping case, now consider a uniform,
simply supported rectangular plate with uniform or pervasive damping over its
entire surface. The governing partial differential equation with equivalent

C
viscous damping per unit area d 0 follows:

DV4 W(x,y,t) + pW(x,y,t) + d k(x,y,t) - 0. (31)0

Seeking the solution in the form

A Xt
W(,y,t) - (x,y)e (32)

DV4W(x,y) + (p. + do0 X)W(x,y) - 0 (33)

Since

D74mW (x,y) - W2-- (x,y) (34)
mn mn mn

for do - 0, the undamped case, it follows that the undamped modal functions
also are solutions for the case of pervasive damping with the characteristic

equation

2 2 (5
X 2 + doX + Pn 2 O, (35)

0 mn-

or

X 2+ d/0 + 1-0. (36)
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Since the effective pervasive viscous damping ratio for mode mn is given by

d

Cmnwmn , (37)

a direct comparison of spot damping and pervasive damping can now be ifcrred.
It is seen that barring frequency matching in the case of spot damping

CM' _ (d W2 (x, Y). (38)

Since W9 xy) varies from zero to unity, the spot damping level per unit are
require Wnexceeds the pervasive damping level in the ratio

(d) -W -29>
mnx,(9

providing that no two natural frequencies coalesce. Factoring in the
influence of the distributed or pervasive damping over the entire plate area
A - ab, the equivalent effective spot damping level follows as

d - d (ab)WV2n , ) (40)

to achieve the same fraction of critical damping in the mn-th mode.

CONCLUSION

Passive spot damping treatments are seen to be straightforward in
concept, but potentially ineffective when neighboring, but differing modal
patterns have natural frequencies that are close to one another. In the
special case of matching natural frequencies the effective damping fraction is
zero. This stems from the appearance of a nodal point at the spot damping
point of application. In fact, the unusual nodal patterns [5] when frequency
matches occur can render broader spot and localized damping treatments
ineffectual also. Nevertheless, spot damping treatments are attractive in
their simplicity compared to pervasive ones, providing true anti-nodal points
of application can be found. This is difficult when frequency matches exist.
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Table: A - ab = 1.0 Meters Squared; 1/u - y/b - (1/%)

2
a r N a/b = a 6 ref

f .05 6ref  .0 6 ref  .25 6 ref - .50

.65 0.5529 .4225 1.7005 3.3506 8.7111 12.2702

.70 0.6372 .4900 1.7019 3.3618 8.7960 10.2591

.75 0.7307 .5625 1.7029 3.3696 8.9389 0.2759

.80 0.8316 .6400 0.0423 0.0834 0.1856 0.2574

.83 0.8937 .6889 0.0387 0.0743 0.1392 0.1346

.85 0.9345 .7225 0.0357 0.0616 0.0726 0.0379

.86 0.9572 .7396 0.0325 0.0469 0.0328 0.0071

.87 0.9785 .7569 0.0224 0.0193 0.0045 0.0052

.88 0.9998 .7744 0.0000 0.0000 0.0001 0.0002

.89 1.0211 .7921 0.0205 0.0196 0.0160 0.0170

.90 1.0423 .8100 0.0287 0.0401 0.0404 0.0406

.91 1.0635 .8281 0.0306 0.0500 0.0632 0.0658

.93 1.1058 .8649 0.0309 0.0564 0.0942 0.1170

.95 1.1478 .9025 0.0302 0.0572 0.1097 0.1437

Figure 5
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VIBRATION DAMPING PERFORMANCE -

WHAT WE SHOULD KNOW ABOUT IT
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ABSTRACT

The vibration damping performance of materials that are used in the
automotive Industry, are usually evaiuated by either: (1) Geiger Thick-
Plate Test Method, or (2) Complex Modulus Test Method. Both of these
methods have certain limitations, though the second method Is a superior
one since It can measure the damping performance with temperature and
frequency. This paper discusses the limitations of the way data is
typically presented using this method and proposes a procedure for
overcoming these limitations. This procedure allows for the rank-ordering
of damping materials by composite damping properties obtained using
different size Oberst bars.
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Introduction

