
October 1982 Report No. STAN-CS-82-939
Also numbered HPP-82-21 ~ JLCO PV

,,o. ,, , .-,-;, D V FILE COPj. .i

00

N - o z --:_,,

Planning and, Problem Solving

by

Paul R. Cohen

DTIC
fl ELECTE I

JUN 0 5199031

D Dl

Department of Computer Science,

Stanford'University
-Stanford, CA 94305

Approvd or Puli -c ret eao
~ Dirrz~unol U Imued /

I i

"O1



Abstract:

This report is reproduced from Chapter xv, "Planning and Problem
Solving," of the Handbook of Artificial Intelligence (Vol. III, edited by Paul R.
Cohen and EdWard A. Feigenbaum). The chapter was written by Paul R.
Cohen, with contributions by Stephen Wcstfold and Peter Friedland. Intended
as an extension of Chapter if in Volumc I on search, this chapter reviews
nonhierarchical planning and continues on to discuss hierarchical -and least--
commitment planning and tie refinernent of skeletal plans.

Accesion For

NTIS CRA&I
DTIC TAB
Unannousced 0
Juslilicatzon

STAtME "A" per Fred Koether
DARPA LibraLy, 1400 Wilson Blvd. By
Arlington, VA 22209-2308 istrutionl
TELECON 6/5/90 VG

Availability Codes

AvallI a-icflor
Ast,



UNCLASSIFIED
SECURITY CLASSIFItCATiON OF THIS PAGE (When Dae Entered)___________________

READ INSTRUCTIONS
REPORT DOCUMENTATION PXGE BFR'OPE/GFR

1. REPORT NUMBER 2. GOVT ACCFSS10ON NO. 3. RECIPIENT'S'CATALOG NUMBER

STAN-CS-82-939; HPP-82-21.

4. TITLE (and Subtitle) 5. TYPE OF REPORT Be PERIOD COVERED

Planning and Problem Solving technical, July,1982

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) STAN-CS-82-939; HPP-82-21
PaulR. Chen8. CONTRACT OR GRANT NUMBERs)

Paul R CohenMDA 903-.80-C-0107

(edited by Paul R. Cohen and Edward A. Feigenbaum)

9. PERFORMING'ORGANIZATION NAME AND ADDRESS 10. PROGRAM'ELEMENT. PROJE ICT. TASK

Department of Computer-Science AREA & WORK UNIT NUMBERS

Stanford University
Stanford, California 94305 U.S.A.

I -I - CONTROLLING OFFICE NAME AN_________________ 12. REPORT DATE 13. NO. OF PAGES

Del. n CO T O L N OF IC NAMnce R s a ND ADr ec sS A e c July 1982 61
DefnseAdvnce Reeach rojctsAgecy15. SECURITY CLASS. (of this report)

Information Processing Techniques-Office
1400 Wilson Avenue, Arlington, VA 22209 Unclassified

14.'WMONITORING AGENCY NAM.E & ADDRESS (if duft, fromn Controlling Office)

Mr. Robin-Simipson, Resident Representative15.DCASFATODWGRIN
IOff ice of Naval Research, Durand 165 S5.DCEDLEIIAIN/ONRDN

Stanford University

16. DISTRIBUTION STATEMENT (of this report)

Nk~ aroduct ion in-whol ipat&permitte-f
of t .S. Gove ent . DI tribution authorized to U,. S. Government

a g ncies and privat ,ndivi s or enter-
____pr se eigb e obtain expor, controlled

1?. DISTRIBUTION STATEMENT (Of theaSbstracte it fL acec f14&6K"n

Other requetsm t
be r erre Ito DARP/T1 1400 Wils mul.

18. SUPPLEMENTARY NOTES - . rz 5Va o 311819

179. KEY WORDS (Continue on reverse-side if necessary and identify by block nurn 'or)

20. ABSTRACT (Continue on reverse side if necessary-and-identify bX block Iumber
This..report, is- revroduced. f rom. Chapt-er, -X',,, P.l.anning n& -Zrobe 1 pvin, of the
Handbook of Artificial Intelig~ence (Vol. III, edited by Paul R. Cohen and' Edward A..
Feigenbaum)', The chapter was written B' Paul Cohen, with contributions by'Steve
Westfold and Peter Fried-land. This. chapter, intended as an extension of Chapter II
in1 Volume I on search, reviews ,nonhierarchical-planning and continues on to discuss
hierarchical and least-commitment planning and' the refinement of skeletal plans.

DD O-JA 73-1 73~ UNCLASSIFIED

EDITION OF I- NOV-65 IS OBSOLETE SECURITY -CLASSIFICATION OF THIS PAGE (When Data Entitled)



S CURITY CLASSIFICATION OF THIS PAGE(When Data Entered)
19. KEY WORDS -(Continued)

20 ABSTRACT -(Continued)

SFORM IA s(ACK)
DD JAN 73148"

EDITION OF I N-OV-65 IS OBSOLETE SECURITY CLASSIFICATION OF THIS, PAGE (Wheevoats"EntermdI'



Planning and Problem 'Solving
by

Paul R. Cohen

Chaptb-rXV-of Volumec III'of the

Handbook of Artificial Intelligence

edited by

Paul R. Cohen a~nd Edward A. Peigenbium

This researcht was supported by both the Deccisc Advanced itcearl Projects
Agency (AII.PArdcr No. 3423;'Qontract No. MDA 903-8i)-C-0107)andthc SUMEX-
AIM -Coznptitr Project. under the National Institutei of (Teaith (G rant No. N1I1
RR1-00785). The views and conclusions of this dlocumnt shuld ntbe interpreted-
as- necessarily representing the official -policies, either- expressed or implied, -of the
Defense AdvatcedtRescarch Projects Agency, tfie-National histitutes or 1health, or
the United States :Coverninent.

(D1082 by William Kaufznann, Inc. All rights reserved. No part or this publication
may be reproduced, stored iii a- retrieval -systenfi, or-tratismnitted, in any-formn or by
any moanms, ceetronic, mechaniiical; phIotocop~ying, recordinig, or otherwise, withoout

the prior written perinissioli ofthe: publishe~r. I however, this work inayheicrnproduced
in whole or in partior- Lte official uise-of the U.S. Government on te-condlition that

wri tc,to: 'ermnissgions, William Klaufmnaitn, lite., O5Frirt Stret, L~os Altos,-CA 01022.,



CHAPTER -XV: PLANNING AN]) PROBLEM SOLVING

A. Overview / 515
B. STRIPS anid ABSTRIPS /528
C. Nonhierarchical~planning /581
D. Hierarchical plan~ners / 541

1. NOAH/ 541
2. MOLGEN / 551

E. Refinement of skeletal plana 557



FOREWORD,

The Hfandbook of A rifkial Intelligencemvas conceived in -1975 by Professor
Edward A. Feigenbaum- as a comnpendium. of knowledge of Al and, its ap-
plications. In the ensuing years, students and Al researchers at Stanford's
Departinent of Comiputer Science, a major center 'for A1 research, and at
itniversi ties andl laboratories across the nation have, contributed to the project.
The scope of the work is broad: About 200 short article,. cover most of thle im--
portant ideas, techniques, and systcmi developed during 25 years of research
inl AM.

Overview articles in cachi chapter describe Lte basic issues, alternative
approaches, and unsolved problemns that characterize areas of A(;, they are
the best critical discussions anywhere of activity in the field. These, as well
as thle more technical articles, are carefully -edited to- remove confusing and
unessential jargon, key concepts are introduced with th orough explanations
(usually in the overview articles), And thle three volumes are completely in-
dexed and cross-refereniced to make- it clear how the important ideas of AI
relate to eachi other. Finally, thle ffandbook is organized hicrarchicqlly, -so
that readers can-choose how deeply. into thle dectail of each chapter they wish
to penetrate.

This technical' report is reproduced froni Chapter XV, "'Planningand
Problen Solving," of Lte Handbook -(Vol. Ill, edited by -Paul R. Cohen and
' dward A. Feigenbaumn). The chapter was written by P aul R. Cohen., Stephen
Westfold wrote an -early version of Lte NOAH article, and Peter Friedland
wrote'-the article on the refinement of skeletal~plans. Intended as An extension
of Chapter 1I in Volume I on search, this-chapter reviews'nonhierarchical plan-
fling and continues on to discuss hierarchical and least-commiitment planning
and the refinemient of skeletal plans.



A. OVERVIEW

PROBLEM SOLVING is the process of developing a quence.of ions to
achieve a goal. This broad definition admits all goa direted. programs
to the ranks of problem solvers: for example, MYG N t -e-ile-AII:B,--

. solves the problem of determining a bacter mia infection., HARPY
. -Artkle=n_7- 4eb solves the problem-of understan ing speech signals. and

.n IMt e x solves the problem of filling in slo s in its representations
of concepts It follows that this chapter is not abou problem solvers-the
entire Handbook is about problem solvers. This r,3like the chapter on
search (Chap. II, in Vol. I).is about problem-:soling techniques. In particular,
it is about planning.

In everyday terms, planning means deciding-on a course-of action before
acting. This definition accuratlOv describes the planning systems of this
chapter. so we will adopt it. A plan is, thus, a representation of a course
of action. It can be an unordered -list of goals, such as a grocery list, but
usually a plan has an implicit ordering of its goals;for example, .most people
plan to get dressed to go to the theater, not the other way -around. Many
plans include steps that- are vague and require further specification. These
serve as placeholders in a plan; for example, a daily plan includes the goal
eat-lunch, although the details-where to eat, what to eat, when-to leave-are
not specified. The detailed plan associated with eating lunch -is a subplan of
the oerall d ily plan. Most plans have airich subplan structure; each goal-in
a plan can e replaced by a moredetailed subplan to achieve it. .Athough
a finished p n is a linear or partial-ordering of problem-solving' operators,
the goals ac ieved by the operators often have a hierarchical structure (see
Fig. A-I). Th aspect of plans prompted one ofthe earliest definitions:

'A Plan is any ahical process in the organism thatcan control the order
in which a sequence o - s to be performed. (Miller, Galanter, and
Pribram, 1960, p. 16).

Planning and Problem Solving

Failure toplan can result in less than optimal problem solving; one may
goto the library twice, for example,<having failed to plan to borrow abook
and return another. at the same time. Moreover,- in cases where goals are-not
independent, failing to plan before acting may actually preclude a solution to
the problem. For example, the goal of building a~house includes the subgoals
of-installing a dry wall and installing 6lectrical wiring, butthese goals-are not
independent. The wiring must be instaled.fist: -otherwise, -fhedr v wall Wil-

be in the way.

515

a



516 Planning and Problem Solving X"

Plans con 'be used to monitor progress during problem °solving and to
catch errors befire they do too much harm. This is especially important if the
problem solver is not the only actor in the problem solver's environment and,
if the environmentcan change in unpredictable ways. Consider the example
of a roving vehicle on a distant planet: It. must be able to plan a route
and then replan if it finds that the state of the world- is not as it expected.
Feedback about the state of the world is compared with what is predicted by
the plan. which can-then be modified in the event of discrepancies. This topic
is discussed more fully in Sacerdoti (1975). The benefits of planning can be
summarized as reducing search. resolving goal conflicts, and providing a basis
for error recovery. These will be discussed in detail in the remainder of this
chapter.

Approaches to Planning

Four distinct approaches to planning are discussed-in this volume. They
are nonhierarchical planning, hierarchical planning. script-based planning,
and opportunistic p!anning. Here we must resolve a- confusing ambiguity
in the word hierarchical. The vast majority of plans have nested subgoal
structures-hierarchical structures-as shown in Figure A-1. However, the
word has another interpretation, one that provides the basis for. distinguish-
ing hierarchical from nonhierarchical planning. The distinction is-that hierar-
chical planners generate a hierarchy of representations of a plan in which
the highest is a simplification, or abstraction, of the plan and the lowest

Plan for the day

I I I

go t

u~~ find quiet buy sandTwich [ 7 find die
gas -place to work p a free

terminal

-Figure A-i. Plan for a day, illustrating the hierarchical structure of sub-
plans.



A Overview 517

is a detailed,.plan, sufficient to solve the problem. In contrast, nonhierar-
chical planners have only one representation of a-plan. Both kinds-of plan-
ners generate plans with hierarchical subgoal structuies, but only hierarchica
planners utilize a hierarchy of representations ofthe plan. This distinction is
discussed further in Article XV.B, in which STRIPS (a nonhierarchical planner)
and ABSTRIPS (the hierarchical extension of STRIPS) are compared.

Nonhierarchical planning-corresponds roughly to the colloquial ,meaning
of planning; that isra nonhierarchical planner develops a sequence of problem-'
solving actions to achieve each of its goals. It may reduce goals to simpler
ones, or it may use means-ends analysis to reduce the differences between
the current state of the world and that would hold after the problem has
been solved. Examples of nonhierarchical planners are STRIPS (Article XV.B).
HACKER (.Article xv.C). and'INTERPLAN (also in Article xv.c).

The major disadvantage of nonhierarchical planning is that it does-not
distinguish between problem-solving. actions that are critical to the-success
of a plan and those that are simply details. As a result, plains developed by
nonhierarchical planners get bogged down in unimportant details., In any-plan
there are levels of detail that are too picky or too vague and a level of detail
that is appropriate for the problem; for example, a too-detailed plan for dinner
starts with Go to the table, sit down, unfold the -napkin, pour a glass ofiwater,
find matches, light the candles.;. A too vague plan is Sit down somewhere,
have food. Planning with too many-details is a waste of effort, but plans-that
are too vague do not-specify which problem-solving operators should; be used;
a balance between these extremes is necessary for efficient-planning.

To this end, the method of hierarchical planning has been implemented
in a number of planning systems. The method is first to sketch s plan
that is complete but too vague and then to refine the vague parts of the
plan into more detailed subplans until 'finally the plan has been refined to a
complete sequence of detailed problem-solving operators. The advantage6f
this approach is that the plan is first developed at a level at which the details.
are not computaitionally overwhelming.

