
OTIC I-1;- COPY
REPORT DOCUMENTATION PAGE O
h~ ob w M a~ft of Mfewt s eoffW ID am, ~ Inws Wo 0.- mmm Im~ ''n -ft en*

ftm, @kftjw 0.u. i. mbmmaft vill wy 0" I _ w.
" A Ii. o m. 0 iog Amam zig w O"W. - b .amwhpA. NW WA St "

1. AGENCY USE OILY (LIw &WI) l R.EPORT DATE .p=TM., AM DATES COVERED

Final 22 Apr 90 to 22 Apr 91

4-TlLEAN DCI TfTLE Ada Compiler Validation Summary Report: Computer LPFmLI B

Sciences Corporation, MC Ada V1.2.beta/ Concurrent Computer Cor-

poration, Concurrent/Masscomp 5600 (Host) to Concurrent/Masscomp

5600 (Target), 900121S1.10251
S.AUTHOR(S)

National Institute of Standards and Technology
Gaithersburg, MD
USA AD-A223 415
7. PEWOM, OAGATI1ON NAAE(S) ANO ADNRESSES)

National Institute of Standards and Technology
National Computer Systems Laboratory
Bldg. 255, Rm. A266
Gaithersburg, MD 20899
USA

9. SPONSORJIG,,ITORING AGENCY NAAE(S) AND ADORESS(ES) 10. SPONSORINGAMNTORIG AGENCY

A ;a Joint Program Office RPOT NLJSER

Uaited States Department of Defense
Wast.ington, D.C. 20301-3081

11. SUPKELENTARY NOTES

12L DISTROUTNAVALABLITY STATEMENT 12b. DtSTRUUTON CE

Approved for public release; di'tfibution unlimited.

13. ABSTRACT (Ab&U,,2W ww)

Computer Science Corporation, Gaithersburg MD, Concurrent/Masscomp 5600 under Unix;

Masscomp RTU V4.1 (Host) to Concurrent/Masscomp (Dual 68020 processor configuration

under CSC developed Ada Real-Time Operating System (ARTOS) for bare machine environments(Target), ACW 1.1I0. " ; -

-M.UIECTTERMS Ada programming language, Ada Compiler Validation iS.WJBEROFMES

Summary Report, Ada Compiler Validation Capability, ValidationTesting, Ada Validation Office, Ada Validation Facility, ANSI/MIL- s.P :cECO

S-18IA, Ada Joint Program
Office

1W' SFICN ISC'rY S LAESlNE AT9W 1. IWo,,, GLArSWATION W. LMITATON OF AUT-ACT
OF REPORT OF ABSTRAT

UNCLASSIFIED UNED UNCLASSIFIED

90 06 25 II, -

AVF Control Number: NIST89CSC545_1.10
18 March 1990
23 ApriL 1990

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 900121S1.10251
Computer Sciences Corporation

MC Ada Vl.2.beta/ Concurrent Computer Corporation
Concurrent/Mascomap 5600 Host and

Concurrent/Masscomp 5600 (Dual 68020 processor configuration) Target

Completion of On-Site Testing:
21 January 1990
22 April 1990

Prepared By: DTIS

Software Standards Vat idation Group
National Computer Systems Laboratory C*Iq

National Institute of Standards and Technology

Building 225, Room A266

Gaithersburg, Maryland 20899

jI, For

Prepared For:

Ada Joint Program Office q

United States Department of Defense []
Washington DC 20301-3081

L_____

Ada Compiler Validation Summary Report:

Compiler Name: MC Ada V1.2.beta/ Concurrent Computer
Corporation

Certificate Number: 900121S1.10251

Host: Concurrent/Masscomp 5600 under Unix; Masscomp RTU V4.1

Target: Concurrent/Masscomp 5600 (Dual 68020 processor configuration) under
CSC developed Ads Reat-Time Operating System (ARTOS) for bare machine
envi ronments

Testing Coepleted 22 April 1990 Using ACVC 1.10

This report has been reviewed and is approved.

Dr. Daid K. eff4 r. L. Arnold J o

Chief, Information Syst Manager, Software Standards
Engineering Division Validation Group
National Computer Systems National Computer Systems

Laboratory (NCSL) Laboratory (NCSL)
National Institute of National Institute of

Standards and Technology Standards and Technology
Building 225, Room A266 Building 225, Room A266
Gaithersburg, MD 20899 Gaithersburg, MD 20899

Ada Validation Organization
Dr. John F. Kramr
Institute for Defens, Analyses
Alexandria VA 22311

Ada Joint Program Office
Dr. John Solomond
Director
Department of Defense
Washington DC 20301

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-2

1.2 USE OF THIS VALIDATION SUMMARY REPORT1-2
1.3 REFERENCES1-3

1.4 DEFINITION OF TERMS 1-3

1.5 ACVC TEST CLASSES1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED 2-1

2.2 IMPLEMENTATION CHARACTERISTICS2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 3-1

3.2 SUMMARY OF TEST RESULTS BY CLASS 3-1

3.3 SUMMARY OF TEST RESULTS BY CHAPTER 3-2

3.4 WITHDRAWN TESTS3-2

3.5 INAPPLICABLE TESTS 3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS . . 3-6

3.7 ADDITIONAL TESTING INFORMATION3-6
3.7.1 Prevatidation 3-6

3.7.2 Test Method 3-7

3.7.3 Test Site3-7

APPENDIX A CONFORMANCE STATEMENT

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

APPENDIX E COMPILER OPTIONS AS SUPPLIED BY

Computer Sciences Corporation

CHAPTER 1

I NTROOUCT ION

This Validation Summary Report (VSR) describes the extent to which a specific Ada compiler conforms to the Ada

Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it arthorohLy reports the resuLts of testing this
compiler using the Ada Compiler Validation Capablity (ACVC).'An Ada compiler must be impLemented according
to the Ada Standard, and any implementation-dependent features must conform to the requirements of the Ada
Standard. The Ada Standard must be implemented in its entirety, and nothing can be implemented that is not in
the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it must be understood that some differences
do exist between implementations. The Ada Standard permits some implementation dependencies--for example, the
maximum Length of identifiers or the maximum values of integer types. Other differences between compilers
result from the characteristics of particu,ar operating systems, hardware, or implementation strategies. ALL

the dependencies observed during the process of testing this compiler are given in this report.
The information in this report is derived from the test results produced during validation testing. The
validation process includes submitting a suite of standardized tests, the ACVC, as inputs to an Ada compiler
and evaluating the results. The purpose of validating is to ensure conformity of the compiLer to the Ada
Standard by testing that the compiler properly implements Legal language constructs and that it identifies and
rejects illegal Language constructs. The testing also identifies behavior that is implementation dependent,
but is permitted by the Ada Standard. six classes of tests are used. These tests are designed to perform
checks at compile time, at link time, and during execution.

1"1

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an

Ada compiler. Testing was carried out for the foLlowing purposes:

* To attempt to identify any language constructs supported by the
compi ler that do not conform to the Ada Standard

* To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

* To determine that the implementation-dependent behavior is aLlowed
by the Ada Standard

Testing of this compiler was conducted by Gamma Corp. under the direction of the AVF according to procedures
established by the Ada Joint Program Office and administered by the Ada Validation Organization (AVO). On-site
testing was completed 22 April 1990 at Computer Sciences Corporation.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national Laws of the originating country, the AVO may make full and free public disclosure
of this report. In the United States, this is provided in accordance with the "Freedom of Information Act" (5

U.S.C. #552). The results of this validation apply only to the

computers, operating systems, and compiler versions identified in this

report.

The organizations represented on the signature page of this report do not represent or warrant that alL
statements set forth in this report are accurate and complete, or that the subject compiler has no
nonconformities to the Ada Standard other than those presented. Copies of this report are available to the
public from:

Ada Information Clearinghouse

Ada Joint Program Office
OUSDRE
The Pentagon, Rm 30-139 (Fern Street)
Washington DC 20301-3081

or from:

Software Standards Validation Group
National Computer System Laboratory

National Institute of Standards and Technology
BuiLding 225, Room A266
Gaithersburg, MaryLand 20899

Questions regarding this report or the validation test results should be
directed to the AVF Listed above or to:

Ada VaLidation Organization

Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language, ANSI/IL-STD-1815A, February 1983 and ISO
8652-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint Program Office, 1 January 1987.

1-2

3. Ada Compiler Validation Capability Imptementers' Guide, SofTech, Inc., December 1986.

4. Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada programs that tests the
conformity of an Ada compiler to the Ada programming language.

Ada An Ada Commentary contains all information relevant to the Commentary point addressed
by a comment on the Ada Standard. These comments are given a unique identification
number having the form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-iY87.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for conducting compiler
validations according to procedures contained in the Ada Compiler Validation
Procedures and Guidelines.

AVO The Ada Validation Organization. The AVO has oversight authority over all AVF
practices for the purpose of maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and technical support for Ada validations
to ensure consistent practices.

Compiler A processor for the Ada language. In the context of this report, a compiler is any language
processor, including cross-compilers, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that demonstrates nonconformity to the
Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may Legitimately support in a way other than

the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected result.

Target The computer which executes the code generated by the compiler.

Test A program that checks a compiler's conformity regarding a particular feature or a
combination of features to the Ada Standard. In the context of this report, the term
is used to designate a single test, which may comprise one or more files.

Withdrawn An ACVC test found to be incorrect and not used to check test conformity to the Ada
Standard. A test my be incorrect because it has an invalid test objective, fails to
meet its test objective, or contains illegal or erroneous use of the language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC contains both legal and illegal Ada
program structured into six test classes: A, 1, C, D, E, and L. The first Letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable, and special program units are used
to report their results during execution. Class 5 tests are expected to produce compilation errors. Class L
tests are expected to produce errors because of the way in which a program library is used at link time.

Class A tests ensure the successful compilation and execution of Legal Ada program with certain language

1-3

constructs which cannot be verified at run time. There are no explicit program components in a Class A test
to check semantics. For example, a Class A test checks that reserved words of another language (other than
those already reserved in the Ada Language) are not treated as reserved words by an Ada compiler. A Class A
test is passed if no errors are detected at compile time and the program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal Language usage.
Class B tests are not executable. Each test in this class is compiled and the resulting compilation listing
is examined to verify that every syntax or semantic error in the test is detected. A Class B test is passed
if every illegal construct that it contains is detected by the compiler.