The Interior no!se In a car has been of a concern for quite a whl!e. In
recent years it has become more Important due to the high demand of
customer satisfaction. The trend now Is to have a better fuel economy car
with lighter body panels (less total weight of the car), and still have
very powerful engines. In this respect, the Interior noise concern Is
becoming very Important. Also with unitized body constructions, the
structure-borne noise due to vibration of the floor pan and other interior
body panels Is becoming increasingly Important. One way to reduce t 's
noise Is to treat vibrating panels with damping materials. These mptarialss
will reduce the vibration of the panels and therefore reduce the structure-
borne noise inside the car. This paper discusses two different test
methods that are currently used In the automotive Industry to evaluate the
vibration damping performance of various materials. These are: Geiger
thick-plate tesr method and complex modulus test method. The paper
discusses the advantages and Iimitations of both test methods. Finally, a
technique to rank order the performance of various damping materials, based
on composite damping properties obtained by the complex modulus method, is
presented here.

Geler Thick-Plate Test Method

The damping performance using this test method Is expressed In terms of
decay rate. The decay rate Is a measure of dissipation of the vibrational
energy of the damping material. The set-up consists of a 6 mm (1/4 Inch)
thick and 500 mm by 500 mm (20 inch by 20 inch) steel plate which is
supported at 4 points along the plate's nodal line. It Is supported by
Isolation mounts to minimize losses. The plate Is excited In Its
fundamental frequency mode (typically between 130 and 160 Hz) by an
electromagnet at the center of the plate. The vibration Is detected by
either an electromagnetic transducer, a small accelerometer, or even a
microphone placed near the plate to measure the sound pressure caused by
the plate. The damping performance Is determined by measuring the
vibrational decay after the test plate Is excited and the excitation then
suddenly removed. The results of the measurements are normalized to a
frequency of 160 Hz. This method can be used for evaluating materials at
several temperatures.

The advantages to the Geiger thick-plate test method are:

o Measurements are made at several temperatures.

o Provides data relatively quickly for rank ordering materials.

o Easy to Interpret data (units of dB/sec).
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The disadvantages to this method are:

o Provides data at only one frequency.

o Does not provide a material property.

o Though the thick plate dimensions can be varied, the thickness
Is usually much greater than the thickness of automobile
panels.

Complex Modulus Test Method

This method is sometimes called the Oberst Bar Method after H. Oberst. The
set-up consists of a thin metal bar to which the damping material Is
bonded. This forms a composite bar which Is also the test sample. The bar
is clamped at one end and free on the other end. The bar, using an
electromagnetic transducer, Is excited with a random noise or a sweep-sine
wave to determine the resonant peak frequencies of the various modes of
vibration. The response of the bar Is sensed by a pick-up transducer which
can be an electromagnetic transducer, a strain gauge or a small
accelerometer. The frequency response consists of several resonances which
are characteristic of the bar configuration. The half-power band width
(frequency difference between 3 dB down points from the resonant peak) of
each mode In the response spectrum is read (Figure 1). The damping
performance Is expressed in terms of the composite loss factor (nc). The
term, nc, is computed from the measured data. The composite loss factor at
each resonant frequency Is the ratio of the half-power band width (Atf) over
the resonant frequency (f) i.e., nr = If. With additional Information
from testing the bare bar alone, the damping properties of the damping
material can also be computed.

The advantages of the complex modulus test method are:

o Measurements are made at several different frequency modes and
temperatures.

o Can compute material loss factor If bare bar Is tested, In
addition to testing the composite bar. The material loss
factor allows one to predict the performance of the material in
an application.

o Rank order materials using composite loss factor If tests are
done with the same bare bar material type, size, and test
configuration (free-layer, constrained layer, etc.).
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The disadvantages to this test method are:

o Calculation for material damping properties can be laborious
without a computer.

o To get meaningful results of material damping properties at a
wide range of temperatures, more than one test configuration
(free layer, constrained layer, etc.) may be needed.

Comparison of Composite Data

If a given number of damping materials were tested according to the complex
modulus test method, the performance of these materials can be rank-ordered
based on the composite loss factor. Time and effort to test the bare bar
and subsequently to compute the material damping properties would not be
necessary.