Hierarchical 'planning also takes several' forms in these systems. One
approach, typified 'by the ABSTRIPS program (Article ILD6, in Vol. I); is to
determine which subgoals are critical to the success of the plan and to ignore,
at least initially, allothers. (In ABSTRIPS, a detail is a subgoal for which a
subplan can be found if plans have been found to accomplish goals that are
not details.) For, example, the -problem of buying a piano cantiot be solved
unless two s ubgoals are accomplished, namely, Locate pianoand Get money.
Thus, an initial ,plan for buying a piano might simply be Locate piano, get
money, buy piano. Subsequently, this plan can be refined with inessential
details, such as Drive to the store and Selectpiano. A.BSTRIPS plans in a
hierarchy-of 'abstraction spaces, the highest of which contains a plan devoid
of all unirtmpoatant '- .. t.,. e ia.. , .'comp.ctc.. nd,
detailed sequence of problem-solving operators. The advantage of considering



518 Planning and Problem Solving XV

the criti.,! subgoals before the details is that it reduces search: By ignoring
details, one effectively reduces the number of subgoals to be accomplished in
any given abstraction space.

Hierarchical planning was implemented in its earliest form by Newell and
Simon (1972, pp. 429-435) in their CPS model of-theorem provingin logic. The
GPS approach was slightly different frorfi that of ABSTRIPS. In ABSTRIPS,
a hierarchy of abstraction spaces is defined.by treating some goals as more
important than others, while in GPS there was, a single abstraction space
defined by treating one representation of the problem as more general than
others, -P planned in an abstraction space defined by replacing all logical
connectiv" by a .ingle abstrnct symbol. The original, problein space defined
four logical connectives. but many problem-,olving operators were applicable
tc any connective. Thus. it could be treated as a detail and abstracted out of
the formulation of the problem. A problem could be solved.in the abstraction
space. the space with only one connective, and the solution could-be mapped
back into the original four-connective space.

Subsequent implementations of the hierarchical planning approach such
as NOAkH (Article X V.D1) and MOLGEN (Article XV.D2) are. again, slightly
different from either ABSTRIPS or GPS. AB§TRIPS abstracted -critical goals,
and GPS abstracted a more general representation of an Aspect, of its prob-
lem space. NO.AH abstracts problem-solving-operators; it plans initially with
generalized operators that it later refines- to problem-solving operators given
in its problem space. MOLGEN goes one step further, abstracting both the
operators and the objects in its problem space. In all cases, however, hierar-
chical planning involves defining and planning in one or more abstraction
spaces. A plan is first generated in the highest, most, abstract space. This
constitutes the skeleton onto which details are-fleshed out in l6wer-abstraction
spaces. Hierarchical- planning provides a- means of ignoring the details that
obscure or complicate a solution to a-problem.

A third approach to planning also makes use of skeleton plans but, un-
like hierarchical planning, these skeletons are r~called trom a store of plans
instead of generated. This approach was-adopted in one of the MOLGEN sys-
tems (Axticle XvE). The stored plans contain the outlines for -solving--many
different '1 inds of problems. They range in detail from extremely specific plans
for cominon problems to very general plans for broad classes of problems.
The planning process proceeds in two steps: First a skeleton plan is found
that, is applicable to the given problem and then the abstract steps)in the
plan are filled in with-problem-solving operatorsfromthe particular problem
context. This instantiation process involves large amounts of domain-specific
knowledge. often working through sevefallevels of generality until a problem-
solving operator is found to accomplish each skeleton-plan step. If a suitable
instantiation is found for each abstracted-step, the plan as a whole will be
succc,.ful.



A Overview 519

This approach has much in common with that of Schank and his col-
leagues (see Article IV.F6, in Vol. I). Their approach to natural-language
understanding is to use stored- scripts (and other, more -sophisticated- struc-
tures) to provide top-down expectations about the course-of astory.

A fourth approach to planning has been found by Hayes-Roth and'Hayes-
Roth in human planning (see Article xi.c). It is described as opportunistic
and is characterized by a more flexible control strategy than is found in
the other approaches. The Hayes-Roths have adopted a biackboard control
structure to model human planning. The blackboard is a "clearinghouse"
for suggestions about plan steps, suggestions that are made by planning
specialists. Each specialist, is designed to make-a particular kind of planning
decision. Specialists do not operate in any particiflar order; the asynchrony
of planning decisions that are made only when there is reason to do so gives
rise to the term opportunistic. In the Hayes-Roths' model, and apparently
in human planning, the ordering of operators that characterizes a plan is
developed piecewise-the plan "grows out" from concrete clusters of problem-
solving operators.

Opportunistic planning includes a bottom-up component, since it, is driven
by opportunities to include detailed problem-solving -actions in the develop-
ing plan. It. contrasts with the top-down refinement process, characteristic
of hierarchical planning, in which detailed problem-solving actions are not
decided until the last possible moment in developing the plan. Another
difference between opportunistic planning and other forms is that it can
develop islands of- planning actions-parts of a-plan-independently, while
hierarchical planners try to develop an entire plan at each level of abstrac-
tion. (See Chap. V, in Vol. I, for a discussion of island driving in speech
understanding.)

The Hayes-Roths' model is -discussed in Chapter m, on models of cogni-
tion, since it is intended as a model'of human planning abilities;

Search and the Problem of Interacting Subproblems

Two major, interrelated issues will keep reappearing in this chapter. They
are the problem of limiting search and the problem of interacting subproblems.
The problem of search is to find an ordering-of problem-solvingactions that
will achieve a goal when there are a huge number of-orderings possible, most
of which will not achieve the goal. This problem has been called combinatofidl
explosion, since the number of combinations of problem-solving operators
increases exponentially with the number of operators (see Chap. II, in Vol. i).
The problem of interacting subproblems arises whenever a problem has a
conjunctive goal, that is, more than one condition to be satisfied. The order
in which conjunctive goals are to be achieved is sometimes not specified in the
problem. but it can be critical to finding a solution. Sometimes interactions



.520 Planning and Probleri Solving XV

of this sort prevent any solution:'for example, if a'conjunctive goal is to paint
a ladder and paint a ceiling, the second- goal must -be achieved, befoe,the
first, because one cannot stanidon aAfreshly paintedladder to paint aceiling.
Unfortunately, this iniformation -is sometimes not given in-the problem ut
must be inferred.

The problem of siarch-is related to the problem of interacting subproblems
because additional search-results from premature commitment to an arbitrary
ordering of interacting subgoals. In the ladder example, a planner that arbi-
trarily decided to paint the ladder first would need'to backtrack and change its
plan when it discovered it could not paint the ceiling. Backtracking involves
replanning from the choice point that failed, in this case, the choice between
painting the ceiling and painting the ladder. Backtracking can be very costly.

Interactions-between subgoals have been called constraints (Stefik, 1980;
see also Article XV.D2). They can be inferred from the preconditions of
operatois if the preconditions-are explicit. For example, if the operator Paint
ceiling has several- preconditions such -as Have paint, Have brush, and Have
ladder, an intelligent planner will infer from these that painting the ladder
cannot prdcede~painting the ceiling. A less inteliigent planner may construct
a plan to paint the ladder first and then realize that it cannot continue; it
ma then attempt to reorder-its actions.

Some of the earliest planners generated initial plans that violated ordering
constraints and then tried to go back and fix the plan. They include HACKER,
INTERPLAN, and -Waldinger's system, -all discussed in Aiticle Xv.C. These
systems -applied, a powerful -heuristic called the linear assumption, namely,
that

subgoals are independent and thus cawbe sequentially achieved in an arbi-
trary order. (Sussman, 1973, p. 59)

In a historical perspective, this can be seen to be an important heuristic.
The number of orderings of problem-solving operators is the factorial of'the
number of operators, so itim obvious that aproblem solver cannot successfully
examine all' orderings in- the hope of-.finding one that-does not fail because of
interacting operators. The linear assumption says that in the absence of any
knowledge about orderings of operators, assume that one-ordering is as good
as any other and- then fix any interactions that emerge. The three programs
mentioned above all fix plans by -reordering the component operators.

The linear assumption is used in cases where therelis-no apriori reason to
order one operator aheadof another. An alternative assumption is that it is
better not to order operators than to order them arbitrarily. This asumption
arises in slightly different forms in the NOAH planningsystem(Article -:v.Di)
and one of the MOLGEN-systems (Article x)V.D2). NOAH establishes partial
orders of problemsolvingoperatorsby-considering their preconditions. For

Go to coffee store and Get money, but initially it-does not commit itself.to an



A Overview 521

ordering of these operators. Howevei, when it expands-each of these goals, it
notices that a precondition of-getting money, Be at bank, interferes %ith the
goal of-being at the coffee store; thus, it decides to getmoney'before it goes
to the coffee store. NOAH ,orders operators only to eliminate problems: that
might arise from picking an arbitrary ordering. MOLGEN also will not order
operators until constraints are available to guide it; furthermore, MOLGEN
avoids committing itself to using operators or objects -v.jthout constraints
because premature-commitment may conflict with other parts of-its plan.

The least-commitment approach of NOAH and MOLGENt contrasts with
the linear assumption. which says. Commit yoursdlf to aiy qrder of operators
and then fix it. This approach works because NOAH and MOLGEN are able
to inferconstraints that hold-between operators. An important aspect of the
approach is that it is contstructiv'e; since planning decisions are made-only
when the-planner is sure they will not interfer&with pastorifuture decisionsi
the planner need never backtrack and undo a ba.d decision. In fact, both
of these planners do make baddecisions and can backtrack. but the rriajor
research effort has been to avoid -backtracking.

Interestingly, human planners do. not always..use the le st-commitment
strategy and. consequently they must sometimes backtrack. Humans oppor-
tunistically plan .to execute an operator- when it is convenient to-do-so . For
example, a human may plan to pick up groceries on.the way to a fdotball
game because it is convenient-to-do so. Later he (or she) will realize that the
groceries will wilt, during the game and he will have to replan to avoid this.

Conclusion

We have discussed the structife of plans, concentrating especially on
the hierarchical relation between goals and subgoals. When, problem solving
-is- discussed in terms of search, it becomes evident that. although finished
plans are usually -linear or -partial orders of problem-solving operators, the
Eearch spaces in which the plans are developed are hierarchical. This is
because Oroblem-solving operators have preconditions ,that are subproblems
with preconditions of'their own, and so on. The term hierarchical was shown!
to refer to two related concepts: Most plans have a'hierarchical structure, but4
only hierarchical planners use a hierarchy of abstractionspaces to develop a,
plan.

Ve have introduced four approaches to planning: nonhierarchical plan.
ning as practiced by STRIPS and HACKER; hierarchical planning of the soft
done by ABSTRIPS, NOAH, and MOLGEN; script-based planning; and opppr-
tunistic planning. Most will be discussed in subsequent articles, although
opportunistic planning is covered in Chapter )d, on models of cognition.
Nonhierarchical planners are discussed in Article xv.C after a comparison .
of hierarchical 'and nonhierarchical planning illustrated by ABSTRIPS and



522 Planning and Problem Solving

STRIPS in.Article XV.B: NO.Alis discussed in Article X.Dl; and-the last two
articles are devoted to the MOLGEN systems (Articles V;D2and XV.E).

The major issue for any planning system is reducing search; -instrumental'
in this are methods for minimizing the effects of interacting subproblems.
In particular, the least-commitment approach that derives from hierarchical
planning is constructive, that is, it requires little.or no backtracking.

References

-Sacerdoti (1979)' is an interesting overview and attempt to taxonomize
p~lnning methods. Stefik's (1980) doctoral thesis discusses and compares
marl,1. plannin- systenhs and methods. The~references mentioned in this article
are representative of the planning literatureand provide a readable histori-
cal background; one important reference that was not mentioned earlier is
Bobrow and Raphael's (1974) review of AI programming languages. Planning
has received-some attention in cognitive science, and human planning has been
examined ii Al. References include Schank and Abelson's (1977) book on
scripts and plans. Feitelson and Stefik's(1977) study of human- experiment-
planning. Friedland's (1979)-doctoral dissertation on script-based planning,
and the research of.Barbara-and Frederick Hayes-Roth on opportunistic plan-
ning (Hayes-Roth. 1980).



B. STRIPS AND ABSTr RIP S

HIERARCHICAL PLANING in the context -of the$,TRIP and'ABStRiPS
olanners'is the subject ofthis article*(see-aiso'Fike,4and Nilsson, 1971; Fikes.
Hart, and Nilsson, 1972; Sacerdoti, 1974; Articles ILD5 and IL.D6. in Vol. 1).
the two systemns are virtually id~ritical except that StRIPS plans in a-,iingle
abstraction space while ABSTRIPS plans inta hierarchy -of~them. Wepresent
here -a single pr6blem-get ting, a cup of -coffee-and show how each of the
s~'slems would~solve it.

Let us first -characterize .a problem solver as a 0iogram that explores
the states that arise from the application of -pro'blefi-solving operator., in,
search of one thav qualifies as a, solution- to -the,problern. (Othei characteriza-
tions of search in problem iol'ing aretpossible; see Artidles ft.Bi, anId,,ll.B2; Jn-
Vol. 1, for a discussion of state-space an pdlm-eudin-erh) The first
tate exam 'ined-by -a probleim solver is the- starting, st ate, an4:if-the problemn

-solver is successful, the laststate examined will'be, he goal state.
Problem solvers -have available a set of ;polmsligoperators arid

objects. When problem-solving. qperators are executed'. the6 brihg about
changes -in the-state of the World. Consider now the-problem of gettingi,
cup of coffee. You goq to the,,kitchern and -if coffee is made, you pour some6. If
not, you mike some or go out6 buy some. If-you decide toi make some, but
there are no coffee beans or-ground coffee, YOU go to. the- store- to get.,so me.

Ifyou, have tno money, you, go to the-,bank first. Th --rc'-.nt opeiators ad
-Objects are:-

Operator Object

Bbil-witer boilng -water
Pour-X kitchen
BuY.X coffeebdan- store
Make coffee coffee bean's
Goto X brewed-coffee store
Get money bank

money

Each operator -has preconditions that must be -true before-that operator-,can
be executed--for example, if Whre is no _6ff~e-to pour., youmuist -make-somne.
-Maiking a precondition trdei§-asubpioblerfi. Because -probleff-solving-oper-
ators-usually have-preconditions, a developing--plan usually has ahiergrchical--
structure.