Class C tests check the run time system to ensure that legal Ada programs can be correctly compiled and
executed. Each Class C test is self-checking and produces a PASSED, FAILED, or NOT APPLICABLE message
indicating the result when it is executed.

Class D tests check the compilation and execution capacities of a compiler. Since there are no capacity
requirements placed on a compiler by the Ada Standard for some parameters--for example, the number of
identifiers permitted in a compilation or the number of units in a library--a compiler may refuse to compile
a Class D test and stilt be a conforming compiler. Therefore, if a Class D test fails to compile because the
capacity of the compiler is exceeded, the test is classified as inapplicable. If a Class D test compiles
successfully, it is self-checking and produces a PASSED or FAILED message during execution.

Class E tests are expected to execute successfully and check implementation-dependent options and resolutions
of ambiguities in the Ada Standard. Each Class E test is self-checking and produces a NOT APPLICABLE, PASSED,
or FAILED message when it is compiled and executed. However, the Ada Standard permits an implementation to
reject programs containing some features addressed by Class E tests during compilation. Therefore, a Class E
test is passed by a compiler if it is compiled successfully and executes to produce a PASSED message, or if it
is rejected by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving multiple, separately compiled units are
detected and not allowed to execute. Class L tests are compi led separately and execution is attempted. A Class
L test passes if it is rejected at link time--that is, an attempt to execute the main program must generate an
error message before any declarations in the main program or any units referenced by the main program are
elaborated. In some cases, an implementation may legitimately detect errors during compilation of the test.

Two library units, the package REPORT and the procedure CHECK FILE, support the self-checking features of the
executable tests. The package REPORT provides the mechanism by which executable tests report PASSED, FAILED,
or NOT APPLICABLE results. It also provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test objective. The procedure CHECK FILE is
used to check the contents of text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of executable tests. ihese tests produce
messages that are examined to verify that the units are operating correctly. If these units are not operating
correctly, then the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended to ensure that the tests are reasonably
portable without modification. For example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and place features that may not be
supported by all implementations in separate tests. However, some tests contain values that require the test
to be customized according to implementation-specific values--for example, an illegal file name. A list of
the values used for this validation is provided in Appendix C.

A compi ter must correctly process each of the tests in the suite and demonstrate conformity to the Ada Standard
by either meeting the pass criteria given for the test or by showing that the test is inapplicable to the
implementation. The applicability of a test to an implementation is considered each time the implementation
is validated. A test that is inapplicable for one validation is not necessarily inapplicable for a subsequent
validation. Any test that was determined to contain an illegal Language construct or an erroneous language
construct is withdrawn from the ACVC and, therefore, is not used in testing a compiler. The tests withdrawn
at the time of this validation are given in Appendix 0.

1-4

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the following configuration:

Compiler: MC Ada V1.2.beta/ Concurrent Computer Corporation

ACVC Version: 1.10

Certificate Number: 900121S1.10251

Host Computer:

Machine: Concurrent/Masscomp 5600

Operating System: Unix; Masscomp RTU V4.1

Memory Size: 4MB

Target Computer:

Machine: Concurrent/Masscomp 5600 (Dual 68020 processor configuration)

Operating System: CSC developed Ada Real-Time Operating System (ARTOS)
for bare machine environments

Memory Size: 4MB

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of a compiler in those areas of the
Ada Standard that permit implementations to differ. Class D and E tests specifically check for such
implementation differences. However, tests in other classes also characterize an implementation. The tests
demonstrate the following characteristics:

a. Capacities.

(1) The compiler correctly processes a compilation containing 723 variables in the same declarative
part. (See test D29002K.)

(2) The compiler correctly processes tests containing loop statements nested to 65 Levels. (See tests
D55AO3A..H (8 tests).)

(3) The compiler correctly processes tests containing block statements nested to 65 levels. (See test
0560018.)

(4) The compiler correctly processes tests containing recursive procedures separately compiled as
subunits nested to 17 levels. (See tests D64005E..G (3 tests).)

2-1

b. Predefined types.

(1) This implementation supports the additional predefined types SHOPTINTEGER, SHORT FLOAT, and
TINYINTEGER in the package STANDARD. (See tests 886001T..Z (7 tests).)

c. Expression evaluation.

The order in which expressions are evaluated and the time at which constraints are checked are not
defined by the language. While the ACVC tests do not specifically attempt to determine the order of
evaluation of expressions, test results indicate the toLlowing:

(1) None of the default initialization expressions for record components are evaluated before any
value is checked for membership in a component's subtype. (See test C32117A.)

(2) Assignments for subtypes are performed with the same precision as the base type. (See test

C35712B.)

(3) This implementation uses no extra bits for extra precision and uses all extra bits for extra
range. (See test C35903A.)

(4) NUMERIC ERROR is raised when an integer Literal operand in a comparison or membership test is
outside the range of the base type. (See test C45232A.)

(5) NUMERIC ERROR is raised when a literal operand in a fixed-point comparison or membership test is

outside the range of the base type. (See test C45252A.)

(6) Underftow is gradual. (See tests C45524A..Z (26

tests).)

d. Rounding.

The method by which values are rounded in type conversions is not defined by the language. While the

ACVC tests do not specifically attempt to determine the method of rounding, the test results indicate
the foltowinS:

(1) The method used for rounding to integer is round to even. (See tests C46012A..Z (26 tests).)

(2) The method used for rounding to Longest integer is round to even. (See tests C46012A..Z (26
tests).)

(3) The method used for rounding to integer in static universal real expressions is round to even.

(See test C4AO14A.)

e. Array types.

An implementation is allowed to raise NUMERIC ERROR or CONSTRAINT ERROR for an array having a 'LENGTH
that exceeds STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT. For this implementation:

(1) Declaration of an array type or subtype declaration with more than SYSTEM.MAX_INT components
raises no exception. (See test C36003A.)

(2) NUMERIC ERROR is raised when 'LENGTH is applied to an array type with INTEGER'LAST * 2 components.
(See test C36202A.)

(3) NUMERICERROR is raised when 'LENGTH is applied to an array type with SYSTEM.MAXINT + 2
components. (See test C362028.)

(4) A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST raises NUNERICERROR when the array

2-2

type is declared. (See test C52103X.)

(5) A packed two-dimensional BOOLEAN array with more than INTEGER'LAST conponents raises NUMERIC ERROR
when the array objects are declared. (See test C52104v.)

(6) A nut array with one dimension of length greater than INTEGER'LAST may raise NUMERIC ERROR or

CONSTRAINT ERROR either when declared or assigned. Alternatively, an implementatiun may accept

the declaration. however, Lengths must match in array slice assignments. This implementation
raises NUMERIC-ERROR when the array type is declared. (See test E52103Y.)

(7) In assigning one-dimensionaL array types, the expression is evaluated in its entirety before
CONSTRAINT ERROR is raised when checking whether the expression's suotype is compatible with the

target's subtype. (See test C52013A.)

(8) In assigning two-dimensional array types, the expression is not evaluated in its entirety before
CONSTRA:NT ERROR is raised when checking whether the expression's subtype is compatible with the
target's subtype. (See test C5201A.)

f. Discriminated types.

(1) In assigning record types with discriminants, the expression is evaluated in its entirety before

CONSTRAINT ERROR is raised when checking whether the expression's subtype is compatible with the

target's subtype. (See test C52013A.)

g. Aggregates.

(1) In the evaluation of a multi-dimensional aggregate, the test results indicate that all choices

are evaluated before checking against the index type. (See tests C43207A and C43207B.)

(2) In the evaluation of an aggregate containing subaggregates, alL choices are evaluated before being
checked for identical bounds. (See test E432126.)

(3) CONSTRAINTERROR is raised after at choices are evaluated when a bound in a non-null range of
a non-null aggregate does not belong to an index subtype. (See test E43211B.)

h. Pragmas.

(1) The pragma INLINE is supported for functions or procedures. (See tests LA3004A..B (2 tests),

EA3004C..D (2 tests), and CA3004E..F (2 tests).)

i. Generics.

(1) Generic specifications and bodies can be compiled in separate compilations. (See tests CA1O12A,

CA2009C, CA2009F, BC3204C, and 9C32050.)

(2) Generic unit bodies and their subunits can be compiled in separate compilations. (See test
CA3011A.)

(3) Generic subprogram declarations and bodies can be compi led in separate compilations. (See tests
CA1012A and CA2009F.)

(4) Generic library subprogram specifications and bodies can be compiled in separate compilations.
(See test CA1O12A.)

(5) Generic non-library usubprogram bodies can be compiled in separate compilations from their stubs.
(See test CA2009F.)

(6) Generic package declarations and bodies can be compiled in separate compilations. (See tests
CA2009C, BC3204C, and BC32050.)

2-3

(7) Gene-ic library package specifications and bodies can be compiled in separate compilations. (See

tests BC3204C and SC3205D.)

(8) Generic ron-library package bodies as subunits can be compiled in separate compilations. (See
test CA2009C.)

j. .,ut and output.

(1) The package SEQUENTIAL_10 cannot be instantiated with unconstrained array types and record types

with discriminants without defaults. (See tests AE2101C, EE2201D, and EE2201E.)

(2) The package DIRECT 10 cannot be istantiated with unconstrained array types and record types with
discriminants without defaults. (See tests AE2101H, EE2401D, and EE2401G.)

(3) The director, AJPO, has determined (AI-00332) that every call to OPEN and CREATE must raise

USE ERROR or NAME ERROR if file input/output is rat supported. This implementation exhibits this
behavior for SEQUENTIAL_10, DIRECTIO, and TEXT_IO.