The use of rank-ordering materials by composite loss factor, however, has
Its limitations. The problem arises when trying to compare damping
materials which were tested with different bar dimensions or
configurations. To overcome this problem, the first step would be to
compare damping materials by the material damping values.

The material damping properties can be estimated from composite damping
values If an assumption can be made. The assumption is that the modulus of
the bare bar Is relatively constant over the temperature range and
frequency range of the damping test. By estimating a constant value for
th?0modulus of t~e bare bar (for example, the modulus of steel equals 20 x
10 Pa (29 x 10 psi)), the resonant frequencies of the bare bar can be
calculated and hence, the damping material properties. The estimate can be
Improved If data is available on the change of the modulus of the bare bar
with temperature and frequency.

Once the material properties are computed for each damping material for a
comparison, there still exists the problem of discrete values at different
frequencies and perhaps different temperatures. This can, howevef, be
overcome with the use of the reduced-frequency nomogram technique . It
should be noted that the purpose of this paper is not to show how the
reduced frequency technique works but to use reduced frequency technique to
rank-order damping performance without conducting extensive tests.
However, a brief description of the development of a reduced frequency
nomogram from discrete material property values follows below.

1Jones, D. I. G., A Reduced-Temperature Nomogram for Characterization of
Damping MateriaL Behavior, The Shock and Vibration Billetin, Bulletin 48,
Part 2, pp 13-22, (September 1978).
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When the modulus of a material versus frequency Is plotted for given
temperatures, what results is a series of curves as shown In Figure 2. If
each of these curves Is shifted horizontally by a given factor, what then
results Is a single continuous curve of modulus versus frequency made up
from the data of different temperatures. The same can be done for material
loss factor versus frequency data of different temperatures. The curves
obtained by this procedure are shown In Figure 3. The curves are
calculated by a curve fitting technique. This allows for the interpolation
of material damping properties between the discrete measured values at
temperatures and frequencies within the range of the test. The frequency
axis Is on the right-hand-side and the temperature lines run diagonally.
To obtain the loss factor for a given frequency and temperature, (e.g.:
frequency 10 Hz and temperature T In Figure 4), simply mark horizontally
from the frequency scale and diagonally along the temperature line to the
point of Intersection. Then mark vertically to the loss factor curve and
read the values from the left-hand-side scale. The same can be done for
obtalninq values of modulus at a given frequency and temperature from the
modulus curve of the nomogram.

To test the procedure of comparing composite damping properties for rank-
ordering materials tested with different bar sizes, two different complex
modulus tests were done. Rather than verifying the procedure by rank-
ordering two or more materials, it would be more appropriate to see If a
material would rank the same with Itself when tested with two different bar
sizes. For this case, the same damping material was tested by the complex
modulus test method configured for free layer damping on one side of a thin
steel bar and on one side of a thick steel bar. The damping material was a
homogeneous material.

Having obtained the com?@sIte dampIng 6data, the modulus of steel was
estimated to be 20 x 10 Pa (29 x 10 psi) and the material damping
properties were computed. The computed material damping properties
obtalned with the thin steel bar were then compared with those of the thick
steel bar. This was done by first preparing a reduced frequency nomogram
for the material damping properties obtained by the use of the thin steel
bar (Figure 5). The curves from this nomogram were then overlaid on the
material damping property values of obtained using the thick steel bar
(Figure 6). As can be seen, the curves fit the second set of data
reasonably well. This proves that the damping material rank-ordered the
same with Itself for both bar sizes when the composite damping data only
was provided.

ConcliudIng Remarks

This paper discusses the advantages and limitations of two different
vibration damping test methods that are used In the automotive Industry,
namely Geiger thick-plate test method and complex modulus test methoa. A
technique, based on the results of the complex modulus tests method, has
been discussed here to rank-order damping performance based on composile
loss factor data obtained by different size Oberst bars.
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ABSTRACT

Structural damping is frequently approximated in frequency domain by the con-
stant hysteretic damping model. Transient vibrations of a member with constant
hysteretic damping lead to a noncausal precursor response [1, 2]. Noncausal
response can be avoided by introducing actual measured frequency dependent

stiffness and damping behaviour of material, or by introducing constitutive
equations of differential operator type with classical derivatives (integer order) or

generalized type (fractional order).

