| SECURITY CLA | SSIFICATION C | F THIS PA | GE | | | 36 | 7 | | |--|---|--|---|--|---|--|---|---| | | | RE | PORT (| OCUMENTATIO | N PAGE | ij fili | CUPY | Form Approved
OMB No. 0704-0188 | | 4 | ECURITY CLAS
SIFIED | SIFICATION | | | 16. RESTRICTIVE | MARKINGS | | | | | CI ASSIFICATIO | N AUTHO | RITY | | 3. DISTRIBUTION | V/AVAILABILITY C | OF REPORT | | | | | | , | | a contract of the | for public | _ | : | | 2 | | | | | | tion is unli | | • | | ⁴ A | D-A | 221 | 638 | 3 | 5. MONITORING | ORGANIZATION (| REPORT NU | MBER(S) | | 6a. NAME OF | PERFORMING | ORGANIZA | ATION | 6b. OFFICE SYMBOL | 7a. NAME OF M | IONITORING ORGA | NIZATION | | | UNIV OF | SOUTHERN (| CALIFOR | NIA | (If applicable) | ONR | | | | | 6c. ADDRESS | (City, State, ar | d ZIP Code | e) | <u> </u> | 7b. ADDRESS (Ci | ity, State, and ZIP | Code) | | | Universi
Los Ange | ty Park
les, CA | 90089-1 | 661 | | • | y Division,
uincy St., A | | 13
n, VA 22217-5000 | | | FUNDING / SPC | ONSORING | | 8b. OFFICE SYMBOL | 9. PROCUREMEN | T INSTRUMENT IC | ENTIFICAT | ON NUMBER | | ORGANIZA
ONR | ATION | | | (If applicable) | N00014-8 | 9-J - 1961 | , | | | 8c. ADDRESS (| City, State, and | ZIP Code |) | <u> </u> | 10. SOURCE OF | FUNDING NUMBE | RS | | | i e | y Division
uincy St. | | | A 22217-5000 | PROGRAM
ELEMENT NO. | PROJECT
NO. | TASK
NO | WORK UNIT
ACCESSION NO. | | 11. TITLE (Inci | ude Security C | lassificatio | n) | <u> </u> | • | | | | | (U) COMP | OSITE MAT | ERIALS | WITH IM | PROVED PROPERTIE | ES IN COMPRE | SSION | , × | | | 12. PERSONAL | | hou. D. | Zhao. | G. Manuel, R. B | au and W.P. | Weber | | 7/ | | 13a. TYPE OF
Interim | | 13 | b. TIME CO | | 14. DATE OF REPO | ORT (Year, Month, | , Day) 15. | PAGE COUNT 24 | | Synthesi | | erizati | | -Dimethyl-5-Sila | spiro[4.4]no | | | ers | | 17. | COSATI | | | 18. SUBJECT TERMS (| Continue on revers | se if necessary an | d identify t | oy block number) | | FIELD | GROUP | SUB-G | ROUP | | | | |]nona-2,7-diene | | | | | | 5,10-Disiladian Structure by | | | | .6-tetraene <
(5 , Longo to 1981) | | Unsymme
dissolv
1,3-but
methylp
methyl-
reaction
a=7.826 | etrical 2,
ving metal
adiene.
phosphoram
-5,10-disi | 3-dimet
reacti
Ring op
ide (HM
ladispi
structu
9.415(3 | hyl-5-s
on betw
ening n
(PA) hav | and identify by block no
silaspiro]4,4]no | umber) na-2,7-diene o-1-silacycl atalyzed by . High yiel 7,12,16-tetr | (I) has been opent-3-ene alkyllithium ds of the dance (II) and aene (II) | en prepa
(III) a
m reager
imer 2,3
re forme | ared by a and 2,3-dimethyl-
ats and hexa-
3,12,13-tetra-
ed in these | | 470.0(| //n- , and | u −1• | | | | | A.A. | DTIC | | | | | | | | | | MAY 1 6 1990 | | | TON / AVAILAB
SIFIED/UNLIMIT | _ | BSTRACT | PT DTIC USERS | 21. ABSTRACT SE
UNCLASS | CURITY CLASSIFIC | ATIO | E | | 22a NAME O
JOANN | F RESPONSIBLE
MILIKEN | | | | 226. TELEPHONE (
(202) 6 | | e) 22c. OF | FICE SYMBOL | | DD Form 147 | 73, JUN 86 | | | Previous editions are o | obsolete. | SECURITY | CLASSIFICA | TION OF THIS PAGE | #### APPENDIX VII Synthesis and Dimerization 2,3-Dimethyl-5-Silaspiro[4,4]nona-2,7-diene. Young Tae Park, Stephen Q. Zhou, Dong Zhao, Georges Manuel, Robert Bau and William P. Weber* Donald P. and Katherine B. Loker Hydrocarbon Research Institute, Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661 USA. #### Summary: Unsymmetrical 2,3-dimethyl-5-silaspiro[4,4]nona-2,7-diene (I) has been prepared by a dissolving metal reaction between 1,1-dichloro-1-silacyclopent-3-ene (III) and 2,3-dimethyl-1,3-butadiene. Ring opening reactions of I catalyzed by alkyl-lithium reagents and hexamethylphosphoramide (HMPA) have been explored. High yields of the dimer 2,3,12,13-tetramethyl-5,10-disiladispiro[4,4,4,4]octadeca-2,7,12,16-tetraene (II) are formed in these reactions. The structure of II has been determined by X-ray crystallography. II crystallized in space group P_1^- (triclinic) with unit cell parameters: a = 7.826(3) A^O , b = 9.415(3) A^O , c = 7.421(3) A^O , $\alpha = 94.11(3)^O$, $\beta = 114.56(3)^O$, $\gamma = 89.34(3)^O$, $\gamma = 496.0(3)$ A^{O3} , and $\gamma = 1$ While a few symmetrical 5-silaspiro[4,4]nona-2,7-dienes have been prepared, 1-3 no unsymmetrically substituted examples of this ring system are known. We have prepared unsymmetrical 2,3-dimethyl-5-silaspiro[4,4]nona-2,7-diene (I) by the dissolving metal reaction of 2,3-dimethyl-1,3-butadiene with 1,1-dichlorosilacyclopent-3-ene (III) and magensium in THF and HMPA. The recently reported preparation of III from readily available starting materials makes this synthetic route feasible. 4 We anticipated that treatment of I with catalytic amounts of alkyllithium reagent and HMPA in THF at low temperature would result in a polymer formed by the selective ring opening of the unsubstituted 1-silacyclopent-3-ene ring of I. Such a polymer, poly(3,4-dimethyl-1-silacyclopent-3-en-1-ylene-cis-but-2-en-1,4-ylene), would have 1,4-(cis-but-2-ene) units bonded to the silicon atoms of the 3,4-dimethyl-1-silacyclopent-3-ene rings. This expectation was based on our previous work which has shown that while 1,1-dimethyl-1-silacyclopent-ene (IV) undergoes polymerization under these conditions to yield poly-(1,1-dimethyl-1-silacis-pent-3-ene) (V), 5 1,1,3,3-tetramethyl-1-silacyclopent-3-ene (VI) does not. 6 $$\begin{array}{c|c} \hline & n - BuLi \\ \hline & THF/HMPA \\ \hline & (IV) \end{array}$$ (V) To our surprise, treatment of I under these conditions lead to almost quantitative formation of a dimer, 2,3,12,13-tetramethyl-5,10-disiladispiro[4,4,4,4]octadeca-2,7,12,16-tetraene (II). The central ring of II is the first example of the 1,6-disiladeoa-3,8-diene ring system of which we are aware. We believe that II is formed by anionic attack on the silvl center of I by an alkyllithium reagent to form a pentacoordinate hypervalent silicon species (VII). Ring opening of the unsubstituted ring of VII occurs to generate a cis-allyl anion which reacts with another molecule of I to form a new hypervalent siliconate intermediate (VIII). This process must occur faster than rotation about the partial carbon-carbon double bonds of the cis-allyl anion which would converted it into a trans-allyl anion. This appears reasonably since an energy barriers of approximately fifteen kcal/mol have been measured for this type of isomerization process. 7 Ring opening of the unsubstituted five membered ring of VIII leads to a new cis-allyl anion intermediate which reacts intramolecularly with the other silicon atom of VIII faster than it reacts with another molecule of I. This process forms the central ten membered ring of II and yields a new hypervalent siliconate species (IX) which loses a molecule of alkyllithum to give II. Thus alkyllithium reagents catalyze the conversion of I to II. This is unexpected since it is dependent on the ability of an allyl anion to displace an alkyllithium from a silyl center. This is unusual since allyl anions are thermodynamically more stable than alkyl anions. 8 It was not possible to definitely assign the structure of II on the basis of NMR spectroscopy. Thus, ^{1}H , ^{13}C and ^{29}Si NMR spectra were consistent with two highly symmetrical structures: II or
7,8,16,17-tetramethyl-5,10-disiladispiro[4,4,4,4]octadeca-2,7,12,16-tetraene. The chemical shifts of the vinyl protons and carbons favor II. In particular, the ¹H NMR signals for the vinyl protons of IV are found at 5.73 ppm while those for V are found at 5.29 ppm. Similarly, the 1H NMR resonance for the vinyl protons of I comes at 5.91 ppm while those for II are found at 5.30 The ¹³C NMR signals assigned to the vinyl carbons of II are found at 130.58 and 122.92 ppm. These resonances can be compared to the vinyl carbon resonances for IV at 130.74 ppm and those for V which is found at 123.22 ppm. The ¹³C NMR signals assigned to the non-equivalent vinyl carbons of I are found at 131.16 and 130.87 ppm. Similarly, the vinyl carbon resonances of VI is found at 130.56 pm. Finally, the ²⁹Si resonance in I is found at 25.54 ppm while of the dimer II is observed at 11.87 ppm. This upfield shift is similar in magnitude to that observed when one compares the ²⁹Si NMR of IV at 16.5 ppm to that of V which is found at 2.17 ppm. The structure of the dimer was confirmed by X-ray crystal-lography. The Si-C bonds of II are between 1.872 and 1.878 A^O, while the C-C single bonds are between 1.495 and 1.516 A^O in length. The C-C double bonds are between 1.325 and 1.327 A^O. The C-Si-C bond angle in the five member silacyclopent-3-ene ring is 95.2°. For comparison this is slightly larger than the C-Si-C bond angle of 92.6° which is found in 1,1-dimethyl-2,3,4,5-tetra- ORTEP diagram - side view of II. ORTEP diagram - top view of II. ### Experimental ### X-ray Structure Analysis of II. Crystals suitable for an x-ray structure analysis were grown by cooling a concentrated THF solution of II in a refrigerator. A crystal of dimensions $0.5 \times 0.3 \times 0.2$ mm was used for crystal and intensity data collection. X-ray data were collected at room temperature by using a Nicolet/Syntex P2₁ diffractometer with MoK $_{\alpha}$ radiation and a maximum 20 of 50°. The orientation matrix and unit cell parameters were determined from the angular setting of 15 well-centered reflections. Three check reflections showed no significant change in intensity during the period of data collection. A total of 1809 reflections were measured. Compound II crystallizes in space group P_1^* (triclinic) with unit cell parameters: $a=7.826(3)\,\text{A}^{\circ}$, $b=9.415(3)\,\text{A}^{\circ}$, $c=7.421(3)\,\text{A}^{\circ}$, $\alpha=94.11(3)^{\circ}$, $\beta=114.56(3)^{\circ}$, $\gamma=89.34(3)^{\circ}$, and $V=496.0(3)\,\text{A}^{\circ3}$. Application of direct methods 11 yielded the position of the silicon atoms; the other non-hydrogen atoms were located from a series of structure-factor-calculation/difference Fourier calculations. Full matrix least squares refinement 11 (including calculated positions of hydrogen atoms) yielded a final agreement factor of 3.3% for 1478 non-zero reflections $[I>3^{\circ}(I)]$. For details of the X-ray structure and its determination see Supplemental material. 1 H, 13 C and 29 Si NMR spectra were recorded on an IBM-Brucker 270-SY or Brucker AM-360 spectrometer operating in the Fourier Transform mode. ¹³C NMR spectra were run with broad band proton ecoupling. A DEPT pulse sequence was used to obtain ²⁹Si NMR spectra. This was effective since all the silicon atoms have at least one methylene group bonded to them. ¹² Identical ²⁹Si NMR spectra could be obtained by use of a heteronuclear gated decoupling pulse sequence (NONOE) with a pulse delay of 30 seconds. ¹³ Ten to fifteen percent solutions in chloroform-d were used to obtain ¹³C and ²⁹Si NMR spectra. Five percent solutions were used to obtain ¹H NMR spectra. Chloroform was utilized as an internal standard for ¹H and ¹³C NMR spectra. ²⁹Si NMR spectra were externally referenced to TMS. IR spectra were recorded on a Perkin-Elmer PE-281 spectrometer. Spectra of oils were taken as neat films on NaCl plates. IR spectra of solids were taken on KBr pellets. Low resolution mass spectra were obtained on a Finnigan Mat Incos 50 GCMS instrument at an ionizing voltage of 70 eV. A 0.25 mm x 30 m fused silica DB-5 capillary obtain was used in the gas chromatographic inlet of the mass spectrometer. High resolution mass spectra were obtained at the University of California Riverside Mass Spectrometry Facility on a VG-7070 EHF mass spectrometer at an ionizing voltage of 20 eV. Exact masses were determined by peak matching against known masses of perfluorokerosene. Elemental analysis was performed by Galbraith Laboratories, Knoxville, TN. Tetrahydrofuran (THF) was distilled immediately prior to use from a deep blue solution of sodium benzophenone ketyl. Hexameth-ylphosphoramide (HMPA) was distilled from calcium hydride and was stored over activated 4 A^O molecular sieves. 2,3-Dimethyl-1,3- butadiene and active magnesium powder were purchased from Aldrich Chemical Co. Inc. All glassware was dried overnight in an oven at 120°C. It was assembled and was flame dried under at atmosphere of purified Argon. All reactions and transfers were conducted under an atmosphere of purified Argon. ## 2,3-Dimethyl-5-silaspiro[4,4]nona-2,7-diene (II) In a 500 mL three neck rb flask equipped with a reflux condenser, a pressure equalizing addition funnel and a Teflon covered magnetic stirring bar was placed magnesium powder (2.48 g, 0.1 mol), 2,3-dimethyl-1,3-butadiene (8.4 g, 0.1 mol), THF (63 mL) and HMPA (17 mL). 