The operators for t -hi -s problem can'be represented- in -such a wax that

523-



524- Planning-and Problem Solving XV

Operator Prcobndition Effect

Pour coffee Have~brewed- coffee Problem solved
Make coffee liave beans Have brewed coffee

Have~grinder
Have boi ling water
Be in the kitchenw

Buy something Be at store Have soiething,
Have moniey

Go someplace 'Place exists Be-at place
INot-ai, any- other place

Get money Be at bank Have money
Boil water Be in therkitchen Hkav'cboiling-water

The -starting state and- goal state -of the problem can be expressed, in these
terms-also:

Starting state, Goal st ate

TNbt have brewed coffee Have brewed coffe
in kitchen In kitchen
Have grinder -Have grinder
Have money Have money
Have' boiling water Have-boiling watoer

-If-a problem solver knows how- each problem-solving-operator-changes the
state of-the world and knows the preconditions forf an operator to -be-execduted,
At can apply a technique called meanms-ends analysis to -solve prpblorns (see
Article Ii. in Vol. 1. and'Article)U.B).. Briefln this techniqu6 in~olvesjbinoo
for a- differ~n ce-beten- the -current state of the world and 'ai &rd stt kng'
tryii~g'to fin'd 'pblm-oinpeao thAtwill. reduce the difference. This
continues rdcufiveiy-unti!. the desired state- of the *rd1hsbe: ahe~"

ST~t afd AST~11S. nA ost.6ther plafners, use meanisrefids -analysis.
The next'few, pafag rapfls illustra te h ow,*,ST 1RIPS-might solVe--the problem

of getting a-cup,,6f coffee. 'First, itconipares- the starting state and the goial
stateanid-immediate]V finds a difference: H~ive bewed coffee. 'So it.looks for
an operator that has fit-ye Lftwedofe in Itsls ofefcs tnds.two: Make

coffee and Btiy f omethi'g, whef#*.4orein0 is-instantiated with brewbed coffee
STRIPS mfust cehoo~e-one -of them;, 'choosing the- first makes -the. examp ,le nfi6 e
interesting, so-we will - issilfine-it doestAut.

To ffak6,coffe6, the four--precdhditions-of ,the Make -coffee, 6eratorrhius.
be 'fufilled. STRIPS compares the current state of the-wofld- (the starting
state) with the- first prec6ndition and- imnmediately finds- a -differend6, Have
'beants. -Cbnisequen'tlyj it goes baLck and tries to eliminate this- difference 'bv
searching-fof afv6perator' aiiiazs&iSeft k cas'Oleprto-------



B STRIPS and ABStRUS 525

,applies, namely. Buy stomething, where something is~instahitiated with beans.
Once again. STRIPS compares the, preconditions, of the. proposed operator
with the-current-state-of the world. It-notes that- the condition Be at Otoreis
not satisfied. so it must repeat the search once again and find-an operator that
will get it to the 'st 're. There is such-,an operator, Go-to someplace, With-the
single ~pieconditio6 that the place exist; since the store is -one of the -objecti
available tdSTR 'IPF', the operator cart be executed.

At this point, A, Plan for solving -the -problem would'-hve the -following
hierarchical structure:

(Pour coffee)
Precondition:
Have brewed coffee

__________ 
or

(Make coffee) (Buy brewed coffee)
Preconditions: - Preconditions:

(Buy bean.)
Preconditions:
BeD at store,...

(Go 
to 

orPrecondto:
Store eit

[True in world-model,

Note that executing the operator Go --to store changes one -aspect- of the state
of the world. The starting state -is-In the kitchen, but Go to -1thre changes,
this to At the store. This change satisfies-one of the preconditions of the Buy
beans operator;,STRIPS checks -the other precondition, Have-money. Since this
-precondition -is true in the current state of-the World, STRIPS-is free~to executi
the Buy, b'eans- operator. Its executionr fulfili3 the first precondition, of the
Make coffee operator. Furthermore, STRIPS'finds the nextr-two preconditions.-
qave-grinder and HaVe boiling water, -true in -the current,-state~of the-i vrldi
H-owever, the last Precondition, Be in~kitchen, has, been- made false- by' going
'to the store, so before making coffee, STRIPS mu~t 4ind An bperatoi with-
the-iffeci -of--- iii Bei--n kiitc z-tfi6e giin. This-i s S-ii-I~ - (o to -kitchen,



526 Planning and Problem Solving X

and ince it has no preconditions it -is -immediately applicable. It excto
fulfill~c-all the preconditions of, Make coffe;e; consequently, -that. operator can
be executed. fulfilling the single\ precondition of Four coffee-and Woving-the
problem.

The final plan-for getting coffee is, thus, Go to the-store, buy bean.s, go to
the kitchen, make coffee,, pour coffee.

Means-ends analysis is a powerful- problem-solving method becau'se it
rediuces the amountdof search done by a problem solver. At. any point prior to
zolvi-,, a problem, one or more goals-must be-satisfied. M eans-ends analysis
reroanizes only one type of goal, namely. to reduce- a difference ,between
t%%o-states. Moreover. an assumotion of the- method is -that pifoblem-solving
operators can be classified according to the kinds of, differences, they reduce.
Consequently. only a fraction. of the available operators-will be applicable to
any-giyen goal. and search among the operators for an applidable-one-*ill be
reduced.

Sea rch and Backiracking

One -difficulty wvith~ means-ends analysis is that .it can still develp large
search spaces. Althouan it iestrits the number of- operators that- ap~ly-t a
goal- there-may st.11be several,-applicable operators and-no a priori basis for
selecting one. Moreover, -thereiis no way of kniowing Avhetlher the subgo Als-of
an operator can be-satisfied -or-,whether their evalua tion may, eventually lead
to a, dead end. that- is, to~a subgoal thit cannot be -satisfied. Fbr exam~ple, if
the Go to someplace operator had a--precondition Hav'e-c&r butno car-existed.
all- of the processing -that led to that operator would hAve been ih v'aifi~and
ihe-problem solver would-have-had to backtrack to, find- an alternate -path. In
the example above, the-only other -path. involves trying to Buy,-brcued ,coffee,
And -it. too. will fail, for-the samne reason. -1n more cpolicated problems, one

mgtexpect to'fiid -several 41ternative -paths that, might accomplish--agien
subgoal, And a substaiflial ariiount of-backtracking many be. needed to-solve,
the pfoblkm- -Backtracking can -be very expepsive, so recent planners have
been designed~to avoid it asmuch as popsible,

Backtracking arises from premature comnmitment to a problem-solVing
path. As an illuitration, consider-again-the~problem o6f getting -coffee. A.siim
for a-momnentifhattheobjects that. are: available woSTRIPS -are kitchen, bank,
coffee-bean ktorej brewed-cqffee store. The grinder and the- gritndee stofe 'are
missing. To-solve 'the problem, STRIPS' builds, ,a sedich tWe- as- hdwn-iii
Figure-B3;4.

Briefly. -S~TRJPS would',tea,-qn that to 06ur cofT~e,. it mrnuk, make- some or
buy Soma. It opts to-make somne. To-do so, it neods:beans, fbr which-it-needs
money arnd a bean store. To get-iiioey.t mut__geto tA- bank, foqt which a
bafik'riut exisrt. Sii- i -bank do~ids Rst, STRIplans to go th'cre-- an-d~ - -- -

njoney. It then -explores the pqssibilj.y of going to-a-bean- sore: -sipw sc



B 'STRIPS and-ABSTRIPS 2 7

(Pour cof f so)
:Preconditions:
Have 'brewed cof ee

_____ _____ _____ ____or -

(Wake coffee) (Buy brewed cof tee)'
Preconditions: -Preconditions: I
,Have-,beans, Have -grinder,....

(tiiy- bei is) (Buy grinder)
P reconditions: ]Preconditions:
Have money, -At bean store jHave money, At grindeir store

F(Go money),e , TRUE' (0 'to store)

l~reondtion: Pe~onitin aPreconditions-
At bank__ Store exists FSore exists

'I o to bn

Priconditiohs. 
RU

lBank exists

FT-uE

Figure-B-i. A search tree for the -problemof-pouring- coffee.

a .store exists, STRIPS- can go there. Both preconditions for. buying beans
are, fulfilled,-so -it plans to buy, them' and then goes on-to consider 'the- next
-precondition- of -making coffee, )vhich is hsviig a,-grinder. Since it, does nt
have one, it decides-to buy-one, ,or which- the- preconiditions r'hvn~rpe
and beiat-a grinder store. It-has money from its previous visitAhebank,
so it -plans to go- to the grinder store. Unfortunately, -no. such :stoe -exists.
All. of-this-processing has been in~i-~IScannot tpbssibl , -make_coffe.
Its only option is to backtrack-to -a-choice poinit in-the plan and try another
path. In -this-ease, it, cafi try th~buy some brewedd coffee. This part of the plan
isnoti ~litra,,ed,,but:it-mill sucleesince a-brewqd-cofeestore exists.

Fart-of the expense of-backtracking in-the previois-excample derives frofii
-planning ,sevreral operations that are actually unimportant details. Iinuitivel;,,
one.,ould'-exuedt-STRIPS,.to-hive.checkecLmuch-earlier-in .the6.pni. i tn;- -

whether a grinder-store-existed. Similarly, if STRIPS knew that bertAin-stdres



528 Plafining and Problem Solving XV

existed, it should not -have worried about how to, &et to t herii until later in.
the plan: getting tokplaces sems like a detail. On'e would-expect a Plain'er
first to plan to, do all the important steps in a plan And then to fill inl- the
less important ones after it has sketched but the-others. Ini fact, thisinethod
is called hierarchical planning, the first planner to use it was an extension of
STkIPS called AI3STRIPS. We will flow briefly desc~ibe how it works.

ABSTRIPS plans in a hierarchy of -abstraction spaces. An ABSTRIPS
abstraction space contains all of the objects and -opef ators, given in thdinitial
specification of the problem (called the ground.,space), but some preconditions
,of som e~operators are-judged-tob6 more ihiportant than others. 17or-example.
Have boiling wvater-seems like an uniimportant precondition of making coffee
because it, is so easy to accomplish. Other lpreconditions such as Grinder
store -exis- ts seem- very important, because if they are not true int 'the ground
spacei there is no operator that.the problem solvercan execute-to make-them
true. P'recoriditionis ar6 assigned impqrtance~ieve!i, called -riticalities. WVhen
.ABSTAIPS starts- planning, it plans to Achieve' only -those preconditiois~that
have ,he niaximui driticality-just those preconditions that are -critical to
tMe'success of the plan. 'W ~lans in -the Wzihest abst~action space. Next,,it
plahsnto achieve the -preconditions of 'the-steps. m-its high-level plan that have
the next, criticality -level,- and so on, until all the-precbnditions in a plan have
been achi~ved.

The first step in this process. is assigning criticalities. The method- used
in ABSTRIPS is ~for a ~humaxi todraw up-A partial- ordering of priconditions-
by ifituitively judging their importanc 'e; then ABStRfI PS follows an- algorithm
to adjust the'criticafities~further. One ~miight.guess that the -most, important
precondition is thiata~pace exist, since if L does_'not,-operators thatdepend
on its existence cannot be used -iii a 'planh. Oheinightjudge having ,soniethirig,
as the next most -important precondition and 'being somewhere the least
important:

-Precondition Intuitivet criticality

Place eki~ti 3
Have ioniething2,
be' somewhere- 1

.AbSTRIPS adjusts these,-criticalities as foll6*M s: All- preconditidns-whose
truth values cannot be changed 'by any ciperatbr ariegiven a maxinum-criti-
cafity. For each of -the other preconditions.,Af k- short.plan cah'-be-fotund-to
~achieve it-assurning the previousprecohdiftort-are true-~iv is ossunied~to be
a, detail and is given-a-critkdality equal to. that specified-ih the partial ordering.
If no such plan can-be'fourid, it is given a criticAlity-greatdr-than the highest
-one-in-th6 partial 'order.

The-precondition! 2 Bank-- -xsts ; .Bean -store- ezists _afid.BreLwed~coff ,,t~--
exists are all assigned -a maximumn vlalue,',say, 5, because their truth cannot-biP



B STRIPS and ABSTRIPS 529

changed by any operator. The four Have sbmething preconditions are Have
beans, Have grinder, Have boiling water, a nd Have money; three of them
can -be achieved by a short plan, given that the previous -preconditions are
true. For example, given that -the bank exists, a short plan -can be found to
achieve the precondition Have money. These three preconditions are therefore
assigned their pLrtial-order rank of 2, and the fourth, Have grinder, which
cannot be achieved by a simple plan because no grinder store exists, isgiven,
the rank of 4, higher than any partial-0rder rank, Lastly, the Be somewhere
preconditions are ranked, and since they can all be achieved by simple plans,
they are assigned-their partial-order rank of 1:

Precohndition Criticality

Bean store exists 5
Brewed-coffee store exists 5
Bank exists 5
Have grinder 4
Have beans, boiling-water, mo-ek,  2
Be at brewed-coffee store, 1M, store, bank 1

ABSTRLPS now formulates -a plan in an abstraction- space of critical-
ity- 5. This means'that at this leveli any rprecondition of an operator that has
a smaller criticality value is assumed to be true. At this level, ABSTRIPS'finds
two-plans to get coffee: Make coffee and Buy brewed coffee. It then ekpands
the Make coffee plan in an abstraction spaceof criticality 4, since the Have
grinder precondition emerges at'this level. ABSTRIPS tries.to find a subpiin
for getting a grinder but cannot. Consequently, it recognizes immediately
that its level 5 plan to make coffee will fail. It backs up to-level 5 again, picks
thealternative-plan to buy brewed coffee, and pursues it. Figure B-2 shows
a trace of its operation inthe.five abstraction spaces.

In this trace, ABSTRIPS first plans to make coffee, but this plan fails in
the abstraction space of level 4. Thus, it -backtracks tolevel 5, and plans :to
buy brewed coffee. This plan is not expanded further until' level 2, when the
precondition of having money -becomes -apparent. At leve 1, a :precorsdition
of getting money is found, namely, Be at biank, and -a precondition -of buying
-coffee is found, namely, Be at store. ABSTRIPS plans to go to these places;
its final plan is Go to bank, get mpnei, go to -coffee -store, buy brewed coffee.