2-4

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was tested, 44 tests had been withdrawn
because of test errors. The AVF determined that 549 tests were inappLicabLe to this implementation. ALL
inapplicable tests were processed during validation testing except for 201 executable tests that use
fLoating-point precision exceeding that supported by the implementation and 242 executable tests that use file
operations not supported by the implementation. Modifications to the code, processing, or grading for 8 tests
was required to successfuLLy demonstrate the test objective. (See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 129 1132 1784 17 16 46 3124

InappLicabLe 0 6 531 0 12 0 549

Withdrawn 1 2 35 0 6 0 44

TOTAL 130 1140 2350 17 34 46 3717

3-1

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 198 577 545 245 172 99 161 331 137 36 252 292 79 3124

InappLicable 14 72 135 3 0 0 5 1 0 0 0 77 242 549

Wdrn 1 1 0 0 0 0 0 2 0 0 1 35 4

TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

3.4 WITHDRAWN TESTS

The fotowing 44 tests were withdrawn from ACVC Version 1.10 at the time of this validation:

A39005G B97102E C97116A BC30099 C02A620 C02A63A
CD2A63B CD2A63C CD2A630 CD2A66A CD2A668 CD2A66C
CD2A660 CD2A73A CO2A738 CD2A73C CD2A730 C02A76A
CD2A768 CD2A76C CD2A760 CD2A81G C02A83G C02A84
CD2A84N CD2B15C CD2D11B CD5007B CD50110 CD7105A
CD7203B CD72048 CD7205C CD7205D CE21071 CE3111C
CE3301A CE3411B E28005C E070048 ED7005C E070050
ED7006C ED7006O

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to alt compilers because they make use of features that a compiler is not required by
the Ada Standard to support. Others may depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered each time a validation is attempted.
A test that is inapplicable for one validation attempt is not necessarily inapplicable for a subsequent attempt.
For this validation attempt, 549 tests were inapplicable for the reasons indicated:

a. The following 201 tests are not applicable because they have floating-point typedectarations requiring
more digits than SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)

C45524L..Z (15 tests) C45621L..Z (15 tests)

C45641L..Y (14 tests) C46012L..Z (15 tests)

b. The following 2 tests are inapplicable because this

imptementation does not support predefined type LONGJLOAT.

C357028 B86001U

c. The following 8 tests are inapplicable because this
implementation does not support a 48 bit integer mchine size.

C45531M C45531N C455310 C45531P

C45532H C45532N C455320 C45532P

3-2

d. The following 16 tests are inapplicable because this
imptementation does not support a predefined type LONGINTEGER.

8520040 B55bO9C 886001W C45231C
C45304C C45502C C45503C C45504C
C45504F C45611C C45613C C45614C
C45631C C45632C C55bO7A CD7101F

e. The following (1) test is inapplicabLe because this
implementation does not support predefined fixed point types
other than DURATION.

886001Y

f. The foLlowing (1) test is inapplicable because this
implementation does not support floating point type
with a name other than FLOAT or SHORT-FLOAT.

886001Z

g. The following (1) test is inapplicable because this
implementation does not support recompitation of package SYSTEM
invalidating other ARTOS packages that require package SYSTEM.

C86001 F

h. The following (1) test is inapplicabLe because there are no
values of type DURATION'BASE that are outside the range of
DURATION.

C96005B

i. The following 14 tests are inapplicable because this
imrLementation does not support size clauses for floating point
types.

CO1009C CD2A41A CD2A41B CO2A41E
CD2A42A CD2A428 C2A42C CD2A42D
CD2A42E CD2A42F CD2A42G CD2A42H
CD2A421 CD2A42J

j. The following 2 tests are inapplicable because this
implementation does not support size specifications for array
types that imply compression of component type when the
component type is a composite or floating point type. This
imnelamentation requires an explicit size claue on the
component type.

C02A61I C02A61JI

k. The following 10 tests are inapplicable because this
implementation does not support size clauses for access types.
Access types are represented by machine addresses htich are 32
bits.

CD2A84B CD2A84C CD2A84D CD2A84E
CO2A84F CDZA84G CD2A84N CD2A84I
CD2A84K CDZA84L

L. The following 5 tests are inapplicable because this
implementation does not support size clauses for task types.

3-3

CD2A91A CD2A918 CD2A91C CD2A91D
CD2A91E

m. The following 42 tests are inapplicable because this
implementation does not support 'address clauses where a
dynamic address is applied to a variable requiring an
initialization. The AVO has ruled that these tests may be
declared inapplicable.

CD5003B..H (7 tests) CD5011A..H (8 tests)
CD5011L..N (3 tests) CD5O11G..R (2 tests)
CD5012A..1 (9 tests) CD5012L CD50136
CD50130 CD5013F CD5013H CDSO13L
CD5013N CD5013R CD5014T..X (5 tests)

n. The foLLowing 3 tests are inapplicable because this
impLementation does not support address clauses for tasks.

CD5012J CD5013S CD5014S

o. The foLLowing 242 tests are inappLicable because sequential,
text, and direct access files are not supported:

CE2102A..C (3 tests) CE2102G..H (2 tests)
CE2102K CE2102N..Y (12 tests)
CE2103C..D (2 tests) CE2104A..D (4 tests)
CE2105A..B (2 tests) CE2106A..B (2 tests)
CE2107A..1 (8 tests) CE21071.
CE2108A..B (2 tests) CE2108C..1 (6 tests)
CE2109A..C (3 tests) CE2110A..D (4 tests)
CE2111A..J (9 tests) CE2115A..B (2 tests)
CE2201A..C (3 tests) CE2201F..N (9 tests)
EE2201D..E (2 tests) EE2401D EE2401G
CE2204A..D (4 tests) CE2205A
CE22088 CE2401A..C (3 tests)
CE2401E..F (2 tests) CE2401H..L (5 tests)
CE2404A..B (2 tests) CE24058
CE2406A CE2407A..B (2 tests)
CE2408A..B (2 tests) CE2409A..8 (2 tests)
CE2410A..B (2 tests) CE2411A
CE3102A..B (2 tests) EE3102C
CE3102F..1 (3 tests) CE3102J..K (2 tests)
CE3103A CE3104A..C (3 tests)
CE31078 CE3108A..B (2 tests)
CE3109A CE3110A
CE3111A..B (2 tests) CE3111D..E (2 tests)
CE3112A..D (4 tests)
CE3114A..B (2 tests) CE3115A
EE3203A CE3208A
EE33010 CE3302A
CE3305A CE3402A
EE34029 CE3402C..D (2 tests)
CE3403A..C (3 tests) CE3403E..F (2 tests)
CE34048..D (3 tests) CE3405A
EE34058 CE3405C..D (2 tests)
CE3406A..0 (4 tests) CE3407A..C (3 tests)
CE3408A..C (3 tests) CE3409A
CE3409C..E (3 tests) EE3409F
CE341OA CE3410C..E (3 tests)
EE341OF CE3411A CE3411C

3-4

CE3412A EE3412C
CE3413A CE3413C
CE3602A..D (4 tests) CE16O3A
CE3604A..B (2 tests) CE3605A..E (5 tests)
CE3606A..1 (2 tests) CE3704A..F (6 tests)
CE3704M..O (3 tests) CE37060
CE3706F..G (2 tests) CE3804A..P (16 tests)
CE3805A..B (2 tests) CE3806A..B (2 tests)
CE38060..E (2 tests) CE3806G..H (2 tests)
CE3905A..C (3 tests) CE3905L
CE3906A..C (3 tests) CE3906E..F (2 tests)

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code, processing, or evaluation in order to
compensate for Legitimate implementation behavior. Modifications are made by the AVF in cases where Legitimate
implementation behavior prevents the successful completion of an (otherwise) applicable test. Examples of such
modifications include: adding a Length clause to alter the default size of a collection; splitting a Class B
test into subtests so that all errors are detected; and confirming that messages produced by an executable test
demonstrate conforming behavior that was not anticipated by the test (such as raising one exception instead of
another).

Modifications were required for 8 tests.

The following tests were split because syntax errors at one point resulted in the compiler not detecting other
errors in the test:

824009A 826005A B333018 B38003A
838003B B38009A 9380096 B41202A

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevatidation

Prior to validation, a set of test results for ACVC Version 1.10 produced by the Computer Sciences Corporation
compiler was submitted to the AVF by the applicant for review. Analysis of these results demonstrated that the
compiler successfully passed all applicable tests, and the compiler exhibited the expected behavior on all
inapplicable tests.

3.7.2 Test Method

Testing of the MC Ado V1.2.beta/ Concurrent Computer Corporation compiler and the CSC developed Ada Real-Time
Operating System (ARTOS) for bore machine environments using ACVC Version 1.10 was conducted on-site by a
validation team from the AVF. The testing was completed in two steps. The first step included witness testing
of alL tests except the execution of the I/O tests. The second step was the execution of the I/O tests on 22
April 1990. The configuration in which the testing was performed is described by the following designations
of hardware and software componets:

Host computer: Corcurrent/Masscomp 5600
Host operating system: Unix; Messcomp RTU V4.1
Target computer: Concurrent/Messcomp 5600 (Dust 68020 processor configuration)
Target operating system: CSC developed Ado ReaL-Time Operating System (ARTOS) for bare machine environments

A tape containing all tests except for withdrawn tests and tests requiring unsupported floating-point precision
was taken on-site by the validation term for processing. Tests that make use of implementation-specific values
were not customized before being written to the tape. Tests requiring modifications during the prevatidation
testing were not included in their modified form on the tape.

TEST INFORMATION

3-5

The contents of the tape were Loaded onto a VAX/780 disk storage medium using the VAX backup/recover command.
The files were then transmitted to the Masscomp 5600 (M5600) over two serial Lines using 'Kermit'. The server
'Kermit' at the M5600 end stored the files on the disk.

The executable tests were run on the target computer with the CSC developed Ada ReaL-Time Operating System
(ARTOS) for bare machine environments running in the single processing and muLti-processing modes. ALL results
were captured using the 'Kermit' Log session comand executing with the VAX/780 as a terminal emulator. The
result files were then printed using the VAX/780.

The compiler was tested using command scripts provided by Computer Sciences Corporation and reviewed by the
validation team. See Appendix E for a complete Listing of the compiler options for this implementation. The
compiler options invoked during this test were:

-E and -w

Test output, compilation Listings, and job Logs were captured on tape and archived at the AVF. The listings
examined on-site by the validation team were also archived.