14 The flask and its contents were cooled to 0°C. I (10.4 g, 68 mmol) 4 and THF (20 mL) were placed in the addition funnel. This solution was added dropwise to the vigorously stirrred suspension of magnesium powder over 1 h. The reaction mixture was allowed to warm to rt and war stirred for 72 h. Pentane (100 mL) was added. Saturated aqueous and onium chloride (100 mL) was then added dropwise with vigorous stirring. The organic layer was separated, washed with water, dried over anhydrous magnesium sulfate and filtered. The organic solvents were removed by fractional distillation through a 15 cm vacuum jacketed Vigreux column. The residue was transferred to a smaller flask and the distillation was continued under reduced pressure. A fraction, bp 108-110°C/11 mm, 4.4 g, 40% yield was obtained. It had the following properties. ¹H NMR δ : 1.45(d,4H, J = 1.0 Hz), 1.51(d, 4H, J = 1.1 Hz), 1.72(t, 6H, J = 1.0 Hz), 5.91(t, 2H, J =1.0 Hz). 13 C NMR δ : 16.54, 19.18, 24.13, 130.87, 131.16. 29 Si NMR δ : 25.54. IR \lor : 3020, 2970, 2890, 2880, 1605, 1440, 1395, 1205, 1175, 1090, 940 820, 760, 725, 615 cm⁻¹. GC/MS m/e (rel. intensity): 166(3 5), 165(12.9), 164(82.4) M⁺·, 149(4.0) M⁻¹⁵⁺, 136(4.4), 123(3.2), 122(10.0), 112(3.7), 111(12.6), 110(100.0) M⁻C₄H₆⁺·, 97(4.0), 96(9.8), 95(83.2) M⁻C₄H₆⁻¹⁵⁺, 84(2.1), 82(25.6) M⁻C₆H₁₀⁺·, 71.(2.2), 70(3.7), 69(17.2), 68(8.9), 67(28.3), 66(5.8), 65(2.7), 59(1.7), 58(1.8), 57(3.5), 56(5.3), 55(34.7), 54(16.5), 53(26.8), 51(2.5), 50(1.1). High resolution MS m/e Calcd for C₁₀H₁₆Si M⁺· 164.1021; Found 164.1023. Elemental Anal. Calcd. for C₁₀H₁₆Si: C, 73.09; H, 9.82. Found: C, 72.59; H, 10.20. #### Reaction of I with n-Butyllithium I (1.5 g, 9.1 mmol), THF (40 mL) and 30 μ L of HMPA were placed in a flame dried 100 mL Schlenk flask equipped with a Teflon covered magnetic stirring bar. The flask was sealed with a rubber septum and was cooled to -78°C in a dry-ice/acetone bath. n-Butyllithium (2.5 M, 100 L, 0.25 mmol) was added slowly to the well stirred reaction mixture which became yellowish and milky. The reaction was stirred for 3 h. It was quenched by addition of 10 mL of saturated aqueous ammonium chloride while the reaction was maintained at -78° C. Ether (300 mL) was added to dissolve the product. The organic layer was washed with water (3 x 50 mL), dried over anhydrous calcium chloride, filtered and the volatile organic solvents were removed by evaporation under reduced pressure. In this way, 1.45 g, 97% yield, of II was obtained. It was recrystallized from hot THF, mp 160-162 °C. It had the following spectral properties. ¹H NMR δ : 1.38(d,8H, J =0.9 Hz), 1.56(d,8H, J = 6.6 Hz), 1.69(s,12H) 5.30(d of d,4H, J = 6.8 and 0.9 Hz). ^{13}C NMR $^{\delta}$: 14.06, 19.34, 22.99, 122.92, 130.58. ²⁹Si NMR $^{\delta}$: 11.87. IR (KBr) v: 2996, 2973, 2943, 2909, 2884, 2869, 2775, 1635, 1439, 1408, 1393, 1375, 1366, 1268, 1178, 1151, 1124, 1055, 1025, 986, 932, 766, 730, 694, 685, 672, 636 cm⁻¹. GC/MS m/e (rel. intensity) 330(3.9), 329(11.7), 328(40.7) M⁺·, 274(2.7), 273(6.7), 272(4.2), 246(2.5), 245(4.9), 244(2.6), 218(1.0), 166(4.0), 165(11.2), 164(62.7) $C_{10}H_{16}Si^{+}$ ·, 163(3.6), 151(1.5), 150(2.6), 149(7.2), 147(1.5), 138(3.6), 137(15.1), 136(12.0), 135(5.8), 125(1.9), 124(3.5), 123(13.5), 122(17.4), 121(7.2), 113(1.1), 112(4.9), 111(21.0), 110(100.0) $C_{6}H_{10}Si^{+}$ ·, 109(37.5), 108(11.0), 97(4.7), 96(6.1), 95(47.9), 94(3.9), 84(2.4), 83(12.7), 82(15.4), 71(3.3), 70(2.5), 69(14.2), 68(3.1), 67(10.2), 58(1.5), 57(1.3), 56(0.6), 55(12.2), 54(3.1). High resolution MS m/e calcd. for $C_{20}H_{32}Si_2$ M⁺: 328.2042. Found: 328.2036. Elemental Anal. Calcd. for $C_{20}H_{32}Si_2$: C, 73.09; H, 9.81. Found: C, 73.30; H, 9.98. # Acknowledgements: This work was supported by the Air Force Office of Scientizic Research AFOSR 89-0007 and the Office of Naval Research. #### References - 1. Manuel, G.; Bertrand, G.; Weber, W. P.; Kazoura, S. A. Organo-metallics, 1984, 3, 1340. - Terunuma, D.; Hatta, S.; Araki, T.; Ueki, T.; Okazaki. T.; Suzuki, Y. Bull. Chem. Soc. Jpn. 1977, 50, 1545. - 3. Saloman, R. G. J. Org. Chem., 1974, 39, 3602. - 4. Damrauer, R.; Laporterie, A.; Manuel, G.; Park, Y. T.; Simon, R.; Weber, W. P. J. Organomet. Chem., in press 1990. - 5. Zhang, X.; Zhou, Q.; Weber, W. P.; Horvath, R. F.; Chan, T. - H.; Manuel, G. Macromolecules, 1988, 21, 1563. - 6. Park, Y. T.; Manuel, G.; Weber, W. P. Macromolecules, 1990, 23, 1911. - 7. Sandel, V. R.; McKinley, S. V.; Freedman, H. H. J. Am. Chem. Soc., 1967, 90,
495. - 8. Richey, H. G. Jr. The Properties of Alkene Carbonium Ions and Carbanions. In The Chemistry of Alkenes Vol. 2 Zabicky, J., Ed.; Interscience Publishers, London, 1970, p 67-77. - 9. Parkanyi, L. J. Organomet. Chem., 1981, 216, 9. - 10. Bel'skii, V. K.; Dzyabchenko, A. V. Z. Struct. Khim., 1985, 26, 94. - 11. Sheldrick, G. M., SHELX programs for crystal structure determination, University of Cambridge, U.K. 1976. - 12. Pegg, D. T.; Doddrell, D. M.; Bendall, M. R. J. Chem. Phys., 1982, 77, 2745. - 13. Freeman, R.; Hill, H. D. W.; Kaptein, R. J. Magn. Reson., 1972, 7, 327. - 14. Manuel G.; Mazerolles, P; Cauquy G. Syn. React. Inorg. Metal-Org. Chem., 1974, 4, 133. ## SUPPLEMENTAL MATERIAL Table 1: Summary of Crystal Data and Refinement Results for 2,3,12,13-tetramethyl-5,10-disila[4,4,4,4]octadeca-2,7,12,16-tetraene | molecular weight(g/mole) | 328.20 | |--|--------------------------------| | space group | P 1 (No.2) | | molecules per unit cell | 1 | | a (Å) | 7.826(3) | | b (Å) | 9.415(3) | | c (Å) | 7.421(3) | | a (deg) | 94.11(3) | | 8 (deg) | 114.56(3) | | γ (deg) | 89.34(3) | | V (Å ³) | 496.0(3) | | crystal Dimensions (mm) | 1.0x0.6x0.4 | | calculated density (g cm ⁻³) | 1.10 | | linear abs. coeff. (cm ⁻¹) | 1.42 | | wavelength (Å) used
for data collection | 0.71069 | | Sinθ/λ limit (Å ⁻¹) | 0.5947 | | total number of reflections
measured | 1809 | | number of reflections used in the structural analysis $I > 3\sigma(I)$ | 1478 | | number of variable parameters | 164 | | final agreement factors | R(F) = 0.0331
R(wF)= 0.0331 | | | | Table 2: Final Atomic Coordinates for 2,3,12,13-tetramethyl-5,10-disila[4,4,4,4]octadeca-2,7,12,16-tetraene | Atom | х | у | Z | |------|------------|-------------|-------------| | | | | | | Si5 | 0.2718(1) | 0.1925(1) | 0.1046(1) | | | | | | | C 1 | 0.5295(3) | 0.1823(2) | 0.1654(4) | | C 2 | 0.6007(3) | 0.3338(2) | 0.2349(3) | | C 3 | 0.4776(3) | 0.4342(2) | 0.2257(3) | | C 4 | 0.2721(3) | 0.3908(2) | 0.1493(4) | | C 6 | 0.2106(3) | 0.0975(2) | 0.2840(4) | | C 7 | 0.2255(3) | -0.0600(2) | 0.2658(3) | | C 8 | 0.0879(3) | -0.1563(2) | 0.2130(3) | | C 9 | 0.1157(3) | 0.1295(3) | -0.1585(4) | | C10 | 0.8087(4) | 0.3575(3) | 0.3070(5) | | C11 | 0.5233(4) | 0.5891(3) | 0.2839(4) | | | | | | | H1A | 0.5539(29) | 0.1500(22) | 0.0563(33) | | H1B | 0.5893(29) | 0.1212(23) | 0.2604(33) | | H4A | 0.2017(30) | 0.4326(22) | 0.0347(33) | | H4B | 0.2228(29) | 0.4178(22) | 0.2407(33) | | H6A | 0.2929(30) | 0.1346(22) | 0.4077(34) | | H6B | 0.0891(31) | 0.1256(22) | 0.2689(31) | | H7 | 0.3457(30) | -0.0936(22) | 0.2945(31) | | Н8 | 0.1190(28) | -0.2521(23) | 0.2047(31) | | H9A | 0.1371(28) | 0.0324(24) | -0.1787(31) | | H9B | 0.1554(29) | 0.1756(23) | -0.2340(32) | | H10A | 0.8506(30) | 0.3342(22) | 0.2050(33) | | H10B | 0.8795(30) | 0.3018(23) | 0.4060(33) | | H10C | 0.8473(29) | 0.4569(24) | 0.3444(32) | | H11A | 0.4672(29) | 0.6450(23) | 0.1794(33) | | H11B | 0.4812(29) | 0.6236(22) | 0.3830(33) | | H11C | 0.6522(31) | 0.6095(22) | 0.3408(32) | | | | | | Table 3: Temperature Factors for 2,3,12,13-tetramethyl-5,10-disila[4,4,4,4]octadeca-2,7,12.16-tetraene | Atom | U ₁₁ x10 ³ | U ₂₂ x10 ³ | U ₃₃ x10 ³ | U ₁₂ x10 ³ | U ₁₃ x10 ³ | U ₂₃ ×10 ³ | |------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------| | | | | | | | | | Si5 | 400(3) | 385(3) | 581(4) | -34(2) | 155(3) | 35(3) | | C 1 | 460(12) | 444(12) | 628(15) | 40(10) | 197(11) | 68(11) | | C 2 | 432(11) | 524(12) | 405(11) | -79(9) | 157(9) | 29(9) | | C 3 | 529(12) | 429(11) | 401(11) | -89(9) | 196(10) | 18(9) | | C 4 | 478(13) | 443(13) | 673(16) | 19(10) | 189(12) | 55(11) | | C 6 | 488(13) | 511(13) | 519(13) | -60(10) | 162(11) | -30(10) | | C 7 | 431(12) | 510(13) | 478(13) | 27(10) | 109(10) | 107(10) | | C 8 | 528(13) | 434(12) | 486(12) | 11(10) | 133(10) | 110(10) | | C 9 | 537(14) | 550(14) | 567(14) | -73(11) | 232(11) | 68(11) | | C10 | 488(15) | 791(20) | 762(19) | -110(13) | 206(13) | 59(15) | | C11 | 798(18) | 469(13) | 579(15) | -134(12) | 322(14) | -35(11) | The complete temperature factor is $\exp[-2\pi^2(U_{11}h^2a^{*2} + U_{22}k^2b^{*2} + U_{33}l^2c^{*2} + 2U_{12}hka^*b^* + 2U_{13}hla^*c^* + 2U_{23}klb^*c^*]$ Table 4: Bond Distances(Å)for 2,3,12,13-tetramethyl-5,10-disila[4,4,4,4]octadeca-2,7,12,16-tetraene | Si5C 1 | 1.878(2) | |---------|-----------| | Si5C 4 | 1.872(2) | | Si5C 6 | 1.874(2) | | Si5C 9 | 1.877(2) | | | | | C 2C 1 | 1.512(3) | | C 3C 2 | 1.327(3) | | C 3C 4 | 1.516(3) | | C 6 C 7 | 1.487(3) | | C 7C 8 | 1.325(3) | | C 8C 9 | 1.495(3) | | C 2C10 | 1.501(3) | | C 3C11 | 1.495(3) | | | | | C 1H1A | 0.937(22) | | C 1H1B | 0.908(22) | | C 4H4A | 0.914(22) | | C 4H4B | 0.930(22) | | C 6H6A | 0.921(22) | | C 6H6B | 0.947(21) | | C 7H7 | 0.931(21) | | C 8H8 | 0.937(21) | | C 9H9A | 0.940(21) | | C 9H9B | 0.884(22) | | C10H10A | 0.953(22) | | C10H10B | 0.912(22) | | C10H10C | 0.972(21) | | C11H11A | 0.917(22) | | C11H11B | 0.959(22) | | C11H11C | 0.934(21) | | | | Table 5: Bond Angles (deg) for 2,3,12,13-tetramethyl-5,10-disila[4,4,4,4]octadeca-2,7,12,16-tetraene | C 1 -Si5 -C 4 | 95.2(1) | |----------------|-----------| | C 1 -Si5 -C 9 | 113.9(1) | | C 6 -Si5 -C 1 | 111.4(1) | | C 6 -Si5 -C 4 | 112.3(1) | | C 6 -Si5 -C 9 | 110.8(1) | | C 9 -Si5 -C 4 | 112.4(1) | | Si5 -C 1 -C 2 | 103.7(1) | | Si5 -C 4 -C 3 | 103.9(1) | | Si5 -C 6 -C 7 | 114.2(2) | | C 1 -C 2 -C10 | 116.0(2) | | C 2 -C 3 -C 4 | 118.2(2) | | C 2 -C 3 -C11 | 125.6(2) | | C 3 -C 2 -C 1 | 118.6(2) | | C 3 -C 2 -C10 | 125.4(2) | | C 4 -C 3 -C11 | 116.2(2) | | C 6 -C 7 -C 8 | 127.4(2) | | SI5 -C 1 -H1A | 113.1(13) | | 315 -C 1 -H1B | 112.4(13) | | Si5 -C 4 -H4A | 111.3(13) | | Si5 -C 4 -H4B | 111.8(13) | | Si5 -C 6 -H6A | 104.9(13) | | Si5 -C 6 -H6B | 108.0(13) | | Si5 -C 9 -H9A | 108.8(13) | | Si5 -C 9 -H9B | 105.9(14) | | C 2 -C 1 -H1A | 110.8(13) | | C 2 -C 1 -H1B | 111.7(13) | | C 2 -C10 -H10A | 112.0(13) | | C 2 -C10 -H10B | 114.0(14) | | C 2 -C10 -H10C | 113.1(13) | | C 3 -C 4 -H4A | 110.9(13) | | C 3 -C 4 -H4B | 111.7(13) | | C 3 -C11 -H11A | 112.7(14) | | C 3 -C11 -H11B | 111.8(13) | | C 3 -C11 -H11C | 113.1(13) | | C 6 -C 7 -H7 | 115.5(13) | | C 7 ~C 8 -H8 | 117.4(13) | | H6A -C 6 -C 7 | 110.7(13) | |----------------|-----------| | H6B -C 6 -C 7 | 112.1(13) | | H7 -C 7 -C 8 | 117.1(13) | | H1A -C 1 -H1B | 105.4(18) | | H4A -C 4 -H4B | 107.3(19) | | H6A -C 6 -H6B | 106.4(18) | | H9A -C 9 -H9B | 106.6(19) | | H10A-C10 -H10B | 103.7(19) | | H10A-C10 -H10C | 102.5(18) | | H10B-C10 -H10C | 110.5(19) | | H11A-C11 -H11B | 105.8(19) | | H11A-C11 -H11C | 108.2(19) | | H11B-C11 -H11C | 104.6(18) | | - | 10FC | -67 | 82 | -32 | - 105 | 50 | 21 | <u>-</u> | -64 | - 19 | 911 | -122 | -71 | 30 | 197 | -118 | -55 | 106 | 62 | -118 | 45 | 47 | -47 | -23 | 33 | 103 | -65 | - 28 | - 18 | -121 | -241 | 173 | 28 | 12 | -48 | 73 | 9 0 | D (0 | 9 | 40 | 129 | 7 | -10 | 9 | 121 | - 145 | 112 | -46 | 160 | |----------|------|-----|--------------|-----|-------|----------|------|----------|----------|------|-----|------|---------------|------|------|------|------|-----|------------|----------|------|-----|-------|----------|----------|-----|------|----------|----------|------|------|-----|-------|-------|------|-------------|---------------|------------|---------------|-----------------|----------|-----------|------------|-----|------------|----------|--------------|-----|-------| | PAGE | 0F0 | 69 | 86 | 34 | 102 | 6 | 58 | = | 64 | 19 | 116 | 122 | 68 | 25 | 197 | 121 | 51 | 103 | 62 | 115 | 44 | 47 | 47 | 26 | 35 | 66 | 9 | 32 | 17 | 128 | 240 | 167 | 26 | 2 | 4 9 | 44 | 000 | 9 (| 20 0 | 4 | 126 | 3 | -13 | 67 | 121 | 139 | 109 | 48 | 157 | | | | _ | - | _ | _ | - | _ | _ | - | _ | | | | | | _ | _ | _ | _ | _ | _ | _ | _ | _ | | | ¥ | | ις. | 'n | 'n | 'n | ကု | 4 | 4 | 4 | 4 | 4- | 4 | 4 | 4 | 4 | 4- | 4 | 4- | 4 | 4 | 4 | | <u>۔</u> | <u>ب</u> | ကု | က | <u>ب</u> | ڊ.