ABSTRIPS solves problems with much lesssirching and backtracking
than STRIPS because it is a -hierarchical Planner, It generates a- hierarchy
of plans in which the highest level plans are very sketchy and thelqwest
level plans are detailed. Since a complete plan is~formuleated at each level
of abstraction before 'the next level is considered, ABSTRIPS can find-dead
ends early, as it did with the-problem of finding a coffee grinder. The details
of-the otherpparts of the plan to -make coffee, for example, boiling-water and

____ ____ ____ --



530 Planning and-Problem Solving XX

(Make coffee) or (Buy b'rewed coffee)
Level-5: No preconditions No preconditions

of' criticality 5 of criticality 5
Level 4: jPreconditions: No' preconditions

Have grinder *o. criticility 4

(Buy grinder)
,Preconditions:
Be at grinder store,

(Go, 'ogrinder store)
Preconditions:

Grinder store exstB

FALSE:_ rikturn,,-O i9V_2 :t

Level 3: lNo pzreconditiona
of criticality-S

Level 2: Preconditions:
- Have money,

ti-ILevel 1: Preconditions:
Be atban Be at-coff I" store

(Go tobank)(Go to store)

Figure-B-2. A trace of ABSTRIPS-in ffive abstraction spaces.

buying beans, were-never considered because ABStRIPS quickly 4etectedithat
an imp ortant precondition of making coffee -could not be satisfied.

References

STRIPS is discussed. in Fikes and Nilsson' (1971); in Fikes -Hart. and
Nisson -(1972); and in -Article iLDMin Volume, I of the Handbook ABST -RIPS
is- discussed in- Sacerdoti (1974) and -in Article ii.D6 -(Also in Vol. i).



C. NONIERARCHIOCAL PLANNING

NONHIERARCHIcAL a pproaches to pi~nning order operations at a- single leel
of abstraction. in contrast to hierarchkbal planners. which develop entire-plans
at multiple levels or abstraction. A-rnonhierarchical planner typically deve.opS

hierarchy of subgoals. but they are~alI at, the same level of abstraction.
The systems discussed in this article are HACKER, INttR PLAN. and

the plann~r developed by \Valdinger. They are three attempts to solve the
difficult planning task-of achieving, conjunctive subgoals that are not indepen-
dent. Many problems are formulated as-a conjunctio6n of goals; for exaniple.
spring cleaning may involve sweeping, washing the floor, washihgthe windows,
beating the rug, and, so -on. However, these- goals, are not -independent: they
cannot be achieved in--an arbitrar.- order. Washing the-~floor before sweeping
6a dofmed-and grubby 6peratioh;-a precondition of washing the floor i~ta

it-;be~swept clean of-loose dirt. Similarly, bnie-thoiild not,,beat the rug after
sweeping, -because dragging'a- dusty rug - sie ilmake: thv~aqr dify and
ruin the effect of sweeping. In~thie-terminfioidy-oftti- capter, ,beatingthe rug
after sw&eeping' would Constitute a violation of q protected goal, the goallbeingI
a freshly -swept house. Similarly, achieving somae goals cah- actually pritent
,the accomplishment of oth~ers, as w~hen washing -the floor prevents. one "from
'walking acrose' it or using .it for any other purpose untilit is dry. To any
-person with minimal -housecleaning -experience, it will be obvious how and
why spring-cleaning tasks must be ordered to avoid their-mutual interference.
-but simple.,planning programs do, not, have a priori'knowledge abu~h~re
in which goals should- be accomplished. The problem for-.these planners is
to construct, in the absence of 'thi4-.knowledge, an efficient-plan for achieving
conjunctive goals that-are notindependent.

The approach taken -by HACKER and INTtR:PLAN is to formulate plans
that are -flawed by interferences between, subgoals and then to,&l themn b
reordering-problem-solving operations in the~plan. Waldinver's system is more
constructive: Instead of reordering 'operatibhsAn a-.flaweao plan, it develops
the plan by -inserting operations one 'by one, checking each for potential.
interference with establish~d~operati~ns.

HACKER -and INTERPLAK- apply a simplifving'heuristic_ illed the -linear
assumption to restrict the number-of -goal orderinOs that it- considers. It- was
originally formtulated by Sussman-(1973) in these terms:

Subgoals are independent and this can-be a~qucntially achieOved in an erbi-

531



532 Planning and Problem Solving XV

Of course, this assumption is false for many problems, but. it does avoid
the problem ofsearching for an ordering of-subgoals in which none -interferes.
The search space of.orderings can-be enormous, since it grows with the fac-
torial of the numbr of subgoals in a plan; for example, there are over,3 million
distinct orders in which-. 0 conjunctive subgoals can -be achieved. The linear
assumption commitsthe plaihrer to an arbitrary ordering of sul-%oals rather
than searching Xfor, an optimal one and, in the event that the ordering is sub.
optimal. the planner tries to fix it. (For an alternative, least-cbrMimitment,
approach. see the following two articles.)

HA CKER

HACKER was developed as a-model of skill acquisition by Gerald Sussman
at M.I.T. Sussman defines qkill as a set of procedures, each of which solves
a certain kind of problem from the domain-of the skill. If a skill does-not
include a procedure to solve a problem, a new procedure must be designed.
Typically, it implements 61d, procedures-as a means of achieving subgoals of
the new problem. New procedures can turn out to haVe "bugs" and not work
in all the situations for which they are designed. in. which, case they can be
patched to make them work. Often, bugs can be-abstracted: that is, within.
the domain of a skill there-are-common bugs that show up in many procedures.
One very general bug, the-one addressed by all the systemsin this article, is
found in cases in which conjunctive subgoals aretobe Pchieved: Achieving one
gubgoalmay -pre'rent the a;complishment of another. 'Sussman ,reasons that
,this bug (and others) i§-s6 conmon that ,a mode of. skill acquisiioi should
knpy how to debugthe procediures it designs. HACKER ik. able -to -do so in
many cases.

Although HACKER was designed as a model of skill acquisition, it is
interesting in the context of planning because-the procedures-it developsfor-
solving problems are plans and because the debugging of plans was considered
a useful problem-solving technique. For the purposes~of this chapter, we-will
ignore what HACK"R contributes to the subject of -learning (for this see
.ArxticleV'.D5c) and' concentrate on-those~aspects-of skill acquisition that-are
relevant to planning.

HACKER -was.writti at a-ime when procedural representations of knowl-
edge-were popular (see-Chap. IU, in -Vol.l, on knowledge representation). One

result of this is that HACK R's various functions are difficult to separate.
Rather than-explain their extensive interactibns, the-functibns and the-kno 'l-
edge that supports them are described here -in general terms. Those of
immediate interest are the answer library, which-contains problem-solving
procedures; the knowledge library, which contains facts about the domain;
the progranzinng-techniques library, which is used:tO'propose problem-solving
-severallbres h ppropriat - parc t-c ithe answerhlisb d
several libraries of~bugs -aiict -appropriate patches.



C Nonhierarchical Planning 533

Problem solving in HACKER would be-much like that in PLANNER (see
AxticleA'I.A, in Vol. n) were itnot for th heed to debug plans. PLA*NEWhad
only one mechanism -for recovering from a'flawed plan, name); backtracking.
This was very expensive in terms of search time. In contrast, HACKER
proposes-a plan and then corrects errors in it-with programs that ar-experts,
in debugging, .rather than by backtracking to the point of failure in a plan
and blindly trying-another problem-solving-operation.

The -bug that concerns us here is called prerequisite-clobbers-brother-goal
by Sussman: it arises from the linearity, assumption, There are often interac-
tions between goals~such that achieving the prerequisites-for one goal prevents
the accomplishment of-another. IACKER can solve some of these,interaction
problems, but sometimes the solution is not- optimal. Apopularproblem for
planners-is shown in 'Figure C-1.

AL.CKER attempts to solve this problem by finding a procedure in its
answer library that matches thepattern of the goal: (MAKE (ON B )). It finds
a procedure that says,

(TO (MAKE (ON- X Y))
(PUTON X y))).;

that is, to get block B on block C, execute the simple procedure PUTON -with
B and C as arguments. When it simulates the execution of this-program, it
discovers that it-fails, because A is on B. A-bug in the proposed plan has-been
found; -HACKER now- attempts to patch it-up. First, a library oftypes of bugs,
is consulted, from which HACKER concludes that the-bug is a PREREQUISiTE-
.MISSING type. A\Ve-will not go into the details of this classification. HACKER
knows that a prerequisite to one of its, planned actions -is missing, but it
does-not know which prerequisite. In its knowledge library it finds several
potentially pertinent facts. One.is

(FACT (PREREQUISITE (PUTON (x-,Y) (PLACE-FOR X Y))))

Figure C-Te A pianhini-proble-hi Gi block B-frof under A-
and put iVon block C.



534 Plhnning and Problem Solving XV

That is. to put X on Y there must be a place on Y for X to rest. It
checks to see whether there-is aplace onC for B;- since there is, this isrnot
the missing prerequisite. The next factis more enlightening:

(FACT (PREREQUISITE (EXPRESSION (CLEARTOP OBJECT))

(HAVE C) (MOVES EXPRESSION OBJECTr))),)

It. says that. a prerequisite for moving an-object is that. the object-have a clear
top. Since .4 is stacked on B,- this prerequisite is-not met, for B.

HACKER has discovered the identity of the bug that spoiled its initial
plan for-getting B on C. It now uses this infornation to modify the plan.
applying general methods for fixing bugs-thatit has encountered before. One

such method says that. to-patch a PREREQUISITE-MISSING bug. a procedure-
for attaining the-prerequisite should-be inserted into the-plan before the pre-
requisite is needed. The prerequisite to beachieved is (CLEARTOP B). HACKER
treats this as a sUbgoal and returnsto -the beginning of its problem-solving
cycle; it looks in the answer library for-a-procedure that-will achieve the pre-
requisite. We-will assume -that this procedure exists; if it did not. HACKER
would constructit with the-help of-itsprogramming-techniques library.

To summarize, HACKER solves problems by searching, for a .procedure;
known tobe- appropriate-for suchproblems. If it finds onebut th ' e-procedure
does not achieve the goal as expected, the reasons for the-failure are formalized
as bugs. Efforts are then initiated-to debug-the procedure. At any time during
-problem solving, HACKER nray be required to write procedures to achieve
certain goals. These are then 'tested and. debugged exactly like piocedure
found in theanswer library.

There are-problems-for which HACKER cannot generate an optimal plan.
One-such problem.is-shown in Figure C,-2-and is discussed'in the "Anomalous
Situations" ,chapter of Sussrnan's thesis-(1973).

Figure C-2. A problem for which HACKER cannot provide
an optimal, solution. The proper goal sequence-is
_(CLEA A),. (ON -C) (_ ON A B) .... ... ...



C Nonhierarchical Planning 535

HACKER knows from previous experience that it is wise to build from the
ground.up; therefore, for the problem, in Figure- C-2' it constructs a,,plan-to

((ACHIEVE (ON B C))
(ACHIEVE (ON A B)))

But when it simulates execution of this plan, it notices that, after putting
B on C, it must.take it off again, and take-C off-A, in order to clear A for
putting A -oi B. This constitutes a protection violation of the previously
achieved goal. namely, (ON B C). HACKER treats protection violations as
bugS: unfortunately. this one cannot be fixed simply by reordering its'goals. If
HACKER tries to sol,e the problem by achieving (ON A B). and then .(ON B C).
it finds that, after achieving (OR A B), another protection violation results
from trying to (CLEAR B) to put it on C. Regardless of the order in which
IHCKER attempts to achieve the goals of, the problem, a protection violation
occurs. The only alternative is suboptimal-to permit the- violation and then
to achieve- the violated goal again at a later time, -for example, by putting
B on C, then taking it off again, taking C off A. putting B back on C, and
-finally putting A on top.

When HACKER discovers a protection -violation, it. tries to reorder the
operations in its plan. However, it is limited to reordering operations at
one particular level of the plan; in the previous -example it tried to reorder
the initial goals. To solve the.problem, it is necessary to reorder goalsc-at
different levels of the plan. HACKER need not reorder the goals (ON B- C) and
(ON A B), but-it must achieve a sub goal of (ON A B)W namely, (CLEAR A), before
it achieves (ON A B). This kind of reordering of levels of goals is too subtle
for HACKER. However, another program called INTERPLAN does consider
these more complex reorderings.

INTERPLAN

JNTERPLAN was developed by Austin Tate at the-University of Edinburgh-
in 1974. It employs a convenient declarative representation called a tick-list
to allow protection violations to be detected easily- and to give the system the
relevant information for recovery (Tate, 1975a). In the event- of a protedtidfn
violation, INTERPLAN first -tries the same reorderings -as HACKER; namely.
goals-are reordered at a single level of the subgoal-hierarchy. But if this fails,
it considers more general reorderings. In particular, the subgoal at which
failure occurred is'promoted, that is, moved -beforeits superordinate goal, and
possibly before other goals as well;

The space of-goal orderings consideredby INTERPLAN is thus larger than
that considered by HACKER, but for this-added' effort it gains the ability to

-op im-e--a -th-t- - KE;-------op-----.. ..... .. . ... -......... ..... ..... .. ......



536 Planning, and Problem Solving Xv

Consider the problem-fr6m-Figure C-,2. INTERPLAN initiaily proceeds
like HACKER:

Goal or action State

ACHIEVE (ON A B), 1'. B

ACHIEVE (CL A) ]
APPLY (Clear A) 2. M

APPLY (?uton A -) 3.

ACHIEVE (ONb C)
ACHIEVE ,(CL B) A ] FJ 1
APPLY- (Clear B) 4.

-(I-) Protectibn violation-with state 3: Reorder

ACHAEVE (ON B C)

APPLY (Puton _B- C) 5.

ACHIEVE (ON A B)
-ACHIEVE (Ci. A)
APPLY (Clear A) 6. L ..IJ L.J

* (2) Protection violation, with, state ,5:

Ai this point in the problem, kACKER resigns itselftto, a suboptima'lplan.

and neither, of them producesplans free-of'protection violationisq In order to
solve the problem, a subgoal ofone of the main -goals must.,be achievedbefore



C Nbnhierarchicil Planni ~537

,either~of the main goals. HACKER is not capable of 'reordering goals between-
levels, 'but INTtRPLAN is. It decides, to .promote the subgoal that caused-
the protection violation; it returns ~to -the starting state, of the problem and
immediately tries-to achieve (CLA):

Goal or action State

PROMOTE (CL A)
ACHIEVE (CL A):1

APPLY (CClear A), 7. [2 D L ]
ACHIEVE CON B-C)
APPLY (Puton B C) 8.