3.7.3 Test Site

Testing was conducted at Computer Sciences Corporation and was completed on 22 April 1990.

3-6

APPENDIX A

DECLARATION OF CONFORMANCE

Computer Sciences Corporation has submitted the fltlowing Declaration of Conformance concerning
the MC Ada V1.2.beta/ Concurrent Compter Corporation.

A-1

APPENDIX A

DECLARATION OF CONFORMANCE

Customer: Computer Sciences Corporation
Integrated Systems Division
304 West Route 38
Moorestown, NJ 08057

Ada Validation Facility: National Institute of Standards and
Technology

ACVC Version: VI.10

Ada Implementation:

Ada Compiler: MC Ada Vl.2.beta/Concurrent Computer Corporation

Version: Vi.2.beta

Host Computer System: Concurrent/Masscomp 5600

Host Operating System: UNIX; Masscomp RTU V4.1

Target Computer System: Concurrent/Masscomp 5600 (Dual 68020
processor configuration)

Target Operating System: CSC developed Ada Real-Time Operating System
(ARTOS) for bare machine environments

Operating System Version: VI.0

Customers's Declaration:

We, the undersigned, representing Computer Sciences Corporation (CSC)
declare that CSC has no knowledge of deliberate deviations from the Ada
Language Standard ANSI/MIL-STD-1815A in the implementation listed in
this declaration. We declare that CSC is the owner of record of the Ada
Real-Time Operating System listed above. CSC has been licensed as a user
of the compiler listed above, and under this license has implemented the
Ada Run Time System. Concurrent Computer Corporation retains ownership
of this Ada Language Compiler. Computer Sciences Corporation requests
that the Ada Validation Certificate specifically identifying ARTOS as
the Run Time Environment be issued in CSC's name. CSC assumes all legal
responsibility for having the validation certificate issued in CSC's
name.

Ralph Y. Mattei, Chief Scientist /[te

Peter M. Cahn, Center Vice President Date

APPENDIX 8

APPENDIX F OF THE Ada STANDARD

The onty aLlowed impLementation dependencies correspond to iripementation-dependlent pragmas, to certain
mach ine- dependent conventions as mentioned in chapter 13 of the Ada Standard, and to certain alLowed
restrictions on representation ctauses. The i apt efentat ion- dependent characteristics of the MC Ada V1.2.beta/
Concurrent Computer Corporation compiter and CSC deveLoped Ada ReaL-Time Operating System (ARTOS) for bare
machine envirornents, as described in this Appendix, are provided by Computer Sciences Corporation. UnLess
specificatLy noted otherwise, references in this appendix are to compiter documentation and not to this report.
ImpLementation-specific portions of the package STANDARD, which are not a part of Appendix F, are:

package STANDARD is

type TINY-INTEGER is range -128. .127;

type INTEGER is range -2147483648. .2147483647;

type SHORT-INTEGER is range -32768. .32767;

type FLOAT is digits 15 range
-1 .79769313486232E308. .1 .79769313486232E308;

type SHORT-FLOAT is digits 6 range -3.40282E38- 3.40282E08;

type DURATION is detta 1.OE-3 range
-2.147483648E6..2.14748364SE6

end STANDARD;

ATTACHMENT I

APPENDIX F. Implementation-Dependent Characteristics

1. ImpLementation-Dependent Pragmas

1.1. INLINEONLY Pragma

The INLINE ONLY pragma, when used in the sawe way as pragma INLINE,
indicates to the compiler that the subprogram must always be

intined. This pragmas also suppresses the generation of a callable

version of the routine which save code space.

1.2. BUILT-IN Pragma

The BUILT IN pragms is used in the implementation of some
predefined Ada packages, but provides no user access. It is used

only to implement code bodies for which no actual Ada body can be

provided, for example the MACHINE CODE package.

1.3. SHARE-CODE Pragma

The SHARE CODE pragma takes the name of a generic instantiation or a
generic unit as the first argument and one of the identifiers TRUE

or FALSE as the second argument. This pragme is only aLlowed
immediately at the place of a declarative item in a declarative part

or package specification, or after a Library unit in a compilation,

but before any subsequent compilation unit.

When the first argument is a generic unit the pragma to all
instantiations of that generic. When the first argument is the name
of a generic instantiation the pragma applies only to the specified
instantiation, or overloaded instantiations.

If the second argument is TRUE, the compiler will try to share code
generated for other instantiations of the same generic. When the
second argument is FALSE each instantiation will get a unique copy

of the generated code. The extent to which code is shared between
instantiations depends on this prsgma and the kind of generic formal
parameters declared for the generic unit.

The name pragum SHARE- BODY is also recognized by the implementation
and has the same effect as SHARE CODE. It is included for
compatibility with earlier versions of VADS.

1.4. NOI1AGE Prae

B-2

The pragma suppresses the generation of the image array used for the
IMAGE attribute of enumeration types. This eliminates the overhead
required to store the array in the executable image.

1.5. EXTERNAL NAME Pragma

The EXTERNAL NAME pragma takes the name of a subprogram or variable
defined in Ada and allows the user to specify a different external
name that may be used to reference the entity from other languages.
The pragma is allowed at the place of a declarative item in a
package specification and must apply to an object declared earlier
in the same package specification.

1.,' INTERFACE NAME Pragma

The INTERFACE NAME -agma takes the name of a variable defined in
another language and allows it to be referenced directly in Ada.
The pragma will replace all occurrences of the variable name with an
external reference to the second, Linkargument. The ,)ragme is
allowed at the place of a declarative item in a package
specification and must apply to an object declared earlier in the
same package specification. The object must be declared as a scalar
or an access type. The object cannot be any of the following:

a loop variable,
a constant,
an initialized variable,
an array, or
a record.

1.7. IMPLICIT-CODE Pragma

Takes one of the identifiers ON or OFF as the single argument. This
pragme is only allowed within a machine code procedure. It
specifies that implicit code generated by the conpiler be allowed or
disallowed. A warning is issued if OFF is used in any implicit code
needs to be genereed. The default is ON.

2. Implementation of Predefined Pragmas

2.1. CONTROLLED

This pragme is recognized by the implementation but has no effect.

2.2. ELABORATE

This pragma is impiemnted as described in Appendix 8 of the Ada RM.

2.3. INLINE

B'3

The pragma is implemented as described in Appendix B of the Ada RM.

2.4. INTERFACE

This pragme supports caLLs to 'C' and FORTRAN functions. The Ada
subprograms can be either functions or procedures. The types of
parameters and the result type for functions must be scalar, access
or the predefined type ADDRESS in SYSTEM. Record and array objects
can be passed by reference using the ADDRESS attribute.

2.5. LIST

This pragma is implemented as described in Appendix B of the Ada RM.

2.6. MEMORY-SIZE

This pragma is recognized by the implementation. The implementation
does not aLLow SYSTEM to be modified by means of pragmas, the SYSTEM
package must be recompited.

2.7. OPTIMIZE

This pragma is recognized by the implementation but has no effect.

2.8. PACK

This pragma wiLl cause the compiler to choose a non-aligned
representation for composite types. It will not cause objects to be
packed at the bit LeveL.

2.9. PAGE

This pragma is implemented as described in Appendix 6 o4 the Ada RM.

2.10. PRIORITY

This pragma is implemented as described in Appendix B of the Ada RM.

2.11. SNARED

This pragma is recognized by the implementation but has no effect.

2.12. STORAGE-UNIT

This pragm is recognized by the impLementation. The implementation
does not aLLow SYSTEM to be modified by means of pragnms, the SYSTEM
package mnist be recompited.

2.13. SUPPRESS

6-4

This pragma is implemented as described, except that RANGE-CHECK and
DIVISION-CHECK cannot be suppressed.

2.14. SYSTEM-NAME

This pragma is recognized by the implementation. The imptement, ion
does not allow SYSTEM to be modified by means of pragmas, the SYSTEM

package must be recompi Led.

3. Implementation-Dependent Attributes

3.1. P'REF

For a prefix that denotes an object, a program unit, a label, or an

entry:

This attribute denotes the effective address of the first of the
storage units allocated to P. For a subprogram, package, task unit,
or label, it refers to the address of the machine code associated

with the corresponding body or statement. For an entry for which an
address clause has been given, it refers to the corresponding
hardware interrupt. The attribute is of the type OPERAND defined in

the package MACHINE CODE. The attribute is only allotwed within a

machine code procedure.

See section F.4.8 for more information on the use of this attribute.

(For a package, task unit, or entry, the 'REF attribute is not
supported.)

4. Specification of Package SYSTEM

package SYSTEM

is

type NAME is (masscomp_unix);

SYSTEM NAME : constant NAME := mascomp_unix;

STORAGE UNIT : constant := 8;
MEMORYSIZE : constant :z 16777216;

- ystem-Dependent Named Numbers

MININT constant :a -2_14743_648;
MAX INT constant :a 2_147_483_647;
MAX. DIGITS constant :z 15;
MAXMANTISSA : constant := 31;

3-5

FINE DELTA constant :2.0*(-31);

TICK constant := 0.0166666;

-- Other System-dependent Dectarations

subtype PRIORITY is INTEGER range 0 .. 99;

MAXRECSIZE : integer := 64*1024;

type ADDRESS is private;

NOADDR : constant ADDRESS;

function PHYSICALADDRESS(I: INTEGER) return ADDRESS;
function ADDRGT(A, B: ADDRESS) return BOOLEAN;

function ADDRLT(A, B: ADDRESS) return BOOLEAN;
function ADDR_GE(A, 8: ADDRESS) return BOOLEAN;
function ADDRLE(A, B: ADDRESS) return BOOLEAN;
function ADDRDIFF(A, B: ADDRESS) return INTEGER;
function INCR _ADDR(A: ADDRESS; INCR: INTEGER) return ADDRESS;
f'nct ion DECR ADDR(A: ADDRESS; DECR: INTEGER) return ADDRESS;

function ">"(A, B: ADDRESS) return BOOLEAN renames ADDRGT;
function "<"(A, B: ADDRESS) return BOOLEAN renames ADDRLT;
function ">="(A, 8: ADDRESS) return BOOLEAN renames ADDRGE;

function "<="(A, B: ADDRESS) return BOOLEAN renames ADDR_LE;
function "-"(A, 8: ADDRESS) return INTEGER renames ADDR DIFF;
function "+"(A: ADDRESS; INCR: INTEGER) return ADDRESS renames

I NCRADDR;
function "-"(A: ADDRESS; DECR: INTEGER) return ADDRESS renames

DECRADDR;

pragma int ine(PHYSICALADDRESS);
pragma intine(ADDRGT);
pragum intine(ADDR_LT);

pragma intiine(ADDR GE);
pragma int ine(ADDRLE);

pragem intine(ADORDIFF);

pragma intine(INCRADDR);

pragma int ine(DECRADDR);

private

type ADDRESS is new integer;

NOADOR : constant ADDRESS : 0;

end SYSTEM;

9-6

5. Restrictions On Representation Clauses

5.1. Pragma PACK

In the absence of pragma PACK record components are padded so as to
provide for efficient access by the target hardware, pragma PACK
applied to a record eliminate the padding where possible. Pragma
PACK has no other effect on the storage allocated for record
components a record representation is required.