د | ငှ | က | က | က | က | ი (| ب
ا | ب
د | | 7 0 | ? . | ٠, | -2 | ۰, | ~ | ~ | -2 | 7 | 7 | -, | | | I | | | | | | | 8 | _ | 9- | S | 4 | <u>د</u>
ا | -2 | - | 0 | _ | 7 | n | 4 | ıc | | 8 | 1 | 9 | | 4 | 6 | ~ | _ | | | | | | | | ٠, | 20 1 | | | ς. | 4 | က | ~ | _ | 10FC | -56 | - | -78 | 54 | ~ | -36 | 32 | 26 | 27 | က | -138 | 62 | 54 | n | -23 | 19 | 40 | ູເຕ | -56 | 82 | 91 | -143 | 37 | 33 | 54 | -125 | 18 | 53 | 9 | -110 | 8 | 131 | ₹ | ကျ | . . | 70 (| 9 | • | N | 2 | m | ∞ ⋅ | 8 | D. | -42 | 4 | ~ | 79 | | | 10F0 | 56 | 16 | 9 | 54 | 30 | 36 | 37 | 54 | 27 | 33 | 136 | 63 | 52 | 33 | 24 | 22 | 42 | 52 | 54 | 8 | 87 | 138 | 38 | 32 | 53 | 124 | 20 | 54 | 9 | 110 | 96 | 128 | 37 | 132 | 36 | 9 6 | 2 5 | 4 0 | 5.3 | 28 | 33 | 92 | 8 | 149 | 43 | 43 | 124 | 9/ | | | _ | _ | _ | _ | - | _ | - | - | _ | _ | - | _ | _ | _ | - | _ | _ | | - | | | ٠. | ٠, - | ٠ | _ | - | _ | _ | - | - | - | - | ~ | _ | | | | • | | | _ | - | _ | - | _ | _ | _ | - | - | | | ¥ | g. | ģ | ģ | 6 | و | 6 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 1- | -7 | -1 | - | ~ |
! | - 7 | -1 | - 1 | 1- | -7 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | o c | ه د | ۰ | ۰۹ | ، م | 9 | r
2 | ភ្ | ķ | ş | က | | -5 | | | | I | m | - | | | | | 9 | m | | _ | | | | | | | 9 | ß | 4 | (7) | ~ | | 0 | | | | | _ | 9 | S. | 4 | -3 | ~ | _ (| | | | | | ١٩ | _ | 9 | 'n | | e
E | | | 0 | | | | _ | | | | _ | _ | _ | | _ | | _ | _ | | | | _ | | _ | | | _ | | | | | | | | | | | _ | | | | | | | | | _ | | _ | | _ | _ | _ | | | PIBAR | 10FC | -29 | -63 | 6 | -31 | - | 148 | 33 | -93 | -50 | 4 | 7 | ш, | -86 | 15 | 56 | -103 |
7.1 | 9 | -23 | 38 | -40 | 45 | 31 | -84 | -17 | 67 | -65 | - 15 | 46 | -25 | -35 | 36 | -72 | 12 | 4 (| 77 | 9 | 4. | - 6 | 32 | 4 - A | - 48 | 46 | 22 | -59 | 70 | 63 | -23 | | ark2 P | 010 | 28 | 83 | 88 | 28 | 0 | 142 | 33 | 9 | 46 | 46 | 17 | 4 | 98 | Ξ | 9 | 101 | 72 | 65 | 24 | 39 | 43 | 46 | 32 | 82 | 20 | 7.1 | 63 | 15 | 45 | 25 | 33 | 4 | 74 | 6 6 | 200 | 7 0 | 70 | 4 . | | 40 | 48 | 49 | 4 | 25 | 50 | 7 | 62 | 27 | | G. | _ | 0 | 5 6 | > c | ٠ د | | - . | | - | | _ | ~ | | - | - | _ | | 51- | ¥ | 7 | ~ | 1 | 7 | 1 | 7 | 7 | 1 | 7 | 7 | 0 | æ | œ | 8 | 8 | 8 | 80 | 6 0 | 6 | 8 | 6 | 6 | 6 | O | o | 6 | 6 | 6 | 0 | 10 | 0 | 9 | 0 | : ≏ | = : | - : | - : | - : | = : | 2 9 | 2 : | 2 9 | 2 | 2 | 9 | 0 | Ģ, | 6 | | FOR | I | | ا | | 0 | - | 7 | ო | 4 | ഗ | 9 | 9 | ا
ج | 4 | 6- | 7 | 0 | - | 2 | က | Į, | | | - 2 | | | - | က | 4 | | -2 | | 0 | 7 | ო • | - 0 | ۰ د | - (| 5 • | - 1 | -4- | | 7 | - 1 | 1 | _ , | ι | | | | FACTORS | 10FC | -62 | - 19 | -91 | -41 | 143 | 63 | -54 | 49 | 45 | -63 | 209 | 86 | -249 | -348 | 277 | -87 | -58 | 91 | 83 | -31 | -22 | 62 | - 16 | -93 | 68 | 1.18 | - 16 | -138 | 192 | -112 | -89 | 207 | - 109 | -35 | 4 4 | T (1 | | ກິດ | ر
د د
د د | -63 | 9 ; | 23 | -29 | 4 3 | 123 | -120 | -55 | 9 | | | 0F0 | 99 | 24 | 98 | 40 | 139 | 64 | 52 | 48 | 45 | 65 | _ | 104 | ্ৰ | S. | 40 | 90 | 9 | 16 | 78 | 29 | 26 | 64 | 17 | 96 | 92 | 117 | 73 | 141 | 193 | 114 | σ | 202 | 0 | 36 | : | - 0 | - (| ກຸດ | ָרָרָ
מי | 9 | • | 48 | 27 | 4 | 126 | 118 | 56 | 29 | | RUCTURE | _ | 0 | > | > c | > 0 | - | > (| - | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | STRI | × | (7) | 6 | က | ო | က | ო | က | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | S | 2 | ß | ß | Ŋ | ß | ß | ស | വ | ស | S. | ស | io i | <u>م</u> | 9 | 9 (| 9 | 0 | , م | ، م | 9 | 9 | 9 | 9 | <u>،</u> و | 9 | 9 | | ATED | I | - | 7 | က | 4 | ស | ø | 7 | - 7 | 9- | -5 | 6. | -2 | - | 0 | - | 7 | ო | 4 | ស | ဖ | ~ | - 7 | 9- | ဌ | 4 | ٦, | -2 | 7 | 0 | - | ო | 4 | ហ | ı ي | ~ r | - 4 | • | 7 (|)
(| -2 | - 1 | ο. | - 1 | ~ | m · | ₹ 1 | រក | 7 | | CALCUL | 10FC | 20 | -201 | 24 | 176 | -89 | - 77 | 13 | 30 | 47 | -40 | -128 | 22 | 104 | -223 | 6 | 51 | 101 | - 155 | 299 | -131 | -80 | 2.7 | 32 | -32 | 32 | -80 | 26 | 16 | .13 | -154 | 154 | 17 | - 120 | 20 | 5) U | n ç |) C | 3 . | 9 (
- (| -52 | ري
د د | 8 ? | 12 | 41- | 78 | 25 | ' (| -213 | | AND | 10F0 | 0 | 204 | S | • | 80 | 80 | 17 | 32 | 20 | 4 | 126 | 9 | 0 | 233 | Q1 | 20 | O | (C) | 0 | 128 | Œ | 27 | 35 | 34 | 35 | 79 | 9 | 13 | 4 | 157 | £7 | . 173 | _ , | 0 (| n
n | 9 6 | 7 (| , | - 1 | 5.
4. | 4 (| 71 | 129 | 121 | 6. | 5 0 ' | , | 220 | | VED | _ | 0 (| - | 5 C | > < | > c | > | - | - | 9 (| 0 (| 0 | 0 | 0 | 0 | 0 | | OBSERVED | × | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | _ | _ | - | - | _ | - | | - | - | - | - | _ | _ | _ | - | • | 7 | 7 | 7 | 7 | 7 | ~ | 7 | 7 | 7 | ~ | ۷ (| ٠, | ۷ (| ٦, | ٧. | N (| n (| m (| m (| m (| (n) | (C) | (n) | e | | 8 | I | - | ~ | က | 4 | ß | 9 | 1 | æ | | | | 9- | | | -3 | 0 | - | 7 | 6 | 4 | 20 | 9 | ~ | 80 | 80 | - 7 | 9 | <u>ا</u> | 4 | 6- | -5 | - 1 | 0 | - (| ٧ • | t u | 5 4 | ۰ م | ٠, | | | | | | <u>ښ</u> | | | o
 | | • | |--------------------------| | PIBAR | | • | | _ | | ^ | | - | | | | N | | | | × | | 7 | | SI-Park | | 6 | | ñ | | • | | ł | | _ | | | | v | | | | | | | | a
O
E | | * | | 0 | | ũ | | _ | | | | 10 | | •: | | Œ | | ~ | | _ | | FACTORS | | | | · | | ◂ | | | | • | | | | | | • | | ~ | | = | | _ | | _ | | ٠. | | v | | ~ | | Ξ | | Œ | | _ | | | | - | | 'n | | 'n | | STRUCTURE | | o
o | | ED S | | ED S. | | TED S. | | ATED S | | ATED S | | LATED S | | ULATED S | | COLATED S | | CULATED S | | LCULATED S | | ILCULATED ST | | ALCULATED S' | | CALCULATED S' | | CALCULATED S | | CALCULATED ST | | D CALCULATED ST | | 4D CALCULATED ST | | IND CALCULATED ST | | AND CALCULATED ST | | AND CALCULATED ST | | AND CALCULATED SERVED AND CALCULATED ST | | ~ | 10FC | 9 | 54 | -36 | 34 | -45 | -86 | 132 | -17 | -50 | 133 | 323 | 30 | 201 | 67. | 200 | -21 | 21 | -17 | -81 | - 15 | 79 | . 45 | . 8 | 68 | -25 | 108 | - 39 | 145 | 52 | 28 | - 5 G | - 8 | - 79 | 120 | 102 | 217 | -28 | -92 | 37 | 120 | 113 | , | |---------|--------|-----|----------|----------------|------------|------------|-----|---------|----------|------|----------|---------------------|--------------|------------|--------------|----------------|----------|----------|---------|------|--------------|--------------|------------|-----|------|-----|------------|------------|--------|-----|----------------|------------|------|---------|-----|-------|-----|-----|------|----------------|-----|--------------|---| | PAGE | ,0F0 1 | 9 | 56 | 900 | 36 | 4 | 82 | 131 | 21 | 48 | 137 | 323 | 41 | 102 | 9 | 28 | 22 | 21 | 19 | 79 | 9 9 | 9 6 | - 6 | 178 | 67 | 25 | 109 | 34 | 145 | 54 | | 200 | 20 | 79 | 112 | 66 | 231 | 24 | 97 | 40 | 911 | 15 | • | | | _ | 7 | 7 | N (| 4 (1 | ~ | 7 | 7 | 7 | 7 | 7 | 2 | ~ (| 7 (| N (| , | . ~ | 7 | 7 | 7 | ~ | ٧, | ٧, | ١ ٧ | 8 | ~ | ~ ~ | ٠ ٨ | 7 | 7 | ~ (| , , | ٠ ٥ | . ~ | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | • | | | ¥ | 9 | 9 | 9 4 | ם נם | S. | ທ | S | S. | S. | D. | ر
ا | ر
ب | <u>.</u> | ٠, | ף מ | , K | S | 4 | 4 | 4 | 4 4 | t 4 | 4 | 4 | 4 | 4 4 | 1 9 | 4 | 4 | 4 (| ,
, | | | | 6 | ၉ | ၉ | ღ | က | ၉ | က | • | | | I | ၂ | 4 | 10 U |)
0 00 | ,
, | 9 | نة
ا | 4 | ė. | ,
, | !