This paper recalls and generalizes constitutive equations of viscoelastic behaviour

of materials and members in time and frequency domain.

Weak frequency dependence of actual viscoelastic material can be fitted with only
few parameters by adopting the fractional derivative concept.
The impulse response function of an oscillator with fractional derivative damping
model is integrated in the present paper by a new efficient technique using in-
verse Fourier transform. This requires a unique definition of the constitutive

equation in frequency domain. The response in shown to fulfill causality require-
ment. Amplitude decay of the considered damping models are compared after
selection of equivalent damping properties.
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Fractional derivatives in constitutive equations

The elastic-viscoelastic correspondence principle replaces Hooke's law describing

a linear elastic material by the corresponding equations of a viscoelastic material

in time domain of differential operator type or hereditary integral type [3]. For a

one dimensional state of stress Hooke's law o(t) = Ee(t) is replaced by the

constitutive equation of differential operator type

N dk U dk (1)

k=O dk  k=0 dt

or hereditary integral type

0 t- deW t) (2)

(t) = E ~(1-t-) d- d()t

Young's modulus E corresponds to the relaxation function E(t) in equation (2).

Thermorheological simple materials allow introducing the influence of space and

time dependent temperature T on material behaviour by replacing the actual time

t by a reduced time

xI= J = T(x,npJdn (3)

This transformation is based on the shift function 4 determined from

experimental data [3]. As a generalization of the constitutive equation (1) with

integer order derivatives in operators, fractional calculus can be used to

respresent viscoelastic behaviour [4].

The derivative of fractional order a

d Dc(t) 1 d - C(t-1) dL 0<Q< (4)

dt' r(1-0) d 0Jo La

defined with the gamma function r(1 -a) = f;, ezx -dx is the inverse operation of

fractional integration attributed to Riemann and Liouville [5J.

Equation (1) with each integer order derivative being replaced by one of fractional

order leads to
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N k M (5)
Pk D to( )} = V 9k D k (t)

k=O k=O

Although the defining relationship (4) appears complicated with respect to com-
putations both Laplace and Fourier transforms reveal the useful results

I. 1II){xt ! = soL Ix()1 (6)

F Ii)"{x(t))l = (iw) 0 Flx(t)

Harmonic functions of time such as c' = Cexp (it) in steady state or the frequency

domain of Fourier transform convert equations (2,5) with (6) to

fl* = = E* ((A)W) () (7)

Complex modulus E*(&) with storage modulus Etw) loss modulus E"() and loss
factor (w) z E"()IEN)

M

q ()kk=

E*=() = =fk (w) +iE"(w)) = E'(()II+iql(wO)1 (8)
N' ~\" Pk (iwo) Uk

k=O

is related to the relaxation function E () in equation (2) by the inverse Fourier

transform E (t) = F- IE* ()/((i*)/.

Complex moduli of several viscoelastic models and associated rheological models

are compared in Fig. 1 with the corresponding storage and loss moduli.
A frequency parameter a, = W/W with a scaling frequency &n has been intro-

duced which leads to a nondimensional time r = Can t according to ao 1 = wt.
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* In a limited frequency band, the
Constant Hysteretic Model E = E(.irl) frequency independent, so called

Kelvin-Voigt-Model E = E(1ias ) constant hysteretic damping mo-

SB w del approximates experimental
E ,results. This damping model is

Fractional Derivative E = E(1.(iao), frequently extended over the

3-Parameter-Moel * E1i2a entire range of positive frequen-
1ia*t cies to yield the complex

sji E2  E, s, 1 B modulus
4 E n E* = (1 +iri).