5.2. Record Representation Clauses

For scalar types a representation clause will pack to the number of
bits required to represent the range of the subtype. A record
representation applied to a composite type will not cause the object
to be packed to fit in the space required. An explicit
representation clause nust be given for the component type. An
error will be issued if there is insufficient space allocated.

5.3. Address Clauses

Address ctauses are supported for variables and constants.

5.4. Interrupts

Interrupt entries are not supported.

5.5. Representation Attributes

The ADDRESS attribute is not supported for the following entities:
Packages
Tasks
Labels
Entries

5.6. Machine Code Insertions

Machine code insertions are supported.

The general definition of the package MACHINE CODE provides an
assembly Language interface for the target machine. It provides the
necessary record type(s) needed in the code statement, an
enumeration type of all the operation code mneumonics, a set of
register definitions, and a set of addressing mode functions.

The general syntax of a machine code statement is as follows:

CODEn' (operation code, operand(,operand));

B-7

where n indicated the number of operands in the aggregate.

A speciaL case arises for a variabLe number of operands. The
operands are Listed within a subaggregate. The format is as
foL Lows:

CODEN' (operation code, (operand(, operand)));

For those operation codes that require no operands, named notation
must be used (cf.RM4.3(4)).

CODE_ 0' (op=>operati on code);

The operation code must be an enu eration (iterat (i.e. it cannot be
an object, attribute, or a rename).

An operand can onLy be entity defined in MACHINE CODE or the 'REF
attribute.

The arguments to any of the functions defined in MACHINE CODE must
be static expressions, string Literats, or the functions defined in
MACHINE CODE. The 'REF attribute may not be used as an argument in
any of these functions.

Intine expansion of machine code procedures is supported.

6. Conventions for ImpLementation-generated Names

There are no implementation-generated names.

7. Interpretation of Expressions in Address Ctauses

Address cLauses are supported for constants and variabies.

8. Restrictions on Unchecked Conversions

None.

9. Restrictions on Unchecked Deattocations
None.

10. ImpLementation Characteristics of I/O Packages

The ARTOS does not currentLy support DIRECT 10 or SEQUENTIALa10, but
it provides its own unique I/O packages that atWow reaL-time
synchronous and asynchronous input and output. The package TEXT to
is supported, however, the only vaLid fiLes are STANDARD INPUT and
STANDARDOUTPUT. Use of TEXT1 functions or procedures that operate

8-8

on other external files causes the USE-ERROR exception to be raised
at execution time.

11. Implementation Limits

The following Limits are actually enforced by the implementation.
It is not intended to imply that resources up to or even near these
Limits are available to every program.

11.1. Line Length

The implementation supports a maximum line Length of 500 characters
including the end of line character.

11.2. Record and Array Sizes

The maximum size of a statically sized array type is 4,000,000 x
STORAGE UNITS. The maximum size of a statically sized record type
is 4,000,000 x STORAGE UNITS. A record type or array type
declaration that exceeds these Limits will generate a warning
message.

11.3. Default Stack Size for Tasks

In the absence of an explicit STORAGE SIZE length specification
every task except the main program is allocated a fixed size stack
of 10,240 STORAGE UNITS. This is the value returned by
T'STORAGE SIZE for a task type T.

11.4. Default Collection Size

in the absence of an explicit STORAGE SIZE Length attribute the
default collection size for an access type is 100 times the size of
the designated type. This is the value returned by T'STORAGE SIZE
for an access type T.

11.5. Limit on Declared Objects

There is an absolute Limit of 6,000,000 x STORAGE UNITS for objects
declared statically within a compilation unit. If this value is
exceeded the compiler will terminate the compilation of the unit
with a FATAL error message.

.-9

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of impLementation-dependent values, such as the maximum Length of an input
Line and invalid file names. A test that makes use of such values is identified by the extension .TST in its

file name. Actual values to be substituted are represented by names that begin with a dollar sign. A value
must be substituted for each of these names before the test is run. The values used for this validation are
given below.

C-1

-- MACRO.DFS -- ACVC VERSION 1.10
Modified for the MC-Ada Versiorn 1.2 vatidated 18-Aug-1989

-- Modified for use with CSC Ada ReaL-Time Executive by A. Preston
16-Oct-1989
-- THIS FILE rONTAINS THE MACRO DEFINITIONS USED IN THE ACVC TESTS.
-. THESE DEFINITIONS ARE USED BY THE ACVC TEST PRE-PROCESSOR,
- MAKCROSU8. MACROSUB WILL CALCULATE VALUES FOR THOSE MACRO SYMBOLS
- WHOSE DEFINITIONS DEPEND ON THE VALUE OF MAX INLEN (NAMELY, THE

VALUES OF THE MACRO SYMBOLS BIGIDI, BIG_102, BIG ID3, BIGID4,
- BIG -STRING1, BIGSTRING2, MAXSTRINGLITERAL, BIG INTLIT,

-. BIG REAL LIT, MAX LEN INT BASED LITERAL, MAX LEN REAL BASED LITERAL,
-- AND BLANKS). THEREFORE, ANY VALUES GIVEN IN THIS FILE FOR THOSE
-- MACRO SYMBOLS WILL BE IGNORED BY MACROSUB.

"" NOTE: THE MACROSUB PROGRAM EXPECTS THE FIRST MACRO IN THIS FILE TO
BE MAXINLEN.-- FOR OUR CLIENTSSAMPLE TESTSACVCVERSION1.10

EACH DEFINITION IS ACCORDING TO THE FOLLOWING FORMAT:

A. A NUMBER OF LINES PRECEDED BY THE ADA COMMENT DELIMITER,
THE FIRST OF THESE LINES CONTAINS THE MACRO SYMBOL AS IT APPEARS
IN THE TEST FILES (WITH THE DOLLAR SIGN). THE NEXT FEW "COMMENT"
LINES CONTAIN A DESCRIPTION OF THE VALUE TO BE SUBSTITUTED.
THE REMAINING "COMMENT" LINES, THE FIRST OF WHICH BEGINS WITH THE

-- WORDS "USED IN: " (NO QUOTES), CONTAIN A LIST OF THE TEST FILES

(WITHOUT THE .TST EXTENSION) IN WHICH THE MACRO SYMBOL APPEARS.
*- EACH TEST FILE NAME IS PRECEDED BY ONE OR MORE BLANKS.

B. THE IDENTIFIER (WITHOUT THE DOLLAR SIGN) OF THE MACRO SYMBOL,
FOLLOWED BY A SPACE OR TAB, FOLLOWED BY THE VALUE TO BE

-- SUBSTITUTED. IN THE DISTRIBUTION FILE, A SAMPLE VALUE IS
PROVIDED; THIS VALUE MUST BE REPLACED BY A VALUE APPROPRIATE TO
THE IMPLEMENTATION.

DEFINITIONS ARE SEPARATED BY ONE OR MORE EMPTY LINES.

THE LIST OF DEFINITIONS BEGINS AFTER THE FOLLOWING EMPTY LINE.

SMAXIN LEN
AN INTEGER LITERAL GIVING THE MAXIMUM LENGTH PERMITTED BY THE
COMPILER FOR A LINE OF ADA SOURCE CODE (NOT INCLUDING AN END-OF-LINE

-- CHARACTER).
USED IN: A26007A

MAX IN LEN 499

-- SSIGJD1
AN IDENTIFIER IN WHICH THE NUMBER OF CHARACTERS IS SMAX IN LEN.

-" THE MACROSUB PROGRAM WILL SUPPLY AN IDENTIFIER IN WHICH THE
LAST CHARACTER IS 'I' AND ALL OTHERS ARE 'A'.

" USED IN: C23003A C23003B C23003C 3230030 *23003E C23003G
" - C23003H C230031 C23003J C35502D C35502F

c-2

8IG IDl

*AAAAA*AAAAAAA

-- IGID2
- AN IDENTIFIER IN WHICH THE NUMBER OF CHARACTERS IS SMAXINLEN,

DIFFERING FROM $BIG IDI ONLY IN THE LAST CHARACTER. THE MACROSUB
-- PROGRAM WILL USE 12' AS THE LAST CHARACTER.

-- USED IN: C23003A C230038 C23003C 823003F C23003G C23003H

-- C230031 C23003J

BIG I02

AAAAAAA

-o SBIG ID3
-- AN IDENTIFIER IN WHICH THE NUMBER OF CHARACTERS IS SMAX IN LEN.

-- MACROSUB WILL USE '3' AS THE "MIDDLE" CHARACTER; ALL OTHERS ARE 'A'.
-- USED IN: C23003A C23003B C23003C C23003G C23003H C230031

C23003J
BIG I03

A3AAAAA

-o SBIG ID4
-- AN IDENTIFIER IN WHICH THE NUMBER OF CHARACTERS IS SMAX IN LEN,

-- DIFFERING FROM SBIG ID3 ONLY IN THE MIDDLE CHARACTER. MACROSUB

-- WILL USE '4' AS THE MIDDLE CHARACTER.