ACHIEVE (ON1 A ,B)
APPLY (Puton A.B) 9

W (3Poil achieved

Subgoal prmotion is thus'a use ful'method-forr~brdering-goals-when they
interfere with each- other. The mnethod and the tick-list data-structure that
facilitates it are dis ussed-in -detifl in Tate (1975b).

HACKER and INTERPLAN backtrack when- thej..find a, protection viola-
tion; they reorder a' couple of goals,,afid then'start-planing to achieve themn
inth& new orderi 'For simple. problems'like: the, previou Is example, this method&
will, sufic, but, if thee are several, conjunctive goals, arnd many -or- most
goal orderings produce' subgoal -interactions, 'the meth-od is very inefficient.
Moreover, when these planners, roorder- their gols. all' goals affecte{by the
-reordering must, be 4chieved again. This can-leaa-to-the same -solution being
achieved for-a sbgoal a numrber of timeskbeause-upeordinaegols i -
acted' With each other.



538 Planning-and.Problem Solving X

An alternative-approach is-to-construct:a plan by solving-one conjunctive
subgoal at a- titn , .checking'-that-eiach- solutidn-.dpes- iot interf~re-Nith- ther-
goalIs that have, Already been achlieved' and moving the offendifig goal to a
diff&r6nt Place in the plan if it does; A planner -That'works this way was-
developed by Ridhard Waldinger-(1077J. He introduced, the noncept of goal
regression to handle interference 'betv~een goals.

At any point in-a. plan a- goal. may -have been-aichieved, but after another
step it 'imay have-been violated. This was illustrated earlier- in -the problem
in Figure 0-2: after (ON B; c) -had been achievdd it was ~violated' tb' achieve
(CLEAR A). WAaldinger noted that for -any &oal:G-and operation 0, there is- no
guarantee that C-, will be true after Qj -but that a new goal -G';an, be found-
siich~t'hat if.G' holds before 0, G wiltld afe9 idhti e olG
is goal regression,.or passing the goalbbatk over the bpefator. 'Goal, regression
c'an be used, to guarantee that,,goalsr-that have--been-adhieved- Afe 'not 'Violated
by subs'equent operations. The bagic planning al1gorithm- is--to achieve the
first -of the conjuictive subgoals, of the-problem and, then expandthe, plan by
:regressing sub-sequent-sbboals-fromn the end of. the plan-1To a pitiite pa
where their accomplishment will-not v'iolate-those prevlusly achievid.

Consider agbiii the'- three-blocks- problem. Waldingerfsmsystem -ban- solve
the problem regrardless of, the order in wh-dh it approcethsugasbt

we will illustrateit planning to achieve (ON, A B) before (ON- B, C. First, th ,
syst~ri -remnoves block C from athpA in' orderlto-dear k. The' plan looksilike
this:

Coal or -action State

ACHIEVEt (ON A B) 1[ F]
(Clear A) 2. CL.....JL..J.

Now the systemn puts A-on B':

(Put A on B) NB

The plan consists of two ,actiofis, (Clear A), (Put A on B)_. The system
now tiemt~sits co~- gol, pp~fdi-it to the end ofkthe,-plan. -However, it

'reation A- is oaB. Rather than reordering the conjujidcive goals-of the plan,



C Nonhierarchical Planninig 3

asiACKER and INtIERPLAN do, thesystefisimplN 'passzkes the offending~goal
back-over pirevi~usly achieved~subgoail -unt~il- it finds a place in.the-plan where.
the goal will; nUt interfere with any others. In this ,case, -the goal (ON B C) is,
moved in front-of the action (Put A 6n B). The plan now looks-like'this:

Goal or actionStt

ACHIEVE CON A B) 2. [E L Pi
(Clear A) 2 ~

ACHIEVE- (ON B C) [j3
(Put B on C) 3.

CPtit -A on B) 4

When a prbposed- operator causes a protection- violation, an attempt is
-miade to insert it at earlier -points in the plan, checking tose,-e -whether the
interaction is avoided and to see -that no new protection violations occur.
However- the-choice of where to insert the new- operator is not guided by
ar~y-information. Itivolves simply searching-'back.-in the plan And checkikg
at-each position -to see -if it is suitable. Wkaldinger's_%systemn does n&. check
whethe ' a later-step is made redundant by. the insertiowf the .operator, so-a
less -than- optimal' planmay be~produced.

The main advantage of Aaldingers approach--is -that -it is, constructive:
Plan steps are-added one by-one, ind-the only diffculty is findingout where
they should- go. in the pla 'n. This 'can involve a considerable amount of
searching, but it avoids the inefficient, repeated achieving of subgoals that
HACKER- and, INTERPLAN must,,o after reordering.

'Conclusionc

HA.CKER.,INTERiPLA.N,-andA 7aldinger-s systemn. Each suffers from interacting



540 Plankningand Problem Solving XV

subproblems; the~first two systemsare-forced to backtrackan4 reorder sub-
goals. and WValdi'nger's-system, though-it avoids bac .ktracking~by constr .uctive
goal -regression. must evaluate, thi consequences of- putting, a subgoal at a
proposed place in a plan. Ii -the remaining,-articles of this chapter,, we-will-
consider hierarchical- and- script-based~planining -as alternatives to nonhieriir-
chical. planning.

References

HACKER is, discussed in Sussman's doctoral- thesis (1973; alsoSussman,
1975). INTERPLAN is discussed in Tate's the~is-(1§75b).. although his IJCA1
arii~le (1lV5a) -is more, accessible. See Waldinger (i 977) for a presentation Of
his--system.



D. HIERARCHICAL PLANNERS

Dbl. NOMI

IN NOAH. Earl Sacerdoti made some significant advances in problem solving
and planning. NOAH (Nets of Action Hierarchies) was desighd.as pirtof the,
Computer-based Consultant project at SRI International, Inc., around -1975
(see Article VII.D2, in Vol. n). It uses a representation ,for plans- called the
proceduralnet, which'has a riche- structure than previtis problemsolve-s. In
contrast to theseearlier efforts,-the-procedural net represents both procedural
and declarative knowledge about problem solving. The procedural knowledge
(also called domain 'knowledge)'includes functions that expand statements of
goals into subgoals and that simulate the actions of operators that transform
one state-into. another. Declarative, or plan, knowledgerepresents the effects
of executing these functions; forexample, if a procedure is executed. that, Outs
one block on top of another, NOAH records that the supporting, biock no
longer has a-clear top surface. Because-the effects-of actions are represented
explicitly, NOAH can reason about them. In fact, NOAH employs a set of
procedures called critic s that are- sensitive to those effects of actions that
would jeopardize the success ofthe-plan. Critics are usedto detect and correct-
interactions,, eliminate redundantoperations, and 6oforth.

Problem solving in NOAH is-accomplished by develoing ,the procedural
net. From a single-node that represents the goal to be-achieved.4a hierarchy
of nodes is developed that represents levels of subgoals to be achieved 'before
the original goal, can be accomplished. The original goal node contains ,a
pointer to a set of functions that expand' goals into subgoals. When one
or more of these functions are executed, subgoal nodes-are added to the
procedural net. They aye linked to -the original. goal-tbeir parent-and to
each other, -and, like th;eir parent, they cohtain pointers to functions that
expand goals to subgoals. In addition, the-nodes representing the subgoals
include a declarative representation of the- effects, if any, of executing the
functions.

After the original goal node--has "been -expanded, -there-are two levels 9 f
representation of the-problem, -the-first of which is the goal node. The second
is a series of subgoalsthat, -when achieved, will have the effect of achieving,
the:original goal. These nodes are themselves expanded as theh parent was.
NOAH continues to add nodes to the procedural net that are more specific

-i~in ielsreesne-by their parents. Eirentually, -tfe original-goal
of the problem is replaced by several levels of- more detailed goals and, finally,

541



.542 Planning -and Problem Solving X

,by a level of goals~that-can be immediately attained by simple problem- solv in g
operators.

Thuc. NOAH plans -by developing a- -hierarchy of subgoals. These will-
-sometimes be called abstract 'operators; A distinction is~rrade here., as else-
where in thishApter, between the Imple problem-solving operators specified
in the problem-space and abstract operators that will eventually be expanded
to problem-sol[ving operators. Abstract operators ares goals, And their expan-
sions are subgoals. in the sense-that such -operators specify abstract-Actibnis
that the planner-would like -to execute but that it cannot execute until- they~
are exlpaiided to subgoals attainable by problei-solving operators.

In addition to-abstract and problem;,solving, operators, NOAH-has plan-
ning actions. These include the functions that expand goals into sub~oals and
the actions~of 'arious -critics. They are not -part of the emerging plan but,
rather. -re the actions by--which NOA1i develops the-plan.

;Note that whenever NOAH expands a goal- to- subgoals.. it -run-s the risk
-of creating interactin~g. subproblems (see Article xvc.This problem -arises
when a planner commrits itself to an arbitrary-order for achieving, conjunctive-
goals. N O.AJI- avoids the problem in two ways: first, by not, ordering subgoals
until there is some reason- to do so an~d, second, by continually examtiniing
the developing plan -for -potential subgoal. -interactions and correcting -them
bef'ore t-hey aiise. This allows NOAH to solve -interaction problem's -conrstruc-
tively: Operators are noilordered until apotential interaction is detected, and
thin they are ordered- to avoid the initeractionh. This contrasts with thle-plaii-
nersin the previous article; those planners ordered- operators arbitrarily, and,
if an interaction emerged, they backtracked'and replanned totry to avoid
the interarction,. These planners are said to overconst rain a~plan by-commit--
ting themselves to orderings arbitra 'rily; NOAH'is said to tindercohstrain- a

,,developing plan by-hot commritting itself to dnv-ofderings except to-a~Vbid an-
interaction.

Application

.NOAH was applied'in -the domain of assembly-tasks, and it proved useful
and powerful. It provided ingtructions, to a hiiian apprentice, who then
carried out NOAH's plan. The procedural net -Was well suited- to this -task,
because it allowed a plan to -be specifed at any of several levels of detail;
for example, NOAH 6ould instruct a -trained -engineer to bolt the rhounting
bracket-to the frqme-a high~level. instruction-4but-it could tell a- novice- how
to accomplish this- gbat in -detail if necessary. the' procedural net also made-it
easier to monitor the- execution -ofthe plan. If an-unexpected situation- aroslel
NOA.H could replan, by -patching the procedtiral- net. The building of the-plian
.W$k~tdsia.fo~t-.eerito,-bt tTto_

to the execution monitor at. any stage.



DI NOAH 543-

The Structure of the Procedural, Net

The procedural net contains several levels of representation ofa plah, each
level more detailed than the previous one. Each consists of a partially ordered
sequence of nodes that represent goalsat-some level of abstraction. To avoid
overconstraining the order in which goals are achieved, NOAH assumes they
can ,be attained in parallel until it has some reason to putone before or after
another.

Each nodein the procedural net is attached to its more detailedexpansion
in tle nextlevel; for example, the node representing the-abstract igoal Make
coffee may be expanded tb a handful' of more detailed goals, such as Grind
coffee, Boil uater,, Put the coffeeina filter, Pour the water, through it. NOAH
will not commit itself to any particulaf ordering-bf these operators until it.
-has reason to do so.

'The statement of theproblem goal is the top-level node, representing a
plan, at a very-high level. A simple eample of the structure of the net, with
-two levels is given in Figure D1-1. The S and J nodesrepresent split and join,
respectively; they are dummy nodes-that bound actions that are assu ied to
be executable in-parallel. NOAH- uses this formalism to represeht- operations
for which it has not chosen-an ordering.

NOAH expands a single goal node in the procedural net,-into .a-hierarchy
of plans at various levels of abstraction. To do this; it uses procedures -that
expand abstract operators into more detailed ones. Much domnain knowledge
is implicit in these procedures; for example, one such procedure might be:

If the abstract operator is (MAKE COFFFE),
then-ezpand it'to, the'operators (BOIL WATER), (GRIND COFFEE),

(PUT COFFEE IN FILTER), (POUR WATER THROUMH).

The problem that NOAH is to solve determines what knowledge,,ill be
represer,ed-inthese procedures; the preceding procedure may be.appropriate

Levell: AeveON A

(CLEAR A)

Lvl2: s , Put A on8Level 2

F(CLEAR k)r

Figure Dl-l. An action hierarchy (in -a blocks world).



544 Planning and Problem Solving X

for the coffee domain but not for~any-other. -Since these procedurescotinwso
much -knowledge: about the problem,_domaih, they'are called SOUP, funttion§.
for. Semantics of User Problem. They are written in -an extension~.of QLISP.

Expanding the Procedural Net-with soup-Functions

Consider again the simple blocks-world action hierarchy inwFigure-Di-i.
To achieve it, and to solve simple blocks problemns, two SOUP functions are
required. One, shown in Figure D, 1-2, expands any goal of the form (A~CHIME
(ON X' Y))j, and the ,other expands, any goal -of the -form (CLEAR V) (these are
the only functions required). The main goal-of the problem is associated- with
both functions, since at -the outset of the pr6blem .it is not knov.'n which, will
apply. Howxever, only (PiiTON X Y) miatches the pattern of the main, goal, s 'o
only it is Applied. (See Article VI.A, in Vol. 13, for a discussion of -pattern.
directed inivocation of procedures in PLANNER.)

Applying (PUTON- X Y) to the main goal of the, problem, generates thiee-
subgoals- The PGOAL forms the basis for constructing subgoals; when a POAL
is activated, -a-new nobde is generatedat the-next levelin the net whose'name-
is t 'he PCOAL's first-argument, for example, (CLEAR X). The three PGOALs-in.
PLTON create the nodes. (CLEAR A), (CLEAR"_B),, and (Put A on B). The first~two
are conjunct -ive, -asis specified by the "AND" in- the function. NOAH- does not
choose -an- order,'toWattain, them, but assumes they may be attained'in parallel
and thus surrounds them with split and join -nodes.

The function (PUTOK X Y) also specifies- the- effe-.ts of achieving these-sub-
goals. The .effects of applying-CLEAR to X. or-Y is-to assert CLEARTOP'for that

(PUTON
(QLAMDDA (ON' -X tY),
(PAND,

(PGOAL (Clear X)
(CLEARTOP X)

APPLY
(CLEAR))

(PGOAL (Clear Y)
(CLEATOP- Y)-

APPLY'
(CLEAR)))'

(PGOAL (Put X onl top of Y),
(ON. X -t

APPLYMNL)'
(PDENY (CLEARTOP T))))

Figure D1-2. SOUP code for the blocks problem.