- : | o | '
- (| ,
, | א ני
יי | י
מיז | 9 | ,
60 | _ | ģ | ָר י | • | , | · | Ó | _ c | ر
در در | 4 | Š. | ,
O | ייפ | · œ | نا
د | 4 | 6 | 7 | - | 0 | _ | 7 | ,
က | • | | | | | | | ' | 1 | • | , | 1 | ı | J | 1 | | | | | | | | | ' | | 1 | ' | ' | | | | | | | 1 1 | , | ı | , | 1 | 1 | 1 | | | | | | | | 10FC | -37 | 46 | 38 | 0.0 | 47 | -23 | S | 38 | 40 | -45 | ~ | - 10 | σ. | æ ; | 67 -
27 - |) - | -95 | 52 | က | - 14 | ر
د
د | 717 | 9 | -67 | S | 47 | 64 | -104 | C | S | 107 | 3 4 | 4 | 53 | 7 | 0 | 212 | 4 | _ | -53 | 187 | ; | | | 10F0 | 38 | 49 | 37 | f | 46 | 24 | 53 | 38 | 4 | 43 | 7 | 0 : | 4 . | 9 0 | 37 | 5 - | 95 | 53 | 39 | 9 9 | 5 5 | 2 0 | 9 | 64 | 54 | 47 | 9 | 106 | 136 | 62 | 90 | 42 | 40 | 5 | 27 | 101 | 213 | 42 | 113 | 52 | 184 | | | | ٠ | - | _ | | | _ | _ | _ | 7 | ~ | 7 | ~ | 7 | 2 | ٠, | N ," | Ņ | . 4 | :ч | 7 | ~ (| , | v c | ۰ ۲ | 7 | 7 | ۰ ر | ٠ ٨ | ~ | 7 | ~ | 7 0 | ٠, | ~ | 7 | 7 | 8 | 7 | ~ | ~ | 7 | 7 | • | | | ¥ | o | o | 9 | 20 | 9 | 0 | 0 | = | = | 2 | 9 | 2 | 0 9 | 2 | 3 0 (2) | 5 77 | (0) | 5 | 6 | <u>ق</u> د | 1 0 9 | D C | œ | 6 | φ, | <u></u> | | | -1 | ۲, | , , | ٠, | - | - 1 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | | | | I | 6 | 4 | • (| 7 - | 0 | _ | ~ | - | 0 | • | _ | | i | -7 | | ٠ ۸ | 0 | | | 4 | | | | (C) | ~ | - | r (*) | ~ | _ | | | | | | ø | D. | | 6 | 7 | _ | | | | | | | | | | | | | • | PIBAR | 10FC | 201 | -113 | -143 | 4 4
U Q | | -49 | -33 | 65 | 121 | -114 | - 8 | <u>၂</u> | 4 (| 69 | 22 | 7.3 | -23 | 48 | - 30 | 43 | -32 | ρσ
- | 96 | -80 | 78 | 9 9 | - 45 | 35 | -65 | 26 | 97- | 68 | 47 | -75 | -32 | 48 | -44 | -31 | 42 | -68 | 44 | 1 | | rk2 P | 10F0 | 195 | 112 | 139 | 4 | 2 | 2 | 32 | 63 | 121 | 101 | 20 | <u>ت</u> | - 7 | 4 6 | 4 7 | | 24 | 4 | 27 | 43 | 4 (| 2 0 | 100 | ~ | 75 | 6 5 | , 4
, 7 | 35 | 62 | 5 6 | 9 9 | 8 | 4 | 74 | 32 | 48 | 43 | 32 | 46 | 68 | 42 | | | 2 | _ | _ | _ | | | | _ | _ | _ | _ | _ | _ | _ | | . . | | - | _ | _ | _ | _ | | | | _ | | | | _ | _ | | | | _ | _ | _ | _ | _ | _ | _ | _ | _ | | | - IS | ¥ | က | S | S I | n in | , LC | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | ဖ | . 4 | | 9 | 9 | 7 | | | | ٠. | _ | 7 | ~ | . ~ | | 8 | 6 0 (| 20 G | | 60 | 80 | 8 | 8 | 6 | 6 | 6 | 6 | on. | | | FOR | I | 0 | - | ~ 0 | J 4 | · (| -7 | 9- | -5 | 4- | ٠, | -2 | 7 | 0 | - (| ~ ~ | ۵ ط | Ŋ | 9 | 1- | ر.
د | 4 (| ر د | - | 0 | - | ۰ د | . 4 | S | 4- | -2 | - 0 | - 0 | . 7 | က | 4 | | -5 | | | | 0 | | | S | U | ıo | 6 | ~ • | . | . – | o | r. | מו | 2 | 6 | 4 | 9 | 6 (| m , | - u | | 0 | 6 | 4 | 6 0 i | ດເ | D 4 | | 4 | 7 | ب و | · | . – | 1 | | 4 , | , 9 | | _ | 0 | S | e | 6 | 4 | _ | 7 | | | FACTOR | 10F | 1 | 4 | S C |) m | . ~ | 4 | 9 | 4 | - | 4 | -5 | ന | - (| 7 | 7 9 | ם כי | - 17 | _ | S | 4 | 7 - | – v | (7 | - | 4 | ~ | | 1 | - | 6 1 | ~ ~ | 40 | 5 | _ | ~ | ~ | 1 | - | ი ! | 99 | ~ | • | | | 0F0 | 73 | 242 | 53 | 566 | 22 | 146 | 69 | 49 | 0 : | 43 | 25 | 37 | | 92 | 9 9 | 13.7 | 165 | 183 | 155 | 42 | 7 : | - 2
2 4 | 36 | 18 | 5 | 26 | 63 | 160 | 82 | 230 | 7 2 | 104 | 138 | 210 | 20 | 25 | 15 | 9 / | 93 | 185 | 29 | | | RUCTURE | _ | _ | _ | | | _ | _ | _ | _ | _ | _ | _ | _ | | | | | _ | _ | _ | | | | | _ | _ | | | _ | _ | | | | _ | _ | _ | _ | _ | _ | _ | _ | _ | , | | - | × | 7 | 7 | % (| ٧ | . 7 | 7 | 7 | 7 | 7 | 7 | 7 | က | ი (| ب | |) (f) | <u>ر</u> | ო | က | ი (| י כי | ၁ ຕ | (1) | 4 | 4 | 4 4 | 4 | 4 | 4 | 4 . | 4 4 | 4 | 4 | 4 | 4 | 4 | 4 | s a | ស្ង | ស រ | വ | L | | ED S | r | -5 | 4 | ე (| 7 - | 0 | _ | 8 | 6 | 4 | വ | ~ | & | ۲. | 'n. | 4 C | , | ·
7 | 0 | - | ~ (| , r | 4 10 | ^ | 6 | ۲- | 9 1 | 7 | ر
ب | -2 | - (| - | - 7 | (5) | 4
| ß | 9 | 7 | 9 | ر.
ا | 4 | ا | • | | CULAT | כערכו | OFC | 28 | -47 | -34 | 84 | -29 | 9 | 49 | 12 | -210 | 18 | 5 | - 75 | 6/1 | ~ ; | 9 5
- | 5 | 8 | .82 | 35 | 23 | 617 - | 207 | 26 | -128 | 269 | - 20 | יי פ | 72 | 34 | -76 | າເ | -270 | 29 | 19 | - 199 | Ξ | 9 | -124 | 9 | 25 | - 18 | • | | AND | 0F0 1 | 33 | 48 | 35 | A 2 | 25 | 17 | 49 | 22 | 60 | 88 | 2 | ~ 1 | 184 | B (| D C | 4 6 | 13 | 90 | 3 | ~ (| 79 | \circ | 64 | 31 | ~ | 21 | 3.6 | 75 | 37. | 74 | 4 6 | 73 | 83 | 00 | _ | 16 | | ~ | . | 52 | 9 | • | | | _ | _ | _ | | | . – | _ | _ | | 7 | | | | | | | | _ | _ | | | | | | | | | | _ | _ | | | | | • | | | _ | | _ | _ | _ | | | SERVED | × | 0 0 | | | | | | | | | | | | | | | ~ | • | | 08SE | ī | , | ' | , | , , | , | ' | , | ı | ' | ' | ٠ | 1 | • | ' | ٠ ، | _ | _ | 41 | ,- | | 7 | | | | | | | (4) | ., | 4 (| er (| ^ ر | - 6 | , | 7 | | 1 . | 1 | , - | _ | •• | . , | 4 4 | . • | | 3 | 7 | 1 4 | (7) | 1 | ٠ | _ | • | | • | • • | - (| 4 | 1 | 10FO 10FC ۲ 10FC 10F0 I ¥ I L 10FO 10FC ¥ I L 10F0 10FC S1-Park2 PIBAR L 10F0 10FC OBSERVED AND CALCULATED STRUCTURE FACTORS FOR | Ů, | 0, | | , . | , | ٠, | ٠, | υ, | υ, | • | • | _ | = | = | | : | = | = | - | | | = ; | | | | 1 | | ï | ĭ | ĭ | | • | ĭ | ĭ | 7 | 7 | 1 | • | ĩ Ì | ~ | 7 | 7 | 1 | , | ĩ, | ī | ï | ī | 'n | | ī | ī | ī | ī | 7 | 1 | • | ĩ | | | | | |-----|------------|----------|----------|----|--------------|----|-------|-----|---------|-----|----------|-----|------------|-----|-----|-------------|----|----|---|-----|------------|----|-----|--------|---------|------------|--------------|---------|-----|-----|------------|----------------|----|----|-----|------|-----|------------|------------|----------|----|-----|-----|------------|-----|-----|----|----------|----------|------------|------------|----|----------|-----|-----|-----|------------|--|--|--|--------| | Ę | 4 | | | | | | - | 7 | (7) | י פ | י כי | -2 | 7 | c | ٠. | _ | 4 | (| | | - 1 | 0 | _ | 4 | , | 9 | ~2 | 7 | _ | - د | - 1 | 7 | က | 9, | 6, | ç | 4 - | , | 0 | က | 4 | -7 | . U | | 4 | -2 | - | _ | ٠ - | - (| 7 | m | | i, | | | | | | | | | Ť | -34 | • | • | • | -26 | ø | 11 | 88 | = | : | 2 ! | 5 | (7) | 2 | 2 | 3 | က | | ď |) L | 0 0 | 8 | - | - 130 | 9 | 9 (| • | 2 | 0 | | 0 (| 28 | 15 | 31 | 8 | -77 | • | 4 | ~ | 4 | ø, | - | ٠, | ٧. | _ | 4 | N | - | | 4 (| 77 | 29 | 92- | 36 | -26 | 9 . | -
- | | | | 0401 | | 143 | 33 | 6 | ; | 74 | 78 | 99 | 79 | 88 | 112 | | 2 | 49 | 131 | 901 | 2 6 | 2
2
7 | 30 | 12 | 5 | , | 7 (| 82 | 0 | C | | • 1 | 7 | <u></u> | 122 | | 0 (| 27 | 4 | 59 | 84 | 7.4 | | 7 1 | <u>.</u> | 46 | 92 | 2 | , | 77 | 12 | 44 | 25 | <u>.</u> | 2 0 | 7 (| C 7 | 9 | 75 | 39 | 26 | | 2 | | | | 4 C 7 | | 7 | ~ | | 4 (| ~ | ~ | ~ | ~ | ~ | • | , (| ٧. | ~ | ~ | c | | v | ~ | 8 | • | , (| ٠, | ~ | ~ | 0 | , (| ۷ (| 2 | ~ | c | | ٠, | 7 | 7 | 7 | 7 | | 4 (| 7 1 | 7 | ~ | 7 | ~ | , , | 4 (| 7 | ~ | ~ | 0 | | ٠, | 7 | 7 | ~ | ~ | • | . (| 7 | | | | . 0 | | 4 | 4 | • | 7 1 | n | ស | ស | മ | LC. | ď |) (| ດ | រា | ស | K |) (| Ω | വ | S | (| 9 (| 0 | 9 | 9 | g | 9 4 | 9 (| 9 | 9 | Œ |) (| 0 (| 9 | ဖ | 7 | 7 | . ^ | ٠, | - 1 | • | 7 | 7 | 7 | | - 1 | - | ^ | 8 | Œ | a | 0 0 | 0 (| 30 | ® | 8 | α | , | Þ | | | | , | | 4 | S | 4 | | | | | Š | | | | | | - | · | 4 (| 7) | 4 | S | | - (| P 1 | ç | 4- | 6 | ָר
ו | * | - | 0 | _ | ۰ ، | • • | က | 4 | 9- | ıç. | 1 | | ,
, | Z – | <u>-</u> | 0 | - | ٠, | יי | 4 | ហ | 9- | بي
ا | 1 | • | 7 | -2 | - | - | , ح | • | 4 | | | | 605 | | 152 | 60 | ď | 3 6 | ~ | -60 | 4 | 12 | 4 | ď | s c | V | 3 | 4 | • | . (| ` | 4 | ~ | 4 | • | - 1 | S | ~ | \sim | | - (| ~ | c | ď | , (| ٧ (| S) | 4 | 8 | ~ | 10.0 | , (| ? (| Э. | ~ | 8 | (7) | , - | - • | ₫ . | 2 | 3 | 7 | | • (| V 1 | • | ~ | 6 | ď | 9 0 | 0 | | | | ACTOBS | | 155 | = | · u | ٠, | 4 | 63 | 4 | 7 | 48 | ري
ک | 3 6 | ٦