BE 2: 2E Noncausal response occurs when

2.0 results obtained with this model
--Storage Modulus F are transformed into the time

1.5-domain [1, 2, 6, 7]. An analytical
1.5

pulse response function of a

1.0 +- 0.5 SDOF
.4, oscillator is given in [1]. Noncau-

/+Ti =0.4
0/5 sal response can be avoided by

,IE introducing actual measured fre-

- Loss Modulus E"Ja) quency dependent stiffness and
0.0 2 a1:- --  damping behaviour of material

STORAGE AND LOSS MODULI OF A [2]. It is stated in the present pa-
VISCOELASTIC MODELS per, that noncausal response can

be avoided by constitutive equa-
tions with fractional derivatives.

Fig. 1 Complex moduli, storage and

loss moduli of viscoelastic models

Damping models of a member

Transfer behaviour of a massless member in Fig. 2b is formulated by integrating

equation (5) for a Kelvin-Voigt model (Fig. 1) with fractional derivative with

respect to the volume of a member. This relates the force N to the tip displacement

u in time domain

(10)
Nf) = ku(t) + cDo{u(W) 0 <a<1

and in frequency domain of Fourier transform
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N*(u = kIl + tiga)"l u* (u ) (11)

with stiffness k = EA/f and viscosity = c//k, where c = BA/C. Constant

hysteretic model (9) leads to

N*(a ) = k(+iq) u*(a.) (12)
U C)

Both complex moduli of the member

k*(a ) N*(a )/u*(a ) = k'(a ) + ik"(a) (13)

(11, 12) do not as yet meet the requirements of a unique definition for the entire

range of frequencies - <a, <, of Fourier transform.

a) b) Unique definition of constitutive

equations in frequency domain

Conqider the term (ia )a a., aE R
in equation (11) as a special case

of the complex expression Q'
f0, zEC. A unique definition of

Qz = exp (zLnQ) is gained by

U restricting the arguments of
Ln(2 to the principal values

-n < Im(LnQ) < n, leading to a

m !branch cut along the negative
N--OA real axis [8]. This definiton

restricts the arguments

F (ia,)a = Rexp(P)to

a15< <an 0 < a<1 (14)

Fig. 2 (a) SDOFoscillator (b) Masslessmember

Storage and loss moduli of the member in equation (11)

k'(a ) = kll +kRe(iUo)aI , k"(a ) = ktm(iao) (15)
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have a unique definition with equation (14). A physical interpretation supports

the choice of proper roots. The 'force N*exp (iaj), interpreted as a rotating vector

in complex plane, causes the displacement u*exp (iaot) and has to be ahead with
minimal ph'iseshift counterclockwise for positive frequencies a. > 0, exp (ia t),
and clockwise for negative frequencies a. < 0, exp (-ila 0 Jr). Negative frequencies

ccur in two sided Fourier transform. This condition is fullfilled by equation (14)
and r'xquires the well known extension of complex modulus (12) according to

k* = k(l+irsgna) (16)

The fractional derivative of order a = 1/2 can be derived to be relevant for

polymeric materials from molecular physics [4',.

According to (14) we have to choose

(a) I + VI (17)
" !-i, a <0

and obtain the complex modulus

k{(I + , Va-1 + i V-/2) a-0(1,

k t(a + (18)
= (I +vklVl1/21 -+ ikv'i /2),a<o

Complex moduli (16, 18) contain storage moduli, which are even functions of
frequency and loss moduli, which are odd functions of frequency

k'(a ) = k'(- ,,), k"(a ) -k"(-a ) (19)

Impulse response function of a damped oscillator

Vibration response of the damped SDOF oscillator in Fig. 2a is calculated by
Fourier transform, i.e. u* (a) = (1/a,) f'-. u(t) exp (-ia.r) di , of Newtons

equation of motion for mass m

2,, (20)
mW2 u L) = F(L)-N(T)

where ( )' = d/dt , w, = '1k/rn. With Fourier transformed constitutive equation
(11) of member, the frequency response function is given by
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k u*(a) 1 (21)
F(a ): = -----= F* (a) I -a 2 + kiao)a

0 0

Transient response can be obtained from inverse Fourier transform.