-- USED IN: C23003A C230038 C23003C C23003G C23003H C23003I
C23003J

BIG 104

A4AAAAA

SSIGSTRINGI
-- A STRING LITERAL (WITH QUOTES) WHOSE CATENATION WITH SSIG STRING2

(SIG STRING1 & SBIGSTRING2) PRODUCES THE IMAGE OF SSIGID1.

- USED IN: C35502D C35502F
BIG STRING1

C-3

-- SSIG STRING2
A STRING LITERAL (WITH QUOTES) WHOSE CATENATION WITH SBIG -STRING1
(SBIG STRING1 & SSIG STRING2) PRODUCES THE IMAGE OF SBIG 101.

*USED IN: C35502D C15502F
BIG STRING2
ofAAAAAAAAAAAAAAAAAAA~AAAAAAAAAAAAAAAAAA

*AAAAAAAAAAAAAAAAAAAAAAAAA1AAI

-- SNAX-STR I NGL ITERAL
-A STRING LITERAL CONSISTING OF SNAX IN LEN CHARACTERS (INCLUDING THE
QUOITE CHARACTERS).

-USED IN: A26007A
MAX STRING L ITERAL

SNEG BASED INT
-A BASED-INTEGER LITERAL (PREFERABLY BASE 8 OR 16) WHOSE HIGHEST ORDER
-NON-ZERO BIT WOULD FALL IN THE SIGN BIT POSITION OF THE
REPRESENTATION FOR SYSTEN.MAXINT, I.E., AN ATTEMPT TO WRITE A

-NEGATIVE VALUED LITERAL SUCH AS -2 BY TAKING ADVANTAGE OF THE
-BIT REPRESENTATION.
USED IN: E24201A

NEG BASED INT 16#FFFFFFFD#

-SUIG INT LIT
-AN INTEGER LITERAL WHOSE VALUE IS 298, BUT WHICH HAS
(S MAX _IN LEN - 3) LEADING ZEROES.

-USED IN: C24003A
BIG INT LIT
00
000
OOOO(000
000

-SBIG-REAL-LIT
A UNI VERSAL-REAL LITERAL WHOSE VALUE IS 690.0, BUT WHICH HAS

-(SMAX-IN-LEN -5) LEADING ZEROES.
USED IN: C24003B C24003C

BIG-REAL-LIT

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO00OOOOOOOO OOOOOOOOOOO000000000000000
00OOOOOO000000000 0OOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO00000000000 0000

00

-- S MX LEN INT BASED LI TERAL
A BASED INTEGER LITERAL (USING COLONS) WHOSE VALUE IS 2:11:, HAVING

-(SMAX-1N1LEN - 5) ZEROES ETWEEN THE FIRST COLON ANDO THE FIRST 1.
-USED IN: c2A009A

MAX_.LEN_ NTJBASED LITERAL

2:oooooooooooooooooooou- 0000oooo
O00000000000000000 0000000000000000000000000000000000000

00000000000

- - SNAX LEN-REALSBASED L ITERAL
A BASED REAL LITERAL (USING COLONS) WHOSE VALUE IS 16:F.E:, HAVING
(S MAX -IN-LEN - 7) ZEROES BETWJEEN THE FIRST COLON AND THE P.

C-'

-- USED IN: C2AOO9A
MAX LENREAL BASED LITERAL
16:00
O0000OOOOO00OO00OOOOOOOOOOOOOOOOOO0OOOOO00OO00OOOOOOOOOOOO000OOOO000OOOO
OOOO0OO00OOOOOOOOOOOOOOOOOOOOOOOOOOO000000OOOOOOOOOOOOOOOOOOo0
O00000000

-- SBLANKS
-- A SEQUENCE OF (SMAXINLEN - 20) BLANKS.
-- USED IN: 822001A B22001B B22001C B22001D B22001E B22001F

B22001G B220011 B22001J B22001K B22001L 822001N
-- B22001N
-- LIMITS OF SAMPLE SHOWN BY ANGLE BRACKETS
BLANKS

SNAXDIGITS
" AN INTEGER LITERAL WHOSE VALUE IS SYSTEH.MAXDIGITS.
-- USED IN: B35701A CD7102B
MAX-DIGITS 15

-- SNAME
-- THE NAME OF A PREDEFINED INTEGER TYPE OTHER THAN INTEGER,
-- SHORT-INTEGER, OR LONG-INTEGER.
-- (IMPLEMENTATIONS WHICH HAVE NO SUCH TYPES SHOULD USE AN UNDEFINED
-- IDENTIFIER SUCH AS NOSUCHTYPEAVAILABLE.)
-- USED IN: AVATO07 C45231D B86001X C7DO1G
NAME TINY INTEGER

SFLOAT NAME
THE NAME OF A PREDEFINED FLOATING POINT TYPE OTHER THAN FLOAT,
SHORTFLOAT, OR LONG FLOAT. (IMPLEMENTATIONS WHICH HAVE NO SUCH

-- TYPES SHOULD USE AN UNDEFINED IDENTIFIER SUCH AS NO SUCH TYPE.)
-- USED IN: AVAT013 B86001Z
FLOATNAME NO-SUCHTYPE

-- SFIXEDNAME
THE NAME OF A PREDEFINED FIXED POINT TYPE OTHER THAN DURATION.

-- (IMPLEMENTATIONS WHICH HAVE NO SUCH TYPES SHOULD USE AN UNDEFINED
-- IDENTIFIER SUCH AS NOSUCNTYPE.)

USED IN: AVATO15 B86001Y
FIXED-NAME NO SUCHFIXEDTYPE

" $INTEGER-FIRST
AN INTEGER LITERAL, WITH SIGN, WHOSE VALUE IS INTEGER'FIRST.

-- THE LITERAL MUST NOT INCLUDE UNDERSCORES OR LEADING OR TRAILING
BLANKS.

-- USED IN: C35503F B54501B
INTEGERFIRST -2 147 .433U8

I- SINTEGERLAST
AN INTEGER LITERAL WHOSE VALUE IS INTEGERILAST. THE LITERAL MUST

-- NOT INCLUDE UNDERSCORES OR LEADING OR TRAILING BLANKS.
-- USED IN: C35503F C45232A 3458018
INTEGER LAST 2_147483647

- SINTEGERLASTPLUS_1

-- AN INTEGER LITERAL WHOSE VALUE IS INTEGER'LAST + 1.
-- USED IN: C45232A
INTEGERLASTPLUS 1 2147483648

C-5

-- SMININT
-- AN INTEGER LITERAL, WITH SIGN, WHOSE VALUE IS SYSTEM.MININT.

-- THE LITERAL MUST NOT CONTAIN UNDERSCORES OR LEADING OR TRAILING

-- BLANKS.

-- USED IN: C35503D C35503F CD7101B
NININT -2147483648

-- SMAXINT
-" AN INTEGER LITERAL WHOSE VALUE IS SYSTEM.MAX INT.
-- THE LTERAL MUST NOT INCLUDE UNDERSCORES OR LEADING OR TRAILING

-- BLANKS.

-- USED IN: C35503D C35503F C4AOO7A CD7101B

MAX INT 2147483647

-- SMAXINTPLUSI
-- AN INTEGER LITERAL WHOSE VALUE IS SYSTEM.NAXINT + 1.

USED IN: C45232A

MAXINTPLUS 1 2 147483 648

-- SLESS THAN.DURATION

" A REAL LITERAL (WITH SIGN) WHOSE VALUE (NOT SUBJECT TO

ROUND-OFF ERROR IF POSSIBLE) LIES BETWEEN DURATION'BASE'FIRST AND

DURATION'FIRST. IF NO SUCH VALUES EXIST, USE A VALUE IN

-- DURATION'RANGE.

-- USED IN: C96005B

LESSTHAN DURATION -100000.0

-- $GREATER TMADURATION
"- A REAL LIiERAL WHOSE VALUE (NOT SUBJECT TO ROUND-OFF ERROR

-- IF POSSIBLE) LIES BETWEEN DURATION'BASE'LAST AND DURATION'LAST. IF

-- NO SUCH VALUES EXIST, USE A VALUE IN DURATION'RANGE.

"- USED IN: C96005B

GREATERTHANOURATION 100000.0

-- SLESS THAN DURATIONBASEFIRST
-- A REAL LITERAL (WITH SIGN) WHOSE VALUE IS LESS THAN
-- DURATION'BASE'FIRST.

-- USED IN: C96005C
LESS THAN DURATIONBASE FIRST -10000000

-- $GREATERTHAN.DURATIONBASELAST

"" A REAL LITERAL WHOSE VALUE IS GREATER THAN DURATIONIBASE'LAST.

-- USED IN: C96005C
GREATERTHAN DURATION.BASELAST 10000000

SCOUNTLAST

"" AN INTEGER LITERAL WHOSE VALUE IS TEXT IO.COUNTILAST.

-- USED IN: CE30028
COUNT-LAST 2.1473483647

"" SFIELD-LAST
AN INTEGER LITERAL WHOSE VALUE IS TEXTIO.FIELD'LAST.

-- USED IN: CE3002C

FIELD-LAST 2_147483_647

"" SILLEGALEXTERNALFILENANE1
-- AN ILLEGAL EXTERNAL FILE NAME (E.G., TOO LONG, CONTAINING INVALID

CHARACTERS, CONTAINING WILD-CARD CHARACTERS, OR SPECIFYING A

NONEXISTENT DIRECTORY).
USED IN: CE2103A CE2102C CE2102H CE2103i CE31028 CE3107A

ILLEGALEXTERNALFILENAKE1 I/tLegaLt/ffLenms/2/2)S2I2102C.DAT

-- SILLEGAL EXTERNAL FILE NAME2

C-6

-- AN ILLEGAL EXTERNAL FILE NAME, DIFFERENT FROM SEXTERNAL FILE NAME1.
USED IN: CE2102C CE2102H CE2103A CE21038

ILLEGAL EXTERNALFILE NAME2 /i t LegaL/fi Lename/CE2102C*.DAT

-- SACC SIZE
-- AN INTEGER LITERAL WHOSE VALUE IS THE MINIMU NUMBER OF BITS

-- SUFFICIENT TO HOLD ANY VALUE OF AN ACCESS TYPE.