D1 NO.AH 54.5

block, and the effect cf puttiig X on Y is to DENY the assertion-of (CLEARTOP Y,).
These effects-are represented-declaratively in -the-add-list and -delete listbf a-
node. The add list is. a list of propositions that. become true, after the goal
-is achieved, and the delete list represents the-propositions that are,no longer
true after the goal is-achieved.

Finally, the SOUP -fundtion specifies which other SOUP functions, should
be applied to expand the-subgoals it has just created. It suggests-that the
appropriate function for the subgoal-of clearing A or B is CLEAR. It makes-no
such suggestion for the third subgoal, Put A on B. because this goal can be
accomplished by a single problem-sblving opefathr and need:'not be further
expanded. This mechinism increases the efficiency of problem solving ,and
helps to avoid backtracking. Several SOUPj'fanctions might apply to a node
in the procedural net, but the parent of the node can specify, at the time
the node is created; which function is-to-be used to expand it. This reduces
search. (However, theuser may explicitly cause-NOAH to consider alternatives
by using a POR function inside a SOUP procedure. In this case, alternative
expansions are generated-in parallel until one-iszseen to be simpler than the
other.)

The Concept of "State" inNOAH

Problem solvers are typically regarded as searching through a space of
states for one that qualifies~as a solution. One conception of astate'in problem,
-solvers like STRIPS and'GPS is that a state is a collection of propositions. New
states are generated from old ones by the application of operators; that is,
operators -make some- old propositions false and add new true propositions.
Eventually, and depending on the power of the problem solver, a-state- will be
generated :that- includes just the propositions required for the -problem to -be
solved.

NOA.H can also be characterizedin this way, but-the knowledge that makes
up a state in NOAH is quite distributed. Somie knowledge-that which will
never have- its truth value changed-is represented in a world model. This
includes the:state of. the worldthat holdswhen problem-solving-starts. When
some aspectof that state is changed; the proposition describingkit is removed
from the world, model. The changed- state of the world is, representedby the
'propositions added to the add list or delete list of the operator that changed
-the state. Thus, NOAH knows which aspects ofitsworld-have not changed--
they are represented in the world -model-and it distributes its records-of-
changes-thr6ughout,the -procedural net.

Changes,,are summarized at each level in the net by a table of multiple
effects (TOME), which-containt an entry for every proposition that was asserted
or denied by more than one node at that level in the net. TOMEs are used'
to-check- for interactions-betweengoals; if a single proposition has its value
chane~d3me-han.p eactionw pla-,,thereisapserrnc
between the-actions.



516 Planning and Problem-Solving XV

NOAH uses programs called critics to check 'for interferences. A critic
,imply checks a TOME for the kinds of conflicts it is designed to correct.
When a conflict isfound. the critichas aiimited, number (usually only one)
of corrective actions it cari" take. If all of the critics can successfully eliminate
any conflicts found, the next level is expanded. There is presently only a
limited ability to backtrack on failure. Three critics are described here.

The RES!)LVE-CONFLICTS critic. This examines conjunctive goals
that are to be achieved in parallel. If an action taken to achieve one gdal
removes a precondition of an action in the-other, the critic attempts to order
-the actions so that, neither violates a precondition of the other. This critic
is similar to the debugging procedure in HACKER, for reordering -conflicting
goals. The important difference -itthat HACKER backtracks and reorders
arbitrarily ordered operations, wiiile this critic constructively orders goals
that. were previously unordered.

The ELfMINAT--REDUNDANT-PRECONDITIONS critic. Sometimes
during planning, the-saime operation gets specified twice when-it need be done
only once. This critic-fixes the problem.

The USF-EXISTING-OBJECTS critic Formal objects. essentially place,
holders, are used whenever there isnot a clear choice of what value to. give
a variable. This critic will substitute a value when a clear, choice becomes
possible at a lower le6'el of planning.

There are other critics, in the system; some have- a general- purpose like
those above, while-others are specifically -designed for a given domain. More
can be-added at any time. The critics described there are sufficient for the
following example.

Planning in NOAH
I

The plannirng algorithm- of NOAH operates repeatedly on, the- current
lowest level of the procedural net. Initiilly, a node is constructed for the
goal NOAH is given as-its task. .U SO'P procedures are available to expand
this node; expanded nodes are associated with a much smaller set of SOUP
-procedures by the procedure that generated them. Once all the nodes in the
current level have been expanded to produce a new level, critics check for
interactions before-another level of expansion-is tried.

An Example

This example shows NOAH solving the-three-blocks problem -that was so
difficult for the planners in the previous article.

NOAH's -world model-contains the-propqsitions:

(ON C A),
(CLEARTOP B)
(CLEARTOP C)



DI NOAH 547

This constitutes the sfArting 3tate of theproblem. The goal is~also written as
a proposition:

(AND (ON A B) (ON B C)Y.

Graphically, the-starting'state and the goal look like this:

The PUTON and CLUAR functions discussed earlier are used in this problem.
The first,,node in the procedural netis:

Level I Achiev e (AND (ON A B) (ON B C)

This is expanded to two parallel actions by merit of NOAH's policy about
conjunctive goals: They-are not ordered until theri is-some reasonto;do so.

Achieve '(OWoA B),

,Level 2:.

Achieve (ON B-C)

This is a simpieexpansion; -the critics-can find' nothing to criticize -about 'it.
The PUTON function is now used to expand each of the nodes At-level 2. (Refer
back to Figs. D1-1 and D1-2 for an explanation of how this works.) The
result is shown in Figure D1-3.

The RESOLVE-CONFLICTS critic notices'thatinode 3 will delete a precon-
dition.of node 6, namely, thatB is clear (node-4), because node 3 adds a
statement to: its delete list that DErYs (CLEARTOP B). When a table of multiple
effects is compiled for this level, NOAH notices that (CLEATOP 15 is implicated
in the-effects of both nodes 4 and 6. Since NOAH has not committed itself
-to achieving any of its goals in a particular order, it need not backtrack to
odify its--ia in any -dstructive- way. lniiia oin onflsit as-id a

opportunity to introduce- constructively -a partial ordering of goals: It decides



548 Planning and Problem Solving xv

Figure D1.-3. Level 3 before criticism, with nodes numbered for reference.

to accomplish node 3 after it has done everything else. Figure D1-4 shows
this' reordering.

Next, the REDUN'DANT-PRECONDITIONSecritic observes-that nodes 2 and
4 are redundant and eliminates node 2. Thisstepis shown in:Figure D1-5.NOAH next expands the CCLEA A) goalat level 3. Actually, that is the

only goal that remains to be expanded, since B and C have been clear fromthe start of theAproblem, ad the (Put x on Y) coalsare-achievedby simple
problem-solving operators. To achieve (cLE iA) , NOAH needs to move C

off of it and put C someplace; it does not know where, so it makes upa
plaehold~r. Block C~cannot be moved unless it is clear;. so the final sequence

5 (CLEARA'

Fige D1-4. Level 3 after the RESOLVE-CONFLCTSd riticism.



DI NOAH 549

that~~~~~~~~~~~J NApln nodrtcea Ai CLAC)(Put on bet).Ti

(Put C Put Bboni) SeCiur 1

(CLEAR ~ -C)EA -i etoe wCe ntepa.I lmnte n ftends h

Figure D1-5. Level 4 bfereal criticism.



550 Planning-and Problem-nSolving X

ConclusionnOblct

edeigurte soup codel dgoalknowhedg iEOU Cn FLthe critictheits o

planning, NOAH is given a- world model' and a goal that it develops, into a
hierarchical- p~.oedural net. As it plans, it -records in a declarative form-in,
add lists an&d~lete-]ists-knowledge to help it~aVoid interaction problems.
To reason, about, interactions-and possible orderings of goals, this-inf6rmation
is summarized in a-tabe-of- multiple effects. Critics consult these tablesafter
each level has been, expanded; they'order andalter the~plan-constructively,

References

.NOAH-is discussed- in -detail-in Sacerdoti's doct-otal -dissrtation-(printed-

aS an SRI technical note, 197). NOAH has been extended by Tatpz(1976), and
a-distributed implementation- is discussed by Corkill-(1979).

(CLEAR 8)-

Figure Dl-8. Level-4, final plan.



D2. MOLGEN

THE PREVIOUS articles have demonstrated the utility of problem-reduction
in-planning-dividing a problem into subproblems that are more easily solved.
But problem reduction has an associated liability, namely, that subproblems
are rarely independent. Solving one may prevent- solving- another. A~number
of approaches to this problem have-been presented in the previous articles.
HACKER and INTERPLAN useddestructive reordering of-subgoals: lalding-
er's system employed a more constructive goal-regression, method (see Axticle
xv.c). In NOAH (Article XV.D1). the conceptual leap was to avoid linear
orderings of subproblems as long as possible and to plan initially with;abstract
goal~s that. were refined in-such a way as to avoid subproblem interactions.

In this article, we discuss the MOLGEN system-a knowledge-based pro-
gram that assists molecular geneticists in planning experiments. There are
actually two MOLGEN planners. one developed -by Friedland (1979; see also
Article x'v.E) and another, the one this article is about. by Stefik (1980).
MOLGEN extends the work on hierarchical planning-to include a layered con-
trol structure for meta-planning, Plans are-cdnstructed inone layer, deci-
sions about the design of the plan are made ina-higher layer, and strategies
that dictate-the design decisions arediade.at a still'higher level. A- key idea
in MOLGEN- is to represent the interactions-between subproblems explicitly
and- declaratively, so that MOLGEN- can reason-about them and use them to
guide its planning. The-striucture that represents. an interaction-is.cailed a
-constraint.

Levels of Planning

Control ofplanning- in MOLGEN switches-between three- layers, or spaces.
The lowest layer, called the planning:space, contains a hierarchy of operations
and objects typical in a gene-splicing-experiment. At the lowest level of this
layer are bacteria, drugsi and laboratory operations, which are' represented
by -knowledge structures called units (Stefik, -1979); generalizations of- these
include the general objects gene, organism, and plasmid and the -general
laboratory operations merging, -amplifying, reacting, and sorting. Initially;
MOLGEN. plans experiments- with these abstr'act objects and operators. As it
chooses specific opPerators-or objects to replace the abstract ones, it introduces
constraints into its plan. For example, it plans at an abstract level to sort
two kinds of bacteria. At a later time, sort is replaced by screen. which sorts
bacteria by killing one group of them-with an antibiotic. This decision -results
in-the constraint that the-antibiotic be potent against one kind of bacterium
but not the other.

551



552 Planning and Problem Solving XNY

The utility of hierarchical planning-is illustrated -by the-preceding. exam-
ple. It shows that although a planning decision to use .'partikular operation
affects later decisions about the kinds of objects to use, this interaction is
absent as longas the plan is formulated at an abstract'level. Using hierarchical
planning, a complete, abstract plan is constructed without, attention-to these
interactions. Then, as steps, in the plan are refined, the interactions that
arise are explicitly represented as constraints and are resolved. The adt of
refining plan steps involves replacing an abstract operator with a more specific
one or replacing an abstract object with a more specific one. 'if hierarchical,
planning were not used. every planning -decision would introduce interactions;
each decision would affect, the decisions following it. Early planners like
those discissed in A.rticle X'.c produced: initial plans that were crippled
by interacti*ons and then attempted to reorder plarnfing steps to alleviate,
them. These planners were said to overconstrain, their plans; in contrast,
MOLGEN and NOAH (see A.rticle XV.D1) produce underconstrained plans and
add-constraints constructively.

The-middle layer at which MOLGEN plans is called thedesign space; At
this-level. MOLGEN makes decisions about how its plan is to develop. The
operators of the design space-dictatesteps taken in-the design-of a-plan, for
example, proposing a goalor -refining an-operator. The objectsin this space
include-goals and constraints. MOLGEN-reasons about-plans with the objects
an&operators in the design space, just as it reasons about molecular genetics
with the objects and operators.in-the planning space.

The top layer of planning.for MOLGEN, the strategy space includes four
very general operators'that dictate planning strategy. These are FOCUS-and
RESUTME, which together propose new planning steps-and reactivate old ones
that -have been "put on hold," and GUESS and,-vUNbO, which make planning
decisions heuristically when -there is not sufficient information to focus or to
resume. UNDO is a backtracking operator that undoes decisions that have
overconstrained a plan. Muuh-of the research effort in MOLGEN has gone
int0-avoiding backtracking-by developing underconstrained plans, but,in the,
rare cases where a guess must be made about a plan step ,(e.g., choosing the
identity of a bacterium), the unforeseen constraints introduceil'by the choice
may force backtracking and-a different- choice.

Of -the three layers of planning in MOLGEN, only-the planning space is
unique to-a domain, in this case, -molecular genetics. Thedesign-and strategy
spaces contain objects and operators -that apply to planning in any domain.

Control- of Planning in MOLGEN

The three layers discussed above constitute a hierarchically organized con-
trol structure for MOLGEN. AV-the'highest-level, the strategy space, decisions
are made about the r s yie of-piang.'Teos-styea aiiae, sedo
t'nitment- and heuristic. During the ]east-conmhitrntnt cyck6, MOLGEN sends



D2 MOLGEN 553,

a message to the design operators in the design space asking -whether they
can suggest any tasks-to-do. Tasks -include-proposing algoal (after noticing-
a difference between the current state and the goal state), refining an object
or an operator, and formulating a constraint. MOLGEN ma, fail to- find'a
task for which it has the -constraints to proceed successfully; for example, it
may-propose to refine an object-a bacterium-to a particular species of bac-
terium. but it may lack the guarantee that this refinement will not interfere
with later steps in the plan. In this case, it will suspend.this step and look for
another. If MOLGEN cannot find any design steps to execute immediately it
checks whether any previously suspended steps can be executed; information
may have -become available since their suspension that justifies their reactiva-
tion. The least-commitment cycle oscillates between finding a-planning step
to execute and reactivating suspended-steps in the light of new information.
It is called least commitment because it will not commit itself to a plan step
that might have to be abandoned- at some later point in the development of
the plan. If MOLGEN cannot find a plan step that satisfies the requirements
of the least-commitment cycle, it switches to the heuristic cycle-in which-it
guesses a-plan step.