, | 32 | 38 | • | 2 0 | רי | ഹ | C | 4 | | 8 1 | S | ~ | ~ | • • | 2 ; | 25 | 32 | 36 | 9 6 | N (| n | D. | • | N | 901 |) (| י פי | Э. | N | 82 | 34 | | 7 . | 4 | 22 | 59 | 16 | 2 | ٠, | V I | | _ | 102 | ď | 9 6 | D / | | | | 3 3011 | | ~ | ~ | , | • (| 7 | ~ | ~ | ~ | ~ | ^ | | ٧. | ~ | ~ | C | • (| • | ~ | 7 | 0 | , (| ۷ (| 7 | ~ | ~ | , (| v (| 7 | ~ | c | ، ر | y (| 7 | ~ | ~ | 7 | , | 4 6 | 7 (| N | ~ | ~ | ~ | | ۷ (| 7 | ~ | 7 | 2 | , | 4 (| 4 (| 7 | 7 | ~ | ~ | , (| 7 | | | | TUIT | | - | - | - | ٠, | - | - | - | - | - | c | | 7 | 7 | ~ | c | 4 (| 7 | ~ | 7 | C | 1 (| 7 (| ~ | ~ | ~ | ۰, | 4 (| ~ | ~ | ď | , | ? (| ر ى | က | က | e | ~ | , | n (| 7) | ო | ო | • | • | ? (| 7 | 4 | 4 | 4 | 4 | , , | 7 | 4 | 4 | 4 | 4 | • | 4 | | | | STD | | -2 | 7 | . c | • | 7 | m | 4 | ĸ | 9 | 1 | , | • | 9 | ģ | 4 | r | 7 | -2 | 7 | _ | • | - (| 7 | က | 4 | · u | 5 | ۵ | 7 | 4 | ן נ | - (| ٩ | က | 4 | -3 | , | • | | - | | | 4 | | | | | | | | | | | 0 | - | ^ | | " | | | | ATEN | | 30 | -54 | • | , | 9 | 83 | ō | - 156 | Ó | • | 9 | 2 | 7 | 2 | ď | 3 6 | ъ. | æ | 4 | 4 | | 0 (| N | ~ | 30 | • | • (| N | ð | Œ | 'n | ٧ (| 30 | 0 | S | 4 | ď | 3 6 | V I | Ω | œ | 8 | ~ | | 7 (| 7 | a | Ē | -85 | 4 | ľ | ו מ | - | 5 | Ö | 6 | 9 6 | 50 | | | | | | 58 | 40 | . 4 | 2 6 | 9 | - | 88 | 158 | 861 | 27 | : | 7 | 130 | 5 6 | 9 | 9 6 | 78 | 96 | 48 | 7 | | 2 | 7 | 116 | C | • | 2 (| N | 6 | - | ٠, | v (| 30 | 0 | 28 | 4 | 3 | ; | 2 (| 2 | 72 | 82 | 32 | | | - | 288 | 79 | 88 | 4 | 7 (| 0 0 | 9 | 96 | 67 | 0 | 9 6 | 2 | | | | | | ~ | 7 | , , | • (| 7 | ~ | ~ | ~ | ~ | | . (| × | 7 | ~ | • | 4 (| 7 | ~ | 7 | • | • (| , | 7 | ~ | 7 | ٠, | 4 (| 7 | 7 | c | , , | ۷ (| 7 | ~ | ~ | 7 | ٠, | • (| ٧ (| 7 | 7 | 7 | 2 | ٠, | 4 (| 7 | 7 | 7 | 7 | | 4 (| • | 7 | 7 | 7 | 7 | | 7 | | | | VFD | | 6 | 6 7 | , | • (| 7- | -2 | -2 | ? | -2 | , | 4 (| 7 | -2 | -7 | , | 4 (| 7- | 7 | 7 | - | | | - | - | , | | | , | ~ | - | - | <u> </u> | - | - | - | - | ٠ | 0 | o (| 5 | 0 | 0 | 0 | 0 | o 0 | Э | 0 | 0 | 0 | C | 9 0 | ٠ د | - | - | - | _ | • • | - | | | | SFR | | • | _ | | 9 1 | • | ø | S | • | (7) | • | | - | 0 | ~ | • | , , | • | n | 9 | • | , , | | ø | ഹ | 4 | • | 2 | Ņ | 0 | _ | ٠, | ٧. | • | 4 | G | / | ٠ ه | , | • (| ٥ | ņ | 4 | ~ | , , | ٠, | - | C | 4 | c | " | , | ٠, | - | م | ņ | 4 | , | 2 | | | | G | $\begin{array}{c} \mathfrak{g} = \mathfrak{g} = \mathfrak{g} \\ \mathfrak$ Si-Park2 PIBAR OBSERVED AND CALCULATED STRUCTURE FACTORS FOR ¥ I L 10F0 10FC ¥ I L 10F0 10FC × I 10FO 10FC _ ¥ I L 10F0 10FC PAGE L 10FO 10FC × I | 36
-722
-777
-777
-41
-777
-777
-777
-777 | -28
-55
-49
-72
-71
-74
-74
-77 | 162
162
-41
230
-52
-119
-47
-70 | -107
120
-84
-1195
-441
-65
-97
-16
-28 | |--|--|---|---| | 935
199
199
199
199
199
199 | 24
44
72
72
74
74
74
74 | | 80674676909-7 | | पपपपपपपपप | | 44444444 | प्रव्यव्यव्यव्यव्यव्यव्यव्यव्यव्यव्यव्यव्यव | | 4444444446 | | | | | V 9 8 4 8 9 - 0 9 8 4 9 | 6-18532-0-235 | 24E20-24EB | 0 to 4 | | , | | • | | | 15
15
15
-27
-20
30
-50
-18
-52
-52 | 27
-16
-39
-88
-16
-16
-16
-19
-19
-19
-19 | . 6 - 4 &
/ O & 9 & 8 & | -12
63
36
36
-61
-92
103
-154
-154
-43
-43 | | 852
83
83
83
83
83 | 29
15
15
15
16
17
17
17 | 69
444
344
34
35
34
34 | 13
60
35
58
91
157
157
24
43 | | | | | | | 44444444 | | | | | 2 | | | 7-0-0-4-0-0-4-0
1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | | | | 77777 | 1 1 1 1 1 1 1 | | 7098-0-4476- | 000004098700 | 3 8 5 1 3 2 6 9 9 5 5 6 9 9 5 5 6 9 9 5 5 6 9 9 5 5 6 9 9 5 6 9 9 5 6 9 9 5 6 9 9 9 5 6 9 9 9 5 6 9 9 9 5 6 9 9 9 5 6 9 9 9 9 | 668
19
20
20
21
21
31
33
34
44
25 | | 1110000 | 15 40 2 10 0 | | | | 140
140
140
161
161
165
165
164
164
165 | 333
332
327
327
369
69
69
69
69
69
69
69
69
69
69
69
69
6 | 100
100
100
64
12
13
13
27
53 | 69
22
23
23
24
24
24
24
24
24
24
25
26
26
26
26
27
27
27
27
27
27
27
27
27
27
27
27
27 | | ~~~~~~~~~~ | | | ოოოოოოოოოოო | | មា | | トトトトトトト B B B | @@@@@@@@@@ | | 0 4 4 6 4 C - C - C 6 4 C | | 4621-0-26656 | 1-26-24-0-6-0 | | | | | | | 110
-67
-53
-44
-46
-26
-26
-26 | 123
-58
-120
-19
-81
-81
-81
-18
-18
-18
-106 | -24
-71
177
-72
-33
-72
-12
-12
-12
-39
-39 | -86
-58
-58
-52
-52
-34
-34
-34
-21
-25
-25
-29 | | -28000297-6 | | ,
 | 9-1-4101-111 | | 0 L R L 4 4 4 6 4 - U U | 7.00 - 0.00 S D V | 107.627.646 | ឆ េច | | ოოოოოოოოოო | ოოოოოიოოოოო | , | ოოოოოოოოოოო | | | 44444444444 | | 44444444400 | | 7645687111111111111111111111111111111111111 | | | 6 1 1 2 2 4 6 1 7 1 8 6 7 7 1 8 6 7 7 1 8 7 1 8 | | 45
13
13
13
13
13
13
13
13
13
13 | 79
222
222
447
55
62
62
63
339
34 | 888
32
32
27
27
84
84 | -44
49
-28
-28
-14
150
-100
-19
-19 | | ' | , , | | , , | | 147
112
180
253
253
290
111
111
22
28
28
41 | 82
196
146
80
249
249
22
13
213
16
100
135 | 53
89
173
173
37
108
228
104
162
162
163 | 38
422
423
332
332
341
1562
1562
1562 | | ოოოოოოოოოო | | | | | 777777777777777 | 111111111111 | -000000000 | 0000 | | 8464-0-4646 | 4 0 0 - 0 0 4 0 0 0 - 0 0 4 0 0 0 0 0 0 | 13465 | 0470001111110 | ខានា 0000 -52 32 -45 -108 10F0 10FC ខេត្ត 4444 ¥ 4 6 1 1 -29 46 -39 16 SI-Park2 PIBAR 10FC 10F0 29 49 22 8000 OBSERVED AND CALCULATED STRUCTURE FACTORS FOR 44. 10FC -20 54 15 -82 10F0 5 - 4 - 6 19 125 -50 -155 10FC 10F0 18 123 49 156 0000 PAGE 10F0 10FC 24 -141 244 33 | - 68 | 54 | -17 | -36 | -43 | 7.1 | -9 | -27 | 4 | 67 | -30 | 47 | -5 | -23 | 27 | 0 | -53 | 29 | 77 | -57 | -92 | 39 | 42 | 37 | 4 | -5- | 4 | 8 | 901 | - 29 | -65 | 87 | 14 | 24 | -44 | -12 | 94 | 56 | 96- | -65 | 73 | -24 | -44 | |----------------------|-------------------|-------------------|--------------------|--------------------|-------------------|-------------------|----------------------|------------------------|----------------------|----------------------|-----------------------|-------------------------|-----------------------|-------------------------|-------------------------|-------------------------|----------------------|----------------------|----------------------|---------------------------|-----------------------------|------------------------------|----------------------------|---------------------------|-----------------------------|-----------------------------|-----------------------|---|---------------------------|----------------------------|---------------------------|----------------------------|---------------------------|---------------------------|--------------------------|---------------------------|---------------------------|-----------------------------|------------------------------|------------------------|------------------------|-----------------------| | 72 | 56 | 9 | 37 | 4 | 12 | 6 | 28 | 9 | 12 | 22 | 40 | = | 28 | 29 | = | 5 | 28 | 74 | 58 | 91 | 4 | 42 | 36 | 42 | ည | 2 | 82 | 9 | | 29 | 6 | 18 | 5 6 | 43 | 12 | 68 | 58 | 98 | 9 | 9, | 25 | 4 | | ស | ω | ഗ | c, | S | D. | S | ស | D. | လ | S | ß | S. | ស | ഹ | S | ស | ഹ | ស | ഗ | S | ŝ | တ | ស | വ | ភ | വ | ر
د | n ư | 0 | (C) | മ | മ | ß | ស | ഗ | S | S | ī, | 7C | r. | ស | S. | | 0 | 0 | 0 | 0 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | ~ | ~ | ~ | ~ | ~ | 7 | ~ | ~ | с | က | ი (| က | ი (| י פ | , w | (1) | ၈ | က | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | 0 | 7 | ო | 4 | 8 | 9- | 5 | T | ا | -2 | 0 | _ | 7 | ო | 4 | 9 | ů, | 4 | ၉ | -2 | 7 | 0 | 4 | 8 | -1 | 9 | ر
ر | 4 | 7 0 | , – | 8 | ო | 4 | 8 | -7 | 9 | r, | 4 | ر
ا | -2 | - | 0 | _ | | 38 | 47 | 28 | -30 | 23 | 5 | 7.2 | 21 | -54 | 16 | -27 | 104 | 38 | 22 | -38 | 32 | 15 | 20 | 33 | =- | 4 | 33 | -50 | -64 | 146 | 9 | -65 | -73 | 2 6 | - 2 | - 70 | -36 | 108 | -99 | -41 | 73 | 171 | -42 | 101 | 54 | 21 | 99- | -60 | | 9 | 4 | φ | 8 | ø | ~ | ~ | _ | | | | ' | ' | | | | | | 8 | ◂ | 7 | 7 | 8 | _ | ^ | 7 | ഹ | _ | ~ | a | က | ~ | 4 | က | 7 | ~ | ന | _ | | 4 | 4 | 9 | - | • | 9 | 67 | n - | - | 9 | ო | 2 | 9 | 4 | _ | 17 | 4 | o. | വ | ~ | 7 | 9 | | S. | ស | ť | Ç) | ٠ | 1.79 | .3 | R) | വ | ល | S | ß | ស | S | ເດ | S | S. | ß | | ഹ | S | S | 2 | N) | ស | <u>س</u> | S | <u>د</u> د | n 4 | າ ເ ດ | S | ις | Ŋ | ιΩ | S | ស | ß | ß | S | S | S | 2 | S. | | 7 | 4 | 4 | 4 | 4 | 1, | ငှ | e. | e
F | ç | <u>.</u> | e
L | e, | 6, | 9 | ို | 1 | 7 | -2 | 7 | -2 | -2 | - 2 | 1 | 1 | - 7 | 7 | 1 | 1 1 | 1 | - | 7 | ī | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | ī | 0 | | 0 | _ | ~ | m | 4 | - | | 9 | ų, | 4 | 7 | 7 | 0 | - | ~ | e | 4 | Ø | - 7 | 9 | ş | 1 | E - | -2 | - | 0 | _ | 7 | ກ ∢ | T 00 | -1 | 9- | -5 | 1 | ا | -2 | - | 0 | _ | 7 | 6 | 4 | 9 | | 2 | 9- | 23 | 17 | -63 | 9 | -23 | -53 | 69 | -31 | 5 8 | -68 | Ξ | 20 | 56 | -49 | 43 | 45 | -33 | -17 | -31 | -64 | 72 | - 20 | 36 | 5 9 | -49 | 2 | - 6 | 79 | -23 | -43 | - 16 | 54 | -55 | -59 | 52 | 62 | -41 | - 10 | 5 6 | 28 | - 18 | | <u>-</u> | - | 25 | ī. | 65 | 16 | 22 | 20 | 70 | 34 | 5 6 | 68 | 12 | 73 | 52 | 20 | 4 | 4 | 35 | 4 | 34 | 67 | 74 | 22 | 36 | 30 | 48 | 9 6 | 3 2 | 75 | 23 | | | 58 | | | | | 43 | 5 | 23 | 63 | 9 | 4 | ល | ഗ | ß | S) | ស | ß | က | S | ഗ | ഗ | ស | ស | ß | ស | ţ, | ιΩ | δ. | ស | z, | ī. | ស | ß | ស | Ŋ | ທ | ß | S I | n u | າທ | ស | ß | ß | ß | ß | ស | വ | လ | ß | ß | ស | r. | ß | | 7 | -9