-- USED IN: CD2A81A CD2A81B CD2A81C C02A810 CD2A81E
CD2A81F CD2A81G CD2A83A CD2A83B CD2A83C CD2A83E

-- CD2A83F CD2A83G ED2A86A CD2A87A

ACC SIZE 32

-- $TASK SIZE
-- AN INTEGER LITERAL WHOSE VALUE IS THE NUMBER OF BITS REQUIRED TO

-- HOLD A TASK OBJECT WHICH HAS A SINGLE ENTRY WITH ONE INOUT PARAMETER.

-- USED IN: CD2A91A CD2A91B CD2A91C CD2A91D CD2A91E
TASK-SIZE 32

-- SMIN TASKSIZE
-- AN INTEGER LITERAL WHOSE VALUE IS THE NUMSER OF BITS REQUIRED TO

HOLD A TASK OBJECT WHICH HAS NO ENTRIES, NO DECLARATIONS, AND "NULL;"
-- AS THE ONLY STATEMENT IN ITS BODY.

-- USED IN: CD2A95A

MIN TASK SIZE 32

- - SNAMELIST
-- A LIST OF THE ENUMERATION LITERALS IN THE TYPE SYSTEM.NAME, SEPARATED

BY COMMAS.

-- USED IN: CD7003A
NAME LIST MASSCOMP.UNIX

-- SDEFAULT SYSNANE
-- THE VALUE OF THE CONSTANT SYSTEM.SYSTEM NAME.
-- USED IN: CD7004A CD7004C CD7004D

DEFAULTSYSNAME MASSCOMP UNIX

-- SNEWSYS NAME
-- A VALUE OF THE TYPE SYSTEM.NAME, OTHER THAN SOEFAULT SYS NAME. IF

-- THERE IS ONLY ONE VALUE OF THE TYPE, THEN USE THAT VALUE.

-- NOTE: IF THERE ARE MORE THAN TWO VALUES OF THE TYPE, THEN THE
-- PERTINENT TESTS ARE TO BE RUN ONCE FOR EACH ALTERNATIVE.

USED IN: ED7004B1 CD7004C

NEW.SYS NAME MASSCOMP.UNIX

- SOEFAULT STOR UNIT

o- AN INTEGER LITERAL WHOSE VALUE IS SYSTEM.STORAGE UNIT.
USED IN: CD7005B ED7005D3M CD7005E

DEFAULT STORUNIT 8

-- SNEWSTORUNIT
AN INTEGER LITERAL WHOSE VALUE IS A PERMITTED ARGU4ENT FOR

-- PRAGNA STORAGE-UNIT, OTHER THAN SDEFAULTSTOR UNIT. IF THERE
- iS NO OTHER PERMITTED VALUE, THEN USE THE VALUE OF

SSYSTEM.STORAGE UNIT. IF THERE IS MORE THAN ONE ALTERNATIVE,
-- THEN THE PERTINENT TESTS SHOULD BE RUN ONCE FOR EACH ALTERNATIVE.

USED IN: ED7005Cl ED7005D CD7005E

NEWSTR UNIT 8

SOEFAULTMEMSIZE
-- AN INTEGER LITERAL WHOSE VALUE IS SYSTEM.MEMORYSIZE.

USED IN: CD70066 ED700603M C07006E

DEFAULT MEN SIZE 16777216

-- SNEWMEMSIZE.

C-7

AN INTEGER LITERAL WHOSE VALUE IS A PERMITTED ARGUMENT FOR
PRAGMA MEMORYSIZE, OTHER THAN SOEFAULTEMSIZE. IF THERE IS NO

-- OTHER VALUE, THEN USE SOEFAULT MEM SIZE. IF THERE IS MORE THAN
-- ONE ALTERNATIVE, THEN THE PERTINENT TESTS SHOULD BE RUN ONCE FOR
-- EACH ALTERNATIVE. IF THE NUMBER OF PERMITTED VALUES IS LARGE, THEN
-- SEVERAL VALUES SHOULD BE USED, COVERING A WIDE RANGE OF
-- POSSIBILITIES.

-- USED IN: ED7006CI ED700601 CD7006E
NEW MEM SIZE 16777216

SLOW PRIORITY
AN INTEGER LITERAL WHOSE VALUE IS THE LOWER BOUND OF THE RANGE

-- FOR THE SUBTYPE SYSTEM.PRIORITY.

-- USED IN: C07007C

LOWPRIORITY 0

SHIGH PRIORITY
-- AN INTEGER LITERAL WHOSE VALUE IS THE UPPER BOUND OF THE RANGE
-- FOR THE SUBTYPE SYSTEM.PRIORITY.
-- USED IN: CD7007C
HIGH-PRIORITY 99

SNANTISSADOC
-- AN INTEGER LITERAL WHOSE VALUE IS SYSTEM.MAXMANTISSA AS SPECIFIED

IN THE IMPLEMENTOR'S DOCUMENTATION.
USED IN: CD7O13B

MANTISSA-DOC 31

-- SOELTADOC
"" A REAL LITERAL WHOSE VALUE IS SYSTEM.FINEDELTA AS SPECIFIED IN THE
-- IMPLEMENTOR'S DOCUMENTATION.
-- USED IN: CD70130

DELTA-DOC 2.0**(-31)

-- STICK

"" A REAL LITERAL WHOSE VALUE IS SYSTEM.TICK AS SPECIFIED IN THE
IMPLEMENTOR'S DOCUMENTATION.

-- USED IN: CD71O4B

TICK 0.0166666

C-8

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the Ada Standard. The following 44 tests
had been withdrawn at the time of validation testing for the reasons indicated. A reference of the form
AI-ddddd is to an Ada Commentary.

A39005G
This test unreasonably expects a component clause to pack an array component into a minimum size (tine 30).

B9710ZE

This test contains an unintended illegality: a select statement contains a null statement at the place of a
selective wait alternative (Line 31).

C97116A
This test contains race conditions, and it assumes that guards are evaluated indivisibly. A conforming
implementation may use interleaved execution in such a way that the evaluation of the guards at lines 50 & 54
and the execution of task CHANGING OF THE GUARD results in a call to REPORT.FAILED at one of tines 52 or 56.

BC30098
This test wrongly expects that circular instantiations will be detected inseveral compilation units even though

none of the units is illegal with respect to the units it depends on; by AI-00256, the illegality need not be

detected until execution is attempted (line 95).

CD2A62D

This test wrongly requires that an array object's size be no greater than 10 although its subtype's size was

specified to be 40 (Line 137).

CD2A63A..D, CD2A66A..D, CD2A73A..D, CD2A76A..D [16 tests]
These tests wrongly attempt to check the size of objects of a derived type (for which a 'SIZE length clause is

given) by passing them to a derived subprogram (which implicitly converts them to the parent type (Ada standard
3.4:14)). Additionally, they use the 'SIZE Length clause and attribute, whose interpretation is considered
problematic by the WG9 ARG.

CD2A81G, CD2A83G, CD2A84M & N, & CD50110
These tests assume that dependent tasks will terminate while the main program executes a loop that simply tests
for task termination; this is not the case, and the main program may Loop indefinitely (Lines 74, 85, 86 & 96,

86 & 96, and 58, resp.).

CD2615C & CD7205C

These tests expect that a 'STORAGE SIZE Length clause provides precise control over the number of designated
objects in a collection; the Ada standard 13.2:15 allows that such control must not be expected.

C02D11B
This test gives a SMALL representation clause for a derived fixed-point type (at line 30) that defines a set
of model numbers that are not necessarily represented in the parent type; by Commentary AI-00099, all model
numbers of a derived fixed-point type must be representable values of the parent type.

CDSOO7B
This test wrongly expects an implicitly declared subprogram to be at the address that is specified for an
unrelated subprogram (line 303).

ED7004B, ED7005C & 0, ED7006C & D E5 tests]
These tests check various aspects of the use of the three SYSTEM pragmas; the AVO withdraws these tests as being
inappropriate for validation.

CD7105A
This test requires that successive calls to CALENOAR.CLOCK change by at Least SYSTEM.TICK; however, by
Commentary AI-00201, it is only the expected frequency of change that must be at least SYSTEM.TICK -- parti:utar
instances of change my be less (line 29).

0-1

CD72038, & CD72048
These tests use the 'SIZE Length clause and attribute, whose interpretation is considered problematic by the
WG9 ARG.

CD7205D
This test checks an invalid test objective: it treats the specification of storage to be reserved for a task's
activation as though it were Like the specification of storage for a collection.

CE2107i
This test requires that objects of two similar scalar types be distinguished when read from a fiLe--DATA ERROR
is expected to be raised by an attempt to read one object as of the other type. However, it is not clear
exactly how the Ada standard 14.2.4:4 is to be interpreted; thus, this test objective is not considered valid.
(Line 90)

CE3111C
This test requires certain behavior, when two files are associated with the same external file, that is not
required by the Ada standard.

CE3301A
This test contains several caLL s to ENDOF LINE & END OF PAGE that have no parameter: these calLs were intended
to specify a file, not to refer to STANDARD-INPUT (Lines 103, 107, 118, 132, & 136).

CE34119
This test requires that a text file's column number be set to COUNT'LAST in order to check that LAYOUT ERROR
is raised by a subsequent PUT operation. But the former operation wiLl generally raise an exception due t,
lack of available disk space, and the test would thus encumber validation testing.

E28005C
This test expects that the string "-- TOP OF PAGE. --63" of Line 204 will appear at the top of the Listing
page due to a pragma PAGE in Line 203; but Line 203 contains text that follows the pragma, and it is this that
must appear at the top of the page.

-2

APPENDIX E

COMPILER OPTIONS AS SUPPLIED BY

Comp~uter Sciences Corporation

Coepi ter: MC Ada V1.2.beta/ Concurrent Computer Corporation

ACVC Version: 1.10

E-1I

Ada Compiter Command Directives

Explicit options used with the Ada command during the validation:

-E to generate an error file
-w to suppress warnings(except for test e28OO2a)

Default options used with the Ada command during validation:

-00 Default comiler optimization setting

Ada Library Directives

The LIBRARY:LINK and TASKING:LINK directives in ada.Lib was changed
to point to the ARTOS unique Library. This Library provides the
necessary binding procedures to the ARTOS.