MOLGEN uses three kinds of operations on constraints, The first, called
constraint formulation, involves identifying- interactions-between solutions for
goals. Often the goals are to refine abstract objects or operators; for example,
the goal-of sorting two-kinds of bacteria is achieved by screening one of them
with an antibiotic. When-this solution is-proposed, a constraint is formulated,
saying that the choice-of bacterium and antibiotic is now constrained by-the
requirement that one kind of bacterium should be susceptible to the antibiotic.

The second operation with constraints is called .constraint propagation.
This -is the creation of new constraints from old ones, which helps refine
abstract parts of a plan. For example. the single constraint described ibove
reduces the number of bacteria or antibiotics that MOLGEN is -considering,
because not all bacteria are susceptible toall antibiotics. Constraint propaga-
tion collects other constra.nts on the -bacterium and antibiotic, formulated
perhaps in- other parts-of the plan. As a result of constraint propagation,
abstract plan steps that might have been .refined in dozens-of ways are con-
strained to have a relatively small number-of potential refinements. Often,
individual subproblems are constrained-to some extent, but- not enough to nar-
row down the space of solutions significantly. However, when the -individual
constraints on individual subproblems -are propagated, the -sum of the con-
straints often eliminates one or more solutions. For example, during a day,
a person -may have two goals: to get some exercise and -to get to school in a
short time for a class. The first problem, to get-exercise. is constrained:only
by the-requirement that it is energetic; the second problm, to get to school,
is coistrained only by the-requirement that it take a short time. Propagating
these- constraints-leads- to -theobvious solution that one should-run or ride-a
bike to school.



554 Planning and Problem Solving XV

Following constraint formulation and, propagation, MOLGEN seeks.to
satisfy constraints. In the domain of molecular -genetics. this-often involVes
replacingan abstract object with a particular one that satisfies the constraints
put on it. For example, it- may involve replacing the object bacterium with
,e. coi and replacing the object antibiotic with tetracycline. Whatever the
-results of constraint satisfaction, it is facilitated by constraint formulation
and'propagation, which together narrbw down -the space of refinements that
is considered for each subproblem.

The formulation-propagation-satisfaction cycle is a constructive process;
abstract parts of plans usually are refined only whei there are constraints
specifying the refinement. The antithesis-.of this constructive cycle -is found
in rare cases in which MOLGEN lacks the constraintsneeded- to refine a plan
step. It guesses a refinement that may be shown at a later time to interfere
with other parts of the plan, in which case the refinement is abandoned for
another. This processis destructive, since it may involve throwing away old
planning decisions.

An Example

MOLGEN has been used to find- plans for the 'rat-insulin -experiment
(Stefik, 1980). Many organisms produce insulin that is biologically active
in humansk but can sometimes cause allergic reactions. An- alternative to
extracting insulin from the pancreas -of- arimalsis to design-a:bacterium that
produces insulin. No bacteria are kno~wto-produceinsulin naturally, so one
must be created. To do this, the gene coding-for insulin production-in rats was
spliced into bacteria, altering the genetic rnakeup of the-bacteria and causing
them to produce insulii. This experiment,,wa done in 1977; it was selected
as a test case for .MOLGEN, -vhich successfully-designed four different plans
for the experiment.

The major steps in the experiment involved finding a medium in which to
embed the insulin gene, allowing-some bacteria to-absorb this medium. killing
off'the bacteria-that did not absorb the-medium, and growiig -the culture of
those that. did. The plan is simple at this abstract level-that is the advantage
of hierarchical planning. The complete-plan is actually quite-complicated and
involves many constraints.

MOLGEN represents the goal of-the experiment using- the most abstract
objects-it knows of. The -goal is, to obtain a cilture,With

ORGANISMS = (A Bacterium with
EXOSOMES = (A, Vector with

GENES = (RAT-INSULIN))).

PJqnningain_ MOLGENis drivefi-by medns-ends.,analysis,. ,.:hieh itosa. .
that. at each step otthe planningprocess. MOLGEN seeks operators that- will



D2 MOLGEN DOD

reduce the differences between the current state of the plan and its goal.
In- this case. MOLGEN makes a very abstract plan to build, from available
objects, the organism specified in the goal. It plans two merges of objects
t& achieve-its goal. The first merge -involves the -insulin gene and- a vector (a
medium for carrying the gene into the-body of a bacterium), and- the second
merge involves the results of the first merge and the bacterium:

Pl*smid (a Vector) Rat.Insulin Gene

EMerge

Bacterium (Object 11

Merge

(Goai)

Next. MOLGEN refines the two abstract merges to more specific -operations.
The second merge, by which a_ bacterium absorbs a plismid carrying new
genes., corresponds to a labdratory step called a transformation. 'But MOLGEN
knows -that not, all plasmids are-absorbed by-all bacteria. so.it formulates the
.constraint that they be compatible. MOLGEN alsoknows thattransformration
operators work by mixing plAmids and bacteria together-in a.solution and
that some bacteria will not absorb the plasmid. This leads, to - difference
between the goal of the expeiment and-the state~resulting from-the plan: The
goal'is-to have a single culture of bacteria carrying a particular -gene,-but the
plan'resuits in a culture of bacteria -in -which some bacteria-do not carry the
gene.

Since planning is driven- bydifferences between the currentustate-and the
goal, MOLGEN tries to solve the problem- of getting rid- of the unwanted
bacteria. To do this, it proposes to sort the culture. Sort is an. abstract
opetator that is next refined to screening the bacteria Withan antibiotic. Note
that the antibiotic is not specified because the bacterium is not. However, the
refinement of sort to screen restiltsin two constraints: that -the bacteria that
absorb the plasmid should resisttheantibiotic and that the bacteria that do
not- absorb-the plasmid should perish- from the antibiotic.

At this point, MOLGEN propagates-the constraints about, antibiotic. resis-
tance. The-result of the propagation is-that both constraintson the bacteria
are replaced by a single constraint on the plasmid itself. The -reasoning is
that, since the only differencebetween the two kinds of bacteria-is that one
caorcest thip resoni deop nged lu- onfe ofnheuny lan sit n tbhaith.
N[otice that this reasoning does not-change any of' the plan step~s that have



.556 Planning and Problem Solving XV

already taken place. but it -does constrain MOLGEN to include a resistance
gene for an antibiotic in the plasmid.

So far. MOLGEN has done a little bit of planning at an abstract level
and a lot of reasoning about how to refine the abstract plan into a detailed
one. It has proposed a merge of a gene and a plasmid, a transformation
-of that result into -two bacteria, and a screening of the bacteria to obtain
the desired one. The -identities of the bacteria, the screening agent, the-
resistance gene, and the-plasmid that will carry the genes are unknown, -but
MOLGEN knows some things about these objects in the form of constraints.
For example, the resistance gene and the antibiotic must be compatible, and
the plasmid must be compatible with the bacterium. As MOLGEN continues
to plan. particularly to plan how to insert the desired genes in a plasmid,
other constraints -will be-formulated.

Eventually, MOLGEN will be able to satisfy constraints. By then, it will
have refined- the plan to a point where- the only bacterium that it knows
will- satisfy all- the constraints is e. coli. Similarly, it will have found just
one method of inserting genes into a plasmid (though this was not done
through constraint-propagation but because MOLGEN knows of only-one such
method). It will have found two antibiotics-tetracycline and-ampicillin-and
four plasmids that -satis the-constraints. Thus, it finds four solutionsto the
rat-insulin problem.

MOLGEN's solution-to the rat-insulin, experiment was.more complex than
the abbreviated Version presented here. In-all, a dozen cbnstraints emerged
during rhe planning process. The development of the plan was complex,
requiring about 30 pages, of printout to document.

Conclusion

We have seen that MOLGEN can develop a complex plan without ever
undoing a planning decision. Its least-commitment strategy dictates that it
aefer decisions for which it lacks corstraints, and, thus, it rarely commits
itself to a decision that it-must later undo.

MOLGEN plans at different levels of abstraction, and it also works at
three levels of planning actions to accomplish meta-planning: At the highest
level it makes -strategy decisions, at the middle level it makes design decisions,
and -at the lowest level it-decides how to instantiate its design.

References

Stefik's MOLGEN system is discussed in his doctoral dissertation .(980). - . .....



E. REFINEMENT OF SKELETAL PLANS

ONE WAY to develop methods for AI syGtems is to observe the methods
that humans use. Such an approac~"is typically taken by cognitive scien-
tists (see Chap. .),to develop models of cognition. Thisarticle describes a
molecular genetics (MOLGEN) planning system developed by Peter Friedland
after studying human experiment-planning behavior. The major observation
of the study was that scientists rarely invent from scratch the plan for an
experiment. Most often, they begin with an abstract. or skeletal. plan that
contains the basic steps. Then they instantiate each of the plan steps by
a method that will work within the environment of the particular problem.
Skeletal plans range from general to specific, depending on the experimenter
and the problem. This MOLGEN system is one of two such systems devel-
oped at Stanford University; the other, by Mark Stefik, is discussed inA.Vticle
XV.D2.

This article gives an example of skeletal plans in the laboratory and
discusses the implementation of the method .in the MOLGEN system for-the
design, of experiments in molecular biology.

Two Examptes of Analysis Experiments

As an introduction to the skeletal-plan method, two~simplified and related
examples of analysis e<xperiments in molecular biology are presented, namel3;
DNA sequencing and-restiiction-site mapping. Both experiments involve simi-
lar sequences of actions: consequently. they are discussed as variants of a single
skeletal plan.

DNA sequencing: The problem. DNA, is composedof a-linear string
of molecules called bases. There are four possible basesi adenine, cytosine,
guanine, and thymine, usually abbreviated A, C, G, and T. The goal-of a
sequencing experiment isto determine which of the -four bases is present at
each position on the molecule. The base sequence is extremelyimportant in
determining both the biological function and the physical structure of the
entire DNA molecule.

DNA sequencing: The solution. One of the-best current experimental
plans for DNA sequencing, known as Maxam-Gilbert sequencing (Maxam and
Gilbert, 1974), is as follows:

1. Label one end of the molecule with radioactive phosphorus. This gives
the experimenter a, "handle" for later locating pieces of the molecule

current, method of choice for end-labeling of- DNA.

557



5S Planning and Problem Solving XV

2. Divide the sample into four portions. For each portion,-apply a-hydrazin.-
based chemical reaction that cuts the molecule at a particular base.
Control the reaction so that, on the average, onebase is cut-per molecule.
Each of thefour samples will then contain a population'of molecules of
lengths determined by the base that was~cut in-that sample.

3. Determine the lengths of the molecules in each population witha labeled
end. This is done by a technique called acrylamide gel, electrophoresis,
which is ctirrently the most accirate-method forthe separation, of mole-
cules by length.

For example. suppose the starting sequence wa* AGTTCGA. Th6 sample
for which the molecule was cut at the Abase would show labeled molecules
of lengths-0 and 6. the C sample would show molecules of length 4. the G
sample would show molecules of lengths 1 and 5, and the T sample would
show molecules of lengths 2 and 3. The sequence can now be- "read" directly
from these lengths.

Restrictioni-site mapping: The problem. Restriction enzymes are
used to cut DNA molecules at specific locations. The locations- are -specified
-by a pattern of four. five. or six bases called arestriction site. The goal of a
mapping experiment is to find all of the restriction sitesfor- common enzymes
on a molecule. This information tells the-molecular geneticist-which enzymes
to use or not to use in a future experiment that requires restriction cutting.

Restriction-site mapping: The solution. One of the best current
methods (SmithandBirnst~il, 1976) is as follows:

I. 'Label- the endwith radioactive phosphorus as above.

2. Divide the-sample intoas many new saftiples as restriction enzymes for
which a-map isdesired. Then, for each sample, do a "partial digest-* with
one restriction enzyme. This means to-oonirol the laboratory conditions
(temperature. pH. time of application) so that only one or-wo sites are
cut on the-average molecule. As above, -a population of molecules -will
exist-in each sample.

3. Determine thelength of the labeled molecules by means of eledtro.'hore-
sis, as above. The length measurements will locate each-Of the restriction
sites for each enzyme tested.

_lhe Skeletal Plan. Refinement Method

Clearl3; 'the two experiments described above are closely 'related. Each
had the-goal-of -locating the position of a specfie-site--;either a single base or
-a-~t ringrof- .bas-on~he-miolecue. Each.had~t-modesigntthey. differed.
only in the middle, cutting step. Bothl experiments sprang from thesame
basic idea:



E Refinement of Skeletal Plans 559

1. Label one end of the molecule:

2. Cut with an agent that makes an-average of-one cut-pe " moledule-at-the
sites that are being mapped:

3. Determine the length of the labeled fragments.

This is an abstracted-or skeletal plan that is useful for locating any type of
site for which there is a suitable cutting agent.

The plan is transformed into an actual design for an experiment by
refining each step in -the plan-by instantiating it with a method that will
actually work in the laboratory; The first and third steps-of the experiments-
phosphorus labeling and gel electrophordsis-were chosen because they were
the-best methods available. The'choice of the second step was directed by the
specific choice of site to be mapped.

The idea here, again, is that scientists rarely invent an experimental
design from- scratch. They find a strategy, a-skeletal plan. that was.useful
for some related experimental goal and then instantiate it ,with the proper
laboratory methods for their specific goal and laboratory conditions. The
skeletal-plan may be-very specific-if the goal is similar to one for which a-very
good experiment has already been designed. It may also be extremely general.
as was the plan in the -example above.

Implementation in MOLGEN

The skeletal plan, method is used successfully in the ,MOLGEN system.
Since the method depends heavily on domain knowledge, a well-organized,
expert knowledge base is the central part of the system. The-Unit package
(Stefik, 1979) is used-by domain experts to construct a knowledge base con-
taining both a selection of skeletal plans -and the objective and procedural
knowledge-necessary to instantiate the plans competently. The Unit package
permits the domain experts to describe such information in a-language natural
to them-as molecular biologists.

The two major steps in planning by incremental refinement of skele;
tal plans-plan selection and plan-step refinement-are described separately
below.

Choosing a skeletal plan. Skeletal plans are specified at many levels of
generality. At the most generalevel there are only a, few' basic plans. These
are used- as fallbacks -when plans-that are easier to refine-and-that are more
specific cannot be found. The problem is not just one of finding a pla nthat
might provide a satisfactory solution, but of finding a plan that will require
the least refinement work. Skeletal plan finding reduces to a simple lookup
when exactly the same problem has been solved before (even if this were done
with a completely different set of laboratory and molecular conditions), but
-it -becomes-mote d; a~_1 'ThenI



560 Planning and Problem Solving XV

the task may be to decide whether to choose a detailed- plan for a related
problem or to choose amore general plan for a class of problems.