53 | -9 5 | -9 52 | -9 52 | -9 | 8
2 | -B
-S | -B
50 | ئە
تە | ط
ح | -7 5 | -1 5 | -1 5 | -7 5 | -7 5 | -7 5 | -7 5 | -7 5 | -7 5 | ۔
5 | -6
5 | -e
5 | -6 | -
-
2 | ۔
و | -6 | ر
ب
و | י
היי | ,
S | ري
ک | -5 | .5
5 | -5
5 | ري
ص | رج
ح | -5
5 | -5 | -5
5 | -4 5 | -4 5 | -4 5 | -4 | | 4
0 | -4 -9 5 | -3 -9 5 | -2 -9 5 | -1 -9 5 | 0 -9 5 | -6 -8 5 | -5 -8 5 | -3 -8 5 | -2 -8 5 | 1 -8 | -6 -7 5 | -5 -7 5 | -4 -7 5 | -3 -1 5 | | | | 1 -7 5 | 2 -7 5 | f | í | 1 | -3 -6 5 | ı | 1 | 3 | 2 -6 5 | , , | 1 | , | ł | ; | ŧ | , | ì | , | , | , | J | -7 -4 5 | -6 -4 5 | -5 -4 5 | | 15 0 0 4 | 70 -4 -9 5 | -26 -3 -9 5 | -79 -2 -9 5 | 127 -1 -9 5 | -19 0 -9 5 | -6 -8 5 | | | | | | | | 1 | ' | , | | | | - 1- | · 9- | - 5- | - E- | -2 - | - 1 | 0 | i | 1 P I | 9 | -5- | - 4- | ;
(7) | - 2 - | 7 | 0 | - | 7 - | Б | J
60° | • | 1 | 16 -5 -4 5 | | 12 15 0 9 4 | 60 | <u>ო</u> | 7 | 1 | 24 -19 0 -9 5
 _ | 09~ 6 | 901 0 | | 4 | -51 | 91 | -21 | - 19- | - 69 | - 26 | -34 | 100 | -49 | - 4- 64- | - 30 - 9- | - 62 - 26 - | 94 -3 - | 23 -2 - | - 56 -1 - | - 48 0 - | ~ | . 61 . 61 | 15 -6 - | -5- | - 4 - | - 06- | - 2 - 61 | 38 -1 - | -37 0 - | -30 1 - | 36 2 - | 42 3 - | -53 -8 - | -43 | - 22 | 13 16 -5 -4 5 | | 4 12 15 0 9 4 | 60 | <u>ო</u> | 7 | 1 | 4 | _ | 09~ 6 | 901 0 | 09- 0 | 4 | -51 | 91 | -21 | - 19- | - 69 | - 26 | -34 | 100 | -49 | - 4- 64- | - 30 - 9- | - 62 - 26 - | 94 -3 - | 23 -2 - | - 56 -1 - | - 48 0 - | 83 2 | . 61 . 61 | 15 -6 - | - 9- 19- | - 4 - | - 06- | - 2 - 61 | 38 -1 - | -37 0 - | -30 1 - | 36 2 - | 42 3 - | -53 -8 - | -43 | - 22 | 4 13 16 -5 -4 5 | | 4 4 12 15 0 9 4 | 60 | <u>ო</u> | 7 | 1 | 4 | _ | 09~ 6 | 901 0 | 09- 0 | 4 | -51 | 91 | -21 | - 19- | - 69 | - 26 | -34 | 100 | -49 | - 4- 64- | - 30 - 9- | - 62 - 26 - | 94 -3 - | 23 -2 - | - 56 -1 - | - 48 0 - | 83 2 | . 61 . 61 | 15 -6 - | - 9- 19- | - 4 - | - 06- | - 2 - 61 | 38 -1 - | -37 0 - | -30 1 - | 36 2 - | 42 3 - | -53 -8 - | -43 | - 22 | 8 4 13 16 -5 -4 5 | | -5 4 4 12 15 0 9 4 | 60 | <u>ო</u> | 7 | 1 | 4 | _ | 09~ 6 | 901 0 | 4 4 4 60 -60 | 9 5 4 14 14 | 7 5 4 48 -51 | 5 5 4 14 16 | 4 5 4 18 -21 | - 19- | 2 5 4 69 69 - | 1 5 4 55 56 - | -34 | 100 | -49 | - 4- 64- | - 30 - 9- | - 62 - 26 - | 94 -3 - | 23 -2 - | - 56 -1 - | - 48 0 - | 83 2 | . 61 . 61 | 15 -6 - | - 9- 19- | - 4 - | - 06- | - 2 - 61 | 38 -1 - | -37 0 - | -30 1 - | 36 2 - | 42 3 - | -53 -8 - | -43 | - 22 | 1 8 4 13 16 -5-4 5 | | -5 4 4 12 | -4 4 4 68 | -3 4 4 23 | -2 4 4 72 | -1 4 4 127 | 0 4 4 24 | . 4 4 . | 2 4 4 59 ~60 | 3 4 4 110 108 | 4 4 4 60 -60 | -8 5 4 14 14 | -7 5 4 48 -51 | 123 -5 5 4 14 16 | -4 5 4 18 -21 | -3 5 4 59 -61 - | -2 5 4 69 69 - | -1 5 4 55 56 - | 0 5 4 32 -34 | 2 5 4 101 100 | 3 5 4 53 -49 | 4 5 4 50 -49 -7 - | -6 6 4 26 -30 -6 - | -4 6 4 94 -95 -5 - | -3 6 4 92 94 -3 - | -2 6 4 20 23 -2 - | -1 6 4 26 -26 -1- | 0 6 4 46 -48 0 - | 83 2 | 2 | -6 7 4 17 15 -6 - | -5 7 4 60 -61 -5 - | -2 7 4 55 55 -4 - | -1 7 4 91 -90 -3 - | 0 7 4 17 19 -2 - | 1 7 4 39 38 -1 - | 3 7 4 38 -37 0 ~ | -5 8 4 33 -30 1 - | -4 8 4 37 36 2 - | -3 8 4 42 42 3- | -2 8 4 53 -53 -8 - | -1 8 4 44 -43 | 0 8 4 30 27 - | 1 8 4 13 16 - | | 119 -5 4 4 12 | 32 -4 4 4 68 | 16 -3 4 4 23 | -73 -2 4 4 72 | 90 -1 4 4 127 | -19 0 4 4 24 | -32 1 4 4 11 | 38 2 4 4 59 ~60 | -75 3 4 4 110 108 | 50 4 4 4 60 -60 | 31 -8 5 4 14 14 | 45 -7 5 4 48 -51 | -123 -5 5 4 14 16 | 42 -4 5 4 18 -21 | 60 -3 5 4 59 -61 - | -65 -2 5 4 69 69 - | -91 -1 5 4 55 56 - | 24 0 5 4 32 -34 | -7 2 5 4 101 100 | 55 3 5 4 53 -49 | 33 4 5 4 50 -49 -7 - | -13 -6 6 4 26 -30 -6 - | 124 -4 6 4 94 -95 -5 - | -63 -3 6 4 92 94 -3 - | 66 -2 6 4 20 23 -2 - | -40 -1 6 4 26 -26 -1 - | -121 0 6 4 46 -48 0 - | 6 4 84 83 2 - | | 78 -6 7 4 17 15 -6 - | 41 -5 7 4 60 -61 -5 - | 30 -2 7 4 55 55 -4 - | 55 -1 7 4 91 -90 -3 - | -29 0 7 4 17 19 -2 | -49 1 7 4 39 38 -1 - | 88 3 7 4 38 -37 0 ~ | 98 -5 8 4 33 -30 1 - | -75 -4 8 4 37 36 2 - | -147 -3 8 4 42 42 3 - | 119 -2 8 4 53 -53 -8 - | -45 -1 8 4 44 -43 - | -35 0 8 4 30 27 - | 49 1 8 4 13 16 - | | 119 -5 4 4 12 | 32 -4 4 4 68 | 16 -3 4 4 23 | -73 -2 4 4 72 | 90 -1 4 4 127 | -19 0 4 4 24 | -32 1 4 4 11 | 38 2 4 4 59 ~60 | -75 3 4 4 110 108 | 49 50 4 4 4 60 -60 | 30 31 -8 5 4 14 14 | 49 45 -7 5 4 48 -51 | 116 -123 -5 5 4 14 16 | 37 42 -4 5 4 18 -21 | 56 60 -3 5 4 59 -61 - | 69 -65 -2 5 4 69 69 - | 91 -91 -1 5 4 55 56 - | 28 24 0 5 4 32 -34 | 9 -7 2 5 4 101 100 | 57 55 3 5 4 53 -49 | 36 33 4 5 4 50 -49 -7 - | 16 ~13 ~6 6 4 26 ~30 ~6 ~ | 124 124 -4 6 4 94 -95 -5 - | 62 -63 -3 6 4 92 94 -3 - | 65 66 -2 6 4 20 23 -2 - | 37 -40 -1 6 4 26 -26 -1 - | 112 -121 0 6 4 46 -48 0 - | 31 1 6 4 84 83 2 - | 20 - 20 4 40 7 0C CC | 82 78 -6 7 4 17 15 -6 - | 38 41 -5 7 4 60 -61 -5 - | 28 30 -2 7 4 55 55 -4 - | 54 55 ~1 7 4 91 ~90 -3 ~ | 28 -29 0 7 4 17 19 -2 | 45 -49 1 7 4 39 38 -1 - | 85 88 3 7 4 38 -37 0 - | 97 98 -5 8 4 33 -30 1 - | 82 -75 -4 8 4 37 36 2 - | 143 -147 -3 8 4 42 42 3 - | 121 119 -2 8 4 53 -53 -8 - | 45 -45 -1 8 4 44 -43 - | 30 -35 0 8 4 30 27 - | 47 49 1 8 4 13 16 - | | 4 118 119 -5 4 4 12 | 4 28 32 -4 4 4 68 | 4 22 16 -3 4 4 23 | 4 70 -73 -2 4 4 72 | 4 90 90 -1 4 4 127 | 4 22 -19 0 4 4 24 | 4 30 -32 1 4 4 11 | 4 34 38 2 4 4 59 ~60 | 4 73 -75 3 4 4 110 108 | 4 49 50 4 4 4 60 -60 | 4 30 31 -8 5 4 14 14 | 4 49 45 -7 5 4 48 -51 | 4 116 -123 -5 5 4 14 16 | 4 37 42 -4 5 4 18 -21 | 4 56 60 -3 5 4 59 -61 - | 4 69 -65 -2 5 4 69 69 - | 4 91 -91 -1 5 4 55 56 - | 4 28 24 0 5 4 32 -34 | 4 9 -7 2 5 4 101 100 | 4 57 55 3 5 4 53 -49 | 4 36 33 4 5 4 50 -49 -7 - | 4 16 -13 -6 6 4 26 -30 -6 - | 4 124 124 -4 6 4 94 -95 -5 - | 4 62 -63 -3 6 4 92 94 -3 - | 4 65 66 -2 6 4 20 23 -2 - | 4 37 -40 -1 6 4 26 -26 -1 - | 4 112 -121 0 6 4 46 -48 0 - | 27 31 1 6 4 84 83 2 - | 20 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - | 4 82 78 -6 7 4 17 15 -6 - | 4 38 41 -5 7 4 60 -61 -5 - | 4 28 30 -2 7 4 55 55 -4 - | 4 54 55 ~1 7 4 91 ~90 ~3 ~ | 4 28 -29 0 7 4 17 19 -2 - | 4 45 -49 1 7 4 39 38 -1 - | 4 85 88 3 7 4 38 -37 0 - | 4 97 98 ~5 8 4 33 ~30 1 ~ | 4 82 -75 -4 8 4 37 36 2 - | 4 143 -147 -3 8 4 42 42 3 - | 4 121 119 -2 8 4 53 -53 -8 - | 4 45 -45 -1 8 4 44 -43 | 4 30 -35 0 8 4 30 27 - | 4 47 49 1 8 4 13 16 - | | ' 0 | ., | | _ | _ | _ | _ | _ | _ | _ | |---|---------------|-----|------------|-----|-----|--------|-----|-----|-----| | 9 | 10FC | -37 | 39 | -5 | -24 | - 20 | 36 | -21 | 4 | | PAGE | 10F0 | 39 | 99 | 5 | 21 | 20 | 37 | 2.1 | 40 | | | X
L | 1 | ~ | 1 | 7 | 7 | 7 | 7 | ~ | | | ¥ | -2 | -2 | ~ | -2 | -2 | ~ 2 | - | - | | | I | | | | -2 | | | | | | | 10FC | -59 | 65 | 23 | 35 | 39 | -75 | 13 | 29 | | | 10F0 | 58 | 67 | - 8 | 36 | 4 | 73 | - | 30 | | | _ | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | | | × | 4 | 4 | S | ß | ស | S | ß | 2 | | | I | - | 7 | -1 | 9, | 5, | 4 | £, | -2 | | PIBAR | 10FC | 36 | 5 6 | -34 | -64 | 69 | 69 | -30 | -51 | | Si-Park2 P | K L 10FO 10FC | 35 | 23 | 33 | 63 | 71 | 7.1 | 30 | 49 | | 9- | ب | 9 | ဖ | 9 | 9 | 9 | ဖ | ø | 9 | | S | × | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | FOR | I | -7 | 9- | 'n | 4 | ۳
۱ | -2 | - | 0 | | OBSERVED AND CALCULATED STRUCTURE FACTORS | 10FC | 53 | 23 | -31 | 30 | 17 | 26 | -44 | 55 | | URE F | 10F0 | 53 | 56 | 30 | 24 | 6 | 27 | 46 | 29 | | UCT | X
L | 9 | ဖ | 9 | 9 | ø | 9 | 9 | 9 | | STR | ¥ | Š | ş | ş | ş | န | 4- | 4 | 4 | | ATED | I | 6- | -2 | 7 | 0 | - | -1 | Į, | ۴- | | CALCUL | 10FC | 5 | 17 | -29 | 73 | -62 | 20 | 4 | -33 | | QNV
AND | L 10FO 10FC | 91 | 6 | 30 | 75 | 9 | 20 | 4 | 34 | | IVED | _ | S | r | S | S | ഗ | ഗ | S | S | | SER | ¥ | 4 | 4 | S | ß | ഹ | ß | ហ | ß | | 90 | I | 7 | က | - 7 | Ş | 7 | Ç. | 7 | 0 | | 23 | -23 | -54 | 19 | -46 | 91, | 2 0 | 4 | -33 | 19 | 27 | -43 | -48 | - | 45 | - 15 | 16 | 17 | -22 | -21 | 42 | - 19 | 2 | 16 | -43 | 9- | 32 | -24 | 50 | 25 | -33 | -25 | 18 | -22 | 53 | -31 | 19 | -65 | |--------------------|------------------------|-----------------------|--------------------------|-----------------------------|----------------------------|---|-----------------------------|----------------------------|-----------------------------|-----------------------------|----------------------------|----------------------------|----------------------------|---------------------------|-----------------------------|----------------------------|------------------------------|----------------------------|----------------------------|-------------------------------|---|-------------------------------|----------------------------|----------------------------|----------------------------|------------------------------|----------------------------|--------------------------|---------------------------|------------------------------|------------------------------|-----------------------------|-----------------------------|-----------------------------|---------------------------|-----------------------------|----------------------------| | 25 | 25 | 23 | 21 | 44 | 20 | 75 | . 4