LIBRARY:LINK:/acvclO/artos. L ib:
TASKING:LINK:/acvclO/artos. t ib:

The INFO directive, specified in the ada.Lib file, is used to
control the type of floating point instructions generated.

The following directive generates floating point instructions that
are excecuted on the MC68881 co-processor. This was used during the
Ada validation.

FLOATING POINT SUPPORT: INFO:NC6887:

Ada Linker Directives

The following options were used with the ads Linker:

-o executabLeunit name to name and direct the executable file to
a specific directory: /acvclO/out.
executable unit name is the ACVC V1.10
procedure num.

-z to force Linker to align text, data, and
BSS domains along page boundary. A page
is 4096 bytes. This option is actually an
option of the Nasscomp RTU supplied
Linker. The Ada Linker shell simply
passes it to the Linker.

s to suppress generation of sywboL table in
executable file and conserve disk space.

Example:

E-2

a.Ld -o /acvcl0/out/c23001a.out c23001a -z s

ARTOS options:

The ARTOS operating system is booted white at the 14ASSCOMP 5600
console mode as follows:

>boot /rte/artos

ARTOS is set up to automatically enter the Debug mode. While at the
debug mode ARTOS may be commanded to execute user programs with a
specific processor. This option is exercised to insure that alt
executable tests pass under both a single processor and a nmtti-
processing environment. First aLL tests were forced to execute on
processor 1 by typing the following directive:

ARTOS.Debug:=run 2

where 2 is the bit mask for processor 1.

Then, to insure proper mutti-processing operation, the tests were
also executed using both processors by typing the foLLowing
directive:

ARTOS.Debug:zrun 6

where 6 is the bit mask for processor 1 and 2.

E-3

Ada CompiLer Command and Options

SYNTAX:

ada [options] Cada source.a] ... [Ldoptions] tobjectfi Le.o] ...

DESCRIPTION:

The command ada executes the Ada compiler and compiles the named Ada
source file, ending with the .a suffix. The file must reside in a
VADS Library directory. If the source file name has the form
aaa/bbb.a, aaa must be a VADS Library directory. The ada.Lib file
in this directory is modified after each Ada unit is conpiled.

ALL files created and modified are Located in subdirectories of the
directory that contains the ada source.a file. The object program
is Left in a file with the same name as that of the source with .o
substituted for .a unless the -o option is used. The object file is
written to the .objects subdirectory of the VADS Library.

By default, ada produces only object and net files. If the -M
option is used, the compiler automatically invokes a.ld and builds a
complete program with the named Library unit as the main program.

Non-Ada object files (e.g., .o files produced by the C or FORTRAN
compiler may be given as arguments to ads. These files will be
passed on to the Linker and wiLt be (inked with the specified Ada
object files.

Command Line options may be specified in any order, but the order of
compilation and the order of the files to be passed to the Linker
can be significant.

OPTIONS:

-a file name (archive) Treat fiLe name as an ar file.
Since archive files end with .a, -a is used to
distinguish archive files from Ada source
files.

-d (dependencies) Analyze for dependencies only.
Do not do semantic analysis or code
generation. Update the Library, marking any
defined units as unoampiLed. The -d option is
used by .make to establish dependencies among
new files.

E-4

-e (error) Process compilation error messages
using a.errr and direct it to stdout. Only
one -e or -E option should be used.

-E
-E file
-E directory (error output) Without a file or directory

argument, ads processes error messages using
a.error and directs the output to stdout; the
raw error messages are left in source.err. If
a file pathname is given, the raw error
messages are placed in that file. If a
directory argument is supplied, the raw error
output is placed in dir/source.err. Only one
-e or -E option should be used.

-el (error Listing) Intersperse error
messages among source Lines and direct to
stdout.

-EL
-EL file
-El directory (error Listing) Same as the -E option, except

that source Listing with errors is produced.

-ev (error vi) Process the raw error messages
using a.error, embed them in the source fiLe,
and call vi on the source file.

-tfile-abbreviation (Link) Link this Library fiLe. (Do not
space between the -1 and the file
abbreviation.) See Ld(1).

-M unitname (main) Produce an executable program using the
named unit as the min program. The unit must
be either a parametertess procedure or a
parametertess function returning an integer.
The executable program will be left in the
file a.out unless overridden with the -o
option.

-M ada.source.a (main) Like -M unt_nume, except that the unit
name is assumed to be the root name of the .a
fits (e.g., for foo.a the unit is foo). Only
one a file my be preceded by -N.

-o executable fiLe (output) This option is to be used in
conjunction with the -N option.

E-5

executable file is the name of the executable
rather than the default a.out.

-01-9] (optimize) Invoke the code optimizer. An
optional digit Limits the number of
optimization passes. The default, 0,
optimizes as far as possible.

-R VADS Library (recompiLe instantiation) Force analysis of
aLL generic instantiations, causing
reinstatiation of any that are out of date.

-S (suppress) Apply pragma SUPPRESS to the entire
compilation.

-T (timing) Print timing information for the
compi lation.

-u (update) Cause Library status to reflect the
current program source. Unless the source is
syntactically incorrect, the compiler updates
the Library ada.Lib. Normally, the Library is
changed only if the unit compiles without
errors of any kind.

-v (verbose) Print compiler version number, date
and time of compilation, name of file
compiled, command input line, total
compilation time, and error sumnary line.

-w (warnings) Suppress warning diagnostics.

FILES:

fiLe.a Ada source input file
/tmp/fiLe.$S IL code file created by front end
ada.Lib VADS directory information file
gnrx.Lib VADS generics Library information file
GVAS table GVAS table in the current VADS project
ade.tock lock Link to ada.Lib, for mutual exclusion
gnrx.Lock Lock generics library, for mutual exclusion
GAS table.LOCK

lock link to GVAS table, for mutual exclusion

SEE ALSO:

a.d~b, s.error, e.td, s.mktib, td(1)

E-6

DIAGNOSTICS:

The diagnostics by the VADS compiler are intended to be self-
explanatory. Most refer to the RM. Each RN reference includes a
section number and optionally, a paragraph number enclosed in
parentheses.

E-7

Ada Linker Command and Options

SYNTAX:

a.Ld [options] unitname CLd_options]

DESCRIPTION:

a.Ld collects the object files needed to make unit name a main
program and calls the UNIX Linker td(1) to Link together all Ada and
other Language objects required to produce an executable image in
a.out. unit name is the main program and must be a non-generic
subprogram. If unit name is a function, it must return a value of
the type STANDARD.INTEGER. This integer result will be passed
back to the UNIX shell as the status code of the execution. The
utility uses the net files produced by the Ada compiler to check
dependency information. a.Ld produces an exception mapping table and
a unit elaboration table and passes this information to the Linker.

a.Ld reads instructions for generating executabLes from the
ada.Lib file in the VADS Libraries on the search List. Besides
information generated by the compiler, these directives also include
WITH n directives that allow the automatic Linking of object modules
compiLed from other Languages or Ada object modules not named in
cottext clauses in the Ada source. Any ntwer of WITH directives may
be placed into a Library, but they must be nurered contiguously
beginning at WITHI. The directives are recorded in the Library's
ada.Lib file and have the following form.

WITHI :LINK:objectfi Le:
WITH2:LINK:archive fite:

WITH directives may placed in the Local Ada Libraries or in any VADS
Library on the search List.

A WITH directive in a Local VADS Library or earlier on the
Library search List will hide the sae numbered WITH directive in a
Library Later in the Library search List.

Use the tool a.info to change or report Library directives in the
current Library.

ALL argsmwnts after unit-nam are passed on to the Linker.
These my be options for It, archive Libraries, Library
abbreviations, or object files.

E-8

VADS -Location/bin/a.dd is a wrapper program that executes the
correct executable based upon directives visible in the ada.Lib
file. This permits multipLe VADS compilers to exist on the same
host. The sh option prints the name of the actual executable file.

OPTIONS:

-E unit-name (elaborate) Elaborate unit-name as early in
the elaboration order as possible.

-F (files) Print a List of dependent files in
order and suppress Linking.

-o executabLe file (output) Use the specified file name the name
of the output rather than the default, a.out.

-sh (show) DispLay the name of the tool executable
but do not execute it.

-U (units) Print a List of dependent units in
order and suppress Linking.

-v (verbose) Print the Linker command before
executing it.

-V (verify) Print the tinker commeand but
suppress execution.

FILES:

VADS location/standard/* startup and standard Library routines

Ada object files

a.out default output file

SEE ALSO:

Operating system-documentation, td(1)

DIAGNOSTICS:

SeLf-explanatory diagnostics are produced for missing files, etc.
occasional additional messages are produced by the tinker.

E-9

ARTOS Commnads and Options

At the debug Level:

run <processor-mask)

processor mask is an hexadecimal value that specifies the
processors that are to be used to execute user programs. A
one at the processor's bit position indicates that it can run
user's processes. Processors bit assignement is 0 .. 7
corresponding to bit position 0 .. 7 from right to Left.

At the command interpreter LeveL:

echo <messagestring>

this directive causes the messagestring to be output to the
standard output device.

change <di rectorypath>

this directive causes the default directory to be changed to
the directory path specified. directory names are separated
by '/'. If directorypath contains a leading '/', then it is
relative to the root directory. Otherwise, it is assumed it
is relative to the current directory. It is assumed the
directory and file structure to be UM[X compatible.

shelt <[path/I textfi Le>

this directivive causes the command contained within the
specified text-fiLe to be executed.

return

this directive indicates the 'end of command' within the
text fiLe and it causes the previous command Level to be
returned to.

run <'path/] executabe L..f e

this directive causes the specified executable.file to be
Loaded and executed as a new process. The current process
wait for the new process to complete before reading the next
directive.

E-10

NOTE: Only the canunds/options used in the execution of the
ACVC tests are described.

E-11