The MOLGEN work has only begun to treat these problems of plan
selection. Plans are classified according to their perceived- utility by molecular
geneticists. The specificity of the utilities (any gien skeletal plan could have
many) is totally up -to the experts. The kn6wiedge bse c6fiitains als6 i
taxonomy- of goals in molecular biology. When a problem is described to the
planning system, a search is made of the skeletal-plan utilities to see if any
exactly -match the experimental design goal. If several do. all are tried; if
none does. a more general goal is chosen from the taxonomy and the process
is repeated.

Refining the skeletal plan. Refinement of the skeletal plan is the
process of selecting an appropriate ground-level instantiation for each step
in t.he abstract -plan. In the example above, the ground-level instantiation
of labeling was radioactive phosphorus. This refinement process is usually
hierarchical; a-scienti.-t might decide first on the method of cutting, then on
a cutting enzyme, and finally on a specific enzyme.

Knowledge about laboratory techniques is organized hierarchically in
MOLGEN. There were several broad classes of techniques, with as many
subclasses as-are -deemed natural by the domaii experts. In all, about 400
different techniques are described in the knowledgebase.

The MOLGEN system proceeds linearly through the- steps of a -selected

skeletal plan. The steps are matched to the techniques- in-the-knowledge base
by name, synonym, or function of the step. A specific technique--as specific

as can be directly determined from the, plan step-is chosen; and then the
instantiation process begins.

The knowledge to do the instantiation is stored in-theform-of-anEhglish-
like procedural- language within the knowledge base. This knowledge repie;
sents three major criteria -for plan-step instantiation. In order of priority of
application they are:

I. Will the technique, if.successfully applied, carry outthe -specific goal of
the step; for -example, will i separatory method not just-do some sort of
separation, -but also separate all cirbular-DNA -from all linear DNA?,

2. If the technique satisfies the first criterion, can it be successfully applied
to the given molecule under the given laboratory conditions?

3. Is 'the 'technique the "best" of those that passed the first two tests?
This choice point, while in some sense the least important (since all
techiiique§ that make it t6 this point will work), seems to be the hardest
for scientist to define. All-the sciehtists studied gave somewhat different
metrics -hivolving reliability, convenience, accuracy, cost, and time to
,carry out the-technique. The heuristic ichosen as-most representative
gave greatest weight-to four-point scales of cohvenJence and. reliability
as an initial filter.



E Refinement of Skeletal Plans 561

This knowledge is used to, proceed down a leveL-in the technique hierarchy.
the process-is repeated until an actual instance-of a-technique is chosen. At
higher levels-of the hierarchy (i.e., With less refined -plans), apremium is set
on achieving~goals; but at lower levels of the hierarchy, a premium is-set on
making plans- efficient and'elegant.

This strategy-finding process is common to many disciplines. In his
book How to Solve It, Polya (1957)- describes "mobilizing" problem-solving
knowledge...

Many of these-questions and.suggestions aim directly-at mobilization of our
formerly acquired knowledge: H(,je you seen it bcfore? Or have you seen the
same-problem in a slightly different form? Do you know a related problem? Do
you knout a-theorem that could be usefulF (p. 159; italics in original)

The idea is to avoid reinventing- general strategies and to use plan outlines
that have worked in the past on~related problemi.

Related Work

'The concept, of.a skeletal plan for- experimental design -has a direct.prece-
de.it in Schank and,,Abelson's- work in natural-language understanding (see
Article rV.F6, in Vol. I). They introduce scripts, declarative representations
of ordered sequences of events. The detailed knowledge contained in-scripts
is used to understand, predict, and participate in events one has encountered
previously.

Schank -and Abelson also introduce- generalized.scripts, called plans, that
explain events related to, but not exactly like, those the user lh seen before.
"Plans are where scripts come from....'The difference 'is that scripts -are
specific and plans are general" (Schank and Abelson. 1977, p. 72). In fact,
there is a- continuum between scripts and plans in Schank and Abelson's
work: "There is a fine line -between the point where scripts leave off. and
plans begin ... When a- script is available for satisfying- A goal, it is chosen.
'Other-wise-a-plan is-chosen" (p. 77; see also Article wx.F6, in Vol. I).

The idea of abstracted plAnsis- found also in the STRIPS plahner (Fikes,
Hart, and, Nilsson, 1972;,see also Article rI.D5, in Vol. I). This system param-
eterized successful' plans inorder to generalize them. The, generalized. plans
were called-MACROPs (for macro-operators).

There are several distinctions-between skeletal plan refinement and some
of the other-methods discussed' in this chapter-for example, Stefik's parallel
work on planning in molecular 'biology (see Article XV.D2). Other methods
emphasize building the initial, abstract-plan; this method assumes the-initial
plan is already known and emphasizes the plan selection and instantiation

method, -in large part, considers plan steps to be sufficiently independent
that conflicts -can be resolved by relatively minor subplans. Finally, other



.562' Planfiing and Prbblern-Sbvihg 'XV -

methods place relatively little emphasis on domain-specific expertise, where"~

such expertise is-the heart of this planniing mhethod'.

Cbnclusion

The reader may be surprised by the simpikity ot the method of skeletal
plan refinement butshould rememberthat it atterhpts to produce competent--
rather than wildly innovative-plafts. It is based on the observation that
human scientists who know a lot about their domains, and who~have flexible
cross-assbciat ions for choosing~ steps in ah..expefffient, ate usually good at
experimental design. There are very few totally new plan outlines dis-Covered.
but ffahy new plan instantiations.

References

A source for this article and a good discussion of this~mplemifation of
NIOLOEN i's-Friedland's docthbral dissefibm171



,BIBLIOGRAPHY

Bobrow, D. G., and Raphael, P3. .1974. New programming languages .for artificial
intelligence. Computng-Surteys 6.

Corkill, D. D. 1979. 'Hierarchical planning -in, a distributed, environment. IJCAU6,
168-175.

Feitelson, J., and Stefik, M. 1977. A case- study of the reasoning in a genetics
experiment. Rep. 'No. HPP-77-18, Heuristic Programming Project, Comnputer
Science Dept., Stanford University.

Fikes, R. E., Hart, P.,E., and 'Nifsson, N. J. 1972. Learniing and executing general-
i z41'robot plans. Ariificial-Int.Iigence,3:251-288.

Fikes, R.-E., and Nilsson, N. J. 1971. STRIPS: A new approach to the application
of theorem proving to problem solving. Artificial Intelligence 2:180-208.

Frieland, P. E. 1979- Knowledge-based experiment 'design ininmolecular-genetics.
Rep. No. 70-771, Computer Science Dept., Stanford University. (Doctoral disser-
tation.)

Hayes-Roth, B. 1980. Human planning processes. Rep; 'No. R-2670-ONRi, Rand
Corp., Santa Monica, Calif.

Maxam, A., anid 'Gilbert, W. 1974. A new method -for sequencing'DNA. Proceedin"'-
of the National Acaderny-of Sciences 74(2):560- 564-

Miller, G. A., Galanter,, E., and Pribram, K. H. 1960. Plans and the- structure of
behavior. New York:-Holt.

Newell, A., and Simoni H. A. 1972. Human problem solvingi. Englewood- Cliffs, N.J.:
Prentice-Hall.

Polya, G. 1057. flow to sol- ve it. New York: Doubleday Anchor Books.
Sacerdoti, E. D. 1974. Planning' in a hierarchy of abstractioii spaces. Artificial

Intelligence 5:1 15-135.
Sacerdoti, E. D. 1975. A structure for plans and' behavior. Tech. Note 1og, Al

Center, SRI International, Inc.,. Menlo Park, -Clif; - Doctoral dissertation.)
Saceidoti, E. D. -1970. Problem solving tactics. Tech. Note 189, SRI International'

Inc., Menlo Park, Calif.
Schank, R., and-Abelson, R. P. 1077. Scripts, plan., goal, aiid undlerstanding.

Hillsdale, N.J.: Lawrence- Eribaurn.
Smith, W., and Birnsteini M. 1976. A simple method for DNA restriction site

mapping. Nucleic Acids- Research 3:2387-2398.
Stefik, M. J. 1970. An examination of a~fraine-structuied-irersentation system.

IJCAI 6, 845-852.
Stefik, M. J. 1980. Planning with cofistraints; Rep. 'No-, 80-784, Computei$Science

Dept., Stanford University. (Doctoral dissertation.)
Siussmian, C. J. J073. A compiutationial model orskillacqujisitiiu. Al Teclu.'Rep. 297,

All liiliori~ory, 3V,:WidlUSULCVLslnLEUCI cioog.IOCra tdBr~~on;),

563



564 Bibliography.

Sussman, G. J. 1975. A computer model of skill acqisition. Ne* York: Amican
Elsevier.

Tate, A. 1975a. Interacting goals and their use. IlcAl 4, 215-218.
Tate, A. 1975b; Using goal struciure-to direct search in~ a problem solver. Doctoral dis-

sertation, University of Edinburgh.
Tate, A. 1976. Project planning using a hierarchic non-linear,planner. Rep, No. 25,

AI Research Dept., .Uiiiversityr of Edinburgh.
Waldinger, R. 1977. Achieving several goals simultaneously. BiiIt. W. Elcock and

D. Michie (Eds.), Mfachine intelligence-8. New York:,Haistead! Wiley.



NAME.INDEX

Pa ges on which-~an -author's work ia discused.are italicized.

Abelson, Rt. p., 552, 561

Birnstein, M., 558
Bobrow, D. G., 522'

Corkill, O.:D., 550

Feitelson,,J., t22
Fikes, Rt. U., 522, §23, -530,- '561
Friedland, P. E., 522, 551, 557-562

-Galanter, -B., 515
Gilbert, W., 5~57-558

kart, P. E.,-522,:530, 561
Haycs-toith,B6., 519, 522
Hayes-Roth, F., 510

Maxam, A., 557-558
-Miller,.G. A., 515

Ncwell, A., 518
-Nilsson, N. J., 522, 523, 530, 561

Polyp-.,,G., 561
Pribrarn, K. H., 515

Raphael, B., 522

Sacerdloti, E. D., 516, P22, 523,530, 541-550,
Schank, Rt. C., 519, 522,561
Simon , 11. A., 518
Simith, W., 558
Solomonoff, R., 507
Stcfik, M. J., 520, 522,,551-557,,559, 561
Sussmnan, G. J., 520 531453540-

Tate, A., 535-537,-540 550

Waldinger, Rt. J., 537-490



SUBJECT INDPEX

Abstract operators in NOAH, 542 HACKER, 531-535, 546
Abstraction space, 516-518' Hierarchy or abstraction spaces, 520-43G

in ABSTRIPS, 0~8-5 -30
AI3STIPS, 517-518, 523-530- Insulin, 554
Add list in NOAH, 544-545, 550' INTERPLAN, 535-537
Asseinbly, 542 Isl and- driving conitrol strategy, 519

Backtracking, -520-521, 52G-530, 537, 542, Least- com MitMent planning, 552-556'
545, 547, 552

after protection-violation, 531-537 Maxam-ilbert-sequencing, 557
in STRIPS and ABSTRIPS, 526-530, Means-ends arialysis,, 517

Blackboard, 519 in MOLGEFN,.i54-586
in STRIPS atad'ABSTRIPS, 524-530

Computer-based consultant (CBC), 541 Meta-planning, 551
Constraint, 520-521 MOLGEN, 518, 551-556, 557-562.

formulation, 553-556
in MoLGrN, 551-556 Network representation, procedural, 541-
on operatcdr ordering,'520-521 550
propagation, 553-556 NOAH,11SI, 541-550
satisfaction, 553-556

Corntrol structures and strategies - PLANNER, 533
backtracking, 520-521, 826-530, 537, 542, Planning

-545, 547, 552 conistructive,-522, 539,.552-556
bl *ackboard, 519 in GPS, 518
island driving, S 19 hierarchical, S16-518, 523-530 ,541-556
means-inds analysis, 517, 524-500, 554- least-commiitment, U20421,-552-556

556 Meta-planning, 551
opportunism, 516-519, 521 nonhicrarchical, 516-517, 531-540

Critical ity -val ue inAI3TRIPS, 528-530 opportunistic, 516-519, 521
Critics, 541, 546-550 overconstrained, 542, 552

in NOAII, 546-450 -script-based,':516-519
by, skeletal-pl1an refinement, 557-56T

Delete list1n- NOAII, 544-545, 550 und ,eiconstrained, -542, 552
Design spate, 552 P)lanning, space, 551
DNA sequencing, 557 Plainnlng systems
Domain-specific knowledge,.541, 543-545 AI3STRIPS, 523-530

BACKER, 531-535,t846
E xperiment planning in MOLCEN, 551-562 INTEftl'LAN,,535-537

MOLO EN, 551-562
Frame knowledg6 representation for plans, N6AII, 54'1-560

567-562 STRIPS, 523-530
Preconditions of an operator, 523

Generalized bugs, 532-535, In AT3STRIPS, 523-530
Goal,_523, 541 in HACKER, 533-534
Coal'rcgression, 537-540 In NOAH, 546-550
Ground space, 528-530 in STRIPS, 523-530

566



Subject Ind"x 587

Prercquisitclclobbcrs-brother-goal, 533 '
Problem red uction, 551
Problem solving

interdependent subproblems, 520-'542, 531-
540

means-ends inalysls, 517, 524-530, 554-
'556

problem reduction, 551
Procedural knowledge representation, 532
Procedural network in NOAH, 541 -586'
Propagation or constraints, 553,,556
Protection violation inIACKER, 535

QLISP, 543

,Ratinsuln cxperIment,-564
Rcflinement or plan steps, 552, 55t-5560 558-

562
Restrictibn-site mapping, 558

Script knowledge representation-and skeletal-
plan-refinement, 561

Skeletal plans, 558-562
$kill acqu'isition, 532
SOUP functions,, 543-5 '50
Startingstate, 523
Strategy space, 552
STRIIP,-523'-530
Stabgoals

interacting,.520, 53145401 542
promotion of, 537

Tick list,-53A
TOME- (Table or Multiple Effects), 545-550

Unit Package, 551i 559