. 0 | 31 | 91 | 22 | 40 | 47 | 17 | 43 | 4 | 13 | 20 | 20 | 21 | 4 | 20 | 2.0 | 14 | 4 | = | 31 | 24 | 53 | 25 | 33 | 23 | 19 | 21 | 53 | 30 | 21 | 65 | | 1 | ~ | 7 | 7 | 7 | ۲, | - ~ | _ | 7 | 7 | ^ | 7 | 7 | 7 | 7 | _ | 7 | 1 | 7 | ~ | _ | ٠, | . ~ | 7 | 7 | 7 | ~ | ~ | 7 | ~ | ~ | ^ | ~ | ~ | / | ~ | ~ | ~ | | - | - | - | - | - | | | . 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | _ | _ | - | - | | _ | ~ | 7 | 7 | 7 | 7 | 7 | 7 | က | က | n | က | က | က | 4 | 4 | | S | 4 | C- | -2 | - | <u>.</u> | - ^ | | | | | | | | | | | | | | | 2- | | | | | | | | | | | | | | | κ̈́ | 4 | | . 13 | -42 | 2 | -35 | 22 | - 28 | 87 -
10- | 161 | -17 | 30 | - 22 | 9 | -29 | -55 | 25 | 9 | - 58 | 49 | -23 | æ | 59 | 24 | 7.7 | -24 | -31 | 45 | 25 | 6 | 91 | - 14 | -46 | 17 | 51 | -81 | 4 | 24 | 34 | - 29 | | Ġ | 4 | 22
27 | | | | | | | | | | | | | | | | | | - | 4 | 4 | n | _ | 7 (| 20 | - | 2 | n | ~ | _ | 8 | ស | 7 | വ | e | ഹ | 2 | 7 | 9 | ~ ~ | • - | 7 | e | 4 | 7 | _ | _ | _ | 4 | ~ | ß | 7 | က | 7 | က | 7 | | 9 | ω (| 9 | 9 | 9 | 9 | 0 (| φ | ဖ | 9 | 9 | 9 | ^ | 7 | ^ | 7 | _ | _ | 7 | 1 | _ | ~ ~ | . ~ | _ | 7 | 1 | 7 | 1 | 1 | _ | 1 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | | ſ | , ru | ø | 9 | 9 | 9 | 9 (| φ | 7 | 7 | _ | | | | | | | | | | | ני ו | | | | | | | | 1 | | -3 | -3 | -3 | ٦, | -3 | - 2 | -2 | | 7 | 0 | 9 | 5 | 1 | <u>ن</u> | 7 - | - 0 | 5 | - 3 | - 2 | 7 | 4 | 6- | -2 | 9- | 4 | - 2 | 0 | S. | 1 | - 2 | | 9 | - 5 | 4 | <u>ر</u> | 7 | 0 | ۲- | 9- | -5 | 4 | -2 | - | 0 | -8 | - 7 | | 69 | -55 | 9 | -33 | 8 ~ | 104 | 7 2 | . 6 | 44- | 33 | 47 | -45 | 34 | -58 | -32 | 9 | 39 | 6- | - 19 | 99 | -24 | 7- | 9 6 | 34 | -45 | - 11 | 63 | - 18 | 8 | 66- | -42 | 31 | 64 | - 18 | - 20 | 27 | 16 | -31 | | | | | | | • | | | | | | | | | | | | | | | | 5 K | | | | | | | | | | | | | | | | | | 9 | רשי | _ | e | N | on · | • | _ | • | e | 4 | • | מי | Ψ | ניז
| _ | • | _ | | • | | _ (| , e. | , (-, | 4 | • | Ģ | _ | _ | ניז | 4 | ~ | Ψ | _ | | ~ | _ | m | | Φ | ø | - | 10 | | ø | | | | • | • | • | Ψ, | D (6 | 9 6 | Ø | 9 | φ | ဖွ | ø | 9 | 9 | Φ | ø | 9 | ဖ | 9 | 6 | ש ע | y (C | 9 | 9 | 9 | ဖ | မ | ဖ | ဖ | 9 | 9 | 9 | 9 | 9 | _ | • | - | | 0 | 0 | - | _ | _ | | | | _ | - | - | _ | 7 | ~ | ~ | 7 | 7 | 7 | 7 | 7 | 7 | w | חמ | n | က | ო | က | က | က | က | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | 0 | . e | - 69 | _ | _ | | | | _ | - | - | _ | 7 | ~ | ~ | 7 | 7 | 7 | 7 | 7 | 7 | 9 6 6 | חמ | n | က | ო | က | က | က | က | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 0 | | -27 1 0 | | | -7 | 9- | ا
د د | 7 (| | - | - | - | -
E | -7 2 | -6 2 | -5 2 | -4 2 | -3 5 | -2 2 | -1 2 | 0 | 2 2 | E 4. | י
איר
איר | 4- | -3 3 | -2 3 | -1 3 | 0 | - 3 | 2 | -7 4 | -6 4 | -5 | 4 4 | -3
4 | -2 4 | -1 4 | 0 | | 23 -27 1 0 | | 10 | 49 -7 1 | -28 -6 1 | 21 -5 1 | 7 C C | -59 -2 - | 1 1- 69 | -32 0 1 | 1 1 1 | -41 3 1 | 39 -7 2 | -13 -6 2 | 24 -5 2 | 49 4 2 | 20 -3 2 | -52 -2 2 | 73 -1 2 | 12 0 2 | -138 2 2 | . 7. 17. | .55. | 22 -4 3 | 43 -3 3 | 29 -2 3 | -18 -1 3 | 20 0 3 | 15 1 3 | -21 2 3 | -56 -7 4 | 132 -6 4 | -66 -5 4 | -53 -4 4 | -31 -3 4 | 87 -2 4 | -13 -1 4 | -51 0 4 | | 6 23 -27 1 0 | | 10 | 49 -7 1 | -28 -6 1 | 21 -5 1 | 7 C C | -59 -2 - | 1 1- 69 | -32 0 1 | 1 1 1 | -41 3 1 | 39 -7 2 | -13 -6 2 | 24 -5 2 | 49 4 2 | 20 -3 2 | -52 -2 2 | 73 -1 2 | 12 0 2 | -138 2 2 | E 4. | .55. | 22 -4 3 | 43 -3 3 | 29 -2 3 | -18 -1 3 | 20 0 3 | 15 1 3 | -21 2 3 | -56 -7 4 | 132 -6 4 | -66 -5 4 | -53 -4 4 | -31 -3 4 | 87 -2 4 | -13 -1 4 | -51 0 4 | | 4 6 23 -27 1 0 | | 10 | 49 -7 1 | -28 -6 1 | 21 -5 1 | 6- 6- 6- 6- 6- 6- 6- 6- 6- 6- 6- 6- 6- 6 | 6 62 -59 -2 1 | 6 63 59 -1 1 | 6 27 -32 0 1 | 6 49 -49 1 1 | 3 6 42 -41 3 1 | 3 6 36 39 -7 2 | 3 6 12 -13 -6 2 | 3 6 26 24 -5 2 | 2 6 47 49 -4 2 | 2 6 19 20 -3 2 | 2 6 54 ~52 ~2 2 | 2 6 73 73 -1 2 | 2 6 13 12 0 2 | 2 6 152 -138 2 2 | 2 6 69 71 -7 3 | 2 6 33 -12 -5 3 | 2 6 23 22 -4 3 | 2 6 40 43 -3 3 | 1 6 26 29 -2 3 | 1 6 17 -18 -1 3 | 1 6 23 20 0 3 | 1 6 15 15 1 3 | 1 6 22 -21 2 3 | 1 6 56 -56 -7 4 | 1 6 130 132 -6 4 | 1 6 67 -66 -5 4 | 1 6 52 -53 -4 4 | 1 6 29 -31 -3 4 | 1 6 87 87 -2 4 | 1 6 13 -13 -1 4 | -51 0 4 | | 2 -4 6 23 -27 1 0 | | -4 6 17 19 | -4 6 44 49 -7 1 | -4 6 31 -28 -6 1 | -4 6 18 21 -5 1 | - 41 B2 - 27 D D1 | -3 6 62 -59 -2 1 | -3 6 63 59 -1 1 | -3 6 27 -32 0 1 | -3 6 49 -49 1 1 | -3 6 42 -41 3 1 | -3 6 36 39 -7 2 | -3 6 12 -13 -6 2 | -3 6 26 24 -5 2 | -2 6 47 49 -4 2 | -2 6 19 20 -3 2 | -2 6 54 -52 -2 2 | -2 6 73 73 -1 2 | -2 6 13 12 0 2 | -2 6 152 -138 2 2 | -2 6 50 -50 -60 -6 3 | -2 6 13 -12 -5 3 | -2 6 23 22 -4 3 | -2 6 40 43 -3 3 | -1 6 26 29 -2 3 | -1 6 17 -18 -1 3 | -1 6 23 20 0 3 | -1 6 15 15 1 3 | -1 6 22 -21 2 3 | -1 6 56 -56 -7 4 | -1 6 130 132 -6 4 | -1 6 67 -66 -5 4 | -1 6 52 -53 -4 4 | -1 6 29 -31 -3 4 | -1 6 87 87 -2 4 | -1 6 13 -13 -1 4 | 0 6 51 -51 0 4 | | 2 -4 6 23 | | -4 6 17 19 | -4 6 44 49 -7 1 | -4 6 31 -28 -6 1 | -4 6 18 21 -5 1 | - 41 B2 - 27 D D1 | -3 6 62 -59 -2 1 | -3 6 63 59 -1 1 | -3 6 27 -32 0 1 | -3 6 49 -49 1 1 | -3 6 42 -41 3 1 | -3 6 36 39 -7 2 | -3 6 12 -13 -6 2 | -3 6 26 24 -5 2 | -2 6 47 49 -4 2 | -2 6 19 20 -3 2 | -2 6 54 -52 -2 2 | -2 6 73 73 -1 2 | -2 6 13 12 0 2 | -2 6 152 -138 2 2 | 2 6 69 71 -7 3 | -2 6 13 -12 -5 3 | -2 6 23 22 -4 3 | -2 6 40 43 -3 3 | -1 6 26 29 -2 3 | -1 6 17 -18 -1 3 | -1 6 23 20 0 3 | -1 6 15 15 1 3 | -1 6 22 -21 2 3 | -1 6 56 -56 -7 4 | -1 6 130 132 -6 4 | -1 6 67 -66 -5 4 | -1 6 52 -53 -4 4 | -1 6 29 -31 -3 4 | -1 6 87 87 -2 4 | -1 6 13 -13 -1 4 | 0 6 51 -51 0 4 | | -2 -4 6 23 | -1-4 6 52 -51 | 0 -4 6 17 19 | 1 -4 6 44 49 -7 1 | 2 -4 6 31 -28 -6 1 | 3 -4 6 18 21 -5 1 | | -5 -3 6 62 -59 -2 1 | -4 -3 6 63 59 -1 1 | -3 -3 6 27 -32 0 1 | -2 -3 6 49 -49 1 1 | -1-3 6 42 -41 3 1 | 0 -3 6 36 39 -7 2 | 2 -3 6 12 -13 -6 2 | 3 -3 6 26 24 -5 2 | -8 -2 6 47 49 -4 2 | -7 -2 6 19 20 -3 2 | -6 -2 6 54 -52 -2 2 | -5 -2 6 73 73 -1 2 | -3 -2 6 13 12 0 2 | -2 -2 6 152 -138 2 2 | -2 6 50 -50 -60 -6 3 | 1 -2 6 13 -12 -5 3 | 2 - 2 6 23 22 - 4 3 | 3 -2 6 40 43 -3 3 | -8 -1 6 26 29 -2 3 | -7 -1 6 17 -18 -1 3 | -6 -1 6 23 20 0 3 | -5 -1 6 15 15 1 3 | -4 -1 6 22 -21 2 3 | -3 -1 6 56 -56 -7 4 | -2 -1 6 130 132 -6 4 | -1 -1 6 67 -66 -5 4 | 0 -1 6 52 -53 -4 4 | 1 - 1 6 29 -31 -3 4 | 2 - 1 6 87 87 -2 4 | 3 -1 6 13 -13 -1 4 | -8 0 6 51 -51 0 4 | | 24 -2 -4 6 23 | 36 -1 -4 6 52 -51 | -40 0 -4 6 17 19 | 11 1 -4 6 44 49 -7 1 | -26 2 -4 6 31 -28 -6 1 | -10 3 -4 6 18 21 -5 1 | 1 6 6 6 7 0 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 55 -5 -3 6 62 -59 -2 1 | 30 -4 -3 6 63 59 -1 1 | -16 -3 -3 6 27 -32 0 1 | -35 -2 -3 6 49 -49 1 1 | 15 -1 -3 6 42 -41 3 1 | -22 0 -3 6 36 39 -7 2 | 48 2 -3 6 12 -13 -6 2 | 39 3 -3 6 26 24 -5 2 | -26 -8 -2 6 47 49 -4 2 | 31 -7 -2 6 19 20 -3 2 | -39 -6 -2 6 54 -52 -2 2 | 41 -5 -2 6 73 73 -1 2 | -20 -3 -2 6 13 12 0 2 | -53 -2 -2 6 152 -138 2 2 | 0 - 2 6 69 71 - 7 3 | 83 1 - 2 6 13 - 12 5 3 | -14 2 -2 6 23 22 -4 3 | -31 3 -2 6 40 43 -3 3 | 60 -8 -1 6 26 29 -2 3 | -38 -7 -1 6 17 -18 -1 3 | -61 -6 -1 6 23 20 0 3 | 35 -5 -1 6 15 15 1 3 | 12 -4 -1 6 22 -21 2 3 | -46 -3 -1 6 56 -56 -7 4 | 86 -2 -1 6 130 132 -6 4 | 26 -1 -1 6 67 -66 -5 4 | -28 0 -1 6 52 -53 -4 4 | -21 1-1 6 29 -31 -3 4 | 29 2 - 1 6 87 87 -2 4 | -11 3 -1 6 13 -13 -1 4 | -26 -8 0 6 51 -51 0 4 | | 28 24 -2 -4 6 23 | 36 36 -1 -4 6 52 -51 | 38 -40 0 -4 6 17 19 | 13 11 1 -4 6 44 49 -7 1 | 23 -26 2 -4 6 31 -28 -6 1 | 11 -10 3 -4 6 18 21 -5 1 | 1 6- 63 63 6- 6- 60 00 00 14- 14- 14- 14- 14- 14- 14- 14- 14- 14- | 55 55 -5 -3 6 62 -59 -2 1 | 30 30 -4 -3 6 63 59 -1 1 | 12 -16 -3 -3 6 27 -32 0 1 | 35 -35 -2 -3 6 49 -49 1 1 | 16 15 -1 -3 6 42 -41 3 1 | 20 -22 0 -3 6 36 39 -7 2 | 48 48 2 -3 6 12 -13 -6 2 | 40 39 3 -3 6 26 24 -5 2 | 28 -26 -8 -2 6 47 49 -4 2 | 32 31 -7 -2 6 19 20 -3 2 | 40 -39 -6 -2 6 54 -52 -2 2 | 42 41 -5 -2 6 73 73 -1 2 | 22 -20 -3 -2 6 13 12 0 2 | 55 -53 -2 6 152 -138 2 2 | 43 -1 -2 6 69 71 -7 3