Dirac unit impulse excitation F(;) = 8(T) F*(a) = 1 leads to the impulse

response function u(r) = h(t)

I fta ( 22)

f(0: = mW h(t) F( )e d a ,

which governs the response for an arbitrary force F(O by the Duhamel

convolution integral

u(L) _ - h(,-QF(Qdk, (23)
n

By contour integration of equations (21, 22) and theory of residue the authors

calculated the familiar impulse response function of the undamped oscillator as

OO
f(L)~ si L, L a~5 0o ~L : (24)

A new efficient solution of the damped impulse response (22) is obtained by

cutting the infinite integral in two intervals - -> a0  0 and 0 <a. <-x with

associated unique definition of the integrand according to (17). Complex conjugate

contributions lead to a real semiinfinite integral after reassembling

i - A (ao) cos (aot) + B (a. ) sin (a o (25)
= 0 A2(a ) + B2(a) a

0 0

where

A(a) = -a 2 + kVa ,2' B() = V (26)
V a U 0

The corresponding solution for the member with constant hysteretic damping in

equation (16) requires substitution of(26) by

,2 (27)

A(a.) = I-a ° , B(a.) = j 121
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Causality of impulse response function

Causal response of the damped oscillator due to the impulse excitation F() = 8 ()

requires the system to beat rest f(-) = 0 forT <0.

Causality of the transformation pair in equations (21, 23) fi) O- F(a.) requires

[91

t) - Reb'(u )cos(a L) = - - - I rnb'(u sin (a )da (28)
II 1 (4 0 o o V

for r > 0. The abbreviations in equation (25) lead to

2. .. (0.1 ( Bi 2u ) Sin WO i (29)
i - d d

A{ ) + H (o A(u I + 1 f(u

fort >0.

The sum of the two expressions in (29) for - > 0 lead to equation (25), whereas for

t < 0 equations (29) assure causality f() = 0 when they are inserted in equation

(25). A numerical proof of the causality requirement (29) is given in the present

paper for the damping model with fractional derivative and abbreviations (26).

This is why the simple equations (29, 26) govern the impuls response

h(-) = fli) / (mtu,) after numerical integration.

A published solution of the problem at hand is based on Laplace transform and

contour integration [101. It requires numerical root finding of the denominator of

equation (21). Besides the residues at these poles, there is a contribution to the

solution from integration along the earlier mentioned branch cut segments that

requires numerical integration of a seminfinite integral as well.

Causality condition (28) is violated with equations (27) corresponding to the

constant hysteretic damping model. Precursor response f(t) for i < 0 is discussed

in [1, 21.

Numercial results of impulse response

Fig. 3 depicts the impulse response calculated from equations (25, 26) for positive

and negative time x = wt. The response proves to be causal. Numerical

integration of infinite integral converges rapidly.

No difference of impulse response was found when both simpler integrals (29)

were integrated for x > 0. Negative time x < 0 characterizes the first integral (29)
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as an even function of time, the second as an odd function of time. Parameters k
weighting the fractional derivative of order a = 1/2 are chosen to be k = V'25 and
V2/20. Regarding equation (18), an increase of k does not only increase the
damping but also stiffens the member according to W +k va/2'). That is why
stronger amplitude decay is associated with decreasing periods of zero crossing.

1 .0 . . . . I I ' ... . . . . .
t IT) Mwah (T) CONSTITUTIVE LAW Nzk(u.tD" 2(u)J

I'
0 .0 - IO

0I
causalI/

I /

-1.0. .1.JL.-a

-5 0 5 10 15 20 25 T=Wnt 30

Fig. 3 Impulse response of oscillator with fractional derivative damping model

'mpulse response for different damping models

Fig. 4 compares the impulse response functions corresponding to three damping
models of Fig. 1:
- Constant hysteretic model [1]
- Kelvin-Voigt model with first oder derivative [11 and
- with fractional derivative of order 1/2
Equivalent loss factors have been chosen at a. = oa/ = I such that
q = a,, (Kelvin-Voigt) = %a-/2 k (Frac.Der.) = 1/20. This leads to nearly equal
amplitude decay of all models, whereas the stiffening of the fractional derivative
model decreases the periods of zero crossing.
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Fig. 4 Impulse response for different damping models
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