-73 0 -2 6 60 -60 -6 3 | 86 83 1 - 2 6 13 - 12 - 5 3 | 20 -14 2 -2 6 23 22 -4 3 | 33 -31 3 -2 6 40 43 -3 3 | 58 60 -8 -1 6 26 29 -2 3 | 37 -38 -7 -1 6 17 -18 -1 3 | 60 -61 -6 -1 6 23 20 0 3 | 36 35 -5-1 6 15 15 1 3 | 14 12 -4-1 6 22 -21 2 3 | 49 -46 -3 -1 6 56 -56 -7 4 | 86 86 -2 -1 6 130 132 -6 4 | 31 26 -1 -1 6 67 -66 -5 4 | 28 -28 0 -1 6 52 -53 -4 4 | 20 -21 1 -1 6 29 -31 -3 4 | 29 29 2 -1 6 87 87 -2 4 | 11 -11 3 -1 6 13 -13 -1 4 | 28 -26 -8 0 6 51 -51 0 4 | | 5 28 24 -2 -4 6 23 | 5 36 36 -1 -4 6 52 -51 | 5 38 -40 0 -4 6 17 19 | 5 13 11 1-4 6 44 49 -7 1 | 5 23 -26 2 -4 6 31 -28 -6 1 | 5 11 -10 3 -4 6 18 21 -5 1 | | 5 55 55 -5 -3 6 62 -59 -2 1 | 5 30 30 -4 -3 6 63 59 -1 1 | 5 12 -16 -3 -3 6 27 -32 0 1 | 5 35 -35 -2 -3 6 49 -49 1 1 | 5 16 15 -1 -3 6 42 -41 3 1 | 5 20 -22 0 -3 6 36 39 -7 2 | 5 48 48 2 -3 6 12 -13 -6 2 | 5 40 39 3 -3 6 26 24 -5 2 | 5 28 -26 -8 -2 6 47 49 -4 2 | 5 32 31 -7 -2 6 19 20 -3 2 | 5 40 -39 -6 -2 6 54 -52 -2 2 | 5 42 41 -5 -2 6 73 73 -1 2 | 6 22 -20 -3 -2 6 13 12 0 2 | 6 55 -53 -2 -2 6 152 -138 2 2 | 70 -73 0 -2 6 69 71 -7 3 | 6 86 83 1 - 2 6 13 - 12 - 5 3 | 6 20 -14 2 -2 6 23 22 -4 3 | 6 33 -31 3 -2 6 40 43 -3 3 | 6 58 60 -8 -1 6 26 29 -2 3 | 6 37 -38 -7 -1 6 17 -18 -1 3 | 6 60 -61 -6 -1 6 23 20 0 3 | 6 36 35 -5-1 6 15 15 1 3 | 6 14 12 -4-1 6 22 -21 2 3 | 6 49 -46 -3 -1 6 56 -56 -7 4 | 6 86 86 -2 -1 6 130 132 -6 4 | 6 31 26 -1 -1 6 67 -66 -5 4 | 6 28 -28 0 -1 6 52 -53 -4 4 | 6 20 -21 1 -1 6 29 -31 -3 4 | 6 29 29 2 -1 6 87 87 -2 4 | 6 11 -11 3 -1 6 13 -13 -1 4 | 6 28 -26 -8 0 6 51 -51 0 4 | | ERV | ΈD | AND | OBSERVED AND CALCULAT | ATED | 511 | RUC | TURE F | STRUCTURE FACTORS | FOR | Si | - P. | rk2 i | Si-Park2 PIBAR | | | | | | | | | PAGE | ie 7 | |-----|------------|-----------------|-----------------------|------|---------|-----|--------|-------------------|--------|--------------|------------|----------|----------------|--------|---|----|------|------|-----|---|----|------|------| | | 1 | Н К L 10F0 10FC | 10FC | I | ¥ | ٦ | L 10F0 | 10FC | I | × | ب | K L 10F0 | 10FC | I | ¥ | ١ | 1050 | 10FC | I | ¥ | _ | 10F0 | 10FC | | | 7 | 18 | 12 | -3 | | | | 20 | | -2 | 80 | 23 | 11 | 9 | 0 | 80 | 33 | 33 | 1 | - | 80 | 9 | 91 - | | | ~ | 20 | 5 | 4 | 4 | | | 38 | | -2 | 8 | 19 | 19 | -
2 | 0 | 8 | 25 | - 24 | - 2 | - | 00 | 5 | -21 | | | _ | 42 - | -41 | - | 4 | € | 13 | 13 | ٠
د | -2 | 60 | 69 | - 74 | 4 | 0 | 8 | 0 | -2 | 9- | 7 | 00 | 9 | - 18 | | | _ | 36 | 38 | 9 | , | | | -47 | | - 2 | 80 | 67 | 73 | - 2 | 0 | 8 | 20 | -22 | 4 | 7 | 8 | 18 | 21 | | | _ | 37 | - 39 | Š | ا
ق | | | 54 | | - | 80 | 35 | 37 | - | 0 | 8 | 24 | -22 | -2 | 7 | 8 | 33 | -35 | | | 1 | 37 | 38 | 6 | ر.
ب | | | 22 | | - | 80 | <u> </u> | 01 | 0 | 0 | 8 | 9(| 18 | 1 | 7 | 8 | 44 | 43 | | | 7 | 52 | -53 | -2 | 3 | | | -22 | | - | 60 | 38 | -38 | 9- | - | 60 | 91 | - 15 | -2 | e | 6 | 30 | 40 | | | 7 | 34 | 33 | 7 | Ç | | | 52 | | , | 6 0 | 8 | -17 | | | | | | | |) | , | ? | | 7 | SI-Park2 P | PIBAR | - | × 00 | H 9- | H 9- | H 9-1-0-0-1-0-1-0-1-0-1-0-1-0-1-0-1-0-1-0- | 1-Park2 P18AR
L 10FO 10FC H K
B 23 27 -6 0
8 19 19 -5 0 | FOR SI-Park2 PIBAR
H K L 10FO 10FC H K
-6 -2 8 23 27 -6 0
-5 -2 8 19 19 -5 0 | FOR SI-Park2 PIBAR
H K L 10FO 10FC H K
-6 -2 8 23 27 -6 0
-5 -2 8 19 19 -5 0 | FOR SI-Park2 PIBAR
H K L 10FO 10FC H K
-6 -2 8 23 27 -6 0
-5 -2 8 19 19 -5 0 | FOR SI-Park2 PIBAR
H K L 10F0 10FC H K
-6 -2 8 23 27 -6 0
-5 -2 8 19 19 -5 0 | FOR SI-Park2 PIBAR H K L 10FO 10FC H K -6 -2 8 23 27 -6 0 -5 -2 8 19 19 -5 0 | FOR SI-Park2 PIBAR H K L 10FO 10FC H K -6 -2 8 23 27 -6 0 -5 -2 8 19 19 -5 0 | ALCULATED STRUCTURE FACTORS FOR SI-Park2 PIBAR DFC H K L 10F0 10FC H K L 10F0 10FC H K 12 -3 -5 8 21 20 -6 -2 8 23 27 -6 0 51 -4 -4 8 37 38 -5 2 8 19 19 -5 0 | ALCULATED STRUCTURE FACTORS FOR SI-Park2 PIBAR DFC H K L 10F0 10FC H K L 10F0 10FC H K 12 -3 -5 8 21 20 -6 -2 8 23 27 -6 0 51 -4 -4 8 37 38 -5 -2 8 19 19 -5 0 -4 1 -1 -4 8 13 13 -3 -3 -3 -3 -3
-3 -3 -3 -3 -3 -3 -3 -3 | ALCULATED STRUCTURE FACTORS FOR SI-Park2 PIBAR DFC H K L 10F0 10FC H K L 10F0 10FC H K 12 -3 -5 8 21 20 -6 -2 8 23 27 -6 0 51 -4 -4 8 37 38 -5 -2 8 19 19 -5 0 -4 1 -1 -4 8 13 13 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 | CALCULATED STRUCTURE FACTORS FOR SI-Park2 PIBAR 10FC H K L 10F0 10FC H K L 10F0 10FC H K 12 -3 -5 8 21 20 -6 -2 8 23 27 -6 0 51 -4 -4 8 37 38 -5 2 8 19 19 -5 0 -4 1 -1 -4 8 37 38 -3 -2 8 19 19 -5 0 | |------|------------------|--|---|--|---|---|---|---|--|--|--|--|--|---| | | 9 9 9 | 9 9 9 | 9 9 9 | 8 23 27 -6 0
8 19 19 -5 0 | -2 8 23 27 -6 0
-2 8 19 19 -5 0 | -6 -2 8 23 27 -6 0
-5 -2 8 19 19 -5 0 | 20 -6 -2 8 23 27 -6 0
38 -5 -2 8 19 19 -5 0 | 20 -6 -2 8 23 27 -6 0
38 -5 -2 8 19 19 -5 0 | 20 -6 -2 8 23 27 -6 0
38 -5 -2 8 19 19 -5 0 | 20 -6 -2 8 23 27 -6 0
38 -5 -2 8 19 19 -5 0 | -3 -5 8 21 20 -6 -2 8 23 27 -6 0
-4 -4 8 37 38 -5 -2 8 19 19 -5 0 | 12 -3 -5 8 21 20 -6 -2 8 23 27 -6 0
51 -4 -4 8 37 38 -5 -2 8 19 19 -5 0 | 12 -3 -5 8 21 20 -6 -2 8 23 27 -6 0
51 -4 -4 8 37 38 -5 -2 8 19 19 -5 0 | 7 18 12 -3 -5 8 21 20 -6 -2 8 23 27 -6 0
7 50 51 -4 -4 8 37 38 -5 -2 8 19 19 -5 0 | | × 00 | Y 0 9 1 | Y 0 9 1 | Y 0 9 1 | L 10F0 10FC H K 8 23 27 -6 0 8 19 19 -5 0 | -6 -2 8 23 27 -6 0 -5 -2 8 19 19 -5 0 | -6 -2 8 23 27 -6 0 -5 -2 8 19 19 -5 0 | -6 -2 8 23 27 -6 0 -5 -2 8 19 19 -5 0 | -6 -2 8 23 27 -6 0 -5 -2 8 19 19 -5 0 | -6 -2 8 23 27 -6 0 -5 -2 8 19 19 -5 0 | -6 -2 8 23 27 -6 0 -5 -2 8 19 19 -5 0 | 12 -3 -5 8 21 20 -6 -2 8 19 19 -5 0 51 -4 -4 8 37 38 -5 -2 8 19 19 -5 0 | 12 -3 -5 8 21 20 -6 -2 8 19 19 -5 0 51 -4 -4 8 37 38 -5 -2 8 19 19 -5 0 | 12 -3 -5 8 21 20 -6 -2 8 19 19 -5 0 51 -4 -4 8 37 38 -5 -2 8 19 19 -5 0 | 12 -3 -5 8 21 20 -6 -2 8 19 19 -5 0 51 -4 -4 8 37 38 -5 -2 8 19 19 -5 0 | | | I 99 | I 99 | I 99 | 1-Park2 P18AR
L 10FO 10FC H
8 23 27 -6
8 19 19 -5 | FOR SI-Park2 PIBAR H K L 10FO 10FC H -6 -2 8 23 27 -6 -5 -2 8 19 19 -5 | FOR SI-Park2 PIBAR H K L 10FO 10FC H -6 -2 8 23 27 -6 -5 -2 8 19 19 -5 | FOR SI-Park2 PIBAR H K L 10FO 10FC H -6 -2 8 23 27 -6 -5 -2 8 19 19 -5 | FOR SI-Park2 PIBAR H K L 10FO 10FC H -6 -2 8 23 27 -6 -5 -2 8 19 19 -5 | FOR SI-Park2 PIBAR H K L 10FO 10FC H -6 -2 8 23 27 -6 -5 -2 8 19 19 -5 | FOR SI-Park2 PIBAR H K L 10FO 10FC H -6 -2 8 23 27 -6 -5 -2 8 19 19 -5 | ALCULATED STRUCTURE FACTORS FOR SI-Park2 PIBAR DFC H K L 10F0 10FC H K L 10F0 10FC H 12 -3 -5 8 21 20 -6 -2 8 23 27 -6 51 -4 -4 8 37 38 -5 -2 8 19 19 -5 | ALCULATED STRUCTURE FACTORS FOR SI-Park2 PIBAR DFC H K L 10F0 10FC H K L 10F0 10FC H 12 -3 -5 8 21 20 -6 -2 8 23 27 -6 51 -4 -4 8 37 38 -5 -2 8 19 19 -5 | ALCULATED STRUCTURE FACTORS FOR SI-Park2 PIBAR DFC H K L 10F0 10FC H K L 10F0 10FC H 12 -3 -5 8 21 20 -6 -2 8 23 27 -6 51 -4 -4 8 37 38 -5 -2 8 19 19 -5 | ALCULATED STRUCTURE FACTORS FOR SI-Park2 PIBAR DFC H K L 10F0 10FC H K L 10F0 10FC H 12 -3 -5 8 21 20 -6 -2 8 23 27 -6 51 -4 -4 8 37 38 -5 -2 8 19 19 -5 | | | 10FC
27
19 | rk2 P1BAR
10F0 10FC
23 27
19 19 | -Park2 P1BAR
L 10F0 10FC
8 23 27
8 19 19 | i-Park2 Pi
L 10FO 1
B 23
B 19 | FOR SI-Park2 PI
H K L 10F0 I
-6 -2 8 23
-5 -2 8 19 | FOR SI-Park2 PI
H K L 10FO I
-6 -2 8 23
-5 -2 8 19 | FOR SI-Park2 PI
H K L 10FO I
-6 -2 8 23
-5 -2 8 19 | FOR SI-Park2 PI
H K L 10FO I
-6 -2 8 23
-5 -2 8 19 | FOR SI-Park2 PI
H K L 10FO I
-6 -2 8 23
-5 -2 8 19 | FOR SI-Park2 PI
H K L 10FO I
-6 -2 8 23
-5 -2 8 19 | NLCULATED STRUCTURE FACTORS FOR SI-Park2 PI DFC H K L 10FO 10FC H K L 10FO 1 12 -3 -5 8 21 20 -6 -2 8 23 51 -4 -4 8 37 38 -5 -2 8 19 | NLCULATED STRUCTURE FACTORS FOR SI-Park2 PI DFC H K L 10FO 10FC H K L 10FO 1 12 -3 -5 8 21 20 -6 -2 8 23 51 -4 -4 8 37 38 -5 -2 8 19 | NLCULATED STRUCTURE FACTORS FOR SI-Park2 PI DFC H K L 10FO 10FC H K L 10FO 1 12 -3 -5 8 21 20 -6 -2 8 23 51 -4 -4 8 37 38 -5 -2 8 19 | NLCULATED STRUCTURE FACTORS FOR SI-Park2 PI DFC H K L 10FO 10FC H K L 10FO 1 12 -3 -5 8 21 20 -6 -2 8 23 51 -4 -4 8 37 38 -5 -2 8 19 |